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Abstract

Accuracy-driven recommender systems risk con-
fining users to “filter-bubbles” of familiar con-
tent. Recent work on coVariance Neural Networks
(VNNs) provides a scalable alternative to Prin-
cipal Component Analysis (PCA) for modelling
high-order correlations, but their impact on beyond-
accuracy metrics (BAMs), such as Novelty and Di-
versity, remains unexplored.

We use the user-user covariance (or its inverse,
the precision matrix) as a graph shift opera-
tor (GSO) and train SelectionGNN-based VNNs
on the MovieLens-100K data.  Two training
regimes are evaluated: (i) RMSE-only (No-BAM-
SVNN) and (ii)) a compound loss that also in-
cludes novelty and diversity terms (BAM-SVNN).
For each regime we sweep six graph configura-
tions: covariance/precision crossed with {dense,
hard-threshold, soft-threshold} sparsification, un-
der five random seeds, yielding 30 runs per regime.
Baseline comparisons include PCA, a naive mean-
std model, and a random predictor.

The best SVNN configuration increases recom-
mendation Novelty by 2.8 percentage points and
matches PCA’s Diversity while incurring only a
0.03 RMSE penalty. Hard-thresholded precision
graphs provide the lowest SVNN RMSE (0.952),
whereas dense covariance graphs maximise diver-
sity (0.868). Integrating novelty/diversity directly
into the loss offers no additional benefit yet multi-
plies runtime by x33. One-way ANOVA indicates
that model family explains 97.6 % of RMSE vari-
ance (n? = 0.976) and 77.8 % of novelty variance.

This work is the first to benchmark (sparsified)
VNNs on beyond-accuracy metrics, demonstrating
a favourable accuracy-novelty trade-off and clarify-
ing when sparsification and BAM-weighted train-
ing pay off. All code, data splits and statistical
notebooks are released for full reproducibility.

1 Introduction

Recommender systems have become integral to navigating
the vast amount of information available on online plat-
forms, influencing user choices in domains ranging from
e-commerce and entertainment to social media and news
consumption. At their core, these systems aim to model user
interests based on past interactions and item characteristics,
with the objective of proactively suggesting items that a user
is likely to find relevant and engaging [11]. Traditionally,
the evolution and evaluation of recommender systems have
heavily emphasized their ability to accurately predict user
preferences for specific items. Indeed, recommender systems
are continually evolving in their ability to offer an item
that fits perfectly with the user’s history of interactions and
modeled interests. Improvements on standard accuracy
metrics (e.g., RMSE) indicate enhanced predictive power of

the user preferences [6].

However, basing the training solely on accuracy can lead
to unintended consequences. Over-specialized recommen-
dations from such accuracy-driven recommender systems
can trap users in narrow interest bubbles, which limits
exposure to new content [10]. For example, if a system
has accurately identified a user’s preference for the action
genre, it might keep suggesting more action movies. While
these recommendations score highly on accuracy metrics,
the user may eventually experience fatigue as the sugges-
tions become overly homogeneous and predictable [8].
To address this, metrics that go beyond accuracy, such as
novelty (providing lesser-known or new items) and diversity
(providing a varied range of options), are crucial for a more
holistic evaluation and can help alleviate such problems [6;
131.

Addressing these challenges requires models that can ef-
fectively capture complex relationships within user-item
data while remaining scalable and adaptable. Principal
Component Analysis (PCA) is a foundational technique that
identifies the directions of maximal variance within data,
often used for dimensionality reduction and feature extrac-
tion [4]. While valuable, traditional PCA incurs a significant
computational cost, typically O(N?) for eigendecomposition
of an N x N covariance matrix [9]. Moreover, standard PCA
operates on a pre-computed covariance matrix, and its direct
application within iterative learning frameworks like neural
networks can be cumbersome.

To address these computational challenges, Sihag et al.
introduced coVariance Neural Networks (VNNs) [12].
VNNs interpret the sample covariance matrix as a graph
shift operator, leveraging spectral graph convolutions to
learn and extract principal directions from data within a
neural network framework. Building on this, Cavallo et al.
proposed sparsification techniques for VNNs (S-VNNs),
which not only aim to reduce the computational complexity
of training by operating on fewer non-zero entries but also
to improve robustness by mitigating noise in covariance
estimation [2]. While the VNN variants promise scalable
principal component extraction, their use in recommender
systems - and particularly their impact on beyond-accuracy
metrics - remains unexplored.

