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We propose and analyze two types of microwave-activated gates between a fluxonium and a transmon qubit,
namely a cross-resonance (CR) and a CPHASE gate. The large frequency difference between a transmon
and a fluxonium makes the realization of a two-qubit gate challenging. For a medium-frequency fluxonium
qubit, the transmon-fluxonium system allows for a cross-resonance effect mediated by the higher levels of
the fluxonium over a wide range of transmon frequencies. This allows one to realize the cross-resonance
gate by driving the fluxonium at the transmon frequency, mitigating typical problems of the cross-resonance
gate in transmon-transmon chips related to frequency targeting and residual ZZ coupling. However, when the
fundamental frequency of the fluxonium enters the low-frequency regime below 100 MHz, the cross-resonance
effect decreases leading to long gate times. For this range of parameters, a fast microwave CPHASE gate can be
implemented using the higher levels of the fluxonium. In both cases, we perform numerical simulations of the
gate showing that a gate fidelity above 99% can be obtained with gate times between 100 and 300 ns. Next to
a detailed gate analysis, we perform a study of chip yield for a surface code lattice of fluxonia and transmons
interacting via the proposed cross-resonance gate. We find a much better yield as compared to a transmon-only
architecture with the cross-resonance gate as native two-qubit gate.

DOI: 10.1103/PhysRevResearch.4.043127

I. INTRODUCTION

The transmon qubit [1,2] is the most successful super-
conducting qubit to date with superconducting chips with
around a hundred qubits currently being realized [3–5]. The
success of the transmon is due to its resilience to charge
noise, the relative simplicity of the circuit and its fabrica-
tion, the straightforward control and readout using microwave
pulses, and the possibility to couple transmons either via
direct capacitances [6] or via bus resonators [7,8]. Coher-
ence times between 10 and 100 µs are routinely reported in
two-dimensional transmon chips [5,9,10], and even longer T1

times have been obtained by using different superconducting
materials [11,12]. High-fidelity two-qubit gates have been
successfully demonstrated for transmon architectures using
several different schemes that rely on either flux pulses [8,13–
17], microwave drives [18–22], or tunable couplers [23–30].

Despite its success, the fact that transmons are essentially
slightly anharmonic oscillators is a limiting factor in trans-
mon architectures. Apart from the problem of leakage out of

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

the computational subspace [31], the small anharmonicity of
the transmon implies that the transmons must be separated
in frequency by at most their anharmonicity to enable fast
entangling gates. As observed in Ref. [32], this is intuitively
due to the fact that when the transmons are far away from
each other in frequency, they behave as uncoupled harmonic
oscillators. Notice however that in this frequency range also
the unwanted, spurious ZZ coupling is relatively large and
this limits the performances of the gates [18,32,33]. These
problems affect fixed, nontunable coupling architectures such
as those based on the cross-resonance (CR) gate [18,32,34],
giving rise to the problem of frequency collisions [35]. The
consequence is a low chip yield when qubit connectivity is
as required for the surface code [36], prompting research into
optimising the choice of qubit frequencies [37], improving the
accuracy with which qubit frequencies are targeted via laser
annealing [35,38,39] or pursuing alternative heavy-hexagonal
codes that require a lower qubit connectivity [35,40]. Another
issue in transmon chips is the problem of ZZ crosstalk [41] for
which some solutions have been discussed [19,21,22,30,42–
44].

The fluxonium qubit [45,46] is a suitable candidate to go
beyond the limitations of a transmon-only architecture. The
circuit of the fluxonium is similar to that of the transmon in
being composed of a capacitance and a Josephson junction
in parallel, but it also features an additional large, shunting
inductance. The fluxonium is operated in the regime where
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FIG. 1. (a) Symbolic representation of a fixed-frequency trans-
mon (top left), a flux-tunable transmon (top right) and a fluxonium
(bottom). (b) Capacitively coupled (fixed-frequency) transmon and
fluxonium qubits.

the characteristic impedance of the parallel LC-circuit ZLC =√
L/C is larger than, say, a few k�s. To achieve this regime,

the high impedance can be realized effectively as an array of
hundreds of Josephson junctions [46,47] or using a material
such as granular aluminum [48] or niobium-titanium-nitrate
[49,50]. The inductive shunt provides an intrinsic protection
against charge noise, without the need of a large capacitance
as in transmon qubits. Crucially, this breaks the tradeoff be-
tween anharmonicity and charge noise sensitivity that limits
the transmon qubit. The large inductance also suppresses the
sensitivity to flux noise in the loop formed with the Joseph-
son junction [see Fig. 1(a)], and moreover, the fluxonium
is usually operated in the double well configuration, where
the qubit frequency is first-order insensitive to flux noise. In
this configuration, the fluxonium qubit shows large coherence
times [51], which have surpassed the millisecond barrier in
3D devices [52].

The enhanced protection of the fluxonium comes at the
price of requiring a more involved scheme for the manipu-
lation of its quantum state. The low fundamental frequency
of the fluxonium (below 1 GHz) complicates the execution
of single-qubit gates due to the lesser accuracy of the ro-
tating wave approximation compared to the transmon case
[53]. In addition, the reduced matrix elements of charge
and flux operators, that control the strength of the coupling
between computational levels, needs to be compensated us-
ing higher drive power. At very low frequencies of around
10 MHz, new schemes have to be devised for state preparation
(reset) and single-qubit gates [54]. On the other hand, the
measurement of a fluxonium qubit can have advantages as
compared to a transmon qubit. The off-resonant fluxonium-
resonator coupling can give rise to relatively-large dispersive
shifts [53,55], which enable fast measurement. For granular
aluminium based fluxonium qubits, highly-accurate quan-
tum measurements using strong drive power—populating the
read-out cavity with a large number of photons—have been
reported [56,57].

Despite this increased complexity, the higher coherence
times reached by the fluxonium still pay off in terms of
single-qubit gate fidelity [52]. Recently, several two-qubit
gate schemes between fluxonia have been proposed and ex-
perimentally realized in two-qubit chips [58–64]. A whole
architecture for fluxonium qubits has been analyzed in
Ref. [53] with two-qubit gates implemented using either the
CR gate or the CPHASE gate induced by the differential
AC-Stark shift effect [19].

In most superconducting qubit research, the focus is on
coupling “same-type” qubits, i.e., coupling two or more trans-
mon qubits or alternatively, coupling fluxonia. Exceptions
where different types of qubits are coupled are, for example,
Refs. [43,65,66]. In this paper, we consider the idea of using
chips with heterogeneous qubits. In particular we analyze
how to realize microwave-activated two-qubit gates between
capacitively coupled transmons and fluxonia. For fluxonia
with medium frequencies, between 0.25–1.0 GHz, we show
that the CR gate activated by driving the fluxonium at the
transmon frequency is an ideal two-qubit gate candidate. In
order to achieve similar gate times, the coupling capacitance
needs to be larger as compared to the transmon-transmon case
[32], but smaller than the fluxonium-fluxonium case [64] due
to the transmon being the better antenna. A purely-capacitive
coupling is easier to engineer than the inductive (combined
with a small capacitive) coupling proposed in [53].

By means of a Schrieffer-Wolff analysis [67], we show that
the CR effect is mainly mediated by the higher levels of the
fluxonium and that it stays large over a wide range of transmon
frequencies. Importantly, the frequency of the |1〉 − |2〉 and
|0〉 − |3〉 transitions of the fluxonium should be designed to
be relatively far away from the transmon frequency in order
to limit residual, static ZZ interactions and leakage in the
fluxonium during the gate operation. By means of numerical
simulations, which include noise, we show that the CR gate
can be realized with leakage below 10−4 and gate fidelity
above 99% with gate times between 100 and 200 ns. On
the other hand, we show that when the fluxonium frequency
decreases to around 10 MHz the CR effect vanishes. In this
case, we find that a possible way of implementing a CPHASE
gate is to drive to the higher levels of the fluxonium, similar
to Ref. [59]. The entangling power of the gate is then due
to the coupling-induced hybridization between the bare |13〉0
and |04〉0 levels of the transmon-fluxonium system. We argue
that despite the drawback of using the higher levels of the
fluxonium, which have coherence times comparable to that of
the transmon, the CPHASE gate can be implemented in 100
to 200 ns with arbitrary conditional phases and fidelities above
99%.

This paper is organized as follows: In Sec. II we introduce
the transmon-fluxonium system. Section III presents the CR
gate between a transmon and medium-frequency fluxonium.
We provide a comparison with the transmon-transmon CR
gate, highlighting the advantage of the transmon-fluxonium
case with respect to the frequency crowding problem. We sub-
stantiate our understanding by explicit numerical simulations.
In Sec. IV we study a low-frequency fluxonium coupled to
a transmon and propose a CPHASE gate similar to the one
implemented in Ref. [59] between two fluxonia. Also in this
case, we perform numerical simulation of the gate showing
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that, by changing the pulse parameters, CPHASE gates with
arbitrary conditional phases can be implemented. Section V
presents two possible transmon-fluxonium surface-code-like
architectures based on either the CR or the CPHASE gate.
We also perform a yield fabrication analysis for the CR gate
architecture, similar to those in Ref. [35,37] for the transmon-
transmon case and in Ref. [53] for the fluxonium-fluxonium
case. We conclude in Sec. VI .

II. THE TRANSMON-FLUXONIUM SYSTEM

The basic circuit of the coupled transmon-fluxonium
system is shown in Fig. 1(b). Following standard circuit quan-
tization [68,69] and directly approximating the transmon as a
Duffing oscillator, the Hamiltonian can be written as

H = h̄ωt b
†b + h̄

δt

2
b†b†bb + 4EC, f q2

f

+ 1

2
EL, f φ

2
f − EJ, f cos (φ f − φext, f ) + JCqt q f , (1)

with EC, f , EL, f , EJ, f the fluxonium charging, inductive and
Josephson energy respectively, ωt/2π the fundamental trans-
mon frequency, and δt/2π < 0 its anharmonicity. The
transmon operators b and b† satisfy commutation relations
[b, b†] = I , while the fluxonium (dimensionless) reduced
charge q f and reduced flux φ f operators satisfy [φ f , q f ] = iI ,
with I the identity. The transmon charge operator qt can be
expressed in terms of b and b† as

qt = i

(
EJ,t

32h̄|δt |
)1/4

︸ ︷︷ ︸
qzpf

(b† − b), (2)

where the transmon Josephson energy EJ,t is related to the
qubit energy and anharmonicity by

EJ,t = h̄(ωt − δt )2

8|δt | . (3)

The coefficient qzpf represents the charge zero-point fluctua-
tions of the transmon. In the usual Duffing approximation, the
charging energy of the transmon is simply EC,t = h̄|δt |.

