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ABSTRACT

Over the past years, numerous missions for spacecraft with low-thrust propulsion have been planned to in-
clude large orbital plane changes. In order efficiently generate and evaluate orbits for such missions, use can
be made of the spherical shaping method proposed by Novak [1]. When inclinations larger than 15 degrees
are present however, the error in the AV found by the method increases significantly. At an inclination of 50
degrees, the spherical shaping method is no longer capable of modelling the trajectory [2]. It was found in
the literature review that the most promising method of increasing the shaping method’s applicability at large
inclination, is by developing an improved elevation shaping function [3].

In order to obtain an improved elevation shaping function, a number of test cases are defined first. These test
cases include both unperturbed and perturbed orbits, the latter in turn being comprised of both cases with a
discontinuous and a continuous thrust. Unperturbed orbits at inclinations of 0 and 89.99 degrees, as well as
orbits of which the semi-major axis changed or the inclination varied by more than 89 degrees are among oth-
ers included. As an additional problem encountered in literature is the inability to accurately model changes
in the right ascension of the ascending node (RAAN) when the arrival and departure orbits are inclined, two
additional cases that model this variation are generated as well.

As a first step in the development process itself, the ability of three potential methods to obtain a better ele-
vation shaping function is evaluated with the use of the unperturbed cases. These methods include the usage
of spherical triangles, Fourier series and an alternative function that was found during the development. In
this first step, the usage of spherical triangles is discarded as no shaping function with coefficients is obtained
and complications are expected when they are used to model non-circular orbits.

It is found that, to be able to accurately describe perturbed orbits, the coefficients of the Fourier series and
the alternative function should change as a function of the azimuthal angle. To find these functions, each
perturbed orbit is split into numerous unperturbed orbits and the MATLAB curve fitting application is used
to fit both the Fourier and the alternative function to each of these orbits. By then observing the variation of
each coefficient as a function of the azimuthal angle for each case, potential functions that can describe the
variations of the coefficients are found. In this step, the Fourier series is discarded due to the larger number
of required coefficients and the significantly worse fit at high inclinations.

Combinations of the aforementioned candidate functions for each coefficient of the alternative function are
compared using the root-mean-square error (RMSE) found by the MATLAB curve fitting application when
the combinations are used to approximate the previously defined test cases. With this methodology, a new
elevation shaping function is found.

The new elevation shaping function can be implemented into the spherical shaping method by keeping the
original methodology but replacing the current elevation shaping function and its derivatives. As less bound-
ary conditions are available for the elevation shaping function than the number of coefficients that need to
be solved, values for the additional coefficients are obtained through optimisation. This optimisation is done
by first performing a global search with the Monte-Carlo method, after which a predefined number of the
best solutions found are further optimised with the local Nelder-Mead method.

The validation of the new elevation shaping function is done with a number of internal and external valida-
tion cases. In order to be able to compare the elevation shaping functions, test cases previously defined by
Roegiers are used [2]. The internal test cases include both planar and non-planar transfers, as well as cases in
which the RAAN changes. The external validation includes an Earth - Mars and an Earth - Neptune transfer.
From these cases, it is found that the new elevation shaping function is much more capable of modelling
transfers with high inclinations. However, a misfit at the level of 7.5 degrees is still observed when a Keplerian
orbit with an inclination of 50 degrees is modelled. Similar conclusions are also drawn when a transfer with a



xii 0. ABSTRACT

change in RAAN is simulated.

The RMSE observed during the validation is significantly larger than the RMSE predicted during the develop-
ment. This difference lies in the fact that the MATLAB curve fitting toolbox used during the development does
not strictly enforce the boundary conditions, whereas the spherical shaping method does. For this reason, it
isinvestigated whether using more flexible position and velocity boundary conditions improves the solutions.

By modelling Keplerian orbits at an inclination of 50 degrees using varying amounts of flexibility for the
boundary conditions, it is concluded that the AV and the RMSE can be reduced from 31.6 km/s and 7.5 de-
grees to 21.8 km/s and 2.9 degrees. It is also noted that the new elevation shaping function is much more
capable of modelling half a revolution than a full revolution. Depending on the initial true anomaly, a AV
of 0.7 km/s and a misfit of 0.1 degrees can be found. However, the AV does not always decrease when more
flexible boundary conditions are used and half a Keplerian orbit is approximated. As loosening the bound-
ary conditions should result in a AV that is lower than or equal to the AV found when more strict boundary
conditions are used, it is found that this is caused by the optimisation procedure having difficulty finding
the global minimum. By increasing the number of Monte-Carlo samples and the number of points further
optimised with the Nelder-Mead algorithm, the AV found can be decreased further. However, as this causes
the computation time to become impractical, this is not feasible considered for further usage.

After the validation, the spherical shaping method with the new elevation shaping function is applied to the
design of two missions. The first of these includes a transfer from Earth to the dwarf planet Makemake and
the second mission includes a transfer from Earth to the comet 2003 EH1. These two targets are chosen due
to their high inclinations and because neither of these celestial bodies has been visited yet.

For each of these missions, a grid search is first used together with a small number of Monte-Carlo and Nelder-
Mead samples to find the optimal departure time, time-of-flight and the number of revolutions. Once the
optimal point in the grid is found, the departure date, number of revolutions and time-of-flight of this point
are used to further optimise the trajectory with a larger number of Monte-Carlo and Nelder-Mead samples.
Using this methodology, it is found that the spherical shaping method is capable of producing smooth trajec-
tories to both targets, even though the inclination of 2003 EH1 is approximately 70 degrees. The required AVs
of the trajectories are 16.5 km/s and 23.0 km/s respectively, whereas using the old elevation shaping function
results in trajectories with AVs of 24.0 km/s and 50.8 km/s. Highly promising is that in the optimal Earth -
2003 EH1 transfer found, a large portion of the inclination change is performed at a large distance from the
Sun; this is generally considered as the most efficient way of changing the inclination.

The aforementioned concept of using flexible boundary conditions is also applied to the Makemake and 2003
EH1 transfers found by the grid search. However, this does not improve the AV beyond the smaller amount
needed to meet the change in velocity boundary conditions. Nonetheless, it is seen that the new elevation
shaping function is capable of producing transfers to these targets when flexible boundary conditions are
used, as the trajectories found are all also smooth, highly similar and as expected.

Finally, the reliability of the solutions is evaluated by performing the optimisation of the best point found by
the grid search five additional times. The same departure time, time-of-flight and the number of revolutions
is used for each of these runs, but different seeds are set for the pseudorandom number generator used by
the Monte-Carlo method. It is observed that the maximum difference in AV is approximately 4 m/s, that the
maximum difference in the out-of-plane control accelerations is less than 8-10° m/s? and that the trajec-
tories are also highly similar. Furthermore, it is seen that one of these additional runs finds a AV lower than
the one initially obtained and that the values of the shaping function’s coefficients are significantly different
for each run. While the small differences in AV, control accelerations and trajectories indicate that the solu-
tions are reliable, the lower AV found in the additional runs and the different values of the coefficient support
the aforementioned conclusion that the optimisation procedure has difficulty finding the global minimum.
Therefore, in order to obtain a full analysis of the solution reliability, the grid search itself should also be run
multiple times and the results should be compared. As this could not be done during this thesis, it is highly
recommended that future research evaluates and potentially further improves the optimisation procedure.
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INTRODUCTION

Numerous missions featuring large orbital plane changes and spacecraft with low-thrust propulsive means
have been planned over the past years. During the preliminary assessment of such mission concepts how-
ever, parameters such as the launch and arrival windows can have very large search ranges. As this results in
the evaluation of a large number of feasible trajectories, an efficient method that is capable of generating and
evaluating such a large number of potential trajectories is needed [1].

One way to efficiently generate and evaluate trajectories for such missions, is by analytically modelling the
trajectories with the use of so-called shape-based methods. One of these shape-based methods is the spher-
ical shaping method proposed by Novak [1]. This method is capable of finding rendezvous trajectories that
meet the initial and final position and velocity constraints, as well as the required time-of-flight. However,
the error in the AV found by this method increases significantly when trajectories have a large constant incli-
nation or when they include a plane change larger than 15 degrees. At an inclination of 50 degrees, the spher-
ical shaping method breaks down [2]. It can thus be concluded that when such inclinations are involved,
the current spherical shaping method lacks an accurate description of the orbit’s out-of-plane component.
Nonetheless, it was found in the literature review that the spherical shaping method can be improved in order
to include a more accurate formulation for the out-of-plane motion [3].

The purpose of this MSc thesis is therefore to do research on the development of a more accurate eleva-
tion shaping function and to incorporate this function into the spherical shaping method. To this end, three
methods of finding this elevation shaping function are investigated, the most promising of these methods is
further developed and the resulting function is incorporated into the spherical shaping method. In short, this
thesis can be described using the following research question:

Can an alternative elevation shaping function be developed for the spherical shaping method to improve the
shaping method’s applicability and accuracy at high orbital inclinations?

This thesis report shall first elaborate upon the problem statement and a number of background concepts
related to orbital dynamics and low-thrust propulsion in Chapter 2. Afterwards, the development of the ele-
vation shaping function is discussed in Chapter 3. The implementation of the alternative elevation shaping
function into the spherical shaping method is then discussed in Chapter 4. This implementation is internally
and externally validated in Chapter 5 and the resulting spherical shaping method is applied to missions to
the dwarf planet Makemake and the comet 2003 EH1 in Chapter 6. Lastly, the numerous conclusions drawn
throughout the development process of this more accurate elevation shaping function for the spherical shap-
ing method are summarised and a number of recommendations for future research are given in Chapter 7.






BACKGROUND

Before the new elevation shaping function can be developed and applied, a number of background topics
need to be discussed. In this chapter, the problem statement is first discussed in Section 2.1, after which
various concepts related to orbital dynamics are elaborated upon in Section 2.2. Lastly, the concept of low-
thrust propulsion will be addressed in Section 2.3.

2.1. PROBLEM STATEMENT

As mentioned in the introduction, the current spherical shaping method is incapable of accurately modelling
(transfer) orbits with large inclinations. Therefore, the goal of this thesis is to improve the existing spherical
shaping method such that large inclinations do not impose problems.

As the spherical shaping method is not the only shape-based method with this problem, various candidate
shape-based methods were evaluated in the literature review to determine in which method a more accu-
rate description of the out-of-plane motion would be implemented. It was found that a large amount of
research has already been done on Novak’s spherical shaping method within Delft University of Technology
(TU Delft) and that the software written by Roegiers for part of this research is readily available. Furthermore,
it was found that Roegiers also proposed a solution to the inability of the spherical shaping method to model
highly inclined orbits in her MSc thesis, but that this method only worked under certain conditions [2]. As
the spherical shaping method also finds AVs that are either lower than or comparable to those found by other
methods, it was decided that a more accurate description of the out-of-plane motion would be developed for
the spherical shaping method. It was found that by reformulating the part of the shaping method that models
the change in elevation angle, this being the elevation shaping function, the accuracy of the spherical shaping
method can be improved. As such, this thesis will aim to develop an improved spherical shaping method by
developing and implementing an alternative elevation shaping function.

2.2. ORBITAL DYNAMICS

In order to find a more accurate elevation shaping function, one may start by looking at a number of concepts
in the field of orbital dynamics. This section will first discuss the basics such as Newton’s laws of motion and
Newton'’s law of universal gravitation in Sections 2.2.1 and 2.2.2, after which it will elaborate on the concept of
orbital elements and Kepler orbits in Sections 2.2.3 and 2.2.4 respectively. Lastly, the various interplanetary
perturbations are discussed in Section 2.2.5. The information presented here has been retrieved from the
book Fundamentals of Astrodynamics by Wakker, unless specified otherwise [4].
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2.2.1. NEWTON’S LAWS
Of course, one of the main fundamentals of today’s mathematical methods is Newton's Philosophiae Naturalis
Principia Mathematica of 1687. In these three books, the following laws of motion were formulated:

First law:
Every particle continues in its state of rest or uniform motion in a straight line relative to an inertial
reference frame, unless it is compelled to change that state by forces acting upon it.

Second law:
The time rate of change of linear momentum of a particle relative to an inertial reference frame is pro-
portional to the resultant of all forces acting upon that particle and is collinear with and in the direction
of the resultant force.

Third law:
If two particles exert forces on each other, these forces are equal in magnitude and opposite in direction.

As the linear momentum of a particle can be written as mv, it can be noted that the second law can also be
written as shown in Equation 2.1.

F—i(mv) 2.1)
T dt ’

in which m is the mass, v is the particle’s velocity vector and F is the resultant force vector.

2.2.2. NEWTON’S LAW OF GRAVITATION
A fourth law that Newton defined in his Principia, is his law of universal gravitation. The definition of this is
as follows:

Law of universal gravitation:
Two particles attract each other with a force directly proportional to their masses and inversely propor-
tional to the square of the distance between them.

Mathematically, this law can be written as shown in Equation 2.2.

mym
FlZ = G 2
Iry2]

Iz (2.2)

in which G is the gravitational constant, F; is the force that object 1 experiences due to object 2, m; and my
are the masses of objects 1 and 2 respectively, |ry2| is the distance between the two objects and £, is the unit
vector pointing from object 1 to object 2.

When the number of particles is increased to n, this formulation can be rewritten to Equation 2.3 to obtain
an expression for the force on a body i in a many-body problem.

=" mim;

Fi=) G—iy; 2.3)
iz Il
j=1

Equations 2.1 and 2.3 lay the foundation of present-day dynamics and are used during the derivation of the
more accurate elevation shaping function.

2.2.3. ORBITAL ELEMENTS

In order to describe an orbit and the position of a body in its orbit, six parameters can be used. These param-
eters, also known as orbital elements, are the semi-major axis a, eccentricity e, inclination i, right ascension
of the ascending node (2, argument of periapsis w and the true anomaly 8. A graphical representation of the
inclination, right ascension of the ascending node, true anomaly and argument of periapsis can be seen in
Figure 2.1. The semi-major axis and eccentricity define the size and shape of the orbit respectively.
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Figure 2.1: A graphical representation of among others the inclination, right ascension of the ascending node, true anomaly and argu-
ment of periapsis [4].

The six orbital elements can be converted into the Cartesian or spherical coordinate systems with the use of
a set of unambiguous transformations that can be found in Appendix A. The definitions of these coordinate
systems can be seen in Figure 2.2, where r is the radius vector, 0 is the azimuthal angle and ¢ is the elevation
angle [5]. While primarily the spherical coordinate system will be used in this thesis, the Cartesian coordinate
system will be utilised as well. The various reference frames in which these coordinates can be used are
elaborated upon in Appendix B.

L]
| (x3yﬂz)
I
—
| 7 !
X _— = 7
X
(a) Cartesian coordinate system. (b) Spherical coordinate system.

Figure 2.2: The two coordinate systems used in this thesis [5].

2.2.4. KEPLER ORBITS

When only the gravitational attraction discussed in Section 2.2.2 is considered and it is assumed that the mass
of the central body is much larger than that of the satellite, so-called Kepler orbits are the solutions found to
the two-body problem. These Kepler orbits can be parametrised by the orbital elements discussed previously
and comprise all conic sections. The four conic sections and their orbit shapes can be seen in Figure 2.3.

Hyperbola —,

“—Parahnla

—Ellipse

Figure 2.3: The four conic sections that form the Kepler orbits and their orbit shapes [4].
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Further properties of the elliptical, parabolic and hyperbolic orbits can be found in Appendix C. As it is as-
sumed that the reader is familiar with Kepler orbits, no further details will be discussed here. For more infor-
mation, the reader is referred to Fundamentals of Astrodynamics by Wakker [4].

2.2.5. PERTURBATIONS
In the interplanetary medium, a number of perturbations are present. These perturbations include among
others the solar radiation pressure and third-body perturbations.

The effective acceleration due to the solar radiation pressure can be found with Equation 2.4. In this equation,
p is the reflectivity, W is the solar constant, c is the speed of light, r is the distance to the Sun in astronomical
units, A is the cross-sectional area and m is the mass of the spacecraft.

w A
Arad = (1 +p)—2— (2.4)
c-r-m

To obtain the accelerations on the spacecraft caused by third-body perturbations, Equation 2.2 can be used.

As an example, one can consider a solar sail with a mass of 300 kg, a cross-sectional area of 900 m?, a reflectiv-
ity of 0.2 and an additional low-thrust engine providing 1 N of thrust. By using the aforementioned equations,
it can be found that the effective acceleration due to the celestial bodies, solar radiation and the spacecraft’s
thrust varies over the distance to the Sun as shown in Figure 2.4 [6].

10% ‘
—Sun

—Solar radiation
2 Mercury
10 —Venus
—Earth
Mars
0 — Jupiter
10 Saturn

—Uranus
Neptune
1072 — Thrust

10log (Effective accelation [m/sz])

I I I I I I I I I
0.5 1 15 2 25 3 35 4 45 5
Distance to Sun [AU]

Figure 2.4: The perturbing accelerations in m/ s of a solar sail with a mass of 300 kg, a cross-sectional area of 900 m?,a reflectivity factor
of 0.2 and a low-thrust engine providing 1 N of thrust [6].

From this figure, it can be concluded that the perturbing accelerations are significantly smaller than the ac-
celerations due to the thruster and the Sun’s gravitational force. As such, the orbit planning problem can be
considered as a two-body problem in which only thrust acts as an additional force on the spacecraft.

2.2.6. SYNODIC PERIOD

When a trajectory is generated from a certain celestial body to another, the concept of a synodic period can
prove to be useful. The synodic period is defined as the time it takes for two bodies that are orbiting a third
body to return to their original relative positions. It can be calculated using Equation 2.5.

1 1 1

= (2.5)
Tsyn T T2

where Ty, is the synodic period, T; is the orbital period of the departure body and 75 is the orbital period of
the target body.
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2.3. Low-THRUST PROPULSION

As mentioned in the introduction of this report, the main focus of this thesis will include the orbit design of
low-thrust spacecraft. This section will therefore discuss the principle and fundamental equations of low-
thrust propulsion and orbits, as well as provide an introduction to shape-based methods.

2.3.1. PRINCIPLE

The basis of spacecraft propulsion lies in the preservation of momentum. Generally, matter is expelled from
the engine at a high velocity and the rocket or satellite is accelerated in the opposite direction as a conse-
quence.

From Tsiolkovsky’s rocket equation, it can be found that the exhaust velocity of a spacecraft’s engine should
be as high as possible to decrease the amount of propellant needed to achieve a certain amount of AV. When
considering chemical rocket propulsion systems, these exhaust velocities can be as high as 4.6 km/s with
the use of liquid hydrogen and liquid oxygen. However, when one would compare this to a low-thrust ion
thruster, exhaust velocities of 31.5 km/s can be found, resulting in a large performance increase of the space-
craft’s propulsion system [7]. For reference, Tsiolkovsky’s rocket equation has been shown here as Equation
2.6. In this equation, V, is the exhaust velocity, my is the initial mass and m, is the empty mass.

AV = Veln(@) 2.6)

me

2.3.2. EQUATIONS OF MOTION

The motion of the spacecraft is considered using the aforementioned assumptions that the mass of the central
body is much larger than the spacecraft’s and that this motion can be approximated by a two-body problem
where only the thrust acts as an additional force upon the spacecraft. With these assumptions, the spacecraft’s
equations of motion are as shown in Equation 2.7.

LM T
f+3r=—-=u (2.7)
r m
where r is the position vector, u is the gravitational parameter of the central body, T is the thrust vector, m is
the mass of the spacecraft and u is the control acceleration exerted upon the spacecraft. If a certain thrust
profile u(t) is known, Equation 2.7 can be integrated numerically to find the corresponding trajectory of the
spacecraft. As mentioned previously, the solutions found to this equation when u is set to zero are the Kepler
orbits discussed in Section 2.2.4.

2.3.3. SHAPE-BASED METHODS

An alternative to numerically integrating the equations of motion to obtain a spacecraft’s trajectory, is the use
of shape-based methods. By assuming a certain shape for the trajectory and deriving the control accelera-
tions needed to follow this orbit from this shape, the computationally expensive integration can be avoided.
This shape can be changed such that it matches the boundary conditions by solving the coefficients present
in the function that describes the shape. However, as only a limited number of coefficients are present in
these functions, there is also a limit on the number of boundary conditions that can be met.

In the past, a number of shape-based methods have been developed. An overview of various shape-based
methods, their capabilities and their limitations can be seen in Table 2.1 [5].

Table 2.1: A comparison between the various shape-based methods and their capabilities. In this table, "BC" is an abbreviation for
"boundary condition".

Shape-based method Position BC  Velocity BC TOF BC 3D Thrustlimit nyey  Ref.
Spherical Yes Yes Yes Yes No Multi  [1]
Exposin Yes No Yes Approx. No Multi  [8]
Inverse Polynomial Yes Yes Yes Yes No Few 191
Improved Inverse Polynomial Yes Yes Yes Yes Yes Multi  [10]
Pseudo-equinoctial Yes Yes Yes Yes Yes Multi  [11]

Hodographic Yes Yes Yes Yes No Multi  [12]
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In this table, it can among others be seen that all shape-based methods shown, with the exception of the
exposin method, are able to match the position, velocity and time-of-flight boundary conditions. It can also
be seen that the thrust acceleration can only be limited when the either the improved inverse polynomial or
pseudo-equinoctial shaping method is used and that the inverse polynomial shaping method is not suitable
for a large number of revolutions. It should furthermore be mentioned that, while all shape-based methods
shown here are capable of generating non-planar trajectories and are thus three-dimensional, no literature
was found in which one of the aforementioned methods was shown to be accurate when large orbital incli-
nation were present. For example, only a rough approximation of the out-of-plane motion can be used in the
exposin method.

As mentioned in Section 2.1, a large amount of research has already been done on the spherical shaping
method within TU Delft and the software written by Roegiers for a portion of this research is readily available.
As a partial solution to the aforementioned inaccuracy was furthermore proposed but found to only work
in certain cases, it was decided in the literature review that a more accurate description of the out-of-plane
motion will be implemented in the spherical shaping method [3].



DEVELOPMENT

Now that the problem has been defined and the background knowledge has been presented, the development
of the new elevation shaping function can be discussed. This chapter shall first in Section 3.1 elaborate upon
the test cases that are used during this development process, after which the development process itself is
discussed in Sections 3.2 and 3.3.

3.1. TEST CASES

In order test the developed elevation shaping function, a number of test cases should be defined. This section
describes the three type of orbits that the aforementioned elevation shaping function should be capable of
reproducing.

3.1.1. UNPERTURBED ORBITS

Naturally, the developed shaping function should be capable of reproducing an unperturbed orbit as a min-
imum. In order to ensure that the function is capable of reproducing a large variety of mission scenarios,
it will be tested whether it can reproduce a number of extreme cases. The first of these two cases, being a
near-circular orbit with a semi-major axis of 6778.1 kilometres and an inclination of 0 degrees, can be seen in
Figure 3.1. As the elevation shaping function should describe the variation of the elevation angle as a function
of the azimuthal angle, this variation has been plotted in the right-hand graph shown in this figure.
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Figure 3.1: Left: simulation of an unperturbed orbit with an inclination of 0 degrees. Right: the variation of the elevation angle as a
function of the azimuthal angle.

It should be mentioned here that in each of the test cases, multiple revolutions are used in order to ensure
that the shaping function is unaffected by the number of revolutions. Due to certain limitations within the
program used to generate the test cases, a small eccentricity of 0.01 is furthermore used instead of a circular
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orbit. To determine the trajectory, a Runge-Kutta 4 (RK4) integrator was used. By setting the initial orbital
elements and integrating this position over time using a time-step of 2 seconds, the spacecraft’s position can
be determined over time and the elevation angle as a function of the azimuthal angle can be found. This
time-step and integrator was chosen in order to ensure a highly accurate propagation of the trajectory. For
example, the error in the semi-major axis at the end of the integration is approximately 1-10~% meters in the
test case shown in Figure 3.1. While this accuracy seems much higher than required, the small value ensures
that no significant errors are introduced in the development of the shaping function by the test cases.

The second case is a near-circular orbit with an inclination of 89.99 degrees and an eccentricity of 0.01. The
variation of the elevation angle that the shaping function should be capable of reproducing can be found in
Figure 3.2.
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Figure 3.2: Left: simulation of an unperturbed orbit with an inclination of 89.99 degrees. Right: the variation of the elevation angle as a
function of the azimuthal angle.