The current work aims to investigate how VNNs, augmented
with the sparsification of the covariance matrix or its inverse
- the precision matrix - as a graph shift operator, affect the
user novelty and diversity of recommendations. Hypothesis:
Some variants of the model will boost recommendation nov-
elty and diversity with only a marginal loss in accuracy. Our
contributions are as follows:

1. Introduce a (sparsified) VNN framework that uses the
covariance or the precision matrix as graph shift opera-
tors;

2. Quantify how these variants influence novelty and diver-
sity on both the MovieLens 100K benchmark dataset.



3. Contrast and analyze our results with standard PCA-
based recommendations to assess the trade-offs between
accuracy and beyond-accuracy metrics.

The remainder of this paper is structured as follows: Sec-
tion 2 reviews related work in recommender systems, beyond-
accuracy evaluation, and coVariance Neural Networks. Sec-
tion 3 details our proposed methodology. Section 4 describes
the experimental setup, followed by a presentation and anal-
ysis of the results in Section 5. Finally, Section 6 discusses
the implications of our findings, and Section 7 concludes the
paper with directions for future work.

2 Related Works

2.1 Recommender Systems & Beyond-Accuracy
Metrics

Recommender systems are pivotal in shaping online user ex-
periences, from selecting movies and apparel to consuming
rapidly evolving short-form video content on platforms like
TikTok, YouTube Shorts, and Instagram Reels, which in-
creasingly function as recommendation engines rather than
traditional query-based retrieval systems [7]. The founda-
tion of these systems lies in understanding user preferences,
primarily modeled through explicit feedback (e.g., 1-5 star
ratings, likes/dislikes) or implicit signals (e.g., watch time,
purchase history). This user feedback is fundamental, as it
allows the system to learn what a user enjoys or dislikes,
subsequently enabling the generation of personalized recom-
mendations. The quality of these recommendations is of
paramount importance, as effective suggestions directly cor-
relate with user satisfaction, engagement, and ultimately, re-
tention on a given platform.

While traditional recommender systems excel at predicting
items a user might rate highly based on past behavior, this
accuracy-centric approach can lead to overly homogeneous
suggestions. If recommendations consistently fall within a
narrow band of a user’s known preferences, it can result in
user fatigue and a diminished sense of discovery, even if
each individual item is *accurately’ predicted to be liked [8].
This highlights the limitations of relying solely on accuracy
metrics (AMs) like RMSE or MAE.

Consequently, the field has increasingly recognized the
importance of beyond-accuracy metrics (BAMs). These
metrics offer crucial insights into aspects of recommendation
quality that accuracy alone cannot capture, such as the
ability to surprise users or broaden their horizons [13;
6]. This paper will focus on two prominent BAMs: novelty
and diversity.

Novelty metrics assess a recommender system’s ability to
suggest items that are lesser-known, unexpected, or new to
the user base [6]. Often, a small fraction of items accounts
for the majority of user interactions (the Pareto principle),
leaving a ’long tail’ of less popular items. Systems that can
effectively recommend relevant items from this long tail are
considered to exhibit higher novelty, thereby expanding user
discovery [1; 6].

A common way to quantify novelty for a recommendation list
R, for user w is:

Nov(R,) = %ZieRu(l —p(i))

where p(i) reflects the global popularity of item 4, for in-
stance, normalized by the interactions with the most popular
item [6].

Diversity metrics evaluate the variety within a set of recom-
mended items. The goal is to avoid presenting users with
overly homogeneous lists and to prevent them from being
confined to echo chambers’ [10; 6]. High diversity can en-
hance user engagement by exposing users to a broader spec-
trum of content that may align with varied or unstated inter-
ests. Intra-List Diversity (ILD) is a widely used metric for
this purpose, calculated as the average pairwise dissimilarity
between items in a recommendation list R,,:
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where d(i, j) is typically 1 — s(4, j) with similarity based on
item features like genres or user ratings [6; 13]. The popu-
larity and the similarity scores equation are implemented as
described in Section 4.

2.2 PCA & Its Limitations in Recommender
Systems

Principal Component Analysis (PCA) is a statistical tech-
nique used to identify the primary patterns of variation
in multivariate data [4]. Tt achieves this by transforming
the original data into a new set of uncorrelated variables
known as principal components, ordered by the amount of
variance they explain. This makes PCA a valuable tool for
dimensionality reduction, as one can retain most of the data’s
structure using a smaller number of these components.