In what follows we will assume the fluxonium to be bi-
ased with a reduced external flux φext, f = π so that it is
operated in the double-well potential configuration. We will
denote by |kl〉0 the bare, uncoupled energy levels of the two
qubits, where the first label k identifies the transmon level,
while the second label l the fluxonium level. The symbol
|kl〉 denotes the dressed, coupled energy level obtained by
adiabatic continuation of the bare level |kl〉0 when JC goes
from 0 to a nonzero value. The computational basis is defined
as the dressed basis and the projector onto the computational
subspace equals Pc = ∑1

k,l=0 |kl〉〈kl|. The projector onto the
leakage subspace is then Pl = I − Pc. We define ω f ,kl as the
transition frequency between the bare fluxonium levels k and
l [not to be confused with ωkl in, say, Eq. (15), which denote
the dressed energy levels of the transmon-fluxonium system].
Also, let

q f ,k>l = Im(〈k|q f |l〉 f ) = −i〈k|q f |l〉 f (4)

FIG. 2. An example of a typical energy level diagrams for a
capacitively coupled transmon-fluxonium system. The arrows denote
the levels that show nonzero matrix elements of the coupling Hamil-
tonian JCqt q f : the darker the color of the arrow the larger the matrix
element. The figure corresponds to the parameter set CR in Table I
with ωt/2π = 5.3 GHz and φext, f = π .

be the imaginary part of the fluxonium matrix element with
respect to the bare levels. Note that 〈k|q f |k〉 f = 0. In ad-
dition, since at φext, f = π the fluxonium Hamiltonian, just
like the transmon, has a parity symmetry, we also have
〈k|q f |k + 2m〉 f = 0 for m ∈ N.

For the parameters listed in Table I, the energy levels |02〉0
and |03〉0 have frequencies of the same order of magnitude as
the |10〉0, |11〉0 levels as seen in the level diagram in Fig. 2.
Due to the relatively large matrix elements of the two lowest
levels of the fluxonium with the higher levels (see Fig. 3), the
q f qt term in the Hamiltonian directly couples levels |10〉0 ↔
|03〉0 and levels |11〉0 ↔ |02〉0. As we show in Appendix A,
the coupling to these levels induces a spurious ZZ coupling,
but also gives rise to the CR interaction.

The gates considered in this paper will be activated by
a microwave drive on the fluxonium. A drive at carrier fre-
quency ωd can be modelled by the following time-dependent
Hamiltonian:

Hdrive(t ) = h̄g(t )εd cos(ωdt + θd )q f , (5)

with 0 � g(t ) � 1 a dimensionless envelope function and εd

the maximum drive amplitude that characterizes the drive
strength and θd the phase of the drive.

III. THE CROSS-RESONANCE GATE FOR MEDIUM
FREQUENCY FLUXONIA

The CR effect manifests itself when we drive one of the
qubits (the control) at the fundamental frequency of the other
(the target). The effect arises due to the presence of the cou-
pling term, which enables the drive operator of the control
qubit to drive transitions between energy levels of the target
qubit. Importantly, the drive on the target qubit depends on the
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TABLE I. Parameter sets used in the manuscript. The transmon always has anharmonicity δt/2π = −300 MHz. The relaxation times
correspond to dielectric losses as described in Appendix D. The dielectric loss tangent for the transmon is taken to be tan δdiel,t = 3 × 10−7

and assumed to be frequency independent. For the fluxonium, similar as in Ref. [51], we take a frequency-dependent dielectric loss tangent
tan δdiel, f (ω) = 3.5 × 10−6(ω/ωref )0.15 with ωref/2π = 6.0 GHz. This is needed to take into account the various frequencies that are present in
the fluxonium. The temperature of the environment is always assumed to be T = 20 mK. Additional relaxation and excitation times for other
relevant fluxonium transitions are reported in Table III in Appendix D.

Fluxonium Transmon

Parameter set
EC, f

h (GHz)
EL, f

h (GHz)
EJ, f

h (GHz)
ω f ,01

2π
(MHz) T 1�→0

1 (μs) T 3�→0
1 (μs) ωt

2π
(GHz) T1 (μs) JC

h (MHz)

CR 1.0 1.0 4.0 582 126 20 ∈ [4.2, 5.8] ≈130 20
CPHASE 1.0 0.5 8.0 30 3700 7 4.37 130 30

state of the control. Here we take the fluxonium as the control
qubit and the transmon as the target qubit, so we drive the
fluxonium at the fundamental frequency of the transmon. This
choice is motivated by the fact that we can have large CR ef-
fect leading to a gate time around 100 ns, while the same does
not hold if we take the transmon as control and the fluxonium
as target. At low drive strengths [32,70], the CR effect can
be simply understood by looking at the matrix elements of the
charge operator in the dressed basis. We provide a perturbative
analysis of the CR coefficient in Appendix A.

Including the envelope function, the fundamental CR
Hamiltonian is

HCR(t ) = h̄g(t )μCRXt Z f , (6)

with Xt the transmon Pauli X operator and Z f the fluxonium
Pauli Z operator. As remarked in Appendix A, by changing
the phase of the drive we can always make μCR positive. The
CR gate with the fluxonium as control and the transmon as
target is given by the unitary

UCR = e−i π
4 Xt Z f , (7)

FIG. 3. (Left) Matrix elements of the fluxonium charge operator
(α = f ) for the fluxonia in Table I and of the transmon charge opera-
tor (α = t) with corresponding transition frequency on the y axis. The
transmon is taken to have fundamental frequency ωt/2π = 5.3 GHz
and anharmonicity δt/2π = −300 MHz. (Right) First 4 eigenfunc-
tions and potential energy for the fluxonia with parameter set CR
(top) and CPHASE (bottom) in Table I. The dotted lines represent
the energy corresponding to each level.

and thus, it is implemented by letting HCR(t ) act for a time
tgate such that

μCR

h̄

∫ tgate

0
dtg(t ) = π

4
. (8)

If g(t ) is a constant equal to 1 we obtain the simple formula

t (id)
gate = h̄π

4μCR
. (9)

Using additional single-qubit gates the CR gate can be turned
into a CNOT gate [70].

In Appendix A we derive an approximate formula for
the CR coefficient in the transmon-fluxonium case, using a
second-order Schrieffer-Wolff transformation, which reads

μCR = JCqzpf

4h̄

[
q2

f ,30

ωt − ω f ,30
− q2

f ,21

ωt − ω f ,21

]
εd . (10)

This expression has to be compared with the standard expres-
sion for the transmon-transmon case with control qubit c and
target qubit t [32,71],

μ
(tt )
CR = −JCqzpf,t q2

zpf,c

h̄(ωc − ωt )

[
δc

δc + ωc − ωt

]
εd

2
, (11)

where qzpf,t (qzpf,c), ωt/2π (ωc/2π ) are the charge zero-point
fluctuation and the fundamental frequency of the target (con-
trol) transmon, respectively, and δc/2π the anharmonicity of
the control transmon.

We show a comparison between the transmon-transmon
and transmon-fluxonium CR gate in Fig. 4. Due to the small
anharmonicity of the transmons, Eq. (11) predicts that the
CR coefficient is only large enough to lead to a gate time
below 300 ns when the condition ωc + δc � ωt � ωc is sat-
isfied, see Fig. 4 (top). Outside this region the gate time
quickly increases to values above 1 µs. Thus, the CR gate for
transmon-only systems requires careful frequency engineer-
ing and the constraints leads to frequency crowding [35,37].

In contrast, the transmon-fluxonium CR gate can be acti-
vated for a large range of target transmon frequencies and
presents more stable CR gate times. While a larger drive
strength εd is necessary for the transmon-fluxonium case in
order to compensate for the smaller charge matrix elements
of the fluxonium, we show below, via numerical simulations,
that small leakage and high fidelities can be achieved. In Fig. 4
(bottom) we also plot the residual, static ZZ coupling defined
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FIG. 4. Comparison of the gate time (top) and the residual,
static ZZ coupling (bottom) for the transmon-transmon and the
transmon-fluxonium CR gate. The frequency of the control transmon
in the transmon-transmon case is fixed to ωc/2π = 5.0 GHz and
both transmons have anharmonicity δt/2π = δc/2π = −300 MHz.
The coupling between the transmons is set to JC/h = 2 MHz. In the
transmon-fluxonium case the parameters are taken as in parameter
set CR in Table I. In the top figure the drive on the control transmon
in the transmon-transmon case is set to εd/2π = 30 MHz, while the
drive on the control fluxonium in the transmon-fluxonium case is
taken to be εd/2π = 300 MHz. We use Eqs. (10) and (11) to estimate
the ideal gate time in Eq. (9). The ZZ coupling ξZZ is evaluated via
numerical diagonalization using Eq. (12). For the transmon-transmon
case we see the ZZ coupling blowing up at the resonances |11〉 ↔
|02〉 and |11〉 ↔ |20〉 (not at the resonance |01〉 ↔ |10〉!), while the
gate time blows up at the resonances |01〉 ↔ |10〉 and |11〉 ↔ |02〉,
leaving a narrow frequency window of opportunity.

as

ξZZ

2π
= E11 − E10 − E01 + E00

h
, (12)

with Ekl the dressed eigenenergy of level |kl〉. While the
transmon-transmon case achieves a smaller minimum ZZ cou-
pling, the transmon-fluxonium case shows a more stable ξZZ

without resonant peaks.

