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Optimizing Coded Excitation for Model-Based
Ultrasound Imaging With Unfocused Transmissions

Didem Dogan , Lixiang Zhu, Yuyang Hu , Johannes G. Bosch , Member, IEEE, Pieter Kruizinga ,
and Geert Leus , Fellow, IEEE

Abstract—Ultrafast imaging, which uses unfocussed transmis-
sions to form images, provides very high frame rates at the cost of
low signal-to-noise ratio (SNR). This loss of SNR becomes especially
apparent when imaging deeper structures. Ultrafast imaging is
mostly used in combination with Doppler processing. Even if we
apply tissue-separation filters, they lead to significant energy loss
and decrease the SNR. Previous work showed that this loss in SNR
and, hence, penetration depth can be partially regained using coded
transmissions. However, these codes are mostly either standard or
randomly generated and can be improved with a design rooted
in an optimization scheme. To address this limitation, we design
an optimized code tailored to ultrasound imaging with unfocused
transmissions represented by a generalized encoding matrix in a
linear signal model. We employ the minimization of the Cramér-
Rao lower bound (CRB) over the unknown coding matrix as a
way to optimize the code. Due to the high computational cost of
the resulting optimization problems, we also introduce a trace-
constraint optimization problem based on the Fisher information
matrix (FIM). Simulation results show that the optimized code
provides higher SNR in deep image regions than previously tested
coding schemes such as the Barker code, albeit with a trade-off for
decreased resolution. On the other hand, the application of least-
squares QR (LSQR) mitigates this resolution degradation. Lastly,
the optimized code was tested in simulations using a numerical
model of a clinical transducer setting, demonstrating its potential
for higher SNR in ultrafast Doppler imaging.

Index Terms—Coded excitation, Cramér-Rao lower bound
(CRB), fisher information matrix (FIM), unfocused transmissions.

I. INTRODUCTION

DOPPLER ultrasound imaging is a well-established tech-
nique widely used for imaging blood flow inside the

human body, leveraging the principles of ultrasound and the
interaction of mechanical pressure waves with tissue and red
blood cells [1], [2]. Unfocused transmissions are advantageous
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for Doppler ultrasound compared to conventional ultrasound
imaging [3]. The latter employs focused ultrasonic waves and
sends a single focused wave during each transmission, recon-
structing one image line at a time. However, this might not
achieve a high sampling frequency and could result in inac-
curacies for Doppler imaging [4]. In contrast, in unfocused
transmissions such as plane-wave imaging, receivers capture the
backscattered echoes from the entire imaging area. This enables
the reconstruction of a full image from a single transmission
using beamforming. It can obtain much more images compared
to conventional ultrasound for the same number of firings and
acquisition time.

Unfocussed transmissions trade image quality (specifically
SNR) for temporal resolution, which is beneficial for Doppler
imaging [5]. This gain allows for novel imaging applications
such as functional ultrasound [4], pulse wave velocity imag-
ing [6], etc. Although they also notably trade-off (reduce) spatial
resolution, we are particularly interested in imaging blood flow
inside the brain, where the SNR is of paramount importance.
A higher SNR contributes to a high-quality image, enhancing
diagnostic capabilities in clinical applications [7]. Unfocused
transmissions face challenges in visualizing vasculature due to a
low SNR. Echo signals from blood cells are considerably weaker
than surrounding tissue. This leads to limitations in visualizing
small blood vessels and deep areas.

There are advanced filtering methods for visualization of
the microvasculature especially at greater depths. While some
of these filters can be classified as beamforming methods,
many others can be categorized as post-processing methods for
detailed visualization. Examples of beamforming approaches
include MVDR [8], LSQR (Least Squares QR, an iterative
algorithm used for solving large linear systems of equations)
[9], sparse reconstruction methods [10], and deep learning-based
methods [11]. In terms of post-processing, methods like SVD fil-
tering [12] and super-resolution techniques such as TMSBL [13]
and SUSHI [14] improve the quality of the beamformed image
and enable better visualization at deeper levels. However, these
methods often face challenges related to computational com-
plexity, particularly when applied to real-time imaging.

It is also observed in ultrasound literature that applying coded
excitation [15], [16], [17], [18], [19], which means sending out
longer encoded pulses, can enhance the SNR of ultrasound
images and improve the penetration depth. Coded excitation
achieves a high main lobe-to-side lobe ratio after pulse com-
pression, with an axial resolution comparable to or slightly
worse than a single short pulse. Note that pulse compression
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is a signal processing technique where a long-duration coded
pulse is transmitted and its echo is processed via decoding
filtering to compress energy into a narrow peak [20], [21]. The
design of coded excitation pulses typically utilizes frequency
or phase encoding techniques based on the impulse response
of the transducer [22]. Frequency encoding involves linearly
modulating a carrier signal frequency, often achieved through
linear frequency modulation (FM), also known as chirp exci-
tation [16]. On the other hand, phase encoding is achieved by
modulating the phase of the transmitted pulse, such as linear
phase modulation and bi-phase modulation [15]. In linear phase
modulation, the phase changes linearly with time across the
pulse duration. This creates a smooth phase transition and can
contribute to the signal’s resilience against distortion and inter-
ference. In bi-phase modulation, the transmitted pulse is encoded
with either a 0-degree shift (represented by 1) or a 180-degree
shift (represented by −1).

The two commonly used bi-phase modulation sequences
are the Golay and Barker codes, which have found extensive
applications in ultrasound imaging thanks to their favorable
autocorrelation properties and ability to generate high-quality
images with improved signal-to-noise ratio [23], [24]. A Barker
code is a binary sequence that leads to a high main lobe-to-side
lobe ratio after matched filtering, with good autocorrelation
properties. However, existing Barker codes only have specific
lengths, restricting the total transmitted energy. The Golay code
consists of a pair of finite equal-length binary sequences. Unlike
single transmit signals like Barker codes, which exhibit range
side lobes after pulse compression, the Golay pair is designed
to cancel out these range side lobes. However, the drawback of
Golay pairs is that the frame rate will be halved since it requires
two transmissions to obtain a single image. Note that these two
transmissions are added to cancel out the side lobes. A major
weakness of Golay code pairs is incomplete cancellation caused
by target motion between transmissions, even when complemen-
tary orthogonal codes are used. This problem has been tackled
in [25] by transmitting two pairs of mutually complementary
orthogonal codes, which can achieve the same frame rate as a
single transmission code.