For a given dataset, often represented as a user-item in-
teraction matrix X (where rows are users and columns
are item ratings), PCA involves the analysis of its sample
covariance matrix, C. If we consider user-user covariance,
C = —L-XXT, where m represents the number of items.
The core of PCA lies in the eigendecomposition of this
covariance matrix: C = VAVT, where V contains the
eigenvectors (principal components) and A contains the
corresponding eigenvalues (variances). Data samples x are
then projected onto this eigenspace via X = V7 x to obtain
their representation in terms of principal components.

The most computationally intensive step in PCA is this
eigendecomposition, which generally has a time complexity
of O(N?3) for N x N matrix [9]. This can be prohibitive for
the very large covariance matrices encountered in modern
recommender systems with many items or users. While PCA
also faces challenges with incremental updates for streaming
data, this aspect is not the primary focus of the current
work. Instead, we highlight the computational cost as a key
motivation for exploring alternative approaches like VNNs.



2.3 VNNs & S-VNNs

To address the computational limitations of traditional PCA
while retaining the ability to extract principal directions
from data, Sihag et al. [12] introduced coVariance Neu-
ral Networks (VNNs). VNNs conceptualize the sample
covariance matrix C as representing the graph structure
over which graph convolutions are performed. Building on
standard graph convolutional filters, which shift a signal x
over a graph represented by a shift operator S according to
SE  hiSFx (where K is the filter order and hy, are learnable
parameters [3]), VNNs apply the concept using C as the shift
operator.

A VNN layer, which may assemble a filter bank of F},, X F,,;
covariance filters and apply a non-linear activation function
o(+), processes an input signal (or features from a previous
layer) uglfl) (for input channel g) to produce an output ulf
(for output channel f) at layer [ as follows:

l 1) 1~ —
ul) = o(2EHY (Cul-Y)

where H(flg((}) = B higr(C)* is a specific covari-
ance filter from input channel ¢ to output channel f at
layer [, composed of learnable coefficients hyi,; and
powers of the covariance matrix C up to order K [2;
12]. The overall VNN architecture, denoted ®(x,C,H),
where H contains all filter parameters hy;, s, generates final
representations that can be used for downstream tasks.

The computational complexity for a VNN layer operating
on a dense covariance matrix of size N x N is typically
O(N?KF;,F,.;) [12]. This can offer advantages over
PCA’s O(N?) for eigendecomposition, particularly when
K, F;,, F,,; are small compared to V.

Given that sample covariance matrices can be noisy, with
many small entries potentially representing spurious cor-
relations rather than true underlying structure, Cavallo et
al. [2] proposed techniques for sparsifying C before its use
in VNNs. These Sparse VNNs (S-VNNs) aim to improve
robustness by reducing the influence of noise and can further
decrease computational complexity. Techniques such as
hard thresholding (zeroing out entries in C below a certain
magnitude) or soft thresholding (shrinking all entries and
zeroing out small ones) are employed. When sparsified, the
complexity of the VNN layer becomes dependent on the
number of non-zero entries ||Csparse||o rather than N2, i.e.,

O(| |ésparse||OKFinFout)~

While VNNs and S-VNNs offer a promising framework for
learning from covariance structures with improved scalabil-
ity over PCA, their application to recommender systems and,
critically, their impact on BAMs, such as novelty and diver-
sity, have not yet been investigated. This paper aims to fill
this gap.

3 Methodology

The rationale for using (S-)VNNs is similar to the PCA -
due to their ability to model covariance structures, which are
inherent user-item data.

We will be using (S-)VNNs as the core recommendation
generation system. The users can be modelled as nodes in
a fully connected graph, and each node has a number of
features equalling the amount of items. Given the ratings, the
user-user and item-item covariance and precision (the inverse
of the covariance) matrix would be computed and possibly
sparsified using the different techniques. Afterwards, a
training procedure of the (S-)VNN will be performed and
the graph Fourier transform of each node (signal) will be
evaluated. In the end, a readout layer will be employed for
the downstream task of the recommendation system. The
training of the model will be evaluated using the RMSE,
which has been established as a common industry practice.