FIG. 5. Average leakage for a simulated, noiseless CR gate for
the transmon-transmon and the transmon-fluxonium case as a func-
tion of the target frequency. In both cases parameters are taken as
in Fig. 4 and we set ωd = ωt . We numerically simulate the gates
using a piece-wise Gaussian envelope (see Appendix E) with rise
time trise = 10 ns and gate time chosen to satisfy the CR condition in
Eq. (8). We plot the result for the transmon-transmon case only in
the relevant, blue-shaded region such that ωc + δc � ωt � ωc. In the
simulations we include 3 bare levels for the transmons and 8 for the
fluxonium.

In addition, we observe that the average leakage L1

(see Appendix C for a definition) in the CR gate for the
transmon-fluxonium case is generally lower than for the
transmon-transmon case for different target transmon frequen-
cies, see Fig. 5. In the transmon-fluxonium case, and in the fre-
quency range 4.2 − 5.8 GHz, we identify two peaks in the
leakage at ωt/2π ≈ 4.41 GHz and at ωt/2π ≈ 4.93 GHz. The
former is due to a three-photon transition between the lev-
els |0〉 and |5〉 of the fluxonium with frequency ω f ,05/2π =
13.23 GHz, while the latter is caused by a two-photon tran-
sition between levels |0〉 and |4〉 of the fluxonium with
frequency ω f ,04/2π = 9.86 GHz. These are frequency colli-
sions that one must avoid in order for the CR gate to achieve
high fidelities (see also the discussion in Sec. V). Away from
these frequencies the leakage can be as low as 10−7 and
this happens for a wide target frequency range. In contrast,
the transmon-transmon case achieves leakage below 10−5

only close to ωt/2π = ωc/2π = 5.0 GHz, where however a
problem of qubit addressability emerges. Moreover, the leak-
age increases when the two-photon transition between levels
|0〉 and |2〉 of the control is triggered at ωt/2π = 4.85 GHz
and when ωt matches the |1〉-|2〉 transition of the control at
ωt/2π = 4.7 GHz.

In Fig. 6 we plot gate infidelities in the noiseless and noisy
case as a function of the drive strength for the four target
transmon frequencies that we consider in the yield analysis
in Sec. V . We refer the reader to Appendix C for the defi-
nition of gate fidelities and to Appendix D for details of the
dielectric loss error model used for the noisy simulations. We
consider a simple piece-wise Gaussian pulse and its echo ver-
sion, where two piece-wise Gaussian pulses on the fluxonium

043127-5



A. CIANI et al. PHYSICAL REVIEW RESEARCH 4, 043127 (2022)

FIG. 6. Gate infidelity as a function of the drive strength for
four different target transmon frequencies in the transmon-fluxonium
case. The piece-wise Gaussian envelope are always taken to have
rise time trise = 10 ns. We also plot in gray the infidelities in the
presence of dielectric loss. When εd/2π = 300 MHz, gate times for
the simple Gaussian pulse (no echo) are tgate = 233, 297, 330, 295 ns
for ωt/2π = 4.3, 4.7, 5.3, 5.7 GHz, respectively. In the simulations
we include 3 bare levels for the transmons and 6 for the fluxonium.

at frequency ωd/2π = ωt/2π and with opposite phase, are
interleaved with single-qubit π rotations around the X axis on
the fluxonium qubit (as for the transmon-transmon case [72]).
We provide more details about the pulses in Appendix E. We
see that for the chosen target frequency range, the echo pulse
generally outperforms the simple Gaussian pulse, especially
at low drive strengths. This is because the echo pulse ideally
cancels the effect of the unwanted ZZ interaction (besides
canceling the X rotation on the transmon qubit), while the
smaller the drive strength the larger the effect of the ZZ
interaction is compared to the CR effect [33], which explains
the lower fidelities in the simple pulse case. In all cases,
we observe that with the echo pulse gate fidelities can be at
least 99.5% in the noiseless case and at least 99.3% in the
noisy case for all target frequencies. We remark that these
were obtained without any pulse optimization and simply by
matching the CR condition in Eq. (8) and the corresponding
one for the echo pulse (see Appendix E). Optimal control
techniques developed for the CR gate [73] and more detailed
techniques to understand the sources of error [74,75] for the
transmon-transmon case can also be applied to the transmon-
fluxonium case to achieve higher fidelities.

IV. THE CPHASE GATE FOR LOW-FREQUENCY
FLUXONIA

If we keep the fluxonium charging energy EC, f fixed and
decrease the ratio between EL, f /EJ, f , the energy barrier be-
tween the two lowest minima of the fluxonium potential

FIG. 7. Energy level diagram for a low-frequency fluxonium
coupled to a transmon corresponding to parameter set CPHASE in
Table I. The blue wavy lines identify the levels that are driven. The
dashed lines above the level |13〉0 and below the level |04〉0 represent
the dressed levels |13〉 and |04〉, respectively.

increases, while the kinetic term stays constant. In this limit,
the two lowest eigenstates of the fluxonium are an even and
odd superpositions of two states that are more and more lo-
calized in the left and right well of the potential, respectively,
see Fig. 3 (right). As a result, the fundamental frequency of
the fluxonium, i.e., the energy splitting between the two low-
est levels, decreases, as well as the magnitude of the matrix
elements 〈0|q f |1〉, 〈0|φ f |1〉 of the charge and flux operators
between the two lowest levels, see Fig. 3 (left). This naturally
leads to longer coherence times, although the control of the
quantum state of the fluxonium becomes more involved [54].
In this scenario, the frequencies of the transmon and of the
fluxonium are extremely different, since the fundamental fre-
quency of the fluxonium can be smaller than 100 MHz.

Moreover, the CR scheme that we analyzed in Sec. II is not
applicable in this case because of a vanishing cross-resonance
coefficient μCR. We can understand this by looking at the
approximate, analytical formula for μCR in Eq. (10). In the
limit of low fluxonium frequency the difference between the
frequencies ω f ,30 and ω f ,21 becomes smaller (see the energy
levels in Fig. 7 for an example). In order to have a large
μCR the two terms on the right-hand side of Eq. (10) need
to constructively interfere, i.e., the transmon frequency must
be chosen between ω f ,30 and ω f ,21, leading to a small range
of transmon frequencies with a sizable cross-resonance coef-
ficient. Outside this transmon frequency range the μCR goes
to zero also because |q f ,21| ≈ |q f ,30| in the low fluxonium
frequency limit.

In this section we show that the scheme proposed in
Ref. [59] to realize a CPHASE gate between two fluxonia can
be adapted using different fluxonium levels. In Fig. 7 we show
the energy level diagram for parameter set CPHASE, which
we will use in this section, see Table I. We see that the system
is chosen to have (approximately) a resonance between the
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transmon frequency and the |3〉 − |4〉 transition of the fluxo-
nium, i.e., ωt ≈ ω f ,34. Denoting by Ekl the dressed energies
of level |kl〉 and by E (0)

kl the bare energy of level |kl〉0, we will
thus have E13 − E04 
= E (0)

13 − E (0)
04 due to the coupling term.

This energy shift in turn gives rise to a difference between
the frequencies associated with the |00〉 − |03〉 transition and
with the |10〉 − |13〉 transition, expressed by a parameter �,

�

2π
= (E13 − E10) − (E03 − E00)

h

= 0. (13)

For parameter set CPHASE in Table I we have �/2π =
14.0 MHz. This effect can be used to implement a microwave-
activated CZ gate and more generally a CPHASE gate with an
arbitrary phase φ given by the general unitary

CPHASE(φ) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ

⎞
⎟⎟⎠. (14)

As schematically shown in Fig. 7, the idea is to apply a
drive on the fluxonium qubit with a frequency approximately
given by the |0〉 − |3〉 transition frequency. More precisely,
the drive amplitude and the drive frequency is chosen so
that the generalized Rabi frequencies of the |00〉 − |03〉 and
|10〉 − |13〉 transitions are matched to a certain value �, which
is expressed in the condition√

ε2
d q2

f ,10−13 + (ω13 − ω10 − ωd )2 =√
ε2

d q2
f ,00−03 + (ω13 − ω10 − ωd − �)2 = �,

(15)

where q f ,10−13 = |〈10|q f |13〉| and q f ,00−03 = |〈00|q f |03〉|.
This condition leads to drive frequencies that are be-

tween the frequencies of the |00〉 − |03〉 and |10〉 − |13〉
transition, which for parameter set CPHASE in Table I
is ωd/2π ≈ 7.26 GHz. Also, the typical drive strength is
εd/2π ≈ 10 MHz.

Equation (15) guarantees that, assuming g(t ) = 1, after a
time tgate = 2π/� both transitions give rise to a Rabi oscilla-
tion, which ideally induces no leakage. The nonzero � gives
rise to a differential phase φ ≈ π�/�, which is acquired
by the state |11〉, see the detailed analysis of the gate in
Appendix B. By means of single-qubit Z rotations the imple-
mented gate can be turned into the CPHASE gate in Eq. (14).

Crucial for the implementation of the gate is that the system
undergoes a Rabi oscillations for both the involved transi-
tions, inducing little leakage. We investigate this property in
Fig. 8, where the average leakage L1 (see its definition in
Appendix C) is plotted as a function of gate time for different
target conditional phases. We see that in the coherent case
there is a very sharp minimum where the leakage is mini-
mized. Also, the minimum value of the leakage decreases for
larger conditional phases, which have larger optimal gate time
since tgate ≈ 2φ/�.