In this figure, it can be observed that the elevation angle as a function of the azimuthal angle closely resembles
a set of rectangular functions. This can be seen more clearly in Figure 3.3, where a close-up of Figure 3.2 is
shown.
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Figure 3.3: Close-up of the change in elevation angle as a function of the azimuthal angle shown in Figure 3.2.

3.1.2. DISCONTINUOUS THRUST
Aside from an unperturbed orbit, the developed elevation shaping function should also be capable of repro-
ducing an orbit of which the orbital elements change due to a discontinuous thrust force.
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Firstly, it can be noted that a change in the semi-major axis of the orbit does not influence the elevation an-
gle. This can be seen in Figure 3.4, where the semi-major axis of an orbit with an inclination of 45 degrees is
changed over time. This change in semi-major axis is performed by applying a transverse acceleration of 1
m/s? on the spacecraft during the time that its true anomaly is within 5 degrees of the perigee. The additional
acceleration has been highlighted in this and the subsequent figures with a black line in the left-hand figure.
For this integration, the aforementioned RK4 integrator and a time-step of 2 seconds were used again to in-
tegrate the spacecraft’s position and velocity over 20 revolutions.

9
%107 60
3 —_—
o
2 g3
<
1 o
2 o
= ©
Eo0 c
N S
-1 ©
>
.30
2 [}
3 <
‘ 2 -60
4 0 <107
%107 2 T2 %
X [m] 0 Y [m]

0 1000 2000 3000 4000 5000 6000 7000
Azimuthal angle 6 [deg]

Figure 3.4: Left: the orbit found when an inclination of 45 degrees is used and a transverse acceleration is applied on the spacecraft
around the perigee. Right: the change in elevation angle as a function of the azimuthal angle.

As the shaping function uses the azimuthal angle as a variable instead of time, the graph shown on the right
in Figure 3.4 does not change as the semi-major axis and the eccentricity increase. This means that the ec-
centricity and semi-major axis corresponding to a certain variation of the elevation angle are irrelevant to the
elevation shaping function. Instead, these two Keplerian elements are described by the radial shaping func-
tion. Therefore, even though this thesis focuses on interplanetary trajectories, the orbits around Earth shown
in the section can be used in the process of testing the shaping function.

In order to generate the fourth test case, an acceleration of 1 m/s? in the out-of-plane direction was exerted
on the spacecraft when it was within 5 degrees of the ascending and descending nodes and the thrust direc-
tion was reversed when the z-coordinate of the satellite was negative. By doing so until the inclination has
changed from 0 to 45 degrees, the variation in the elevation angle shown in Figure 3.5 can be observed.
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Figure 3.5: Left: the spacecraft’s orbit over time when the inclination is changed from 0 to 45 degrees by applying an acceleration of 1
m/s? around the ascending and descending nodes. Right: the change in elevation angle as a function of the azimuthal angle.
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When the final inclination is required to reach the extreme case of 89.99 degrees, Figure 3.6 can be obtained.
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Figure 3.6: Left: the spacecraft’s orbit over time in the Cartesian reference frame. Right: the variation of the elevation angle when the
inclination is changed from 0 to 89.99 degrees and an acceleration of 1 m/s is applied around the ascending and descending nodes.

By looking closely at the change in the elevation angle, one can observe that the shape of the function’s peaks
and valleys changes as a function of the azimuthal angle. It can be seen in Figure 3.7 that, as the inclination of
the spacecraft approaches 90 degrees, the function describing the elevation angle becomes more rectangular.
For the developed shaping function to be able to reproduce this orbit, it should be capable of displaying this
change as well.
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Figure 3.7: Close-up of the change in elevation angle as a function of the azimuthal angle when the inclination is changed from 0 to 89.99
degrees.

So far, only trajectories with a constant or increasing inclination have been tested. However, the shaping
function should naturally also be capable of reproducing trajectories with a decreasing inclination. For this
reason, a test case with a decreasing inclination is included. The test case consists of a transfer from an orbit
with an inclination of 89.98 degrees to an orbit with an inclination of 0.1 degrees. This orbit was generated by
applying an out-of-plane acceleration of 1 m/s® within a true anomaly range of 5 degrees to both sides of the
ascending and descending nodes. The orbit itself can be seen in Figure 3.8.



3.1. TEST CASES 13

90

60
x10°
6 S 30
k)
4 =
Qo
2- = o
= S
£ 0 c
N 2
2- g
2 30
4 - p u
-6- s
_5 0 %10° -60 |
. 0 p
x10 5
Y [m] X [m]

) 0 2000 4000 6000 8000 10000 12000 14000
Azimuthal angle 0 [deg]

Figure 3.8: Left: the spacecraft’s orbit over time when the inclination is decreased from 89.98 to 0.1 degrees by applying an out-of-plane
acceleration of 1 m/s? around the ascending and descending nodes. Right: the variation of the elevation angle.

3.1.3. CONTINUOUS THRUST
The third type of orbit that the shaping function should be able to reproduce, is an orbit that changes due to
a continuous thrust force. An extreme example of such an orbit can be seen in Figure 3.9.
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Figure 3.9: Left: the spacecraft’s orbit over time in the Cartesian reference frame. Right: the elevation angle as a function of the azimuthal
angle when a continuous thrust is applied in both the transverse and out-of-plane direction, increasing the inclination from 0 to 89.99
degrees and varying the semi-major axis.

In order to obtain this trajectory, a transverse acceleration of 5- 1072 m/s? and an out-of-plane acceleration
of 5-1072 m/s? were applied, where the direction of the out-of-plane acceleration was reversed when the
z-coordinate was negative and its value was set to 0 m/s®> when the final inclination of 89.99 degrees was
reached. Interesting to note is that, whereas Figures 3.5 and 3.6 seem to have a linear increase of the maxi-
mum elevation angle, an exponential increase can be seen in Figure 3.9.

The test cases shown so far have all included a large number of revolutions and had an initial azimuthal angle
of 0 degrees. However, the developed shaping function should also be capable of reproducing solutions to
problems that do not have an initial azimuthal angle of 0 degrees and have a small number of revolutions.
For this reason, two solutions found by Roegiers will be used as test cases as well. The first case is a transfer
to Neptune within a single revolution. The change of the elevation angle as a function of the azimuthal angle
can be seen in Figure 3.10 [2].
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Figure 3.10: Left: the transfer to Neptune in the Cartesian reference frame as found by Roegiers. Right: the elevation angle of the transfer
orbit as a function of the azimuthal angle [2].

Furthermore, a 10-revolution transfer to Neptune that was also found by Roegiers will be used as a test case as
well. While, as can be seen in Figure 3.11, the rate of change of the elevation angle is less than that of the cases
presented earlier, the developed elevation shaping function should not lose functionality over the currently
existing function. As such, it is important that these two test cases are also evaluated.
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Figure 3.11: Left: the transfer to Neptune that uses 10 revolutions and that was found by Roegiers. Right: the elevation angle as a function
of the azimuthal angle [2].

Aside from large inclination changes, the shaping function currently used in the spherical shaping method is
unable to accurately represent changes in the RAAN. Therefore, once a potential elevation shaping function
capable of describing the aforementioned test cases has been found, it will be investigated whether the func-
tion can be further altered such it can describe orbits of which the RAAN changes.

In order to evaluate the ability of the shaping function to model these changes, two test cases are used. The
first of these test cases consists of an orbit with an inclination of 45 degrees of which the RAAN changes
from 58.3 to 346.8 degrees. This is done by using a constant out-of-plane acceleration of 0.1 m/s?>. When the
z-coordinate of the satellite is negative, the thrust direction is reversed. The resulting orbit can be seen in
Figure 3.12.
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Figure 3.12: Left: the spacecraft’s orbit over time when the RAAN is changed from 58.3 to 346.8 degrees through the application of a
constant out-of-plane acceleration of 0.1 m/s2. Right: the elevation angle as a function of the azimuthal angle.

The last test case used has the same initial Keplerian elements as the previous case. However, in this case,
the acceleration is 1 m/s? and its direction is not reversed when the z-coordinate of the satellite becomes
negative. This causes a change in all Keplerian elements. The resulting orbit can be seen in Figure 3.13.
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Figure 3.13: Left: the spacecraft’s orbit over time when a constant out-of-plane acceleration of 1 m/ s2is applied of which the direction is
not reversed when the z-coordinate of the satellite is negative. Right: the elevation angle as a function of the azimuthal angle.

3.2. UNPERTURBED ORBITS

As a first step in the development process, a number of methods were tested in an attempt to find a shaping
function capable of describing an unperturbed orbit. This section shall elaborate on the two methods that
were found during the literature study, being the use of spherical triangles and the Fourier series. Aside from
these two methods, an additional description that was found during the MSc thesis shall be discussed and
evaluated as well.

3.2.1. SPHERICAL TRIANGLES

In the literature review, several relations between the orbital elements that were found by Vinti et al. using
spherical triangles were discussed. These relations can be seen in Equation 3.1 [13]. The verification of these
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equations can be found in Appendix D.

sin(¢)=sin@@)sin(w+0)
cos(¢) = cos(a—Q)cos(w+0)+sin(a—Q) sin(w+06) cos (i) G
cos(w+0) = cos(¢p)cos(a—Q) )

cos(¢)sin(a—Q) =sin(w+0)cos (i)

where the definition of the variables can be seen in Figure 2.1.

Two approaches to finding an elevation shaping function using spherical triangles have been tested, both of
which use the relations shown above. The following sections shall elaborate on these approaches and their
corresponding results.

FIRST APPROACH

This approach uses the first relation shown in Equation 3.1 in a loop and includes splitting up the orbit into
a pre-defined number of sections, each forming a spherical triangle. The definition of the angles is shown in
Figure 2.1.

By assuming that the initial elevation angle ¢;, the true anomaly change throughout the orbit 0,,; and the
initial azimuthal angle a; are known, the projected initial coordinates of the object on the celestial sphere
can be found using Equation 3.2. This projection onto the celestial sphere is required for non-circular orbits
as spherical triangles can only be defined on spherical surfaces.

Xproj,j = Tee1€0s (@) cos(¢;)
Yproj,j = rceISin(aj) COS((,DJ') (3.2)
Zproj,j = Tee1Sin(¢;)

where r,; is the constant radius of the celestial sphere. For convenience, this can be set to 1.

Once the current position has been projected onto the celestial sphere, the first relation shown in Equation

3.1 can be used to find the elevation angle ¢ ;. of the next point in the orbit’s projection on the celestial
sphere [3]. The rewritten form of this relation can be seen in Equation 3.3.

$ja1=asin(sin(i)sin(w+0;)) (3.3)
in which i is the inclination, w is the argument of periapsis and 0,,, is the true anomaly.

Furthermore, by using the elevation angle ¢ and true anomaly 6 of the next point, as well as the argument of
periapsis w of the orbit, the azimuthal angle of the next point can be found as well with Equation 3.4.

cos(w+6;)
cos(Ppj)

In this equation H is a auxiliary function that is used for the selection of the proper quadrant for 4. Its
valueis1if0= 0; <mand-1if 7 = 0; <27. If 6; is equal to or larger than 27, the remainder after division by
27 should be used instead to determine the value of H. If the value of H is -1, & is added to the result of the
inverse cosine. Otherwise, the unmodified result is used.

@ji = acosZ( ,H(Gj)) 3.4)

By substituting the value obtained from Equation 3.4 and the elevation angle ¢ found from Equation 3.3 into
Equation 3.2, the aforementioned loop can be closed and the next point along the orbit can be evaluated.

SECOND APPROACH
This approach uses the same assumptions as the first approach and starts with the calculation of the space-
craft’s elevation angle throughout the orbit from the inclination, argument of periapsis and true anomaly
using Equation 3.5.

¢j=asin(sin(i)sin(w+0;)) (3.5)
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Using the elevation angle together with the third relation shown in Equation 3.1, the longitude can now be
found [3]. The rewritten form of the third relation can be seen in Equation 3.6 .

cos(w+0;)

cos (@) ,H(ej)) +Q (3.6)

aj= acosz(

Lastly, the spherical coordinates can be converted into the Cartesian frame with Equation 3.7.

X = reercos (@) cos (o)
Y = Teersin(a)cos(¢) 3.7

Z=Teersin(¢)

RESULTS

The two approaches described previously were tested by simulating the two unperturbed cases discussed in
Section 3.1. The results obtained when 100 steps were used to cover a true anomaly change of 2r radians (i.e
one revolution) can be seen in Figure 3.14.
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Figure 3.14: Left: the results found when 100 steps were used to model an orbit at an inclination of 0 degrees. Right: the results found
when an orbit with an inclination of 89.99 degrees is modelled using 100 steps.

As can be seen in these plots, the two approaches described earlier are capable of representing orbits at
inclinations of 0 and 89.99 degrees. It is found for both cases that there is no error in the elevation angle when
the inclination is 0 degrees and that when the inclination is 89.99 degrees, the error in the elevation angle
at the point where it should theoretically be 89.99 degrees is approximately 1.81 degrees. The latter error
can be decreased to approximately 0.17 degrees when 1000 steps are used instead. It should also be noted
that coefficients are not yet present in these two approaches and that using these approaches to find a more
accurate elevation shaping function is therefore not straightforward. As the result of these two approaches is
furthermore a projection of the orbit onto the celestial sphere, an additional step would be needed in order
to obtain the trajectory itself. This deprojection can be done if the trajectory’s radius as a function of the
azimuthal angle is known. However, as this variation of the radius is described by the radial shaping function
and as this function is solved at the same time as the elevation shaping function, this need to deproject the
orbit could make further development more complicated as well.

3.2.2. FOURIER SERIES

As mentioned in the introduction of this chapter, the second option that was identified for further investiga-
tion during the literature study, was the use of a Fourier series. This section shall therefore elaborate on the
usage of the Fourier series to find an elevation shaping function capable of simulating an unperturbed orbit.

The Fourier series can be used in various manners in order to simulate the variation of the elevation angle as
a function of the azimuthal angle. These various manners include among others the use of different amounts
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of coefficients, or combining a shaping function based on the Fourier series with the original shaping func-
tion used by Novak [1].

In order to determine the optimal number of coefficients that the shaping function based on the Fourier se-
ries should have and whether or not it should be based on the original shaping function, a number of options
will be tested in various cases. These options include two shaping functions based on the original shaping
function, a shaping function based on the Fourier series and a shaping function based on a polynomial. As
the accuracy of each of these options will be evaluated for different amounts of coefficients, the last of these
can be used to compare the shaping functions that are based on the Fourier series with a function based on
a different mathematical concept. It should be noted that, as increasing the number of coefficients increases
the computation time, the number of coefficients should be minimised.

The first shaping function which shall be tested, consists of the original shaping function with additional
cos(0) and sin(0) terms. The function is shown below:

¢ =(ag+ a10)cos(0) + (az + az0)sin(@) + Y_ (ai+2 + ai+30)cos”™ (0) + (aj+a + ai+50)sin” (0)) (3.8)
i=2

In this equation, the "priority" of the coefficients is from left to right. Thus, if one for example only desires to
have six coefficients, only the coefficients ay to as are present and only the additional cos” (0) term is added.
By defining this priority, a comparison can be made with another shaping function even if it uses only six
coefficients. This priority was based upon the PhD thesis of Novak [1].

If the additional sine and cosine terms are multiplied instead of added, a second option for a shaping function
can be obtained. This option is shown in Equation 3.9.

n
¢ = (ap+ar10)cos(0) + (az + az0)sin(@) + Y_ ((ai+s + aira0)cos™ (@) sin" (6)) (3.9)
i=1

where the priority of the coefficients is the same as for Equation 3.8.

A third option that is considered, is the use of a standard Fourier series to describe the change of the out-of-
plane component as a function of the azimuthal angle. This shaping function is shown in Equation 3.10.

n
p=ap+)_ (aicos(n-w-0)+b;sin(n-w-0)) (3.10)

i=1
Lastly, the use of a polynomial to describe the out-of-plane component will be evaluated. As mentioned
previously, this is done in order to compare the shaping functions that are based on the Fourier series with a
function that is based on a different mathematical concept. The general form of the polynomials can be seen
in Equation 3.11. As n is the degree of the polynomial in this equation, it can be noted that a polynomial of

degree n uses n+ 1 coefficients.

¢= ;}(aiﬁ’) (3.11)

The four options described shall be tested using four cases, being a single revolution at an inclination of 45
degrees, three revolutions at an inclination of 45 degrees, a single revolution at an inclination of 89.99 degrees
and three revolutions at an inclination of 89.99 degrees. The four options shall approximate the change in
elevation angle as a function of the azimuthal angle and the optimal coefficient values are found with the
use of MATLAB’s curve fitting toolbox and its non-linear least-squares algorithm. As the correct value of the
elevation angle can be calculated using Equation 3.12, the root-mean-square error (RMSE) can be determined
and the various options can be compared [1]. The verification of this equation can be found in Appendix D.
sin@—-Q)sin(i)

sin(¢) = (3.12)
() Vsin? (0 —Q) + cos? (0 — Q) cos? (i)

in which i is the inclination, Q is the right ascension of the ascending node (RAAN), @ is the azimuthal angle
and the ¢ is the elevation angle. In the following four test cases, the RAAN is arbitrarily set to 0 degrees.
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A first test case that will be evaluated, is the simulation of a single revolution at an inclination of 45 degrees.
The RMSE as a function of the number of coefficients for the four options can be seen in Figure 3.15. In this
figure, the dotted line indicates a reasonable target RMSE of 3 degrees.
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Figure 3.15: The RMSE as a function of the number of coefficients for the four options when a single revolution at an inclination of 45
degrees is simulated. The results for the polynomial series with two and three coefficients have been omitted for clarity. The RMSE is
26.92 degrees in both cases.

Interesting to note here, is that with the use of a polynomial, at least eight coefficients are needed to obtain
an RMSE of less than 3 degrees, but that adding additional coefficients has barely any affect. This can also
be seen in Figure 3.16, where a comparison between the variations of the elevation angle as a function of the
azimuthal angle has been plotted.
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Figure 3.16: A comparison between the use of a sixth, seventh and eighth-degree polynomial.

It can be seen here that a sixth-degree polynomial does not accurately follow the variation of the elevation
angle and that seventh-degree polynomial is capable of doing this more accurately. The eighth-degree poly-
nomial overlaps the seventh-degree polynomial. This can be confirmed with the fact that the coefficient of
the 68 term is approximately —1- 1075, resulting in a shaping function highly similar to a seventh-degree
polynomial.

As the shaping function should also be capable of reproducing the change in elevation angle over multiple
revolutions, the second case that is used consists of three revolutions at an inclination of 45 degrees. The
variation of the RMSE over the number of coefficients for the four options can be seen in Figure 3.17.
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Figure 3.17: The variation of the RMSE over the number of coefficients for the four options when three revolutions at an inclination of 45
degrees are simulated.

In this figure, it can be seen that the polynomial performs considerably worse than all other options, while
the Fourier series requires the least amount of coefficients to obtain an RMSE less than 3 degrees and is un-
affected by the number of revolutions. A comparison between these two options when eight coefficients are
used can be seen in Figure 3.18.
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Figure 3.18: A comparison between the use of a Fourier series and a polynomial when eight coefficients are used in their description.

Important to note from this figure, is that the increase in the RMSE for the Fourier series is mostly caused
around the peaks and the valleys instead of the roots, as the difference with the reference orbit is larger here.
As the errors near the roots are small, it is expected that the Fourier series is also capable of representing
more than three revolutions due to the repeating pattern. The polynomial series on the other hand, is clearly
incapable of doing so.

In order to further compare the four options, the inclination is increased to the 89.99 degrees of the second
test case shown in Section 3.1. The variation of the RMSE for the four options when a single revolution is used
as reference case can be found in Figure 3.19.
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Figure 3.19: The RMSE as a function of the number of coefficients when one revolution at an inclination of 89.99 degrees is simulated.

It can be seen in this figure that even the use of 12 coefficients is no longer sufficient for any of the options.
This is caused by the sharp corners in the reference orbit’s elevation change (cf. Figure 3.2).

Lastly, the case of three revolutions at the aforementioned inclination of 89.99 degrees is tested. The RMSE as
a function of the number of coefficients can be seen in Figure 3.20.
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Figure 3.20: The RMSE as a function of the number of coefficients when three revolutions at an inclination of 89.99 degrees are simulated.

In this plot, a clear difference between the polynomial, the Fourier series and the shaping functions based
on the original shaping function can be seen. While none of the shaping functions is capable of accurately
describing the orbit, it can be seen in particular that the polynomial has a very large misfit.

To summarise the plots shown, a comparison between the four options can be found in Table 3.1. In this table,
the green background indicates the option with the lowest RMSE when the specified number of coefficients
is used for each case. From this summary, it can be concluded that the Fourier series consistently performs
well compared to the other shaping functions. This can be seen most clearly when three revolutions are
simulated. In particular, it can be seen that the third-order Fourier series performs better than the other
shaping functions when eight coefficients are used and that increasing the number of coefficients to 12 does
not provide as much of an improvement as increasing the number of coefficients from six to eight does.
Due to the fact that the number of coefficients should be minimised in order to minimise the computation
time, the usage of 12 coefficients is deemed to be inefficient. It is therefore concluded that, of the shaping
functions discussed in this section, the third-order Fourier series has the most potential of resulting in an
accurate description of the elevation angle. However, it should be noted that the shaping function’s accuracy
at high inclinations still needs to be improved.
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Table 3.1: A comparison between the RMSE in degrees of the four options for the cases presented.

1Rev. at45deg 3 Revs.at45deg 1Rev.at89.99deg 3 Revs. at 89.99 deg

Shaping F1 6 coeff 3.2 4.6 23.1 37.3
Shaping F2 6 coeff 3.7 4.7 24.5 38.3
Fourier Series 6 coeff 4.1 4.7 30.5 38.2
Polynomial 6 coeff 4.4 40.9 28.1 78.8
Shaping F1 8 coeff 14 4.6 22.8 37.0
Shaping F2 8 coeff 2.5 4.7 24.1 38.2
Fourier Series 8 coeff 0.8 0.9 22.1 27.6
Polynomial 8 coeff 24 25.1 24.5 60.3
Shaping F1 12 coeff 0.5 0.9 18.9 27.3
Shaping F2 12 coeff 24 4.7 22.8 38.1
Fourier Series 12 coeff 0.2 0.2 17.7 22.6
Polynomial 12 coeff 0.1 0.9 15.5 27.6

3.2.3. ALTERNATIVE SHAPING FUNCTION

Aside from the spherical triangles and Fourier series, an alternative description is tested as well. While re-
searching the various functions that could be used to describe the unperturbed orbit, Equation 3.13 was
found [14]. This section shall elaborate upon the application of it to the unperturbed orbit problem.

_ 1+ dz (0) (3 13)
¢= 1+ a?cos?(6) cos )

where a is a coefficient that can be tuned.

In order to illustrate the coefficient a, the resulting curves when various values of a are used have been plot-
ted and can be seen in Figure 3.21.
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Figure 3.21: The variation of the elevation angle as a function of the azimuthal angle for various various values of a.
In this figure, it can be seen that an increase in the coefficient a results in the curve approaching a rectangular

function and that the function has a maximum of ¢ = 1 rad (this being approximately 57 degrees). The latter
can easily be confirmed by substituting an azimuthal angle of 0 degrees into Equation 3.13.

As the function should also be able to represent cases where the initial elevation angle is for example 0 radians,
a phasing coefficient p is added. This results in the following equation:

- 1+a cos@+ p) (3.14)
¢= 1+ a?cos?(0 + p) P '
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Furthermore, a third coefficient is added in order to enable the function to simulate various orbital inclina-
tions. The resulting function is shown in Equation 3.15.

_ 1+a’ ©@+p)-b (3.15)
¢= 1+a20052(0+p)COS p '

To test the accuracy of this function, its ability to simulate the cases shown in Section 3.2.2 is evaluated with
the use of the MATLAB’s curve fitting toolbox. The RMSE as found for these four cases is shown in Table 3.2.

Table 3.2: The RMSE in degrees of the proposed shaping function for four cases.

