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Abstract
Dysarthria is a speech disorder that limits an individual’s

ability to clearly articulate, due to the weakening of the
muscles involved in speech. Despite recent advances in
Automatic Speech Recognition (ASR), the recognition of
dysarthric speech remains a significant challenge because of
the limited availability of dysarthric speech data, significant
speaker variability, and the mismatch between typical and
dysarthric speech patterns. This paper addresses these
challenges by using transfer learning and Low-Rank Adaptation
(LoRA) techniques to enhance the performance of the state-
of-the-art ASR model Whisper on dysarthric speech. By
fine-tuning Whisper with the TORGO dataset, this study
aims to adapt the pre-trained models to better recognise
dysarthric speech patterns, thus reducing Word Error Rates
(WER) and improving accessibility for individuals with speech
impairments. Experimental results indicate that this approach
can improve speech recognition performance since the Large-
V2, Large-V3 and the corresponding distilled models achieved
a reduction in WER after fine-tuning. The Large-V3 model
achieved the greatest relative WER reduction of 22.65%.
Index Terms: Automatic Speech Recognition, Dysarthria,
Transfer Learning, Low-Rank Adaptation, Whisper Model

1. Introduction
Dysarthria is a neuromotor speech disorder that often arises
in conditions such as Cerebral Palsy and Amyotrophic Lateral
Sclerosis (ALS). Characterised by the weakening, slowing,
or lack of coordination of the muscles involved in speech
production, dysarthric speech typically manifests through
abrupt shifts in pitch, diminished articulation, and a breathy
quality [1, 2]. Individuals with dysarthric speech frequently
experience additional physical impairments that complicate
the use of traditional technological interfaces like mouse and
keyboard. Consequently, voice technology has the potential
to enhance the independence and quality of life for individuals
with physical disabilities [3].

Voice technology relies on Automatic Speech Recognition
(ASR), defined as “the process and the related technology for
converting [a] speech signal into its corresponding sequence of
words or other linguistic entities by means of algorithms” [4,
p. 1]. While ASR technologies hold significant promise
for individuals with dysarthric speech, research indicates
that atypical speech recognition encounters three primary
challenges within ASR systems [5]. First, there is generally
less atypical speech data available, leading to data scarcity.
This limits the ability to train robust ASR models specifically
tailored for atypical speech recognition. Second, there
is considerable speaker variability within atypical speech,
including varying severity levels of dysarthria, complicating
the generalisation of ASR models across different speakers [6].
Third, there is a mismatch between typical and atypical speech,
making it difficult for models trained on typical speech data to
accurately recognise dysarthric speech.

Due to these challenges, ASR systems tend to achieve lower
accuracy when used by individuals with speech pathologies
[7]. Therefore, it is crucial to fine-tune these technologies to
accommodate dysarthric speech, thereby enabling individuals
with dysarthria to benefit fully from ASR. Several solutions
have been proposed to address these challenges. For instance,
data augmentation techniques have been explored to simulate
dysarthric speech using other, more widely available speech,
mitigating the data scarcity problem [8, 9]. Moreover, the

Voiceitt app [10] allows dysarthric speakers to train a model
with their unique word pronunciations by reading out a series of
phrases, addressing both speaker variability and the mismatch
between typical and dysarthric speech.

Another promising approach to overcoming data scarcity
and speech mismatches is transfer learning, which simplifies
learning for a new task based on knowledge from a similar
task [11]. Previous studies have used transfer learning to
improve recognition of dysarthric speech. For example, [12]
proposed a transfer learning method for recognising Japanese
dysarthric speech by pre-training on Japanese non-dysarthric
speech and non-Japanese dysarthric speech, and then fine-
tuning on the target Japanese dysarthric speech. This approach
achieved a 33.3% relative improvement in Phoneme Error Rate
(PER) compared to random initialisation and a 15.3% relative
improvement compared to non-Japanese dysarthric speech
being excluded from pre-training. Similarly, another study
compared the performance of the state-of-the-art ASR model
Whisper [13] with a hybrid ASR model for Dutch dysarthric
speech, finding that fine-tuning Whisper with dysarthric data led
to Word Error Rate (WER) improvements of 7.3% for moderate
severity and 10.7% for severe severity levels, although it did not
outperform the hybrid model overall [14]. Additionally, [15]
focused specifically on fine-tuning Whisper’s encoder module
alongside a classifier to investigate the speech recognition of
dysarthric speech. An average word recognition accuracy
of 59.78% was achieved on the UA-Speech Corpus [16],
demonstrating the potential of Whisper in handling dysarthric
speech.

This study aims to evaluate the speech recognition
capabilities of Whisper when further trained with dysarthric
speech data. Whisper was chosen as the primary model
for this investigation because it is known for its robust
performance across various speech inputs [13], therefore
offering a promising starting point for adapting ASR technology
to accommodate dysarthric speech patterns. By fine-tuning
the entire model using low-rank adaptation transfer learning
techniques, this research seeks to address the research question:
How can Automatic Speech Recognition models designed
for typical speech be adapted using fine-tuning to better
recognise dysarthric speech? The Whisper model will be re-
trained on a dataset of dysarthric speech to enable individuals
with dysarthria to benefit from state-of-the-art ASR technology.
Furthermore, the same approach will also be applied to distilled
versions of the Whisper model, which are more compact and
therefore potentially easier to integrate into software. This
research will address the following sub-questions:
• How can pre-trained models be leveraged to improve the

recognition of dysarthric speech?
• How well does Whisper, after low-rank adaptation fine-

tuning, generalise to different types and severities of
dysarthric speech, as well as to typical speech?