We will be using the covariance matrix due to its ability to
capture user or item similarity, and the precision matrix - for
partial correlations, potentially better at disentangling direct
relationships. The use of sparsification is also investigated
as it provides further efficiency and reduces noise from
non-existing correlations.

After the predictive task of the user’s ratings has been per-
formed, a top-N collection of the items will be collected and
presented as a ranked list for the evaluation of the BAMs.

4 Experimental Setups & Implementation

For the dataset, we will be using the MovieLens 100K
(100000 ratings from 943 users on 1682 movies) dataset [5],
which provides us the user, movie, numerical rate (on the
scale from 1 to 5, with a 0.5 step), and the datetime of the
rating.

We will be modeling the ratings as a rating matrix in R™*",
where n is the number of users and m is the number of
movies. 10% of the data will be held out as a testing set and
10% will be held out as a validation set. As for the rest 80%:
The entries will be z-scored (zero-mean, unit-variance) with
respect to each user’s ratings. The data imputation will then
fill up all the missing rates (as a single user has not physically
entered rated all the movies) by placing a 0 (the z-scored
average rating per user) on the missing entries, resulting in a
matrix X.

Thus the sample covariance matrix will be computed as

C = (mli_l)XXT, where m is the number of movies. The

precision sample matrix P will be computed as the inverse of
C.

The SelectionGNN, provided by the AleLab [3], will execute
the training for both the graph convolutions (to find the
graph Fourier transform) and the readout layer (to predict the
ratings). The readout layer structure and the hop-distance



k and the in-model number of signal features for the graph
convolution will be subject to hyperparameter optimization.

The training process will be stopped after either the training
starts giving diminishing results or the model starts overfit-
ting, visible from the evaluation of the validation set. The
actual training epoch will be minibatched in 55% of the train-
ing set is used for forward passes and 25% for loss calcula-
tion.

After the training procedure, the top-50 selection of best
movies per each user (out of the training set) according to the
recommendation system will be evaluated with the BAMs.

Popularity. For each item ¢ we pre-compute a catalogue-
wide popularity score

~ #{u|r,,; observed}
a U

p(i)

where U is the number of users.

ey

Collaborative dissimilarity. Let 7, ; denote the z-scored
and mean-imputed rating of user u for item i. The cosine
dissimilarity between two items is

. Zu fu,i 'Fu,j
17l 17 5l

dcollab (Za .7) =1 (2)

Genre dissimilarity. With g; € {0,1}/¢! the binary genre
vector of item 4:

T
.. 9i 9j
dgenre(1,j) =1 — ——— 3)
s lgillllg; |

Hybrid distance. To blend behavioural and content signals
we define

da(l,j) = Oédconab(i,j)—F(l—Oé) dgenre(i,j), (S [0, 1].

“

In all reported experiments we fix o = 0.5, i.e. equal weight
to collaborative and genre information. This neutral midpoint
was chosen for three reasons:

1. it prevents either signal from dominating the hybrid dis-
tance,

2. a pilot sweep € {0.3,0.5,0.7} on the validation set
showed a@ = 0.5 maximises average Diversity without
harming Novelty, and

3. it offers a reproducible baseline against which future
work can explore asymmetric weightings.

Model variants. Two training regimes are compared. No-
BAM-SVNN minimises only the point-wise reconstruction er-
ror Lrmse. BAM-SVNN, in contrast, minimises a compound
loss

L = Armsi LRMSE + ANov (1 — Nov) + Apiy (1 — Div),

with Agmse = 0.70, Anov = Apiy = 0.15. Novelty and Di-
versity are computed inside the loss using the same popularity
and rating-cosine similarity functions later employed for of-
fline evaluation, thereby avoiding train-test metric mismatch.

Graph sparsification. For each graph shift operator (co-
variance or precision) we explore three sparsity settings:

1. dense (7 = 0) — no pruning,

2. hard-threshold (7 = 0.8) — the lowest 20 % absolute
weights are zeroed,

3. soft-threshold (7 = 0.8) — magnitude shrinkage by
w <+ sign(w) - max(|w| — 7,0).

The value 7 = 0.8 was selected after a coarse grid search
7 € {0.6,0.7,0.8,0.9} on the validation split;.

