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Abstract

Learning robust deep models against noisy labels be-
comes ever critical when today’s data is commonly col-
lected from open platforms and subject to adversarial
corruption. The information on the label corruption
process, i.e., corruption matrix, can greatly enhance the
robustness of deep models but still fall behind in combat-
ing hard classes. In this paper, we propose to construct
a golden symmetric loss (GSL) based on the estimated
corruption matrix as to avoid overfitting to noisy la-
bels and learn effectively from hard classes. GSL is the
weighted sum of the corrected regular cross entropy and
reverse cross entropy. By leveraging a small fraction of
trusted clean data, we estimate the corruption matrix
and use it to correct the loss as well as to determine the
weights of GSL. We theoretically prove the robustness
of the proposed loss function in the presence of dirty
labels. We provide a heuristics to adaptively tune the
loss weights of GSL according to the noise rate and
diversity measured from the dataset. We evaluate our
proposed golden symmetric loss on both vision and nat-
ural language deep models subject to different types of
label noise patterns. Empirical results show that GSL
can significantly outperform the existing robust training
methods on different noise patterns, showing accuracy
improvement up to 18% on CIFAR-100 and 1% on real
world noisy dataset of Clothing1M.

Keywords: Robust training, Deep learning models,
Symmetric loss function, Noisy labels.

1 Introduction

Diverse datasets collected from the public domain which
power up deep learning models present new challenges
– highly noisy labels. It is not only time consuming to
collect labels but also difficult to ensure a consistent
label quality due to various annotation errors [1] and
adversarial attacks [2]. The large capacity of deep
learning models enables effective learning from complex
datasets but also suffers from overfitting to the noise
structure in the dataset. The curse of memorization

∗EEMCS, Delft University of Technology, The Netherlands
†DI - University of Torino, CINI HPC-KTT lab, Turin, Italy

effect [3] can degrade the accuracy of deep learning
models in the presence of highly noisy labels. For
example, in [4] the accuracy of AlexNet to classify
CIFAR-10 images drops from 77% to 10%, when there
are randomly flipped labels.

Designing learning models that can robustly train
on noisy labels is thus imperative. To distill the
impact of noisy labels, the related work either filters
out suspiciously noisy data, derives robust loss functions
or tries to proactively correct labels. Symmetric Cross
entropy Loss (SCL) is shown effective in combating
label noise especially for hard classes by combing the
regular with the reverse cross entropy. The former
avoids overfitting and the latter is resilient to label noise.
Given its promising results, there is yet to have a clear
principle on how to weight the regular and reverse cross
entropy terms, e.g., at different noise rates and patterns.
In contrast, Distilling [5] and Golden Loss Correction
(GLC) [6] advocate to use a small clean data to improve
the estimated corruption matrix. Specifically, GLC
trains the deep model on both a clean and noisy set,
whose loss is corrected through the corruption matrix.
While the clean set is evenly chosen from all classes,
the corrupted labels may appear unevenly across classes
depending on the noise pattern [7, 8]. As the corrected
loss of GLC does not differentiate the difficulty of classes,
it may not learn those hard classes effectively.

We propose GSL to construct the golden symmetric
loss that dynamically weights regular/reverse cross
entropy and corrects the label prediction based on the
estimated corruption matrix. Similar to GLC, GSL
leverages clean data to estimate the corruption matrix
which is used to correct labels and decide the weights of
the golden symmetric loss. As such, GSL can effectively
differentiate the difficulty level of classes by adjusting
the weights and mitigate the impact of noise overfitting
via the golden symmetric cross entropy. Specifically,
we use the noise rate and noise diversity to adaptively
tune the weights of modified cross entropy and reverse
cross entropy. We prove that modified cross entropy
by using corruption matrix is noise tolerant same as
the reverse cross entropy. Empirical evaluation on
vision and text datasets shows that GSL outperforms
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the state-of-the-art methods under tested noise ratios
from 0% to 100% for text datasets and noise ratios
30% and 60% for vision datasets. In addition, we
illustrate that combining symmetric loss function and
the corruption matrix estimation with correct dynamic
weighting function is the best combination of robust
methods against noisy label data.

The contributions of this paper are summarized as
follows:

• We design a noise resilient method that estimates
the corruption matrix using a small proportion of
trusted data and then corrects the wrong prediction
into the symmetric cross-entropy loss function.

• Using noise properties, including rate and diversity,
we design a weighting function for the symmetric
loss function to adjust the weights of improved cross-
entropy and reverse cross-entropy adaptively.

• We compare GSL against state-of-the-art methods
under noisy labels on the real-world dataset and
synthetic vision and text datasets.

