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Abstract—Speckle noise is commonly assumed to be multiplica-
tive. Non-local speckle denoising algorithms stack the correlated
data patches into a tensor and take the logarithm such that
the noise becomes additive. The log-transformed speckle noise is
commonly assumed to be white Gaussian noise. The denoising is
done through the low-rank approximation techniques applied
to the non-local data patches. However, the log-transformed
speckle noise can be better approximated as white Gaussian
noise with sparse outliers. In this paper, we model the log-
transformed speckle noise with this assumption and assess the
importance of the noise model under various SNRs. In addition,
we propose a weighting scheme for the tensor-based low-rank
convex denoising method that utilizes the known ranks. The
performance of the proposed algorithm is benchmarked against
truncated multilinear singular value decomposition, higher-order
orthogonal iteration, and robust tensor decomposition methods
that use the sum of the nuclear norm and the tubal nuclear
norm. Robust tensor decomposition methods that use the tubal
nuclear norm perform better in low SNR scenarios. For high SNR
scenarios, the proposed algorithm is found to perform better.

Index Terms—speckle denoising, low-rank approximation, out-
lier resistant, convex optimization, tensor decomposition

I. INTRODUCTION

Speckle noise is an inherent characteristic of coherent
imaging modalities occurring in various systems, including
synthetic aperture radar [1], sonar [2], and ultrasound imaging
[3]. This phenomenon arises due to the superposition of waves
reflected from a resolution cell, which is defined by the
bandwidth of the transmitted signal. When enough scatterers
have sizes comparable to the transmitted signal’s wavelength
and the system’s point spread function is broader, the re-
ceived signal exhibits a granular appearance. Speckle noise
is commonly reduced to enhance the visibility of structures
and improve the quantification of the underlying system’s
dynamics.

In many applications, speckle noise is assumed to be
multiplicative [1] [2] [3]. Several techniques were proposed
in the literature to remove multiplicative noise. State-of-the-
art methods can be categorized as the total variation (TV)
regularization [4] [5], and nonlocal low-rank-based methods
[2] [6]. Total regularization methods optimize a loss function
that includes a data fidelity term and a total variational term.
The data fidelity term provides a least squares approxima-
tion, while the total variation regularization term smoothes

the data while preserving the edges. The nonlocal low-rank-
based methods first cluster the data into similar patches and
apply denoising by returning a low-rank approximation of
each patch. This low-rank approximation is made through
algorithms such as higher-order orthogonal iteration (HOOI)
[2] or a convex relaxation of the low rankness [7]. However,
these algorithms are better suited for white Gaussian noise
(WGN). The aforementioned techniques can be improved by
changing the WGN assumption about the speckle noise.

In [3], the log-transformed Rayleigh distribution is approx-
imated as WGN with sparse outliers. The sparse outliers have
a detrimental effect on the low-rank approximation of the data
[8]. The robust tensor decomposition methods recover the low-
rank tensor while capturing noise as a sparse and additive term.
In most algorithms, the sparsity constraint is relaxed using the
L1 norm. The convex relaxation of the tensor low rankness
differs and can be categorized into the sum of the nuclear
norm-based (SNN) and the sum of tubal nuclear norm-based
(TNN) methods. In [9], an SNN method is used as a robust
tensor decomposition method. Assuming that the tensor is not
simultaneously low-ranked in all modes, the authors in [10]
introduced a new low-rank relaxation that is better suitable.

The authors in [11] introduced TNN as a tighter convex
surrogate for tensor low rankness. Using TNN, the authors
in [12] solved the robust tensor decomposition problem. In
[13], the authors extended the TNN to consider low rankness
in all modes simultaneously and introduced an orientation
invariant tubal nuclear norm (OITNN-O) method. If the tensor
is not low-ranked in all modes, a method named OITNN-L is
introduced. TNN-based algorithms are shown to perform better
than their SNN counterparts. This paper reviews SNN and
TNN-based robust tensor decomposition methods and applies
them in the context of speckle denoising. In addition, we pro-
pose a weighting scheme for SNN when the underlying ranks
are known. In parallel with the truncated multilinear singular
value decomposition (tr-MLSVD), the proposed algorithm
preserves the predominant singular values while subjecting
the remaining ones to soft thresholding. By incorporating a
sparsity constraint, our objective is to examine the effect of
sparsity in denoising speckle noise.