• How does the performance of the distil-Whisper models
compare to that of the standard Whisper models after
applying low-rank adaptation fine-tuning?

In Section 2, the Whisper and distil-Whisper models are
described, and the methodology is established. Following this,
Section 3 outlines the experimental setup for implementing
transfer learning on these models. Section 4 presents the
results, which are then further discussed in Section 5. Section
6 summarises the key findings and suggests areas for future
research. Finally, Section 7 explores the ethical considerations
within this research.



2. Methodology
This section provides insight into the methodology that will
be used throughout this study. This research will use
Whisper, an open-source, state-of-the-art speech recognition
model described in Subsection 2.1. Furthermore, the distil-
Whisper models will also be used throughout this research,
as established in Subsection 2.2. Section 2.3 establishes how
transfer learning will be used to fine-tune the aforementioned
models, and Subsection 2.4 explains how the performance of
the models will be evaluated.

2.1. Whisper

Whisper is an ASR model that was published by OpenAI in
September 2022 [13]. It has been trained on 680,000 hours of
a wide range of labelled data allowing it to generalise well to a
wide range of speech in a zero-shot transfer setting. This can be
seen in the performance measures presented in [13].

The original Whisper family contains five Whisper models,
named after their increasing number of parameters: Tiny, Base,
Small, Medium, and Large, which will be referred to as Large-
V1. The models differ in terms of their trainable parameter
counts and the number of transformer encoder-decoder layers
they employ, as outlined in Table 1. There are two versions for
each of these models, one trained with only English speech and
one trained with multilingual speech. The exception to this is
the Large-V1 model, which has no separation of English and
other languages.

After the original release of these Whisper models, the
Large-V1 model was trained for an additional 2.5 times the
original epochs and was subsequently denoted as the Large-V2
model. In November 2023, the Large-V3 model was created,
which was trained for 2 epochs on a dataset consisting of 1
million hours of weakly labelled audio and 4 million hours of
audio labelled by Whisper Large-V2 [17].

Table 1: Whisper Model Family Specifications [13, 18]

Model Layers Width Heads Parameters

Tiny 4 384 6 39M
Base 6 512 8 74M
Small 12 768 12 244M

Medium 24 1024 16 769M
Large-V1 32 1280 20 1550M
Large-V2 32 1280 20 1550M
Large-V3 32 1280 20 1550M

D-S 12 768 12 166M
D-M 24 1024 16 394M

D-L-V2 32 1280 20 756M
D-L-V3 32 1280 20 756M

2.2. Distilled Whisper Models

In machine learning, a distilled model refers to a smaller model
that has inherited knowledge from a larger model. [18] was
able to distil the Small, Medium, Large-V2 and Large-V3
Whisper models into models with fewer parameters, as shown
in Table 1. These distilled models are 5.8 times faster than
their corresponding standard Whisper models and achieve a
performance of within 1% of Whisper’s WER. Such compact
models are particularly beneficial for deployment in low-latency

or resource-limited settings. Therefore, this research will
investigate the application of transfer learning to these smaller
models. The aim is to explore whether, despite having fewer
parameters, these models can still be fine-tuned to improve their
recognition of dysarthric speech.

2.3. Transfer Learning

Given the significant mismatch between typical and dysarthric
speech, transfer learning will be employed. Transfer learning
in this context involves taking the pre-trained Whisper and
distil-Whisper models, which have demonstrated proficiency
in typical speech recognition, and further training them with
dysarthric speech data. This approach enables the models
to adapt to the unique characteristics of dysarthric speech,
improving their overall performance in recognising such speech
patterns.

By using pre-existing knowledge from the typical speech
recognition domain, transfer learning facilitates more effective
learning in the dysarthric speech domain. Instead of starting
from scratch and training a model solely on dysarthric data,
which may require a large number of labelled samples to
achieve good performance, transfer learning reduces the amount
of data required for training and accelerates the learning
process. This ultimately improves the model’s ability to
recognise dysarthric speech patterns despite data scarcity and
domain mismatch.

To efficiently handle the extensive parameter space of
Whisper models, particularly the Large-V1, Large-V2 and
Large-V3 models which contain 1.5 billion parameters each,
Low-Rank Adaptation (LoRA) [19] will be used for parameter-
efficient fine-tuning. LoRA operates on the principle of low-
rank decomposition of weight updates, significantly reducing
the parameter space. Instead of updating the entire weight
matrix, LoRA updates two smaller matrices that approximate
the original updates.

Given a weight matrix W0 ∈ Rd×k, LoRA represents the
update as a product of two low-rank matrices A ∈ Rr×k and
B ∈ Rd×r , where r is much smaller than d and k. The update
W0+∆W is thus decomposed into W0+BA. During training,
the original weights W0 are frozen, and only A and B are
updated. The training process involves creating the low-rank
matrices A and B which are initialised randomly. The model
then updates these matrices during fine-tuning. The output of a
forward pass is modified to include the low-rank update:

h = W0x+∆Wx = W0x+BAx. (1)

This allows the model to adapt to new tasks efficiently,
as the number of trainable parameters is drastically reduced
compared to full fine-tuning [19]. From now onwards,
whenever fine-tuning is mentioned, the assumption can be made
that this refers to fine-tuning using LoRA.