1.1 Motivation example We demonstrate the ad-
vantages and disadvantages of GLC and SCL, and the
their combination (the proposed GSL) through the ex-
ample of learning convolution networks on CIFAR-10
injected with 60% symmetric noise. The experimental
setup is detailed in §6. Figure 1 shows the corruption
matrix of the injected noise and the confusion matrices
from the predictions of SCL, GLC, and GSL. Even if
the injected noise is symmetric across all classes (see
Figure 1(a)), prediction errors are distributed asymmet-
rically across the classes (see Figure 1(b), Figure 1(c)
and Figure 1(d)). Though GLC can achieve a lower
average error rate than SCL (reflected in darker diag-
onal elements on average), it performs worse in hard
classes, e.g., class 4 (cat) and class 6 (dog) (difference
in blue shades across the diagonal elements). By setting
up proper weights for two types of cross entropy, GSL
is able to achieve both superior average and per class
accuracy.

2 Related Work

Enhancing the robustness of deep models against noisy
labels is an active research area. The massive datasets
needed to train deep models are commonly found cor-
rupted, [9], severely degrading the achievable accu-
racy, [4]. The impact of label noise on deep neural
networks is first characterized by the theoretical testing
accuracy over a limited set of noise patterns [10]. [11]
suggest an undirected graph model for modeling label
noise in deep neural networks and indicate symmetric

noise to be more challenging than asymmetric. Current
solutions can be categorized into three directions: (i)
filtering out noisy labels: [12, 13]; (ii) correcting noisy
labels: [1, 6, 5, 14, 15]; and (iii) deriving noise resilient
loss functions: [16, 17, 18].

2.1 Noise Resilient Loss Function The loss func-
tion is modified to enhance the robustness to label noise
by introducing new loss functions, [19, 20], or adjust-
ing the weights of noisy data instances, [21, 18, 22].
Mean Absolute Error (MAE) [19, 23] and General Cross
Entropy loss [23] are proposed as a noise resilient alter-
native but at the cost of slow convergence. To avoid
overfitting to noise, D2L [22] uses the subspace dimen-
sionality to assign weights to each data point, whereas
Konstantinov [18] determines the loss weights based on
the trustworthiness level of data sources. [20] propose
symmetric cross-entropy loss that combines a new term
of reverse cross entropy with traditional cross entropy via
constant weights on both terms. Meta-Weight-Net [24]
re-weights samples during optimizing loss function in
the training process by using a multi-layer perceptron to
predict the weight of each sample. With the same per-
spective, [25] uses the similarity of samples to the clean
instances in the validation set for re-weighting them in
loss function.

2.2 Label correction To avoid the data reduction
caused by filtering, label correction methods adjust the
predicted/given labels by using only noisy labels [1, 26,
27] or jointly with a small fraction of trusted data [28,
29, 5, 6]. [30] train the classifier by the “new” labels
combining the raw and predicted labels without access
to label ground truth. [1] estimate the noise corruption
matrix by first training a classifier on the noisy labels and
then using the softmax probabilities. [28] acquire human-
verified labels to train a cleaning network for correcting
noisy labels of multi-label classification problems. [29]
estimate the noise transition probability by incorporating
human assistance. [5] and [6] leverage a small set of
clean data to estimate noise corruption matrix from the
clean and noisy sets, respectively. DivideMix [31] is a
semi-supervised method, including two networks and
Gaussian Mixture Model for sample selection.

The proposed GSL combines resilient loss function
and label correction by curating a small fraction of
trusted data. We solicit a subset of informative data
instances to estimate the corruption matrix and provide
a minimum supervision on noisy labels. We also provide
a heuristic to adaptively tune the weights of golden
symmetric loss according to the noise characteristics of
the dataset.
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(a) Corruption matrix
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(b) GLC
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(c) SCL
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(d) GSL

Figure 1: Noise corruption matrix and confusion matrices of predictions for CIFAR-10 with 60% symmetric label
noise.

3 Golden Symmetric Loss

Consider the classification problem having dataset D̃ =
{(xn, ỹn)}Nn=1 where xn ∈ X ⊂ Rd denotes the
nth observed sample, and ỹn ∈ Y := {1, ...,K} the
corresponding given label over K classes. Hereon n
is ignored for the simplicity. ỹ is affected by label
noise. The label corruption process is characterised by a
corruption matrix Cij = P (ỹ = j|y = i) for i = 1, . . . ,K
and j = 1, . . . ,K where y is the true label. Synthetic
noise patterns are expressed as a label corruption
probability ε plus a noise label distribution. Let g(·,θ)
denote a neural network-based classifier parameterized
by θ. For each data point x, f(·,θ) predicts the
probability for each class label k: p(k|x) = ezk∑K

j=1 ezj

where zj are the logits.

3.1 Symmetric Cross Entropy Let q(k|x) denote
the ground truth probability distribution over the K
class labels where q(k|x) = 1 for k equal to the true
class y and q(k|x) = 0 for all k ̸= y. The cross entropy
loss (ℓce) and reverse cross entropy loss1 (ℓrce) for x are:

(3.1) ℓce = −
K∑

k=1

q(k|x) log p(k|x),

(3.2) ℓrce = −
K∑

k=1

p(k|x) log q(k|x).

[20] combine cross entropy and reverse cross entropy
into the symmetric cross entropy:

(3.3) lsl = α ℓce + β ℓrce.

where α and β are hyperparameters. On the one hand
cross entropy loss is not robust to noise [19] but achieves
good convergence [23]. On the other hand reverse cross
entropy is tolerant to noise [20].