1Rev. at45deg 3 Revs.at45deg 1Rev. at89.99deg 3 Revs. at89.99 deg
0.03 0.03 0.2 0.2

By comparing these values with the ones shown in Table 3.1, it can be seen that this alternative formulation
performs significantly better than the options discussed in Section 3.2.2 and that it is unaffected by the num-
ber of revolutions. The performance of the proposed shaping function can also be observed in Figure 3.22,
where the function is used to simulate three revolutions at an inclination of 89.99 degrees.
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Figure 3.22: The performance of the proposed shaping function when it is used to simulate three revolutions at an inclination of 89.99
degrees.

It can be seen in this figure that the proposed shaping function is capable of following the reference orbit
with a much higher accuracy, even though it uses less coefficients than the shaping functions described pre-
viously.

3.3. PERTURBED ORBITS

As a next step in the development process, the shaping functions suggested in Section 3.2 will be used to de-
scribe a perturbed orbit. In the test cases evaluated in this chapter, the perturbation is solely caused by the
thrust force of the spacecraft.

By comparing the proposed shaping functions, it can be seen that only the spherical triangles do not include
coefficients that allow the shaping function to be adapted to the boundary conditions. As there are also po-
tential issues with the required projection of the orbit onto the celestial sphere and the required deprojection,
it can be concluded that the spherical triangles have the least potential. Due to the limited time frame of the
master’s thesis, it was decided that the potential of the alternative shaping function and the Fourier series was
first evaluated. If neither of these shaping functions could be used, the elevation shaping function that uses
the spherical triangles would be developed further. This turned out to be unnecessary.
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3.3.1. ALTERNATIVE SHAPING FUNCTION
From Section 3.2.3, it can be noted that the alternative shaping function is currently only capable of following
orbits with a constant inclination due to the constant value of the coefficients a and b. As such, it can be
concluded that the values of these coefficients need to change with the azimuthal angle for the function to be
capable of accurately following perturbed orbits.

In order to determine the potential of the alternative shaping function, the change of the equations’ coeffi-
cients is modelled using the test cases shown in Section 3.1. This is done by dividing the perturbed orbit into
a number of unperturbed orbits, each having a constant inclination. By using the non-linear least-squares
method and MATLAB’s curve-fitting toolbox to fit the function to these orbits, the change of the coefficients
can be plotted as a function of the azimuthal angle.

COEFFICIENT a
When the aforementioned methodology is applied to cases 1, 3 and 4, Figure 3.23 can be found.
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Figure 3.23: The variation of the coefficient a for cases 1, 3 and 4.
As the coefficient a is a function of inclination, the curves for cases 1 and 3 are as expected, since the in-
clination is constant in these test cases. Interesting to note, is that while the change in inclination over the

azimuthal angle appears to be linear in Figure 3.5, the curve describing the coefficient a is not.

When the change of a is plotted for the cases 2, 5, 6 and 7, the following curves are obtained:
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Figure 3.24: The change of the coefficient a for cases 2, 5, 6 and 7.
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From this figure, one can conclude that at high inclinations, the value of a rather suddenly becomes signifi-
cantly larger, while a constant high inclination results in a higher constant value of a.

By looking more closely at the smaller values of a for cases 5, 6 and 7, Figure 3.25 can be obtained.
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Figure 3.25: Close-up of the variation of the coefficient a for cases 5, 6 and 7.

Here it can clearly be seen that the coefficient’s value exponentially increases and decreases as the orbit’s in-
clination increases and decreases as well.

For cases 8 and 9, the following curves are obtained:
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Figure 3.26: The variation of the coefficient a for cases 8 and 9.

In order to obtain more information on the behaviour of a as a function of inclination, the coefficient was
determined for various inclinations using non-linear least-squares fitting. By determining the coefficient
a 10 times for each inclination while using random starting values for the non-linear least-squares fitting
algorithm, one can obtain additional insight in the variation of a. The mean value of a that was found can be
seen in Figure 3.27 as a function of inclination.
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Figure 3.27: The value of the coefficient a as a function of inclination.

From this, it can be seen that when the inclination increases linearly, the coefficient a increases exponentially.
However, it should be mentioned that in order to create this plot, the absolute value of a was used. As a?is
used in the shaping function, the non-linear least-squares algorithm also found —a as a solution. Because
this only changes the sign of a, it is expected that this does not impact the accuracy of the shaping function.
After taking the absolute values, the maximum standard deviation of a was found to be 0.27 at an inclination
of 0 degrees. This indicates that the same value for a will be found regardless of the starting point of the
non-linear least-squares algorithm when the absolute value is used.

COEFFICIENT b
By using the same methodology used for the coefficient g, the change of the coefficient b as a function of the
azimuthal angle can be found as well. By doing so for cases 1 to 7, Figure 3.28 is obtained.
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Figure 3.28: The variation of the coefficient b for cases 1 to 7.

It can be seen in this figure that, as expected, b changes linearly as a function of inclination. The variation of
the coefficient b as a function of the azimuthal angle for cases 8 and 9 can be seen in Figure 3.29.
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Figure 3.29: The variation of the coefficient b for cases 8 and 9.

In order to confirm the linear behaviour of the coefficient b, its value was determined as a function of incli-
nation using the same methodology used for a. The resulting curve can be seen in Figure 3.30.
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Figure 3.30: The value of the coefficient b as a function of inclination.

In this figure, it can be seen that b indeed has a linear relation with inclination. The reason for this is of course
that b solely changes the amplitude of the curve, as can be seen in Equation 3.15. Because a only changes the
shape of the curve instead of its amplitude, b should be equal to the inclination in radians. However, it can
be seen in the top right corner of Figure 3.30 that the curve is not quite linear. To inspect the cause of this, the
difference between the theoretical value of b, being the inclination in radians, and the obtained value of b was
calculated. The result of this is a skewed curve with a peak of 1.06 degrees. The shape of this curve is highly
similar to the variation of the shaping function’s RMSE as a function of inclination, shown here in Figure 3.31.
This suggests that the aforementioned non-linearity of b is caused by inaccuracies of the proposed shaping
function itself. It can be seen in this figure that the RMSE stays below 1.4 degrees at all inclinations. Further-
more, it should be noted from this figure that the RMSE does not continuously increase as the inclination
approaches 90 degrees. Instead, the maximum RMSE occurs at an inclination of 87.7 degrees.
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Figure 3.31: The RMSE of the alternative shaping function versus the inclination.

3.3.2. FOURIER SERIES

Using a similar methodology to the one described previously, the variation of the coefficients of the third-
order Fourier series can also be found as a function of the azimuthal angle. As the proposed function has
eight coefficients and because not all curves can fit in a single axis interval, a large number of figures are
needed to describe the behaviour of the coefficients. Therefore, the majority of the figures have been added
to Appendix E and only the plots characterising the overall behaviour of the coefficients are shown here.

Firstly, the behaviour of the coefficient ay can be evaluated. The variation of the coefficient’s value as a func-
tion of the azimuthal angle for all eight cases can be seen in Figure 3.32.
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Figure 3.32: The variation of the coefficient ag for cases 1 to 9.

From this figure, it can be observed that the variation of the coefficient’s value is extremely small and highly
random. As all values are of the order 10~'5, it can be assumed that they are approximately zero.
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A second figure that characterises the behaviour of the coefficients, is the variation of a; for cases 1, 3 and 4.
Their respective curves can be seen in Figure 3.33.
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Figure 3.33: The variation of the coefficient a; for cases 1, 3 and 4.

Interesting to note here is that for case 4, a; starts to increase exponentially but continues to increase linearly
from a certain point onward. To obtain an accurate representation of the trajectory, both of these sections
should be reproduced. It can also be seen in Figure 3.33 that the values for cases 1 and 3 stay constant as
expected.

Thirdly, one can note from Figure 3.34 that the variation of a; for cases 8 and 9 is highly similar to the ones
shown in Section 3.3.1.
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Figure 3.34: The variation of a; for cases 8 and 9.

As alast indication of the overall behaviour of the Fourier coefficients, the variation of the coefficient bs as a
function of the azimuthal angle is shown for cases 1 to 7 in Figure 3.35.
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Figure 3.35: The variation of the coefficient b3 for cases 1 to 7.

In this figure, the curves of cases 5, 6 and 7 stand out in particular, as they display a different type of behaviour
from the coefficients shown so far. In order to determine the source of this behaviour, the variation of the co-
efficients has also been plotted as a function of inclination. The result for the coefficient b3 can be seen in
Figure 3.36 and the curves of the other coefficients can be found in Appendix F.
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Figure 3.36: The value of the coefficient b3 as a function of inclination.

As the curve shown here is highly similar to the one shown in Figure 3.35, it can be concluded that the be-
haviour shown in Figure 3.35 is a result of the behaviour of b3 itself as a function of inclination. It should be
mentioned that the curve shown in Figure 3.36 was obtained by estimating the coefficient 10 times for each
inclination using non-linear least-squares and plotting the variation of the mean value. The maximum stan-
dard deviation of b3 was found to be 5.9-1077 at an inclination of 73 degrees, thus indicating that the overall
estimation of the coefficient was highly accurate.

Nonetheless, it can be seen in Figure 3.36 that there is not always a unique relation between the value of
the coefficient b3 and the inclination, as multiple inclinations use the same value for b3. If the third-order
Fourier series is used in the development of the alternative elevation shaping function, the aforementioned
characteristic could impact the robustness of the resulting spherical shaping method. Aside from that, the
rapidly increasing RMSE shown in Table 3.1 also has a significant impact on the quality of the results produced
by the spherical shaping method. While the significance of the RMSE was also discussed in Section 3.2, only
the RMSE at an inclination of 45 and 89.99 degrees was discussed in this section. As such, the variation of the
RMSE as a function of inclination has been plotted and can be seen in Figure 3.37. One can conclude using
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this figure that, aside from a non-unique coefficient b3, a significant error in the approximation of the orbit is
also present at high inclinations.
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Figure 3.37: The RMSE of the third-order Fourier series as a function of inclination.

3.3.3. TRADE-OFF

In the previous two sections, the potential for the alternative shaping function and the third-order Fourier Se-
ries to simulate perturbed orbits was discussed. This section shall perform a trade-off and discuss the choice
of the shaping function which shall be developed further.

Firstly, one can see from Figures 3.31 and 3.37 that the RMSE of the alternative shaping function is signifi-
cantly smaller than that of the third-order Fourier series, especially at larger inclinations. Naturally, this is
therefore a large advantage of the alternative shaping function.

Secondly, by comparing the number of coefficients, it can also be concluded that the alternative shaping
function has less coefficients that should be estimated compared to the third-order Fourier series. While the
coefficients will need to be rewritten such that they can vary as a function of the azimuthal angle, this is the
case for both the Fourier series and the alternative shaping function. This in turn means that the usage of
the Fourier series could result in a significant increase in the number of coefficients, each of which should
be determined in order to obtain a trajectory. In particular, it is expected that a relatively large number of
coefficients are needed to follow curves such as the ones of cases 5 and 6 in Figure 3.35. As increasing the
number of coefficients also increases the computation time, the usage of less coefficients is favourable. Note-
worthy is however that at least four coefficients are required in order to satisfy the boundary conditions on
the out-of-plane shaping function [1].

From these observations, it can be concluded that the alternative shaping function has significantly more
potential than both the spherical triangles and the third-order Fourier series. It is therefore decided that the
alternative shaping function is further developed into a usable shaping function for the out-of-plane compo-
nent of the spherical shaping method.

3.3.4. COEFFICIENT FUNCTIONS

With the general form of the shaping function decided upon, the coefficients currently present in it can be re-
placed by expressions such that the shaping function can directly model the cases presented earlier. It should
be mentioned that, in an attempt to simplify the resulting shaping function, the expressions used will replace
a? instead of the coefficient a. However, as a? cannot become smaller than zero, boundaries are placed upon
the expressions that describe the variation of a such that the result does not become smaller than zero either.

To find expressions for the coefficients, combinations of various functions will be used to model the test cases
shown in Section 3.1. By substituting expressions for the different variables into Equation 3.15, the MATLAB
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curve fitting toolbox can be used to fit the resulting shaping function to the variations of the elevation angle
shown in Figures 3.1 to 3.13. Through a comparison of the RMSE of the various combinations, conclusions
can be drawn with respect to their ability to simulate the test cases.

As can be seen in Table 3.3, a total of 12 different combinations are tested. In this table, the RMSE in degrees
can be seen for the first test case. As shown in this table, a combination of ag + a;0 + a»602 for a? and by + b, 0
for the coefficient b was found to result in a slightly lower RMSE. The combination that resulted in the lowest
RMSE and those that resulted in an RMSE within 25% of the best RMSE have been given a green background.

Table 3.3: The RMSE in degrees for the 12 different combinations when case 1 is evaluated.

bo+b10  bo+b10+b0%2 bo+by(0+by)

age®0* % 4 ggeml+as 6 02.1076 8.24-1078 8.07-107
ag+ a0 2.37-10710 2.99-1071! 1.71-107°
ao+ a0 + a,6> 1.71-10713 1.42-1078 2.79-1078
ap+a; (0 + ax)® 3.72-1071 1.10-1077 9.43-1078

Interesting to note is that, while the third and fourth expressions for a® can be written as the second expres-
sion, the RMSE of combinations that use the third or fourth expression can be higher than those that use the
second. A similar observation can be made for the various expressions of b. As this test case features a con-
stant inclination, the values of a@? and b should be constant and all combinations should result in the same
RMSE. However, due to the addition of extra coefficients, it becomes more difficult for the coefficient estima-
tion algorithm to reproduce this constant value. As such, a higher RMSE is found for certain combinations.

A similar observation can be made by looking at Table 3.4, where the RMSE in degrees for various combina-
tions of expressions for a? and b are shown when test case 2 is evaluated. As done for Table 3.3, the combi-
nation that resulted in the lowest RMSE and those that resulted in an RMSE within 25% of the lowest RMSE
have been highlighted in green.

Table 3.4: The RMSE in degrees for the 12 different combinations when case 2 is evaluated.

bo+b10  bo+Db10+b20%  bo+ b0+ by)Ps

age™0+a2 1 g, p®0+as 1.64 1.64 1.64
ao + a0 14.9 8.73 12.6
ao + a0 + a,6? 7.71 10.5 4.67
ao+ a0 + ap)® 1.64 1.64 1.66

Noteworthy here is that, even though the lowest RMSE is 1.64 degrees, the initial and final elevation angle
differ by less than 1-10~* and 3-10~3 degrees for each of the combinations with this RMSE. Using the radius
at these positions, it can be found that this is equal to an error in the initial and final z-coordinate of approxi-
mately 12 and 351 meters respectively.

For test case 3, it can be noted from Table 3.5 that the RMSE is approximately equal for all combinations,
except when ag + a0 is used for a® and by + b; 0 is used for b.

Table 3.5: The RMSE in degrees for the 12 different combinations when test case 3 is evaluated.

bo+b10  bo+b10+b0%  by+Dbi 0+ b))

age™@ 0+ 4 ggeltas 3 75.1072 2.76-1072 2.76-1072
ag+ a0 1.12 2.75-1072 2.76-1072
ap+ a10 + a,6? 2.76-1072 2.75-1072 2.76-1072
ag+ a0+ ax))® 2.76-1072 2.80-1072 2.80-1072

For test case 4, it was found that each of the chosen combinations had significant trouble with approximating
the spacecraft continuing in its final orbit for a large number of revolutions once it reached this final orbit.
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As such, it was tested instead whether the combinations could approximate the transfer itself. This means
that only the part of the data that resembled the inclination change from 0 to 45 degrees was used to test the
combinations.

When this test case is evaluated using the aforementioned change, it is found that all combinations result in
an RMSE in the order of 10~ degrees. However, as shown in Table 3.6, there are four combinations that result
in a slightly lower RMSE.

Table 3.6: The RMSE in degrees for the 12 different combinations when test case 4 is evaluated.

bo + b0 b0+b19+b292 b0+b1(9+b2)b3

age®0t % 4 ggetbtas 7 71.107! 1.11-107! 1.34-107!
ag+ a0 2.25-1071 1.91-1071 3.19-107!
ag+ a10 + a,6? 1.20-1071 3.59-107! 2.07-107!
ag+ a0+ ap)® 3.35-107! 3.19-107! 3.19-107!

For test case 5, a similar problem to the one found for test case 4 was encountered. For this reason, the test
case’s trajectory was cut off at the point where it reached an inclination of 89.6 degrees. The reason for choos-
ing this inclination as opposed to the final inclination of 89.99 degrees, is that the last 0.39 degrees change
happens over a large number of revolutions in this transfer, meaning that the value of b changes very slowly
in this part of the orbit. As this value changes very rapidly before this part of the orbit, the chosen combina-
tions are unable to accurately model the orbit. To solve this problem, the final inclination was set to be 89.6
degrees instead.

When the inclination is increased from 0 to 89.6 degrees, the result is that the RMSE increases significantly
for all combinations. This is shown in Table 3.7, where the RMSE in degrees for the various combinations is
shown when test case 5 is evaluated.

Table 3.7: The RMSE in degrees for the 12 different combinations when test case 5 is evaluated.

bo+b10  bo+Db10+b20%  bo+ b0 +by)Ps

age™@ 0+ 4 gy p0+as 16.2 9.37 7.87
ao + a0 12.8 10.4 10.9
ao + a0 + a,0? 10.3 10.0 10.3
ao+ a0+ ax)® 11.0 10.9 10.8

If a trajectory of which the inclination decreases from 89.98 to 0.1 degrees is approximated, the RMSEs in
degrees shown in Table 3.8 are found.

Table 3.8: The RMSE in degrees for the 12 different combinations when test case 6 is evaluated.

bo+b10  by+Db10+b6%  bo+ by(0+by)bs

age®0t % 4 gz etl+as 5.94 1.72 1.71
ao+ a0 9.23 8.50 9.08
ag+ a0 + a,6> 9.23 8.50 9.02
ao+ a0+ ax)® 9.21 1.61 7.96

In this table, it can be seen that the use of either a linear or quadratic equation for a? results in a considerably
higher RMSE. The cause of this is the aforementioned boundary set on the coefficients. In order to ensure
that the equation resembling @ does not become smaller than zero, a minimum value of zero was set for
ap and a,;, and ay to ay for the linear and quadratic expressions respectively. In the exponential and power
functions, this was done for the ag and az, and the ay and a; coefficients. However, while these boundaries
prevent the expression’s result from becoming smaller than zero, they prevent the value from decreasing in
the first place in the case of the linear and quadratic expression. As the value of a*> decreases in this test case,
a high RMSE is the result.
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The RMSE:s for test case 7 can be found in Table 3.9. It can be seen here that using an exponential function
for a? and a power function for b results in an RMSE that is approximately 3 to 8 degrees less.

Table 3.9: The RMSE in degrees for the 12 different combinations when test case 7 is evaluated.

bo+b10  bo+Db10+b6% bo+ by (0 + by

age™@ 02 4 gy p0+as 13.8 5.17 4.29
ap+ a0 9.46 9.35 10.5
ag+ a10 + a6? 9.87 7.88 8.88
ap+ a1 (0 + ap)® 10.93 9.75 8.77

As can be seen in Table 3.10, all combinations are able to accurately follow the trajectory found by Roegiers
for a transfer to Neptune using a single revolution. The combination of using an exponential function for a?
and a power function for b was found to result in the lowest RMSE.

Table 3.10: The RMSE in degrees for the 12 different combinations when test case 8 is evaluated.

bo+b10  bo+b10+b:0°  by+bi(0+by)bs

age®0t % 4 ggemltas 7531072 2.72-1073 2.02-1073
ap+ a0 8.97-1072 9.36-1073 9.13-1072
ag+ a0 + a6> 8.69-1072 4.80-1073 9.95-1072
ag+ a0+ ap)® 9.45.1072 1.37-1072 1.54-1072

When a multi-revolution transfer to Neptune is approximated, the RMSEs shown in Table 3.11 are found.
It can be seen in this table that all errors are approximately equal to each other, but that there are three
combinations that result in a slightly larger RMSE.

Table 3.11: The RMSE in degrees for the 12 different combinations when test case 9 is evaluated.

bo+b10  bo+b10+Db0% bo+bi(6+by)bs

age®9*% 4 ggembtas 773.1074 7.12-107% 7.12-1074
aog+ a0 7.11-107* 7.11-107* 2.76-1073
ap + a10 + a»0? 7.11-107% 7.13-107! 7.86-1073
ag+a; (0 + ax)® 7.26-107% 7.13-107* 7.13-107*

By evaluating Tables 3.3 to 3.11, it can be seen that the combinations using an exponential function for a?
and either a quadratic or power function for b are often either the best result, or within 25% of the best result.
The only case in which neither of them is the best result or within 25% of the best result, is case 1. However, it
can be seen in Table 3.3 that both combinations do perform excellently. Furthermore, while the combination
using an exponential function for a® and a quadratic form for b does not result in an RMSE within 25% of
the best result for case 7, it does perform significantly better than the other combinations. As such, these two
combinations are found to have the most potential.

3.3.5. RIGHT ASCENSION OF THE ASCENDING NODE CHANGES

As mentioned previously, the elevation shaping function currently used in the spherical shaping method is
unable to accurately describe RAAN changes. Using the last two test cases shown in Section 3.1, the combi-
nations that were found to have the most potential will be compared and the shaping function will be further
altered such that it can describe RAAN changes.

Firstly, it can seen in Figure 3.13 that the maximum elevation angle is 45 degrees and the minimum elevation
angle is approximately minus 40 degrees. Thus, it can concluded that the change of the elevation angle has
an offset. As the shaping function cannot reproduce this with any of the combinations shown so far, an addi-
tional offset term c is added to the shaping function.

As changing the RAAN changes the point at which the orbit intersects the equatorial plane, the azimuthal
angle at which this happens also changes. By comparing the change of the elevation angle as a function of



3.4. CONCLUSIONS 35

the azimuthal angle with a waveform, one could say that changing the RAAN causes the frequency of the
waveform to change. This change in frequency is a function of the azimuthal angle and can be simulated
by changing cos(0 + p) in the shaping function to an alternative form. Two expressions are tested, namely
cos(poBP! + p20 + p3) and cos(pob?* + p20 + p3). As both a quadratic function and a power function were
found to have the most potential for describing the coefficient b, a total of four combinations will be tested
for the two test cases described earlier.

For the test case 10, the RMSE in degrees for the four combinations can be seen in Table 3.12. As done pre-
viously, the combination with the lowest RMSE and those that resulted in an RMSE within 25% of the best
RMSE have been highlighted in green.

Table 3.12: The RMSE in degrees for the 4 different combinations when test case 10 is evaluated.

bo+ D16 + b,02 [deg] by + by (0 + bo)? [deg]
PoOPL + p26 + p3 2.02-1072 2.92-1071
pob? + p20 + p3 30.1 30.9

The RMSE for the four combinations when test case 11 is evaluated can be found in Table 3.13.

Table 3.13: The RMSE in degrees for the 4 different combinations when test case 11 is evaluated.

bo+ D16 + b,0? [deg]l by + by (0 + bo)? [deg]
PoOP! + p20 + p3 7.92-1071 1.57
p002 + p20 + ps 243 15.2

From these two tables, it can be seen that the combination of po8”! + p26 + ps and by + b0 + b,0? results in
the lowest RMSE in both cases. Interesting to note is also that, due to the fact that the inclination decreases
and then increases again for the second test case, the equation describing a? should decrease and increase in
value again as well. However, by plotting the change of a? using the coefficients found, it was observed that
the value of @ does not change in this manner. Despite the fact that the change in a® was not as it theoreti-
cally should be, alow RMSE was still found. The cause of this is that the coefficient a does not change much
around these inclinations. This can also be seen in Figure 3.27. As it is highly unusual for a satellite to first
decrease and then increase its inclination again, this behaviour is not deemed to be disruptive.

3.4. CONCLUSIONS

In this chapter, the options that were among others found during the literature review were tested for their
potential of forming the shaping function of the elevation angle. It was found that both the use of spherical
triangles and the Fourier series did not result in a shaping function which could accurately describe the set
of predefined test cases. Instead, an alternative shaping function was found to be capable of describing these
test cases.

In order to obtain this alternative shaping function, different combinations of functions were tested for their
potential to form the elevation shaping function. By evaluating the RMSE of each combination for each of the
test cases, the most accurate combination was found. The resulting elevation shaping function can be seen
in Equation 3.16.

1+ (aoea10+a2 +a36a49+a5)

D0) =
©) 1+ (age®@9+% + gze®0+a5)cos? (pgHPr + po6 + ps3)

cos (poOP' + p20 + p3) - (bo + b10 + b20%) + ¢

(3.16)
This elevation shaping function will be the basis of all research done in the subsequent chapters.