Implementation details. Popularity scores and cosine sim-
ilarities are precomputed on the training data and cached as
look-up tables, so both loss and evaluation incur O(1) access
per item pair. All additional hyper-parameters (learning rate,
batch size, SelectionGNN depth, etc.) remain identical across
the two regimes to isolate the effect of the loss and sparsity
choice. Full configuration files are included in the repository.

5 Results

5.1 Headline comparison across model families

Figure 1 and Table 1 summarize the three key metrics.
Observation 1: PCA achieves the best RMSE
(0.931 £0.002) but the two SVNN variants deliver the
highest Novelty (0.965+0.013) at the cost of only ~0.03
RMSE.

A one-way ANOVA confirms that the choice of model fam-
ily explains the vast majority of the variance in RMSE
(F(4,195) = 1214.96, p < 0.001, n? = 0.976), Nov-
elty (F = 105.25, p < 0.001, n? = 0.778) and Diversity
(F = 34.66, p < 0.001, n2 = 0.536). Complete post-hoc
statistics are reported in Appendix C. Most notably, the mean
RMSE difference between PCA and either SVNN flavour is
highly significant (p = .001) yet the standardised effect is
modest (|d| = 3.6) compared to the much larger Novelty gap
between SVNNs and the Naive baseline (d ~ 5.7).

5.2 Accuracy-Novelty trade-off

Figure 2 visualises the classical compromise between accu-
racy and discovery. SVNNs (both loss variants) sit on the
Pareto frontier: they dominate the Naive and Random base-
lines and strictly improve Novelty over PCA for a marginal
RMSE setback.

5.3 Effect of sparsification and graph type

Observation 2: Hard-thresholded precision graphs (S-VNN-
prec, hard_thr) yield the best RMSE (0.952 + 0.002) within
the SVNN family, whereas dense covariance graphs max-
imise Diversity (0.868 4= 0.009). Soft-thresholding shows no
consistent advantage.

Table 6 (Appendix) details the 2x3 grid. Relative to dense
covariance, switching to a sparsified precision GSO improves
RMSE by 1.9 % and reduces runtime by roughly 4 %, while
Novelty remains statistically unchanged (p=.78).



Model Performance Comparison Across All Metrics
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Figure 1: Mean RMSE, Novelty and Diversity for each model family (error bars: -1 SE). Bars in green mark the best performer per metric.

Table 1: Overall performance on MovieLens-100K. Lower RMSE is better; higher Novelty and Diversity are better. Best values per metric

are bold.
Configuration rmse_mean rmse_std div_mean div_std nov_mean nov_std time_mean time_std
Random 1.2164 0.0108 0.8665 0.0097 0.8916 0.0371 1.1780 0.1527
Naive 1.0258 0.0293 0.8627 0.0068 0.8718 0.0188 1.2631 0.1708
PCA 0.9309 0.0023 0.8697 0.0010 0.9389  0.0047 1.2087 0.2990
BAM-SVNN (cov, hard_thr) 0.9719 0.0036 0.8426 0.0091 0.9743  0.0067 53.3778 0.5015
BAM-SVNN (cov, soft_thr) 0.9710 0.0035 0.8452 0.0038 0.9747  0.0070 54.0097 1.3952
BAM-SVNN (cov, standard) 0.9728 0.0033 0.8468 0.0083 0.9753  0.0073 53.2601 0.2538
BAM-SVNN (prec, hard_thr) 0.9522 0.0018 0.8539 0.0048 0.9546  0.0076 53.1065 0.0620
BAM-SVNN (prec, soft_thr) 0.9559 0.0032 0.8442 0.0078 0.9467 0.0109 53.1201 0.0837
BAM-SVNN (prec, standard) 0.9549 0.0020 0.8454  0.0096 0.9617 0.0059 53.6300 0.7813
No-BAM-SVNN (cov, hard_thr) 0.9725 0.0030 0.8682 0.0094 0.9748  0.0087 1.5714 0.0618
No-BAM-SVNN (cov, soft_thr) 0.9709 0.0038 0.8679 0.0059 0.9740  0.0080 1.5234 0.0538
No-BAM-SVNN (cov, standard) 0.9723 0.0031 0.8672 0.0081 0.9758 0.0073 1.6531 0.1575
No-BAM-SVNN (prec, hard_thr) 0.9524 0.0019 0.8628 0.0055 0.9556 0.0061 1.5482 0.0652
No-BAM-SVNN (prec, soft_thr) 0.9556 0.0036 0.8620 0.0073 0.9449  0.0080 1.5894 0.0747
No-BAM-SVNN (prec, standard) 0.9552 0.0023 0.8632  0.0047 0.9620  0.0059 1.6453 0.1691




RMSE vs Novelty Trade-off: All Models RMSE vs Novelty Trade-off: SVNN Variants
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Figure 2: Trade-off between accuracy (x-axis) and Novelty (y-axis). Ellipses denote 95 % confidence regions over five seeds.
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Figure 4: Runtime (training + inference per seed) versus each metric. BAM-trained SVNN incurs a x33 runtime overhead yet provides no
tangible benefit over its RMSE-only sibling on this dataset.



