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ABSTRACT

In the past several attempts have been made to fit experimental data of the mixture NH3-CO2-H2O making
use of thermodynamic models. The most commonly used model for process calculations is the electrolyte
NRTL model. The model is available in the Aspen Plus software (version 8.8) both in its original form as
well as modified versions where parameters have been fitted especially for the NH3-CO2-H2O system. In
this paper these models and a new fit are compared to the Extended UNIQUAC model. Comparison of
the models shows a clear improvement of the modified models over the original e-NRTL model. The better
fitted models compare well to the extended UNIQUAC model which gives good results for its application
range.

1. INTRODUCTION

The NH3-CO2-H2O mixture has been identified as a possible working fluid for compression-resorption heat
pumps (CRHP). The advantages of CRHP for low grade waste heat recovery compared to alternative tech-
nologies have been reported by Van de Bor et al. (2015). In the research the working fluid for the CRHP
was ammonia water. Preliminary calculations suggest that adding small amount of CO2 to the system can
increase the coefficient of performance (COP) of the heat pump. To further investigate the performance of
the CRHP with NH3-CO2-H2O mixture as a working fluid an accurate thermodynamic model is needed.

Different thermodynamic models have been used and developed for calculating the thermodynamic prop-
erties of NH3-CO2-H2O. These models are normally activity coefficient models for the liquid phase and an
equation of state (EOS) for the vapor phase calculations. The activity coefficient models that have been
most commonly used are electrolyte models such as: the Pitzer model (Kurz et al., 1995), the extended
UNIQUAC model originally developed by Thomsen and Rasmussen (1999) and the more commonly used e
- NRTL model proposed by Chen et al. (1982).

Que and Chen (2011) deemed the e-NRTL model the most suitable for process modeling and simulations
since it requires only binary interaction parameters and makes use of mole fraction concentration scale con-
sistently for both the short range local composition interactions and the long range Debey-Huckel expression.
Darde et al. (2012) compared a built in e-NRTL model from Aspen Plus to an upgraded version of the ex-
tended UNIQUAC model described by Darde et al. (2010). Their findings were that the extended UNIQUAC
model generally performed better than the e-NRTL model from Aspen especially for the partial pressure
of NH3 and the solubility of ammonium bicarbonate. Darde (2011) mentions that if the binary interaction
parameters were better fitted to experimental data for NH3-CO2-H2O mixture, the e-NRTL model might
become more competitive with the extended UNIQUAC model. Since then the e-NRTL model has been
modified in this way by a couple of authors, including Que and Chen (2011) and Niu et al. (2013). Both of
their adjusted models have then been used by other authors for process modeling, for example Zhang and
Guo (2014) used the model with adjusted parameters from Niu et al. (2013) and Liu et al. (2015) used the
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modified model from Que and Chen (2011). A modified Pitzer activity coefficient model has been developed
by Xu et al. (2014) which needs significantly fewer parameters to be fitted than the traditional models and
still is reported to be accurate over wide range of temperatures and concentrations. The authors state that
further tests of the model will be reported in the future. The model will therefore not be further discussed
in this paper however it seems to show great potential.

The extended UNIQUAC model has previously not been compared to the modified model from Que and
Chen (2011) over a large range of operating conditions. Therefore these models are compared together to
see if a modified e-NRTL model can perform with similar accuracy as the extended UNIQUAC model. The
e-NRTL models that are built into Aspen are used as a reference. Additionally a new fit of the e-NRTL
model is developed and compared with the others.

2. MODELS

In the subsections below the extended UNIQUAC and the e-NRTL models are described in more detail.

2.1 Extended UNIQUAC model
The Extended UNIQUAC model was developed by Thomsen and Rasmussen (1999). The model uses the ex-
tended UNIQUAC model to calculate activity coefficients for the liquid phase and the Soave-Redlich-Kwong
(SRK) EOS for vapor phase calculations. The model was further developed and described by Darde et al.
(2010) and implemented as a Fortran subroutine in Aspen Plus by Maribo-Mogensen (2014). The original
model describes accurately the thermodynamic properties of the NH3-CO2-H2O mixture for ammonia con-
centrations up to 80 molal NH3, temperature of 0-110 ◦C and pressure up to 10 MPa. The newer version
of the model describes the thermodynamic properties accurately up to 150 ◦C. Additionally the model pa-
rameters have been fitted to more experimental data to increase accuracy. The extrapolation of equilibrium
constants into the supercritical range was also improved using Henry’s law instead of the Gibbs-Helmholtz
equation. Darde (2011) describes the mathematical model in detail.