1To avoid problems with the logarithm, zero values of q are
replaced by a small positive value, i.e. 10−4.
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Figure 2: Impact of loss correction and α, β-tuning on
a 2-layer FC network trained on Twitter data.

3.2 Estimating Noise Corruption Matrix We
estimate the noise corruption matrix as in [6]. The
method fosters training a first classifier g(·, θ) on noisy
data to approximate the elements Cij of the noise
corruption matrix via a small fraction of trusted data D
with known true label y. Practically given Ai the subset
of trusted data with label of class i {Ai ⊂ D : y = i},
the elements of C can be approximated by:

(3.4) Ĉij = P (ỹ = j|y = i) ≈ 1

|Ai|
∑
x∈Ai

g(ỹ = j|x,Θ)

where g(ỹ = j|x,Θ) denotes predicted probability of x

having class label j. That is Ĉij is computed as the
mean predicted probability of class j for all trusted data
points having true label of class i.

3.3 Training with Corrected Labels Let Ĉ be
the estimated noise corruption matrix. Using the
method in [1], we increase the noise resilience by

correcting the predictions of the classifier using Ĉ. Let

p̂ be the corrected predicted probabilities p̂ = Ĉ
T
p,

i.e. for data point x: p̂(k|x) =
∑K

i=1 Ĉikp(i|x) for
k = 1, . . . ,K. We enhance the regular cross entropy
term. Applying the prediction correction to both terms
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holds lower benefits. We evaluate this empirically with
extensive experiments on datasets of text, i.e. Twitter
in Figure 2(a), and images, i.e. CIFAR-100 and CIFAR-
10 in §7. Experiment details can be found in §6. We
consider different datasets, noise rates, noise types and
fractions of trusted data. We see that in all cases, except
one with a difference < 0.3%, correcting only the cross
entropy (ce-only) holds better results than correcting
only the reverse cross entropy (rce-only) or correcting
both. Focusing on Figure 2(a), ce-only improves accuracy
by up to 5% and 8% for bimodal and symmetric noise,
respectively. In case of CIFAR-10 and CIFAR-100
datasets the improvements are more pronounced with
up to 11% and 50% respectively.

3.4 Golden Symmetric Loss Towards a more ef-
fective and robust learning we propose to leverage the
estimated noise corruption matrix Ĉ to tune the two
loss terms based on the observed noise pattern. α and β
can significantly impact the final model accuracy. Tun-
ing these parameters is essential since various datasets
affected by different noise patterns require different opti-
mal values [20]. Again we show this behavior by training
a 2-layer FC neural network on the Twitter dataset un-
der eleven different (α, β) combinations and two noise
patterns with 80% noise. Figure 2(b) reports for each
noise pattern the evolution over the training epochs of
the test accuracy for the best and worst (α, β)-pair.
For bimodal noise even with a small number of trials,
the impact of (α, β) ranges from an accuracy close to
60% all the way down to almost 0%. Moreover only few
(two out of eleven) (α, β)-pairs hold accuracy close to
60%. For symmetric noise the tuning impact is lower
(limited between 70% and 80%) but the best and worst
(α, β)-pair differ from the bimodal noise case. This un-
derlines both the importance and difficulty of tuning (α,
β). Motivated by the high impact of α and β, we pro-
pose to dynamically weight the regular and reverse cross
entropy terms. Let A(·) and B(·) be weighting functions
mapping Ĉ −→ R we define a new loss function:

(3.5) ℓGSL = A(Ĉ) ℓce +B(Ĉ) ℓrce

We call this new loss function golden symmetric loss.
A(·) and B(·) should capture not only the intensity of
the noise pattern, but also the diversity of the noise
pattern (see Figure 2(b)).

3.5 Determining Weights of Golden Symmetric
Loss (A(·), B(·)) In general the more intense and
asymmetric the noise pattern, the lower the weight
values should be. Since the final loss function learns
from both dirty and clean data (see the next paragraph),
lower values of α and β reduce the influence of dirty

Untrusted data

First step

𝑔

Second step

Estimate confusion matrix

Trusted data

Train network

𝑓

on 

on 

Figure 3: Training process of GSL divided into two
steps.

data over that of clean data. Hence, we design A(·)
and B(·) to capture both noise intensity and diversity.
The intensity is given by the noise rate ε ∈ [0, . . . , 1],
i.e. one minus the average of the diagonal elements of
Ĉ. The diversity is measured via Jain’s fairness index
J(x1, x2, . . . , xn) ≜ (

∑n
i=n xi)

2
/n

∑n
i=n x2

i . We choose J
because it bounds the diversity on a similar scale as ε
between 1 (all equal, full symmetry) down to 1/n (highest
asymmetry). We apply J on all the K(K − 1) noise, i.e.

off the diagonal, elements of Ĉ:

(3.6) J =
(
∑K

i=1

∑K
j=1,j ̸=i Ĉij)

2

K(K − 1)
∑K

i=1

∑K
j=1,j ̸=i Ĉ

2

ij

For symmetric noise J = 1, the more asymmetric the
smaller J . Final weights proportional to J, ε.

