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ABSTRACT
In this thesis, a factor model which estimates multivariate time series is extended to include an asymmetric
relation between the returns of assets and the volatility of said assets. The model proposed in this thesis uses
the classical factor model, with univariate logarithmic volatility equations to model the factors as well as the
asset innovations. The volatility equations for the factors are extended to contain an asymmetric relationship
with the factor returns of the day before. In this thesis, a method to estimate this asymmetric model is devel-
oped, the method of estimation mainly relies upon MCMC methods. A method to estimate the logarithmic
likelihood for the model is provided as well. This method uses a particle filter to estimate the distribution of
the volatility. Using the logarithmic likelihood, it is shown that the asymmetry in the data is identifiable, by
comparing the likelihood of the model to the likelihood of the classical factor model, as well as to the likeli-
hood of a factor model with a jump extension. Finally, the model is tested on a real data set of daily returns
where its effectiveness is again compared to the classical model and the jump model.
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INTRODUCTION

1.1. MODELING VOLATILITY
Volatility is a key concept in finance, and its modeling is of great importance in many fields as option pricing,
for example. Currently, two main approaches to modeling volatility can be considered dominant: (i) gen-
eralized auto-regressive conditional heteroskedasticity (GARCH) modeling and (ii) stochastic volatility (SV)
modeling.

GARCH models [Bollerslev, 1986] are a type of statistical model used to predict future volatility in financial
markets. The model is based on the assumption that past volatility is a good predictor of future volatility. A
GARCH(p,q) model, assumes that the current volatility depends on the past q returns and the p last volatilities.

SV models assume that the volatility of asset prices fluctuates over time as well. The modeling, however, is
taken in a different direction: the volatility itself is assumed to follow a certain distribution. When this distri-
bution is known, sampling from it can give an indication of future volatility, which can, for example, be utilized
by risk managers.

Both GARCH models, as well as SV models, are generally considered to be better than models with constant
volatility. Since they can more accurately capture the observed changes in volatility over time. When compar-
ing GARCH models to SV models, SV models are generally better able to capture the time-varying volatility of
a time series, while GARCH models are better at capturing the auto-correlation of a time series. An additional
advantage of GARCH models is that they are generally easier to estimate.

There are some reasons why it is good to capture the time-varying volatility of a time series. For example, a
volatile stock is typically seen as a riskier investment than a less volatile stock. Moreover, capturing the time-
varying volatility of a time series can help to improve the forecasting distribution of given time series. For this
reason, in this thesis SV models will be the focal point.

1.2. MOVING TO MULTIVARIATE APPROACHES
In some areas, such as risk management or portfolio analysis, univariate models are not sufficient. In these
areas, models in which assets are modeled together are necessary. In [Chib et al., 2006] a Multivariate Stochas-
tic Volatility (MSV) factor model is proposed. In their paper, they successfully display a framework for high-
dimensional MSV models. The attractiveness of MSV models can be seen, because they can capture the cross-
correlations among different assets’ volatilities, and they can be used to study the dynamics of volatility clus-
ters, not only within a time series but also across different assets.

By using factors, they are able to scale back the number of parameters necessary to estimate the MSV model
from order p2 to order pk, where p is the amount of assets in the model, and k is the number of factors chosen.
Since k is necessarily smaller than p, and often by a factor of 5 or more, a huge improvement in the number of
parameters to estimate is seen.

For extreme events, [Chib et al., 2006] use a jump model extension (MSVJ). This extension explains the ex-
tremes quite well, however, it introduces two new problems: (i) it introduces a lot of new parameters and
latent variables, and (ii) for medium to small-sized time series, the model heavily depends on the prior. It
is shown that about 7500 data points (30-40 years of daily returns) are necessary to estimate the parameters
sufficiently accurate.

1.3. ASYMMETRY IN SV MODELS
It is generally accepted that there is a relation between asset returns and the volatility of said asset, as stated by
[Christie, 1982]: "Historically a variance/stock price relation is part of market folklore, the usual claim being
that the relation is a negative one." A possible explanation given is the leverage effect within listed companies,
but another possible explanation can be found in traders (both retail and institutional) trading with leverage,
where liquidations and stop-losses will definitely increase volatility in worst-case scenarios.

Some work on modeling asymmetry in both GARCH models, as well as SV models has already been done, for
example by: [Nelson, 1991], [Glosten et al., 1993], [Harvey and Shephard, 1996], [Asai and McAleer, 2011], or
[Tsiotas, 2012]. However, asymmetry in MSV models has been the topic of research significantly less. Only a
few papers can be found on this topic, one example is [Asai and McAleer, 2006]. Moving from MSV models to
MSV factor models, none can be found.
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In this thesis, the aim is to extend the factor model from [Chib et al., 2006] to include the asymmetric relation
between asset returns and volatility. Moreover, the goal is to model this asymmetry within the common factors,
making the market asymmetric as a whole and not on a per-asset basis. The main goal is to create an extension
that performs better than the classical factor model, and that can compete with the more complex jump model.

The thesis is organized in the following way: In Section 2 the main topics frequently returning within this the-
sis are explained. In Section 3, it is shown that asymmetry in the data is more common in indices than within
stocks, an indication that the market is asymmetric altogether instead of on a per asset basis. Next, in Section 4
the literature surrounding asymmetric models is reviewed and the selection process of the model is shown. In
section 5 the model is fully specified and a way to estimate its parameters is given. In Section 6 a way to com-
pare different models (including the model developed in this thesis) against each other is explained. In Section
7 it is shown that the parameters of the model can be estimated and that the model can be distinguished from
the classical factor model as well as the factor model with jump extension. In Section 8 the model is tested on
real-world equity returns, and finally, in Section 9 the results are discussed.
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BACKGROUND

2.1. STOCHASTIC VOLATILITY
In this section, some frequently returning topics in this paper are covered, starting with stochastic volatility
(SV).

Using an SV model, it is assumed that the return of an asset, yt , can be modelled by:

yt ∼ N (µy ,exp(ht )) (1)

With t ∈ {1, . . . ,n}. Without loss of generality, it can be assumed that µy = 0. Within this equation, ht can be
considered the stochastic logarithmic volatility. For a more general introduction to Stochastic Volatility, visit
chapter 5 of [Ghysels et al., 1996]. Often (as in [Chib et al., 2002]), ht is assumed to be an AR(1) process:

ht −µh =µh +φh(ht−1 −µh)+ vt (2)

Where vt ∼ N (0,σ2
h). In this case, h depends on three latent variables: µh , φh , and σh . Each of these variables

can be interpreted:

• µh is the long-term average of the logarithmic volatility.

• φh is the rate at which the logarithmic volatility returns to its long-term average. When φh is close to 0,
ht will return to µh relatively fast. On the other hand, when φh is close to 1, ht tends to drift away from
the mean more often and for longer periods.

• σh is the volatility of the noise added to the log-volatility h.

A few paths of ht and the corresponding yt are shown in Figure 1. In these pictures, it is visible what the
volatility does. In times of higher volatility, returns are distributed more widely. It can also be seen that when
modeling with equation 2, volatility tends to cluster.
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Figure 1: Three examples of logarithmic volatility with corresponding returns.
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2.2. FACTOR MODELS
In fields where multiple assets should be modeled simultaneously, such as in portfolio or risk management, it
does not suffice to use the model in 2.1 for each asset independently. Instead, a factor model, in which various
assets get simulated simultaneously can be used [Chib et al., 2006]:

yt = B ft +ut (3)

Where yt = {y1t , y2t , . . . , ypt } are the p observations at time t , and again t ∈ {1, . . . ,n}. B is the factor loading
matrix of size p by k, with the restrictions bi i = 1 for i ≤ k and bi j = 0 for j > i . So B contains ones on the main
diagonal, zeros above this diagonal and free elements below the main diagonal. In equation 4, an example of
B is provided, in this example βi , j are the free elements of B .

B =



1
β11 1

β12 β22
. . .

...
... 1

β1,k+1 β2,k+1 . . . βk,k+1
...

...
...

β1p β2p . . . βk,p


(4)

Continuing the explanation of equation 3, ft = { f1t , f2t , . . . , fkt } are the unobserved factors. And finally, ut =
{u1t ,u2t , . . . ,upt } are the innovations. For the innovations, the following model is used:

u j t ∼ N (0,exp(h j t )) (5)

Where h j t is the log-volatility following equation 2 (or another logarithmic volatility model). For the factors, a
similar equation is defined:

f j t ∼ N (0,exp(hp+ j ,t )) (6)

So both u j t as well as f j t are functions of the log-volatility h j t , however since h j t is modelled independently
for each j , no correlations from this part should be expected.

Summarizing, for each time step, this model simulates a given amount of factors. Using the factor loading
matrix, it then projects these factors upon all the assets. Finally, it adds individual noise terms to all the assets.

As can be imagined, there are a lot of possibilities within this category of models. For example, the normal
distributed innovations in equation 5 can be replaced by different distributions (e.g. a student t distribution),
a jump component can be added to equation 3, or the logarithmic volatility in equation 2 can be modelled in
a different way, as will be done in this paper.

2.3. MCMC SAMPLING
The method used in this paper for estimating the model’s parameters is called Markov Chain Monte Carlo
sampling, or MCMC sampling. Using MCMC sampling, the posterior distribution is estimated by simulat-
ing samples. These samples are used to create a posterior distribution of the parameters used in the model.
The way this is accomplished is by constructing an irreducible and aperiodic Markov Chain, whose invariant
distribution is the target posterior distribution.

The Monte Carlo part comes into play, by drawing from the Markov Chain multiple times. By doing this, an es-
timate of the posterior distribution is obtained. However, due to the size of the parameters and latent variables
of the model, it becomes infeasible to simulate the entire parameter space at the same time. Instead, a block-
ing scheme should be constructed. As discussed in [Chib and Greenberg, 1995], it is preferred to group certain
latent parameters and variables. For example, in the factor model, from Section 2.2, the following blocking
scheme could be used:

[B |Yn , {h j .}, ft ] [ ft |Yn ,B , {h j .}] [Θ|Yn ,B , ft ] [h j t |y,B , ft ,Θ, {h j s }(s ̸= t )]

Where Yn = [y1, . . . , yn] and h j . is notation for the collection (h j 1, . . . ,h j n). That is, simulate the factor loading
matrix, then the factors, then the parameters for the log-volatility and last the log-volatility one time step each
block. Each sampling conditioned on the current values of all the other parameters and variables.
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In [Chib and Greenberg, 1995] it is explained that faster mixing occurs if all {h j .} get sampled simultaneously.
Moreover, in [Chib et al., 2006] it is shown that it is more efficient to sample B and { ft } in one block as well.
The reason for this is that they only appear in product form in the model. A preferred blocking scheme for the
factor model would therefore be:

[B , ft |Yn , {h j .}] [Θ, {h j .}|Yn ,B , ft ]

Using draws from this sampler, the distribution of B and θ can be found.

2.4. METROPOLIS-HASTINGS ALGORITHM
One recurring step in the MCMC algorithm is the Metropolis-Hastings algorithm [Chib and Greenberg, 1995].
The Metropolis-Hastings algorithm (MH Algorithm), is a useful and intuitive tool to simulate samples from
multivariate distributions. The method is used to sample from a posterior distribution during an MCMC
method.

The goal of the MH algorithm is to sample from a target distribution π(θ|y) ∝ π(θ) f (y |θ), given a data-set
y. Since an MCMC method is used, the current state of θ, θc is known as well. Using the MH algorithm, a
transition kernel p(θc ,θ∗) is required. In [Chib and Greenberg, 1995] it is explained that a sufficient condition
for such a function is the reversibility condition (i.e. p(θc ,θ∗) = p(θ∗,θc )).