The chemical equilibria that are taken into account in the model are stated below

Vapor-liquid equilibrium
CO2(g)↔ CO2(aq) (1)

NH3(g)↔ NH3(aq) (2)

H2O(g)↔ H2O(l) (3)

Speciation equilibrium
NH3(aq) +H2O ↔ NH+

4 +OH− (4)

CO2(aq) +H2O(l)↔ HCO−
3 +H+ (5)

HCO−
3 ↔ CO2−

3 +H+ (6)

H2O(l)↔ H+ +OH− (7)

NH3(aq) +HCO−
3 ↔ NH2COO

− +H2O(l) (8)

Liquid-solid equilibrium
NH+

4 +HCO−
3 ↔ NH4HCO3(s) (9)

NH+
4 +NH2COO

− ↔ NH2COONH4(s) (10)

2NH+
4 + CO2−

3 +H2O ↔ (NH4)2CO3 ·H2O(s) (11)

H2O(l)↔ H2O(s) (12)

NH+
4 + CO2−

3 + 2HCO−
3 ↔ (NH4)2CO3 · 2NH4HCO3(s) (13)
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Table 1: Experimental data for regression of the NH3-CO2-H2O system

Data Type T, K wt% NH4HCO3 Source

SLE 273 - 363 2.4 - 14.4 Janecke (1929)

Data Type T, K mol% NH3 mol% CO2 P (MPa) Deviation (%) Source

VLE 393.15 1.2 - 17.7 0.3 - 9.9 0.3 - 5 6.6 Göppert and Maurer (1988)

VLE 393.15 4 - 18 0.4 - 7.6 0.1 - 1.3 7.1 Müller et al. (1988)

2.2 E-NRTL model
The e-NRTL model is built into the Aspen Plus software (Aspen Physical Property System, 2015). In this
study the version 8.8 of Aspen Plus is used. A data package for NH3-CO2-H2O mixture using the e-NRTL
method and the Redlich-Kwong (RK) EOS for the vapor phase is included in the software. This model will
be called e-NRTL1 from here on. A modified version of the model and the one that Darde et al. (2012)
used for their comparison is included in a carbon capture example (Aspen Physical Property System, 2011)
also included in the Aspen Plus v. 8.0 software. Additionally this model has been regressed to VLE, SLE,
speciation and heat capacity data, this model will be called e-NRTL2.

The thermodynamic model proposed by Que and Chen (2011) is included in another carbon capture ex-
ample available in the Aspen Plus software (Aspen Physical Property System, 2012). The main difference
between that model and the e-NRTL2 model is that the PC-SAFT (Perturbed Chain Statistical Associ-
ation Fluid Theory) EOS is used for vapor phase calculations instead of the RK EOS. As mentioned in
the introduction the e-NRTL model has also been modified by other authors like Niu et al. (2014). The
model modified by Que and Chen (2011) was however chosen since more experimental data are used for
data regression of the model parameters. The model by Que and Chen (2011) is reported to be accurate for
systems with temperatures up to 473 K, pressures up to 7 MPa, NH3 concentration up to 30 wt%, and CO2

loading up to unity. Que and Chen (2011) also give a good overview of the mathematical model.

In the e-NRTL model only the formation of ammonium bicarbonate (NH4HCO3) is considered for SLE and
not ammonium carbonate ((NH4)2CO3 · H2O), ammonium carbamate (NH2COONH4) and ammonium
sesqui-carbonate ((NH4)2CO3 · 2NH4HCO3). Researches have shown however, that ammonium bicarbon-
ate is dominant in the total amount of ammonium salts once the CO2 absorption reaches steady state (Kim
et al., 2008; Park et al., 2008). Therefore the e-NRTL model might still be a good option.

These versions of the e-NRTL models are compared to the extended UNIQUAC model as well as a new
fit in the following chapter. In the next chapter it is demonstrated that the model developed by Que and
Chen shows satisfactory results except for SLE at temperatures above 50 ◦C. The new fit is therefore based
on the model from Que and Chen (2011) except the NRTL model binary interaction parameters τ1,ij (see
equation 14), associated with the major species of the electrolyte, is refitted to additional SLE ternary NH3-
CO2-H2O experimental data. During the fitting the initial values where kept as the same ones developed by
Que and Chen (2011). Additionally the parameters where fitted at the same time to VLE data at 393.15
K. This was done in order to keep the accuracy of the VLE equilibrium. Fitting to additional VLE data at
lower temperatures did not further increase the accuracy of the fit. As explained by Que and Chen (2011)
the NRTL model requires a non randomness factor αij and asymmetric binary interaction energy parameters
τij calculated with the following equation