However, comparing Figs. 5 and 8, we notice that the
leakage is much higher than that achievable with the CR
gate discussed in Sec. II due to the fact that the CPHASE
gate is directly populating noncomputational states during the
gate. While lower leakage could be potentially achieved with
optimized pulses, leakage is definitely more pronounced for

FIG. 8. Leakage as a function of gate time for different target
conditional phases. We use a piece-wise Gaussian envelope g(t )
with rise time trise = 10 ns. Drive frequencies and drive strengths are
chosen to satisfy Eq. (15) with � = �/(πφ), which depends on the
target conditional phase φ. Minimum leakage (approximately) cor-
responds to the condition

∫ tgate

0 dt g(t ) = 2φ/�. Solid lines represent
the coherent results, while the dashed lines represent the noisy ones
in the presence of dielectric losses. In the simulations we include 3
bare levels for the transmons and 5 for the fluxonium.

this CPHASE gate as compared to the CR gate, assuming
the CR gate is operated away from frequency collisions. In
addition, in Fig. 8 we observe (unsurprisingly) that the pres-
ence of noise increases the leakage compared to the noiseless
case, and makes the leakage-minima less sharp. Also, the
use of higher levels of the fluxonium inevitably exposes the
system to the shorter decay times of these levels. Despite
these facts, we obtain optimal gate fidelities in the noise-free
case of {99.76%, 99.87%, 99.93%, 99.96%} and in the noisy
case of {99.36%, 99.44%, 99.51%, 99.61%} for the condi-
tional phases φ = {π, 5π/4, 2π/2, 7π/4}, respectively. The
noise-free gate fidelity is limited by leakage. In particular, in
the noiseless case and when the condition Eq. (15) is matched,
the state with the highest probability of leakage is |04〉. This
state accounts for approximately 95% of the leakage. Due to
the hybridization of the bare levels |13〉0 and |04〉0, the dressed
state |04〉 also acquires a nonzero fluxonium charge matrix
element, and thus the drive can stimulate the |10〉 − |04〉 tran-
sition, although it is more off-resonant than the |10〉 − |13〉
transition. This also explains the decrease of leakage with the
increase of the target conditional phase in Fig. 8. In fact, the
larger the target conditional phase, the larger the ideal gate
time and the smaller the drive amplitude, which causes the
unwanted |04〉 to be less populated. The remaining 5% of
the leakage is due to the imperfect cancellation of the |13〉
population. We believe that these two main sources of leakage
can be both reduced by further pulse optimization. Finally,
we remark that in the noisy case we see an increase in the
population of |13〉 as well as of |03〉. The latter seems due
to a direct relaxation from the |04〉 state (see Table III in
Appendix D for the relaxation time).
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When the drive is turned off, the static, residual ZZ cou-
pling is small and it is evaluated to be 40 kHz for parameter set
CPHASE in Table I used in this section. As can be seen from
Fig. 7, the bare levels |11〉0 and |02〉0 have a nonzero matrix
element induced by the capacitive coupling. However, these
levels are far detuned in frequency, by more than 2 GHz, and
as a result have small level hybridization. The same holds for
the pair of bare levels |10〉0, |03〉0. As shown in Appendix A,
these transitions are the main cause of ZZ coupling in this
system, which is suppressed given the large detuning between
the levels.

V. ARCHITECTURES BASED ON FLUXONIUM
AND TRANSMON

In this section we provide some architectural considera-
tions for multiqubit transmon-fluxonium chips based on either
the CR gate or the CPHASE gate analyzed in the previous
sections. For concreteness, we focus on a surface code ar-
chitecture, where each qubit is directly coupled to at most
four neighbors [9,10,36]. In this case, either the transmons or
the fluxonia play the role of the data or ancilla qubit in the
surface code. For both the CR and CPHASE gate, we drive
the fluxonium qubit and since up to four transmons couple to
the same fluxonium qubit we need to examine how to avoid
operation crosstalk. We then explore the expected yield for
the architecture based on the CR gate, for which we expect
frequency collisions to impact the fidelity of operations.

A. Frequency allocation and operations

For the CR gate we can make use of the wide range
of transmon frequencies over which the gate can be imple-
mented. A possible frequency setup is shown in Fig. 9. In this
case the architecture is fully microwave, without the need of
frequency tunable transmons or tunable couplers, thus, flux
control is only needed for static biasing of the fluxonia.

The fixed-frequency transmons are well-separated in fre-
quency by at least 400 MHz. With these parameters the gate
times, assuming JC = 20 MHz and εd/2π = 300 MHz, would
be roughly between 200 and 350 ns and the residual ZZ cou-
pling between 100 and 150 kHz. In this range of frequencies
the ZZ coupling is quite stable and does not have any sharp
peaks (see Fig. 4).

In Fig. 10 we show a fundamental unit cell for a transmon-
fluxonium chip based on the CPHASE gate described in
Sec. IV. In this case we require frequency-tunable transmons,
since we need the ability to selectively tune the transmons to
a frequency that matches approximately that of the |3〉 − |4〉
transition of the fluxonium. This is an inevitable consequence
of the fact that the gate relies on a single resonance. The trans-
mons can all be placed approximately at the same frequency
taken to be 4.8 GHz in the example, while the fluxonium has
target parameters equal to parameter set CPHASE in Table I.
Thus, in order to activate the gate, we first apply a static flux
to the desired transmon, in order to bring its frequency close
to ω f ,34/2π = 4.3 GHz. Then we apply a microwave tone
to the fluxonium as detailed in Sec. IV. Typical gate times
depend on the conditional phase and are estimated between
50 and 150 ns (not including the time to flux-tune the qubit

FIG. 9. Surface code architecture for fixed frequency transmons
(blue) and medium frequency fluxonia (red) based on the CR
gate. We choose transmons at four different fundamental frequen-
cies ωt/2π = {4.3, 4.7, 5.3, 5.7} GHz and anharmonicity δt/2π =
−0.3 GHz, while all the fluxonia have target parameters as in pa-
rameter set CR in Table I with fundamental frequency ω f ,01/2π ≈
0.6 GHz.

back), with static ZZ of 60 kHz [76]. Thus after the gate is
completed, the transmon is brought back to the sweet spot
at its normal frequency. In an all fluxonium multiqubit chip
where the CPHASE gate is implemented using the scheme
of Ref. [59], one would need to flux the fluxonia away from
their flux sweet spots, i.e., the double-well configuration, in

FIG. 10. Surface code architecture for flux-tunable transmons
(blue) and low-frequency fluxonia (red) based on the CPHASE gate.
All transmons are chosen at the same sweet spot fundamental fre-
quency ωt/2π = 4.8 GHz and anharmonicity δt/2π = −0.3 GHz,
while the fluxonia and the JC parameter are taken as in parameter
set CPHASE in Table I.

043127-8



MICROWAVE-ACTIVATED GATES BETWEEN A … PHYSICAL REVIEW RESEARCH 4, 043127 (2022)

order to implement the gate selectively. This could lead to
complications because additional fluxonium transitions are
activated when the system is moved out of the double-well
configuration. In contrast, in our scheme the fluxonia always
remain at their flux sweet spots.

We remark that our procedure to selectively activate the
CPHASE gate is different than the scheme used for the
flux-activated CPHASE gate between two transmons [13] in
multiqubit architectures [36]. There the flux pulse is used to
implement the gate, while in addition, a neighbor qubit is
parked at a different frequency to avoid a frequency collision
during the gate operation. In our case, the qubits that are not
involved in the gate are left untouched and the gate is activated
by the microwave pulse on the fluxonium. A disadvantage is
that moving the transmon away from a flux sweet spot trig-
gers 1/ f flux noise during the gate operation, which impacts
leakage and the gate fidelity. This problem can be mitigated
using net-zero flux pulses [13]. The fluxonium instead always
remains at its sweet spot. Another disadvantage is that while
a transmon and a fluxonium are interacting via the CPHASE
gate, the other transmons coupled to the fluxonium need to
remain at their sweet spots to avoid cross-driving. Therefore,
these transmons cannot simultaneously interact with other
fluxonia during the activation of the CPHASE gate, limiting
the number of gates that can be executed in parallel in this
architecture.

B. Frequency collisions and chip yield study

The transmon-fluxonium architecture based on the CR gate
that we propose employs only fixed-frequency qubits. Thus,
the impact of frequency crowding and the possible frequency
collisions on the chip yield is an important consideration when
describing the scalability of the system. In contrast, transmons
are flux-tunable in the architecture using the CPHASE gate
and we do not expect frequency collisions to be an issue in
that case. Therefore we focus on exploring the problem of
frequency crowding only in the fixed-frequency architecture.
In this section, we discuss the fluctuations in the parameters of
both fluxonia and transmons that we expect due to fabrication
imprecision.

We outline a set of frequency collisions that we expect
to degrade the device performance. To identify the dominant
collisions we numerically explore the CR gate performance as
a function of the target transmon frequencies ωt and extract
the regions of increased leakage or crosstalk. We associate
each region to a specific transition that is driven and that
corresponds to a collision condition. We then define a window
around each collision, inside of which the increase in crosstalk
or leakage is expected to significantly degrade the gate fidelity.
We perform a detailed scan in the vicinity of each collision to
extract the corresponding bound by requiring that the resulting
error is below a given threshold, which we specify below.
For collisions involving a spectator qubit we simulate the gate
using the full three-qubit system instead. Given these bounds,
we simulate the zero-collision yield over a range of variation
in the tunnel junction resistance, which determines the qubit
frequencies, for surface code lattices up to distance 7 and
different drive amplitudes.

The transition frequencies of the transmon are determined
by EC,t and EJ,t , while for the fluxonium the frequencies are a
function of EC, f , EL, f , and EJ, f . We do not assume any varia-
tion in the targeted EC,t or EC, f as the shunting capacitance can
be consistently reproduced [35,53,77]. On the other hand, it is
hard to fabricate the Josephson junction reliably, thus leading
to large fluctuations in the critical current Ic, which can be
related to the tunnel barrier resistance at room temperature
R via the Ambegaokar-Baratoff formula Ic = π�

2eR , where � is
the superconducting energy gap. Since R is readily measurable
experimentally, we define the variation due to the fabrication
of the Josephson junction in terms of the standard deviation σR

of the resistance. Given that the Josephson energy can be ex-
pressed as EJ = h̄Ic

2e we expect a variation in EJ, f of
σEJ, f

EJ, f
≈ σR

R

for the fluxonium qubit. For EL, f , we consider the superinduc-
tance to be realized via a Josephson-junction array consisting
of approximately N ≈ 100 junctions. Therefore, independent
fluctuations in the Josephson energy of each junction would
lead to a variation in the inductive energy of

σEL, f

EL, f
= σR√

NR
,

using the approximation that the effective inductance due to
the array is Leff = NLJ [46]. When the fluctuations are too
large, this simple approximation may break down and one
expects spectral shifts due to the coupling of the fluxonium
mode with other modes of the array [78].