Instead of applying the same code for every transmitting ele-
ment, the random code is an alternative to Barker and Golay en-
coding, incorporating the time and space domains [26]. Instead
of transducer elements transmitting the same encoded pulse, this
method excites each element with a different randomly encoded
pulse. The resulting randomly transmitted waves constructively
and destructively interfere in the imaging area, creating spatio-
temporal interference patterns. This leads to low pixel-to-pixel
correlations, which might yield a high-resolution image. How-
ever, the SNR improvement is quite limited compared to Barker
and Golay codes. Furthermore, there are also complete comple-
mentary codes that offer better side lobe suppression and higher
SNR improvement compared to random codes [27]. Hence, they
are more effective for high-quality imaging while maintaining
low pixel-to-pixel correlations.

Coded excitation in ultrasound imaging can be refined using
diverse methods. One promising way involves investigating
hybrid coding techniques, combining different coding sequences

to combine their strengths. For instance, [28] suggests the con-
volution of Barker and Golay codes to effectively mitigate side
lobe levels, leading to a notable increase in SNR. Similarly, [29]
introduces chirp-modulated Golay codes, integrating orthogo-
nal binary codes with a chirp, which results in a substantial
enhancement. Another approach is integrating advanced signal
processing algorithms to decode and reconstruct received echoes
efficiently. Decoding filtering techniques, such as mismatched
or adaptive filters [30], [31], play a critical role in balancing side
lobe suppression and SNR gain during pulse compression. For
instance, the work [32] uses a finite impulse response (FIR) filter,
to decode echoes transmitted with Barker codes, effectively
suppressing the side lobe energy at the expense of decreased
SNR. This approach further facilitates the design of longer
Barker codes using Kronecker products, enabling applications
such as functional ultrasound neuroimaging, but it may degrade
the autocorrelation properties.

There is a potential for utilizing optimized code design to
enhance SNR in ultrasound imaging with unfocused transmis-
sions. While substantial research has been dedicated to opti-
mized code design in the radar domain, emphasizing robustness
and high-resolution [33], [34] and demonstrating significant
improvements in radar detectability, a notable gap exists for
unfocused transmissions in ultrasound imaging. Therefore, this
paper explores optimized code sequences for ultrasound imaging
with unfocused transmissions. We first present a linear signal
model where the code sequences appear in a coding matrix. To
optimize this coding matrix, we employ the minimization of the
Cramér-Rao lower bound (CRB) [35] as a proxy to minimize
the mean square error [36]. In that sense, the minimization of
the maximum eigenvalue, determinant, and trace of the CRB
matrix has been proposed to find the optimized encoding matrix
for a specific imaging area [37]. Since the original problem is
non-convex, some relaxations are imposed to ensure a feasible
solution [38]. The drawback of this approach is its computational
complexity and memory challenge for large imaging areas. A
suboptimal formulation is proposed to address this by maximiz-
ing the trace of the Fisher information matrix (FIM) instead of
minimizing the trace of the CRB. Fortunately, the maximization
of the trace of the FIM results in a small-scale problem that
can be solved by finding the eigenvector of a small-sized matrix
corresponding to the largest eigenvalue. Therefore, the proposed
approach is computationally more efficient.

The rest of the paper is organized as follows: Section II
presents the signal model and the associated image reconstruc-
tion. The subsequent section, Section III, focuses on articulating
the optimization methods applicable to the encoding matrix. Fur-
ther, Section IV shows the results, delving into the application
scenario for the proposed method and discussing its limitations.
Conclusions are drawn in Section VI.

II. SIGNAL MODEL

In this work, model-based beamforming is employed instead
of the conventional delay-and-sum (DAS) approach. In our
approach, each transmitter sends different pulses, while DAS is
useful in the case where all transmitters share the same coding
pattern. Model-based beamforming provides more flexibility in
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handling the diverse coded excitation scheme. In model-based
ultrasound imaging, we first construct the image formation
model and represent this in the form of a matrix-vector mul-
tiplication [10]. In the ultrasound imaging system, there are
N elements where all the elements transmit and receive the
backscattered signal. The imaging area is discretized into a
grid of M pixels. Using the Born approximation [39], each
measurement is represented as a linear combination of the
pulse-echo signals from the scatterers [40] weighted by their
scattering coefficient. Throughout this paper, we will work in
the frequency domain instead of the time domain since it allows
for faster computation. More specifically, we only consider a
limited set of F frequencies given by Ω = {ω1, ω2, . . . , ωF },
which are assumed equidistant and within the positive side of
the frequency spectrum. Defining zj [ω] as the signal received
by the jth element at frequency ω, we can write

zj [ω] =
M∑

m=1

sm

N∑
i=1

gj,m,i[ω]ui[ω]. (1)

Here, sm represents each pixel’s unknown reflection coefficient,
and ui[ω] represents the excitation pulse sent by element i
at frequency ω. Furthermore, gj,m,i[ω] is the overall Green’s
function for the wave propagating from the transmitting element
i to pixel m and from the pixel m to the receiving element j.
The computation of Green’s function considers factors such as
the distance between the transmitting/receiving elements and
each pixel, attenuation during propagation in the tissue, and
the impulse responses of the transducers. The overall function
gj,m,i[ω] is given by

gj,m,i[ω] =
ht[ω]hr[ω]

4π(di,m + dm,j)
exp
(
−j

ω

v0
(di,m + dm,j)

)
, (2)

where ht[ω] and hr[ω] respectively correspond to the known
transmit and receive impulse responses of the transducer, di,m
denotes the distance from the transmitting element i to pixel
m, and dm,j is the distance covered by the backscattered signal
from pixel m to sensor j. Further, v0 corresponds to the speed
of sound in the medium. The denominator in (2) stands for the
geometric spreading of the pressure field, considering the entire
distance the wave travels from the source to the pixel and back
to the sensor. The exponential term in (2) represents the phase
shift caused by the delay from the source to the pixel and back
to the sensor.

Note that the excitation pulse ui[ω] in (1) depends on the
transmitting elements. For this scenario, we consider a case
where all N elements transmit longer pulses consisting of an
equal number K of base pulses. Every base pulse is amplitude
and bi-phase encoded with a weight denoted by ci,k. Hence, the
excitation pulse ui[ω] at transmitting element i and frequency ω
can be written as

ui[ω] =
K∑

k=1

ci,kpk[ω] = cTi p[ω], (3)

where pk[ω] denotes the kth base pulse. The relation be-
tween two consecutive base pulses is pk+1[ω] = pk[ω]e

−jωτ

where τ is the delay between two base pulses. Further, p[ω] =
[p1[ω], p2[ω], . . . , pK [ω]]T is the base pulse vector and ci =
[ci,1, ci,2, . . . , ci,K ]T is the amplitude and bi-phase code related

to transmit element i. Here, we also concatenate the ci’s as
C ∈ RN×K , which is called the encoding matrix, i.e., C =
[c1, c2, . . . , cN ]T.