IMPLEMENTATION

With the promising elevation shaping function found, the developed function can be implemented, validated
and applied. This chapter will discuss the manner in which the function is implemented and trajectories are
optimised.

4.1. SPHERICAL SHAPING METHOD

As mentioned previously, Novak’s spherical shaping method has been adapted using the elevation shaping
function found in Chapter 3. This section shall elaborate on the implementation and adaptation of this
shape-based method.

4.1.1. INITIAL AND FINAL CONDITIONS
The initial and final conditions consist of the Keplerian elements at the start and end points. These can be
converted into Cartesian and spherical coordinates with the equations shown in Appendix A. As such, the
state vector at the initial and final position is [2]:
. : . T
(rirg Gurg bup Fip Oup diry) (4.1)

where the subscripts i and f indicate the initial and final values.
4.1.2. CHANGING PARAMETRISATION
Firstly, the initial and final conditions that are parametrised by time are changed such that they are

parametrised by the azimuthal angle 6. The initial state vector defined in the spherical coordinate frame
is shown in Equation 4.1. Furthermore, the velocity of the trajectory parametrised by time is [2]:

Uy 7
v=i=|vg|=]|rcos(b (4.2)
I)(p T(ﬁ

To denote the parametrisation by azimuthal angle 6, the following notation is introduced [2]:

, dr

v=r = 20 4.3)
a=r'"= d—zr (4.4)
do?

where the tilde and prime indicate the parametrisation and derivative with respect to the azimuthal angle 8
respectively.

To find the velocity of the trajectory parametrised by the azimuthal angle, i can be divided by 8, as shown in

Equation 4.5.
, _dtdr

1.
=r —_—— = -

= == 4.
dodr o 4.5

37
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Thus, by dividing Equation 4.2 by 6, the velocity vector parametrised by the azimuthal angle can be found.
The result of this is shown in Equation 4.6 [2].

dar
dt Ur % Uy
V:E vg | =|rcos(P) |=| g (4.6)
vg Lae U
do

Using this equation, the initial and final state vector parametrised by the azimuthal angle can be found [2]:

T
(ri/f tirg  Qirf rl{,f fl{,f <P;-,f) 4.7)
where 1}, 7 is obtained from Equation 4.8, which is in turn derived from Equation 4.6.

ri/
=t 4.8)
ilf
The equation used to find the derivative of the initial and final time with respect to the azimuthal angle is also
found using Equation 4.6 and is shown in Equation 4.9.

rijrcos(Pisr) 1
t§/f=—l ! : LLE (4.9)
Uil f Oirf

where the derivative of the azimuthal angle with respect to time can also be obtained from Equation 4.6, as
shown in Equation 4.10 [2].

. Vil f
0., = (4.10)
ilf riff-cos(isf)
4.1.3. BOUNDARY CONDITIONS
The boundary conditions on the trajectory are listed below [2]:
Ri=RO;)=r;
Rf = R(Qf + 27 Nyey) = re
Q; =D(0;) =i
Q= q)(Hf + 27 Nyey) = ¢y
1= 10y = 1D
l/¢i
rrcos(¢pyr)
T}=T'Of +21Nyer) = [7¢0%%p) (4.11)
Vo s

R;=R'0;)=0r;

R} =R'(Of +27Nyep) = Uy f
ﬁ .

) = 0'(6;) = —
ri

7
O = @' (Of +27Nyer) = na
Ty

To match the boundary conditions on the derivative of time with respect to the azimuthal angle T’, Novak
expressed these boundary conditions as conditions on the initial and final R” and ®” [1]:

R"0;) + a;®"(6;) = C;

4.12
R”(Qf)+06fq)”(9f) =Cf ( )
where a can be found using:
Ry @i
@ilf = o 2 (4.13)
(I>l./f+ cos* (D)
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and C is found with:

”Tﬁf Rﬁf sin(®;;r)cos(®@;; f)
Cijr=-— +2—= + R/ r|®?, +cos?(@;,p)| -R,, @, (4.14)
i R?/f ilf lf( if lf) ir=itf q)/l.zlf+0082(q)i/f)
4.1.4. SHAPING FUNCTIONS
For the radial shaping function, use is made of the function proposed by Novak [1]:
1
R(O) = (4.15)

To+ 110 + 1202 + (r3 + 140) cos(0) + (r5 + rg0) sin(0)

It should be noted here that, while Novak and Roegiers both denote the coefficients in the radial shaping
function as ay to ag, they are defined here as r( to r¢ in order to prevent confusion with the coefficients of the
elevation shaping function.

For the elevation shaping function, the function derived in Chapter 3 is used (Equation 3.16):

1+ a10+ay + a46+a5
®0) :J (aoe ds¢ ) cos (poOP' + p20 + p3) - (bo + b10 + b20%) + ¢

1+ (age®@9+% + aze®0+a5)cos? (pgOPr + po6 + ps3)

(4.16)

In order to use Novak’s method of solving the coefficients of these functions, both shaping functions should

be functions of a dot product between a coefficient vector and a vector containing a set of sub-functions that
depend on the azimuthal angle [2].

For the radial shaping function, the coefficient vector is:
re=(r0 1 12 13 T4 T5 T6) 4.17)
and the vector containing the set of sub-functions is:
Re@)=(1 6 6% cos®) 6Ocos®) sin@®) 0Osin(®)) (4.18)

In this vector, the first term is referenced as Ry, the second as R;, the third as R, and so on. The radial shaping
function can be obtained by dividing 1 by the dot product between these two vectors, and is thus a function
of this dot product as required.

For the elevation shaping function, it should be noted from Equation 4.11 that four boundary conditions
are available, as r, will be tuned with a Newton-Raphson loop such that the time-of-flight constraint is met.
However, the elevation shaping function has more than four coefficients. As such, four coefficients will be de-
termined using the boundary conditions and the remaining coefficients will be found by optimising the AV
with the Monte-Carlo method and the Nelder-Mead method. The four coefficients that will be determined
using the boundary conditions are by, by, b» and c, as the elevation shaping function can then easily be writ-
ten in the required form discussed above.

Using this choice of coefficients, the coefficient vector becomes:

bj=(by b1 b c) (4.19)
and the vector containing the set of sub-functions becomes:
®;0)=( 16 16* 1) (4.20)
where
a0+ay as0+as
- J 1+ (aoemei;fzzeeawms;Zize(pogm) 20+ ) cos(poBP" + p26 + ps3) (4.21)

4.1.5. DERIVATIVES OF R;, AND ®@;
In order to obtain the trajectory, the first, second and third derivatives of each element of the Ry and ®@;
vectors is required. This section elaborates on these derivatives.
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Ry DERIVATIVES
The first, second and third derivatives of the Ry vector’s elements can be seen in Equation 4.22 [2].

R.(O)=[0 1 20 -sin(@) cosO)—0sin@) cos@) sin(®)+0cos@O)]
RO =[0 0 2 —cos(@) -2sin@®)—06cos®) -—sin@®) 2cosO)—0sin(0)] (4.22)
R/©)=[0 0 0 sin@) -3cos®)+0sin@) —cos®) -3sin(@)—0cos®)]

® ; DERIVATIVES

Using Equations 4.20 and 4.21, it can be found that the first, second and third derivatives of the ®; vector’s
elements are:

@) =[I" I'0+I I'6>+2I0 0]
@@ =[I" T"0+2I'" T"6*+4r'0+2l 0] (4.23)
®7')=[I" I"0+3r" I"0°+6I"0+6I" 0]

where I' is as shown in Equation 4.21.

In order to more easily find the derivatives of T, the additional coefficients shown in Equations 4.24 and 4.25

are defined.

az+a,0 + aseﬂ5+a49) (424)

o= (aoe
A= (pOQ"’l + pg@ + pg) (4.25)
By substituting these two coefficients into Equation 4.21, Equation 4.26 is found.

I'=1cos(A) (4.26)

T= 1+o (4.27)
"V 1+0cos21) ’

Using this equation, it can now be found that the derivatives of I' are as shown in Equation 4.28. In this
equation, sinuses and cosines have been abbreviated as s and c respectively.

in which

I'=t'c)—=tsW) A
" =1"c(A) —27'AV's(A) — 1A s(A) —TA () (4.28)
" =1"c(A) = 31" A s(A) =37'A"s(A) = 37" A% (1) — 1A s(A) = 314" A c(A) + TA s(A)

The first derivative of T with respect to 6 is found using the symbolic computing environment Maple 2016
and is shown in Equation 4.29.

o (FNo'-2c()sWo))(+1)
B CTe (oc2(N)+1)2 A
7' = =— (4.29)
27 B
As shown in Equation 4.30, 7" can now be obtained with the quotient rule by defining the numerator of
Equation 4.29 as A and the denominator as B.
BA' - AB" (21)A' - A27’
7= _ @D er) (4.30)
B2 472

Furthermore, 7" can now also be found using Equation 4.31.

w_ B?A"-2BA'B'— ABB" +2AB"” 41*A"-81A'T'—4Ar1" +8AT"
re B3 a 873
To find the first and second derivative of the numerator of Equation 4.29, Maple 2016 is again used. The
results are shown in Equations 4.32 and 4.33 respectively.

(4.31)

, o a 0’ (0'c* (M) —20c(MA's(A)  2(0 +1)(0”c*(A) —20¢c(A)As(A))?
T (02 +1) (M) +1)2 " (0c2(A) +1)3 o
(0+1)(0"c?(A) =40’ cMA + 201252 (L) —20c(MAs(A) =202 (A)A?)
(oc2(A) +1)2

(4.32)
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g a” 30" (0"c*(A) —20¢(M)A's(A)) . 60’ (0”c*(A) —20c(D)A's(A))?
oc2(1)+1 (oc2(A) +1)2 (oc2(1)+1)3
30" (0"c2(A) =40 c(AW)A s(A) +20 122 (A) =20 c(MAs(A) =202 (A)A'?)
(@c2(A) + 1)2 o
6(c+1)(0'c?N)—20c(AM)A s(A))3 6

1.2 _
(0c2(A) + 14 TeEm )3 (G+ Digemd) = (4.33)

20¢cMA s (0" ) —4a' c WA s(A) +20 122 — ...

20c(MA s() =20 (WA?) - o+ 1" ) - ...

(0c2(1) +1)2
60" c( M)A s(A) +60'1%s* (1) =60’ c( ML s(A) —60" 2 (MA? +601's%(A)...

A +80A%s(M)c(N) —=20c(MA"s(A) —60c* (M)A L))

In order to evaluate the equations shown in this section, the first, second and third derivative of o and A are
also required. These can be seen in Equation 4.34.

d2+d19 a5+a49)

o' = (aoale + azase

0,// — (aoalzea2+a19 + a3a42ea5+a4¢9)

m 3 ax+a10 3 as+asb
o =(a0a1 e + asas”e™ 4) (4.34)

A= (pop16P " + p2)
A" =(pop160” 7% (p1 - 1))
A" = (pop160P' 3 (p1 - D(p1 - 2)

4.1.6. COMPUTING THE COEFFICIENTS

With the boundary conditions defined and the derivatives computed, one can now find the coefficients such
that the trajectory matches these conditions. Using the boundary conditions shown in Section 4.1.3, it can
be shown that in order to match these conditions, Equation 4.35 should hold. For the full derivation of this
equation, the reader is referred to Roegiers’ master’s thesis [2].

Al(ro n s ra s 16 bo b by ¢) +A,=B (4.35)

in which the A matrix is as shown in Equation 4.36 [2]. The various derivatives with respect to the azimuthal
angle shown in this equation can be found in Section 4.1.5.

Ry (67) Ry (67) R3(6;) Rs (67) 0 0 0 0
Ry (0¢) Ry (0y) R3(07) .. ..  Rs(0f) 0 0 0 0
R, (0) R (0)) R, (0)) RL(0) 0 0 0 0
R(,) (Qf) Ri (Qf) Ré (Qf) Ré (Hf) 0 0 O 0
Ao —RER(’)’ ©:) —RfRi’ ©) —RERQ O . —Rng ©)  ai®f0) .. .. a;®0)
- —RfR(’), (Qf) _RfRi, (Qf) —Rng (Qf) —Rng (Qf) afd)g (Of) af(I)g’ (Hf)
0 0 0 0 0 0 D (6;) D3 (6;)
0 0 0 0 0 0 D (0f) . .. D3(0f)
0 0 0 0 0 0 DYO) e . D)
0 0 0 0 0 0 o (0F) .. .. @L(0f)
(4.36)
Furthermore, the B and A,, vectors are as shown in Equations 4.37 and 4.38 respectively.
1 1 b, Uy oy o7, Bp Tor|
B=|— — ——4 —-— C(C;j-2— Cf—2— D; CI)f - = (4.37)
Ri Ry R R; R; Ry R; Ry

T
A, =(r2Re0) raRa®f) raRyO0) raRy@p) r2RIRIO) raRIR;Op) 0 0 0 0 (4.38)
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where r» has an initial value of 0 and will, as mentioned previously, be used later in a Newton-Raphson loop
to match the time-of-flight constraint.

By rewriting Equation 4.35 as Equation 4.39 and substituting the various known values, the coefficients can
now be found. r )
(r() r rs T4 T5 Tg b() l’)l bz C) = [A] (B — Arz) (4.39)

4.1.7. EVALUATING THE SHAPING FUNCTIONS AND THEIR DERIVATIVES
Once the coefficients have been determined, the shaping functions R(8) and ®(0) can be evaluated using the

equations shown below [2]:

R©O) =

Ry -1y (4.40)
D0) = (Dj -bj

In order to make the computation of the derivatives easier, Roegiers proposed the auxiliary notation shown
in Equation 4.41 [2].

1
Z0) = O Ry -1y (4.41)

It can now be found that the first, second and third derivative of the radial shaping function are as shown in
Equation 4.42. For the derivation of these relations, the reader is referred to Roegiers’ master’s thesis [2].
R = _Z/RZ
R"=-Z"R?>+2ZR"” (4.42)
R"=-7"R?-2RR'Z"+27Z'R? +4ZR'R"

where, for convenience, the fact that R and Z are functions of 0 has been omitted and the derivatives of the
auxiliary Z function are given by [2]:

Z' =R} 1i
Z"=R} 1t (4.43)
ZIH — R;CH . rk

Furthermore, the first, second and third derivative of the elevation shaping function are given by [2]:

I _ &/
() —(I)j'bj

cp”:cp’j’ -bj (4.44)
q)lll — (I)l]//b]

in which the equations for the first, second and third derivative of Ry and ®; are as shown in Section 4.1.5.

4.1.8. EVALUATING THE CURVATURE

Next, the curvature along the trajectory should be checked. To do so, the time equation scalar function D is
used. This function has the same sign as the curvature and is therefore positive when the trajectory is curved
towards the central body and negative when it curves away from it. As such, the value of D is checked along
the trajectory and the trajectory is discarded if the value of D ever becomes negative. The time equation scalar
function at any point along the trajectory can be calculated using the derivatives shown in Section 4.1.7 and
Equation 4.45 [2].

R? @ — sin(®@)cos(d)
D@ =-R"+2— +R'®'
©) R D2 + cos2(D)

+R (D" + cos?* (@) (4.45)

4.1.9. SATISFYING THE TIME-OF-FLIGHT CONSTRAINT
In order to calculate the time-of-flight using the current value of r», Equation 4.46 is used [2]:

9f+2”Nf
TOF = f (1) ae (4.46)
0

i
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in which the first derivative of the time evolution function is as shown in Equation 4.47. To perform the
integration, a Runge-Kutta 4 integrator is used. As the global truncation error of this method is O(h%), with
h being the step size, this method is highly accurate [15]. Note also that Equation 4.47 shows that a positive
value of D is required in order to obtain a physically correct time-of-flight.

T'©) = ar _ L (4.47)
T de u ’
Next, the time violation function can be written as follows [2]:

TOFyeq—TOF if TOF;¢q #0

ATOF = : (4.48)
0 if TOFyeq =0

where it should be noted that the implementation is written such that when a time-of-flight of zero is set, the
time-of-flight is left free and the time violation function therefore returns 0.

Using a Newton-Raphson loop, the value of the free coefficient r, can now be adapted such that the current
time-of-flight meets the required time-of-flight. The equation used in the iterative process of determining r,
can be seen in Equation 4.49 [2].

ATOF(r2014)
2new = 20ld — W(O) (4.49)
—(r
dr, 2o0ld
As the required time-of-flight is constant, the derivative of Equation 4.48 with respect to r, becomes [2]:
dATOF ar
————(r201d) = =—=—(1201a) (4.50)
d 2 d 2
Substitution of this relation into Equation 4.49 results in Equation 4.51.
ATOF(r2014)
Fanew = T2old + gz 4.51)
—(r
dar (r201a)

where the derivative of the time evolution function T with respect to the free coefficient is calculated using a

two-point difference method:

ar T(roo1a+h) — T(ra01qa — h)

—(r; = 4.52

ar (r201a) oh (4.52)
For the step size h, a value of /¢ is chosen, with € being the machine precision. As the machine precision is
approximately 1-1076, a step size in the order of 1-1078 is used.

It can be seen in these equations that the process involves iteratively calculating the time-of-flight for various
values of r,. As the value of r, changes the values of the B vector discussed in Section 4.1.6, all calculations
done in Sections 4.1.6 to 4.1.8 need to be repeated for each different value of r,. This iterative process con-
tinues until a certain number of iterations is reached or the time violation function becomes smaller than a
certain absolute tolerance. In this case, the maximum number of iterations and absolute tolerance were set
equal to the values used to Roegiers, being 25 iterations and a tolerance of 10~* days respectively [2].

4.1.10. COMPUTING THE CONTROL ACCELERATIONS
After the Newton-Raphson loop has been completed, the control vector can be found. This is done by first
calculating the first and second derivative of the azimuthal angle with respect to time.

The first derivative of the azimuthal angle with respect to time can be calculated using Equation 4.53.

== =/— (4.53)
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The second derivative of the azimuthal angle with respect to time can be found using Equation 4.54 [2].

. Tll
b= (4.54)

In this equation, T" is found using Equation 4.9 and T" is calculated using Equation 4.55 [2].

TH —

1
RD' +2DR’ (4.55)
275D ( )

in which D’ is obtained from Equation 4.56 [2]:

1 dD , om 2R® 4R'R' . 20'R'(®D" - D' cos(2D))
D'O)= -5 =FiR ~R"~ =5 + ——— + Fi®'R+ - +o
3
4.56
EVR ERYAFFOR (4.56)
R F F§
where

F) =®” + cos® (@)

P — sin(20)
2 2 (4.57)

F3 = cos2®) +2®"% +1
Fy =20" — sin(2d)

Next, the velocity vector ¥ and acceleration vector a along the trajectory parametrised by the azimuthal angle
can be calculated using Equations 4.6 and 4.58 [2].

ar R" - R(®" + cos*(®))
a=|dp|=| 2R'cos(®) —2RP sin(®) (4.58)
agp 2R'P' + R(D" + sin(®)cos(®)

The control vector can then be found with Equation 4.59:

d’r ..dr _ r
—+0— = g +u (4.59)

9'2
a0z "’ a0

By substituting the values calculated at a certain position of the trajectory into this equation, the control vec-
tor u in the spherical reference frame at that position can be found.

To obtain the control acceleration in a tangential-normal-out-of-plane reference frame, Equation 4.60 can be
used [2]:

“ P o 2~

—e;-e;+0v-e;+0%G-e;

Ur r2
u= un = ﬂzer'en_i_gZa_en (460)
up r

ézé-eh

4.1.11. DETERMINING THE REQUIRED AV

ar
Lastly, in order to determine the required AV, |u 0 can simply be integrated over the interval [8;,0 21N,

As done by Roegiers, a Runge-Kutta 4 integrator is used here as well [2]. This required AV can then be opti-
mised through tuning of the initial and final positions as well as the required time-of-flight.
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4.2. MONTE-CARLO METHOD

To determine the values of the coefficients that cannot be solved using the boundary conditions, the Monte-
Carlo method is used as a first step.

The Monte-Carlo method involves generating a large number of random values for each of the coefficients
and using the resulting AVs to obtain the combination that results in the lowest cost. These random values
are generated within certain bounds. As the maximum inclination is known, these bounds can be determined
by squaring the respective value for a found in Figure 3.27. This gives an initial guess for the maximum value
that the exponential function needs to be able to reproduce. However, it should be noted here that, due to the
fact that the exponential function replaces a?, it should never become negative. If it does become negative,
non-logical AVs are found. Therefore, the minimum bounds for the ay and as coefficients are always set to
Zero.

It should furthermore also be mentioned that, that due to the random generation of the coefficients, the
method is unable to find the absolute minimum. For this reason, the Nelder-Mead algorithm is used in order
to further optimise the solution.

4.3. NELDER-MEAD METHOD

The Nelder-Mead optimisation method is an algorithm that uses a simplex to search for a function’s mini-
mum. As the method does not require the calculation of any derivatives, it is highly suitable for problems
that feature non-smooth functions. In this case, it is used to optimise the additional coefficients that cannot
be solved using the boundary conditions. By sorting the solutions found by the Monte-Carlo method with
respect to their AV and by using the Nelder-Mead method on a number of the best points found, a more op-
timal solution can be obtained.

It is important to note that the original implementation of the Nelder-Mead method includes the uncon-
strained optimisation of coefficients, whereas the exponential part of the elevation shaping function should
never become negative in the elevation shaping function. To prevent this from occurring, a check is per-
formed throughout the Nelder-Mead algorithm to determine whether the new combination of coefficient
values results in the exponential part becoming negative. If this is the case, the cost of using this combination
of values is set to an extremely high value in order to move the Nelder-Mead method away from such combi-
nations.

This section shall elaborate upon the Nelder-Mead algorithm and its use within the developed shaping method.

4.3.1. THE INITIAL SIMPLEX

The aforementioned simplex used to find the function’s optimum can be described as an n-dimensional ver-
sion of a triangle. For example, in one dimension it is a line, while in two and three dimensions it is a triangle
and a tetrahedron respectively. It is worth noting that the simplex does not need to be symmetrical in any
way and that an n-dimensional simplex is made up of n+1 points.

To construct the simplex around a given starting point, zn additional points need to be defined. These points
are placed at a small distance from the initial point along the direction of each dimension. As the Nelder-
Mead method is used individually on a number of the best points found by the Monte-Carlo method, this
initial point is different for each of the earlier obtained solutions that are to be optimised with the Nelder-
Mead method. For each of the solutions to be optimised, the initial point is defined by its values for the 10
unknown coefficients of the elevation shaping function, where the initial guesses for these coefficients were
found through the Monte-Carlo method.

The i*" additional point as defined with the use of the unit vector of the ;" dimension is given by:
X; =X + h(x1,1)-u; (4.61)

where u; is the unit vector in the i’ coordinate, x, is the initial point and x; is the i’* additional point of
the simplex [16]. The step size h(x, i) is defined as 0.05 if the value of x; in the i™" coordinate is non-zero
and 0.0025 if it is. Thus, if the initial point would be set equal to (0, 1), the second point in the simplex would
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be (0.0025,1) and the third point would be (0,1.05). The values 0.05 and 0.0025 are equal to those used by
MATLAB’s fminsearch function [17].

Once the initial simplex has been defined, the algorithm can start its first iteration.

4.3.2. ORDERING
At the start of every iteration, the points are ordered based on their cost. Using this ordering, the worst,
second worst and best point are found and the indices h, s and [ are given to these points respectively.

4.3.3. DETERMINING THE CENTROID
As a second step, the centroid of all points except the worst (x;,) is determined using Equation 4.62 [16].

1
c=—) x (4.62)
M izh

4.3.4. TRANSFORMATION
Once the centroid has been found, the current simplex can be transformed into the next iteration’s simplex.
This new simplex is obtained through a number of steps, each of which will be elaborated upon.

REFLECTION

Firstly, the reflection point x, is found using Equation 4.63. If f(x;) < f(x;) < f(Xs), meaning that the cost
of x; is lower than the second-worst point but not lower than the current best, x;, is replaced by x, and the
algorithm continues to the next iteration [18].