τij = τ1,ij +
τ2,ij
T

(14)

Where i and j stand for the components, either ionic species, water, ammonia or carbon dioxide. An overview
of the experimental data is listed in Table 1 and the refitted parameters are listed in table 2.
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Table 2: Adjusted NRTL binary interaction parameters

Component i Component j τ1,ij

H2O (NH+
4 , HCO−

3 ) -4.18753

H2O (NH+
4 , CO

−2
3 ) 3.46678

(NH+
4 , CO

−2
3 ) H2O -2.6869

H2O (NH+
4 , NH2COO−) 9.542

(NH+
4 , NH2COO−) H2O -4.3115

NH3 (NH+
4 , NH2COO−) 7.45449

(NH+
4 , NH2COO−) NH3 -4.82636

3. MODELS COMPARISON

The chosen model should be able to accurately describe the vapor-liquid equilibrium (VLE), the solid-liquid
equilibrium (SLE), speciation and enthalpy change over a large range of temperatures and concentrations of
NH3 and CO2. Comparison of the models mentioned in the previous chapter are discussed in the following
sections.

3.1 VLE
In figures 1 - 4 the partial bubble point pressures of CO2 and NH3 versus the molality of CO2 are compared
for different temperatures. The e-NRTL1 model is generally inaccurate at high temperatures and high
loading’s, as previously reported by Darde (2011). The e-NRTL2 model is in most cases an improvement
from the e-NRTL1 model however it generally underestimates the partial bubble point pressure of NH3 as
well as inaccurately portray the CO2 pressure at high loadings at 20 and 40 ◦C. The model by Que and Chen
(2011), the new fit and the extended UNIQUAC model accurately portray the partial pressures. Jilvero et
al. (2015) even reported that the model by Que and Chen (2011) fit their experimental data of CO2 partial
bubble point pressures, for 10- 40 ◦C, even more accurately than the Extended UNIQUAC model. The only
exception is for the partial bubble point pressure of CO2 at 150 ◦C. However since all the models deviate
from the experimental data from Pawlikowski et al. (1982) in that case it is considered to be rather the data
it self than the models that is inaccurate.

Figure 1: Comparison of the experimental data from Pexton and Badger (1938), and Jilvero et al. (2015)
for partial bubble point pressures of CO2 and NH3 at 20 ◦C and the model correlations.
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Figure 2: Comparison of the experimental data from Kurz et al. (1995) for partial bubble point pressure
of CO2 and NH3 at 40 ◦C and the model correlations.

Figure 3: Comparison of the experimental data from Göppert and Maurer (1988) and Müller et al. (1988)
for partial bubble point pressure of NH3 and CO2 at 120 ◦C and the model correlations.

Figure 4: Comparison of the experimental data from Müller et al. (1988) and Pawlikowski et al. (1982) for
partial bubble point pressure of NH3 and CO2 at 150 and 160 ◦C and the model correlations.
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Figure 5: Comparison of the experimental data from Janecke (1929), Trypuc and Kielkowska (1998) and
Toporescu (1922) for solubility of NH4HCO3 in water and the model predictions.

3.2 SLE
The comparison of the models for solubiltiy of ammonium bicarbonate (NH4HCO3) in water versus tem-
perature is shown in figure 5. The models are compared to experimental data from Janecke (1929), Trypuc
and Kielkowska (1998) and Toporescu (1922). Assuming that the experimental data from Janecke (1929) is
accurate, the extended UNIQUAC model as well as the new fit are the most accurate at high temperatures or
above approximately 50 ◦C. At higher temperatures the e-NRTL2 and the model proposed by Que and Chen
(2011) overestimate the solubility of NH4HCO3 while the e-NRTL1 model underestimates the solubility. In
the case of e-NRTL2 and the model from Que and Chen (2011) the reason for this difference can be easily
explained since the experimental data used for the regression for both models was the one from Trypuc and
Kielkowska (1988). The experimental data from them reaches to temperatures of 50 ◦C. Also their value at
50 ◦C is slightly higher than the one from Janecke (1929) and Toporescu (1922). Since more experimental
data at high temperatures was not found in literature it is questionable which of the data sets correspond
best to reality. Additionally in practice for the CRHP application the concentration of NH3 and CO2 is
unlikely to come close to the concentration necessary for salt formation at high temperatures. For example
the reported concentration by Janecke et al. (1929) of CO2 at approximately 60◦C is around and above
30 wt% (depending on the NH3 concentration). The data from Trypuc and Kielkowska (1998) suggest that
this limit might be even higher and therefore either model should give satisfying results if the application
concentration does not reach this limit.