3.6 Putting It All Together As a final step, to
maximize the utility of the trusted data, we foster D
as additional trusted training data for f(·). Since D
contains the true labels y no prediction correction is
applied. Hence, the overall loss function for data points
from both D and D̃ is:

for x ∈ D̃,

l =−A(Ĉ)

K∑
k=1

q(k|x) log(
K∑
i=1

Ĉikp(i|x))

−B(Ĉ)

K∑
k=1

p(k|x) log q(k|x)(3.7)

and for x ∈ D,

(3.8) l = −
K∑

k=1

q(k|x) log p(k|x).

Figure 3 summarises visually the training process divided
into two main steps: (i) estimating noise corruption
matrix through the first network g trained on untrusted
dataset D̃ and (ii) training classifier f on both untrusted
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D̃ and trusted D through the golden symmetric loss.
The detailed steps of the algorithm can be found in the
supplementary material.

4 Theoretical Analysis

We prove that the cross entropy loss with label correction
is noise tolerant under the definition put forth by [19,
32] and extending prior art results. Let the risk of
classifier f and loss function ℓce under clean labels
be R(f) = Ex,y[ℓce(f(x), y)] and the risk under noise
rate ε be Rε(f) = Ex,ỹ[ℓce(f(x), ỹ)]. E indicates the
expectation taken over the random variables indicated
as its subscripts. With prediction correction via C, the
risk becomes Rε(f,C) = Ex,ỹ[ℓce(C

T f(x), ỹ)]. Let f∗

and f∗
ε be the global minimizers of R(f) and Rε(f),

respectively, and C∗ = p(ỹ|y) and Ĉ be the true and
estimated noise corruption matrices, respectively.

Theorem 4.1. In a multi-class classification problem,
ℓce with prediction correction is noise tolerant under
symmetric label noise if the noise rate ε < K−1

K−∆A
∆R

, where

∆A =
∑K

k=1 ℓce(C
∗T f(x), k) −

∑K
k=1 ℓce(Ĉ

T
f(x), k),

and ∆R is the difference of risk minimization between
optimal classifier and f . And ℓce with prediction
correction is also noise tolerant under flip noise when
noise rate εyk ≤ (1 +

∆Wy

∆Wk
) − εy(1 +

∆Wy

∆Wk
) where εk

and εyk are the correct and flipped class probabilities,
respectively.

The proof is based on the risk minimization frame-
work aiming to show under which condition Rε(f

∗,C∗)−
Rε(f, Ĉ) ≤ 0, i.e. the loss function is robust to noise.
The detailed steps of the proof can be found in the sup-
plementary material. The condition ε < K−1

K−∆A
∆R

is a

generalization of the previous bound ε < K−1
K by [19].

Without label correction ∆A = 0 which corresponds
to the previous result. Label correction improves the
robustness by allowing higher noise rates, i.e. with label
correction ∆A

∆R ≥ 0 and hence K−1
K ≤ K−1

K−∆A
∆R

. Similar

observations hold for flip noise bound.

5 Experimental Setup

5.1 Dataset, Architecture and Parameters We
consider two types of datasets: vision and text analysis.
For vision, we use convolution neural networks (CNN)
to classify CIFAR-10 and CIFAR-100 with injected label
noise and Clothing1M as real world noisy dataset. For
text, we use fully connected neural networks to classify
noisy Twitter and Stanford Sentiment Treebank (SST).
In principle, we use the same network architecture on all
comparative approaches across different noise resilience
techniques. In addition, we test the original network

from the respective papers too and report the best results
among the two.

• CIFAR-10 [33]: It contains 60K images classified
into 10 classes: 50K as a training set and 10K as
validation set. We use the architecture of Wide-
ResNet by [34] with depth 28 and a widening factor
10 and train it with SGD with Nesterov momentum
and a cosine learning rate schedule [35]. For GSL,
we first train g for 75 epochs to obtain the noise
corruption matrix. Then we train f for 120 epochs.

• CIFAR-100 [33]: It contains 60K images classified
into 100 classes: 50K as training set and 10K as
the validation set. We use the same Wide-ResNet
architecture used for CIFAR-10. For GSL, we
train the g and f networks for 75 and 200 epochs,
respectively.

• Clothing1M [7]: This is a real world dataset with
label noise. It includes clothing images scrapped
from the Internet classified into 14 categories. We
resize and crop each image to 224×224 pixels. This
dataset contains 1 million noisy labeled samples that
we use for training as our untrusted data. Besides,
it consists of 57K human-annotated images, which
we take 47K images as our trusted examples and
10K images for testing. These two sets have both
given (scrapped) and true (human-checked) labels.
We use ResNet-50 pretrained with ImageNet and
further train for 10 epochs with batch size 32, SGD
optimizer, momentum 0.9, weight decay 10−3, and
learning rate 10−3 which is divided by 10 after 5
epochs.