X, =c+a(c—Xxp) (4.63)

In this equation « is the reflection parameter and is usually set equal to 1. This reflection step is done in an
attempt to move the simplex in the opposite direction of x;,. For a two-dimensional problem, this step can be
illustrated as shown in Figure 4.1, where the previous simplex is shown in blue and the new simplex is shown
inred [19].

Hiy &Iy

Figure 4.1: An illustration of the reflection step [19].

EXPANSION

If the reflection point X, is better than the current best point x;, the expansion point x, is determined using
Equation 4.64 in an attempt to further optimise the reflection point. In this equation, y is the expansion pa-
rameter and is usually set equal to 2 [18].

Xe=C+yX,—¢) (4.64)

If f(x,) is better than f(x,), the point xy, is replaced by x, and the algorithm continues to the next iteration.
If the reflection point results in a lower cost than the expansion point, X, replaces xj, instead. This step of the
algorithm can be illustrated using Figure 4.2 [19].
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Figure 4.2: An illustration of the expansion step [19].

CONTRACTION

If the reflection point x, is instead worse than the second worst point x;, a contraction is attempted instead
using the best of the two points x;, and x,. The method used to determine the contraction point depends on
which one of these two points is better.

If f(xs) < f(x;) < f(Xp), the contraction point is determined using Equation 4.65 [18]. If this contraction point
results in a cost lower than or equal to the one of the reflection point, the contraction point x, replaces x; and
the algorithm continues to the next iteration. This version of the contraction can be seen in Figure 4.3a [19].

X, =c+ BX;—¢) (4.65)

Ifinstead the reflection point X, is worse than the current worst point xj,, the contraction point is determined
using Equation 4.66 [18]. If this contraction point results in a cost lower than that of the worst point, this
point replaces xj, in the simplex and the algorithm continues to the next iteration. This alternative version of
the contraction is illustrated in Figure 4.3b [19].

X, =c+ pBx,—c) (4.66)

where S is the contraction parameter and is usually set equal to 0.5.

T & Th €y
(a) External contraction. (b) Internal contraction.

Figure 4.3: An illustration of the contraction step [19].

SHRINKAGE

If contraction of the simplex does not result in a better simplex, the entire simplex is redefined through shrink-
age. This new simplex consists of the best point and points that are redefined with respect to this best point
and the previous points. Once this new simplex has been found, the algorithm continues to the next iteration.
The i*" point of the new simplex is found using Equation 4.67 [18].

X; =X +0(X; —X;) (4.67)

where 6 is the shrinkage parameter and is equal to 0.5 in most implementations.

4.3.5. TERMINATION CONDITIONS
The aforementioned process is continued until one of the following termination conditions is met:

* A set maximum number of iterations is reached
» All points are less than a predefined distance away from each other

¢ The difference between the costs of each of the points in a simplex is less than a certain predefined
value

Once one of these conditions is met, the Nelder-Mead optimisation algorithm stops its search and returns
the best point found so far and the corresponding final simplex.






VALIDATION

Before the spherical shaping method with the new elevation shaping function can be used, it should be vali-
dated. This is done by validating each component of the developed C++ software, as well as by using a number
of internal and external validation cases to confirm that the obtained results are correct.

This chapter shall first discuss the validation that ensures that the software used to generate reference cases
is installed correctly in Section 5.1. Afterwards, the validation of the AV calculation and the implementation
of the Monte-Carlo and Nelder-Mead methods are discussed in Sections 5.2 and 5.3. Lastly, the validation
using internal and external test cases is elaborated upon in Sections 5.4 and 5.5.

5.1. INSTALLATION OF EXISTING SOFTWARE

The software written by Roegiers for her research on the spherical shaping method will be used to partially
validate the software written for this thesis. Therefore, as a first step in the validation process, it can be con-
firmed that Roegiers’ software has been installed correctly by evaluating whether usage of this software gener-
ates the same results as those discussed in her MSc thesis. To do so, results will be generated for a number of
test cases defined in Roegiers’ MSc thesis and these results will be compared to the values found by Roegiers.
If these results are equal to one another, Roegiers’ software is installed and used correctly, and can be used to
validate the software written for this thesis.

This section will start off with a comparison between the results found for a two-dimensional transfer be-
tween elliptical orbits in Section 5.1.1. After this, three-dimensional transfers between elliptical orbits and
the effect of large inclinations will be discussed in Sections 5.1.2 and 5.1.3 respectively. Information discussed
in this section has been taken from Application of the Spherical Shaping Method to a Low-Thrust Multiple As-
teroid Rendezvous Mission by Roegiers, unless specifically mentioned otherwise [2].

5.1.1. Two-DIMENSIONAL TRANSFER BETWEEN ELLIPTICAL ORBITS

Firstly, the relatively simple transfer between two co-planar elliptical orbits can be considered. The case
names as defined by Roegiers and the initial and final Keplerian states (a, e, i, Q, w, 8) of the two cases that
are considered can be seen in Table 5.1.

Table 5.1: The initial and final Keplerian states of cases G19 and G25.

Case [Initial Keplerian State  Final Keplerian State
G19 (1,0.1,0,0,0,0) 3,0.1,0,0,0,0)
G25 (1,0.1,10,0,0,0) (3,0.1,10,0,0,0)

The following two sections shall compare the AV and control accelerations for both transfers.

49
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REQUIRED AV

By using the Keplerian states shown in Table 5.1 as inputs for the software developed by Roegiers, a compar-
ison between the results obtained with this software and those shown in Roegiers’ MSc thesis can be made.
To further evaluate the software’s installation, the two cases shown above are run twice: once using a free
time-of-flight and once using a required time-of-flight of 1000 days. The required AV found for each of these
cases, as well as the the AV found by Roegiers, can be seen in Table 5.2. In this table, the ¢ suffix indicates that
arequired time-of-flight has been set for the test case.

Table 5.2: A comparison between the AVs shown in Roegiers’ MSc thesis and the values found using her software for cases G19 and G25.

Case TOF [days] AVpgeegiers [km/s] AV [km/s] Absolute Error [km/s]

G19 Free 12.33 12.33 <1102
G25 Free 12.34 12.34 <1-1072
G19t 1000 12.29 12.29 <1-1072
G25t 1000 12.30 12.30 <1-1072

From this table, it can be noted that the required AV found by the software is equal to the one elaborated upon
in Roegiers’ MSc thesis. It can furthermore be seen that, while the two cases should require an equal amount
of AV for the same time-of-flight setting, a different AV is found to be needed; as was found by Roegiers, the
elevation angle influences the AV required.

CONTROL ACCELERATIONS

To confirm this difference in AV required, control accelerations were generated for the four cases shown
in Table 5.2 using the provided code. The control accelerations in the tangential, normal and out-of-plane
directions for the cases G19 and G25 can be seen Figure 5.1.

T T T
—Case G19- - Case G25

L L
150 200

T T T
—Case G19 - - Case G25

L L L L L L L
0 50 100 150 200 250 300 350

T T T
—Case G19 - - Case G25

0 50 100 150 200 250 300 350 - 100 200 20 500 500

300
Azimuthal angle [deg] Azimuthal angle [deg]

(a) The newly generated control accelerations. (b) The control accelerations found by Roegiers.

Figure 5.1: The control accelerations corresponding to cases G19 and G25.

Furthermore, a comparison between the control accelerations obtained from Roegiers’ software and those
shown in her MSc thesis for cases G19t and G25t can be seen in Figure 5.2.
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(a) The newly generated control accelerations. (b) The control accelerations found by Roegiers.

Figure 5.2: The control accelerations corresponding to cases G19t and G25t.

It can clearly be seen in Figures 5.1 and 5.2 that the control accelerations change when a different initial
inclination is used. Noteworthy is also that the control accelerations shown in these figures correspond to
those found by Roegiers, thus confirming that the software has been installed and used as intended.

5.1.2. THREE-DIMENSIONAL TRANSFER BETWEEN ELLIPTICAL ORBITS

Now that the two-dimension transfers have been shown to be reproducible, one can determine whether the
three-dimensional transfer between elliptical orbits can also be reproduced. To do so, results are generated
for four cases using the aforementioned software and their required AVs and control profiles are again com-
pared to those shown in Roegiers’ MSc thesis. As can be seen in Table 5.3, an inclination change of 10 degrees
is performed using two different initial inclinations and right ascensions of the ascending node.

Table 5.3: The initial and final Keplerian states of cases G31, G37, G35 and G41.

Case Initial Keplerian State  Final Keplerian State

G31 (1,0.1,0,0,0,0) (3,0.1,10,0,0,0)
G37 (1,0.1,5,0,0,0) (3,0.1,15,0,0,0)
G35 (1,0.1,0,0,90,0) (3,0.1,10,90,0,0)
G41 (1,0.1,5,0,90,0) (3,0.1,15,90,0,0)

REQUIRED AV
The four transfers shown in Table 5.3 are again evaluated for the case in which the time-of-flight is free, and

for the case in which the required time-of-flight has been set to 1000 days. A comparison between the AVs
found using the software and the values elaborated upon in Roegiers’ MSc thesis can be seen in Table 5.4.
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Table 5.4: A comparison between the AV found by Roegiers and those found with the provided software for cases G31, G37, G35 and G41.

Case TOF [days] AVpgeegiers [km/s] AV [km/s] Absolute Error [km/s]

G31 Free 13.75 13.75 <1-1074
G37 Free 13.77 13.77 <1-107*
G35 Free 13.75 13.75 <1-107*
G41 Free 13.77 13.77 <1107
G31t 1000 13.63 13.63 <1-1074
G37t 1000 13.65 13.65 <1-107*
G35t 1000 13.63 13.63 <1107
Galt 1000 13.65 13.65 <1-1074

Aside from the fact that the AVs obtained from the provided software are equal to those found by Roegiers,
thus showing that the provided C++ code functions as intended, it can also be noted that the inclination
at which the transfer is started influences the required amount of AV and that the right ascension of the
ascending node (RAAN), as expected, does not.

CONTROL ACCELERATIONS

With the use of the four transfers shown in Table 5.3, a set of control accelerations is generated for the case in
which the time-of-flight is free, and for the case in which the required time-of-flight is 1000 days. The control
accelerations for the former case can be seen in Figure 5.3.
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(a) The newly generated control accelerations. (b) The control accelerations found by Roegiers.

Figure 5.3: The control accelerations corresponding to cases G31, G37, G35 and G41.

While no tangential, normal and out-of-plane control accelerations are presented for cases G31t, G37t, G35t
and G41t by Roegiers, the AV difference for these cases can still be investigated by comparing the control
magnitudes. This comparison can be seen in Figure 5.4.
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Figure 5.4: The control profile corresponding to cases G31t, G37t, G35t and G41t.

As was found for the two-dimensional transfer, the initial inclination has an effect upon the control accelera-
tions that are generated. Furthermore, by comparing the accelerations of cases G31 and G35 shown in Figure
5.3, it can be seen that changing the RAAN solely shifts the graph over the x-axis. As expected, the RAAN
therefore does not influence the magnitude of control accelerations.

5.1.3. LARGE INCLINATIONS

To further confirm the results of the provided code and this code’s properties, one can observe how the re-
quired AV changes when the initial inclination is increased even further. The initial and final Keplerian states
of a number of co-planar transfers at increasing inclinations can be seen in Table 5.5. For these cases, a free
time-of-flight is used. To indicate that these cases are used to evaluate the effect of large inclinations, the
suffix i has been added to these cases’ names.

Table 5.5: The initial and final Keplerian states of cases P1i, P7i, P9i and P10i.

Case Initial Keplerian State  Final Keplerian State

P1i (1,0,0,0,0,0) 3,0,0,0,0,0)
P7i (1,0,20,0,0,0) 3,0,20,0,0,0)
P9i (1,0,40,0,0,0) (3,0,40,0,0,0)
P10i (1,0,50,0,0,0) 3,0,50,0,0,0)

A comparison between the required AV for each of these four transfers can be seen in Table 5.6. As the re-
quired AV should theoretically be equal for all four transfers, the last column of this table shows the relative
difference with respect to case P1i.

Table 5.6: A comparison between the AV found by Roegiers and those found using the provided software for cases P1i, P7i, P9i and P10i.

Case  AVggegiers lkm/s] AV [km/s] Absolute Error [km/s]  (Pii-P1i)/P1i

Pli 12.31 12.31 <1-.107% 0
P7i 12.83 12.83 <1.107* 4.22.1072
P9i 47.57 47.57 <1.107* 2.86
P10i -, D<0 -, D<0 - -

From this table, one can conclude that the error compared to the P1i case increases as the inclination of
the coplanar transfer increases. Furthermore, it can be seen that the spherical shaping method is unable to
generate a transfer orbit when the inclination is set to 50 degrees due to the trajectory’s curvature becoming
negative.
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A last property of the provided software that can be investigated, is the consequence of splitting up a large
inclination change into a number of smaller inclination changes. In this case, the sum of the control profiles
of the latter should be equal to the control profile of the former. To investigate this, the three transfers shown
in Table 5.7 can be considered. The suffix ic has been added to these cases’ names in order to indicate that
they are used to test the splitting up a transfer’s inclination change.

Table 5.7: The initial and final Keplerian states of cases G7ic, G8ic and G10ic.

Case  Initial Keplerian State  Final Keplerian State

G7ic (1,0,0,0,0,0) (1,0,10,0,0,0)
G8ic (1,0,10,0,0,0) (1,0,20,0,0,0)
G10ic (1,0,0,0,0,0) (1,0,20,0,0,0)

As can be seen in Table 5.7, the aforementioned property can be evaluated by summing the control profiles
of cases G7ic and G8ic, and comparing the result with case G10ic. The control profiles for cases G7ic, G8ic
and G10ic, as well as the summation of the control profiles for cases G7ic and G8ic can be seen in Figure 5.5.
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Figure 5.5: The control profiles corresponding to cases G7ic, G8ic and G10ic.

It is clear from this figure that the summation of the two control profiles does not equal the control profile
of case G10ic. As also discussed by Roegiers, the cause of this is the aforementioned influence of the initial
inclination upon the control profile.

5.2. VALIDATION OF AV CALCULATION

As mentioned in Section 5.1, the software written and validated by Roegiers can be used to partially validate
the software written for this thesis. To do so, the original elevation shaping function used by Roegiers and
Novak was also implemented in the newly developed software. As the sole difference between the original
and improved spherical shaping method is the elevation shaping function, using the original function in the
newly developed software should result in the exact same AVs as those found by Roegiers.

By changing the elevation shaping function used by the software written for this thesis to the original func-
tion, the AVs shown in Table 5.8 were found for five different cases. For reference, the AV found by using
Roegiers’ software and the absolute difference are shown as well.

Table 5.8: A comparison between the AV found using Roegiers’ software and the software developed for this thesis.

Case TOF [days] AVRgeegiers [km/s] AV [km/s]  Absolute Difference [km/s]

Pli Free 12.31 12.31 <1.10713
P9i Free 47.57 47.57 <1-10713
G10ic Free 17.05 17.05 <1-.10713
G35t 1000 13.63 13.63 <1-1078

G41t 1000 13.65 13.65 <1-1079
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In this table, it can be seen that the same AVs are found when the elevation shaping function is changed to the
original function. As such, it can be concluded that the code, with the exception of the calculations regarding
the alternative elevation shaping function, has been validated.

The part of the AV calculation that is still to be validated, is the calculation of (I)j, (I)’j, (I); "and (D; " To do this,
the symbolic computing environment Maple 2016 was used. While Maple 2016 was also used to find these
derivatives, only part of the derivation was done using this software. By instead fully deriving the derivatives
using Maple and by comparing the output when a known input is used, the derivatives can be validated.

As a known input, 1-10° combinations of coefficients were used. These combinations were randomly gener-
ated using a uniform distribution and the following bounds:

Table 5.9: The boundaries used for the random generation of coefficient values.

Coefficient ao a; a as ay as Po P1 p2 P3 0
Minimum  0.00 -5.00 -5.00 0.00 -5.00 -5.00 -27 -5.00 -5.00 -27 O
Maximum 5.00 5.00 5.00 5.00 5.00 5.00 27 5.00 5.00 2n  27m

An overview of the maximum relative differences between the two methods of calculating <IJj, (I)’j, (I);.’ and
(I>; " can be seen in Table 5.10. In the calculation of these relative differences, the values obtained from the
equations that were fully derived using Maple were used as reference values.

Table 5.10: The maximum relative difference between the values found when Maple 2016 is used for parts of the derivation of <I)j, d>'j,

(I)’].’ and (I)}’ ', and the values found when the equations are used of which the derivation was done completely by Maple 2016.

j=0 j=1 j=2 j=3
@[] 4691071 458107 6.09-10°1° 0
<I)’j (-] 17.00 7.30-107°  9.45.107° 0
' [] 8.00 8.00 6.14-1073 0
o [] 12.00 1.03-10? 6.64 0

It can be seen here that the majority of the maximum relative differences are sufficiently small, but also that
there are a number of large differences. To obtain more insight into the cause of this, the corresponding ab-
solute differences have been calculated as well and have been summarised in Table 5.11.

Table 5.11: The maximum absolute difference between the values found when the derivation of ® ., ®'., ®" and (I);(’ is done completely
by Maple 2016 and the values found using the equations of which the derivation was only partially done by Maple 2016.

j=0 ji=1 j=2 j=3
@, [rad] 4.44-10°1  266:10°°  6.66-1071° 0
@', [rad/rad] 4.72:10°1%  6.97.1071  7.32.10710 0
<I>’j’ [1/rad] 3.73-107°  2.33.107%  7.30-107* 0
<I>’j” [1/rad?] 2.13-107% 5.74.10718 2.07-1071° 0

By comparing Tables 5.10 and 5.11, it can be observed that all significantly large relative differences corre-
spond to small absolute differences. For example, the relative difference of 1.03 - 10 of ®@'" corresponds to
an absolute difference of 5.74- 10713 1/rad?. This absolute difference is nearing the machine precision of
approximately 1-107'® when one considers that such machine errors propagate throughout the numerous
equations used to calculate the derivatives. As such, this indicates that the derivatives were correctly derived
and that they can therefore be considered as validated.
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5.3. VALIDATION OF MONTE-CARLO AND NELDER-MEAD METHODS
In order to validate the implementation of the Monte-Carlo and Nelder-Mead methods, they were applied
together to the Rastrigin function by taking the 15 best points found by the Monte-Carlo method as input for
the Nelder-Mead algorithm. The Rastrigin function is one of the commonly used function to test optimisation
algorithms and has several local minima. The Rastrigin function is shown in Equation 5.1, in which d is the
dimension [20]. 4

f®=10d+ ) [xf-10cos(2nx;)] (5.1)

i=1

To test the algorithm, two dimensions were used. The input domain for the function is x; € [-5.12,5.12] for
alli =1, ..., d and the global minimum is f(x) = 0 at x = 0. Using these conditions and Equation 5.1, Figure
5.6 can be generated.

Figure 5.6: The Rastrigin function over the domain x7, xp € [-5.12,5.12].

With the use of the settings shown in Table 5.12, the combination of algorithms found the minimum f(x) =
4.29-107% at x = [1.45-1075,-2.41-1077]. The combination was therefore capable of finding the global min-
imum with a high accuracy, thus validating the implementation of the Monte-Carlo and Nelder-Mead meth-
ods. The evolution of the simplex that found the global minimum is shown in Figure 5.7.

Table 5.12: The settings used to validate the implementation of the Monte-Carlo and Nelder-Mead methods.

MC Samples 200
NM Sample Size 15
NM Distance Threshold 1-1071°
NM AV Threshold 1-10710
NM Max. Iterations 2000

= Frrid ] 25

0.3

0.2

20

0.1

X, [

-0.1

-0.2

-0.1 0 0.1
X,

Figure 5.7: The evolution of the simplex that converged to the global minimum.
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5.4. INTERNAL VALIDATION

To internally validate the developed shaping function, the test cases shown in Tables 5.1, 5.3 and 5.5 are used.
They are elaborated upon in Sections 5.4.1, 5.4.2 and 5.4.3 respectively. By using the same test cases as shown
in Section 5.1, a comparison can be made.

5.4.1. PLANAR TEST CASES

The first part of the validation consists of a number of planar test cases. In order to be able to compare the
new shaping function with the original one, the test cases shown in Table 5.1 will be evaluated. To do so, the
following settings are used for the Monte-Carlo and Nelder-Mead methods:

Table 5.13: The settings used to internally validate the developed shaping function.

MC Samples 1-10°
NM Sample Size 50
NM Distance Threshold 1-1071°
NM AV Threshold 1-10710
NM Max. Iterations 2000
Integration Step Size 2m/100

and the boundaries shown in Table 5.14 are used for the generation of random values for each variable in
the Monte-Carlo method. These values were found by using Figure 3.27 as an initial approximation of the
coefficient a. The boundaries on the phasing coefficients pgy to p3 were set to be large enough such that the
whole function could be shifted extensively.

Table 5.14: The boundaries used for the Monte-Carlo method.

Coefficient  ag a a ag ay as Po P1 P2 P3
Minimum 0.00 -0.05 -0.05 0.00 -0.05 -0.05 -2 -5.00 -5.00 -27
Maximum 0.05 0.05 0.05 0.05 0.05 0.05 27 500 5.00 27

Furthermore, it should be noted that for each of the test cases in this and the following sections, an initial
true anomaly of 1-10~'2 degrees was used instead of 0 degrees. This was done to prevent a singularity caused
by the new elevation shaping function. Using these settings, the AVs shown in Table 5.15 were found for the
planar test cases.

Table 5.15: The AVs found for the planar test cases.

Case TOF [days] AV [km/s]

G19 Free 12.329
G25 Free 12.330
G19t 1000 12.286
G25t 1000 12.291

As an equal change in the initial and final inclination does not have an impact on the AV, G19 and G25, as well
as G19t and G25t should be equal to one another. However, it can be seen from these results that a small dif-
ference in AV is nonetheless present. By comparing these results with those of the original spherical shaping
method shown in Table 5.2, it can be seen that the new elevation shaping function does perform better than
the previous one, as the difference in AV due to the inclination decreases.

Furthermore, while at a first glance it may appear counter-intuitive that the time-constrained cases have a
lower AV than those with a free time-of-flight, this can be explained by looking more closely at the usage of
the spherical shaping method and the matching of the time-of-flight as described in Section 4.1. When the
time-of-flight is left unconstrained, the r, coefficient is set to zero and the other coefficients are solved such
that the other boundary conditions are met. When the time-of-flight is constrained, a Newton-Raphson loop
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is used to find the value of r, that matches the time-of-flight. As the coefficients are thus solved purely such
that the boundary conditions are met, the coefficients found in both cases are not necessarily the most op-
timal ones in terms of AV. Neither case therefore includes the varying of the coefficients to optimise the AV
when the boundary conditions have been set. Instead, this optimisation of the AV can be done by optimising
the boundary conditions such as the departure and arrival conditions and the time-of-flight.

By plotting the control accelerations of case G19 and case G25, Figure 5.8 can be obtained.
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Figure 5.8: The control accelerations found for cases G19 and G25.

As can be noted from this figure, the normal component of the thrust is practically zero. This is as expected,
since it was set to zero in the derivation of the first derivative of time with respect to the azimuthal angle [2].
Furthermore, it can be seen that both the out-of-plane and radial thrust acceleration vary when the transfer
is placed at an inclination, even though these should be the same for the two cases due to the fact that these
accelerations are shown in the tangential-normal-out-of-plane reference frame. This is also the case for test
cases G19t and G25t, as can be seen in Figure 5.9.
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Figure 5.9: The control accelerations found for cases G19t and G25t.

5.4.2. NON-PLANAR TEST CASES

In order to further test the developed elevation shaping function, the four non-planar test cases shown in
Table 5.3 were evaluated as well for both a free time-of-flight and a required time-of-flight of 1000 days. The
AVs found for each of these test cases can be seen in Table 5.16.
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Table 5.16: The AVs found for the non-planar test cases.