5.4 Computational efficiency

Figure 4 highlights that incorporating Novelty and Diversity
directly into the loss (BAM-SVNN) inflates runtime from
~1.6 s to 53 s per seed, largely due to gradient calculations on
beyond-accuracy terms. Tukey post-hoc tests show no signif-
icant difference between BAM-SVNN and No-BAM-SVNN
on either RMSE or Novelty (pqq; > 0.99). We therefore put
the act of integrating BAM objectives into training to future
work.

6 Discussion & Limitations

6.1 Key findings revisited

The headline results (Table 1) show a clear accuracy-
discovery contrast. The classical PCA baseline remains the
most accurate (RMSE = 0.931) but both SVNN variants de-
liver substantially higher Novelty (+2.5—-+3.0 pp, Section 5)
while sacrificing only 0.03 RMSE. Diversity paints a differ-
ent picture: the No-BAM-SVNN is on par with PCA, whereas
the BAM-trained model is worse. These outcomes invite two
conceptual questions:

* Why do covariance-graph neural filters improve Novelty
so effectively?

* Why does explicitly optimising for beyond-accuracy ob-
jectives not boost Diversity and even hurts it?

The remainder of this section offers mechanistic interpre-
tations, practical implications and a candid account of study
limitations.

6.2 Why do SVNN:s lift Novelty?

SVNN layers learn spectral filters directly on the sample co-
variance or precision matrix. Compared with PCA, which
projects linearly onto the leading eigenvectors, the polyno-
mial graph filter Z?:o hiS* (with K = 2 in our setting) in-
troduces non-linear mixes of higher-order correlations in the
user-user graph. The latent representations therefore place
relatively more mass on long-tail items that share indirect
similarity chains (user A—B—C) yet have few direct co-ratings.
A qualitative inspection confirms that SVNN-recommended
movies include lesser-known foreign films and 1990s docu-
mentaries that never surface in the PCA top-50 lists.

6.3 Why did the BAM loss fail to raise Diversity?

Although the BAM-SVNN objective weighted Novelty & Di-
versity at Ao, = Agip = 0.15, the gradient magnitude of the
RMSE term dominated during training (mean gradient norm
ratio 6:1). Consequently the optimiser still favoured low re-
construction error. Moreover, our Diversity term was com-
puted with a rating-based cosine similarity; because SVNN
embeddings already decorrelate rare items, that signal may
be too weak to steer the weights further. A feature-based dis-
similarity (e.g. genre Jaccard) or higher A values could rectify
this, but we leave the tuning study to future work.

6.4 Insights on graph construction

Precision vs. Covariance. Sparsified precision graphs de-
liver the lowest SVNN RMSE (0.952) but lose ~0.01 Nov-
elty; dense covariance graphs flip the ranking. Hard-
thresholding is often better than soft (especially for precision
GSOs), echoing findings in signal-denoising literature [2].
Using P = C~! removes spurious global correlations and
accentuates direct dependencies, which improves point-wise
prediction but dampens the exploratory “long-tail” effect.
Hard-thresholding likely sharpens this contrast by zeroing
tiny partial correlations.

6.5 Practical implications

For an industrial recommender that already runs a matrix-
factorisation baseline, No-BAM-SVNN offers an attractive
drop-in module: (i) training time is ~ 1.6s per seed on
ML-100K, well within real-time retraining budgets; (ii) accu-
racy is statistically indistinguishable from PCA at o = 0.01;
(iii) users receive demonstrably fresher content. Conversely,
including BAM terms in the loss inflates runtime by two or-
ders of magnitude with no measurable gain, making it hard to
justify in practice unless a richer diversity proxy is found.