• Twitter [36]: The Twitter dataset includes 1,827
tweets annotated with 25 POS tags split in 1000
tweets as training set, 327 tweets as development
set and 500 tweets as test set. We add development
set to training set, and consider it as a training
set. We use a 2-layer fully connected network with
256 hidden neurons each and GELU nonlinearity
as activation function. We train g with Adam for
15 epochs with batch size 64 and learning rate of
0.001. We train f for 25 epochs. To regularize all
linear output layer, we use ℓ2 weight decay with
λ = 5× 10−5.

• Stanford Sentiment Treebank [37]: The SST
dataset includes single sentence movie reviews. We
use the 2-class version, including 6911 reviews in
the training set, a development set with 872 reviews,
and 1821 reviews in the test set. We augment the
training set by using development set. We learn 100-
dimensional word vectors from scratch for a vocab
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size of 10000. We train a word-averaging model with
an affine output layer using Adam optimizer for 5
epochs for network g and 10 epochs for network f .
The batch size and learning rate are 50 and 0.001,
respectively. To regularize all linear output layer,
we use ℓ2 weight decay with λ = 1× 10−4.

5.2 Noise Corruption We consider symmetric noise
and two different asymmetric noises, namely flip and
bimodal. Symmetric noise corrupts the true label into
a random other labels with equal probability based
on the noise rate. The flip noise is generated by
flipping the original label to a paired other class with a
specific probability. The bimodal noise imitates targeted
adversarial attacks [2]. Specifically, the true labels
are corrupted into two neighborhoods centered on two
targeted classes, each of which follows truncated normal
distribution, N T (µ, σ, a, b). µ specifies the target and σ
controls the spread. a and b simply define the class label
boundaries. For CIFAR-10 we target class 3 and 7, for
CIFAR-100 class 30 and 70, for Twitter class 6 and 18,
and for SST class 0 and 1. Instead, Clothing1M is already
affected by real world label noise and left untouched.
More details are provided in the supplementary material.

6 Evaluation

In this section, we empirically compare GSL against
state of the art noise resilient networks on noisy vision
and text data. We aim to show the effectiveness of GSL
via testing accuracy on diverse and challenging noise
patterns. Our target evaluation metric is the accuracy
achieved on the clean testing set, i.e. not affected by
noise.

6.1 Vision Analysis We compare GSL against ten
noise resilient networks from the state of the art:
GLC [6], SCL [20], Forward [1], Bootstrap [30],
Co-teaching+ [13], DivideMix [31], gForward,
sgForward, TMatrix and sTMatrix. As the
proposed loss of golden symmetric cross entropy is
general and can be combined with different resilient
networks, we hence use following four variations of loss
correction and symmetric cross entropy on the existing
work:

• Forward gold (gForward): we replace the esti-
mation of the corruption matrix by the identity
matrix on trusted samples and apply loss correction
through the matrix.

• True corruption matrix (TMatrix): we use the
true corruption matrix and apply loss correction
through it.

• Forward gold with symmetric cross entropy
(sgForward): we extend the corrected loss of
gForward to the corrected symmetric cross en-
tropy as in the GSL.

• True corruption with symmetric cross entropy
(sTMatrix): we apply golden symmetric cross
entropy and the true corruption matrix instead of
the estimated matrix.

For training GSL, Co-teaching+, sgForward, gFor-
ward, TMatrix, sTMatrix, DivideMix and GLC,
we use PyTorch v1.4.0. For all other methods, we use
Keras v2.2.4 and Tensorflow v1.13.0. All experiments
run on Alienware Aurora R11 equipped with an NVIDIA
GeForce RTX 2080 Ti, 32 GB RAM, and Core i9 CPU
@ 3.70 GHz.

We assume 10% of trusted data is available for
GSL, GLC, gForward and sgForward. Table 1
summarizes the testing accuracy for all combinations of
noise patterns and comparative approaches.

For CIFAR-10, we report the average and standard
deviation across three runs in Table 1. GSL achieves the
highest accuracy among all resilient networks except for
flip noise with 30% noise rate. DivideMix, sTMatrix
and sgForward are the closest rivals to GSL. GSL
and sgForward both use the same mechanism in the
loss function. Besides, GSL has 2 to 8% higher accuracy
than GLC, demonstrating the benefit of introducing
symmetric cross-entropy, especially in high noise rates.
In terms of comparison between GSL and SCL, the
accuracy difference is even more visible, implying the
benefit of using corruption matrix to assign weights on
two terms in symmetric cross-entropy. We note that
SCL uses an 8-layer CNN with 6 convolutional layers
followed by 2 fully connected layers instead of a Wide
ResNet because of the superior results. SCL performs
particularly worse in 60% bimodal noise because this
is a more challenging pattern and has no access to the
corruption matrix. Also, we achieve higher accuracy
than DivideMix which is one of the accurate state-of-
the-art. Moreover, our method can still obtain 11 to 30%
higher test accuracy than Co-teaching+ that uses two
deep networks concurrently.