In Section II, we explain the notation. In Section III, we
formulate the problem. In Section IV, we introduce the pro-
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posed algorithm. In Section VI and Section VII, we compare
the performance of the proposed algorithm to other methods
in the literature and report the results. Finally, in Section VIII,
we discuss the results and propose possible future work.

II. NOTATION AND TENSOR PRELIMINARIES

Tensors are represented by underlined boldface letters such
as Y. Matrices are represented by boldface letters such as I.
The numbers given as superscripts in parentheses refer to the
different matrices or tensors that share a similar property. An
example could be the relation K =

∑
i K

(i) for i ∈ {1, ..., N}.
Vectors are represented with boldface lowercase letters such
as tij that represent the (i, j)th vector of T ∈ RI×J×K .
Scalars are represented by lower case letters such as aij
that represent element at the ith row and jth column of
A ∈ RI×J . The fibers are the vectors extracted from the third
dimension of a 3-dimensional tensor. The mode-n unfolding of
Y ∈ RI1×I2×···×IN is Y(n) ∈ RIn×I1I2...In−1In+1...IN . Mode-
(n, n + 1) unfolding of a tensor is described further in the
paper and shown with Y[n] ∈ RIn×D/(InIn+1)×In+1 , where
D =

∏
i Ii. The Hadamard product is shown with ⊙. The

circular convolution is shown with ⊛. The Frobenius norm
is the square root of the sum of each element and is shown
by || · ||F . The cardinality, defined as the number of non-zero
elements, is shown with || · ||0. The nuclear norm is shown
with || · ||∗. The penalty parameter of augmented lagrangian is
defined as ρ.

III. PROBLEM FORMULATION

Let Ỹ ∈ RI1×I2×···×IN denote the N-dimensional tensor
to be denoised. We model the tensor Ỹ as the element-wise
multiplication of the low-rank tensor L̃ and the noise tensor
M̃, that is,

Ỹ = L̃⊙ M̃ , (1)

where each element of M̃ is modeled by the Rayleigh noise
with a scaling parameter of 1. Taking the element-wise loga-
rithm of (1) transforms the multiplicative noise into additive
noise. Let the logarithms log Ỹ, log L̃ and log M̃ be denoted
with Y, L and M, respectively. Each element of M follows
the Fisher-tippet distribution.

In [3], using Taylor expansion, the Fisher-tippet distribution
is approximated as WGN with sparse outliers. With these
assumptions, we can model the received tensor Y as the sum
of a low-rank tensor L, sparse outlier S and WGN W, that
is,

log(Ỹ) = log(L̃) + log(M̃) ,

Y =L+M ,

Y ≈L+S+W .

(2)

This paper uses tensor approaches to compare convex methods
to recover L from the speckled Y. For N > 2, and ranks
ri < Ii for i ∈ {1, ..., N}, this problem can be formulated as

min
L,S

{
1

2
||L+S−Y ||2F + λ||S ||0

}
s.t. rank(L(i)) = ri .

(3)

The objective function given at (3) is not convex. A common
convex relaxation of the cardinality is the L1 norm. For the
convex relaxation of the tensor low-rankness, we investigate
two approaches, namely SNN and TNN. In the following
section, we will introduce SNN and TNN. In addition, we
will introduce a weighted SNN proximity operator, which can
be used if the multilinear ranks of the low-rank tensor are
known. We aim to apply various convex relaxations to solve
(3) and compare the results in the context of speckle denoising
for various SNRs, which has not been done before.

IV. SUM OF NUCLEAR NORM (SNN)

The sum of the nuclear norm is a direct extension of the
matrix rank to the tensor rank using the Tucker rank, i.e.,
the rank of the different unfolding of the tensor. In [9],
the optimization problem given at (3) is solved through the
relaxation of the low rankness using the sum of the nuclear
norm. We have the following optimization problem defined as

min
L,S

{
1

2
||L+S−Y ||2F +γL

N∑
i=1

||L(i)||∗+γS ||S ||1

}
. (4)

This can be solved by following [9], where N auxiliary
variables are defined to separate L(i) for i ∈ {1, ..., N} and
a proximity operator is employed alternately. The proximity
operators are commonly used to minimize a function involving
norms. The proximity operator of the nuclear norm is defined
as

prox||·||∗
γL/ρ(L(i)) = UDγL/ρ V

T , (5)

with SVD of L(i) ∈ RIi×
∏

n̸=i In defined as L(i) = UDVT

and DγL/ρ = max{D− I γL/ρ,0}.