The measurements from all elements are stacked in a vector
z[ω] ∈ CN , and the part related to the Green’s functions can
be stored in a matrix Ac[ω]. The measurement model for all
elements at frequency ω is then expressed as

z[ω] =

⎡
⎢⎢⎣
z1[ω]

...

zN [ω]

⎤
⎥⎥⎦ = Ac[ω]s, (4)

where the mth entry of the vector s ∈ RM is [s]m = sm and the
(j,m)th entry of the matrix Ac[ω] ∈ CN×M is written as

[Ac[ω]]j,m =

N∑
i=1

gj,m,i[ω]c
T
i p[ω] = gT

j,m[ω]Cp[ω], (5)

where gj,m[ω] = [gj,m,1[ω], . . . , gj,m,N [ω]]T. Now we can also
write Ac[ω] in (4) as follows

Ac[ω] =

⎡
⎢⎢⎣
gT
1,1[ω] . . . g

T
1,M [ω]

...
. . .

...

gT
N,1[ω] . . . g

T
N,M [ω]

⎤
⎥⎥⎦ [IM ⊗ (Cp[ω])]

= G[ω][IM ⊗ (Cp[ω])]. (6)

where IM is an M ×M identity matrix. It is clear from (6) that
Ac[ω] is linear in every element of the encoding matrix C. As
a result, (6) can be written as

Ac[ω] =

N∑
n=1

K∑
k=1

cn,kAn,k[ω], (7)

where An,k[ω] ∈ CN×M is given by

An,k[ω] = G[ω][IM ⊗ (En,kp[ω])], (8)

with En,k ∈ RN×K a matrix with only one non-zero entry, i.e.,
[En,k]n,k = 1. The matrix En,k basically selects which code
entry is active.

Finally, all the frequency components are computed and con-
catenated vertically. Adding zero-mean white Gaussian noise
with variance σ2 to the model, this leads to

z =

⎡
⎢⎢⎣
z[ω1]

...

z[ωF ]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Ac[ω1]

...

Ac[ωF ]

⎤
⎥⎥⎦ s+ n = Acs+ n. (9)

Here, z ∈ RFN contains all measured samples from the array
transducer in the frequency domain and Ac ∈ RFN×M collects
as columns the impulse responses related to the different pixels.
Here, n ∈ RFN represents the additive white Gaussian noise.
Due to (7) we can write

Ac =

N∑
n=1

K∑
k=1

cn,kAn,k, (10)

where

An,k =

⎡
⎢⎢⎣
An,k[ω1]

...

An,k[ωF ]

⎤
⎥⎥⎦ .
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For simplicity, we will group the two indices n and k into a
single index p as p = (k − 1)N + n, where p = 1, 2, . . . , NK.
In this context, we will also define c(k−1)N+n = cn,k and
A(k−1)N+n = An,k, which allows us to rewrite (10) as

Ac =

NK∑
p=1

cpAp, (11)

Finally note that we can view cp as the pth entry of the vector
c = vec(C), where vec(.) vectorizes a matrix columnwise.

In the remainder of this paper, coded excitation techniques
are generalized using the encoding matrix C. The rows of C
are identical for Barker and Golay codes, as the same signal is
transmitted from all transducers while the elements are randomly
generated for the random code case. For all those schemes, the
entries of C are 1 or −1. In addition to bi-phase encoding, we
also consider amplitude encoding in the proposed optimized
coding scheme, as it has proven its advantages in radar ap-
plications [41]. The modulus of each entry in C is the weight
for amplitude encoding, while its polarity stands for the phase
encoding of the transmitted ultrasound pulses.

A. Imaging Techniques

Before optimizing the code, let us present imaging methods
that solve (9). The simplest one is matched filtering, which
maximizes the SNR under additive Gaussian noise and has the
following solution:

ŝ = AH
c z. (12)

Secondly, least squares estimation can be considered, which
minimizes the sum of squared differences between the measure-
ment vector z and the modeled measurement vector based on the
estimated vector s. It has the following closed-form solution:

ŝ = (AH
cAc)

−1AH
c z, (13)

which only holds when Ac is full rank.
Note that matched filtering (12) will be the main technique

employed in this work, thanks to its efficiency and ease of
implementation. On the other hand, the least squares estimation
in (13) has a large inverse, and its computational complexity
is significantly high. Instead of solving the large inverse, an
iterative LSQR algorithm will be used [9].

III. OPTIMIZATION OF THE ENCODING MATRIX

Based on the earlier developed linear measurement model,
we are now ready to find the optimal coded excitation scheme.
Therefore, we first focus on estimating the image s, and we then
optimize the related estimation error for s with respect to c (the
vectorized version of the coded excitation matrix C). Suppose
s is deterministic and unknown. In that case, we can estimate
s using an unbiased estimator leading to an error covariance
matrix Re = E(eeH) [36], with e = s− ŝ. This could be any
of the previously considered estimators, including (if needed)
a proper normalization for making the estimator unbiased. The
trace of the error covariance matrix Re yields the mean square
error (MSE) of the estimator [36]. For any unbiased estima-
tor, the error covariance matrix Re is bounded below by the
Cramér–Rao lower bound (CRB) matrix. So, instead of finding
an expression forRe related to a specific unbiased estimator, we

will make use of the CRB matrix, which is often easier to derive.
We thereby also remark that the CRB matrix is the inverse of
the Fisher information matrix (FIM) F, which quantifies how
much information a dataset provides about the parameter of
interest. So in general, we have Re � F−1, where F could
potentially depend on the unknown image s. For our specific
data model, which is a linear additive Gaussian model, the FIM
is independent of s and is given by

F = σ−2AH
cAc. (14)

As can be seen, it does not depend on s but it does depend on
the code c. We make this explicit by writing F(c) instead of F.

A. CRB Minimization

There are three ways of minimizing the CRB matrix: mini-
mization of the largest eigenvalue of the CRB matrix (Eig-Opt),
minimization of the determinant of the CRB matrix (Det-Opt),
or minimization of the trace of the CRB matrix (Trace-Opt) [37].

a) Eig-Opt: We first formulate the problem for Eig-Opt,
which minimizes the largest eigenvalue of the CRB matrix. Note
that using the maximum eigenvalue ensures that the CRB is min-
imized on all elements simultaneously. On the other hand, they
might compensate for each other within the trace or determinant.
In that sense, Eig-Opt can be more efficient for minimizing the
CRB [37]. The Eig-Opt problem can be written as follows:

min
c

λmax(F
−1(c))

s.t. ||c||22 = 1, (15)

where λmax(F
−1(c)) is the maximum eigenvalue of F−1(c).

Note that minimizing the maximum eigenvalue of the CRB
matrix is equivalent to maximizing the minimum eigenvalue of
its inverse. As such, we can also write

max
c

λmin(A
H
cAc)

s.t. ||c||22 = 1, (16)

where λmin(F
−1(c)) is the minimum eigenvalue of F−1(c).