First, a candidate θ∗ is drawn from a candidate generating density q(θc ,θ∗) (which may depend on the current
state of the algorithm as well as the data set). It may be the case that:

π(θc )q(θc ,θ∗) >π(θ∗)q(θ∗,θc ) (7)

To comply with the reversibility condition, the left-hand side should be equal to the right-hand side. To ac-
complish this, the acceptance probability is introduced:

α(θc ,θ∗) = min

(
1,
π(θ∗)q(θ∗,θc )

π(θc )q(θc ,θ∗)

)
(8)

Now with probability α(θ,θ∗), the candidate gets accepted, and with probability 1−α(θ,θ∗) it is rejected. In
this case, the current value of θ (θc ) is selected as the next value for θ in the Markov Chain. Similarly, if the
inequality of equation 7 is the other way around:

α(θ∗,θc ) = min

(
1,
π(θc )q(θc ,θ∗)

π(θ∗)q(θ∗,θc )

)
(9)

This means that the following transition kernel, always complies with the reversibility condition:

p(θ,θ∗) = q(θ,θ∗)α(θ,θ∗) (10)

Below the MH algorithm can be found in pseudo-code:

1. Start iteration i with θi as current value.

2. Generate θ∗ from q(θi ,θ∗).

3. Calculate α(θi ,θ∗).

4. Generate u from U (0,1).

5. If u <α(θi ,θ∗), θi+1 = θ∗

6. Otherwise: θi+1 = θi

7. Repeat for i = i +1
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2.5. KALMAN FILTERS
One important part of the sampling algorithm when sampling the log-volatility equations, is the Kalman Filter.
Consider the following state-space model:

xt =φxt−1 +Υut +wt (11)

yt = At xt +Γut +vt (12)

With xt the k ×1 state vector. xt is not observed directly. However, the transformed p ×1 vector yt is observed.
At is the p ×k observation matrix. φ is an k ×k auto-regressive matrix, ut is a r ×1 vector of inputs, with Υ
(k × r ) and Γ (p × r ) the matrices which define how xt and yt react to the input. wt and vt are the state and
observation noise, with variance matrices respectively Q (k ×k) and R (p ×p).

Next, the Kalman Filter is presented. The filter takes the values y1, . . . , yt as input and gives the best estimate for
xt . This, in turn, can be exploited to compute certain likelihoods. For some starting values x0

0 =µ and P 0
0 =Σ0,

the Kalman filter starts with the "Model update equations":

xt−1
t =φxt−1

t−1 +Υut (13)

P t−1
t =φP t−1

t−1φ
′+Q (14)

Where xt−1
t = E [xt |y1, . . . , yt−1], xt

t = E [xt |y1, . . . , yt ]. P t−1
t = E [(xt −xt−1

t )(xt −xt−1
t )′] and P t

t = Cov(xt |y1, . . . , yt ).
Next are the "Data correction equations":

Kt = P t−1
t A′

t (At P t−1
t A′

t +R)−1 (15)

xt
t = xt−1

t +Kt (yt − At xt−1
t −Γut ) (16)

P t
t = (I −Kt At )P t−1

t (17)

Here Kt is called the Kalman gain. Two important products of the Kalman Filter are the innovation and its
variance:

ϵt = yt − At xt−1
t −Γut (18)

Σt = At P t−1
t A′

t +R (19)

These quantities can be used to produce the log-likelihood, l , which is an important value when sampling.

l =−1

2

n∑
t=1

log |Σt |− 1

2

n∑
t=1

ϵ′tΣ
−1
t ϵt (20)

A proof of the Kalman Filter, together with a chapter-length review of theory and various applications can be
found in Chapter 6 of [Shumway and Stoffer, 2000].

KALMAN FILTER APPLIED TO STOCHASTIC VOLATILITY MODELS.
Since the log-volatilities in the factor model (equation 3) all operate independently, they can be separated per
series. The state equation (equation 11) is just equation 2. The space equation (equation 12) can be determined
by:

ut ∼ N (0,exp(ht ))

ut ∼ exp(
ht

2
)N (0,1)

u2
t ∼ exp(ht )χ2

1

log(u2
t ) ∼ ht + log(χ2

1)

zt = ht + vt (21)

Where zt = log(u2
t ) and vt is a log chi-squared random variable. Since the Kalman Filter requires the random

variable to be Gaussian, a seven-component mixture of Gaussians is used to approximate the log chi-squared
random variable, all parameters from these Gaussians can be found in Table 1 (taken from [Chib et al., 2002]).
The equation to estimate the log chi-squared using these parameters becomes:

log(χ2
1) ≈

7∑
i=1

qi N (mi , v2
i ) (22)
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Component (st j ) Probability (qi ) Mean (mi ) Variance (v2
i )

1 0.00730 -11.40039 5.79596
2 0.10556 -5.24321 2.61369
3 0.00002 -9.83726 5.17950
4 0.04395 1.50746 0.16735
5 0.34001 -0.65098 0.64009
6 0.24566 0.52478 0.34023
7 0.25750 -2.35859 1.26261

Table 1: The parameters of a mixture of seven Gaussian distributions to approximate a log chi-squared distribution.

The Kalman Filter can now be implemented (the subscript j is dropped for the ease of notation):

ht−1
t =µ+φ(ht−1

t−1 −µ) (23)

P t−1
t =φ2P t−1

t−1 +σ2 (24)

Kt =
P t−1

t

P t−1
t + v2

st

(25)

ht
t = ht−1

t +Kt (zt −ht−1
t −mst ) (26)

P t
t = (1−Kt )P t−1

t (27)

And the quantities to determine the likelihood become:

ϵt = zt −ht−1
t −mst (28)

Σt = P t−1
t + v2

st
(29)

2.6. EXTENDED KALMAN FILTERS
Extended Kalman Filters (EKFs) can be used when (i) the equations are non-linear or (ii) the random vari-
ables are non-Gaussian. However, as discovered within this thesis, the theory surrounding EKFs is not as wide
covering as the theory surrounding KFs.

In this section, the main differences between the KF and the EKF will be highlighted. First the equation f (x) is
defined such that:

xt = f (xt−1,ut )+wt (30)

This equation should replace equation 11 in the state space model. That is, instead of only allowing for linear
transformations of xt and ut , any transformation is allowed.

The Kalman Filter, in turn, needs to be updated as well. This can be done by defining new "model update
equations":

xt−1
t = f (xt−1

t−1,ut ) (31)

P t−1
t =

(
δ f

δx
(xt−1

t−1,ut )

)2

P t−1
t−1 +σ2 (32)

The data correction equations remain the same.

Some problems using the extended Kalman filter can be encountered. Unlike its linear version (the KF), the
EKF is generally not the optimal estimator. Additionally, because it linearizes the function f from equation
30, the filter may diverge if the initial estimate is too far off. Another problem using EKFs is that the sampled
variance tends to underestimate the real variance [Huang et al., 2008]. Despite these disadvantages, the EKF is
still a well-performing algorithm. For example, it is used in state estimation in applications such as navigation
or GPS systems [Wan, 2006].
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ASYMMETRY IN DATA

3.1. ASYMMETRY IN INDICES
In this section, the asymmetric relation between asset returns and volatility within markets will be analyzed.
First an analysis of the asymmetry in index returns is made. In Section 3.2 a similar analysis is made on stock
returns.

The following indices (including abbreviations) are selected:

• S&P 500 Index (SP500)

• UK 100 Index (UK100)

• DAX Index (DAX)

• Nikkei 225 Index (Nikkei)

This way, indices from three different regions in the world are analyzed: Asia, North America, and Europe.
Please note that all four indices have a different base currency. In this analysis, all prices will be analyzed in
the US Dollar.

The indices are analyzed daily, starting from 01/01/2011 up until 01/01/2021. First, the mean gets removed
from the daily returns. Thereafter, the data is split up into two groups:

Y +
t = I[yt−1>0] (33)

Y −
t = I[yt−1<0] (34)

Where yt is the asset return. These variables indicate whether the return of the day before is either positive
or negative. Next, the mean absolute return of returns after a positive day r̄+ and the mean absolute return of
returns after a negative day r̄− are defined:

r̄+ = 1∑n
t=1 Y +

t

n∑
t=1

|yt |Y +
t (35)

r̄− = 1∑n
t=1 Y −

t

n∑
t=1

|yt |Y −
t (36)

The quantity of interest, is the ratio between these two:

R = r̄−

r̄+ (37)

Where R > 1 indicates that absolute returns are typically higher the day after a negative return, and R < 1
indicates the inverse. The uncertainty in R is also measured:

σ− = 1√∑n
t=1 Y −

t

n∑
t=1

Y −
t

(|yt |Y −
t − r̄−)2 (38)

σ+ = 1√∑n
t=1 Y +

t

n∑
t=1

Y +
t

(|yt |Y +
t − r̄+)2 (39)

σR = 1

r̄+ (σ−+Rσ+) (40)

The results of equation 35, 36 and 37 for the selected indices are displayed in table 21.

In table 2 it can be seen that R is about 2σR above 1 for all indices. This is the first indication that there is some
kind of asymmetry between returns after positive and after negative asset returns the day before.

1If the indices are not corrected for currency and would be expressed in their base currency, the effect would become even more visible.
The values for R would be 1.188, 1.212, and 1.184 for UK100, DAX, and N225 respectively.
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Index r̄+ r̄− R σR

SP500 0.0065 0.0079 1.219 0.089
UK100 0.0083 0.0093 1.131 0.068

DAX 0.0097 0.0114 1.180 0.071
N225 0.0085 0.0097 1.136 0.069

Table 2: The mean absolute return for days after a positive return and the mean absolute return for days after a negative return for four
selected indices. The ratio between the two and the standard deviation of the ratio is displayed as well.

Next, a KS-test is performed [Dodge, 2008]. For this test, the following data-sets are defined:

r+
t = |yt |Y +

t (41)

r−
t = |yt |Y −

t (42)

Where all zero contributions will be deleted from each set. In Figure 2 the empirical distribution functions for
r+ and r− are shown, and in table 3 the results of the KS-test are displayed.
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Figure 2: The empirical cumulative distribution functions for the absolute returns the day after a positive return and the day after a
negative return.

As can be seen in Table 3, only for the UK100 Index, based on the KS-test one is not able to reject the hypothesis
that r+ and r− come from the same distribution at the α = 0.05 level. In Figure 2, it can be seen that the
empirical distribution of r− tends to be distributed higher for all four indices.
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Index p h
SP500 0.0003 1
UK100 0.0562 0

DAX 0.0153 1
N225 0.0128 1

Table 3: The results of the KS test, comparing the distributions r+ and r−. Displayed are the p-values, as well as h, which indicates
whether the hypothesis that r+ and r− come from the same distribution can be rejected at the α= 0.05 level.

3.2. ASYMMETRY IN STOCKS
For returns on stocks, a similar analysis is performed. This time, some stocks from the SP500 are selected. In
Section 3.1, the asymmetry was the most present in this index. Two top 10 ranked stocks (ranked by weight),
two stocks ranked around 100 and two stocks ranked around 250 are selected at random.

• Apple Inc. (AAPL)

• Microsoft Corporation (MSFT)

• Northrop Grumman Corp. (NOC)

• Progressive Corporation (PGR)

• First Republic Bank (FRC)

• Keurig Dr Pepper Inc. (KDP)

The same analysis as was performed to the indices is now performed to the returns of the stocks. The results
are shown in Table 4.

Stock r̄+ r̄− R σR

AAPL 0.0116 0.0132 1.140 0.067
MSFT 0.0103 0.0115 1.111 0.069
NOC 0.0094 0.0103 1.094 0.065
PGR 0.0090 0.0096 1.071 0.064
FRC 0.0112 0.0120 1.067 0.066
KDP 0.0087 0.0091 1.046 0.072

Table 4: The mean absolute return for days after a positive return and the mean absolute return for days after a negative return for six
selected stocks. The ratio between the two and the standard deviation of the ratio is displayed as well.

In Table 4, it can be seen that for the higher-ranked stocks (AAPL and MSFT), the asymmetry is still visible,
albeit less significant than for the indices. For lower ranked stocks, there still are some signs of asymmetry,
however, this time the value of R is closer to 1 (the no asymmetry case), in most cases the distance from R to 1
is slightly above σR

The KS-test has been performed again as well, the results can be found in Figure 3 and Table 5.