CIFAR-100 is more challenging than CIFAR-10
due to the larger number of classes and results are
summarized over three runs in Table 1. GSL achieves
the highest accuracy except for flip noise with 30% rate,
and same as CIFAR-10, sTMatrix, DivideMix, and
sgForward are the closest competitors. Although for
flip noise with 30% rate sgForward performs better
than GSL, the improvement of GSL is more significant
than sgForward compared to the CIFAR-10 dataset.
The largest difference (more than 2%) in accuracy
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Table 1: Vision analysis: test accuracy(%) of real-world noisy Clothing1M, and CIFAR10/CIFAR100 corrupted
with 30% and 60% noise for different noise resilient networks. Best results in bold.

CIFAR-10

Noise
Rate

Noise
Pattern

GSL GLC SCL Forward Bootstrap sgForward Co-teaching+ DivideMix gForward TMatrix sTMatrix

30% Sym. 92.90± 0.24 89.94± 0.36 83.50± 0.28 74.28± 0.20 75.62± 0.15 90.81± 0.22 76.70± 0.72 91.68± 0.28 79.76± 0.92 90.66± 0.19 91.09± 0.36
30% Bimodal 92.81± 0.18 90.18± 0.91 83.06± 0.21 73.42± 0.54 75.69± 0.12 91.10± 0.45 75.21± 0.54 84.13± 0.18 78.45± 0.49 89.95± 0.31 90.59± 0.24
30% Flip 90.30± 0.36 91.15± 0.17 81.53± 0.33 78.72± 0.19 78.51± 0.38 90.54± 0.42 79.83± 0.78 86.01± 0.43 81.18± 0.51 88.79± 0.71 89.29± 0.73
60% Sym. 89.10± 0.19 82.24± 0.59 72.71± 0.86 53.48± 0.79 57.56± 1.86 88.02± 0.56 63.33± 0.93 88.27± 0.76 60.62± 0.61 87.31± 0.14 88.07± 0.53
60% Bimodal 87.75± 0.24 84.98± 0.16 60.76± 0.82 47.49± 0.69 48.18± 1.01 86.29± 0.52 57.82± 0.73 81.45± 0.37 58.93± 0.46 84.33± 0.62 86.79± 0.21
60% Flip 86.23± 1.10 80.40± 0.32 55.84± 0.70 59.99± 0.47 59.66± 0.45 82.19± 0.43 65.31± 0.36 79.76± 0.67 62.04± 0.63 81.88± 0.37 84.91± 0.37

CIFAR-100

Noise
Rate

Noise
Pattern

GSL GLC SCL Forward Bootstrap sgForward Co-teaching+ DivideMix gForward TMatrix sTMatrix

30% Sym. 75.80± 0.12 61.81± 1.19 58.01± 0.71 42.33± 1.34 41.51± 1.54 72.31± 0.77 54.04± 0.33 72.73± 0.22 52.64± 0.73 70.42± 0.71 73.04± 0.69
30% Bimodal 76.25± 0.35 61.77± 0.91 46.88± 0.63 45.22± 0.13 42.14± 0.38 73.65± 0.29 55.42± 0.65 74.21± 0.18 54.69± 0.82 72.07± 0.32 74.41± 0.22
30% Flip 75.80± 0.21 66.55± 0.52 55.46± 0.47 54.92± 0.25 54.44± 0.59 75.83± 0.42 58.46± 0.61 74.16± 0.39 58.32± 0.20 73.11± 0.14 75.15± 0.43
60% Sym. 68.49± 0.16 52.23± 0.85 29.00± 0.54 18.56± 1.11 16.22± 0.81 66.32± 0.79 38.15± 0.94 66.81± 0.66 39.32± 0.33 63.48± 0.22 66.87± 0.44
60% Bimodal 65.39± 0.48 50.33± 1.05 29.12± 0.77 18.79± 0.82 10.32± 0.63 63.03± 0.66 34.09± 0.15 64.88± 0.38 41.65± 0.79 63.84± 0.53 64.29± 0.23
60% Flip 69.60± 0.42 66.58± 0.43 41.37± 0.66 40.18± 1.34 37.27± 0.75 67.42± 0.38 40.68± 0.36 65.09± 0.86 42.77± 0.14 65.21± 0.66 67.38± 0.44

Clothing1M

Noise GSL GLC SCL Forward Bootstrap sgForward Co-teaching+ DivideMix gForward TMatrix sTMatrix

Real World 74.86 73.91 70.78 70.04 67.87 73.96 70.33 74.29 70.95 72.04 72.41

Table 2: Text analysis: average accuracy (%) of variants combining loss correction and symmetric cross entropy.
Results averaged across entire range of noise rates [0, 100]. Best accuracy in bold.