Here, (16) is equivalent to

max
λ,c

λ

s.t. AH
cAc − λIM � 0,

||c||22 = 1, (17)

where the first constraint is not linear in c, and the problem in
(17) is thus not convex. More specifically, we can write

AH
cAc =

(
NK∑
p=1

cpAp

)H(NK∑
q=1

cqAq

)

=

NK∑
p=1

NK∑
q=1

c∗pcqA
H
pAq, (18)

where c∗p represents the complex conjugate of cp. Solving
nonconvex problems can be challenging due to the potential
of traditional optimization algorithms getting trapped in local
optima or encountering convergence issues. As a result, some
relaxation is introduced to turn the nonconvex problem into a
convex one. Here, a common relaxation technique is employed,
which involves absorbing the quadratic term c∗pcq into a single
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variable Cp,q [36]. As such, (18) can be transformed into

AH
cAc =

NK∑
p=1

NK∑
q=1

Cp,qA
H
pAq, (19)

which is linear in Cp,q instead of quadratic in cp. Introducing
the matrix C ∈ CNK×NK with [C]p,q = Cp,q , the equivalence
between (18) and (19) only holds when C = ccH. This requires
C to be a rank-one matrix, and this constraint is not convex. One
way to relax this rank-one constraint is by replacing it with C �
0. Defining A = [AT

1 , . . . ,A
T
NK ]T, this allows us to relax (17)

as the following semidefinite program (SDP) [38]:

max
C,λ

λ

s.t. AH(C ⊗ IFN )A− λIM � 0

C � 0

1Tdiag(C) = 1. (20)

Note that ||c||22 = 1 is equivalent to 1Tdiag(C) = 1. The matrix
inequality constraint is now linear in C, and thus, the whole
problem is convex.

Based on this formulation, we can also modify the problem
to a subsampled scenario by defining z = AcRsr + n where
R ∈ RM×S is a subsampling matrix, S is the number of sub-
samples and sr contains only the pixels from the subsampled
area. Note that this scenario ignores the contribution of most
of the pixels in the area, and it does not give the optimal
solution for the overall area. However, it is applied because of
the substantial computational complexity of solving the SDP
(20). The subsampled problem formulation is given by:

max
C,λ

λ

s.t. RTAH(C ⊗ IFN )AR− λIS � 0

C � 0

1Tdiag(C) = 1. (21)

Note that the size of the first constraint significantly decreases
due to subsampling the data.

b) Det-Opt: Second, we can consider minimizing the deter-
minant of the CRB matrix, which is referred to as the Det-Opt
criterion. The problem can then be formulated as

min
c

det(F−1(c))

s.t. ||c||22 = 1. (22)

Since the CRB matrix is the inverse of the Fisher information
matrix, (22) is equivalent to

max
c

det(AH
cAc)

s.t. ||c||22 = 1. (23)

Applying the same relaxation techniques and replacing
det(F(c)) with log(det(F(c))) we obtain the problem

max
C

log(det(AH(C ⊗ IFN )A))

s.t. C � 0

1Tdiag(C) = 1. (24)

Since log(det(F(c))) is known to be concave for a positive
semidefinite matrix F(c), the above optimization problem is
convex [42].

c) Trace-Opt: Third, we consider minimizing the trace of the
CRB matrix, called Trace-Opt, which is given by

min
c

trace(F−1(c))

s.t. ||c||22 = 1. (25)

By again applying the same convex relaxation techniques, we
attain the following minimization problem:

min
C

trace((AH(C ⊗ IFN )A)−1)

s.t. C � 0

1Tdiag(C) = 1. (26)

To eliminate the large inverse term from the objective function,
we first reformulate the problem as follows:

min
C,T

trace(T)

s.t. T− (AH(C ⊗ IFN )A)−1 � 0

C � 0

1Tdiag(C) = 1. (27)

where T is introduced as the upper bound of the term inside
the trace(.). Now, we minimize trace(T) instead of AH(C ⊗
IFN )A)−1 [38]. Using the Schur complement method [43], we
finally obtain

min
C,T

trace(T)

s.t.

[
T IM

IM AH(C ⊗ IFN )A

]
� 0

C � 0

1Tdiag(C) = 1. (28)

Similar to (21), we can apply subsampling to Det-Opt criterion
in (24) and Trace-Opt criterion in (28).

Now, solving (20), (24) or (28) for C yields the optimized
encoding matrix. As the resulting solution Ĉ from (20), (24) or
(28) is not guaranteed to have rank one, an approximate rank-
one solution can be found by choosing the largest eigenvector
of Ĉ. However, the effectiveness of this method depends on
the low rankness of Ĉ. Another widely employed approach is
the randomization method, where we treat Ĉ as a covariance
matrix to generate multiple candidate random vectors from
ĉ ∼ N (0, Ĉ). Subsequently, these solutions are projected onto
the original constraint set. In our case, every randomization is
normalized here to satisfy the energy constraint. Each candidate
is then applied to the original problem (15), (22) or (25), and
the realization that optimizes the related cost is selected as
the solution [44]. This approach is regularly used in literature
thanks to its proven success in many studies and its theoretical
performance guarantees for several discrete optimization prob-
lems [44], [45]. While we cannot establish a lower bound on the
optimality of this method, empirical observations demonstrate
that this approach consistently outperforms solutions derived
from the leading eigenvector. Note that if Ĉ is found to have
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rank one, the random vectors generated using Ĉ as covariance
matrix will be identical to the leading eigenvector of Ĉ, up to a
scalar value.

The previous optimization schemes in (15), (22), or (25) rep-
resent the optimal MSE solution. However, due to the substantial
pixel count in the imaging area, the computational demands of
the cost function become significant. This involves calculating
and storing a significant number of AH

pAq ∈ CM×M matrices,
making it computationally challenging and memory-intensive
to implement and solve in cvx, which is a MATLAB toolbox
for solving convex optimization problems [46]. One way is to
optimize the codes for the subsampled imaging area with fewer
pixels, such as proposed in (21). However, this solution will be
suboptimal as the new CRB for the subsampled data will not
be optimal for the overall system. Another way to address this
limitation is to explore a suboptimal optimization function that
is less complex and more efficient.

B. FIM Maximization

Rather than minimizing the trace of the CRB matrix in (25), an
alternative approach involves maximizing the trace of the FIM.
An optimized encoding matrix can be obtained by maximizing
the Fisher information within a region of interest (ROI). Thanks
to the linearity of the trace operator, this proposed approach
becomes computationally more efficient than the optimization
schemes outlined in (20), (24) or (28). However, it may not
achieve the optimal MSE, potentially resulting in a degradation
of image quality. This degradation results from the fact that trace-
based FIM maximization and trace-based CRB minimization are
not mathematically equivalent optimization problems since the
trace(.) operator is not linear.