3.3 Speciation
Comparison of speciation calculations of the models and experimental data from Lichtfers (2000) is shown in
figures 6 and 7. All the models are able to quite accurately describe the speciation at both temperatures (60
and 120 ◦C, respectively) except the e-NRTL2 model. The e-NRTL2 model overestimates the concentration
of ammonia and bicarbonate and underestimates the carbamate concentrations. In the two previous sub-
sections the e-NRTL2 model was in general an improvement of the original model (e-NRTL1). This shows
the importance of using a wide range of experimental data for parameter fitting for the NH3-CO2-H2O
system.

16th International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016
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Figure 6: Comparison of the experimental data from Lichtfers (2000) for speciation at 60 ◦C and molality
of 3.25 mol/kg NH3 and the model correlations.

Figure 7: Comparison of the experimental data from Lichtfers (2000) for speciation at 120 ◦C and molality
of 6.3 mol/kg NH3 and the model correlations.

3.4 Enthalpy change
In figures 8, 9 and 10 the models are compared to experimental data from Rumpf et al. (1998) for enthalpy
change upon partial evaporation of the NH3-CO2-H2O mixture. The temperature range of the experiments
was from 40 to 137 ◦C with a typical temperature increase of 5-15 ◦C. The concentration range for NH3 was
up to 12 molal and up to 6 molal for CO2. The reported temperatures and pressures are used to calculate
the inlet enthalpy. At the outlet however the reported vapor fraction is used instead of the pressure since
the accuracy of the weight of the liquid and vapor part is higher than that of the measured pressure. All
correlations show good matches to the experimental data with the only exception of two points for the
e-NRTL1 correlation. These two points were at the highest reported temperature and CO2 loading. This
deviation corresponds to the previous shown results of VLE and SLE data.

16th International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016
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Figure 8: Comparison of the experimental data from Rumpf et al. (1998) for heat of partial evaporation
and left the Que and Chen (2011) and right e-NRTL1 correlations.

Figure 9: Comparison of the experimental data from Rumpf et al. (1998) for heat of partial evaporation
and left the extended UNIQUAC and right e-NRTL2 correlations.

Figure 10: Comparison of the experimental data from Rumpf et al. (1998) for heat of partial evaporation
and the e-NRTL new fit correlation.

4. CONCLUSIONS

From the model comparison it is clear that the modified e-NRTL models are in general an improvement of
the original model. The model modified by Que and Chen (2011) and the new fit are especially compatible
with the Extended UNIQUAC model. The model developed by Que and Chen (2011) is even more accurate
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for the partial pressure of CO2 at low temperatures (10-40 ◦C) as reported by Jilvero et al. (2015). Their
model also improves the partial pressure of NH3 and speciation compared to the e-NRTL2 model. The only
exception is the SLE. The new fit that was developed solves this problem and the new model is able to
represent the experimental data satisfactorily. The computational time with the model by Que and Chen
(2011) and the new fit is also significantly better than when the extended UNIQUAC model is applied, which
tended to freeze regularly during the calculations. On the same computer the e-NRTL models did not have
that problem likely due to less complexity. Overall the modified e-NRTL model by Que and Chen (2011)
and the new fit based on their model can be recommended for its application range. However the desired
NH3 concentration for the CRHP case is in some cases higher than the 30 wt% limit of the Que and Chen
(2011) model (depending on the application case). The limit of the original extended UNIQUAC model
was reported by Darde (2011) as 80 molal NH3. The newer model is however refitted with data that does
not come close to that limit. Since limited data is available with NH3 concentrations over 30 wt% further
experiments should be performed to check the accuracy of the models at a higher range.

NOMENCLATURE

α Nonrandomness factor Abbreviations
aq aqueous COP Coefficient of Performance
g gas CRHP Compression-resorption heat pump
l liquid e-NRTL Electrolyte Non Random Two Liquid
m molality EOS Equation of State
mol% mole percent PC-SAFT Perturbed Chain Statistical
P pressure bar Association Fluid Theory
T temperature K RK Redlich-Kwong
τ Asymmetric binary SLE Solid-liquid equilibrium

interaction energy parameter SRK Soave-Redlich-Kwong
wt% weight percent UNIQUAC Universal Quasi Chemical
Subscript VLE Vapor-liquid equilibrium

i, j component
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