A. Weighted Sum of Nuclear Norm

We propose a weighting scheme for SNN methods that
utilizes the known multilinear ranks of the true tensor. It is
suggested in [14] that the proximity operator given at (5)
is problematic for denoising. This is due to the global soft
thresholding operator applied to all the singular values. A
better algorithm for denoising tasks can be arranged by the
weighted sum of the singular value. The problem is still
convex with this additional update. The highest eigenvalues
corresponding to the signal subspace would be kept the same
at each optimization iteration, while the lowest eigenvalues
corresponding to the noise subspace would be reduced by
γL/ρ. For the ith mode unfolding with the corresponding rank
ri, the weighted thresholding matrix D̃γL/ρ becomes

D̃γL/ρ = max{D−C(i) γL/ρ,0} , (6)

where

C(i) =

[
0 ∈ Rri×ri 0 ∈ Rri×Ii−ri

0 ∈ RIi−ri×ri I ∈ RIi−ri×Ii−ri

]
, (7)

and i ∈ {1, ..., N}. Hence, the proximity operator defined at
(5) becomes

prox||·||∗
γ/ρ (L(i)) = UD̃γ/ρ V

T . (8)
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The problem at (4) can be solved the same as [9] only by
changing the proximity operator from (5) to (8). We name
this method weighted SNN (wSNN).

V. TUBAL NUCLEAR NORM (TNN)

The tubal nuclear norm is introduced using the framework
of t-SVD [15]. Here, we will describe the basics of the
framework.

Definition 1. The t-product: Given two 3D tensors T(1) ∈
RI1×I2×I3 and T(2) ∈ RI2×I4×I3 , the t-product T =
T(1) ∗T(2) ∈ RI1×I4×I3 is computed by ti1i4 =∑I2

i2=1 t
(1)
i1i2

⊛ t
(2)
i2ii4

.

Definition 2. The transpose: The transpose of tensor T ∈
RI1×I2×I3 is defined as the tensor TT ∈ RI2×I1×I3 .

Definition 3. t-SVD: The t-SVD of the tensor T ∈ RI1×I2×I3

is defined as T = U ∗λ ∗VT with orthogonal U ∈ RI1×I1×I3

and V ∈ RI2×I2×I3 , and λ ∈ RI1×I2×I3 has diagonal frontal
slices. The orthogonality is defined as U ∗UT = UT ∗U =
I ∈ RI1×I1×I3 and the identity tensor is a tensor whose first
frontal slice is an identity matrix and the rest of the slices are
zero matrices. The number of non-zero fibers in tensor λ is
called the tubal rank.

Definition 4. Mode (k,t) unfolding: T ∈ RI1×···×IN , the
mode (k,t) unfolding creates a 3D tensor of size T(k,t) ∈
RIk×D/IkIt×It by permuting the kth dimension of T to the
first, t-th dimension to the last and grouping the rest. Here D
is defined as

∏
i Ii. Orientation invariant tubular nuclear norm

is defined commonly by traversing k ∈ {1, ..., N} and fixing
t = k+1. With this choice, T(k,k+1) is simply shown as T[k].

Given L ∈ RI1×I2×I3 , define its 1D Fourier transform that
is applied on all fibers by F(L) ∈ CI1×I2×I3 . The tubal
nuclear norm is given by the average of the nuclear norm
of all of the frontal slices of F(L), that is,

||L ||TNN =
1

I3

I3∑
i3=1

||F(L)i3 ||∗ . (9)

The proximity operator for the tubal nuclear norm is given by

Prox||·||TNN
γL
ρ

(L) = U ∗F−1(max{F(λ)− γL
ρ
,0}) ∗VT . (10)

In [12], the optimization problem given at (3) is solved
similarly to SNN, while only changing the rank relaxation
into the tubal nuclear norm. This can be formulated as

min
L,S

{
1

2
||L+S−Y ||2F + γL||L||TNN + γS ||S ||1

}
.

(11)
Under the tensor incoherence condition (see [12]), the exact
recovery of the true tensor L is guaranteed for the noiseless
case. This algorithm is named the tensor stable principal
component pursuit (TSPCP). In [16], an additional constraint
regarding the infinity norm of the low-rank tensor is added to
the objective function such that the absolute values of L are

below a certain threshold and the outliers are captured at S
instead. This optimization problem can be shown as

min
L,S

{
1

2
||L+S−Y ||2F + γL||L||TNN + γS ||S ||1

}
s.t. ||L ||∞ ≤ α .