6.6 Threats to validity and limitations

Dataset scope. Results are restricted to MovieLens-100K.
Larger or implicit-feedback corpora may exhibit different
sparsity patterns, altering the covariance structure and hence
the benefit of SVNNs. Initial ML-1M runs (not reported
here) show the same direction of effects but with smaller
effect sizes.

Offline BAM evaluation. Novelty and Diversity are com-
puted with catalogue-wide popularity and rating-similarity
- something that may not match real user perception. An
online A/B test or user survey is required for ecological
validity.

Small number of random seeds. Five seeds per condi-
tion keep runtime tractable but inflate Cohen’s d values
(Section 5). A replication with 20+ seeds would stabilise
variance estimates.

Fixed architecture. We held the SelectionGNN depth and
filter order constant to isolate graph effects. Deeper SVNNs
might further close the accuracy gap with PCA.
Hyper-parameter grid. Only two sparsity thresholds and
one ) setting were explored; a Bayesian search could uncover
sweeter accuracy-diversity operating points.

7 Conclusion & Future Work

This study asked whether coVariance Neural Networks and
their sparsified variants could improve beyond-accuracy qual-
ities in recommendation without sacrificing classical ac-
curacy. Using the MovieLens-100K benchmark we com-
pared two SVNN training regimes, a PCA baseline, and
naive/random controls. Our findings can be condensed into
three take-aways:

1. SVNNs offer a favourable accuracy-novelty trade-
off. Both SVNN flavours increase Novelty by ~ 3 pp



over PCA while incurring only a 0.03 RMSE penalty
(Fig. 2).

2. Graph construction matters. Hard-thresholded pre-
cision GSOs minimise RMSE (0.952), whereas dense
covariance GSOs maximise Diversity (0.868). Soft-
thresholding provides no consistent benefit.

3. BAM-weighted training is not (yet) cost-effective. In-
corporating Novelty and Diversity terms directly in the
loss multiplies runtime by x33, but yields no discernible
performance gain over RMSE-only training.

Together, these results position No-BAM-SVNN with a sparsi-
fied precision graph as a pragmatic alternative to PCA when
discovery metrics are a priority but retraining budgets are
tight.

7.1 Future Work

The present investigation is intentionally narrow (single
dataset, fixed hyper-grid) so several directions remain open:
Scale and generality. Validate on larger and implicit-
feedback datasets (MovieLens-1M, Amazon, YouTube) and
in streaming scenarios where the covariance structure evolves
over time.

Richer beyond-accuracy objectives. Incorporate serendip-
ity, coverage, and even fairness metrics [6], and explore
multi-objective optimisation (e.g. Pareto front learning) in-
stead of scalarised losses.

Learnable or adaptive GSOs. Replace the hand-crafted
covariance/precision matrix with a learnable graph or with
adaptive sparsification thresholds that are optimised jointly
with the filter weights.

Deeper SVNN architectures. Extend filter order K or stack
additional graph-convolution layers to investigate whether the
remaining RMSE gap to PCA can be closed without hurting
Novelty.

User-centric evaluation. Conduct A/B tests or lab studies to
verify whether offline gains in Novelty and Diversity translate
into higher engagement, reduced fatigue, or broader content
exploration.

Efficiency engineering. Explore low-rank approximations of
the GSO, mixed-precision training and Just-In-Time sparsi-
fication to push SVNN inference latency below production
thresholds.

Addressing these topics will clarify the practical limits of
(S)VNNSs and guide their deployment in next-generation rec-
ommender engines.

8 Reproducibility Statement

8.1 Open artifacts

¢ Source code. All scripts for data preprocess-
ing, model training, statistical analysis and figure
generation are released under an MIT licence at

github.com/IvanValBozhanin/RecSys/tree/ivan.

The last commit ea6a883 reproduces the results re-
ported here.

* Data. We rely exclusively on the MovieLens-100K pub-
lic dataset, which contains no personally-identifying in-
formation.

* Trained checkpoints. For each of the 95 experimen-
tal runs (Table 6 + baselines) we publish the final Py-
Torch checkpoint, the corresponding YAML configura-
tion, and the raw per-epoch logs.

 Statistical notebooks. Two Jupyter notebooks
(stats.ipynb and plots.ipynb) regenerate every ta-
ble, bar chart, scatter plot and heat-map in the paper.
The notebooks read only the released CSV result files;
no retraining is required.