The implementation of LoRA will be facilitated through
the PEFT (Parameter-Efficient Fine-Tuning) library [20].
This library provides tools for applying LoRA and other
parameter-efficient techniques to large-scale models, making
it easier to integrate these approaches into existing training
pipelines. By employing LoRA, the project aims to achieve
significant improvements in dysarthric speech recognition while
optimising resource usage.



2.4. Evaluation Metric

To evaluate the performance of the Whisper models and their
distilled counterparts, Word Error Rate (WER) will be used as
the primary metric. WER is based on the Levenshtein distance
[21] and is a standard measure in the field of speech recognition
that quantifies the accuracy of the transcriptions produced by
an ASR system. It provides a clear, numerical representation of
how well the model performs in recognising and transcribing
spoken language. It can be calculated using the following
formula:

WER =
S +D + I

N
× 100% (2)

where:
• S is the number of substitutions,
• D is the number of deletions,
• I is the number of insertions,
• N is the number of words in the reference.

This means that a lower WER indicates a closer match to
the reference transcript. To quantify the change in WER before
and after fine-tuning, Relative Word Error Rate Difference will
be used. The equation for this is as follows:

Relative WER Difference =
WERafter − WERbefore

WERbefore
(3)

A positive value can therefore be interpreted as an increase
in WER, whilst a negative value indicates a decrease in WER.

3. Experimental Setup
This section provides an overview of the conducted
experiments. It starts with a detailed description of the
chosen dataset, as outlined in Subsection 3.1. Following this,
Subsection 3.2 presents the specific experiments performed.

3.1. The TORGO dataset

3.1.1. Dataset description

In this work, the TORGO dataset [22] was used, a collaborative
effort between the University of Toronto and the Holland-
Bloorview Kids Rehab Hospital in Toronto. This English-
speech database comprises recordings from eight individuals
(five male and three female) with dysarthric speech impairments
due to cerebral palsy or ALS. Furthermore, eight age- and
gender-matched control participants are also included. The
subjects with dysarthria can be categorised into four different
severity levels, as summarised in Table 2. Since only one
subject is in the ‘moderate’ category, after reviewing the audio,
I have decided to additionally categorise M05 as ‘moderate’
instead of ‘moderate-to-severe’.

Table 2: Patient Dysarthria Severity [23]

Severity Subjects
Very Mild F04, M03
Moderate F03

Moderate-to-Severe M05
Severe F01, M01, M02, M04

The participants were instructed to read text displayed on a
screen, which consisted of various stimuli, namely non-words,

short words, restricted sentences and unrestricted sentences.
Non-words were included to assess the baseline abilities of
the speakers and consisted of repetitions of various phonetic
sequences. A wide range of short words were included, as they
don’t require word boundary detection. Additionally, subjects
were presented with phoneme-rich restricted sentences and they
described various images to produce unrestricted sentences.
Each participant has about 3 hours of recorded data, which is
comprised of 500 utterances from the dysarthric speakers, and
1200 utterances from the speakers without dysarthria [24].

3.1.2. Division into Test and Training Set

The TORGO dataset lacks a predefined division into test and
training sets. Most studies on the TORGO dataset employ the
leave-one-speaker-out (LOSO) method, where one speaker is
isolated as the test set while the others form the training set
[23, 25, 26, 27]. Other common divisions include an n-fold
cross-training strategy, as detailed in [28], or a random division
of all the audio files [29].

However, it is important to note that all participants were
given the same prompts, resulting in significant repetition
across different individuals. Specifically, when a LOSO out
approach is used, depending on which subject makes up the
test set, there will be a prompt overlap with the training set
of at least 95.7% [30]. With only eight dysarthric speakers
and substantial overlap in their utterances, the aforementioned
approaches tend to overestimate model performance due to
their narrow focus on TORGO’s specific phrases. This issue
is further amplified by Whisper’s strong language model, which
can recognise the repetition of prompts, leading to an inflated
performance evaluation.

To address these limitations, I decided to split the data
based on the prompts given to the subjects, rather than dividing
the subjects themselves. First, I removed the typical speech
from the dataset to focus solely on training Whisper with
dysarthric data, since it has already been trained on typical
speech. From this dysarthric dataset, I separated 70% of the
prompts into a training set, 20% into a test set, and 10% into
a validation set. Additionally, I ensured that the utterances of
the speakers were approximately evenly distributed among the
three sets. The number of files and the division between the
subjects are shown in Table 3.

Finally, I also created a test set consisting of only typical
speech data that matches the prompts and the number of files
contained in the dysarthric test set. This set will be used to
evaluate whether the performance of the recognition of typical
speech data is affected by fine-tuning Whisper for dysarthric
data.

Table 3: Number of Utterances per Subject per Set

Subject Training Set Test Set Validation Set
F03 752 205 112
M03 561 148 89
M02 544 140 80
M01 530 128 78
F04 480 126 72
M04 461 114 62
M05 324 90 47
F01 158 48 22

Total 3810 999 563



3.2. Experiments

3.2.1. Zero-shot Testing (Baselines)

Whisper is known for its capability in zero-shot transfer
learning, where ’zero-shot’ refers to the model’s ability to
recognise and adapt to new contexts it has not explicitly
encountered during training, such as dysarthric speech [13].
Zero-shot testing therefore involves computing the WER
achieved by Whisper before any fine-tuning is performed. This
is necessary to establish the baseline performance of the various
Whisper models on dysarthric speech.