Noise
Pattern

Percent
Trusted

GSL GLC gForward TMatrix sgForward sTMatrix Forward SCL Bootstrap Co-teaching+ DivideMix

T
w
it
te
r

Sym. 1 79.30± 0.11 65.41± 0.90 53.21± 0.17 76.61± 0.37 78.39± 0.18 78.24± 0.24 52.25± 0.25 62.77± 0.63 50.59± 0.12 65.79± 0.22 76.95± 0.76
Sym. 5 81.94± 0.29 77.20± 0.17 59.61± 0.44 79.63± 0.33 81.20± 0.16 81.33± 0.17 59.07± 0.54 63.53± 0.31 52.04± 0.30 67.67± 0.34 78.73± 0.42

Bimodal 1 75.92± 0.29 67.15± 0.28 52.53± 0.19 77.64± 0.56 75.49± 0.34 76.73± 0.39 50.13± 0.40 62.31± 0.24 49.11± 0.25 63.89± 0.54 75.06± 0.27
Bimodal 5 84.35± 0.39 78.45± 0.37 60.63± 0.28 80.58± 0.32 80.41± 0.88 80.73± 0.19 54.64± 0.72 66.87± 0.31 53.87± 0.38 68.94± 0.32 81.95± 0.62
Flip 1 82.75± 0.63 83.13± 0.24 39.52± 0.22 86.13± 0.31 73.89± 0.41 73.28± 0.18 48.21± 0.31 60.63± 0.15 48.87± 0.28 62.66± 0.29 84.66± 0.26
Flip 5 84.75± 0.31 85.49± 0.38 48.42± 0.61 87.04± 0.21 79.48± 0.36 80.20± 0.18 53.87± 0.65 64.74± 0.39 51.88± 0.18 66.19± 0.29 86.29± 0.42

S
S
T

Sym. 0.1 75.18± 0.55 73.47± 0.28 72.15± 0.29 73.55± 0.29 72.22± 0.09 73.66± 0.49 70.13± 0.31 71.36± 0.26 70.03± 0.42 71.84± 0.33 74.07± 0.17
Sym. 1 75.96± 0.46 72.62± 0.28 73.47± 0.25 75.48± 0.36 72.93± 0.19 75.42± 0.34 72.52± 0.27 72.86± 0.39 71.31± 0.22 72.13± 0.29 74.93± 0.29

Bimodal 0.1 74.97± 0.24 74.70± 0.31 72.75± 0.14 74.19± 0.44 72.63± 0.51 74.16± 0.38 70.02± 0.18 71.22± 0.16 70.21± 0.21 72.25± 0.15 73.93± 0.31
Bimodal 1 74.88± 0.41 74.53± 0.32 72.10± 0.13 74.34± 0.29 71.79± 0.42 73.60± 0.30 72.67± 0.29 72.13± 0.41 71.38± 0.19 72.93± 0.31 74.01± 0.16
Flip 0.1 75.38± 0.29 74.07± 0.25 49.40± 0.51 74.83± 0.22 49.50± 0.34 74.81± 0.16 70.79± 0.54 72.52± 0.12 70.79± 0.41 72.14± 0.27 74.54± 0.30
Flip 1 76.59± 0.14 74.51± 0.32 50.21± 0.43 76.33± 0.13 49.81± 0.23 75.49± 0.43 73.04± 0.17 73.76± 0.51 71.78± 0.14 72.83± 0.10 74.99± 0.25

between the GSL and sgForward methods is with
bimodal noise, and between GSL and sTMatrix is
with flip noise. In case of 60% symmetric noise, GSL
achieves the accuracy of 68%, whereas GLC and SCL
trail far behind. Moreover, given the difficulty of training
a robust classifier for CIFAR-100 with 60% label noise,
it is worth mentioning that SCL can achieve similar
performance as GLC that is given 10% of trusted data
in case of 30% symmetric noise. This also indicates the
effectiveness of symmetric cross entropy in learning hard
classes even without trusted data. However, when facing
extremely noisy labels and patterns, the small amount
of trusted data can greatly improve the robustness of
the classifier but not necessarily the symmetric cross
entropy.

Seen from the high accuracy compared to GLC,
SCL, gForward and sgForward, GSL effectively
uses the trusted data to correct symmetric cross entropy
loss and improve the learning on the hard classes. GSL
performs slightly better with symmetric noise than with
bimodal and flip noise that is more challenging for
CIFAR-10. In the CIFAR-100, GSL works better on the
asymmetric noise rather than symmetric.

For Clothing1M dataset, as shown in Table 1,
GSL obtains the highest test accuracy compared to
other methods. Same as CIFAR-10 and CIFAR-100,
DivideMix achieves a relatively good performance.
The difference between GSL and SCL comes from the
effectiveness of corruption matrix that makes the regular
cross entropy robust.

6.2 Text Analysis We evaluateGSL on text datasets
of Twitter and SST, against resilient networks that
leverage corruption matrix, namely GLC and Forward.
Both GSL and GLC use the trusted data for estimating
the corruption matrix, wheres the original Forward [1]
relies solely on the noisy data.