The transmon frequency ωt is approximately given by
ωt ≈ √

8EC,t EJ,t/h̄ and we thus expect a deviation in the
transmon frequency of σωt

ωt
= σR

2R . Given that EC,t ≈ h̄|δt | we
do not expect any variation in δt . A resistance variation as
low as σR/R ≈ 2% has been previously reported [77] and a
variation of σR/R ≈ 0.5% has been obtained after the use of
laser annealing [35].

Frequency collisions generally lead to an increase in the in-
fidelity or time-duration of the targeted two-qubit gate due to
an increase in leakage and crosstalk. Based on our (noiseless)
numerical simulations, we have identified the 9 most likely
frequency collisions for our architecture, listed in Table II.
Each collision involves either only the control fluxonium and
target transmon or it further involves a spectator transmon,
coupled to the fluxonium. The impact of each collision can be
understood as follows: Type 1 collisions lead to a high residual
ZZ coupling between the transmon and the fluxonium qubit.
This has to be avoided as it gives strong ZZ crosstalk when
we do not want to couple the qubits. We define the bound
around this collision such that ξZZ/2π � 1 MHz. Collision
type 2 defines conditions leading to a relatively long CR gate
time tgate � 100 ns, as it breaks the condition in Eq. (A14).
Type 3 (resp. type 4) collisions are two-photon transitions due
to the drive at frequency ωd = ωt , which lead to the fluxonium
leaking from |0〉 to |4〉 (resp. |1〉 to |5〉). Collision type 5
represents the drive causing the transmon to leak from |1〉
to |2〉 while the fluxonium leaks from |0〉 to |3〉. Collision
type 6 leads to the fluxonium leaking from |0〉 to |5〉 via a
three-photon transition due to the drive at frequency ωt . To
bound each of these collisions, we require that the average
leakage L1 to satisfy L1 � 10−3. The next collisions consider
the impact of driving a CR gate between a fluxonium and
a target transmon on a spectator transmon at frequency ωs.
Collisions type 7 leads to the drive of the CR gate addressing
the neighboring spectator transmon, while type 8 collisions
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TABLE II. Frequency collisions and chosen bounds (on ω/2π ) on forbidden windows around the collision at three different drive
amplitudes εd for the fixed-frequency transmon-fluxonium architecture employing the CR gate. The bounds on the forbidden windows for
each collision are estimated from numerical simulations with the exception of collision type 7, which is taken to be a similar ratio relative to
collision type 8 as the ratio between collisions types 5 and 6 reported in [35]. Collision types 1–6 involve a fluxonium acting as the control
qubit and a transmon at a frequency ωt acting as the target qubit. Collision types 7–9 further consider a spectator transmon at a frequency ωs

that is coupled to the fluxonium. The other transmon and fluxonium parameters are given in Ref. [35].

Bounds

Type Frequency collision εd/2π = 100 MHz εd/2π = 300 MHz εd/2π = 500 MHz

1 ωt = ω f ,12 or ωt = ω f ,03 ±100 MHz ±100 MHz ±100 MHz
2 ωt < ω f ,12 or ωt > ω f ,03

3 2ωt = ω f ,04 ±15 MHz ±40 MHz ±60 MHz
4 2ωt = ω f ,15 ±5 MHz ±40 MHz ±50 MHz
5 2ωt = ωt + δt + ω f ,03 ±9 MHz
6 3ωt = ω f ,05 ±17 MHz ±35 MHz
7 ωt = ωs ±5 MHz ±15 MHz ±15 MHz
8 ωt = ωs + δs ±7 MHz ±20 MHz ±20 MHz
9 ωt + ωs = ω f ,04 ±10 MHz ±25 MHz ±50 MHz

instead cause the spectator transmon to leak from |1〉 to |2〉.
Collision type 9 describes a transition involving both the target
and spectator transmon and leading to the fluxonium leaking
from |0〉 to |4〉. To extract the bounds around collision type 7,
we prepare the spectator transmon in |0〉 and the control and
target qubits in the state Pc/2 and require that the population
in |1〉 of the spectator qubit after the gate to be below 10−3.
Finally, to bound collisions type 8 and 9, we require again that
the resulting average leakage from the computational states is
sufficiently small, that is, L1 � 10−3. We note that collision
types 4 and 5 are separated by only ≈50 MHz for the targeted
fluxonium parameters. A sufficiently strong drive (εd/2π �
300 MHz) leads to a (drive-strength dependent) detuning of
the qubit frequencies, which can lead to the frequencies of
these two collisions to shift closer to each other. In such a
case, we instead place a single bound around collision type
4, which also includes collision type 5, and ensures that the
resulting leakage L1 � 10−3 outside of this window.

To simulate the expected zero-collision yield, we consider
a transmon-fluxonium surface code lattice of distance d and
take the fluxonia to be the ancilla qubits and the transmons to
be the data qubits. We sample a ωt for each transmon and EL, f

and EJ, f for each fluxonium drawing from a Gaussian distri-
bution characterized by a standard deviation determined by σR

(as described above) and centered around the targeted param-
eter value. We then evaluate the transition frequencies of each
fluxonium via numerical diagonalization and check if any
collisions have occurred across the lattice. We perform 6000
repetitions of this process for each lattice and drive amplitude.
In Fig. 11 we show the results for lattices of distance d =
3, 5, 7 and for drive amplitudes εd/2π = 100, 300, 500 MHz
(with the corresponding bounds given in Table II) as a func-
tion of σR/R. We observe that for a resistance variation of
σR/R = 2% we expect all lattices up to d = 7 to be producible
with a yield �10% when εd/2π = 100 MHz. When the drive
amplitude is increased to εd/2π � 300 MHz the d = 7 yield
lattice drops to �1%. In the case of a strong drive of εd/2π =
500 MHz, the yield for the d = 5 and d = 7 lattices drops to
be above 1% and 0.1% respectively. If we instead consider
the resistance variation achieved following laser annealing,

we see that any lattice up to d = 7 can be fabricated with
a yield >99% for each drive amplitude considered here. In
Ref. [35] a transmon-transmon architecture utilizing a CR gate
of duration 200 − 400 ns is explored. At the same resistance
variation of σR/R ≈ 0.5%, there is no transmon-transmon
surface code lattice achieving a yield >10%, while for a
heavy-hexagon code lattice, only code distances d = 3, 5
lead to a yield >10%. The high yield demonstrates that the
frequency crowding issue is greatly mitigated in a transmon-
fluxonium architecture by the large detuning between the
qubit frequencies. In Appendix F we show the average num-
ber of collisions observed for a d = 3 lattice at εd/2π =
300 MHz, demonstrating that the loss in yield is dominated
by frequency collisions involving next-nearest-neighboring
transmons. We expect a more optimal assignment of the trans-
mon frequencies to further increase the zero-collision yield.
Furthermore, a factor of 2 improvement in the resistance vari-
ation achieved from fabrication would enable a � 10% yield
on transmon-fluxonium lattices up to distance 7, mitigating
the need for post-fabrication adjustments.

VI. CONCLUSIONS

In this paper we have studied two-qubit gates between
transmons and fluxonia to be used in a multiqubit architecture.
Despite the typical large fundamental frequency difference
between transmons and fluxonia, two-qubit gates are still pos-
sible thanks to the direct or indirect use of the higher levels
of the fluxonium. We have analyzed two different microwave-
activated gates: the CR gate and the CPHASE gate. The CR
gate is suited for medium-frequency fluxonia and, compared
to its transmon-transmon counterpart, it can be implemented
over a wider range of transmon frequencies, mitigating the
frequency crowding problem. For low-frequency fluxonia, the
CR effect decreases and therefore we have studied a different
scheme that implements a CPHASE gate using the third level
of the fluxonium. While this gate is more prone to leakage, one
can get arbitrary conditional phases with gate times around
100 to 200 ns and have small residual ZZ coupling. We have
also provided some architectural considerations for a surface-
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FIG. 11. Zero-collision yield as a function of the tunnel bar-
rier resistance dispersion for a fixed-frequency transmon-fluxonium
surface code lattice of distance d = 3, 5, 7 (light, medium, and
dark red respectively) and for drive amplitudes εd/2π = 100 MHz
(top), εd/2π = 300 MHz (middle), and εd/2π = 500 MHz (bottom).
The solid-gray line shows the state-of-the-art resistance variation
measured, while the dashed-gray line shows the achieved variation
following laser annealing. The yield is extracted over 6000 resamples
of the lattice parameters.

code-like architecture where each qubit is coupled to up to
four neighbors. In case the architecture is based on the CR
gate, it can be fully microwave-activated, while some flux
control on the transmons is needed for the CPHASE case.
We have shown that the fixed-frequency architecture based
on the CR gate between transmons and fluxonia greatly mit-
igates the problem of frequency crowding. We show that a
tunnel barrier resistance variation achieved by laser-annealing
enables a yield of near unity for surface codes up to distance
7 and possibly higher: this is a yield, which is considerably
higher as compared to fixed-frequency transmon-transmon
architectures using the CR gate. It would be interesting to
also make a multiqubit chip yield comparison between our
transmon-fluxonium architecture and a fluxonium-fluxonium
architecture as in [53].
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APPENDIX A: SCHRIEFFER-WOLFF
AND CR GATE ANALYSIS

In this Appendix we perform a perturbative analysis of the
coupled transmon-fluxonium system based on the Schrieffer-
Wolff transformation, following closely Ref. [32,67,71]. We
first execute the analysis without the drive and obtain
perturbative formulas for the frequency shifts of the levels
as well as for the residual ZZ coupling. In our analysis, we
include the first 3 levels of the transmon and the first 4 levels
of the fluxonium. Within this subspace the Hamiltonian in
Eq. (1) reads

H = H0 + V, (A1)

with the Hamiltonians H0 and V , which, in the bare basis, are

H0

h̄
= ωt |1〉〈1|t + (2ωt + δt )|2〉〈2|t

+
3∑

k=1

ω f ,k|k〉〈k| f , (A2)

and

V
RWA= JCqzpf

(
σ t

01 +
√

2σ t
12

)(
q f ,10σ

f
10

+ q f ,30σ
f

30 + q f ,21σ
f

21 + q f ,32σ
f

32

) + H.c. (A3)

Here |k〉〈k|t = |k〉〈k|0 ⊗ I0 f and |k〉〈k| f = I0t ⊗ |k〉〈k|0, with
I0t and I0 f the identity on the transmon and fluxonium, re-
spectively. Analogously, σ t

kl = |k〉〈l|0 ⊗ I0 f and σ
f

kl = I0t ⊗
|k〉〈l|0, while the q f ,kl are given in Eq. (4) in the main text.
Furthermore, the ω f ,k/2π are the frequencies associated with
the fluxonium levels, i.e., with respect to the ground state of
the fluxonium, while ωt/2π and δt/2π the fundamental fre-
quency and the anharmonicity of the transmon, respectively.
So in this Appendix, for notational simplicity, ω f ,0 is set as 0
[while the explicit dependence is given in expressions in the
main text and Eq. (A14)].