Although this is not equivalent to the minimization problem
in (25), we can maximize the trace of the FIM as expressed in
(14) which leads to

max
c

trace(AH
cAc)

s.t. ||c||22 = 1. (29)

Through the transformation of AH
cAc using (18), its trace can

be written as

trace(AH
cAc) =

NK∑
p=1

NK∑
q=1

c∗pcqtrace(AH
pAq)

= cHAc, (30)

where A is given by

A =

⎡
⎢⎢⎣

trace(AH
1A1) . . . trace(AH

1ANK)
...

...

trace(AH
NKA1) . . . trace(AH

NKANK)

⎤
⎥⎥⎦ . (31)

As a result, (29) can be simplified as

max
c

cHAc

s.t. ‖c‖2 = 1. (32)

The solution to this problem is well-known by Lagrange multi-
pliers and is given by the eigenvector of A corresponding to the
largest eigenvalue [47].

Notably, the matrix A is complex and has complex eigen-
vectors. However, we need to narrow its focus to amplitude
and bi-phase encoding. In other words, the encoding vector c
is constrained to the real domain. By decomposing the cost
function in (32) using real and complex parts, it can be expressed
as

cHAc =
[
Re(c)T Im(c)T

] [Re(A) −Im(A)

Im(A) Re(A)

][
Re(c)

Im(c)

]
.

(33)

Since only the real part of c is considered for amplitude and
bi-phase encoding, the imaginary part can be set to zero, i.e.,
Im(c) = 0. As a result, (33) can be expressed as

Re(c)TRe(A)Re(c). (34)

The amplitude and bi-phase encoding vector can thus be deter-
mined by extracting the leading eigenvector from the real part of
the matrix A. We will call this method the FIM-Opt approach.

C. Encoding Matrix Optimization for Multiple Transmissions

For multiple transmissions, L distinct encoding matrices are
designed to construct a more accurate compounded ultrasound
image. Assuming the pixel intensity s remains constant across
these L transmissions, a signal model for the L transmissions
and measurements can be expressed as follows⎡

⎢⎢⎢⎣
z1
z2
...
zL

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
Ac1

Ac2

...
AcL

⎤
⎥⎥⎥⎦ s+

⎡
⎢⎢⎢⎣
n1

n2

...
nL

⎤
⎥⎥⎥⎦ . (35)

It is important to note that the model (35) remains linear con-
cerning both s and the encoding matrices Cl. Consequently, the
optimization methods detailed in Sections III-A and III-B can
again be employed to address and solve the code design for this
model.

Solving for the encoding matrices in (35) using the optimiza-
tion methods (20), (24) or (28) described in Section III-A would
still encounter memory issues when implemented due to the
large number of pixels. Alternatively, for the solution based on
the minimization of the CRB, we can use the same method as
before but adopt the randomization method in the subsampled
scenario to obtain L distinct encoding matrices instead of cre-
ating the formulation based on (35). We first generate many
random vectors from the distribution ĉ ∼ N (0, Ĉ). Then, we
apply them to the original problem and choose L candidates
that give the minimum value for (15), (22), or (25). Hence, we
find L solutions that minimize the CRB, and these L transmis-
sions are coherently compounded. For the solution based on
the maximization of the FIM, it is observed that multiple large
eigenvalues ofA are close to each other, suggesting the presence
of multiple suboptimal solutions. Therefore, a potential solution
could involve the first few leading eigenvectors corresponding
to these largest eigenvalues for multiple transmissions. Then,
each eigenvector is normalized and selected as a coding vector
of each transmission, and finally, these L transmissions are
compounded.
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D. Computational Complexity

The FIM-Opt approach requires the computation of the A
matrix in (31). Because of the trace operator, this requires
calculating the diagonal ofN2 K2 matrices of the formAH

pAq ∈
CM×M (see (19); for the subsampled scenario, we can simply
change M by S). Computing the diagonal of each AH

pAq

requires a complexity of O(MFN) and the overall cost be-
comes O(N3 K2 MF ). Taking the traces of all terms in (31)
has complexity O(N2 K2 M); which is relatively negligible.
Later, computing the eigenvectors of the resulting A matrix
brings a computational complexity ofO(N3 K3), which is again
negligible. Note that N in our case is of size 80 or 128 and
2 ≤ K ≤ 5. Hence, the optimization procedure with FIM-Opt
has an overall computational complexity of O(N3 K2 MF ).

In Eig-Opt, Dep-Opt and Trace-Opt scenarios, calculating the
N2 K2 entries of the AH

pAq ∈ CM×M matrices in (19) has a
computational complexity of O(N3 K2 M2F ) which is already
M times the complexity of the FIM-Opt scenario. Moreover, the
computational complexity of the SDP given in (20) or (28) has
a complexity of O(N4 K2F 2 M +M2 N2KF ) per iteration
because AH(C ⊗ IFN )A is computed in every iteration with
respect to updated codes in SDP. Note that instead of actually
implementing the Kronecker product, an equivalent expression
in (19) is used. Then, the computational complexity of the SDP
per iteration becomes O(N3 K2 M2F ). Besides, the cost of the
first and second positive semidefinite constraints areO(M3) and
O(N3 K3), respectively, in (20) and (28). Since these terms are
generally negligible, the overall computational cost of Eig-Opt
or Trace-Opt becomes O(N3 K2 M2FI) where I is given by
the number of iterations in the SDP solver. Note that cvx uses
interior point methods, where each iteration has additional costs,
increasing the computation time even further.

While FIM-Opt requires a single step with the complexity
of O(N3 K2 MF ), Eig-Opt, Trace-Opt, and Det-Opt require
a notably higher cost, which makes FIM-Opt more useful in
practical scenarios. Furthermore, O(N3 K2 M2FI) quadrati-
cally increases by M , and the number of pixels can be signifi-
cantly high in ultrasound imaging, which requires subsampling.
Nonetheless, the optimization of the codes is performed only
once and can be used in imaging tasks repeatedly.

Finally, the computational cost of matched filtering after the
optimization procedure isO(MFN), which is equivalent for all
coding schemes of comparison.

IV. NUMERICAL RESULTS

Simulation experiments are conducted using the k-Wave tool-
box [48]. In all k-Wave simulated measurements, the attenuation
coefficient has a frequency-dependent power law model for
realistic nonlinear ultrasound wave propagation in biological
soft tissue. The attenuation is defined as α(f) = α0f

y where
α0 = 0.75 dB/(MHzy· cm) is the attenuation coefficient and
y = 1.5 is the power law exponent.