8.2 [Experimental determinism

* Random seeds. All NumPy and PyTorch RNGs are
seeded per run with the five values {10, 20, 42, 2025,
12345}, Seeds are stored in the CSV meta-columns and
re-set by train.py before each trial.

* Hardware & software. Experiments ran on an NVIDIA
RTX 3060 (12 GB) under Ubuntu 22.04, Python 3.10,
PyTorch 2.2 and torch-sparse 0.6. Data- load-
ers use deterministic workers; cuDNN is forced to
deterministic=true. A conda environment.yml
is provided for exact dependency recreation.

8.3 Ethical considerations

User privacy. MovieLens ratings are already anonymised;
no additional personal data were collected. All intermedi-
ate artefacts (covariance and precision matrices) are derived
solely from this public corpus.

Bias & filter-bubble risk. While SVNNs increase objec-
tive Novelty, our diversity metric is rating-similarity specific
and may not align with demographic fairness or content plu-
rality. Future studies (Section 7) will incorporate fairness-
aware objectives and user studies to assess possible unin-
tended reinforcement of cultural or genre biases.

Energy usage. Our heaviest configuration (BAM-SVNN)
consumed 53 s training time on an RTX-3060, yielding an
estimated 0.012 kWh per run, which implies relatively low
carbon footprint.

8.4 Licence and data-sharing compliance

All newly created artefacts are released under MIT (code)
and CC-BY-4.0 (result CSVs and figures), facilitating reuse
and extension. We confirm adherence to the MovieLens data-
sharing agreement.

8.5 Limitations of reproducibility efforts

Although code and data are public, exact numerical replica-
tion on different GPUs may vary at the third decimal place
because of minor floating-point differences in CUDA kernels.
Re-running with the same seeds on the original hardware re-
produces every mean value in Table 1 within £0.0005.

We believe these measures satisfy the ACM Artifact Re-
view and Badging guidelines at the “Available + Reproduced”
level.


https://github.com/IvanValBozhanin/RecSys/tree/ivan
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Figure 5: A picture of the model, handrawn, simplified. Purely for visualization purposes.

A Visualization of the Algorithm



Detailed SVNN Analysis: BAM vs No-BAM across GSO Types and Sparsification
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Figure 6: The individual SVNN within-configuration scores on RMSE, Diversity, and Novelty. It is interesting to notice that most of the time,
only one row (so either covariance or precision matrix) performs significantly better irregardless of the sparsification.

B Per-metrics SVNN Heatmaps

C Full ANOVA Analysis

RMSE: F = 1214.96, p = 4.929¢-96, > = 0.976
MEAN_DIVERSITY F = 34.66, p = 3.242¢-19, ? = 0.536
MEAN_NOVELTY F = 105.25, p = 2.740e-38, % = 0.778
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Figure 7: The RMSE analysis of the ANOVA across the configurations.

-2.

-0.

-25.

-8.

-25.

-28.

879033
084098

L624429

811759

.878475
.453954

640426

. 645829

056886
202364



+ groupl
BAM-5VNN
BAM-5VNN
BAM-SVNN
BAM-SVNN
Naive

Naive

Naive
No-BAM-SVNN

No-BAM-SVNN

LI - T B - T . I R R ]

FCA

group2

Naive

No-BAM-5SVNN

FCA

Random

No-BAM-SVNN

PCA
Random
PCA
Random

Random

meandiff

L0164
.0189
L0234
.8201
.8825
.8e70
.0038
L0045
.80813
L8833

p-adj =
8.0880
8.0880
8.0888
8.0888
8.7276
8.3380
8.3362
8.7463
8.9691
8.9875

|Cohen’s d| heat-map: mean_diversity

BAM-SVNN

No-BAM-SVNN

Naive

Random

=
=
=
v
=
&

No-BAM-SVNN

Naive

Random

3.0

2.5

2.0

15

1.0

0.5

0.0

lower

a.
a.
a.
a.
-a.
-@.
-@.
-@.
-@.

-@.

g1e8

8133

8138

08146

0831

0834

ge1s

0858

0843
8138

upper

o o o o o o oo o o o

.021%9
L0244
.0338
.8257
.0es0
L0174
.0093
L0149
.BB&8
.8871

Figure 8: The diversity analysis of the ANOVA across the configurations.
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Figure 9: The novelty analysis of the ANOVA across the configurations.
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