Case TOF [days] AV [km/s]

G31 Free 13.394
G37 Free 13.386
G35 Free 13.392
G41 Free 13.388
G31t 1000 13.381
G37t 1000 13.364
G35t 1000 13.370
G41t 1000 13.367

It can be seen from these results that a shift in the RAAN slightly impacts the AV found. However, this is
likely to be caused by the method used to determine the coefficients, as p3 can change the phase of the
elevation shaping function as required. Furthermore, these results confirm the conclusion drawn from Table
5.15 that an equal shift in the initial and final inclination results in a different value for the AV. Nonetheless,
by comparing these results with those shown in Table 5.4, it can again be seen that this shift in inclination
has a smaller impact than before. The control profiles corresponding to the values shown in Table 5.16 can
be seen in Figures 5.10 and 5.11.
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Figure 5.10: The control accelerations found for cases G31, G37, G35 and G41.
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Figure 5.11: The control accelerations found for cases G31t, G37t, G35t and G41t.
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5.4.3. HIGH INCLINATIONS

Thirdly, one can look at how the shaping function performs when transfers are done at high inclinations. The
test cases shown in Table 5.5 that were used by Roegiers to evaluate the original elevation shaping function
were used to evaluate the new elevation shaping function as well. The resulting AVs can be seen in Table 5.17.
The last column of this table shows the relative error in AV with respect to case P1i, as all four transfers should
theoretically have the same required AV.

Table 5.17: The AVs found for the test cases shown in Table 5.5 and their relative difference to case P1i.

Case TOF [days] AV [km/s] (Pii-P1i)/Pli

P1li Free 12.31 0

P7i Free 12.43 9.77-1073
P9i Free 18.19 4771071
P10i Free 31.02 1.52

By comparing these results with those shown in Table 5.6, it can be concluded that the relative error in AV
shown in the last column has decreased by at least a factor 4 for these test cases. While the curvature further-
more does not become negative at 50 degrees as it does when the original elevation shaping function is used,
the error in AV nonetheless becomes significantly large. This error in AV can also be observed through the
control accelerations shown in Figure 5.12.
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Figure 5.12: The control accelerations found for cases P1i, P7i, P9i and P10i.

5.4.4. CHANGE IN RIGHT ASCENSION OF THE ASCENDING NODE

As mentioned during the development of the new elevation shaping function, another limitation of the cur-
rently available software is the ability to accurately calculate the AV when a change of the RAAN is performed
under an inclination. To test the new elevation shaping function’s ability to produce results for such cases, a
number of reference cases are generated first. These reference cases consist of changing the RAAN of a circu-
lar orbit at a small inclination of 1-10~° degrees, as the RAAN is undefined at an inclination of 0 degrees. The
initial and final Keplerian states of the test cases can be found in Table 5.18.
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Table 5.18: The initial and final Keplerian states of the test cases of which the results will be used as reference.

Case Initial Keplerian State  Final Keplerian State
P10mega0 (1,0,107°,0,0,0) (3,0,107°,10,0, 0)
P20mega0 (1,0,107°,10,0,0) (3,0,107°,20,0,0)
P50mega0 (1,0,1072,0,0,0) (3,0,107°,60,0,0)
P60mega0 (1,0,1072,60, 0, 0) (3,0,1072,120,0,0)
P90megal (1,0,1072,0,0,0) (3,0,107°,120,0,0)
P100mega0  (1,0,107°,120,0,0) (3,0,107°,240,0,0)

It can be seen in this table that the test cases consist of a number of pairs and that the initial and final Keple-
rian states of the two cases in each pair were chosen such that they should have the same required AV.

The AVs found for the cases shown above when the new elevation shaping function is used can be seen in

Table 5.19.

Table 5.19: The AVs corresponding to the test cases shown in Table 5.18.

Case

AV [km/s]

P10mega0
P20mega0
P50mega0
P60mega0

P90megal
P100mega0

12.33
12.33

12.40
12.40

12.46
12.46

With the reference values generated, the elevation shaping function’s capability to produce accurate results
when both the initial and final orbit have a non-zero inclination can be evaluated. This is done by giving each
of the orbits shown in Table 5.18 an inclination of 40 degrees. The resulting test cases are shown in Table 5.20.

Table 5.20: The test cases used to test the new elevation shaping function’s capability to produce trajectories for cases that have an

inclination and a change in RAAN.

Case Initial Keplerian State  Final Keplerian State
P10mega (1,0,40,0,0,0) (3,0,40,10,0,0)
P20mega (1,0,40,10,0,0) (3,0,40,20,0,0)
P50mega (1,0,40,0,0,0) (3,0,40,60,0,0)
P60mega (1,0,40,60,0,0) (3,0,40,120,0,0)
P90mega (1,0,40,0,0,0) (3,0,40,120,0,0)
P100mega (1,0,40,120,0,0) (3,0,40,240,0,0)

When the new elevation shaping function is used to generate trajectories for these cases, the AVs shown in
Table 5.21 are found. The AVs found when the previous elevation shaping function is used are shown here for

reference as well.
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Table 5.21: The AVs found for the cases shown in Table 5.20 when the previous and new elevation shaping functions are used.

Case AVprevious (km/s]  AVpey [km/s]
P10mega 49.49 20.95
P20mega 49.49 19.63
P50mega 44.15 26.78
P60mega 44.15 26.31
P90mega 41.47 39.47
P100mega 41.47 37.79

Firstly, it can be noticed that the AVs found are significantly larger than those shown in Table 5.19 and that
they are not the same for each of the two cases within a pair. This is likely caused by the optimisation tech-
nique, as the ps coefficient should be able to change the phase of the elevation shaping function as required
and a similar observation was made in Section 5.4.2. Nonetheless, the AV for each case is lower than the one
found using the previous elevation shaping function.

It can furthermore be concluded from these results that the new elevation shaping function, despite the pre-
dictions made during the development, does not seem to be capable of accurately producing results for the
cases shown above. Part of the reason for this is the error introduced by the high inclination. As case P9i
shown in Table 5.17 consists of a comparable transfer but without the RAAN change, it is estimated that the
aforementioned error for these cases is similarly in the order of 6 km/s.

By subtracting this estimated error from the results shown in Table 5.21 and by comparing them with those
shown in Table 5.19, the AV for cases P1Omega and P20mega comes relatively close to the ones of cases
P10mega0 and P20mega0. However, the AV of cases P5Omega and onwards still have a significant differ-
ence with their counterparts shown in Table 5.18.

For reference, the total control accelerations have been plotted as well in Figure 5.13. In this figure, the top
graph depicts the control accelerations corresponding to the AVs of cases P10mega0 to P100mega0 shown in
Table 5.19 and the bottom graph depicts the control accelerations corresponding to the AVs of cases P1Omega
to P100mega shown in the last column of Table 5.21.
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Figure 5.13: Top: the control profiles of cases P1Omega0 to P100mega0. Bottom: the control profiles of cases P1Omega to P100mega.

5.4.5. LOOSENING OF BOUNDARY CONDITIONS

In an attempt to further improve the developed shaping function and the results produced by it, case P10i
has been investigated further. By calculating the variation of the elevation angle of the departure and target
orbits using Equation 3.12 and plotting them together with the change in elevation angle of the trajectory,
Figure 5.14 can be obtained.
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Figure 5.14: The elevation angle as a function of the azimuthal angle for the trajectory, departure and target orbits of case P10i.

As the inclination of this case does not change, one can compare the elevation angle of the trajectory with
that of the departure and target orbits. It was found that the root-mean-square error (RMSE) between the
orbits was 12.40 degrees. This error is significantly larger than the errors that were predicted in Section 3.3.4.

As the MATLAB implementation that was used in Section 3.3.4 to calculate the RMSE did not strictly en-
force the boundary conditions, whereas the C++ implementation discussed in Chapter 4 does, loosening the
boundary conditions may reduce the RMSE.

To test this concept, the settings shown in Table 5.13 were applied to the modelling of a Keplerian orbit of
which the initial and final Keplerian elements are shown in Table 5.22.

Table 5.22: The initial and final Keplerian states for the test case used to evaluate the effect of loosening the boundary conditions.

Initial Keplerian State  Final Keplerian State
(1,0,50,0,0,6;) (1,0,50,0,0,0/)

To model the loosening of the boundary conditions, the initial and final Cartesian coordinates and velocities
were varied in each direction by a random value within predetermined boundaries § o5 and 6 ,¢; respectively.
This random variation was included in the Monte-Carlo method and the resulting boundary conditions were
saved for each generation. For the Nelder-Mead method, the new boundary conditions corresponding to
each best point evaluated was then treated as a constant value and the elevation shaping function’s coeffi-
cients were further optimised using their respective boundary conditions.

When 6; and 6 are set to 1- 107'2 and 360 degrees respectively, the results shown in Table 5.23 are found.
In this table, the RMSE and maximum difference in elevation angle with respect to the theoretical elevation
angle found through Equation 3.12 are shown as well.

Table 5.23: The AVs, RMSEs and maximum differences with respect to the theoretical elevation angle when 6; and 6 ¢ are set to 1- 10712
and 360 degrees.

Opos [km], ¢ [km/s]] AV [km/s] RMSE [deg] MaxA¢ [deg]

[

(0, 0] 31.63 7.53 12.95
(10, 0.01] 24.69 4.05 7.32
(100, 0.1] 24.26 4.35 10.39
(1000, 1.0] 21.77 291 7.33

In this table, it can first of all be seen that even a relatively small misfit of approximately 2.9 degrees already
results in a large AV of 21.77 km/s. It is predicted that this effect will increase as the inclination increases.
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Furthermore, it can be seen that loosening the boundary conditions greatly reduces the AV required, but that
the RMSE and maximum difference in elevation angle do not always decrease with the AV. The former can
also be seen in Figure 5.15, as this graph shows that the trajectory approaches the theoretical case when the
boundary conditions are loosened. The theoretical value in this figure is the elevation angle of the Keplerian
orbit shown in Table 5.22.
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Figure 5.15: The variation of the elevation angle as a function of the azimuthal angle using various limits for the boundary conditions.

When 6 is changed to 180 degrees, the AVs, RMSEs and maximum elevation angle differences shown in Ta-
ble 5.24 can be obtained.

Table 5.24: The RMSEs and maximum differences with respect to the theoretical elevation angle, as well as the AVs found when 6; and
Oy aresettol- 10712 and 180 degrees.

Opos lkm], 6¢y [km/s]] AV [km/s] RMSE [deg] MaxA¢ [deg]

[

(0, 0] 2.23 0.41 0.51
(10, 0.01] 4.00 1.36 1.89
(100, 0.1] 1.57 0.06 0.12
(1000, 1.0] 5.60 2.54 3.38

Noteworthy is that all AVs, RMSEs and maximum elevation angle differences are significantly smaller than
those shown in Table 5.23 and that, using the aforementioned settings, the third row results in the lowest AV.
Furthermore, it can be seen that the AV does not always decrease when the boundary conditions are loos-
ened. As the AV for cases with more loose boundary conditions should theoretically be at least as low as the
less loose boundary conditions, this can indicate that 1-10° Monte-Carlo samples and a sample size of the
50 best points for the Nelder-Mead algorithm may not be enough. Interesting to note is also that for this test
case, the RMSE and maximum elevation angle difference appear to have a correlation with the resulting AV,
unlike the test case shown in Table 5.23. For reference, the variation of these trajectories’ elevation angles can
be found in Appendix G.

If 0; and 0 are set to 90 and 270 degrees respectively, the values shown in Table 5.25 can be found.

Table 5.25: The AVs, RMSEs and maximum differences with respect to the theoretical elevation angle when 0; and 0 are set to 90 and
270 degrees.

Opos lkm], 6¢; [km/s]] AV [km/s] RMSE [deg] MaxA¢ [deg]

0, 0] 0.77 0.07 0.19
100, 0.1] 0.79 0.06 0.12

[
[
(10, 0.01] 0.74 0.10 0.24
[
[

1000, 1.0] 1.26 1.02 1.83
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From this, it can be seen that the elevation shaping function is more capable of modelling this case than the
cases shown in Tables 5.23 and 5.24. However, in this case there also seems to be no correlation between the
RMSE and AV found. It can furthermore be noted that the second set of bounds results in the lowest AV in
this case and the AV found increases when the boundary conditions are set more loose. This reinforces the
hypothesis that a larger Monte-Carlo and Nelder-Mead sample size may be needed. For the results shown in
Table 5.25, the variation of the elevation angle as a function of the azimuthal angle can be found in Appendix
G as well.

In order to obtain more insight in the influence of using more Monte-Carlo and Nelder-Mead samples on the
AVs found, the test case shown in Table 5.23 was evaluated with an increased number of Monte-Carlo and

Nelder-Mead samples. The new settings can be seen in Table 5.26.

Table 5.26: The settings used to evaluate the influence of using more Monte-Carlo and Nelder-Mead samples.

MC Samples 1-10°
NM Sample Size 200
NM Distance Threshold 1-1071°
NM AV Threshold 1-10710
NM Max. Iterations 2000

Using these settings, the following results were found:

Table 5.27: The AVs, RMSEs and maximum differences with respect to the theoretical elevation angle when 6; and 6 ¢ are setto 1-10~ 12
and 360 degrees and the settings shown in Table 5.26 are used.

Opos [km], ¢ [km/s]] AV [km/s] RMSE [deg] MaxA¢ [deg]

[

(0, 0] 14.27 5.82 14.27
(10, 0.01] 24.40 3.85 7.06
(100, 0.1] 24.17 3.81 8.79
(1000, 1.0] 20.58 3.62 6.74

While it can be seen in this table that each of the AVs is lower than the corresponding AV shown in Table 5.23
when the same values for § 5,5 and 6 ,¢; are used, the values are still very large with respect to the theoretical
AV of zero. Furthermore, by comparing Tables 5.23 and 5.27, it can be seen that increasing the Monte-Catlo
and Nelder-Mead sample size has resulted in looser boundary conditions no longer requiring at most the
same AV as more strict ones. As discussed above, this was also observed for the test cases shown in Tables
5.24 and 5.25. This potentially indicates that an even larger Monte-Carlo and Nelder-Mead sample size is
required. As the computation time with the current settings is already extremely long, the usage of a different
method to determine the additional coefficients for the elevation shaping function would be recommended.
Nonetheless, Table 5.23 shows that the concept of loosening the boundary conditions has the potential to
significantly lower the AV found.

5.5. EXTERNAL VALIDATION

To externally validate the developed elevation shaping function, two test cases are evaluated. These test cases
were used by both Novak and Roegiers in the development of the spherical shaping method, and the results
were compared to those of the pseudo-equinoctial shaping method. As such, the results obtained using the
new elevation shaping function can be compared with those obtained with other shape-based methods.

It should be noted that Roegiers used a different model for the targets’ orbits and that it is not known which
model Novak used. Therefore, instead of evaluating a range of departure dates and time-of-flights and prop-
agating the target’s orbit, the trajectory corresponding to the optimal departure date and time-of-flight found
by Roegiers is used as test case. As the code written by Roegiers is available and its installation has been val-
idated, the initial and final Keplerian elements used by Roegiers can be extracted and used as input for the
software that contains the new elevation shaping function.
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5.5.1. EARTH - MARS TRANSFER
As a first test case for the external validation, an Earth - Mars transfer is evaluated. For this case, the settings
shown in Table 5.28 were used together with the bounds for the Monte-Carlo method shown in Table 5.14.

Table 5.28: The settings used to externally validate the developed shaping function using an Earth - Mars transfer.

MC Samples 1-10%
NM Sample Size 50
NM Distance Threshold 1-1071°
NM AV Threshold 1-1071°
NM Max. Iterations 2000
Integration Step Size 2m/100

A comparison between the various shaping methods and their results is shown in Table 5.29. In this table,
"+LQ" indicates that the trajectory was improved using a linear quadratic controller and "+DITAN" indicates
that the Direct Interplanetary Trajectory Analysis (DITAN) software was used to optimise the trajectory [1].

Table 5.29: A comparison between the AV found using existing software and the spherical shaping method using the new elevation
shaping function.

Sph. by Novak [2]  Sph. by Roegiers [2] Pseudo-equin. [2]  Sph. by Vroom

Launch Date Oct. 22, 2021 Oct. 22, 2021 Oct. 22, 2021 Oct. 22, 2021
Arrival Date June 8, 2024 June 8, 2024 June 8, 2024 June 8, 2024
TOF [days] 960 960 960 960
Revolutions 1 1 1 1

TOF shaping ? yes ? yes

AV [km/s] 12.57 5.75 7.07 5.75

AV (+LQ) [km/s] 6.01 - 5.89 -

AV (+DITAN) [km/s] 5.89 - 5.89 -

It can be seen in this table that the AV found is similar the one found by Roegiers and that these two imple-
mentations find a lower AV than the ones found by Novak with the spherical and pseudo-equinoctial shaping
methods. One reason for this might be that Novak used a different method to shape the time in order to find
the proper value of r» and to match the required time-of-flight [2]. In his PhD thesis, a second way to do so is
elaborated upon, but it is unclear whether this method was implemented in the original shaping method [1].
For this thesis, the method as described in Section 4.1.9 was used in order to be able to compare the obtained
results with those of the spherical shaping method as implemented by Roegiers. Nonetheless, due to the sim-
ilarity between the AVs found, it is concluded that the new elevation shaping function has been verified with
respect to this test case.

5.5.2. EARTH - NEPTUNE TRANSFER
The second test case that is evaluated, is an Earth - Neptune transfer. The same settings are used as done for
the Earth - Mars transfer, here repeated in Table 5.30 for convenience.

Table 5.30: The settings used to find the Earth - Neptune transfer.

MC Samples 1-10%
NM Sample Size 50
NM Distance Threshold 1-1071°
NM AV Threshold 1-1071°
NM Max Iterations 2000
Integration Step Size 2m/100

As described earlier, the initial and final Keplerian elements are set to those found by Roegiers due to the
difference in orbit models used. Furthermore, an initial tangential velocity of 3 km/s relative to Earth was
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used in this test case in order to limit the peak thrust of the transfer and because it would also be likely that
a mission like this would be injected directly into an Earth escape trajectory by a launcher [1]. By using these
input parameters, the results shown in Table 5.31 are found.

Table 5.31: The comparison between the AV found for the Earth - Neptune transfer using existing software and the spherical shaping
method using the new elevation shaping function.

Sph. by Novak Sph. by Roegiers  Sph. by Vroom

Launch Date ? May 10, 2021 May 10, 2021
Arrival Date ? April 26, 2058 April 26, 2058
TOF [days] ? 13500 13500
Revolutions 0 0 0
Initial Relative Velocity [km/s] 3 3 3

AV [km/s] 14.99 15.48 15.43

AV (+DITAN) [km/s] 13.34 - -

From these results, it can be concluded that a similar AV is obtained as the one found by Roegiers, but that the
AV found by Novak is lower. One potential explanation for this, might be the difference in departure date and
time-of-flight. Unfortunately, the optimal time-of-flight and departure date are not mentioned in Novak’s
PhD thesis [1]. However, as the AV found is still similar to the non-optimised value found by Novak and
Roegiers, the implementation of the spherical shaping method that uses the new elevation shaping function
is considered to have been verified with respect to this second external validation case as well.






APPLICATION

Now that the new elevation shaping function has been validated, it can be used to generate transfers for ad-
ditional problems. In this chapter, two problems will be considered: a transfer from Earth to the dwarf planet
Makemake and a transfer from Earth to the comet 2003 EH1. These targets were chosen due to their high
inclinations and because neither of these celestial bodies has been visited yet.

To obtain these transfers, the following boundaries were used for the coefficients of the Monte-Carlo method:

Table 6.1: The boundaries used for the coefficients in the Monte-Carlo method.

Coefficient ag a; a as ay as Po P1 P2 P3
Minimum  0.00 -4.00 -4.00 0.00 -4.00 -4.00 -27 -5.00 -5.00 -27
Maximum 4.00 4.00 4.00 4.00 4.00 4.00 27 5.00 5.00 27

It can be seen in this table that the bounds of the coefficients are significantly larger than those used during
the validation. This was done to allow the shaping function to take on a wider variety of shapes. However,
an additional method was used in order to guide the Monte-Carlo method. As the exponential function that
contains the coefficients ag to as replaces a? in Equation 3.15, the theoretical maximum value of a® is known
through the graph shown in Figure 3.27 and the range of azimuthal angles is known as well. Therefore, it can
be checked whether the exponential function ever becomes larger than the theoretical maximum value of a?.
If this is the case, too large coefficients were chosen by the Monte-Carlo method for the exponential function
and another set of random values for gy to as is then generated for this Monte-Carlo sample instead. These
attempts at finding appropriate values for ap to as do not count towards the maximum number of Monte-
Carlo samples.

To find the theoretical value of a? as a function of inclination, the values used to create Figure 3.27 were first
squared in order to obtain a graph showing how the value of a? changes with inclination. A least-squares
approximation was then made of the resulting graph, such that values for a? could be found for arbitrary
inclinations. To increase the accuracy of the approximation, the graph was split into a number of parts and a
separate least-squares approximation was made for each section. The function that was used to approximate
each section can be seen in Equation 6.1.

a® = |cpe!’”!

+cre®? (6.1)
in which i is the inclination in radians.

The bounds for each section of the graph, their respective values for coefficients ¢y to c¢3 and root-mean-
square-errors (RMSE) can be seen in Table 6.2.
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Table 6.2: The inclination bounds, values of coefficients and the RMSEs of the least-squares approximations.

Inclination Bounds [deg] Co C1 Co C3 RMSE [-]
[070) 2231072 412 -275107%2 -431 2.69-1072
(70 85] 1.48-107%  6.37 6.24-107'8 2895 1.22.107!
(85 87] 1.63-107%  16.00 3.24-107% 36.84 1.06
(87 88] 2.81.10716 2528 5.46.107%° 45.82 2.33
(88,90] 1.00-10* 0 0 0 -

It can be seen in this table that when the inclination is larger than 88 degrees, the theoretical value of a? is set
to be a constant value. The reason for this, is that at these inclinations, a different value for a? corresponds
to a very small difference in the inclination (see Figure 3.27) and that it becomes difficult to obtain a least-
squares approximation without splitting the graph into a large number of additional sections. By setting the
theoretical value to a sufficiently large constant value, the aforementioned check for the chosen values of the
coefficients ap to as can still be made. As the approximation is not fully accurate, the resulting theoretical
value of a? should not be treated as the maximum value directly. Instead, the theoretical value of a? was mul-
tiplied with an additional factor f, in order to obtain an upper limit for a? and to circumvent the inaccuracy
of the least-squares approximation.

The search space created by the variation of the departure time, number of revolutions and time-of-flight
was first evaluated using a grid search. Due to the computation time needed through the usage of the Monte-
Carlo and Nelder-Mead methods, a small Monte-Carlo and Nelder-Mead sample size was used to generate
trajectories for each point in the grid. The Nelder-Mead algorithm was furthermore only used if a AV lower
than a certain threshold was found by the Monte-Carlo method. In this way, the computation time of certain
combinations of departure times, number of orbits and time-of-flights that were not promising was limited.
The AV required for the software to use the Nelder-Mead algorithm was set to 50 km/s for both the transfer to
Makemake and the transfer to 2003 EH1. Additional settings used for the initial grid search can be found in
Table 6.3.

Table 6.3: The settings used for the initial grid search.

MC Samples 2000
NM Sample Size 5
NM Distance Threshold 1-1071%
NM AV Threshold 1-10710
NM Max. Iterations 100
Integration Step Size 2m/20
Factor f, 1.5

Once the optimal point in the grid was found, the trajectory using the departure date, number of revolutions
and time-of-flight of this point was further optimised using the settings shown in Table 6.4.

Table 6.4: The settings used to further optimise the best solution found by the grid search.

MC Samples 1-10°
NM Sample Size 50
NM Distance Threshold 1-1071°
NM AV Threshold 1-10710
NM Max. Iterations 2000
Integration Step Size 2m/100

Factor f, 1.5
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6.1. EARTH - MAKEMAKE TRANSFER

As mentioned previously, one of the two transfers that the spherical shaping method with the new elevation
shaping function was applied to, was a transfer from Earth to the dwarf planet Makemake. The Keplerian
elements of Earth and Makemake on January 1, 2020 (7304.5 MJD2000) were obtained from the HORIZONS
web-interface developed by the Jet Propulsion Laboratory (JPL) and can be seen in Table 6.5 [21].

Table 6.5: The Keplerian elements of Earth and Makemake at 7304.5 MJD2000 [21].

a [AU] e[-] i[deg] wldegl Q[deg] 6 [deg]
Departure Orbit  1.00  1.67-10> -3.22:.107°  -5.16  1.08-10°  -3.25
Target Orbit 45.48 1.60-1071 28.90 79.63  2.95-10° 1.69-10%

To propagate these Keplerian elements for the different launch dates used in the grid search, use was made
of the equations presented in Appendix C and Fundamentals of Astrodynamics by Wakker [4].