To achieve this, all seven Whisper models established in
Table 1 will be run against the dysarthric test set, and the
WER will be calculated per model. Additionally, the same
models will be tested on the typical speech test set to provide
a comparative measure. These same steps will be performed
on the models in the distil-Whisper family (Table 1). These
baseline assessments will help determine the effectiveness of
the Whisper models without any prior fine-tuning for dysarthric
speech recognition and will determine which models will be
used for fine-tuning.

3.2.2. Whisper Fine-Tuning

Following the baseline assessment, the next step is to fine-
tune the Whisper models using the TORGO training dataset.
The fine-tuning procedure involves selecting the two best-
performing Whisper models based on zero-shot testing results.
Then, LoRA will be implemented using the PEFT library, with
the PEFT parameters set to r = 32, alpha = 64 and dropout =
0.05. The fine-tuning process involves training Whisper with
a batch size of 32 and a learning rate of 1e-4. Additionally,
50 warmup steps and a linear decay are used. These values
are all taken from [31], who performed a similar methodology
for fine-tuning Whisper with child speech. In their study,
these specific settings achieved a 38% reduction in relative
WER using LoRA. This indicates that the chosen parameters
are empirically validated and optimised for adapting Whisper
to atypical speech data, particularly child speech. Similar to
dysarthric speech, child speech tends to be more variable and
challenging than typical speech. Furthermore, a temperature of
0.0 was used in the transcription of the audio files.

The number of epochs for which the models are trained
will be determined using early stopping. Early stopping is a
simple method of preventing overfitting to the training model.
As explained in [32], early stopping involves training the model
on a training set, but at the same time computing the error of
the validation set at regular intervals. The training of the model
should be stopped once the error on the validation set is higher
than it was at the previous checkpoint.

3.2.3. Distil-Whisper Fine-Tuning

In addition to fine-tuning the standard Whisper models, the
distil-Whisper models will also undergo fine-tuning. To
maintain comparability between the standard Whisper models
and the distil-Whisper models, the distil-Whisper models will
be chosen that correspond with the two standard Whisper
models that are being fine-tuned. Furthermore, the same
hyperparameters and early stopping will again be used.

4. Results
This section presents the results achieved via the
aforementioned methodology. The results are divided

into the three different experiments: the results for zero-shot
testing are presented in Subsection 4.1, the fine-tuning of the
standard Whisper models is shown in Subsection 4.2 and the
fine-tuning results for the distil-Whisper models are shown in
Subsection 4.3.

4.1. Zero-shot Testing

4.1.1. Standard Whisper Models

In Table 4, the zero-shot results for the dysarthric test set across
various Whisper models are presented. Detailed WERs for
both typical and dysarthric test sets, categorised by dysarthria
severity levels, are available in Table 14 in Appendix A. As
anticipated, the WER generally decreases for dysarthric speech
as the number of model parameters increases. The Large-V2
and Large-V3 models are the top performers, achieving WERs
of 67.36% and 63.28% on the dysarthric test set, respectively.

Table 4: Performance of Whisper Models on Dysarthric Test Set

Whisper Model Average WER (%)
Tiny 84.52%
Base 76.36%
Small 68.99%

Medium 68.03%
Large-V1 74.51%
Large-V2 67.36%
Large-V3 63.28%

It is interesting to note that the Large-V1 model performs
worse than both the Small and Medium model, with WERs of
74.51% for the Large-V1 model, 68.03% for the Medium model
and 68.99% for the Small model. This discrepancy is likely
because the English-language Small and Medium models were
used for transcription, whereas the Large-V1 model only has a
multi-language model. Further analysis revealed that 9.9% of
the Large-V1 transcriptions contained non-Roman characters,
indicating non-English content. However, even though the
Large-V2 and Large-V3 models also only contain a multilingual
model, they outperform the English-only Medium and Small
models. This suggests that training these models for more
epochs and with more data has enabled them to better recognise
dysarthric speech in zero-shot testing, even without knowing
the language that is being spoken.

Figure 1 shows the WERs for the two best-performing
models, Large-V2 and Large-V3, based on the severity of
dysarthria. The results align with the expectation that WER
increases with the severity of dysarthria, with the ‘severe’
dysarthria level consistently resulting in the highest WERs
across both models. Notably, Large-V3 surpasses Large-V2 in
recognising all severities of dysarthria, as well as typical speech.
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Figure 1: Baseline WER (%) by Dysarthria Severity for
Standard Whisper Models

Interestingly, there is a significant difference in recognition
performance between the ‘very mild’ and ‘moderate’ dysarthria
severities. For both Large-V2 and Large-V3, the WER
more than quadrupled from ‘very mild’ subjects to ‘moderate’
subjects. Additionally, it is noteworthy that ‘very mild’
dysarthric speech outperforms typical speech. Based on
auditory inspection, one possible explanation is that whilst the
typical and ‘very mild’ dysarthric speakers’ pronunciations are
similar, the dysarthric speakers are more intentional with their
articulation and speak more slowly.