Index p h
AAPL 0.0025 1
MSFT 0.0389 1
NOC 0.0417 1
PGR 0.6594 0
FRC 0.3056 0
KDP 0.7006 0

Table 5: The results of the KS-test, comparing the distributions r+ and r−. Displayed are the p-values, as well as h, which indicates
whether the hypothesis that r+ and r− come from the same distribution can be rejected at the α= 0.05 level.
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Figure 3: The empirical cumulative distribution functions for the absolute returns the day after a positive return and the day after a
negative return.

In Figure 3, it is visible that, with the exception of AAPL, the distribution of r+ and r− are more similar to each
other, compared with Figure 2. This is confirmed in Table 5, where is shown that, based on the KS-test, one
cannot reject that the distribution of r+ and r− are different three out of six times. Also note that the p-values
for PGR, FRC, and KDP are not even close to being rejected (for any reasonable value of α).

3.3. INTEGRATING RESULTS IN THE FACTOR MODEL
In Section 3.1 it was shown that there are indications that indices show an asymmetric relation between volatil-
ity and returns. More specifically, following a negative return, typically a bigger absolute return is seen the day
after. This phenomenon might also be present in stocks, however, to a much lesser extent, as shown in sector
3.2.

Since indices are a weighted average of many stocks, some of the common behaviour of the stocks is explained
by the index, while each singular stock also has an idiosyncratic piece of its returns. When looking at the factor
model equation (explained in Section 2.2), the factors ( ft ) can be linked to this common behaviour, while the
innovations (ut ) can be compared to the idiosyncratic return.

The way the conclusion from the two previous sections is integrated into the factor models, is by making the
factors asymmetric while keeping the innovations non-asymmetric. This way, (i) the indices will become
asymmetric, and (ii) individual stocks might also display asymmetry in returns, depending on the values of
the factor loadings in the factor loading matrix (B) (i.e. large factor loadings will lead to more asymmetry in
the singular asset returns, dampened out by their non-asymmetric innovations).
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LITERATURE REVIEW AND MODEL SELECTION

4.1. EXISTING ASYMMETRIC MODELS
In this section, the selection of the model used in this paper will be explained. First the existing asymmet-
ric models in the literature are reviewed. Next, in Sections 4.2 until 4.4 the process of selecting the model is
explained.

The first category of asymmetric models looked into are the asymmetric GARCH models. A nice overview of
asymmetric GARCH models can be found in [Chen et al., 2019]. Here they explore models from [Nelson, 1991],
[Glosten et al., 1993], and [Ding et al., 1993]. Below these models will be listed. All models will make use of the
same asset return equation:

yt = ϵt (43)

ϵt =
√

ht vt (44)

With vt a normally distributed random variable. The first asymmetric GARCH model considered, is the Glosten-
Jagannathan-Runkle GARCH model (GJR-GARCH) otherwise known as the Threshold GARCH model. The rea-
son it is known as the threshold Garch model is that it makes use of a threshold variable:

dt = 1ϵt<0 (45)

This variable indicates a negative return at time t . Making use of this variable, the following model for the
volatility is used:

ht =µ+
m∑

j=1
φi ht−i +

q∑
i=1

αi ϵ
2
t−i +γϵ2

t−1dt−1 (46)

Here γ denotes the asymmetry parameter. As will be the case in all the models to follow.

Another way to asymmetrically model the volatility is the Asymmetric Power GARCH (APARCH) model. Instead
of making use of an indicator, this model uses the absolute value to determine whether a return is negative or
positive.

h
δ
2
t =µ+

m∑
j=1

φi h
δ
2
t−1 +

q∑
i=1

αi (|ϵt−i |−γϵt−i )δ (47)

In this model, δ is the power term parameter. Note that for δ = 2 and γ = ±1 the APARCH model and the
GJR-GARCH model are the same.

The last GARCH model considered in this thesis is the Exponential GARCH (EGARCH) model. This model has
an extra desired property, which is that the volatility is modeled at the logarithmic level:

log(ht ) =µ+
m∑

j=1
φi log(ht−1)+

q∑
i=1

αi√
ht−1

(|ϵt−i |+γϵt−i ) (48)

Next, the existing asymmetric SV models are analyzed. In [Asai et al., 2006], an overview of some of the de-
veloped asymmetric SV models can be found. The univariate "Leverage Effect" model was first proposed
by [Harvey and Shephard, 1996], with later adaptations or applications by among others: [Tsiotas, 2012] and
[Asai and McAleer, 2011].

The leverage model is defined in the following way:

yt = exp

(
ht

2

)
ϵt (49)

ht+1 =µ+φ log(ht )+σηt (50)

Where Cor(ηt ,ϵt ) = γ. This model adds a correlation between the return yt and the increase in logarithmic
volatility ht+1. When γ is negative, this model adds the asymmetric relation observed in Section 3.
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[Danielsson, 1998], [Asai and McAleer, 2006] and [Chan et al., 2005] considered the multivariate asymmetric
extension to the model discussed above.

yt = Hϵt (51)

Ht = Diag

(
exp

(
h1t

2

)
, . . . ,exp

(
hpt

2

))
(52)

h j t =µ j +φ j h j ,t−1 +ηt (53)[
ϵt

ηt

]
= N

([
0
0

]
,

[
Pϵ L
L Ση

])
(54)

Within this model, Pϵ is the covariance matrix between the various assets, and Ση is a positive definite covari-
ance matrix. L = Diag(γ1, . . . ,γp ) is the matrix that determines the asymmetry. Again for negative values of γi

the relation observed in Section 3 is obtained.

Although the models above can’t be copied one-to-one into the asymmetric factor model, they can be used
for inspiration and as a starting point. The model from equation 51 until equation 54 is closest to the AMSV
factor model. However, due to (i) the factors and innovations all being considered independent in the factor
model, and (ii) the factors scaling with h, this model is not ideal. The EGARCH model from equation 48 has
some advantages the factor model could make use of. One of these advantages is that the obtained values
for ϵ are re-scaled by h. This makes sure that the model is stable since a larger return goes together with
higher volatility. Another advantage is that the EGARCH model is univariate, this way no dependence relations
between volatility or returns across different assets are added. Incorporating this model into the factor model,
all correlations between assets are still modeled using only the factors.

4.2. EGARCH BASED SV MODEL
As discussed in the previous section, the EGARCH model from [Nelson, 1991], altered by [Chen et al., 2019], is
taken as a starting point. The model will first be adapted to become in line with the log-volatility equation for
the factors from equation 3.

h j t =µ j +φ j (h j ,t−1 −µ j )+ θ j−p

exp(
h j ,t−1

2 )

(
| f j−p,t |−γ j−p f j−p,t −exp(

h j ,t−1

2
)

√
2

π

)
+σ jη j t (55)

Equation 55 is already quite different from the EGARCH model used in [Chen et al., 2019], for example:

• m = q = 1, only one lag is regarded.

• φ operates on (ht−1 −µ) instead of just ht−1.

• The mean of | f j−p,t−1| is subtracted, so the added term will add an average of zero:

E [| f j−p,t |−γ f j−p,t −exp(
h j ,t−1

2 )
√

2
π ] = 0. This is also done in [Chen et al., 2019]; however, there it is done

in a separate step.

It should also be said, that only the logarithmic volatility equations for the factors change, the equations for
the innovations stay the same.

In Figure 4, the returns of various assets using the above model are shown (based on 3 factors). A first ob-
servation is that there are periods of higher volatility as well as periods of lower volatility. Another feature
of this model is that these periods of high volatility tend to be correlated across assets (see Figure 7 where a
comparison is made with the model from Section 4.3).
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Figure 4: Returns of various assets simulated using the model explained in section 4.2.

Although the simulated data displays the desired behaviour, one major problem arises when trying to estimate
the θ and γ parameters of this model. Contrary to the EGARCH model, where the model is a function of the
observed returns, in this model the logarithmic volatility is a function of the unobserved factors. Since they
are sampled, instead of known, additional uncertainty is added to the model.

To illustrate why this is a problem, Figure 5 is shown. Here, ( f̂t |y,B , {h j .}) is sampled and the results are com-

pared with the actual factors f ∗
t . In the bottom half of Figure 5, it is seen that f̂t estimates f ∗

t quite well.
However, when looking at the log-likelihood of (θ j |{z j .}, {s j .}, {h j .}, ft ) for an arbitrary factor, it makes a huge

difference whether the sampled factors f̂ j or the true factors f ∗
j are used. This can be seen in the top half of

Figure 5. In this figure, [µ j ,φ j ,σ j ,γ j−p ] are fixed at [µ∗
j ,φ∗

j ,σ∗
j ,γ∗j−p ], while θ j−p runs from 0 to 0.5.

In the top half of Figure 5, two observations can be made. First of all, using the true factors, the likelihood for
all θ is higher. Second, and more importantly, the peak in log-likelihood for the estimated factors is not close
to the true value, having an error of about 30%, while for the true factors, the estimate for θ is much closer to
the true value (the error is less than 5%). This second problem leads to inaccurate estimates of θ, even when
all other parameters are perfectly estimated.

Because of this, more alterations to the existing models will be made. In the next section, a version where the
observed returns are used as feedback to h is considered.
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Figure 6: Returns of various assets simulated using the model explained in section 4.3
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4.3. ASYMMETRIC INNOVATIONS
The main problem in Section 4.2 is that ft is unobserved, this problem is avoided by using yt as input and
changing the logarithmic volatility equations for the innovations instead of the factors. First, a new vector d j

is defined, this vector contains the standard deviation for each asset:

d j t =
√√√√ k∑

i=1
B 2

j i exp(hp+i ,t )+exp(h j t ) (56)

In the equation for h j , the actual returns y j and their expected standard deviation d j are used to apply the
asymmetric term to the innovations:

h j t =µ j +φ j (h j ,t−1 −µ j )+ θ j−p

d j ,t−1

(
|y j ,t−1|−γ− j −p y j ,t−1 −d j ,t−1

√
2

π

)
+σ jη j t (57)

In Figure 6, a plot similar to Figure 4 is shown. Although this model is based on observable return data rather
than unobserved factor returns, the volatility correlation between assets is noticed to a lesser degree. To show
this, a comparison between the trailing 50-day standard deviations is made between the model from section
4.2 and this section. This comparison can be found in Figure 7. In this figure, it can be seen that the volatility
between assets doesn’t move as simultaneous as the model from section 4.2.

For the reasons mentioned above, this model is not looked into further. It is still displayed here since it might
be of interest to someone who wants to model the innovations asymmetrically.

0 500 1000 1500

Day

0

0.02

0.04

0.06

0.08

S
ta

n
d
a
rd

 d
e

v
ia

ti
o

n

Trailing 50-day standard deviations of 5 assets using asymmetric factors

0 500 1000 1500

Day

0

0.005

0.01

0.015

0.02

0.025

0.03

S
ta

n
d

a
rd

 d
e
v
ia

ti
o
n

Trailing 50-day standard deviations of 5 assets using asymmetric innovations

Figure 7: Comparison of the 50-day trailing standard deviation between adding the asymmetric relation to the factors and adding the
asymmetric realtion to the innovations.
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4.4. ASYMMETRIC FACTORS

In Section 4.2, it was found that using the sampled factors f̂t did not allow for accurate estimation of the θ-
parameter. To adjust for this, a new variable is introduced, the expected factor:

f̄t = E [ ft |B , yt ,ht ] (58)

Note that there is a relation between f̂t and f̄t :

f̂t ∼ N ( f̄t ,Ft ) (59)

From [Chib et al., 2006]:

Ft = (B ′V −1
t B +D−1

t )−1 (60)

f̄t = Ft B ′V −1
t yt (61)

Vt = diag(exp(h1,t ), . . . ,exp(hp,t )) (62)

D t = diag(exp(hp+1,t ), . . . ,exp(hp+k,t )) (63)

For stability reasons, the added asymmetry term should average zero. In equation 55 the fact that E [| f̂ j−p,t |] =
exp(h j−p,t )

√
2
π (due to the normality of f̂t ) could be exploited. The same solution cannot be used when work-

ing with f̄t since f̄t is not normally distributed. This means that | f̄t | should be omitted. However, the mean of
f̄t (i.e. without absolute value) can easily be computed: E [ f̄t ] = E [E [ ft |B , yt ,ht ]] = 0, which means that f̄t can
be used. This leads to the following equation:

h j t =µ j +φ j (h j ,t−1 −µ j )− γ− j −p f j−p,t−1

exp(h j ,t−1)
+σ jη j t (64)

This equation can be seen as a mix between the EGARCH model from [Nelson, 1991] and the Leverage Effect
Model from [Harvey and Shephard, 1996]. Some quantities are defined to show the main differences between
equations 55 and 64:

F R = f j−p,t−1

exp
(

ht−1, j

2

) (65)

I A = | f j−p,t−1|− f j−p,t−1

exp(
h j ,t−1

2 )
−

√
2

π
(66)

IB =− f j−p,t−1

exp
(

ht−1, j

2

) (67)

Here F R is the normalized factor return, and IX is the increase in volatility for model X (after multiplying with
the corresponding parameter). Since F R is normally distributed as a N (0,1) it suffices to check the behaviour
for F R ∈ [−3,3]. In Figure 8 a comparison of I A and IB is given in this range.