Firstly, the eccentric anomaly at a reference time ¢, is found from the true anomaly using Equation 6.2. In this
equation, E is the eccentric anomaly, e is the eccentricity and 6 is the true anomaly [4].

[z)-Virean()
tan|—|=1/ —tan|—- (6.2)
2 l1+e 2

This eccentric anomaly can then be converted to the mean anomaly with Equation 6.3, where M is the mean
anomaly [4].
M=E-e-sin(E) (6.3)

Using the mean anomaly at reference time %y, the propagated mean anomaly M., can be obtained from
Equation 6.4.
Mprop=Mo+n-(t—to) (6.4)

where n is the mean motion and can be found with Equation 6.5. In this equation y is the standard gravita-

tional parameter.
n=y/& (6.5)
a

This new mean anomaly can then be converted back to find the propagated eccentric anomaly. However, as
Equation 6.3 does not have a closed-form solution, a Newton-Raphson method is used to find the value of
the eccentric anomaly that corresponds to a certain mean anomaly. By iteratively solving Equation 6.6 until
the difference between Ej; and Ej is below a certain value, the eccentric anomaly can be found [4]. For this
iterative process, a threshold of 1-1072° radians was used for the difference between Ej,, and Ej, and the
maximum number of iterations was set to 1-10° in order to ensure the accuracy of the eccentric anomaly

found. £ (B — M
—e-sin -
Ejer = By — — L __prop (6.6)
1-e-cos(Ey)

Depending on the eccentricity, the following initial value for Ej was used:

M e<0.8
E= 6.7)
7 e>=0.8

Once the propagated eccentric anomaly has been found, the propagated true anomaly can be determined
using Equation 6.8. This can then be used together with the other Keplerian elements to find the propagated
initial Cartesian elements. While in practise the other Keplerian elements also change over time, they are

considered to be constant in this case.
7] l1+e E
tan|—|=1\/——tan|— (6.8)
2 l1-e 2

For the grid search, the minima, maxima and step sizes shown in Table 6.6 were used for the launch date,
time-of-flight and the number of revolutions. The launch window in this case was set such that it includes
slightly more than two synodic periods. This synodic period can, with the use of the equation shown in
Section 2.2.6, be found to be 366.67 days [22].
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Table 6.6: The minima, maxima and step sizes for the launch date, time-of-flight and the number of revolutions.

Minimum Step size Maximum

Launch Date [MJD2000] 7304.5 40 8184.5
Time-of-Flight [days] 11000 2000 40000
Number of Revolutions [-] 0 1 2

It assumed in this test case that the mission will be injected into an Earth escape trajectory using a launcher,
as was also done for the Earth - Neptune transfer. The initial tangential velocity relative to Earth is therefore
set to 3 km/s (C3 = 9 km?/s?). Using this initial relative velocity together with the inputs shown in Table 6.3
and the grid shown in Table 6.6, the following mission is found:

Table 6.7: The best trajectory found by the grid search for the Earth - Makemake transfer.

Launch Date Oct. 2, 2021
Arrival Date Feb 8, 2112
TOF [days] 33000
Revolutions 0
Initial Relative Velocity [km/s] 3

AV [km/s] 16.58
Peak thrust acceleration [m/s?] 2.17-1073

If this mission is further optimised with the parameters shown in Table 6.4, the following results are obtained:

Table 6.8: The orbit characteristics of the Earth - Makemake transfer after further optimisation.

Launch Date Oct. 2, 2021
Arrival Date Feb 8, 2112
TOF [days] 33000
Revolutions 0
Initial Relative Velocity [km/s] 3

AV [km/s] 16.53

Peak thrust acceleration [m/s?]  2.19-1073

By comparing the two tables shown above, it can be seen that the AV is slightly lower after optimisation. Fur-
thermore, the AV of 16.53 km/s is also lower than the one obtained by evaluating the grid using the currently
existing spherical shaping method, this being 23.96 km/s. While the AV could also be compared to that of
a high-thrust mission, this is deemed to not provide much additional insight, as it is known that the AV of
the high-thrust case will be smaller. The reason for this, is that a low-thrust spacecraft continuously thrusts
against the gravitational pull, whereas a high-thrust spacecraft does not due to its short thrusting time.

The control accelerations corresponding to the mission shown in Table 6.8 can be seen in Figure 6.1.
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Figure 6.1: The control accelerations of the Earth - Makemake transfer.

Furthermore, the trajectory itself has been plotted as well and can be seen in Figure 6.2.
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Figure 6.2: The Earth - Makemake transfer in the Cartesian reference frame.

From these figures, it can first of all be seen that the resulting trajectory is smooth and the control accelera-
tions are very modest. Furthermore, it appears that the high inclination does not cause any odd behaviour.
While the trajectory is likely not the most optimal one due to the chosen grid, this result does show that the
new elevation shaping function is capable of producing trajectories to high inclination targets and could thus
be used in the future to for instance generate pork-chop plots for similar problems.
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6.2. EARTH - 2003 EH1 TRANSFER

Secondly, the spherical shaping method was applied together with the new elevation shaping function to a
transfer from Earth to the comet 2003 EH1, the latter of which has a very large inclination of approximately
70 degrees. Using JPLs HORIZONS web-interface, the Keplerian elements shown in Table 6.9 were found for
January 1, 2020 (7304.5 MJD2000) [21]. These Keplerian elements were propagated in the same manner as
was done for the Earth - Makemake transfer.

Table 6.9: The Keplerian elements of Earth and 2003 EH1 at 7304.5 MJD2000 [21].

a [AU] e[-] i[deg] Q[deg] wI[degl 0O [deg]
Departure Orbit  1.00  1.67-1072 -3.22-107°  -5.16  1.08:10° -3.25
Target Orbit 3.12  6.19-107! 70.84 2.83.10> 1.72-10>  77.82

The minima, maxima and step sizes shown in Table 6.10 were used for the launch date, time-of-flight and the
number of revolutions. The launch window in this case is also chosen such that it encompasses slightly more
than two synodic periods. As the period of 2003 EH1 is 5.52 years, Equation 2.5 can be used to find that the
comet’s synodic period is approximately 446.33 days [22]. By using a launch date variation of 900 days, the
aforementioned two synodic periods can be included.

Table 6.10: The minima, maxima and step sizes for the launch date, time-of-flight and the number of revolutions.

Minimum Step size Maximum

Launch Date [MJD2000] 7304.5 30 8204.5
Time-of-Flight [days] 500 250 4500
Number of Revolutions [-] 0 1 2

Using these inputs and the same initial relative velocity as used for the Earth - Makemake transfer, the follow-
ing mission is found:

Table 6.11: The characteristics of the best trajectory found by the grid search.

Launch Date Sep. 22,2021
Arrival Date Dec. 9, 2029
TOF [days] 3000
Revolutions 0
Initial Relative Velocity [km/s] 3

AV [km/s] 24.10
Peak thrust acceleration [m/s?] 1.49-1073

By optimising this mission using the inputs shown in Table 6.4, the mission shown in Table 6.12 is the result.

Table 6.12: The trajectory characteristics after further optimisation.

Launch Date Sep. 22,2021
Arrival Date Dec. 9, 2029
TOF [days] 3000
Revolutions 0
Initial Relative Velocity [km/s] 3

AV [km/s] 22.97
Peak thrust acceleration [m/s?] 8.36-1074

It can be seen from these two tables that in this case, the optimisation slightly lowers the AV and that the
resulting peak thrust acceleration is again very modest. Highly interesting is the fact that this AVis also much
lower than the one found by evaluating the grid with the currently existing spherical shaping method. The
AV found by using the previous elevation shaping function is 50.77 km/s. This shows that the new elevation
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shaping function is capable of producing transfers to targets with high inclinations that have a much more
attainable AV.

If the transfer, departure and target orbits are plotted, Figure 6.3 can be obtained.
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Figure 6.3: The Earth - 2003 EH1 transfer in the Cartesian reference frame.

By inspecting the trajectory, it can first of all be noticed that this trajectory is also smooth and as expected. It
furthermore can be seen that the majority of the inclination change happens at a large distance from the Sun.
As this is also theoretically the most efficient way of changing the inclination, it is excellent to notice that the
algorithm found a transfer that performs its inclination change at this point to be the cheapest. This change
of inclination can also be seen by observing the control accelerations shown in Figure 6.4. It is shown here
that a large portion of the out-of-plane thrust acceleration occurs near the end of the trajectory.
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Figure 6.4: The control accelerations of the Earth - 2003 EH1 transfer.
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6.3. FLEXIBLE BOUNDARY CONDITIONS

In an attempt to further improve the solutions found, the concept of using flexible boundary conditions that
was introduced in Section 5.4.5 is applied to the trajectories found in this chapter.

6.3.1. EARTH - MAKEMAKE TRANSFER
When the methodology described in Section 5.4.5 is applied to the Earth - Makemake transfer shown in Table
6.8, the results shown in Table 6.13 can be obtained.

Table 6.13: The AVs and peak thrust accelerations found when the Earth - Makemake transfer is evaluated using various limits for the
variation of the position and velocity boundary conditions.

[6pos km], 6,¢; [km/s]] AV [km/s] Peak thrust acceleration [m/ s2]

[0, 0] 16.53 2.19-1073
(10, 0.01] 16.53 2.20-1073
(100, 0.1] 16.46 2.11-1078
(1000, 1.0] 14.54 1.49-1073

From this table, it can be concluded that the AV for the Earth - Makemake transfer decreases as the boundary
conditions are loosened. It was found that the cause of this is the change in velocity boundary conditions. For
example, when the initial velocity of the spacecraft is higher due to the flexible boundary conditions, less AV
isrequired to match the final conditions. As such, it can be concluded that using flexible boundary conditions
does not improve the AV beyond what is caused by the change in velocity boundary conditions. Thus, the
use of flexible boundary conditions does not improve the result found by the new elevation shaping function
in this case. When the trajectories corresponding to the results shown in Table 6.13 are plotted, Figure 6.5 can

be found.
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Figure 6.5: Comparison between the Earth - Makemake transfers using various restrictions on the boundary conditions.

It can be seen from this figure that these trajectories are all smooth as expected and that they closely coincide.
This indicates that the new elevation shaping function is also capable of producing viable trajectories for this
case when the boundary conditions are loosened.
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6.3.2. EARTH - 2003 EH1 TRANSFER
The same methodology described previously can also be applied to the Earth - 2003 EH1 transfer shown in
Table 6.12. By varying the boundary conditions, the results shown in Table 6.14 can be obtained.

Table 6.14: The AVs and peak thrust accelerations found when the Earth - 2003 EH1 transfer is evaluated using various limits for the
variation of the position and velocity boundary conditions.

[6pos lkm], 6,¢; [km/s]] AV [km/s] Peak thrust acceleration [m/ s2]

[0, 0] 22.97 8.36:107%
(10, 0.01] 22.95 7.85-107*
(100, 0.1] 22.94 7.19-107%
(1000, 1.0] 21.05 5.35-107%

From these results, it can be concluded that the AV of the Earth - 2003 EH1 transfer also decreases as the
boundary conditions are set to be more flexible. It was found that in this case, it also caused by the change
in velocity boundaries, as was the case for the Earth - Makemake transfer. As such, loosening the boundary
conditions does not seem to improve the result found for this case either. Nonetheless, when the four trajec-
tories are plotted, it can be seen that in this case they are also all smooth and highly similar. As mentioned
previously, this shows that loosening the boundary conditions still allows the new elevation shaping function
to generate trajectories to high inclination targets.
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Figure 6.6: Comparison between the Earth - 2003 EH1 transfers using various restrictions on the boundary conditions.

6.4. SOLUTION RELIABILITY

To evaluate the reliability of the solutions found, the optimisation of the mission shown in Table 6.7 is per-
formed an additional five times with different seeds for the pseudorandom number generator used by the
Monte-Carlo method. By comparing the AVs found, the reliability of the solutions can be evaluated. The AVs
obtained for the five additional runs can be see in Table 6.15.
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Table 6.15: The AVs of the five additional optimisation runs.

Run #1 #2 #3 #4 #5
AV [km/s] 16.528 16.528 16.524 16.528 16.527

By comparing the AVs shown in Table 6.15 with each other and the AV of 16.528 km/s found previously, it
can be seen that the maximum variation in AV is approximately 4 m/s. This small variation in AV can also be
observed by comparing the control accelerations shown in Figures 6.7 and 6.1.
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Figure 6.7: The control accelerations of the five additional optimisation runs.

It can be seen here that tangential control accelerations are equal and that the maximum difference between
the out-of-plane control accelerations is less than 8-107° m/s?. This similarity in control accelerations also
causes the five corresponding trajectories to be highly similar, as can be seen in Figure 6.8.
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Figure 6.8: The trajectories of the five additional optimisation runs.
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The small differences in the AVs, control accelerations and the trajectories show that the solution is reliable
when the best point found by the grid search is used. However, it should be noted here that Table 6.15 shows
that a lower AV than the one shown in Table 6.8 was found in these additional runs and that the values of the
shaping function’s coefficients were found to be significantly different for each run. These two observations
support the hypothesis mentioned in Chapter 5 that the optimisation algorithm has some difficulty finding
the global minimum. The grid search itself should therefore also be run multiple times and the results should
be compared in order to obtain a full analysis of the solution reliability. As this analysis could not be done dur-
ing this thesis, it is highly recommended that future research evaluates this optimisation procedure further.
For reference, the values of the shaping function’s coefficients are shown in Appendix H.






CONCLUSIONS AND RECOMMENDATIONS

In this chapter, the numerous conclusions drawn throughout the development process of a more accurate
elevation shaping function for the spherical shaping method are summarised. Furthermore, a number of
recommendations for future research regarding this function are giving in this chapter as well.

7.1. CONCLUSIONS

As a large portion of this thesis can effectively be broken down into four phases, the conclusions drawn have
been divided into these phases as well. These phases consist of the development, implementation, validation
and application of the new elevation shaping function.

7.1.1. DEVELOPMENT

During the development, the ability of three potential methods to obtain the new elevation shaping function
was evaluated with the use of a number of test cases. These methods included the usage of spherical trian-
gles, Fourier series and an alternative function that was found during the development, the first of which was
found to have least potential of resulting in an elevation shaping function.

It was concluded that in order to be able to accurately follow perturbed orbits, the coefficients of the Fourier
series and the alternative function should have the capacity to change with the azimuthal angle. A number
of candidate functions capable of describing these changes were found by splitting each perturbed orbit into
numerous unperturbed orbits and by using the MATLAB curve fitting application to generate graphs show-
ing the variation of the function’s coefficients as a function of the azimuthal angle for each case. Using this
methodology, the Fourier series could be discarded due to the larger number of coefficients needed and the
significantly higher root-mean-square error (RMSE) at high inclinations.

The various combinations of the aforementioned candidate functions were then evaluated for their ability to
model the predefined test cases. After substitution of the best combination into the alternative function, the
new elevation shaping function was found.

7.1.2. IMPLEMENTATION

To implement the new elevation shaping function, use was made of the spherical shaping method’s cur-
rently existing methodology. By replacing the previous elevation shaping function with the new function and
keeping the same process of finding trajectories, the new elevation shaping function was incorporated in the
spherical shaping method.

As four boundary conditions were available for the elevation shaping function but 14 coefficients needed
to be solved, it was concluded that the coefficients by, b;, b, and ¢ could be found using these boundary
conditions and the remaining coefficients could be found through optimisation. This optimisation process
consisted of using the Monte-Carlo method to perform an initial global search and a further optimisation of
a predefined number of the best solutions found with the Nelder-Mead method.
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7.1.3. VALIDATION

By using a number of internal and external validation cases, it was found that the new elevation shaping
function is much more capable of modelling transfers at high inclinations than the previous one and that the
curvature does not become negative at inclinations where it would if this previous elevation shaping func-
tion was used. Despite the new elevation shaping function being more capable of modelling these transfers,
a significant error was still found when transfers with high inclinations were simulated. A similar conclusion
was drawn for cases with a high inclination where a Keplerian orbit or a change in RAAN was simulated. With
regards to the former, it was noticed that when a Keplerian orbit with an inclination of 50 degrees was simu-
lated, even a small RMSE with respect to the theoretical case resulted in a large AV. It was predicted that this
effect will increase as the inclination increases.

By comparing the RMSE predicted during the development with the RMSE observed during the validation,
it was noticed that the RMSE was significantly higher than initially predicted using the MATLAB curve fit-
ting toolbox. As the aforementioned toolbox does not strictly enforce the boundary conditions, whereas the
spherical shaping method does, it was investigated whether using more flexible position and velocity bound-
ary conditions could improve the solution found.

It was determined that using these flexible boundary conditions could indeed significantly reduce the AV
found when the aforementioned Keplerian orbit at an inclination of 50 degrees was approximated. Fur-
thermore, it was found that the new elevation shaping function is much more capable of modelling half a
Keplerian orbit than a full revolution. When half a Keplerian orbit was approximated, it was however seen
that loosening the boundary conditions did not always improve the AV found. It was concluded that this
was caused by the optimisation procedure having difficulty finding the global minimum, as the AV found
when the boundary conditions are set to be more flexible should not be higher than when the boundary con-
ditions are more strict. Lastly, it was also noticed that increasing the number of Monte-Carlo samples and
the number of points optimised with the Nelder-Mead algorithm greatly reduced the AV as well. However,
the resulting computation time became impractical when this was done and this increase was therefore not
considered for further usage.

7.1.4. APPLICATION

It was found that the spherical shaping method with the new elevation shaping function was capable of pro-
ducing smooth trajectories to the dwarf planet Makemake and the comet 2003 EH1, despite the latter having
an inclination of approximately 70 degrees. It was noticed that the AVs found were also significantly smaller
than those of trajectories obtained using the previous elevation shaping function.

In the Earth - 2003 EH1 transfer, it was furthermore seen that a large portion of the inclination change was
performed at a large distance from the Sun. As this is the most efficient way of changing the inclination, it
can be concluded that the new elevation shaping function is therefore highly promising.

The concept of using flexible boundary conditions was furthermore applied to the Earth - Makemake and
Earth - 2003 EH1 transfers. However, no improvement of the AV beyond what was caused by the change in
velocity boundary conditions was seen here. Nonetheless, as the trajectories obtained were all also smooth
and highly similar, the new elevation shaping function was found to still be capable of producing viable tra-
jectories for these cases when flexible boundary conditions were used.

Lastly, the reliability of the solutions was evaluated by performing the secondary optimisation of the Earth
- Makemake transfer found by the grid search five additional times with different seeds for the pseudoran-
dom number generator used by the Monte-Carlo method. By comparing the resulting AVs, it was found that
the maximum variation in AV was approximately 4 m/s and that the control accelerations were highly sim-
ilar. While these small differences show the solution’s reliability, a solution with a lower AV than the one of
the initial solution was also found in these five additional runs. Furthermore, it was also noticed that the
determined values of the shaping function’s coefficients were significantly different for each run. The lat-
ter two observations support the conclusion that the optimisation method has difficulty finding the global
minimum.
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7.2. RECOMMENDATIONS

Based on the development process and the results found, a number of recommendations can be made for
the further development of the spherical shaping method and the new elevation shaping function.

7.2.1. OPTIMISATION TECHNIQUE

As mentioned in this thesis, the optimisation technique used was found to be suboptimal. This could among
others be seen in the fact that a higher AV was sometimes found when the boundary conditions were loos-
ened, whereas a lower or equal AV should have been the result. As such, it is highly recommended that future
research looks more into the optimisation process.

For example, one could look at replacing the Monte-Carlo method. Due to the dimension of the problem, a
large number of function evaluations is required to obtain a good distribution over the search space. A good
alternative could for instance be the use of Sobol sampling. Where the Monte-Carlo method uses random
generation of coefficient values, Sobol sampling generates these values quasi-randomly. This is done in a
manner that ensures coverage throughout the search space. Another option would be to further increase the
number of Monte-Carlo samples and the number of points optimised using the Nelder-Mead algorithm, as
this was found to significantly reduce the AV during the thesis. However, as this would increase the compu-
tation time drastically, it may be necessary to use parallel computing to prevent the computation time from
increasing too much.

Another option would be to reduce the number of Monte-Carlo samples needed through assuming certain
values for coefficients in particular cases. One such case could be when the inclination stays constant. As
a? in the original function is dependent on the inclination, it should stay constant when the inclination does
not change. Therefore, the exponential part of the elevation shaping function which replaces a? should stay
constant in such a case as well, meaning that the coefficients a; to as could theoretically be set to zero. Simi-
larly, this could also be done for the coefficients py and p; that simulate the change in right ascension of the
ascending node. However, as restricting the coefficient values could also exclude more optimal trajectories
in certain cases, care should be taken when assuming certain values for coefficients.

Furthermore, the points found by the Monte-Carlo method are currently sorted based on their AV and the
N best points are optimised using the Nelder-Mead method. A potential problem with this is that multiple
points can lay close to each other and that the Nelder-Mead optimisation of these points therefore finds the
same local minimum. To prevent this, an additional check could be implemented that requires the points to
be a certain distance away from each other. If the Euclidean distance to the next point to be optimised using
the Nelder-Mead method is smaller than this amount, a different point that was found by the Monte-Carlo
method or Sobol sampling could be chosen instead.

7.2.2. LOOSENING OF THE BOUNDARY CONDITIONS

Lastly, future research could look more into the loosening of the boundary conditions. It was found that by
doing so, the AV could be improved beyond the decrease in AV needed to meet the lower velocity boundary
conditions. As the RMSE of some of the validation cases is furthermore still larger than was predicted during
the development of the shaping function and loosening the boundary conditions could resolve this, further
research into this is highly recommended.






COORDINATE SYSTEM TRANSFORMATIONS

In the application of the spherical shaping method, various coordinate system transformations are used. This

appendix elaborates on these transformations.

A.1. ORBITAL ELEMENTS TO CARTESIAN COORDINATES

To transform a spacecraft’s position and velocity known in terms of orbital elements into Cartesian coordi-
nates, the set of equations shown below can be used. For the derivation of these equations, the reader is

referred to the book Fundamentals of Astrodynamics by Wakker [4].

The relation between the spacecraft’s position and velocity in rectangular coordinates and orbital elements is

shown below as Equation A.1 [4].
x=lLE+ by = % [~1,50) + L (e + ¢(0))]
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and:
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A.2. CARTESIAN COORDINATES TO SPHERICAL COORDINATES

To obtain the spherical coordinates from the Cartesian coordinates, Equation A.4 can be used [2].
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Furthermore, the velocities in the spherical coordinate system can be found with Equation A.5 [2].
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REFERENCE FRAMES

In this thesis, a number of reference frames are used. This appendix will therefore discuss a multitude of
inertial and rotation reference frames and the corresponding transformation matrices.

B.1. INERTIAL REFERENCE FRAMES

From the laws discussed in Section 2.2.1, it can be noted that the first law defines an inertial reference frame
as a frame in which a particle is in a state of rest or uniform motion if no force is acting upon it. Furthermore,
it can be seen that if an inertial reference frame is defined, the second law describes a relation between the
time rate of change of linear momentum and the resultant force acting upon the particle. An inertial reference
frame should therefore be defined to be able to use Newton’s second law of motion.

B.1.1. HELIOCENTRIC ARIES ECLIPTIC (XYZ)

For interplanetary trajectory planning, mainly the heliocentric Aries ecliptic (HAE) system is used. This iner-
tial reference frame has its XY-plane lying in the ecliptic plane, Z-axis towards the ecliptic north pole, X-axis
pointing towards the vernal equinox Y, Y-axis complementing the system and the Sun as its origin, as can be
seen in Figure B.1 [23]. In this definition, the ecliptic is the plane of the Earth’s orbit around the Sun and the
equinox is the intersection of this ecliptic with the Earth’s equatorial plane [24].

Figure B.1: The axes of the heliocentric Aries ecliptic (HAE) reference frame [23].

B.1.2. PERIFOCAL (PQW)

A second inertial system that can be used, is the perifocal reference frame. This frame consists of a P-axis
pointing towards the perihelion of the orbit of the object, an in-orbit Q-axis which is perpendicular to the
P-axis and a W-axis that completes the system. As such, the PQ plane coincides with the orbital plane and the
system’s origin is the Sun [25]. This can also be seen in Figure B.2 [23].
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Figure B.2: The perifocal (PQW) reference frame and its axes [23].