We extensively evaluate GSL, GLC gForward,
TMatrix, sgForward, SCL, Forward, Bootstrap,
Co-teaching+, DivideMix and sTMatrix on Twitter
and SST, with label corruption ranging from 0% to 100%.
We also vary the percentage of trusted data among 1%
and 5%. We summarize the average accuracy across 11
noise rates and three runs in Table 2.
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6.2.1 Twitter As shown in Table 2, GSL consistently
achieves the highest average accuracy in most cases.
Compared to GLC, GSL has significant higher accuracy
for Twitter corrupted with symmetric and bimodal
noises, but the difference diminishes with increasing
amounts of trusted data. When the percent of trusted
data is low, say, 1%, GLC is unable to estimate the
corruption matrix accurately nor to correct the loss,
seen by the difference between GLC and TMatrix.

6.2.2 SST Here, the classification involves only two
classes and turns out to be less challenging than the
Twitter case. The results in Table 2 show that the
difference among the different comparative approaches
considered is smaller than for Twitter. For instance,
though GSL consistently achieves the best average
accuracy in almost all cases, the difference between GSL
and GLC is around 1-3%. Again, we see that GSL
visibly outperforms GLC on low amounts of trusted
data because of using cross entropy and the difference
among them becomes limited. We note that TMatrix
and gForward collapse under Flip noise. We plot an
extension of Table 2 for analysis on text datasets for
varying noise rates in the supplemental material.

7 Discussion

Here we present the extensive results of our empirical
evaluation on training with corrected labels for the vision
datasets in Table 3 and Table 4, respectively. This
complements the results presented in §3. We compare
the impact of correcting labels only on the cross entropy
term (ce only), only on the reverse cross entropy term
(rce only), or both. Table 3 shows the achieved accuracy
for CIFAR-100, under two noise rates, 30% and 60%,
three different noise types, symmetric, bimodal and flip,
and three fractions of trusted data, 5%, 10% and 15%.
For each noise scenario the best case is highlighted in
bold.

Table 3: Accuracy (%) of different gold fraction on
CIFAR-100

Noise rate = 30%

Label correction
Bimodal Symmetric Flip

5% 10% 15% 5% 10% 15% 5% 10% 15%
ce only 71.66 73.90 75.20 71.69 74.24 75.11 74.78 75.46 77.01
rce only 25.90 61.44 67.15 26.15 61.19 67.14 23.75 59.68 65.33
both 23.37 57.52 64.30 23.58 57.36 63.76 19.74 54.50 61.20

Noise rate = 60%

Label correction
Bimodal Symmetric Flip

5% 10% 15% 5% 10% 15% 5% 10% 15%
ce only 58.42 66.96 69.41 55.22 66.87 69.46 65.20 68.33 70.41
rce only 54.35 67.24 69.41 24.90 58.72 64.39 14.43 46.09 68.75
both 24.35 55.18 61.19 25.62 55.16 61.46 12.46 36.76 50.83

ce only achieves the highest accuracy in all cases
except one. Under 60% bimodal noise on CIFAR-
100 with 10% trusted data rce only is slightly better
by 0.28 percent points. More in general, rce only

typically performs second best and both achieves the
worst accuracy. Focusing on ce only over the other two,
the gain tends to increase with the difficulty of the noise
scenarios, i.e. with higher number of classes, higher
noise rates and less trusted data. ce only outperforms
the other two by up to 51.03 percent points for CIFAR-
100. Same as CIFAR-100 results, ce only outperforms
the other two by up to 11.74 percent points for CIFAR-10
in Table 4.

Table 4: Accuracy (%) of different gold fraction on
CIFAR-10

Noise rate = 30%

Label correction
Bimodal Symmetric Flip

5% 10% 15% 5% 10% 15% 5% 10% 15%
ce only 90.06 91.50 92.53 90.17 91.70 92.50 89.96 91.27 92.58
rce only 84.67 88.46 89.30 84.82 88.11 89.98 81.70 86.79 88.40
both 83.25 87.45 89.30 83.43 87.70 89.46 78.00 85.42 88.21

Noise rate = 60%

Label correction
Bimodal Symmetric Flip

5% 10% 15% 5% 10% 15% 5% 10% 15%
ce only 83.06 88.43 90.52 85.79 89.19 90.19 80.03 82.64 85.80
rce only 81.73 86.86 89.07 81.54 86.63 88.98 68.29 80.22 84.35
both 79.83 85.79 88.63 80.27 86.22 88.53 63.63 82.19 83.18

8 Conclusion

To enhance the robustness of deep models against by
label noise, we propose GSL that features on correcting
the symmetric cross entropy loss by the noise corruption
matrix. GSL uses a small fraction of trusted data
to accurately estimate the corruption matrix, and
further determine the weights applied on regular and
reverse cross entropy. GSL learns deep networks from
trusted samples through regular cross entropy and from
untrusted noisy samples through golden symmetric cross
entropy. We prove that the cross entropy corrected by
the corruption matrix is noise robust. To adapt to noise
patterns of dataset, we heuristically set the weights of
golden symmetric loss based on the corruption matrix.
We extensively evaluate GSL on vision and text analysis
under diversified noise rates and patterns. Evaluation
results show thatGSL can achieve a remarkable accuracy
improvement, i.e., from 2 to 18% on CIFAR benchmarks
and real world noisy data, compared to methods that
either correct loss or leverage symmetric cross entropy.
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