(12)

The constraint regarding the infinity norm is handled by
clipping the maximum value of the absolute value of L to
α at each iteration of the optimization.

Only the low rankness in the third mode is incorporated in
(12) and (11). The authors in [13] extended the analysis to all
the modes for general N-dimensional tensors L ∈ RI1×···×IN ,
S ∈ RI1×···×IN , and W ∈ RI1×···×IN using the mode (k,t)
unfolding. According to Lemma 1 in [13], any tensor that
has a low Tucker rank has a low orientation invariant average
rank. This enables the direct application of two convex proxy
methods, OITNN-O and OITNN-L, onto low Tucker rank
applications using the orientation invariant tubal nuclear norm
(OITNN). The OITNN is defined as

||L ||OITNN =
1

N

N∑
n=1

||L[n] ||TNN . (13)

The OITNN-O considers the low rankness in all orientations
and solves the optimization problem that is defined as

min
L,S

{
1

2
||L+S−Y ||2F + γL||L||OITNN + γS ||S ||1

}
s.t. ||L ||∞ ≤ α .

(14)

The OITNN-L considers L as the sum of N auxiliary tensors,
which can have a low tubal rank in their respective mode. As-
suming that an incoherence condition holds, this optimization
problem is defined as

min
L(1),...,L(N),S

{
1

2
||
∑
k

L(k) +S−Y ||2F +
γL
N

∑
n

||L(n)
[n] ||TNN

+ γS ||S ||1

}
s.t. ||

∑
n

L(n) ||∞ ≤ α .

(15)
The exact recovery of true L is not guaranteed for the noiseless
case when the infinity norm constraint is incorporated.

VI. SIMULATION

This section compares the denoising performance of the
methods given in Table 1 through a Monte Carlo simu-
lation. Here, we have generated two 3D tensors of size
L ∈ R20×20×20 with unequal ranks and equal ranks. This
is done by generating a core tensor of size (10, 10, 10) and
(5, 10, 15) from a standard uniform distribution, multiplying it
in each mode with unitary factor matrices, and finally taking
the logarithm. The noise tensor is generated by taking the
logarithm of tensor M ∈ R20×20×20 where each entry mi1i2i3
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TABLE I
SUMMARY OF THE METHODS THAT ARE USED IN THIS PAPER.

Constraints Noise Optimization
problem

HOOI [17] Ranks WGN -
tr-MLSVD [18] Ranks WGN -

wSNN Ranks WGN + Sparse (4) and (8)
SNN [9] - WGN + Sparse (4) and (5)

TNN [19] ||L ||∞ WGN + Sparse (12)
OITNN-O [13] ||L ||∞ WGN + Sparse (14)
OITNN-L [13] ||L ||∞ WGN + Sparse (15)

TSPCP [12] - WGN + Sparse (11)

follows the Rayleigh distribution with a scaling parameter of
1. The SNR of the problem is defined by

10 log10(
E[L−E[L]]2

E[M−E[M]]2
) . (16)

We have scaled the variance of L while fixing the
scaling parameter of the noise such that SNRs of
{−5, 0, 5, 10, 15, 20, 25, 30} are obtained. The noisy tensor Y
is obtained by the summation of L and M. The normalized
error is used as a performance metric, which is defined as

20 log10
||L̂− L ||F
||L ||F

. (17)

Ten numbers in the range (1, 100) are traversed for optimiza-
tion of the parameters γS and γL for OITNN-L, while the
range (1, 30) are traversed for the rest of the robust tensor
decomposition methods. We fixed the value of ρ to 1 and set
the maximum iteration number to 500. The true ranks are used
for tr-MLSVD and HOOI, and the true ||L ||∞ is assigned to
α for TNN, OITNN-O, and OITNN-L.

VII. RESULTS

The simulation defined in Section VI is repeated for 20
random initialization of the noise tensor and true tensor. The
normalized error is calculated for various SNRs and plotted
in Fig. 1. For each run of the algorithm, the best-performing
tuning parameters γS and γL are selected to calculate the
normalized error. For all SNRs, the wSNN performs better
than the truncated multilinear singular value decomposition
and HOOI. More improvement is found for low SNR scenar-
ios. The best-performing method is OTINN L for both ranks
when the SNR is less than 20 dB. For SNRs greater than
20 dB, the wSNN performs better with a small improvement
compared to HOOI.