4.1.2. Distil-Whisper Models

The full results of the zero-shot testing of all distil-Whisper
models can be found in Table 15 in Appendix A. To allow for a
comparison between the performance of the fine-tuned Whisper
model and the fine-tuned distil-Whisper model, only the zero-
shot performance of the distil-Large-V2 and distil-Large-V3
models will be evaluated.
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Figure 2: Baseline WER (%) by Dysarthria Severity for Distil-
Whisper Models

Figure 2 shows the WER achieved by the Large-V2
and Large-V3 distil-Whisper models grouped by dysarthria
severity. Similar to their standard counterparts, the ‘severe’
level displays the highest WERs, followed by the ‘moderate’
level. The lowest WERs are observed for typical and ‘very

mild’ speech. Notably, the distil-Large-V2 model outperforms
its non-distilled counterpart for ‘severe’ dysarthric speech, with
87.24% versus 94.64%.

4.2. Fine-tuning Whisper Models

The two standard Whisper models that best recognised
dysarthric speech were the Large-V2 and Large-V3 models.
Therefore, these two models will be used for fine-tuning. As
shown for the Large-V2 model in Figure 3, the training and
validation losses were tracked over 10 epochs. For this specific
model, the training loss consistently decreased, since the model
was increasingly fine-tuned to the training set. In contrast, the
validation loss initially decreased rapidly but began to increase
again after the first epoch. This suggests overfitting, so early
stopping is used to determine that fine-tuning should conclude
after one epoch.
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Figure 3: Training and Validation Loss for Large-V2

Table 5 shows the relative difference in WER after fine-
tuning. The WER for ‘severe’ dysarthric speech has decreased
by 21.78%, indicating a significant improvement in the model’s
ability to recognise speech from individuals with severe
dysarthria. However, the WER for ‘typical’, ‘very mild’,
and ‘moderate’ dysarthric speech has increased by 56.69%,
52.21%, and 20.77% respectively. This trend indicates that
while the model’s adjustments have benefited the recognition of
severe dysarthric speech, these changes may have inadvertently
degraded performance on less severe or typical speech patterns.
One possible explanation for this is the trade-off between
generalisation and specialisation that occurs when fine-tuning.
Research indicates that fine-tuning models on specific datasets,
such as dysarthric speech datasets, improve performance for
those conditions but can reduce accuracy for standard or clean
speech [33]. This is due to the model’s shift in focus towards the
new domain features, potentially neglecting the broader patterns
learned during initial training.

Table 5: Large-V2: Relative WER Difference

Speech Type Relative WER
Typical 56.69%

Very Mild 52.21%
Moderate 20.77%

Severe -21.78%



The Large-V3 model achieved its minimum validation loss
after two epochs. The differences in WERs before and after
fine-tuning are presented in Table 6. Notably, the WERs have
drastically increased after fine-tuning. Upon closer inspection
of the transcripts, it became evident that the fine-tuned model
produced a significant number of so-called hallucinations.

Table 6: Large-V3: Relative WER Difference

Speech Type Relative WER
Typical 1345.68%

Very Mild 1179.73%
Moderate 154.13%

Severe 201.17%

In the context of ASR, hallucinations are known as
transcriptions created by an ASR model that are unrelated to
the source audio [34]. Hallucinations are a known issue that
can occur when using Whisper [35, 36]. The hallucinations in
the fine-tuned Large-V3 model are severe, producing transcripts
like “If you can do it can do it can do it can do it can do it can
do it can do it can do it can do it can do it can do it can do it
from the class, it, it, it, it, it, it”. By counting the percentage of
transcriptions containing words repeated three or more times 1,
it was determined that 46.97% of the transcribed utterances of
dysarthric speech and 24.72% of the transcribed utterances of
healthy speech contained hallucinations. These hallucinations,
typically characterised by the insertion of numerous additional
words, significantly increased the overall WER.

Table 7: Large-V3 after 1 Epoch: Relative WER Difference

Speech Type Relative WER
Typical -27.69%

Very Mild -21.20%
Moderate -41.32%

Severe -24.53%

Given the prevalence of hallucinations, it was hypothesised
that the validation loss might not have accurately indicated
the optimal number of training epochs, possibly due to the
validation set not being a good representation of the test set.
Consequently, the fine-tuned model was also evaluated after one
epoch. The results are shown in Table 7. After fine-tuning
the Large-V3 model for one epoch, all dysarthria severities
exhibited decreased WERs compared to pre-fine-tuning, with
the most significant decrease observed for ‘moderate’ dysarthric
speech, which saw a reduction of 41.32%. Additionally, by
re-evaluating the frequency of words occurring three or more
times in a transcript, it was found that only 4.51% of the
dysarthric and 3.70% of the typical transcriptions contained
hallucinations. Overall, the Large-V3 model performs better
after being fine-tuned for a single epoch, effectively recognising
both typical speech and all severities of dysarthric speech.
This contrasts the performance of the Large-V2 model, which
performed worse for all classes of speech aside from the
‘severe’ dysarthric speech. This suggests that the larger amount

1This threshold was determined after manually inspecting the
prompts and identifying that no prompts in the test set contain three
or more repeated words.

of data that the Large-V3 model was trained on allows it to
better generalise to a variety of dysarthria severity levels, in
addition to typical speech.

4.3. Fine-tuning Distil-Whisper Model

The distil-Large-V2 model was trained for two epochs. As can
be seen in Table 8, the ‘very mild’, ‘moderate’, and ‘severe’
dysarthric speech experienced reductions in relative WER by
7.55%, 14.54%, and 10.28% respectively. In contrast, the WER
for typical speech increased after fine-tuning by a relative rate of
61.09%. The decrease in WERs for the dysarthric speech levels
after fine-tuning indicates that the fine-tuning process improved
the model’s ability to recognise dysarthric speech.