In Eq. (A3) we performed a rotating wave approximation
(RWA) neglecting terms σ t

klσ
f

k′l ′ with k > k′, l > l ′, and their
Hermitian conjugate.
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In order to proceed with the Schrieffer-Wolff analysis let
us define the relevant projectors in the bare basis

P0 =
1∑

k,l=0

|kl〉〈kl|0, (A4a)

Q0 = I − P0, (A4b)

and in the dressed basis

P =
1∑

k,l=0

|kl〉〈kl|, (A5a)

Q = I − P. (A5b)

The Schrieffer-Wolff transformation is defined as the uni-
tary U that transforms the projectors in the bare basis to those
in the dressed basis,

U †P0U = P, U †Q0U = Q. (A6)

The unitary U exists and is unique if and only if ‖P − P0‖ < 1
and in this case it is given by [67]

U =
√

(I − 2P0)(I − 2P). (A7)

In addition, U can be written as U = exp(S) with S be-
ing anti-Hermitian, S = −S†, and block-off-diagonal with
respect to P0, i.e., P0SP0 = (I − P0)S(I − P0) = 0. The goal
of the Schrieffer-Wolff transformation is to obtain an effective
Hamiltonian Heff that has the same spectrum as PHP, that
is, the projection of H onto the subspace associated with P,
i.e., the computational subspace in our case. The effective
Hamiltonian is given by

Heff = P0UHU †P0. (A8)

Equation (A7) provides a numerical method to obtain the
Schrieffer-Wolff unitary and thus also the effective Hamilto-
nian [82]. However, the standard use of the Schrieffer-Wolff
is to find an analytical, perturbative expansion of the effective
Hamiltonian. The norm of the coupling operator ‖V ‖ quan-
tifies the strength of the coupling, and thus plays the role of
the coupling parameter. Following Ref. [67], the second-order
expansion of the effective Hamiltonian is given by

H (2)
eff = P0(H0 + V )P0 + 1

2 P0[S1,Vod]P0, (A9)

where Vod = P0V Q0 + Q0V P0 is the off-diagonal part of V . In
our case V is fully off-diagonal, i.e., Vod = V , and the anti-
Hermitian operator S1 reads

S1 = JCqzpf q f ,30

h̄(ω f ,3 − ωt )
σ t

01σ
f

30 + JCqzpf q f ,21

h̄[(ω f ,2 − ω f ,1) − ωt ]
σ t

01σ
f

21

+
√

2JCqzpf q f ,10

h̄[ω f ,1 − (ωt + δt )]
σ t

12σ
f

10 − H.c. (A10)

This gives the effective Hamiltonian

H (2)
eff

h̄
=ωt |1〉〈1|t + ω f ,1|1〉〈1| f + JCqzpf q f ,10

[
σ t

01σ
f

10 + H.c.
]

+ ζ10|10〉〈10|0 + ζ11|11〉〈11|0, (A11)

where we define the coefficients

h̄ζ10 = −J2
Cq2

zpf q
2
f ,30

ω f ,3 − ωt
, (A12a)

h̄ζ11 = J2
Cq2

zpf

[
2q2

f ,10

ω f ,1 − (ωt + δt )
− q2

f ,21

(ω f ,2 − ω f ,1) − ωt

]
,

(A12b)

We note that the first contribution in ζ11 is due to the |11〉0 −
|20〉0 transition. It is quite small as q f ,10 is small (see Fig. 3),
and the levels are fairly off-resonant (see Fig. 2). The second
term is dominant and due to the (more resonant) |11〉0 − |02〉0
transition with larger q f ,21 in Fig. 2. The sign of the contri-
butions is opposite as |20〉0 is higher than |11〉0 while |02〉0 is
lower. The coefficient ζ10 is due to the |10〉0 − |03〉0 transition.

From Eq. (A11) we see that we still have the exchange
coupling term proportional to JC that couples levels |10〉0
and |01〉0. This could be further removed with a second
Schrieffer-Wolff transformation that would give two effective
Hamiltonians: one for the subspace {|00〉0, |01〉0} and one
for the subspace {|10〉0, |11〉0}. However, we remark that the
second-order corrections due to this flip-flop term are very
small in our typical setup because |q f ,10| � 1 and, in addition,
the transmon and fluxonium frequency always differ by at
least 3.5 GHz. Thus, we can simply neglect the effect of this
term. Within this approximation, the ZZ coupling in second-
order Schrieffer-Wolff is given by

h̄ξ
(SW)
ZZ = 〈11|H (2)

eff |11〉0 + 〈00|H (2)
eff |00〉0

− 〈01|H (2)
eff |01〉0 − 〈10|H (2)

eff |10〉0

= h̄(ζ11 − ζ10). (A13)

Thus the ZZ coupling is enhanced in strength when the
signs of ζ11 and ζ10 are opposite. Neglecting the first term in
Eq. (A12b), this is achieved when the transmon frequency is
chosen as

ω f ,2 − ω f ,1 < ωt < ω f ,3 − ω f ,0. (A14)

In a multiqubit architecture where all qubits are capaci-
tively coupled, the SW transformation to the dressed, compu-
tational basis, will not only slightly entangle nearest-neighbor
capacitively-coupled qubits but also entangle non-nearest
neighbors. That is, iS1 will be a 2-local many-qubit Hamil-
tonian with noncommuting 2-local terms each representing
the nearest-neighbor qubit couplings. This implies that the
computational qubits, on which we also apply single-qubit
gates and which we measure, are represented by two-level
subspaces, which are partially multiqubit entangled. As a
consequence, a drive on one qubit in the bare basis, will be
transferred not only to its nearest-neighbor qubits, but also,
more weakly, to non-nearest neighbor qubits.

1. Drive and CR coefficient

In the presence of a drive on the fluxonium the Hamiltonian
gets an additional term given in Eq. (5). We can use the
previous analysis to get an expression for the CR effect by
simply applying the Schrieffer-Wolff transformation to the
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drive Hamiltonian [32,71,83] so we see the effect of the drive
in the dressed, computational, basis.

In what follows we assume, for simplicity, that the enve-
lope function is a constant, i.e., g(t ) = 1, and set θd = π/2,
but we will comment on what happens when we change θd .

After obtaining the effective Hamiltonian in Eq. (A11), we
switch to a rotating (or interacting) frame at the drive fre-
quency for both qubits defined by the reference Hamiltonian
Href/h̄ = ωd (|1〉〈1|t + |1〉〈1| f ), for the purpose of analysis. In
general, for a Hamiltonian H , moving to rotating frame set
by Uref = e−iHref t/h̄ results in the dynamics being given by a
Hamiltonian H̃ given by

H̃ (t ) = U †
ref HUref + i

(
d

dt
U †

ref

)
Uref

= eiHref t/h̄He−iHref t/h̄ − Href . (A15)

We then approximate and calculate

H̃drive,eff (t )

h̄

= eiHref t/h̄P0eS1
Hdrive(t )

h̄
e−S1 P0e−iHref/h̄t

≈ eiHref/h̄t P0
(Hdrive(t ) + [S1, Hdrive])

h̄
P0e−iHref/h̄t

RWA≈ μXf Xf + μCRXt Z f + μXt Xt . (A16)

Here the first term is simply due to Hdrive(t ) and [S1, Hdrive]
gives the other two terms, i.e., the (fluxonium-controlled)
rotation on the transmon qubit. Here Xf (Xt ) is the Pauli X
operator acting on the fluxonium (transmon), and Z f the Pauli
Z acting on the fluxonium.

The coefficients within this approximation read

h̄μXf = 1
2 q f ,10εd (A17a)

and

h̄μXt = JCqzpf

4

[
q2

f ,30

ωt − ω f ,3
+ q2

f ,21

ωt − (ω f ,2 − ω f ,1)

]
εd ,

(A17b)
while the CR coefficient is

h̄μCR = JCqzpf

4

[
q2

f ,30

ωt − ω f ,3
− q2

f ,21

ωt − (ω f ,2 − ω f ,1)

]
εd .

(A18)

As for the strength of the CR coefficient μCR, we can ob-
serve the following. Similar as for the ZZ coupling, the largest
coefficient μCR is obtained when the two terms in Eq. (A18)
add constructively, i.e., we choose the transmon frequency
according to Eq. (A14). Naturally, the more entangling the
Schrieffer-Wolff unitary eS1 to the dressed basis is, the more
the drive on the bare transmon qubit becomes transferred to
a coupling term and this entangling power of eS1 with S1

in Eq. (A10) is proportional to JC . Additionally, our pertur-
bative formula Eq. (A18) predicts a linear increase of μCR

with the drive amplitude εd . As for the transmon-transmon
case, a more refined analysis that includes the drive in the
perturbation would predict a saturation of the cross-resonance

coefficient with the drive amplitude [32]. By adapting this
analysis to our case, we verified that for the parameters used
in this manuscript the linear approximation Eq. (A18) is quite
accurate and reproduces the “exact” result with error below
5% for all the considered drive amplitudes.