VIII. DISCUSSION AND CONCLUSION

This paper compares low-rank tensor decomposition meth-
ods for despeckling applications. We have proposed a weight-
ing scheme for SNN-based algorithms when the ranks are
known and compared the results to robust tensor decompo-
sition methods. All robust tensor decomposition algorithms
outperform HOOI and tr-MLSVD for low SNRs because
of the better noise model. We have observed that wSNN
performs better than HOOI and tr-MLSVD for high SNR
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Fig. 1. The plot of the normalized error versus SNR for various low rank over
a 20 Monte Carlo simulations. The plots with subscripts (a) and (b) represent
the ranks (10, 10, 10) and (5, 10, 15), respectively.

scenarios. The weights of wSNN are arranged such that the
highest singular values that correspond with the true rank
are not updated during the proximity operator update. This
resembles the tr-MLSVD, where the singular values with
an index greater than the rank are truncated for denoising.
Alongside this property, the sparsity constraint that is added
to the formulation of wSNN results in a better recovery. For
low SNR scenarios, wSNN performed worse than SNN. This
is due to the corruption of the singular values with the noise
subspace. The utilization of the proximity operator shown in
(8) restricts the updating of singular values associated with the
rank. Consequently, the denoising capabilities of wSNN are
constrained by a diminished search space, thus contributing to
its reduced performance under low SNR conditions.

Among the convex relaxations, TNN performs better than
SNN for low SNRs. The algorithm proposed in [19] considers
the low rankness in only one of the dimensions using the t-
SVD framework. In our simulations, we generated a tensor
with a low Tucker rank in all the dimensions. Hence, al-
gorithms such as OITNN-L and OITNN-O that incorporate
the low rankness in all the dimensions have performed better.
Although OITNN-O is expected to perform worse when the
tensor is lower-rank in some dimensions than others, we have
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not observed this in our simulation. OITNN-L is found to be
the algorithm that performed the best for low SNR scenarios
regardless of the ranks. The sparse outliers have minimal effect
on the low-rank approximation for SNRs greater than 20 dB.
This might be because, as the noise intensity decreases, the
noise after the logarithmic transformation becomes closer to a
Gaussian distribution, diminishing the impact of sparsity.

One of the limitations of this paper is the grid search on
the low-rankness and sparsity-related tuning parameters γS
and γL. We have defined the range such that a convex range
of normalized mean squared error has been observed. By
extending the grid search, a better comparison can be made
among the convex low-rank approximation methods. This
paper aims to understand the importance of sparsity constraint
in denoising speckle noise. The HOOI and tr-MLSVD are
better suited for denoising WGN. The fact that the robust low-
rank approximation methods perform better than HOOI and
tr-MLSVD proves the added benefit of the sparsity constraint.
We compare the results of the SNN and TNN-based methods
in a heuristic manner. A better approach for this comparison
would be optimizing the tuning parameters using methods such
as [20].

Another limitation of the paper is the need for a quantization
analysis for the low-rank tensor L. During the simulation, we
scaled the variance of L to reach the predefined SNRs. In
many despeckling applications, such as ultrasound, the input
is 8-bit unsigned integers. An analysis that covers the effect
of the quantization on the despeckling applications is left for
future work, along with real-world applications. In addition,
we have assumed that the rank of true tensor L is known
and defined the weighting parameter given at (7) according to
this rank. The ranks of the system can be estimated using the
outlier resistant rank estimation methods such as the one given
in [21]. The algorithm could be modified such that the ranks
are not known. In such a case, the higher singular values can
be thresholded less using techniques such as [7]. Finally, non-
linear transformations such as the log transformation might
increase the rank of the tensor. In real-world applications with
limited quantization, further analysis is required.

TNN and TSPCP are defined for 3D tensors that can be
applied to speckle denoising applications where 2D non-
local correlated patches are stacked to create the tensor. For
applications like 4D ultrasound or MRI, orientation-insensitive
TNN methods such as OITNN-O and OITNN-L could be
used. SNN methods are directly applicable to any dimensional
tensor. Hence, they can be immediately applied to a 4D speckle
denoising application. In conclusion, we have reviewed various
low-rank approximation methods for denoising speckle noise
and found that incorporating the sparsity constraint is useful,
especially for low SNR scenarios.
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