In both models, the logarithmic volatility increases linearly when the factor return is negative. The big differ-

ence is when the factor returns are positive. Model A will decrease the logarithmic volatility with
√

π
2 , On the

other hand, using model B, the logarithmic volatility decreases linearly with positive factor returns.

As a result, using equation 64, one also assumes that when factor returns are positive, volatility tends to calm
down. This assumption is somewhat in accordance with the behavioral tendencies of people (i.e. profit taking
when returns are positive, cutting losses when returns are negative).

In Figure 9, the effect of increasing γ is shown. The easiest way to think about the parameter is that it increases
the random noise, by adding the correlated part between f j−p,t−1 and η j ,t to the model.
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MODEL AND ESTIMATION

5.1. MODEL SPECIFICATION
In this section, the model, which is heavily discussed in section 4, will be fully specified.

yt = B ft +ut (68)

Where yt = {y1t , y2t , . . . , ypt } are the p observations at time t , with t ∈ {1, . . . ,n}. B is a factor loading matrix of
size p by k, with the restrictions bi i = 1 for i ≤ k and bi j = 0 for j > i . Visit equation 4 in Section 2.2 for an
example of such a matrix. ft = { f1t , f2t , . . . , fkt } are the unobserved factors. Last ut = {u1t ,u2t , . . . ,upt } are the
innovations. For the innovations:

u j t ∼ N (0,exp(h j t )) (69)

And for the factors:
f j t ∼ N (0,exp(hp+ j ,t )) (70)

Both u j t as well as f j t are functions of the logarithmic volatility h j t . This logarithmic volatility follows a mean-
reverting process. For j ≤ p, h j follows the three-parameter (µ,φ,σ) process:

h j t =µ j +φ j (h j ,t−1 −µ j )+σ jη j t (71)

For j > p, an additional term is added. This term increases the logarithmic volatility when a negative return oc-
curs, meanwhile decreasing it when a positive return is observed. h now follows the four-parameter (µ,φ,σ,γ)
process:

h j t =µ j +φ j (h j ,t−1 −µ j )− γ j−p f j−p,t−1

exp
(

h j ,t−1

2

) +σ jη j t (72)

The above model will be referred to as the AMSV model (Asymmetric Multivariate Stochastic Volatility model).
Furthermore, MSV is used for the classical model without asymmetry in the factor returns. The results of
the AMSV model will be compared to this classical model. It will also be compared to the model with a jump
component (as described in [Chib et al., 2006]), this model will be abbreviated as MSVJ. Please find an overview
of all the models compared in this paper in Table 6.

Model Full Name Explanation
MSV Multivariate Stochastic Volatility Model Standard model

MSVJ Multivariate Stochastic Volatility Jump Model
MSV with a jump
component

AMSV Asymmetric Multivariate Stochastic Volatility Model
MSV with asym-
metric factors

Table 6: An overview of the different models and their abbreviations used in this thesis.

It is important to note that although the MSV and AMSV model are similar in the number of parameters. The
MSVJ model is significantly larger. Moreover, it also uses the most latent variables.

To give a better image: The MSV model uses pk − k2+k
2 free elements in the factor loading matrix. It also uses

3(p + k) log-volatility parameters and n(p + k) latent variables (h) that should be saved between iterations.
For p = 10,k = 3,n = 1500, that is a total of 63 parameters and 19500 latent variables. Compared with MSV,
the AMSV model adds k parameters (the γ-parameters) and no additional latent variables should be saved
between iterations. This makes the total 66 parameters and 19500 latent variables. For MSVJ (again compared
with MSV), 2p variables are added (δ and κ) as well as 2n(p + k) latent variables (jump intensity matrix K
and jump indicator matrix q). Making the total for MSVJ 83 parameters and 58500 latent variables. This all is
summarized in Table 7.
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Model Parameters Latent Variables Parameters∗ Latent Variables∗

MSV pk − k2+k
2 +3(p +k) n(p +k) 63 19500

MSVJ pk − k2+k
2 +5p +3k 3n(p +k) 83 58500

AMSV pk − k2+k
2 +3p +4k n(p +k) 66 19500

Table 7: An overview of the sizes of the different models. For parameters∗ and Latent Variables∗, the size is given when p = 10, k = 3 and
n = 1500

5.2. MCMC-ALGORITHM
In this section, the sampling process using the MCMC method is explained. As discussed in Section 2.3, one
of the results from [Chib et al., 2006] is that it is more efficient to sample B (or β, the free elements of B) and ft

in one block. In the second step, the independence of the logarithmic volatilities from each other is exploited
and the parametersΘ j = (µ j ,φ j ,σ j ,γ j )2 conditioned on (y,B , ft ) are sampled. Finally, in the same block, {h j .}
conditioned on (y,B , ft , {Θ j }) is sampled. As explained in 2.3, this is done for all t simultaneously, as was shown
by [Chib and Greenberg, 1995] to be faster to converge than sampling all h j t independently.

The AMSV model is compared with both the MSV and the MSVJ model from [Chib et al., 2006]. For the MSVJ
model, a few additional sampling steps to sample the jump frequency and jump size parameters are necessary.
In their paper, you can find the required extra sampling steps. To sample using the MSV model, the scheme
below can still be used, however, when samplingΘ, the γ parameters can be omitted.

SAMPLING THE FACTOR LOADING MATRIX

First, the likelihood function for β is constructed:

π(β|y, {h j .}) ∝π(β)
n∏

i=1
p(yt |B ,ht ) (73)

Where π(β) is the prior for β. Following [Chib and Greenberg, 1995], the Metropolis-Hastings algorithm (MH-
algorithm) as explained in Section 2.4 is used. A candidate forβ gets proposed from a multivariate t-distribution:
T (β|m,Σ,ν) where m is the mode of l = log(

∏n
i=1 p(yt |B ,ht )), and Σ is minus the inverse of the hessian of l at

the mode. ν is chosen arbitrarily at 15, as in [Chib and Greenberg, 1995]. To find the mode m, first, the log-
likelihood of β should be optimized:

l = log(
n∏

i=1
p(yt |B ,ht ))

= c − 1

2

n∑
t=1

log |Ωt |− 1

2

n∑
t=1

y ′
tΩ

−1
t yt (74)

With c a constant. The matrixΩt is a function of the log-volatilities h j t and the factor loading matrix B .

Vt = diag(exp(h1,t ), . . . ,exp(hp,t )) (75)

D t = diag(exp(hp+1,t ), . . . ,exp(hp+k,t )) (76)

Ωt =Vt +BD t B ′ (77)

Although this can be solved numerically, by providing an analytic first derivative vector, the optimum is found
significantly faster:

l ′i j =
δl

δBi j

=
n∑

t=1
Tr

(
yt y ′

tΩ
−1
t BD t

δB

δBi j

′
Ω−1

t −Ω−1
t BD t

δB

δBi j

′)
(78)

Note that the formulation of this derivative is different than the formulation in [Chib et al., 2006]. By formulat-
ing it this way, it is easier to calculate the second derivative. In the end, the Newton Raphson method chosen

2Since only the factors are modelled asymmetrically, θ j = 0 for j ≤ p
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to optimize l does not require this second derivative. Since some maximizing algorithms are faster to converge
when an analytical second derivative is provided as well, the interested reader can find this second derivative
in Appendix A. Within the derivations of the first and especially the second derivative, many identities from
the matrix cookbook [Petersen and Pedersen, 2012] were used, mostly from chapter 2.

Using the objective function (equation 74), and the derivative (equation 78), the mode m and inverse of the
hessian at the mode Σ can be found using iterative schemes. A new candidate value β∗ is proposed from
T (m,Σ,ν), the candidate generating density.

Using the MH-algorithm, this proposal value β∗ gets accepted with probability:

α(β,β∗|y, {h j .}) = min

(
1,
π(β∗)

∏n
t=1 N (yt |0,Vt +B∗D t (B∗)′)T (β|m,Σ, v)

π(β)
∏n

t=1 N (yt |0,Vt +BD t B ′)T (β∗|m,Σ, v)

)
(79)

Where B∗ is the factor loading matrix with free elements corresponding toβ∗. Ifβ∗ is not accepted, the current
value for β is used again.

SAMPLING THE FACTORS

The first block is completed by sampling ft |y,B , {h j .}. Note that ft was not used when sampling β, so the
sampler is still in the same block. Since all the time steps are independent of each other, the sampling of f
can be broken up into the product of the distributions ft |yt ,B ,ht . This distribution is Gaussian with variance:
Ft = (B ′(V ∗

t )−1B +D−1
t )−1 and mean f̄t = Ft B ′(V ∗

t )−1 yt , hence:

ft ∼ N ( f̄t ,Ft ) (80)

As discussed in Section 4, in the next block, in addition to a sample of ft , a best estimate f̄t is required as well.
This best estimate is just the mean of the normal distribution in equation 80.

During this thesis, is is discovered that much better results are obtained when e f
t is defined:

e f
t = ft

exp
(

ht
2

) (81)

It is clear that e f
t ∼ N (0,1). In this block the best estimate of et is saved. This estimate will be denoted ē f

t , and
is obtained by plugging in f̄t in equation 81.

If this step is skipped and in the following block the sampling is conditioned on f̄t instead of ēt , the estimation
of Θ and h becomes much harder. To sample these quantities, an EKF (see section 2.6) is needed with the
following equation for f (x) within this EKF:

f (x, f̄ j−p,t−1) =µ j +φ j (x −µ)−γ j−p
γ f̄ j ,t−1

exp
( x

2

) (82)

And consequently, its derivative:
δ f

δx
=φ j +

γ j−p f̄ j−p,t−1

2exp
( x

2

) (83)

As discussed, in Section 2.6, some deficiencies can be expected when working with EKFs. The most notewor-
thy one, is that σ j gets underestimated. Another problem is encountered when sampling h. Although some
methods are available to get an estimate for h ([Shumway and Stoffer, 2000], for example provides a Kalmann
Smoother Algorithm), no known method is available to sample h, where h keeps all its characteristics.

The problem with using a smoother to estimate h, is that the time-series h gets smoothed out. This returns a
series which has less variance than the original time series. As a result, in the next cycle σ gets underestimated
even more. So although the EKF is very good at estimating the (µ j ,φ j ,γ j−p ) parameter set, the underestima-
tion of σ j is a problem. At first, this problem only seemed a minor inconvenience, since it did not worsen the
estimate of h. However, in Section 7.3 it turned out to that this underestimation did actually result in problems
when comparing the different methods against each other. More about this, including the sampling results of
this method can be found in Appendix B.
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SAMPLING LOGARITHMIC VOLATILITY PARAMETERS

Given (y,B , ft , ē f
t ), nowΘ j for j ∈ {1, . . . , p+k} is sampled. Using the fact that the innovations (equation 69) and

the factors (equation 70) are all independent, the model can be treated as individual state space models. First,
a vector αt is created, which corresponds to the predicted movement of yt , given the factor loading matrix B
and the factors ft , i.e. αt = B ft . Next, the realized logarithmic volatilities are calculated:

z j t = ln(y j t −α j t + c)2 for j ≤ p (84)

z j t = ln( f j−p,t + c)2 for j > p (85)

For the factors, the log of the square of the estimated factors is taken, while for the innovations z is calculated by
taking the log of the square of the returns minus the projected returns from the factors. This subtraction should
equal the innovations. c = 10−8 is added to make sure the natural logarithm is always defined. In Section 2.5,
it was shown that: z j t = h j t + log(χ2

1). So z j t goes like h j t plus a log chi-squared random variable with one
degree of freedom. h and its parameters will be estimated using the Kalman Filter, for which it is necessary
to use Gaussian distributions. Therefore, the logarithmic chi-squared random variable is approximated by a
mixture of seven Gaussian distributions. A comparison between the logarithmic chi-squared random variable
and the estimation using seven Gaussian distributions is made in [Kim et al., 1998]. The probabilities, means,
and variances of these seven Gaussian distributions can be found in Table 1 in Section 2.5.