Notice that if μCR is negative for θd = π/2, we can always
change its sign by taking θd = 3π/2 instead in Eq. (5). Thus,
μCR can always be assumed to be positive. By choosing a
different phase θd of the drive, say θd = 0, one can go through
the math behind Eq. (A16) and observe that Pauli Xt → Yt and
Xf → Yf as one may expect.

In the rotating frame set by Href , Eq. (A11) equals

H̃ (2)
eff

2h̄
≈ (ωt − ωd )|1〉〈1|t + (ω f ,1 − ωd )|1〉〈1| f

+ ζ10|10〉〈10| + ζ11|11〉〈11|, (A19)

neglecting the flip-flop coupling in the computational sub-
space. Hence, we see that if ωd is chosen as ωt , one drives
the fluxonium at the frequency of the transmon qubit, H̃ (2)

eff
contains no single-qubit Zt and the effect of the μCRXt Z f and
μXt Xt terms in Eq. (A16) is maximal. If instead the drive
frequency and the transmon frequency are sufficiently differ-
ent, the (fluxonium-controlled) Xt rotation is very small as
compared to Zt , and hence would induce at most some renor-
malization of the transmon frequency and the ZZ coupling.

In order to completely understand the dynamics, we can
re-evaluate this Hamiltonian in the standard computational
rotating frame where the precession of each (dressed) qubit
at its eigenfrequency is undone. For the transmon qubit, Href

already selects this frame (as ωd = ωt ), but for the fluxo-
nium qubit we can undo the first rotation frame and use the
first computational one for the fluxonium by picking a new
H ′

ref/h̄ = (ω1, f − ωd )|1〉〈1| f . This ensures that H̃ (2)
eff has no

more single-qubit Zt or Z f terms, and note it does not af-
fect the relevant Xt Z f term. At the same time it introduces a
time-dependence e±2i(ω1, f −ωd )t in the single-qubit term μXf Xf

in Eq. (A16). Both due to the smallness of q f ,10 as well as
the difference in frequency between the transmon and the
fluxonium (Fig. 3), the effect of this off-resonant term is thus
very small.

In Fig. 12 we compare the results obtained with the per-
turbative Schrieffer-Wolff analysis and the exact numerical
values for the ZZ coupling in Eq. (A13). We see good
agreements between the numerics and the results from the
perturbative Schrieffer-Wolff analysis. We notice that the ZZ
coupling is relatively constant over a wide range of frequen-
cies. This is due to the fact that the transmon frequency is
always in between the transition frequencies of the |1〉 − |2〉
and the |0〉 − |3〉 transition of the fluxonium, as in Eq. (A14).

We conclude this Appendix by commenting on the role of
the coupling parameter JC on the gate implementation. The
unwanted ZZ coupling coefficient depends quadratically on
JC , while the cross-resonance coefficient scales linearly with
JC . This suggests that smaller JC should decrease the error
associated with the coherent ZZ interaction. However, smaller
JC also means longer gate times, which we would like to limit
in order to have small errors from decoherence processes.
We remark that the transmon-transmon implementation of the
cross-resonance gate faces exactly the same trade-off.
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FIG. 12. Residual ZZ coupling as a function of the transmon
frequency at zero-drive strength. The solid lines represent the exact
numerical value, while the dashed line shows the result obtained from
the second-order Schrieffer-Wolff transformation in Eq. (A13). We
use the fluxonium parameters of parameter set CR in Table I.

APPENDIX B: CPHASE GATE ANALYSIS

In this Appendix we provide a simplified analysis of the
CPHASE gate, restricting ourselves to the computational
subspace plus the higher (dressed) levels |03〉 and |13〉 to un-
derstand the idea behind the gate. We will work in the dressed
computational basis |kl〉, which can be obtained from the
bare basis |kl〉0 by a Schrieffer-Wolff transformation, which
is discussed in Appendix A. This transformation gives a ZZ
coupling between the qubits (and a very off-resonant flip-flop
interaction, which we neglect here), which is used for the
CPHASE gate.

We assume that the drive Hdrive(t ) in Eq. (5) has g(t ) = 1
and the phase is chosen as θd = π/2. We solely focus on the
drive enacting the transitions |00〉 ↔ |03〉 and |10〉 ↔ |13〉
where |kl〉 are dressed energy levels, so we write

Hdrive(t )

h̄
≈ εd q f ,00−03

2
(|00〉〈03|(−eiωd t + e−iωd t ) + H.c.)

+ εd q f ,10−13

2
(|10〉〈13|(−eiωd t + e−iωd t ) + H.c.),

(B1)

with q f ,kl−mn = |〈kl|q f |mn〉|. The rest of the Hamiltonian
of the transmon-fluxonium system, restricted to this six-
dimensional subspace equals

H |6
h̄

= ω01P01 + ω11P11 + ω00P00 + ω03P03

+ ω10P10 + ω13P13, (B2)

where Pi j = |i j〉〈i j|. Due to the ZZ coupling, � defined in
Eq. (13) is unequal to zero and the entangling rate of the gate
is (roughly) determined by � since driving an uncoupled flux-
onium qubit could not generate a CPHASE entangling gate.
Going to a rotating (interaction) frame with reference Hamil-
tonian Href/h̄ = ωd (P03 + P13) (and neglecting fast-rotating
terms depending on e±2ωd t ) gives a time-independent Hamil-

tonian

H̃

h̄
= ω01P01 + ω11P11 + ω00P00 + (ω03 − ωd )P03

− εd q f ,00−03

2
(|00〉〈03| + H.c.)

+ ω10P10 + (ω13 − ωd )P13

− εd q f ,10−13

2
(|10〉〈13| + H.c.). (B3)

Thus we see that one is driving Rabi oscillations in two
effective qubit subsystems, namely the two-level subsystem
|00〉 − |03〉 and the two-level subsystem |10〉 − |13〉. For a

qubit Hamiltonian Hqubit/h̄ = (
α γ /2

γ /2 β
), one can use that

U (t ) = e−iHqubitt/h̄ = e−iTr(Hqubit )t/(2h̄)e−iθ n̂·�σ/2, (B4)

with angle θ = t
√

(α − β )2 + γ 2. A full Rabi oscilla-
tion, which induces no leakage, occurs for θ = 2π ,
so that e−iπ n̂·�σ = −I , tgate = 2π√

(α−β )2+γ 2
and U (tgate ) =

−e−i(α+β )tgate/2I . Applying this to the simultaneous Rabi os-
cillations in the two subspaces, we see that one needs to fulfill
the condition in Eq. (15) to get a full Rabi oscillation in both
qubit subspaces. For this tgate = 2π/�, the phases picked up
by the computational states are

φ00 = π − (ω00 + ω03 − ωd )tgate/2,

φ01 = −ω01tgate,

φ10 = π − (ω10 + ω13 − ωd )tgate/2,

φ11 = −ω11tgate. (B5)

A CPHASE gate can be brought to the form in Eq. (14)
by single-qubit Z gates with φ = φ11 − φ10 − φ01 + φ00 ≈
tgate

2 (ω13 − ω10 − ω03 + ω00) = tgate

2 � = π�
�

where we have
neglected the effect of the ZZ coupling in the computational
subspace. Hence φ ≈ π�/�. A given targeted phase φ thus
leads to a targeted � (which sets the gate time tgate), and the
targeted � is used to solve for a drive frequency ωd and a
drive power εd , which satisfies Eq. (15). The frequency ωd is
chosen to be close to ω03 − ω00 and ω13 − ω10, say midway
between those transitions. The spectrum of the fluxonium
and transmon qubit should be such that this choice of ωd

avoids it being close to other fluxonium transitions, such as
|01〉 ↔ |04〉.

We note that changing the phase θd of the drive has no
effect on the gate as it simply changes the Rabi driving to be
around an axis in the XY plane instead of around the X axis.
We also note that if the transmon qubit is flux-tunable, one
can vary � (letting it range from, say, negative to positive),
and hence get a varying phase at a fixed tgate.

APPENDIX C: FIDELITY AND LEAKAGE DEFINITIONS

We take the definitions of gate fidelity and leakage from
Ref. [84]. We report them here for completeness with some
notational adaptation. Let Pc denote the projector onto the
computational subspace encoding n qubits and dc = 2n be
its dimension. Let U be the quantum operation associated
with a target unitary U that we want to implement within the
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computational subspace and that acts as the identity on the
leakage subspace, i.e., U (ρ) = UρU † and U† is its inverse.
Let E be the quantum operation we actually apply to the
system. The average gate fidelity within the computational
subspace is given by

Fgate =
∫

dψc〈ψc|U †E (|ψc〉〈ψc|)U |ψc〉, (C1)

where dψc denotes the Haar measure over states in the com-
putational subspace. The process or entanglement fidelity in
the computational subspace equals

Fent = 〈�c|I ⊗ U† ◦ E (|�c〉〈�c|)|�c〉, (C2)

where |�c〉 = 1√
dc

∑dc
i=1 |i, i〉 is the maximally-entangled state

in the computational subspace. The average leakage is defined
as

L1 = 1 − 1

dc
Tr[Pc U† ◦ E (Pc)]. (C3)

For any trace-preserving channel S on a dc-dimensional
system we have the relation F = dcFent+1

dc+1 where F is the fi-
delity. Here, the effective channel on the computational space
is S (ρ) = Pc[U† ◦ E (PcρPc)]Pc, which is not trace-preserving
but trace-decreasing and Tr S (I/dc) = 1 − L1. Incorporating
this trace-decreasing property into the standard derivation [85]
of the relation between process fidelity and gate fidelity gives

Fgate = dcFent + 1 − L1

dc + 1
. (C4)

Thus to compute the gate fidelity, one computes the entan-
glement or process fidelity Fent and L1. In turn, Fent can be
reexpressed, using |�c〉〈�c| = 1

dc

∑
μ Pμ ⊗ Pμ with (normal-

ized) Pauli matrices Pμ (Tr PμPν = δμν) as

Fent = 1

d2
c

d2
c∑

μ=1

Tr(UPμU †E (Pμ)). (C5)

So one evaluates E on the Pauli eigenstates of Pμ and takes
the expectation value with the appropriate observable UPμU †

etc. to compute Fent. L1 can be computed similarly, resulting
through Eq. (C4) in the evaluation of Fgate.