However, the WER for typical speech increased because the
fine-tuned model was trained exclusively on dysarthric data and
not on additional typical speech data. As a result, the fine-tuned
model is more specialised for dysarthric speech but performs
worse on typical speech.

Table 8: Distil-Large-V2: Relative WER Difference

Speech Type Relative WER
Typical 61.09%

Very Mild -7.55%
Moderate -14.54%

Severe -10.28%

The distil-Large-V3 model also experienced the lowest
validation loss after two epochs. Table 9 shows the relative
WER reduction before and after fine-tuning. The ‘moderate’
and ‘severe’ dysarthric speech experienced a reduction in
relative WER by 20.49% and 17.54% respectively. In contrast,
the WER for the typical and ‘very mild’ dysarthric speech
increased after fine-tuning, by relative rates of 37.61% and
45.82%. Similar to the distilled Large-V2 model, this is
probably because the fine-tuned model was only trained on
dysarthric data, and not on further typical data. Therefore, the
fine-tuned model has now become better tailored for dysarthric
speech but performs worse on typical speech.

Table 9: Distil-Large-V3: Relative WER Difference

Speech Type Relative WER
Typical 37.61%

Very Mild 45.82%
Moderate -20.49%

Severe -17.54%

5. Discussion
This section further analyses the achieved results by
comparing the different model performances in Subsection 5.1.
Furthermore, the achieved results will be discussed in the
context of previous research in Subsection 5.2. Finally,
Subsection 5.3 discusses some of the limitations of this
research.

5.1. Comparison between Models

The relative WER differences for the various models across
all dysarthria severities in the test set are shown in Table 10.



The Large-V3 model (after fine-tuning it for one epoch) has
achieved the largest decrease in relative WER for the entire
dysarthric test set with 22.65%. Interestingly, the Large-V2
model achieved the lowest WER improvement with only 3.55%.
The Large-V3 model is trained on significantly more speech
data than the Large-V2 model, so this might indicate that
models with larger training datasets are better at generalising
to diverse and challenging speech patterns, such as those found
in dysarthric speech.

Table 10: Relative WER Difference for Different Models

Model Relative WER Difference
Large-V2 -3.55%
Large-V3 -22.65%

Distil-Large-V2 -11.44%
Distil-Large-V3 -13.53%

Furthermore, the distil-Large-V2 and distil-Large-V3
models, show moderate improvements of 11.44% and 13.53%,
respectively. These results highlight that while model
distillation can help in reducing the model size and inference
time, there might be a trade-off in the extent of WER
improvement achieved compared to the larger, non-distilled
counterparts.
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Figure 4: Average WER after Fine-Tuning Large-V2 vs. Distil-
Large-V2

To make a more nuanced comparison between the
performance of the standard Whisper models and the
corresponding distilled models, Figure 4 and Figure 5 depict
the average WER after fine-tuning per dysarthria severity level.
For the Large-V2 models, the distilled version outperforms
the standard models for all severities aside from ‘severe’
dysarthric speech. This does not match the hypothesis that the
standard Whisper models will outperform the distilled models
but matches the fact that the WERs increased for all severity
levels aside from ‘severe’ dysarthria for the Large-V2 model
(Table 5). This might be because the Large-V2 model is
overfitting to the severe dysarthric speech, or it could be because
the distilled models have a lower propensity for hallucinations
than the standard Whisper model [18]. By counting the number
of transcripts that contain words repeated three or more times,
it can be seen that the non-distilled Large-V2 model produces
hallucinations in 3.30% of its transcriptions, whilst the distil-
Large-V2 model produced hallucinations 0% of the time.
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Figure 5: Average WER after Fine-Tuning Large-V3 vs. Distil-
Large-V3

For the Large-V3 model, the standard version consistently
outperforms the distilled version across all severity levels. This
suggests that the larger number of parameters in the Large-V3
model allows it to better capture the features that make up and
distinguish dysarthric from typical speech.

Nonetheless, the distilled models, while slightly less
accurate, showcased improvements in runtime. Table 11 shows
the time it took to fine-tune the models for 10 epochs. It
can be seen that the distil-Large-V2 model took 21.93% less
time to be fine-tuned than the standard Large-V2 and that the
distilled Large-V3 model took 17.24% less time than the Large-
V3 model. The time taken was relatively short across all models
because a small training set and LoRA were used. However,
when fine-tuning with a larger training set or for further
epochs, the time efficiency of the distilled models will become
especially advantageous. The distilled models are therefore
particularly beneficial in scenarios with limited computational
resources or the need for real-time processing. For the Large-
V2 model, the distilled model outperformed the non-distilled
model. However, for the Large-V3 model, a tradeoff between
speed and performance will have to be made, depending on
which model is chosen.

Table 11: Time Taken for Fine-Tuning for 10 Epochs

Model Time taken for Fine-Tuning
Large-V2 2 hours 15 minutes
Large-V3 2 hours 52 minutes

Distil-Large-V2 1 hour 46 minutes
Distil-Large-V3 2 hours 22 minutes

5.2. Results Compared to Previous Literature

When comparing the results to previous studies, it is evident
that transfer learning improves ASR performance for dysarthric
speech. The performance of Whisper on dysarthric speech has
consistently improved after fine-tuning, as supported by [12, 14,
15]. It is also insightful to examine the different models and
datasets used in prior research and compare them to the results
achieved in this study.