Using this approximation:

z j t |s j t ,h j t ∼ N (h j t +ms j t , v2
s j t

) (86)

Since the series are independent for each j , each series is treated separately. For each j , first s j . gets sampled
from:

p(s j .|z j .,h j .) =
n∏

t=1
p(s j t |z j t ,h j t ) (87)

There is also no independence between the different time steps, so s j t can be sampled individually:

p(s j t |z j t ,h j t ) ∝π(s j t )φ(z j t |h j t +ms j t , v2
s j t

) (88)

Where φ(.) denotes the normal probability distribution function. This equation only has seven points of mass,
which makes the sampling straightforward.

NextΘ j is sampled from the density

p(Θ j |z j ., s j .) ∝π(Θ j )p(z j .|s j .,Θ j ) for j ≤ p

p(Θ j |z j ., s j ., ē f
j−p.) ∝π(Θ j )p(z j .|s j ., ē f

j−p.,Θ j ) for j > p (89)

Where:

p(z j .|s j .,Θ j ) = p(z j 1|s j 1,Θ j )
n∏

t=2
p(z j t |F∗

t−1, s j t ,Θ j ) for j ≤ p

p(z j .|s j ., ē f
j−p.,Θ j ) = p(z j 1|s j 1,Θ j )

n∏
t=2

p(z j t |F∗
t−1, s j t , ē f

j−p,t−1,Θ j ) for j > p (90)

Both p(z j t |F∗
t−1, s j t ,Θ j ) as well as p(z j t |F∗

t−1, s j t , ē f
j−p,t−1,Θ j ) are normal densities with parameters the result

of the Kalman Filter recursion (explained in detail in 2.5).

The sampling of eachΘ j is similar to the sampling of β. Using equation 90, the mode m and the hessian at the
mode Σ are found. A candidate forΘ j is generated from T (Θ|m,Σ,ν), again setting ν= 15. Then using the MH
algorithm, the candidate is accepted or rejected using the acceptance ratio.

Last, h j . is sampled. This time series is sampled from [h j .|z j ., s j .,Θ j ] for j ≤ p, and for the factors ( j > p), h j is

sampled from: [h j .|z j ., s j ., ē f
j−p.Θ j ]. The sampling is done by running the Kalman Filter on equation 90 again,

and using the Simulation Smoother algorithm from [De Jong and Shephard, 1995] afterwards. This might be
the weakest part of the algorithm since for certain combinations ofφ j ,σ j the algorithm has a small probability
to define negative variances within the alogrithm of [De Jong and Shephard, 1995]. This problem is not noted
by the authors of [Chib et al., 2006], since the range of values of φ j ,σ j used by the authors does not run into
these problems. Especially for a combination of low φ and low σ, this problem is observed.
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MODEL COMPARISON
In this section, a method to compare the different models with each other is explained. To accomplish this, the
likelihood of the data given each model will be compared and a Bayes-factor will be calculated and discussed,
as is done is [Chib, 1995], and [Chib and Jeliazkov, 2001], for example. Similar to [Chib et al., 2006], first the
method of [Chib, 1995] gets used, exploiting the Bayes-definition:

p(y |M ) = p(y |M ,ψ∗)p(ψ∗|M )

p(ψ∗|M , y)
(91)

Where p(y |M ) is the likelihood function under the given model, p(y |M ,ψ∗) is the likelihood function un-
der the given model and given parameters ψ∗ and p(ψ∗|M ), and p(ψ∗|M , y) are respectively the prior and
posterior of ψ under the model M .

To compare two models, the quantity of interest is: B = p(y |M1)
p(y |M2) , or equivalently b = log(B). Using equation 91:

b = log(p(y |M1))− log(p(y |M2))

= log(p(y |M1,ψ∗
1 ))+ log(p(ψ∗

1 |M1))− log(p(ψ∗
1 |M1, y))

− log(p(y |M2,ψ∗
2 ))− log(p(ψ∗

2 |M2))+ log(p(ψ∗
2 |M2, y)) (92)

The prior density is chosen within the model and therefore already available, the two obvious next steps are
determining the likelihood of the data given the model and the parameters, and determining the posterior
density of the parameters, this will be done in the following two sections.

6.1. POSTERIOR ORDINATE ESTIMATION
First, the posterior density is estimated. The likelihood of the model can be broken down in the following way:

p(ψ∗|M , y) = p(β∗,θ∗|M , y)

= p(β∗|M , y)p(Θ∗|β∗,M , y) (93)

This means that first the posterior density of the factor loading matrix can be analyzed. Thereafter, fixing the
factor loading matrix at it’s posterior mean, an analysis forΘ can be made.

Starting with the first term, it is noted that the density of the free elements of the factor loading matrix is close
to normal. Hence, to estimate this term, the mean vector and covariance matrix obtained within the MCMC
run are used. The posterior density is estimated using a normal density with these parameters.

Next, p(θ∗|β∗, M , y) is estimated. This is done by fixing β∗ and all but one of the Θ∗ at their posterior mean.
Starting with j = 1, a "reduced run" is performed. In this reduced run {Θ j , {h j .}, ft } are sampled, while {B , {Θi }}
for i ̸= j are kept fixed. The ordinate is then estimated using the kernel smoothing approach (discussed in
[Silverman, 2018]). The process is repeated in sequence for j ∈ {1, . . . , p +k}.

6.2. LIKELIHOOD ESTIMATION USING THE PARTICLE FILTER

METHOD

The goal of this section is to estimate the log-likelihood ordinate: log( f (y1, . . . , yn |M ,ψ∗)).

log( f (y1, . . . , yn |M ,ψ∗)) =
n∑

t=1
log( f (yt |M ,Ft−1,ψ∗)) (94)

The one step ahead density of yt in turn can be simplified to:

f (yt |M ,Ft−1,ψ∗) =
∫

N (yt |0,Ωt (ht ,B∗))p(ht |M ,Ft−1,ψ∗)dht (95)

This equation contains a normal distribution which is already available, and the the one step ahead density of
ht , which is not yet available. This can be rewritten as:

p(ht |M ,Ft−1,ψ∗) =
∫

p(ht |M ,ht−1,ψ∗)p(ht−1|M ,Ft−1,ψ∗)dht−1 (96)
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Now the density of ht , given (M ,ht−1,ψ∗) is just:

p(ht |M ,ht−1,ψ∗) =
p∏

j=1
N (h j t |µ∗

j +φ∗
j (h j ,t−1 −µ∗

j ),σ∗2
j ) (97)

×
p+k∏

j=p+1
N (h j t |µ∗

j +φ∗
j (h j ,t−1 −µ∗

j )+γ∗j−p

f j−p,t−1

exp(
h j ,t−1

2 )
),σ∗2

j ) (98)

p(ht−1|M ,Ft−1,ψ∗) in equation 96 is the filtered density of ht−1. To estimate the one step ahead density of
yt and ht , the particle filter is used, as described by [Pitt and Shephard, 1999] and [Doucet et al., 2001]. This
method uses particles from the previous filtered distribution to estimate the current distribution. That is,
a sample of M values {h(1)

t−1, . . . ,h(M)
t−1} from the distribution p(ht−1|M ,Ft−1,ψ∗)) is used as a starting point.

Using these samples, the density of ht is estimated using:

p(ht |M ,Ft−1,ψ∗) ≈ 1

M

M∑
i=1

p(ht |M ,h(i )
t−1,ψ∗) (99)

The Using this approximation, equation 95 can be rewritten as:

f (yt |M ,Ft−1,ψ∗) ≈
∫

N (yt |0,Ωt (ht ,B∗))
1

M

M∑
i=1

p(ht |M ,h(i )
t−1,ψ∗)dht (100)

Where, of course, a new M values to simulate the next time step is sampled. A detailed description of the
particle filter used can be found in the section below.

PARTICLE FILTER ALGORITHM

Step 1 The particle filter algorithm starts with {h(1)
t−1, . . . ,h(M)

t−1}, which are obtained from the previous time step

(at t = 1, hg
0 = µ is used for g ∈ {1, . . . , M }). Now the expected value of h given the previous time step is calcu-

lated: ĥ∗(g )
t = E [h(g )

t |h(g )
t−1] for g ∈ {1, . . . , M }. For this expectation, f g

t−1 is required, this can be extracted using

the method from 4, setting F (g )
t−1 = (B ′(V (g )

t−1)−1B + (D (g )
t−1)−1)−1 and f (g )

t−1 = F (g )
t−1B ′(V (g )

t−1)−1 yt−1. With V (g )
t and

D (g )
t from equation 75 and 76 (using h(g )

t instead of ht ).

Now an estimate for N (yt |0,Ωt ) is made:

wg = N (yt |0,Ωt (ĥ∗(g )
t ,B∗))

This factor is also used as an indication of how likely the data is given the current combination of ĥ∗(g )
t and B∗.

The integers 1, . . . , M are sampled R times with probability

w̄g = wg∑M
i=1 wi

(101)

These sampled indices are labeled k1, . . . ,kR and map to ĥt
∗(k1)

, . . . , ĥt
∗(kR )

Step 2 Now for each sampled index kg , the original value of h
(kg )
t−1 (the original values from the previous time

step) are used to sample h∗(g )
t :

h∗(g )
j ,t =µ∗

j +φ∗
j (h

(kg )
j ,t−1 −µ∗

j )+σ∗
j η

(g )
j ,t for j ≤ p (102)

h∗(g )
j ,t =µ∗

j +φ∗
j (h

(kg )
j ,t−1 −µ∗

j )−γ∗j−p

f
(kg )
j−p,t−1

exp(
h

(kg )
j ,t−1

2 )

+σ∗
j η

(g )
j ,t for j > p (103)

This produces the sample: {h∗(1)
t , . . . ,h∗(R)

t }

Step 3 Finally, the values {h∗(1)
t , . . . ,h∗(R)

t } are re-sampled M times using the weight from equation 105 as
sample-probability:

w∗
g =

N
(

yt |0,Ωt

(
h∗(g )

t ,B∗
))

N
(

yt |0,Ωt

(
ĥ
∗(kg )
t ,B∗

)) (104)
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w̄∗
g =

w∗
g∑M

i=1 w∗
i

(105)

for g = 1, . . . ,R. This produces the filtered sample {h(1)
t , . . . ,h(M)

t } from (ht |M ,Ft ,ψ∗). The desired sample, which
is used as a starting point for the next time step.

Step 4 The estimate for the log-likelihood can now be obtained by the method of [Pitt, 2002]:

f̂ (yt |M ,Ft−1,ψ∗) ≈
(

1

M

M∑
g=1

wg

)(
1

R

R∑
g=1

w∗
g

)

After this cycle has repeated for t = 1, . . . , N , the logarithmic likelihood (equation 94) can be estimated using:

log( f (y1, . . . , yn |M ,ψ∗)) ≈
n∑

t=1
log

((
1

M

M∑
g=1

w t
g

)(
1

R

R∑
g=1

w t∗
g

))

Where w t
g and w t∗

g are notation for wg and w∗
g computed at time step t respectively.
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SIMULATION RESULTS

7.1. MODEL SET-UP AND PRIORS
In this section, the accuracy of the models and the ability of the method from Section 6 to provide a criterion
to distinguish between data generated with different models is studied. After explaining the details of the
parameters of the model and the prior distributions in this section, in Section 7.2 the accuracy of the estimation
of the parameters for all three models is tested. In Section 7.3, the log-likelihood of all three models will be
compared to each other, when underlying data sets are generated by one of the models. The results of this
section will be used in section 8, where real-world data is sampled using all three methods.