Two scenarios are considered to evaluate the performance of
the proposed optimized code. The first scenario presented in
Section IV-A involves a densely sampled high-frequency array
with an element pitch-to-wavelength ratio less than 0.5. The
second scenario in Section IV-B aims to test the optimized

Fig. 1. Transmit pulse shape: (a) single short pulse (base pulse), (b) frequency
spectrum of base pulse.

code on a numerical model of the clinical transducer array
again with an element pitch-to-wavelength ratio less than 0.5.
We used both a high-frequency array and a lower-frequency
clinical probe to test our method’s robustness across different
transducer simulations. Note that high-frequency arrays offer a
better resolution for detailed analysis in superficial imaging [49],
while low-frequency arrays are useful in practical deep imaging
scenarios [1], [2]. In a densely sampled high-frequency array
with 128 elements, we first start with a toy example (a simplified
simulation) to compare the proposed algorithm with the state-of-
the-art. Then, we compare the performance of CRB minimiza-
tion and FIM maximization for point scatterers data for a highly
subsampled optimization scheme. Lastly, the computationally
efficient FIM method is chosen to compare its performance with
the state-of-the-art. These comparisons are also carried out with
the simulated clinical transducer for both point scatterers data
and a simulated flow phantom in Doppler imaging.

First, the transmitted pulse length tpulse ≤ 5.19 μs was cho-
sen to limit the dead-zone to 4 mm. Second, the total pulse
length is the length of the base pulse multiplied by the number
of bits since we do not consider any overlap between consecutive
pulses. In other words, the delay τ between two base pulses is
considered equal to the base pulse length. Third, the number of
transmissions L is important for the imaging quality. For the ini-
tial toy example, we pick L = 1 in Section IV-A1. For the cases
in Section IV-A2, we select various values of L = 1, 3, 5, 10 for
comprehensive analysis between CRB minimization and FIM
maximization. In ultrafast compounded Doppler imaging, it is
experimentally validated that when L reaches 9, the resulting
contrast and SNR are satisfying, and image contrast will only
slightly improve for L > 16 assuming plane-wave imaging [3].
Hence, L bounded between 10 and 16 should be sufficient in
literature. Hence, we pick L = 10 for the comparisons with the
state-of-the-art in Sections IV-A3 and IV-B. Hence, we make
sure that all the compared methods are tested with a sufficient
number of transmissions. Those methods involve Barker coding,
random coding, and plane-wave transmissions.

A. Densely Sampled High-Frequency Array

The densely sampled high-frequency array consists of 128
elements spaced with 25 µm pitch. The ultrasound transducer
emits a base pulse with a center frequency of 15 MHz. The
base pulse and its frequency spectrum are given in Fig. 1. The
imaging region of interest extends from 4 mm to 11 mm in depth
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Fig. 2. The single transmission imaging results for optimized transmissions with Eig-Opt, Trace-Opt, FIM-Opt, Barker code, random code, and plane-wave
transmission for noiseless data (top) and noisy data with 10 dB SNR (bottom).

and from −1.25 mm to 1.225 mm in width, aligning with the
area typically studied in mouse brain imaging. The interpixel
spacing is picked as dz = dx = 25 µm.

1) Toy Example: In this section, we compare the results of
the approaches that rely on the minimization of the CRB and the
maximization of the FIM with the state-of-the-art for a single
scatterer. For the former approach, we solve the problem given
in (20) and (28) using cvx software [46]. However, due to the
high computational complexity of the problem, we only focus
on a small optimization area with a single pixel. For the latter
approach, the solution is given by the leading eigenvector of
Re(A).

Due to the high computational complexity of the CRB-based
solution, an optimized encoding matrix of size 128× 2 is de-
signed, with the pulse having a short bit-length of 2. To evaluate
the performance of the algorithms, we first consider a single
scatterer image where the codes are optimized with respect to
the known scatterer point, which is located at [x, y] = [0, 8]mm.
Since we test only for a single scatterer, such an optimization
scheme is sufficient. Ideally, for a larger area of distributed
scatterers, the optimization should be performed on the pixels
taken from the entire area to improve the SNR performance.
Here, we only consider a single transmission, i.e., L = 1. We
use random rounding for the CRB minimization method, and the
single realization that maximizes (20) (Eig-Opt) or minimizes
(28) (Trace-Opt) is picked among 100 random vectors that
belong to the following distribution ĉ ∼ N (0, Ĉ). Here, further
increasing the number of random vectors did not visibly affect
the performance. For the solution based on the maximization
of the FIM (FIM-Opt), the leading eigenvector of Re(A) is
selected for transmission. The performance of the methods is
compared to the Barker code, random code, and plane-wave
transmission under noiseless and noisy conditions with 10 dB
SNR. Before transmission, all pulses undergo normalization to
ensure uniform average energy levels. Except for the plane-wave
transmission, all transmission codes have a length of 2. All
results obtained with matched filtering in (12) for these six
scenarios are shown in Fig. 2.

The results are numerically analyzed by comparing the SNR
and CNR in the four scenarios, where SNR = 10log10(

Ps

Pn
). Ps

and Pn are the average power of the point scatterer and back-
ground noise, respectively. In noise-free cases, Pn corresponds
to the average power of the low-intensity background region
across the image. Here, CNR = 10log10(|μs−μn|

σn
) where μs

and μn are mean values of the intensities of point scatterer
and background regions, and σn is the standard deviation of
the noise. To compute the SNR and CNR, the red rectangles are
used for the scatterer and background noise. Eig-Opt, Trace-Opt,
and FIM-Opt perform similarly in noiseless and noisy cases
with 10 dB SNR noise, outperforming the plane-wave, random
code, and Barker code reconstructions. Since the formulations
in (21) and (28) are the same for the single pixel scenario, it
is expected that we observe that both Eig-Opt and Trace-Opt
results in the same reconstructions. We also observe that in the
noisy case, while Eig-Opt, Trace-Opt, FIM-Opt, and the Barker
code approach could reconstruct the scatterer, the other methods
could not provide a proper view of the scatterer. The Eig-Opt,
Trace-Opt and FIM-Opt results outperform the Barker code in
the noisy case. Thanks to the computational efficiency of the
FIM-Opt approach, it is more advantageous than both Eig-Opt
and Trace-Opt methods.