[15] used only Whisper’s encoder in combination with
a classifier, achieving a WER of 59.78% on the UA speech
corpus. In contrast, this study used the full Whisper model and
the TORGO dataset, achieving the lowest WER with the Large-
V3 model at an average of 48.95% for the full dysarthric test set



(Table 21 in Appendix A). The lower WERs achieved in both
studies despite differences in datasets and model components
highlight the wide range of possibilities for improving Whisper
to better recognise dysarthric speech.

[14] conducted a more similar experiment to the one
presented in this paper, fine-tuning the Medium Whisper model
with Dutch dysarthric speech data. This study achieved relative
WER reductions of 7.3% for moderate dysarthria severity levels
and 10.7% for severe dysarthria. In comparison, the highest
improvements in this study were observed with the Large-
V3 model, which saw relative WER reductions of 41.32%
for moderate dysarthria and 24.53% for severe dysarthria.
Although differing datasets and languages were used, these
results suggest that models with more parameters (Large-V3 vs.
Medium) are more effective in improving speech recognition
performance through fine-tuning.

5.3. Limitations

Despite the progress demonstrated in this study, several
challenges remain. The variability in dysarthric speech patterns
continues to pose difficulties for ASR systems, as evidenced by
the higher WERs in moderate and severe cases of dysarthria.
Another limitation of this research is the exclusive use of
the TORGO database, which primarily contains the spastic
type of dysarthria [15]. Extending this work to include other
types, such as flaccid, ataxic, and hypokinetic, would provide
valuable insights into the generalisation of dysarthric speech
recognition.

6. Conclusion and Future Work
This research aimed to improve automatic speech recognition
for dysarthric speech by using transfer learning and Low-
Rank Adaptation techniques on the Whisper model. The
study compared the performance of distilled and non-distilled
versions of the Whisper model, using the TORGO dataset for
fine-tuning.

The results indicate that while the non-distilled Whisper
model achieves higher accuracy in recognising dysarthric
speech, the distilled model offers efficiency benefits, making it
suitable for applications with limited computational resources.
The Large-V2, Large-V3, distil-Large-V2 and distil-Large-
V3 models all benefited from transfer learning, demonstrating
substantial improvements in WER, thus aligning with previous
research on ASR adaptation for atypical speech patterns. The
largest performance improvement was achieved for the Large-
V3 model with a relative WER reduction of 22.65% across
dysarthria severities.

The results highlight the potential of advanced ASR
technologies to improve accessibility for individuals with
dysarthria, providing more accurate and reliable voice
recognition interfaces. However, challenges such as the
variability in dysarthric speech severity require further
investigation to develop more robust solutions.

Based on the results of this research, several opportunities
for future investigation have emerged. Firstly, while the WERs
have decreased through fine-tuning, there remains potential for
further improving the recognition of dysarthric speech. Future
research could focus on using more extensive and diverse
datasets for fine-tuning Whisper, as well as exploring other
methods of transfer learning, such as deep transfer learning
[37].

Additionally, investigating the fine-tuning of other state-

of-the-art ASR models, such as wav2vec 2.0, would enable
a comparative analysis of their performance and potential
compared to the Whisper model. This could provide valuable
insights into which models are best suited for improving ASR
for dysarthric speech.

Finally, the occurrence of hallucinations when fine-
tuning the Large-V3 model for two epochs warrants further
investigation. Future research could explore the underlying
causes of these hallucinations and develop strategies to mitigate
them. Understanding and addressing this issue is crucial
for enhancing the reliability and accuracy of fine-tuned ASR
models.

7. Responsible Research
The Netherlands Code of Conduct for Research Integrity
mentions specific standards for good research practice [38].
Keeping these in mind, Subsection 7.1 will examine how
reproducible the presented research is. In Subsection 7.2,
the responsible usage of data throughout the presented
methodology will be discussed. Finally Subsection 7.3
examines how AI tools were used throughout the project.

7.1. Reproducibility

To ensure that the experiments described are reproducible
and adhere to the FAIR principles (Findable, Accessible,
Interoperable, Reusable) [39], the exact methodology is
transparently reported:
• Findable: The only data used throughout this research

was the TORGO dataset [22], which is a publicly available
dataset. Furthermore, the codebase available on Gitlab2

contains .txt files with the files that are part of the test,
training and validation sets.

• Accessible: All the code used throughout this research is
provided on Gitlab. Additionally, Subsection 3.2 explicitly
states the hyperparameters used for the fine-tuning of both
the Whisper model and the distil-Whisper models.

• Interoperable: The fine-tuned models are implemented
using widely adopted frameworks such as PyTorch, which
ensures they can be easily integrated into existing workflows
for analysis, storage, and processing.

• Reusable: The fine-tuned models are publicly available on
Hugging Face3. This allows the public to use these fine-tuned
models, or to reuse them for further research.

7.2. Data Usage

All the data that was used to test on Whisper and fine-tune
Whisper was taken from the TORGO dataset. This dataset
is publicly available and was ethically sourced, as described
in [22]. For example, no medical data is associated with the
participants, aside from the cause of their dysarthria and a
Frenchay assessment of motor skills. Furthermore, collecting
the speech data involves working with vulnerable subjects, and
this was considered throughout the data collection, e.g. by
requiring that all subjects have a cognitive function at or above
level VIII on the Rancho scale. Even though I did not collect
this data myself, it is also important to consider the ethics
behind data sourced by other researchers.