For the simulation of the artificial data sets, the following set of parameters is taken. The free elements of B are
N (0.75,0.5) distributed, (µ j ,φ j ,σ j ,γ j ) are set at (−9;0.98;0.14;0.2), where γ j is omitted in the MSV and MSVJ
models. The reason the Θ parameters are fixed instead of simulated is for bundling purposes. A full run of the
sampler takes quite a long time. By simulating the innovations the same way, they can be bundled. This way
more data on the distributions of the parameters are available, instead of little data being available for many
different parameters. For the same reason, δ j is fixed at 0.06 and κ j is fixed at 0.02 for all j .

For the Model Accuracy Section (Section 7.2), B is simulated once, and then this factor loading matrix is used
for all the simulations. For the Model Comparison Section (Section 7.3), B is re-simulated each time a new
synthetic data set is generated.

In Section 7.2, 6.000 samples are accumulated for 40 runs. In each run, the first 1.000 simulations are discarded
(the burn-in period). The last 5.000 iterations are used for inference.

In section 7.3, 6.000 samples are accumulated for 10 runs, again discarding the first 1.000 samples of each run.
After the sampling is done, the Reduced Sampling from Section 6.2 starts for 5.000 iterations each reduced run.
Finally, the Particle Filter is run (also from section 6.2), with M = 5.000, and R = 25.000.

The number of samples, particles, and reduced run samples are based on [Chib et al., 2006], where a conver-
gence analysis is performed. These results are scaled down by a factor of a maximum of two since the model
in this paper is at least a factor of two smaller.

During the MCMC method, the following priors are taken. For the free elements of B , the used prior is N (0.9,1),
a slightly wider prior with a slightly different mean as the distribution function of the free elements. For the
logarithmic volatility parameters, the prior for µ j is set at µ j ∼ N (−9,1). φ j is distributed by simulating a
transformed version: φ∗

j from a beta distribution and then taking φ j = 2φ∗
j −1. This is done in such a way that

the mean of φ j = 0.94 and its standard deviation 0.08. σ j is simulated from an Inverse Gamma distribution,
such that its mean is 0.2 and its standard deviation 0.1. Finally, the prior for γ j is a N (0;0.25). Note that these
priors are all quite close to the chosen values, with an exception for γ, since part of the goal of the accuracy
section is to see if γ can actually be detected from the data, it is desirable to give an unbiased prior about its
sign. For the jump parameters: log(δ j ) ∼ N (−3,0.4) is used as a prior for δ and κ j ∼ Beta(2,100) as a prior for
κ. These priors indicate about 4 or 5 jumps a year (probability of a jump is 1.96% per day) with an intensity of
about 5%.

The choice of all priors, are based on analysis done in [Chib et al., 2006] and [Albert and Hu, 2019], except for
γ.

7.2. MODEL ACCURACY

AMSV
In this section, the accuracy of the different sampling methods is analyzed. Starting with AMSV, where-after
the MSV and MSVJ model are analyzed and compared with the AMSV model.

For all 40 runs mentioned in section 7.1, the posterior mean for the factor loading matrix (B∗
i for run i) is

collected. Using these means, a grand posterior average, B∗ is calculated, together with the grand posterior
standard deviation.

In Figure 10 the true values of the free elements of the factor loading matrix B are compared with the grand
posterior mean obtained from the sampler. It can be seen that the true value and the estimate are close for all
factor loadings. In Figure 11 the actual errors are compared with the standard errors. As can be seen, most of
the factor loadings are within one standard error of the true value, with a few of the errors being slightly larger,
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but always within two standard errors. This means that using the AMSV model, the factor loading matrix can
be accurately estimated. Later in this section, these results are compared with the MSV and MSVJ models
respectively.

True values of factor loadings compared with posterior estimates
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Figure 10: The parameters of the factor loading matrix. The values used for the generation of the data are shown under "True Value". The
values under "Estimate" are the average of posteriors of 40 simulations using 5.000 samples (after 1.000 discarded burn-in samples),

generated by the AMSV model.

Parameter True Value Posterior mean Posterior s.d.
µi -9 -9.00 0.18
µ f -9 -8.97 0.20
φi 0.98 0.963 0.040
φ f 0.98 0.978 0.005
σi 0.14 0.161 0.023
σ f 0.14 0.182 0.020
θ f 0.2 0.186 0.021

Table 8: The parameters of the logarithmic volatility. The values used for the generation of the data are shown under "True Value". The
values under "Posterior mean" and "Posterior s.d." are respectively the average and the standard deviation of posteriors of 40 simulations

using 5.000 samples (after 1.000 discarded burn-in samples), generated by the AMSV model.
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10-3 Estimation error of factor loadings compared with standard errors Standard error
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Figure 11: The standard errors and the actual errors of the values of the factor loading matrix. These values are the result of 40
simulations using 5.000 samples (after 1.000 discarded burn-in samples), generated by the AMSV model.

Similarly, the posterior means forΘ are collected. This time, as discussed in Section 7.1, allΘ j from all runs for
j ≤ p get bundled together to calculateΘ∗

i : the grand posterior average of logarithmic volatility parameters for
the innovations. The same is done for the factors to create: Θ∗

f . The results are summarized and compared to

the true values in Table 8

Note that in Table 8 the standard deviation is displayed (not the standard error). Comparing the grand pos-
terior averages with the true values, we find that (µi ,µ f ) are accurately estimated within 2 standard errors.
(φi ,φ f ,γ f ) are estimated within 5 standard errors, while (σi ,σ f ) are estimated less accurately (respectively 6
and 14 standard errors off). It is also observed in [Chib et al., 2006] that the estimation of σ and φ is generally
less accurate. This will also be seen during the analysis of the MSV and the MSVJ models later this section.

A possible explanation for the larger overestimation of σ f is that the best estimate for the factors are used in
the estimation scheme (and not the sampled factors), this removes some of the randomness captured by the
term that uses the previous random element generated by the factors. In turn, this randomness is absorbed by
σ f . Moreover, σ f is already slightly overestimated, as can be seen in this section (σi ) and the two sections to
follow. However, this trade-off is necessary to have an accurate estimate for γ f , as was discussed in Section 4,
and especially in Figure 5.

In Figure 12, the distribution for one of the factor loadings and three of the logarithmic volatility parameters
for factor one are shown. In these Figures, a vertical red line marks the true value of the parameter. In Figure
13, the path of the sampler for these parameters can be found. The true value of the parameters is added to the
figures as well, using a horizontal red line. The most important take away from figure 13, is that the sampler
has found the equilibrium posterior distribution (i.e. it is not trending anymore).
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Figure 12: Histogram of the posterior values for one of the factor loadings and the parameters for the first factor. For this histogram, 40
data sets using 5.000 samples are used. The data is generated by the AMSV model.
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Figure 13: Path of the sampling of the parameters in Figure 12 of an arbitrary run using the AMSV model.

29



Finally, in Figure 14 the distribution for the three γ parameters in one of the runs is shown. The distributions
shown here can be compared with the distribution for γ in Section 8, where of course only one run can be
observed for each selection of assets.

Figure 14: The distribution of γ1, γ2, and γ3 within one arbitrary run.

MSV
Similar as in the AMSV part, B∗,Θ∗

i , andΘ∗
f are calculated, together with their standard deviations. The results

for B are displayed in Figure 15 and the results forΘ are shown in Table 9, an analysis of the errors in B is made
in Figure 16.

Comparing Figure 15 with 10, and Figure 16 with 11, similar results are observed. Both models estimate the
factor loading matrix accurately, and similar behaviour is observed when comparing the estimation errors with
the standard errors.

For the logarithmic volatility parameters in Table 9, the results are also comparable to Table 8. Again, (µi ,µ f )
are within two standard errors of the true value, (φi ,φ f ) are within 5 standard errors and the (σi ,σ f ) pair are
about 6 standard errors from their true value. It is also noteworthy thatφ is slightly underestimated using both
the AMSV model and the MSV model, while both models estimate σ a bit too high. Each time the error is in
the direction of the prior mean. [Chib et al., 2006] mentions that the factor loadings for B and µ are accurately
estimated (accuracy around 0.98) while φ and σ record somewhat larger deviations (accuracy around 0.90).
The same is observed in this thesis.
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It can be concluded that adding the γ-parameter in the model, only influences the σ f -parameters, which get
overestimated a bit more.
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Figure 15: The parameters of the factor loading matrix. The values used for the generation of the data are shown under "True Value". The
values under "Estimate" are the average of posteriors of 40 simulations using 5.000 samples (after 1.000 discarded burn-in samples),

generated by the MSV model.

Parameter True Value Posterior mean Posterior s.d.
µi -9 -8.97 0.18
µ f -9 -9.00 0.18
φi 0.98 0.965 0.035
φ f 0.98 0.972 0.011
σi 0.14 0.161 0.024
σ f 0.14 0.160 0.024

Table 9: The parameters of the logarithmic volatility. The values used for the generation of the data are shown under "True Value". The
values under "Posterior mean" and "Posterior s.d." are respectively the average and the standard deviation of posteriors of 40 simulations

using 5.000 samples (after 1.000 discarded burn-in samples), generated by the MSV model.

Finally, in Figure 17 the distribution of one of the factor loadings and the logarithmic volatility parameters of
one of the factors are shown, with the sampling path displayed in Figure 18. In this figure, it can again be seen
that the sampler has reached the equilibrium posterior distribution.
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Figure 16: The standard errors and the actual errors of the values of the factor loading matrix. These values are the result of 40
simulations using 5.000 samples (after 1.000 discarded burn-in samples), generated by the MSV model.

Figure 17: Histogram of the posterior values for one of the factor loadings and the parameters for the first factor. For this histogram, 40
data sets using 9.000 samples are used. The data is generated by the MSV model.
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Figure 18: Path of the sampling of the parameters in Figure 17 of an arbitrary run using the MSV model.

MSVJ
The results for the factor loading matrix and the logarithmic volatility parameters are shown without further
comments in appendix C. The behaviour of the sampling of the B andΘ parameters is similar to the behaviour
in the AMSV and MSV sections. The only noteworthy difference is that B is estimated a bit worse.

Instead, in this section, a quick analysis of the distribution of the jump parameters κ and δ is made.

The grand posterior average for κ during the samples is 0.023 with a standard deviation of 0.013. Sufficiently
close to the true value 0.02. For δ the grand posterior average is 0.0597 with a standard deviation of 0.0088,
again very close to its true value 0.06. In Figure 19, the beta-like shape can be seen in the samples for κ

In [Chib et al., 2006], it is discussed that the prior has quite a large influence on the final estimate of the pa-
rameters for the jump parameters (especially for κ). For this reason, a prior which has a large probability mass
at the true value used to set up the model is added. In Figure 19 the used prior is added to the distribution
as well. In both cases, the samples are shifted away from the prior towards the true value of the parameters.
Confirming that the choice of prior with high probability mass at the true values is sufficient to have good
estimates for the parameters.

In Figure 20, the sampling path of an arbitrary run is shown. Forκ andδ, the MSVJ sampler has also reached the
equilibrium state after 1.000 initial iterations (also confirmed for the factor loading and logarithmic volatility
parameters in Appendix C).
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Figure 19: Histogram of the posterior values for δ and κ compared with the prior distribution of these parameters. For this histogram, 40
data sets using 9.000 samples are used.
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Figure 20: Path of the sampling of the parameters in Figure 19 of an arbitrary run.

7.3. MODEL COMPARISON

DATA FROM AMSV
In this section, the following sequence of steps is gone through:

• Generate a data set using one of the models.

• Sample the data sets with samplers from multiple models.

• Compute the Bayes factor b.

The models sampled with are again MSV, AMSV, and MSVJ. First, the results of all the samplers when using
data generated with the AMSV model are analyzed. Later, the same is done with data coming from the MSV
and MSVJ models.
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Ten different synthetic data sets are generated using the AMSV model. The results after sampling, reduced
sampling and running the particle filter are summarized in Table 10 and 11.