2) CRB Minimization Versus FIM Maximization: Now, in-
stead of a single scatterer, we consider uniformly distributed
point scatterers in Fig. 3. The scatterers are placed 0.625 mm
apart both in z and x directions. We compare the imaging per-
formance of three transmission methods: Eig-Opt, Trace-Opt,
and FIM-Opt, using 2-bit codes. However, due to the high
computational complexity of the problem, we only focus on a
small optimization area with few pixels (9 or 121pixels). Since
we optimize the codes for a small area, comparing them with the
state-of-the-art would be unfair. It was fair for the single scatterer
as the codes are optimized with respect to the specific location of
the scatterer. Now, the optimization area is significantly smaller
than the extent of the uniformly distributed scatterers, and the
subset of pixels selected does not overlap with the scatterers.
Therefore, only the proposed methods are compared to choose
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Fig. 3. Simulated imaging performance for densely sampled high-frequency array. The compounded image results for optimized transmissions with Eig-Opt,
Trace-Opt, and FIM-Opt using 9 and 121 pixels for (a) single transmission, (b) 3 transmissions, (c) 5 transmissions, and (d) 10 transmissions.

the best one for more comparisons in the next section. Before
transmission, all codes undergo normalization to ensure uniform
average energy levels.

An image subset of 3× 3 = 9 equidistantly distributed pixels
from 8 to 9.3 mm on the z-axis and from −0.65 to 0.65 mm
on the x-axis in Fig. 3(a) was chosen for optimization. Note
that this area is shown with a red rectangle where the scatterers
and selected pixels do not overlap. This area is chosen in the
middle of the region of interest between 6 mm to 11 mm. Such
a low number of pixels is selected due to the computational
complexity of the semidefinite program in (20) for Eig-Opt and
(28) for Tra-Opt, which is solved via the cvx toolbox. On a
Dell server with dual AMD EPYC 7551 processors (64 cores
total, 128 threads, 128GB RAM, 1TB SSD), optimization with
Eig-Opt takes approximately 1800 seconds, Tra-Opt takes about
2600 seconds, and FIM-Opt completes in around 20 seconds
for 9 pixels. While this server is optimized for fast computation,
running the same algorithms on a standard MacBook Pro 2019
(2.6GHz 6-core Intel Core i7) takes roughly 10,000 seconds for
Eig-Opt and Tra-Opt. The middle three plots in Fig. 3(a) and
the first three plots in Fig. 3(b), (c) and (d) are obtained with
the optimized code that relies on 9 pixels. Hence, we compare
the results for minimizing the CRB based on the Eig-Opt and
Trace-Opt criterion and maximizing the FIM for the same pixels.

In the second scenario, a subset of pixels comprising 11×
11 = 121 equidistantly distributed pixels spanning from 7.3 to
9.9 mm on the z-axis and from −1.3 to 1.3 mm on the x-axis
in Fig. 3(a) was chosen to maximize the FIM where the area is

shown with a magenta rectangle. Although there is not a specific
reason for the exact choice of 11× 11, we aim to exceed the
performance of the CRB minimization for a small area (9pixels)
by maximizing the FIM for a larger area (121 pixels), with lower
computational complexity. Indeed, it is significantly lower as
it only takes around 160 seconds with the given Dell server.
However, Eig-Opt and Tra-Opt algorithms exceed 36 hours for
121 pixels scenario; hence, it is not practical. The last plots are
obtained with the optimized code concerning 121 pixels in Fig. 3.
Note that the computational cost of FIM-Opt, even with more
pixels, is still lower than the Eig-Opt and Trace-Opt methods.

For each method L = 1, L = 3, L = 5 and L = 10 transmis-
sions are compounded. These codes are generated randomly for
the Eig-Opt and Trace-Opt which employ the mentioned random
rounding method in Section III-C, and L realizations that min-
imize (15) or (25) are picked, respectively. With FIM-Opt, the
leading L eigenvectors of Re(A) are selected for transmission.
All results obtained with matched filtering from L = 1, L = 3,
L = 5, and L = 10 transmissions for these four scenarios are
shown in Fig. 3. We only show the results without noise in Fig. 3.
Moreover, Fig. 4 shows individual transmissions of the Eig-Opt
algorithm compounded in Fig. 3(c). Here, each transmission
focuses on a different part of the image, hence showing the
necessity of various transmissions. The SNR values given in
Fig. 3 are obtained by taking the average power of all the known
scatterer locations forPs. To computePn, noise locations are se-
lected at the central points between every four scatterers, where
the scatterers form the corners of a rectangle. These central

Authorized licensed use limited to: TU Delft Library. Downloaded on January 19,2026 at 13:05:21 UTC from IEEE Xplore.  Restrictions apply. 



618 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 11, 2025

Fig. 4. Simulated imaging performance for the densely sampled high-
frequency array with the imaging results of L = 5 transmissions for Eig-Opt.

points represent regions expected to contain minimal signal,
primarily dominated by noise. Across the reconstructions, single
transmission is insufficient for a good reconstruction quality for
all methods, as shown in Fig. 3. The resolution of the scatter-
ers increases with L = 5 transmissions especially for FIM-Opt
method and the entire ROI even becomes more resolvable with
L = 10 transmissions. In terms of the clarity of all scatterers, the
Eig-Opt performs similarly to the FIM-Opt, where the perfor-
mance of Trace-Opt seems to be slightly weaker than the others.
FIM-Opt outperforms both Eig-Opt and Trace-Opt in terms of
SNR. When the region of interest for maximizing the FIM is
extended from 9pixels to 121pixels, the scatterers in the entire
ROI become more resolvable. In contrast, the SNR values for
FIM-Opt for 9pixels seem higher. This is due to scatterers in the
middle of the x -axis seeming to be very bright and increasing
the average SNR for FIM-Opt with 9pixels. Here FIM-Opt
optimized based on 121pixels and with 10 transmissions seems
to provide a good balance between resolution and SNR by
capturing the entire area of scatterers.

The computational complexity of the CRB minimization is
significantly higher than the FIM maximization, and hence,
FIM-Opt is more advantageous than others also in terms of
computational cost. While the Eig-Opt and Trace-Opt require
solving a high-cost SDP given in (20) or (28) using a toolbox
such as cvx, the FIM-Opt only takes L eigenvectors of Re(A) in
(31). In the FIM-Opt method, irrespective of the area of interest,
the size of the A matrix in (31) is the same for the same code
length and number of transmitters. The only increment in the
computational complexity is calculating the A matrix. In the
end, FIM-Opt is exploited for the rest of the simulations thanks
to its reconstruction quality and computational efficiency.

3) FIM Maximization Versus the State-of-the-Art: In this
section, an optimized encoding matrix of size 128× 5 is de-
signed, with the pulse having a bit-length ofK = 5. We compare
the imaging performance of four transmission methods: single
short pulse plane-wave, 5-bit Barker code, 5-bit random code,
and 5-bit optimized code with FIM-Opt. Before transmission, all
codes are normalized to ensure uniform average energy levels.
Here, images from L = 10 transmissions are compounded. The
scatterers are placed 0.625 mm apart in the z direction and
0.45 mm apart in the x direction, respectively. For FIM-Opt,
an image subset between 6 to 11 mm in the z-axis and between
−1.5 mm to 1.5 mm in the x-axis was chosen for optimization,

Fig. 5. Simulated imaging performance for a probe geometry matching that
of a densely sampled high-frequency array based on the 10 leading eigenvectors
with FIM-Opt Method.