B.2. ROTATING REFERENCE FRAMES

Rotating reference frames, as the name suggests, rotate with respect to an inertial reference frame and are
thus non-inertial coordinate systems. This subsection will discuss the three most often used rotating refer-
ence frames.

B.2.1. RADIAL-ORTHORADIAL-OUT-OF-PLANE (IJK)

This frame uses the Sun as its origin and an I-axis that points towards the orbiting body. Furthermore, the
in-plane J-axis is defined perpendicular to this [-axis and the K-axis then complements the system. This
reference frame can be considered to be a "local coordinate system", due to it rotating as the body orbits the
Sun [25]. Again, a graphical representation of this reference frame can be seen in Figure B.3 [23].

Figure B.3: A graphical representation of the radial-orthoradial-out-of-plane (IJK) reference frame [23].

B.2.2. RADIAL-TRANSVERSE-NORMAL (RSW)

Furthermore, one can consider the radial-transverse-normal frame. This frame, also known as the RSW-
frame, uses the orbiting object as its origin and an R-axis that is radially coming from the Sun. As a secondary
and tertiary axis, it uses an in-plane S-axis perpendicular to the R-axis and a W-axis that completes the right-
handed system [26]. The RS-plane therefore again coincides with the orbital plane, as can be seen in Figure
B.4 [23]. It can be noted here that the RSW-frame is essentially a translated version of the IJK-frame, as can
also be found by comparing the figure shown below and Figure B.3.
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Figure B.4: The radial-transverse-normal (RSW) reference frame and the direction of its axes [23].

B.2.3. VELOCITY-FIXED (CDE)

Lastly, the velocity-fixed reference frame can be introduced. This frame has its C-axis pointing along the
velocity vector and the D-axis perpendicular to the C-axis, in the orbital plane and thus pointing towards the
central body in case of a circular orbit [27]. The E-axis complements the system as shown in Figure B.5 [23].

Figure B.5: The definition of the velocity-fixed (CDE) reference frame [23].

B.3. TRANSFORMATIONS

In order to change between the different reference frames mentioned previously, a number of transformation
matrices are required. This section will elaborate on these matrices.

B.3.1. TRANSFORMATION MATRICES
For every rotation about one of the axes, the following three transformation matrices can be defined [25]:

1 0 0 cos(n) 0 =sin(n) cos(n) sin(m) O
nx=10 cos(n) sinm) ny= 0 1 0 Nz=|—sin(m) cosm O
0 -sin(m) cosmn) sin(n) 0 cos(n) 0 0 1

These three matrices form the fundamental rotation matrices and can be used to transform vectors from one
reference frame into another, and will be used to do so in the upcoming sections.

B.3.2. RADIAL-ORTHORADIAL-OUT-OF-PLANE TO HELIOCENTRIC ARIES ECLIPTIC
To transform the radial-orthoradial-out-of-plane (IJK) frame into the heliocentric Aries ecliptic (XYZ) frame,
it can first be noted that the position vector in the initial reference frame is r = [r 0 0] T and that the velocity
vector is given by V= [# r# 0] T. The transformation can now be carried out with the following three steps:

1. Rotation of — (w + 8) about the K-axis

2. Rotation of (—i) about the new X’-axis

3. Rotation of (—Q) about the resulting Z"-axis
Substitution of these angles into the fundamental transformation matrices results in Equation B.1 [25].

r = Q) =i [(Q+0)1 P (B.1)
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By writing out the equation shown above and defining cos() as c(), sin() as s() and (w + 0) as y, Equation B.2
can now be found.

X c(©) -s(Q) O0][1 0 0 cx) —-stx) O] [r
Y[=[s€Q) ¢ 0]]0 c@) -s@f]|s¢x) cx) 0f]|O0
z 0 o 1]lo s <@ 0 o 1] o (B.2)
=Tskexyzr
where the complete transformation matrix T(;jx2xyz) can also be rewritten to:
c(Qec(y) —s@s(pc@) —c(@sy) —sQc(c@)  s(Q)s@)
Tujxexvzy = [ Q) c(x) +c(Q)s(y)ec@)  —s(Q)s(x) +c(@c(y)ec@) —c(Q)s(i) (B.3)
s(y)s() c(x)s(@) c(i)

For these equations, the properties cos(—n) = cos(n) and sin(—n) = —sin(n) were used. The transformed ve-
locity vector can now also be found by simply multiplying the initial vector [7 r 0] with this transformation
matrix.

B.3.3. RADIAL-ORTHORADIAL-OQUT-OF-PLANE TO PERIFOCAL

From the figures shown in Section B.1, one can note that both reference frames have the Sun as their origin
and have a plane that coincides with the orbital plane. As such, the transformation only consists of a rotation
of -0, the true anomaly, around the Z-axis. The transformation matrix T(;;x2pqw) becomes [25]:

cos(@) -—sin@) 0
sin@) cos@ O
0 0 1

Tjxepow) = (B.4)

B.3.4. RADIAL-TRANSVERSE-NORMAL TO PERIFOCAL

To convert between the radial-transverse-normal frame and the perifocal frame, one should rotate —6 around
the Z-axis and translate the frame such that it uses the origin of the perifocal frame. The transformation
matrix T(RSWZPQW) is thus [26]:

cos(@) -sin@ 0
sin(@) cos@) 0
0 0 1

PQW

+r) (B.5)

Trswaprow) =

where rgQW denotes the vector that translates the frame such that it uses the central body as its origin instead

of the orbiting object.

B.3.5. RADIAL-TRANSVERSE-NORMAL TO HELIOCENTRIC ARIES ECLIPTIC

As mentioned earlier, the difference between the IJK-Frame and the RSW-Frame is a simple translation. As
such, the rotation matrices are the same. In order to convert between the RSW- and XYZ-Frame, Equation B.3
can thus be used as rotation matrix and a vector rg( YZ containing the required translation can be added. The

transformation matrix is therefore [26]:

c@Q)c(y) —s@Q)s(pc@) —c(Q)s(y) —sQc(y)c(@  s(Q)s(i)

sQe() +c@)s(pcl@) —s@s(y) +c@ec(y)cd) —c(@)s(i)
s()s@) c(y)si) c(i)

Trswaxyz) = +1)"7 (B.6)

where for ease of reading, y is defined as being equal to (w + ).

B.3.6. PERIFOCAL TO HELIOCENTRIC ARIES ECLIPTIC

It can be noted that, if the true anomaly is set to zero, the radial-orthoradial-out-of-plane (IJK) and perifocal
(PQW) systems would align. The matrix found for the IJK-to-XYZ transformation can then be used to con-
vert the perifocal PQW-Frame to the heliocentric Aries ecliptic XYZ-Frame [25]. In short, the transformation
matrix becomes:

c(Qc(w)—sQ)s(w)c(i) —-c(Q)s(w)—sQ)clw)c@)  sQ)s(i)

S(Q)c(w) +c(Q)s(w)c(i) —s(Q)s(w) +c(Q)c(w)c(i) —c()s(i)
s(w)s(i) c(w)s(i) c(i)

Tipowexyz) = (B.7)
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B.3.7. VELOCITY-FIXED TO RADIAL-TRANSVERSE-NORMAL

In order to complete the set of transformation matrices, a transformation between the velocity-fixed reference
frame and the previously mentioned reference frames is required. From the figures shown in Section B.2.3, it
can be noted that a simple rotation around the out-of-plane axis is sufficient to transform the CDE-frame to
the RSW-frame. The transformation matrix therefore becomes:

cos(a) sin(a) O
Tcprzrsw) = | —sin(a) cos(@) 0 (B.8)
0 0 1

where «a is the angle between the radius vector and the spacecraft’s velocity. If one defines the flight path angle
v as the angle between the local horizontal and the velocity vector, it can be found that @ = 90° -y, as shown
in Figure B.6. By using the transformation matrices previously discussed in this chapter, the velocity-fixed
reference frame can now be transformed to the other reference frames.

\"

Central body

Figure B.6: The definition of the flight path angle and a with respect to the local horizontal vector ey, the velocity vector V and the radial
unit vector e.






PROPERTIES OF KEPLER ORBITS

As mentioned in Section 2.2.4, Kepler orbits are the solutions found to the two-body problem when the mass
of the central body is assumed to be much larger than that of the satellite. Properties of the elliptical, parabolic
and hyperbolic orbits can be seen in Table C.1 [28]. Due to a circular orbit being a special case of the elliptical

one, it is not shown separately in this table.

Table C.1: Mathematical properties of elliptical, parabolic and hyperbolic orbits [28].

Ellipse Parabola Hyperbola
z z z z
P : ; oy 2 _ Xy
arametric equation St = 1 x“=4qy — =1
a? b2 ) ) a*  b? )
. a(l—e”) D 2q a(l—-e”)
Focal distance r a(l—-ecos(E)) or ———— +— o ——— a(l—-ecosh(F)) or ———
( (E) 1+ecos(0) a 2 1+ cos(0) ( () 1+ecos(9)
Eccentricity e O<ec<l 1 >1
Semi-major axis a 0<a<oo e’} <0
Mean motion n \/ ulad \ ul p3 Vil (=a3)
Mean anomaly M n(t—tg) n(t—tp) n(t— tg)
E 1—e)\l/2 0 F 1—e\l/2 0
Eccentric anomaly E,D,F mn(f) = (—e mn(f D= ,/2q~tan(f) tanh(f) = (—e) tan(f)
2 1+e 2 2 2 l+e 2

True anomaly 8

[2)-(28)" = (3)
tan|-|=(—— tan|—
2 l1-e 2

— D
H:amnz((p r P

r 'r\/ﬁ

) wle)-(5

1/2 (F)
tan| —
2
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VERIFICATION OF EQUATIONS FOUND IN
LITERATURE

Several equations obtained from literature are used in this thesis. In order to verify these equations, this
appendix shall elaborate on their derivations.

D.1. RELATIONS FOUND USING SPHERICAL TRIANGLES

As mentioned in Section 3.1.1, Vinti et al. found several relations between the orbital elements using spherical
triangles. This section shall elaborate upon the derivation process of the four relations shown in Equation 3.1.
For convenience, these four relations can also be found in Equation D.1 [13].

sin(¢) =sin(i)sin(w+0)

cos(p) =cos(@—Q) cos(+0)+sin(a—Q)sin(w+0)cos (i)
cos(w+06) = cos(¢p) cos(a-Q)

cos(¢) sin(a—Q) = sin(w+6) cos (i)

(D.1)

where the definition of the variables can be seen in Figure 2.1 [4].

It can first be noted that to derive the relations shown in Equation D.1, the law of sines and Figure 2.1 can be
used to find the following relation:
sin(¢)  sin(w+06)

= (D.2)
sin(i) sin(m/2)
As sin(m/2) is equal to one, this equation can be rewritten to:
sin(¢p)=sin(@)sin(w+0) (D.3)

This is the first relation shown in Equation D.1. Furthermore, as shown in Equation D.4, the second relation
can be obtained by using the law of cosines.

cos(¢) = cos(a—Q) cos(w+6)+sin(a—Q) sin(w+06)cos (i) (D.4)
In a similar manner, the following equation can also be found by using the law of cosines and Figure 2.1:
cos(w+0) = cos(¢p) cos(a—Q) +sin(p)sin(a—Q)cos(w/2) (D.5)

As cos (/2) is equal to zero, this can be rewritten to Equation D.6. This is the third relation shown in Equation
D.1.
cos(w+0) = cos(¢p) cos(a—Q) (D.6)

To find the last relation, one should first multiply Equation D.4 by sin (a — Q). This results in Equation D.7.

cos(¢p)sin(a-Q) = cos(@—-Q)sin(a-Q)+sin®(@-Q)sin(w+0)sin() (D.7)
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By substituting Equation D.6 into this equation, the following relation can be obtained:
cos(¢p) sin(a—Q) = cos* (@—Q) cos(¢p) sin(a—Q) +sin® (@—Q) sin(w+0) cos (i) (D.8)
This equation can then be rewritten to Equation D.9.
cos(¢p)sin(a—-Q)(1- cos® (a— Q) = sin®(@—Q)sin(w+0)cos (i) (D.9)
As the last part of the left-hand side of this equation is equal to sin? (@ — Q), this equation can be rewritten to:
cos(¢p)sin(a—Q) sin®(@—Q) =sin®(@—-Q)sin(w+0)cos (i) (D.10)

By dividing the equation shown above by si n? (a@ — Q), the fourth relation shown in Equation D.1 can now be
obtained.
cos(¢p) sin(a—Q) =sin(w+06) cos(i) (D.11)

D.2. VARIATION OF THE ELEVATION ANGLE

In this thesis, a relation between the inclination 7, right ascension of the ascending node (RAAN) Q, azimuthal
angle 6 and the elevation angle ¢ found by Novak is used. The relation can be seen in Equation D.12 [1]. To
verify this equation, it is re-derived in this section.

sin@—Q)sin(i)

sin(p) = (D.12)
Vsin? (0 —Q) + cos? (0 — Q) cos? (i)
One can start the derivation by assuming that the following two equations hold:
(e xm)-e;=0
' ‘ (D.13)

Qxm)xe,=0

The definition of these vectors can be seen in Figure D.1 [1].

eh\<i/

O

Figure D.1: The definition of the vectors used in the derivation [1].

In this figure, e,, ej, and Q are the unit vectors in the direction of the radius vector, angular momentum and
RAAN, 7 is the unit vector in the direction of the orthogonal projection of e, onto the equatorial plane and
e is the unit vector perpendicular to this plane. Furthermore, i is the inclination, 0 is the azimuthal angle, ¢
is the elevation angle and f is the summation of the argument of pericenter and the true anomaly [1].

From Figure D.1, it can be concluded that the first assumption shown in Equation D.12 is valid due to (e, x i)
being perpendicular to e, and that the second assumption is valid due to the fact that (Q x ) is parallel to e;.

Next, one can write (£ x i) - (2 x e;) as shown below:
Qxmx)- xe)=sin@)-e;- (D xe;) (D.14)
which, using the geometric properties of the dot product and cross product, can be rewritten to:

Q@ x7m)-(Qxe)=sin0)- e, (sin(f) en) (D.15)
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Using the same set of equations to rewrite the dot product and cross product, one can find that this in turn
can be written as shown in Equation D.16.

Q@ x7)-(Qxe)=sin) sin(f)eze,=sin®)sin(f)cos() (D.16)

Furthermore, one can note that instead of writing (Q x 7) - (Q x e,) as shown in Equation D.14, it can also be
written as shown below:
(Qxm)-(Q2xe)=((2xmx)*xQ)- e, (D.17)

which, as the length of the unit vector Q is 1, can be rewritten to:
Qxm)- (Qxe)=7m-e,—cosO)(Q-e;) (D.18)

Using the geometric properties of the dot product and cross product mentioned earlier, Equation D.19 can
now be found.
(Qx7)-(Qxe)=cos(¢p)—cos®) cos(f) (D.19)

As Equation D.16 and D.19 should be equal, Equation D.20 can be obtained.
cos(¢p) = cos(O) cos(f)+sin©®) sin(f)cos (@) (D.20)

Next, it can be noted that as (Q x i) is in the same direction as e, and since (e, x i) - e; = 0, the following
equation holds as well:
(e, xm)-(xm)=0 (D.21)

By again using the properties of the dot product and cross product, this can be rewritten to:
(e, x 1) - (Q x ) = cos(f) — cos(0) cos(p) =0 (D.22)

from which one can now find:
cos(f) =cos(6) cos(¢) (D.23)

By substituting Equation D.20 into the equation shown above, Equation D.24 is the result.
cos(f) =cos () (sin (@) sin(f)cos(i)+cos @) cos(f)) (D.24)
By dividing this equation by cos(f), one now obtains the equation shown below:
1=cos(0) (sin©®) tan(f)cos (i) + cos(0)) (D.25)
which is in turn equal to Equation D.26.
1=cos(0)sin (@) tan(f)cos(i)+ cos® ©0) (D.26)
If cos? () is now subtracted from both sides, Equation D.27 is the result.
1—cos® () = cos(©0) sin(0) tan (f)cos(®) (D.27)
By using the fact that sin? () + cos? () = 1, this can be rewritten to:
sin®(0) = cos(0) sin(0) tan(f) cos (i) (D.28)
If this equation is subsequently divided by cos (0) sin (), Equation D.29 is found.

sinly)
cos(f)

If one now uses the properties z = rsin (i) sin(f) and sin(¢) = z/r, Equation D.30 can be derived.

tan () = cos (i) =cos(i) tan(f) (D.29)

sin(9)

sin(i)

sin(¢p) =sin@@)sin(f) — sin(f) = (D.30)



98 D. VERIFICATION OF EQUATIONS FOUND IN LITERATURE

When Equation D.30 is now substituted into Equation D.29 and if the property sin?(f) + cos® (f) = 1 is used,

Equation D.31 can now be obtained.

tan(0) = cos(i) Stn ((P)
in (i) 1_Si”2((/’)
sin(i 0% (9)
which, if multiplied by \/ 1-sin?(p)/cos?(¢p), results in:
sin(¢) . sin(¢)

tan@),|1- —c032 ((,b) =cos (i) sin ()

By squaring the equation shown above, Equation D.33 is now found.

(¢)) o ST 0)

cos?(¢) sin? (i)

tan® @) (1 -

Once the brackets have been removed from this equation, Equation D.34 is the result:

. 2 )
tan®(0) - tan® ©) Stn ((b) =cos? (i) &2(([))
cos?(¢) sin? (i)
By adding tan? () sin®(¢) /sin® (i) to this equation, the following equation is found:

in? (o) . tan® (0) sin®(¢)
0s? (¢) sin? (i)

tan®0) = cos® (i) s
c

which, by introducing brackets can be rewritten to:

cos® (i) + tan?® 0)
sin? (i)

tan® 0) = sin”(¢)

By attempting to keep only sin?(¢) on the right-hand side, Equation D.37 is now obtained.

e D
sin- (i) i ¢)

2
tan”(0) cos? (i) + ran® (@) ~

If the tangent is now written in its cosine and sine component, the following equation is found:

sin? () sin? (i)

. 2
=sin
cos?(0) cos? (i) + sin® () ()
cos? (0)
which, when combined into a single fraction results in:
. 2 H . 2 .
sin-(0)sin“ (i) —sin? ((P)

cos? (0) cos? (i) + sin @)

(D.31)

(D.32)

(D.33)

(D.34)

(D.35)

(D.36)

(D.37)

(D.38)

(D.39)

Once the square root is taken of this equation and 8 is replaced by (8 — Q) for generalisation, the equation

shown in Novak’s PhD thesis is found [1].



VARIATION OF THE FOURIER SERIES
COEFFICIENTS

As mentioned in Section 3.3.2, the variation of each of the coefficients in the third-order Fourier series was
determined for a number of test cases. This appendix contains the plots for the coefficients that were not
discussed in Section 3.3.2.
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Figure E.1: The variation of the coefficient a; for cases 2, 5, 6 and 7.
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Figure E.2: The value of the coefficient ay as a function of the azimuthal angle for cases 1, 2, 5, 6,7, 8 and 9.

99



100 E. VARIATION OF THE FOURIER SERIES COEFFICIENTS

-5
0 x10, :
0.5 5
% Ar 1
©
=
o
Qo
g
8 150 5
2+ -
25 | | | | | | | |
2000 4000 6000 8000 10000 12000 14000 16000 18000
Azimuthal angle ¢ [deg]
Figure E.3: The variation of the coefficient ay for cases 3 and 4.
0.6 T
—Case 1
—~+Case 2
051 —Case 5[]
—~Case 6
—~Case 7
0.4 il
> 031 i
=
o
Qo
g 0.2 B
o
0.4 5
0 B et -
-0.1 L 1 1 I I L L I
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Azimuthal angle ¢ [deg]
Figure E.4: The variation of the coefficient a3 for cases 1, 2, 5, 6 and 7.
10
8~ 7 t ul T
7k |
6l il
= 5F :
-
©
=
S 4 5
°
@
jo3
O 3+ -
ol il
ik il
0 | | | | | | |
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Azimuthal angle 0 [deg]

Figure E.5: The value of the coefficient a3 as a function of the azimuthal angle for cases 3 and 4.
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FOURIER COEFFICIENTS AS FUNCTION OF
INCLINATION

To illustrate the behaviour of the coefficients used in the third-order Fourier series, their variation has been

plotted as a function of inclination. This appendix contains the plots for the coefficients that are not discussed
in Section 3.3.2.
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Figure E1: The variation of the coefficient ag as a function of inclination.
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OUT-OF-PLANE MOTION FOR CASES WITH
FLEXIBLE BOUNDARY CONDITIONS

During the validation of the developed elevation shaping function, it was tested whether relaxing the bound-
ary conditions improves the resulting trajectory. This was done by attempting to follow a circular orbit with a
constant inclination of 50 degrees and semi-major axis of 1 AU. This appendix shows the variation of the el-
evation angle as a function of the azimuthal angle when various limits for the boundary conditions are used.
In the plots shown in this appendix, the elevation angle of the aforementioned circular orbit is plotted as the
theoretical value.

When the circular orbit is followed from a true anomaly of 0 to 180 degrees, Figure G.1 can be obtained. With
regards to the legend, it should be mentioned that the values between the brackets indicate the maximum dif-
ference in Cartesian coordinates in kilometres and velocities in kilometres per second respectively. The same
maximum variation was used for each direction in the Cartesian coordinate system and the same settings
were used for both the initial and final states.
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Figure G.1: The variation of the elevation angle as a function of the azimuthal angle when various limits for the boundary conditions are
used and a circular orbit at 50 degrees inclination with a semi-major axis of 1 AU is followed from a true anomaly of 0 to 180 degrees.
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If the orbit is instead followed from a true anomaly of 90 to 270 degrees, Figure G.2 is the result.
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Figure G.2: The variation of the elevation angle as a function of the azimuthal angle when various limits for the boundary conditions are
used and a circular orbit at 50 degrees inclination with a semi-major axis of 1 AU is followed from a true anomaly of 90 to 270 degrees.



EARTH - MAKEMAKE TRANSFER
COEFFICIENT VALUES

To evaluate the robustness of the solution methodology, the optimisation of the Earth - Makemake trans-
fer found by the grid search was performed five additional times with different seeds for the pseudorandom
number generator used by the Monte-Carlo method. The determined values of the shaping function’s coeffi-
cients can be seen Tables H.1 to H.3.

Table H.1: The values of the coefficients rg to rg for the five additional optimisation runs.

Run ) r o 3 Ty Ts e
1 1.08 -7.94.1007 1181077 -836-107% -9.22.107° 8.93-10°" 2.01-107"
2 1.08 -7.94.107! 1.18107' -8.36:107%> -9.22.107> 8.93-10°! 2.01-107*
3 1.08 -7.94.107' 1.18-107! -8.36:107% -9.22.107% 8.93-107! 2.01-107!
4 1.08 -7.94.107' 1.18107! -8.36:107% -9.22.107% 8.93-107! 2.01-107!
5 1.08 -7.94.107' 1.18107! -8.36:107%2 -9.22.1072 8.93-.107! 2.01-107!
Table H.2: The values of the coefficients ag to pg for the five additional optimisation runs.
Run ap a a as as as Po
1 -2.29 -2.29 -5.80 1.84 -0.40 -2.11 2.08-1073
2 2.29-107° 3.86 2441071 5.39-1071 3.29 2231 -2.22.107*
3 2.55:107% 5.49 -18.2 2.03 -4.60 -12.3  -6.80-1073
4 8.00 -5.55-107! -2.00 1.30 -2.11-107!  -4.27 3.87-.1073
5 18.4 -1.04 -3.28 2.27-107! 1.54 -1.92  -3.64-1073
Table H.3: The values of the coefficients p; to c for the five additional optimisation runs.
Run P1 p2 P3 b() bl bg Cc
1 4.89 -5.94-107T -5.68 554:1072 -1.77-107% 8.13-1073 -4.69-1072
2 6.22 2.04-1071 3.61 -491.1072  -4.76:107% -2.35:107%  -4.38.1072
3 425 7.45107' -6.53.107' 3311072 -1.62:107%2 7931073 -2.65-1072
4 452 -6.75-1071 -2.38 -6.19-1072  1.99-1072 -8.58-107% -5.18-1072
5 3.67 5.96:100' -261-100' -1.13-107'  1.12:107%  -1.47-107% 1.10-107!
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