Run log(p(y |MAMSV)) log(p(y |MMSVJ)) b
1 40953 40976 157.3
2 40441 40147 294.0
3 40924 40762 161.3
4 41431 41235 194.9
5 40687 40458 228.4
6 41377 41186 190.7
7 40891 40733 158.0
8 40618 40459 163.1
9 41287 41132 154.3

10 41155 40979 176.1

Table 10: The bayes factor between AMSV and MSVJ, when the underlying data is generated by the AMSV model.

Run log(p(y |MAMSV)) log(p(y |MMSV)) b
1 40953 40910 42.6
2 40441 40355 85.4
3 40924 40855 68.7
4 41431 41337 93.0
5 40687 40614 72.6
6 41377 41316 61.1
7 40891 40840 50.8
8 40618 40518 100.4
9 41287 41232 55.2

10 41155 41072 82.9

Table 11: The bayes factor between AMSV and MSV, when the underlying data is generated by the AMSV model.

In Table 10 and 11 it can be seen that the method explained in Section 6 is clearly decisive when comparing
AMSV with MSVJ. When comparing AMSV with MSV the score is less decisive, but it is still in favour of the
AMSV model every time. The reason that b is smaller between AMSV and MSV is that these two models are
closer to each other, only differing in three parameters (for the given problem size). Meanwhile, AMSV and
MSVJ differ in 23 parameters for the same problem size.

In Table 12, a detailed comparison for three runs between AMSV and MSV is made. In this breakdown, it can
be seen why the value for b is positive: generally, the AMSV model has a lower prior value and a higher ordinate
value (which acts as a penalty to b). However, the higher value for log(p(y |M ,ψ∗)) compensates for this and
tips the score in favour to the AMSV model.

Run Model log(p(y |M ,ψ∗)) log(p(ψ∗|M )) log(p(ψ∗|M , y)) log(p(y |M ))
1 AMSV 41096.5 -25.4 118.0 40953.0
1 MSV 41038.7 -18.7 109.7 40795.7
1 ∆ 57.7 -6.7 8.34 31.2

2 AMSV 40587.6 -25.7 120.6 40441.3
2 MSV 40485.4 -18.9 110.6 40355.9
2 ∆ 102.2 -6.8 10.0 85.4

3 AMSV 41068.6 -26.5 118.1 40924.0
3 MSV 40983.9 -20.9 107.7 40855.3
3 ∆ 84.6 -10.8 10.4 68.7

Table 12: A breakdown of the bayes factor of three runs between AMSV and MSV. The underlying data is generated by the AMSV model.
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This part of the section is concluded by showing what happens when trying to fit the jump parameters to the
AMSV model. As discussed before, the parameters tend to go to their priors. In these simulations a total of 200
values of δ and κ are collected. Theoretically they should be zero (since the data is generated without jumps),
however in Figure 21 it can be seen that these values are still highly influenced by the prior. The mean value
found for κ and δ are 0.054 and 0.0093 with a standard deviation of 0.023 and 0.0056 respectively.

Figure 21: Histogram of values of δ and κ found when no jumps are in the model used to simulate underlying data. The prior used to
sample the data is added as well.

DATA FROM MSV
In the previous section, it is shown that the method from Section 6 scores in favour of the AMSV model against
the MSV model, when the underlying data is indeed generated by an AMSV model. In this section, the reverse
is looked into. Ten different synthetic data sets are generated using the MSV model. The results after sampling,
reduced sampling, and running the particle filter are again compared between MSV and AMSV, summarized
in Table 13.

Run log(p(y |MMSV)) log(p(y |MAMSV)) b
1 40977 40967 10.5
2 40427 40407 19.7
3 42188 42175 12.7
4 41175 41134 41.7
5 41130 41114 16.5
6 41362 41348 13.5
7 41029 41000 28.5
8 40165 40142 22.7
9 41563 41535 28.2

10 40971 40953 17.3

Table 13: The bayes factor between MSV and AMSV, when the underlying data is generated by the MSV model.

As can be seen in this table, when there is no asymmetry in the data, the method from Section 6 scores in favour
of the MSV model. The values of b are even smaller this time. The reason that the likelihood of the models is
closer this time, is that the γ parameters are estimated at or close to zero. This leads to similar results from the
particle filter. The only distinguishing factors now are the priors and the posterior ordinate penalty, in Table 12
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it can be seen that the difference between these values are typically in the range of 10. Combining the results
of Tables 11 and 13, a reference can be created. This reference will be used when applying the different models
to real equity returns in Section 8.

In Figure 22, the distribution from the 30 values of γ found in the above simulation can be found. In the left half
of this figure, it can be seen that compared to the prior, γ is centered around 0. The right half figure is provided
to have a better look at the actual distribution of γ. This shows that the model doesn’t give a significant γ value
when no asymmetry is present in the data.

Figure 22: Histogram of values of γ found when no asymmetry is in the model used to simulate underlying data. The prior is added to the
figure as well. The mean of the MSV-generated data is -0.001 with a standard deviation of 0.021.

DATA FROM MSVJ
Finally, ten different synthetic data sets are generated using the MSVJ model. The results after sampling, re-
duced sampling and running the particle filter are summarized in Table 14.

Run log(p(y |MMSVJ)) log(p(y |MAMSV)) b
1 39078 38620 457.3
2 38830 38585 245.4
3 39318 38731 587.0
4 39468 38983 484.6
5 39928 39611 317.3
6 39541 38939 602.1
7 40554 39739 815.0
8 39724 39003 721.2
9 39121 38378 742.7

10 40365 39741 615.6

Table 14: The bayes factor between MSVJ and AMSV, when the underlying data is generated by the MSVJ model.

Just as in Table 10, using the Bayes method one can correctly identify whether asymmetry or jumps are in the
data.
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The values for γ found when sampling a data set that has jumps, but no asymmetry is analyzed as well. The
distribution of these values of γ can be seen in Figure 23. Similar to the MSV-generated data, no significant
asymmetry parameter is found.

Another noteworthy observation that can be made when using the AMSV method to sample MSVJ-generated
data, is that the logarithmic volatility parameters for the innovations do not get estimated correctly anymore.
Generally, higher values for µi and σi , and lower values for φi are found. A probable explanation for this
is that the jumps get estimated using the logarithmic volatility, which generates a higher mean value for the
logarithmic volatility (higher µ). This also requires the volatility to move more quickly to cover for the jumps
(higher σ). Finally, the volatility is less dependent on the previous value of the volatility since the jumps are
independent at each time step (lower φ). This observation is also true for the MSV model.

Figure 23: Histogram of values of γ found when jumps are but asymmetry is not in the model used to simulate underlying data. The prior
is added to the figure as well. The mean for γ of the MSVJ-generated data is -0.003 with a standard deviation of 0.038.
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APPLICATION TO REAL EQUITY RETURNS

8.1. THE DATA SET
In this section, the AMSV model will be tested on real equity returns. Afterward, a comparison will be made
between the AMSV, MSV, and MSVJ models. First, the data set gets introduced.

Similar to section 3, a set of assets from the SP500 are selected. These assets are selected to have some higher
market caps, some medium market caps, and some lower market caps. The chosen assets for this analysis are:

• Apple Inc. (AAPL)

• Southwest Airlines (LUV)

• Northrop Grumman (NOC)

• Microsoft (MSFT)

• Mastercard (MA)

• Walmart (WMT)

• Progressive Corporation (PGR)

• Air Products (APD)

• First Republic Bank (FRC)

• Dr Pepper Snapple Group (KDP)

This will also be the order in which they will be selected, this will be important when analyzing the factor load-
ing matrix. The stock prices will be analyzed starting from 2015-01-01 until 2021-01-01, this period contains
1510 trading days. In Figure 24, the prices of the selected stocks are displayed for this period.
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Figure 24: Prices of ten selected assets from 2015-01-01 until 2021-01-01.
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Let a j
t be the asset price of asset j at time t , then the returns analyzed are:

y∗ j
t = log(

a j
t

a j
t−1

) (106)

y j
t = y∗ j

t − 1

N

N∑
i=1

y∗ j
i (107)

So the analysis is made on the log-returns of the asset, with the mean removed.

8.2. PRIORS
Using the MCMC method, the following priors are taken:

For the free elements of B , N (1,9) is taken as a prior. For the logarithmic volatility parameters, the prior of µ j

is set atN (−9,25), φ j is distributed by simulating a transformed version: φ∗
j from a beta distribution and then

taking φ j = 2φ∗
j −1. This is done in such a way that the mean of φ j = 0.84 and its standard deviation is 0.11.

σ j is simulated from an Inverse Gamma distribution, such that its mean is 0.25 and its standard deviation 0.4.
The prior for γ j is still N (0;0.25). When using MSVJ, for the jump parameters, log(δ j ) ∼ N (−3,1) as a prior for
δ and Beta(2,100) as a prior for κ are taken. These priors indicate about 4 or 5 jumps a year (probability of a
jump is 1.96% per day) with an intensity of about 5%.

The priors in this section have the same (or a similar) mean as in section 7. The distributions, however, are
chosen to be much wider. The reason for these wider distributions is that not as much is known about this
data set, as was the case for the synthetic data.

8.3. RESULTS AMSV MODEL
First, when trying to estimate the above data set with a model with k = 3 factors, only one significant factor
is found. The other two factors are estimated to be more than 10 times less significant. Moreover, this leads
to problems when estimating the optimal value for B . When some factors are insignificant compared to other
factors, their influence is less noticeable. In turn, the likelihood function for B is barely influenced by the factor
loadings for those factors, resulting in the optimizer having difficulties finding an optimal value for B . This is
also the case using the MSV and the MSVJ models.

Instead, only one factor is used in this section. The results of the sampling using the AMSV model can be found
in Table 15.

Asset Factor 1 Loading µ φ σ

AAPL 1 (fixed) -8.94 (0.06) 0.639 (0.127) 0.295 (0.054)
LUV 0.753 (0.045) -8.50 (0.13) 0.890 (0.026) 0.475 (0.089)
NOC 0.733 (0.033) -9.35 (0.14) 0.882 (0.030) 0.455 (0.120)

MSFT 1.042 (0.032) -9.52 (0.06) 0.703 (0.105) 0.268 (0.052)
MA 1.00 (0.033) -9.98 (0.17) 0.868 (0.028) 0.638 (0.122)

WMT 0.496 (0.028) -9.29 (0.06) 0.798 (0.070) 0.281 (0.055)
PGR 0.733 (0.031) -9.37 (0.10) 0.869 (0.050) 0.298 (0.076)
APD 0.862 (0.035) -9.43 (0.07) 0.834 (0.053) 0.271 (0.049)
FRC 0.791 (0.039) -8.93 (0.11) 0.900 (0.025) 0.321 (0.075)
KDP 0.538 (0.028) -9.16 (0.06) 0.747 (0.082) 0.324 (0.051)

Factor µ φ σ γ

1 -9.45 (0.20) 0.947 (0.012) 0.350 (0.041) 0.215 (0.036)

Table 15: The factor loadings and logarithmic volatility parameters for the simulation of the selected assets using the AMSV model. The
standard deviations are also provided, between brackets.

The most important result in Table 15 is γ, which is significantly larger than 0. This means that asymmetric
behaviour is indeed observed. In Figure 25, the sampling path and the posterior density of γ are shown. In
these figures, it can be seen that the sampler found a stable equilibrium and that the minimum value of γ
during the sampling process is about 0.1, which is a clear sign that the asymmetry is observed. Note that this
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distribution looks similar to the distribution from Figure 14 from Section 7.2, where the synthetic data set with
γ= 0.2 was sampled.

Figure 25: The sampling path and the posterior density of γ1.

8.4. COMPARISON WITH MSV
Similar as in the previous section, first the simulation results using one factor are shown in Table 16, this time
using the MSV model.