APPENDIX D: ERROR MODEL

In the main part of the manuscript we have shown results
of simulations under coherent and noisy evolutions. In this
Appendix we detail our noise model. As noise source we
considered only relaxation due to dielectric losses. We do not
include the effect of 1/ f flux noise in the fluxonium since it
is always assumed to be biased at φext, f = π , which is a flux
sweet spot. Clearly in a multiqubit architecture with tunable
transmons that could be biased away from the flux-insensitive
point this source of error would play a role, similarly to the
CPHASE gate in transmon-transmon architectures [13]. We
do not include pure dephasing mechanisms, since the model
of dephasing highly depends on the experimental setup one
considers. Thus, while this noise source should be included
when modeling an experiment, we left it out from our analy-
sis.

Errors are assumed to be Markovian and modelled via a
Lindblad master equation of the following form [86]:

dρ

dt
= 1

ih̄
[H (t ), ρ] +

∑
k

D[Lk](ρ), (D1)

where ρ is the density matrix for the system, H (t ) is a general
time-dependent Hamiltonian and D is the Lindblad dissipator

D[Lk](ρ) = LkρL†
k − 1

2 L†
k Lkρ − 1

2ρL†
k Lk, (D2)

with Lk the so-called jump operators. In the following we
specify the form of the jump operators modeling dielectric
loss.

For both transmon as well as fluxonium qubits, dielectric
loss can be modelled by adding a real part to the admittance
(in the frequency domain) of the shunting capacitance [51].
More precisely, this admittance is assumed to be of the fol-
lowing form

YC (ω) = ωC

Qdiel
+ iωC, (D3)

with Qdiel the quality factor related to the dielectric loss tan-
gent, namely Qdiel = 1/ tan δdiel. The dielectric loss tangent
can in turn be frequency dependent [51] and we consider
this in the case of the fluxonium, so Qdiel = Qdiel(ω) (see
caption of Table I in the main text). The following discus-
sion applies to both transmon and fluxonium. Let |k〉 and |l〉
be a pair of (bare) energy levels with transition frequency
ωkl = (Ek − El )/h̄ with Ek and El the energies associated with
the levels and k > l . The decay rate from level |k〉 to |l〉 at
temperature T = 0 reads

γkl = �2
0

h̄2π2
|〈k|φ|l〉|2ωkl Re[YC (ωkl )], (D4)

with �0 = h/2e the superconducting flux quantum and φ the
reduced (dimensionless) flux operator of the system. At finite
temperature T > 0, this is replaced by a relaxation rate

γ
↓
kl = γkl [1 + n̄(ωkl )], (D5)

and an excitation rate

γ
↑
kl = γkl n̄(ωkl ), (D6)

with average photon number

n̄(ω) = 1

eβ h̄ω − 1
, (D7)

where β = 1/kbT . The relaxation times from level k to level l
with k > l reported in Table I are

T k �→l
1 = 1

γ
↓
kl

, (D8)

while the excitation times are defined as

T l �→k
1 = 1

γ
↑
kl

. (D9)

Thus, for any pair of energy levels we take two jump op-

erators L↓
kl =

√
γ

↓
kl |l〉〈k| and L↑

kl =
√

γ
↑
kl |k〉〈l|, which model

relaxation and excitation between the two levels. While for
transmon qubits the excitation rate between the first two levels
can be neglected at the typical operating temperatures of few
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TABLE III. Relaxation and excitation times for other relevant fluxonium transitions for the CR and CPHASE parameter set in Table I. The
dielectric loss tangent and the temperature of the environment are taken as described in the caption of Table I.

Fluxonium

Parameter set T 0 �→1
1 (μs) T 2 �→1

1 (μs) T 4 �→1
1 (μs) T 3�→2

1 (μs) T 4 �→3
1 (μs)

CR 510 9 60 8 4
CPHASE 3976 7 90 81 4

mK, this is not the case for the fluxonium. For low-frequency
fluxonia, the excitation rate γ

↑
01 can be comparable to the

relaxation rate. Table III shows some relevant relaxation and
excitation times for the fluxonia we considered in this paper.

APPENDIX E: DETAILS OF THE MICROWAVE PULSE
AND ECHO

In the simulations in the main text we use a piece-wise
Gaussian envelope, which is defined as

g(t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
1−exp[−t2

rise/2σ 2]

{
exp[−(t − trise )2/2σ 2] − exp[−t2

rise/2σ 2]
}
, 0 � t < trise

1, trise � t < tpulse − trise
1

1−exp[−t2
rise/2σ 2]

{
exp[−(t − (tpulse − trise ))2/2σ 2] − exp[−t2

rise/2σ 2]
}
, tpulse − trise � t � tpulse,

0 otherwise.

(E1)

using σ = trise/
√

2π and tpulse the total pulse duration.
In Appendix A we have shown that, as in the transmon-

transmon case, the CR effect comes with an additional X drive
on the transmon. This term commutes with the CR term Xt Z f

and gives rise to an unwanted X rotation on the transmon
during the gate. After each simulated gate, we undo this X
rotation on the transmon by applying its (noiseless) inverse
quantum operation. While an X drive is also present on the
fluxonium, the large detuning between the drive frequency
and the fluxonium frequency makes the effect of this term
negligible.

In addition, we also consider an echo pulse similar to
Refs. [18,33,72] with the goal to cancel the ZZ coupling and
the X rotation on the transmon qubit during the gate. Let
UGP(tpulse, εd , ω) be the time evolution operator when a Gaus-
sian pulse as in Eq. (E1) with total pulse time tpulse, amplitude
εd , and frequency ω is applied to the control fluxonium. The
echo pulse consists of two pulses with opposite sign of the
drive amplitude applied on the fluxonium at chosen frequency
ω = ωt of the target transmon, interleaved with single-qubit
π rotations around the X axis on the control, fluxonium, qubit
R( f )

X (π ). This gives the time evolution operator

Uecho = R( f )
X (π )UGP(tpulse,−εd , ωt )

× R( f )
X (π )UGP(tpulse, εd , ωt ). (E2)

In order to implement a CR gate the pulse time of each
Gaussian pulse is chosen such that

|μCR|
h̄

∫ tpulse

0
dtg(t ) = π

8
, (E3)

so applying essentially half the CR gate. Note that εd → −εd

changes the sign μCR → −μCR in Eq. (A18) and conjugation
by π pulses causes Z f → −Z f , so that Uecho implements the
CR gate. When we apply Uecho, both terms μXf Xf and μXt Xt

in (A16) cancel due to εd → −εd .

In our simulation we take the single-qubit π rotations
R( f )

X (π ) to be perfect. As discussed in Ref. [33], the echo pulse
ideally cancels the effect of the ZZ coupling and the additional
X rotations but can also introduce some other unwanted terms
in the effective time evolution operator although the overall
effect is positive. In all cases, we always undo the accumulated
single-qubit phases via virtual Z gates.

APPENDIX F: AVERAGE NUMBER OF COLLISIONS

In Sec. V we obtained the zero-collision device yield based
on the frequency collisions and bounds outlined in Table II. In

FIG. 13. Average number of collisions of each type as a function
of the resistance variation σR/R for a fixed-frequency transmon-
fluxonium d = 3 surface code lattice and drive amplitudes εd/2π =
300 MHz. The number of collisions are collected over 6000 resam-
ples of the lattice parameters. Collision type 5 is disabled due to
the proximity of the transition to that of type 4. Instead the window
around collision type 4 accounts for collision 5 as well.
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this Appendix we explore the average number of collisions
for each type that have occurred for a d = 3 surface code
lattice using a drive amplitude of εd/2π = 300 MHz, shown
in Fig. 13 . We observe that most collisions involve a spectator
transmon, specifically, these are collisions of type 8 or 9.
Together, these collisions account for most of the reduction
in the zero-collision yield observed in Fig. 11. Collision type
8 results in the excitation of a spectator transmon from |1〉
to |2〉 during a CR gate. Given the target frequencies in
Fig. 9, there exist pairs of transmons (ωt/2π and ωs/2π at
4.3 GHz and 4.7 GHz, or 5.3 GHz and 5.7 GHz, respec-
tively) whose frequencies are ideally 100 MHz away from this
collision. Collision type 9 results in the fluxonium qubit leak-
ing from |0〉 to |4〉, corresponding to a transition frequency of
ω f ,04/2π = 9.86 GHz for the target fluxonium parameters in
Table I. In this case, there are pairs of transmon frequencies

(ωt/2π and ωs/2π at 4.3 GHz and 5.7 GHz, or 4.7 GHz and
5.3 GHz, respectively) the sum of which is 140 MHz away
from this transition. In either case, the variation in the tunnel
resistance of σR/R = 2% translates to a variation in ωt and ωs

of about 1% each, which translates to a standard deviation of
approximately 50 MHz, leading to the onset of these types of
collisions. Collision type 6, which is the next most dominant
collision, does not involve any spectator transmons and leads
to the |0〉 to |5〉 transition on the fluxonium that happens at
a frequency ω f ,05/2π = 13.23 GHz. For the ideal transmon
frequencies, this collision is ideally about 110 MHz away
from the transmon at frequency ωt = 4.3 GHz and detuned
by 300 MHz or more from any other transmon. The relatively
large number of collisions of type 8 or 9 compared to any
other types indicates that the target frequency allocation of the
transmons is the main limiting factor behind the current yield.
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