2https://gitlab.ewi.tudelft.nl/cse3000/2023-
2024-q4/Zhang_Yue/mirellagunther-Exploring-
state-of-the-art-speech-recognisers-for

3https://huggingface.co/mirella-guenther



7.3. Usage of LLMs

For complete transparency, ChatGPT and GitHub Copilot are
tools that were used to improve writing or generate code.
ChatGPT was primarily used to ensure that the report was
written coherently and in a consistent writing style. This
was achieved by providing a piece of text that I wrote, and
then asking ChatGPT to “Please improve the coherence and
flow of this text while sticking to the tone of a Bachelor
thesis”. However, I found that more often than not, ChatGPT
provided very stilted writing, so I only ever took phrases
or sentence structures from ChatGPT rather than using full
paragraphs. ChatGPT was also a great aid for formatting tables,
the bibliography and other figures in LaTeX. GitHub Copilot
was used to aid in the writing of the code, usually by explaining
what the next section of the code needed to do as a comment,
and then using Copilot to generate the section.
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A. Appendix A: Complete Results

This appendix presents the complete results obtained from
the experiments conducted in this paper. Subsection A.1
contains the full results for the zero-shot testing experiment and
Subsection A.2 contains the extensive results for the fine-tuning
of both the standard and the distil-Whisper models.

A.1. Complete Baseline Results

Table 12: Average WER of Whisper Models on Typical and
Dysarthric Speech

Whisper Model Typical Dysarthric
Tiny 40.06% 84.52%
Base 43.38% 76.36%
Small 25.24% 68.99%

Medium 20.52% 68.03%
Large-V1 24.10% 74.51%
Large-V2 25.95% 67.36%
Large-V3 19.92% 63.28%

Table 13: Average WER of Distil-Whisper Models on Typical
and Dysarthric Speech

Distil-Whisper Model Typical Dysarthric
Distil-Small 27.54% 68.99%

Distil-Medium 21.75% 63.25%
Distil-Large-V2 25.24% 66.50%
Distil-Large-V3 18.85% 66.46%

Table 14: Average WER of Whisper Models by Dysarthria
Severity Level

Whisper
Model Typical Very

Mild Moderate Severe

Tiny 40.06% 34.63% 91.39% 109.51%
Base 43.38% 24.66% 82.63% 102.82%
Small 25.35% 18.02% 72.93% 98.03%

Medium 20.52% 14.71% 73.10% 96.24%
Large-V1 24.10% 20.45% 77.90% 104.30%
Large-V2 25.95% 17.45% 70.81% 94.64%
Large-V3 19.92% 16.18% 69.22% 87.23%

Table 15: Average WER of Distil-Whisper Models by
Dysarthria Severity Level

Distil-
Whisper
Model

Typical Very
Mild Moderate Severe

D-Small 27.54% 19.94% 78.32% 91.84%
D-Medium 21.75% 16.54% 67.03% 88.41%
D-Large-V2 25.24% 22.38% 74.62% 87.24%
D-Large-V3 18.85% 19.75% 70.66% 91.35%

A.2. Complete Fine-Tuning Results

Table 16: Large-V2: Average WER Before and After Fine-
Tuning

Severity Level Before Fine-Tuning After Fine-Tuning
Typical 25.95% 40.66%

Very Mild 17.45% 26.56%
Moderate 70.81% 85.52%

Severe 94.64% 74.03%



Table 17: Large-V3: Average WER Before and After Fine-
Tuning

Severity
Level

Before
Fine-Tuning

After
Fine-Tuning 1

Epoch

After
Fine-Tuning 2

Epochs
Typical 19.92% 15.60% 287.98%

Very Mild 16.18% 13.35% 207.06%
Moderate 69.22% 48.98% 175.91%

Severe 87.23% 70.05% 262.71%

Table 18: Distil-Large-V2: Average WER Before and After
Fine-Tuning

Severity Level Before Fine-Tuning After Fine-Tuning
Typical 25.24% 40.66%

Very Mild 22.38% 20.69%
Moderate 74.62% 63.77%

Severe 87.24% 78.27%

Table 19: Distil-Large-V3: Average WER Before and After
Fine-Tuning

Severity Level Before Fine-Tuning After Fine-Tuning
Typical 18.85% 25.94%

Very Mild 19.75% 28.80%
Moderate 70.66% 56.18%

Severe 91.35% 75.33%

Table 20: Average WER on Entire Dysarthric Test Set

Model Average WER
Large-V2 64.97%
Large-V3 48.95%

Distil-Large-V2 58.89%
Distil-Large-V3 57.47%

Table 21: Average WER on Entire Dysarthric Test Set

Model Before Fine-Tuning After Fine-Tuning
Large-V2 67.36% 64.97%
Large-V3 63.28% 48.95%

D-Large-V2 66.50% 58.89%
D-Large-V3 66.46% 57.47%

B. Appendix B: Original Zero-Shot Testing
Originally, zero-shot testing was conducted with a temperature
setting of 1.0. This introduces an element of randomness,
resulting in non-replicable outcomes. Despite this, the results
have been included in this appendix to provide additional data.
These results offer valuable insights into the performance of
the models under slightly varied conditions, which may be
beneficial for further analysis and comparison.

Figure 6: Baseline WERs with Temperature 1.0

Figure 7: Baseline WER by Dysarthria Severity with
Temperature 1.0

Figure 8: Baseline WER per Distil-Whisper model with
Temperature 1.0
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