Asset Factor 1 Loading µ φ σ

AAPL 1 (fixed) -8.93 (0.05) 0.631 (0.129) 0.297 (0.054)
LUV 0.777 (0.045) -8.50 (0.13) 0.890 (0.026) 0.472 (0.089)
NOC 0.683 (0.032) -9.36 (0.14) 0.882 (0.030) 0.466 (0.120)

MSFT 1.059 (0.032) -9.52 (0.06) 0.700 (0.103) 0.267 (0.051)
MA 1.018 (0.032) -9.98 (0.17) 0.866 (0.029) 0.641 (0.120)

WMT 0.496 (0.028) -9.27 (0.06) 0.795 (0.073) 0.280 (0.053)
PGR 0.689 (0.030) -9.36 (0.09) 0.868 (0.050) 0.293 (0.074)
APD 0.825 (0.035) -9.43 (0.07) 0.831 (0.056) 0.270 (0.046)
FRC 0.745 (0.039) -8.92 (0.10) 0.900 (0.026) 0.319 (0.074)
KDP 0.493 (0.028) -9.16 (0.06) 0.750 (0.083) 0.325 (0.051 )

Factor µ φ σ

1 -9.50 (0.24) 0.955 (0.012) 0.367 (0.044)

Table 16: The factor loadings and logarithmic volatility parameters for the simulation of the selected assets using the MSV model. The
standard deviations are also provided, between brackets.

Comparing Table 16 with Table 15, it is first noticed that the factor loadings are similar to the AMSV simulation
results in Table 15. Moreover, all values for (µ,φ,σ) are close to each other for the two models as well (both the
values and the standard deviations).

It can be concluded, that the addition of γ does not alter the factor loading matrix nor the other logarithmic
volatility parameters. In Figure 26, the logarithmic volatility of the factor is compared between the MSV and
the AMSV model. This is done by drawing { fs , ss |B∗,Θ∗,hs } and subsequently {hs |B∗,Θ∗, fs , ss } 1000 times,
saving the factor values for hs , initializing with the final value for hs found when sampling the data using the
AMSV and MSV model respectively. In Figure 26, the average of all the draws is shown. It can be seen that
the factor volatility for AMSV and MSV are very close to each other. Showing that only the internal method of
calculating the volatility is altered and not the volatility itself.

41



0 200 400 600 800 1000 1200 1400 1600

t

-12

-11

-10

-9

-8

-7

-6

-5

h
t

Logarithmic volatility of the factor using the MSV and AMSV model

AMSV

MSV
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The Bayes factor (from Section 6) between the two models is b = 23.0 in favour of the AMSV model. In Section
7.3, it was observed that when asymmetry is present, the Bayes criterion is in favour of the AMSV model, while
when asymmetry is not present, it is in favour of the MSV model. In Figure 27 two empirical probability distri-
bution functions for the Bayes factor are shown in one figure. For one of the probability distribution functions,
the underlying data is generated by the MSV model, while for the other the underlying data is generated by the
AMSV model3. In the figure, the value for the real data set in this section is added as well. This comparison
isn’t totally fair, since in the reference data three factors were used. However, it will still give a good indication.
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Figure 27: The empirical probability distribution functions for the bayes factor between the MSV and the AMSV model. The underlying
data generated via either MSV or AMSV, as indicated by the legend. In this figure, a negative value is in favour of MSV, while a positive

value is in favour of AMSV. The value for the real data set is added to the figure as well. The empirical probability distribution functions
are estimated by the KS algorithm.

3These are the results from Section 7.3.
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8.5. COMPARISON WITH MSVJ
Again, as in the previous sections, first the simulation results using one factor are shown in Table 17, this time
using the MSVJ model.

Asset Factor 1 Loading µ φ σ κ δ

AAPL 1 (fixed) -9.23 (0.12) 0.923 (0.029) 0.272 (0.074) 0.027 (0.010) 0.0409 (0.0043)
LUV 0.814 (0.045) -8.62 (0.25) 0.973 (0.012) 0.205 (0.043) 0.038 (0.011) 0.0464 (0.0047)
NOC 0.705 (0.035) -9.50 (0.20) 0.946 (0.030) 0.311 (0.095) 0.032 (0.012) 0.0303 (0.0037)

MSFT 1.083 (0.036) -9.98 (0.15) 0.900 (0.030) 0.453 (0.118) 0.016 (0.006) 0.0457 (0.0054)
MA 1.074 (0.037) -9.98 (0.15) 0.891 (0.038) 0.510 (0.144) 0.013 (0.009) 0.0340 (0.0083)

WMT 0.475 (0.029) -9.56 (0.11) 0.927 (0.022) 0.274 (0.056) 0.019 (0.006) 0.0517 (0.0048)
PGR 0.717 (0.032) -9.61 (0.14) 0.940 (0.025) 0.267 (0.066) 0.022 (0.007) 0.0375 (0.0042)
APD 0.827 (0.035) -9.76 (0.12) 0.912 (0.028) 0.352 (0.094) 0.018 (0.008) 0.0379 (0.0050)
FRC 0.786 (0.042) -9.03 (0.12) 0.924 (0.023) 0.302 (0.059) 0.015 (0.008) 0.0433 (0.0064)
KDP 0.426 (0.031) -9.48 (0.12) 0.915 (0.027) 0.331 (0.082) 0.018 (0.007) 0.0696 (0.0073)

Factor µ φ σ

1 -9.67 (0.25) 0.958 (0.011) 0.367 (0.042)

Table 17: The factor loadings and logarithmic volatility parameters for the simulation of the selected assets using the MSVJ model.

The Bayes factor (from Section 6) between the two models is b = 262.9 in favour of the MSVJ model. In Figure
28 two empirical distribution functions similar to Figure 27 are shown. Again using the results from Section
7.3.

Moreover, in the MSVJ part of Section 7.3 it was noticed that when sampling data that contains jumps with an
AMSV model (or an MSV model), the µ and σ parameters of the innovations get estimated too high, while the
φ parameters of the innovations are estimated too low. Comparing Table 17 with Table 15, this is exactly what
is found. Indicating that the jumps in the data distort the volatility parameters for the innovations in the AMSV
and MSV models.

These two insights, lead to the conclusion that the jump model outperforms the asymmetric factor model for
this data set.
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Figure 28: The empirical probability distribution functions for the bayes factor between the MSV and the AMSV model. The underlying
data generated via either MSV or AMSV, as indicated by the legend. In this figure, a negative value is in favour of MSV, while a positive

value is in favour of AMSV. The value for the real data set is added to the figure as well. The empirical probability distribution functions
are estimated by the KS algorithm.
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CONCLUSION AND DISCUSSION
In this thesis, a multivariate model is extended to contain an asymmetric relation between asset returns and
the volatility of these assets. In section 7.2, it was shown that the sampler provided is able to successfully esti-
mate the parameters of the extension. In section 7.3 it was shown that (i) the model is distinguishable from the
classical factor model and the factor model with jump extensions, and (ii) that the asymmetric extension cor-
rectly gets estimated at zero when this asymmetry is non-present in the underlying data. Finally, in Section 8 it
is shown that the asymmetrical component is observed in real equity time series. Moreover, the method pro-
vided in Section 6 prefers the factor model with asymmetry extension over the classical factor model. However,
the model with jump extensions still performs best.

The results from this thesis, implicate that the observed asymmetry in the data in Section 3 can be modelled
by applying an asymmetric term to the factors. It also shows that implementing the asymmetry gives an im-
provement over the classical model, by implementing relatively few extra parameters.

However, it was perhaps a bit far-fetched and optimistic to expect the relatively simple asymmetric extension
to compete with the more complex jump extension. Although it is known that the model with jump extension
requires a well-thought-out prior, it still is the preferred algorithm. It could be the case that a combination
between the two models would perform even better, however, that would require additional research, since
the jump extension alters the logarithmic volatility update equations quite a bit, as was seen in Sections 7.3
and 8.

The most limiting factor in this thesis is the number of samples for the Bayes factor simulated in Section 7.3.
While 40 runs in Section 7.2 seem enough, the 10 values for the Bayes factor between each combination of
two models are not enough to have a full overview of the distribution of this parameter. The reason not more
of these simulations are performed, is that they are very time-consuming, especially the reduced runs for the
MSVJ algorithm take a long time (between 1 and 2 days). This is partly due to the choice of programming
software. To have a better overview, 40 values of b are recommended.

In addition to the factor model with jumps and asymmetric factors, other further research recommendations
include the addition of more heavy-tailed distributions to the innovations and/or factors using the asymmetric
extensions, and a better way to estimate the logarithmic volatility given the parameters for its equation, which
was identified as the weakest part in the Monte Carlo Markov chain algorithm in Section 5.2.

It would also be interesting to see if the asymmetric model from this thesis outperforms a model that cap-
tures the asymmetry in the innovations. Especially since fewer extra parameters are necessary to capture the
asymmetry in the factors. Using the methods in this thesis, this could be easily tested and does not necessarily
require new research.
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A
SECOND DERIVATIVE OF LOGARITHMIC

LIKELIHOOD OF FACTOR LOADING MATRIX
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The first term gets split into two terms again:
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The full hessian matrix can be described using:
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B
RESULTS AMSV MAKING USE OF THE EKF

Parameter True Value Posterior mean Posterior s.d.
µi -9 -9.00 0.18
µ f -9 -8.98 0.20
φi 0.98 0.966 0.035
φ f 0.98 0.972 0.010
σi 0.14 0.160 0.023
σ f 0.14 0.093 0.009
θ f 0.2 0.200 0.03

Table B.1: The parameters of the logarithmic volatility. The values used for the generation of the data are shown under "True Value". The
values under "Posterior mean" and "Posterior s.d." are respectively the average and the standard deviation of posteriors of 40 simulations

using 5.000 samples (after 1.000 discarded burn-in samples), generated by the AMSV model.

The main difference between Tables B.1 and 8 are the results of γ f and σ f . Although the value for γ f is esti-
mated better using the EKF, the value for σ f is heavily underestimated.

Exporting this version of the estimation scheme to Section 7.3, it was found that the method using the Bayes
factor was not sufficient to determine whether AMSV or MSV was used. The main reason being p(y |MAMSV,Ψ∗)
is estimated significantly lower when σ f is underestimated. Otherwise said, the loss in likelihood because of
the underestimation of σ f canceled out the gain in likelihood by the extra parameter γ f . Because of this, no

conclusion could be made in Section 8. Therefore the conditioning on ē f
t is preferred over the conditioning on

f̄t .
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C
RESULTS FACTOR LOADINGS AND

LOGARITHMIC VOLATILITY MSVJ

True values of factor loadings compared with posterior estimates
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Figure C.1: The parameters of the factor loading matrix. The values used for the generation of the data are shown under "True Value".
The values under "Estimate" are the average of posteriors of 40 simulations using 5.000 samples (after 1.000 discarded burn-in samples).

The data is generated by the MSVJ model.

Parameter True Value Posterior mean Posterior s.d.
µi -9 -8.93 0.17
µ f -9 -9.06 0.16
φi 0.98 0.947 0.062
φ f 0.98 0.968 0.021
σi 0.14 0.170 0.027
σ f 0.14 0.158 0.022

Table C.1: The parameters of the logarithmic volatility. The values used for the generation of the data are shown under "True Value". The
values under "Posterior mean" and "Posterior s.d." are respectively the average and the standard deviation of posteriors of 40 simulations

using 5.000 samples (after 1.000 discarded burn-in samples), generated by the MSVJ model.
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Figure C.2: The standard deviations and the actual errors of the values of the factor loading matrix. The standard deviations and the
errors are the result of 40 simulations using 5.000 samples (after 1.000 discarded burn-in samples), generated by the MSVJ model.

Figure C.3: Histogram of the posterior values for one of the factor loadings and the parameters for the first factor. For this histogram, 40
data sets using 5.000 samples are used. The data sets are generated by the AMSV model.
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Figure C.4: Path of the sampling of the parameters in Figure C.3 of an arbitrary run using the MSVJ model.
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D
CODE

The code, written in Matlab R2019b is available upon request.

52


	Abstract
	Preface
	Thesis
	Introduction
	Background
	Asymmetry in data
	Literature review and model selection
	Model and estimation
	Model comparison
	Simulation results
	Application to real equity returns
	Conclusion and discussion

	Bibliography
	Second derivative of logarithmic likelihood of factor loading matrix
	Results AMSV making use of the EKF
	Results factor loadings and logarithmic volatility MSVJ
	Code