Fig. 6. Simulated imaging performance for densely sampled high-frequency
array for optimized code, Barker code, plane-wave, and random transmission
with SNR = 10 dB.

as shown with the red rectangle in Fig. 6. This image subset
contains 50× 30 = 1500 equidistantly distributed pixels. The
distance between each pixel used for optimization is 0.1 mm in
the z and x directions, four times the interpixel distance. Since
the construction of A takes time when the area is extended, the
optimization region is limited.

Fig. 5 shows the matched filter imaging results from the
optimized (FIM-Opt) code based on the 10 leading eigenvectors.
It shows that each eigenvector transmission produces a different
focusing area in the image, leading to varying imaging results.
This finding highlights the need for different optimized encoding
matrices for multiple transmissions. Then, the compounded
imaging results are shown in Fig. 6 for all methods. These
are reconstructed from measurements with the same additive
white Gaussian complex noise at SNR of 10 dB. The left-most
image is obtained with the optimized code by compounding data
from the 10 leading eigenvectors. The subsequent two images
display results from Barker-5 transmissions and single pulse
plane-wave transmissions by compounding the data from 10
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TABLE I
AXIAL AND LATERAL FWHM OF PSF

insonified angles spanning [−12◦, 12◦]. Meanwhile, the fourth
image is acquired and compounded through 10 instances of 5-bit
random code transmissions.

The SNR values in Fig. 6 are obtained by taking the average
power of all the known scatterer locations as Ps and picking a
low-intensity point between every four scatterers for Pn, where
the scatterers form the corners of a rectangle. Although the
optimization of the codes is performed for an area smaller than
the ROI, the SNR values are acquired with the points picked
from the entire ROI. The CNR values are also attained in a
similar fashion. The results show that the optimized transmission
produces the highest SNR and CNR, and the reconstructions
appear brighter in the deeper area ranging from 7 to 9 mm.
Conversely, the Barker code and plane-wave transmissions show
distortions starting from approximately 8 mm depth. Distortions
are also present for the optimized codes, but their effect is less
severe thanks to the higher SNR of optimized codes. Lastly, a
random transmission appears to be the most sensitive to additive
noise, leading to significant degradation in image quality. In
summary, Barker codes outperform plane-wave and random
codes in the deeper region but still fall short compared to the
optimized transmission regarding SNR and noise sensitivity.

To measure resolution, we used the full width at half maxi-
mum (FWHM) of the point spread function (PSF) at the scatterer
locations. The FWHM represents the width of the PSF at 50%
of its peak value and indicates how well nearby points can be
distinguished. We report both axial and lateral FWHM values
as indicators of spatial resolution. The FWHM of the PSF for
resolution is given in Table I for the images in Fig. 6. The
twelve scatterers inside the region over the [6,7.5] mm across
z-axis have been used and their FWHM values are averaged.
These scatterers are chosen as they are in the optimization area,
and they do not suffer from the degradations starting around 8
mm for random codes. The optimized codes present the worst
resolution and the highest FWHM value. Then, Barker codes
and plane-wave produce better axial and lateral resolution, and
random codes result in the best resolution values.

A trade-off between SNR and resolution (both axial and
lateral) for the optimized code is observed. This trade-off arises
from the limitation in the optimization formulation (32), where
the autocorrelation property of the code is not considered. The
autocorrelation function (ACF) of the optimized code (on the
80th element) and the 5-bit Barker code is plotted in Fig. 7. It
can be seen that the normalized main lobe amplitude (the highest
peak) of the optimized code (0.55) is higher than the Barker
code (0.25) by a factor of 2. However, the main lobe-to-side
lobe (the second highest peak) ratio of the optimized code 1.89
is considerably lower than that of the Barker code (5). A lower
main lobe-to-side lobe ratio increases interference and artifacts
caused by side lobe energy and results in smoother images with
worse resolution. Although a high main lobe level can result in
a higher SNR in the image; a low main lobe-to-side lobe ratio
causes a degraded resolution for optimized codes.

Fig. 7. Normalized autocorrelation function for optimized code on the
80th element, [0.75,−1.58, 1.88,−1.51, 0.70], and Barker code of length 5,
[1, 1, 1,−1, 1]. These codes are scaled with the same factor after normalization
to show the magnitude of the optimized codes compared to standard Barker
codes.

Fig. 8. (a) CRB versus depth for random, Barker, plane-wave, and optimized
code at −0.7 mm on x-axis; (b) CRB versus L, the number of compounded
eigenvectors, for a pixel at depth 4.5 mm and depth 11 mm.

We evaluate the CRB of the four methods across different
imaging depths, as shown in Fig. 8(a). The results reveal that
the FIM-Opt code yields the lowest CRB, indicating superior
estimation precision of optimized codes, meaning it provides
the most accurate estimation of scatterer intensities among the
tested methods. Meanwhile, the Barker code and short pulse
plane-wave exhibit similar CRB curves and the random code
displays the highest CRB values. These SNR values align with
the trends observed in the imaging results. Hence, this analysis
confirms the effectiveness of the FIM-Opt code compared to the
other tested methods in terms of increased SNR.

Remark 1: Note that number of transmissions L can also
be analyzed from the CRB perspective. Thus, how the CRB
changes when compounding more leading eigenvectors for mul-
tiple transmissions is investigated. In Fig. 8(b), the normalized
CRB is plotted for a pixel located at depths of 4.5 mm and
11 mm when compounding 1 to 40 leading eigenvectors. It
becomes evident that after compounding 5 transmissions, the
CRB no longer decreases significantly. Still, to accommodate
the literature, the number of transmissions L is set to 10 for
good compounded image quality.

B. Simulated Clinical Transducer Results

Here, the M5Sc-D phased array transducer manufactured by
General Electric (GE) with its 80× 3 elements and a pitch of
0.27 mm is used. This transducer complies with the Nyquist sam-
pling requirement, operating at a center frequency of 2.8 MHz
with wavelength λ = 0.55 mm. We only consider using the
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Fig. 9. Simulated imaging performance for a probe geometry matching that of a clinical transducer (a) Imaging results for optimized code, Barker codes,
plane-wave, and random transmissions with SNR = 10 dB. (b) Imaging results for 3-bit, 5-bit, and 10-bit optimized codes with SNR = 10 dB. (c) The SNR
boxplot analysis for point scatterer images with optimized codes, Barker codes, single pulse plane-wave, and random codes (top) and with 3-bit, 5-bit, and 10-bit
optimized codes(bottom). In each box, the bottom and top edges of the box represent the 25th and 75th percentiles in the data, and the red line inside the box marks
the median. The whiskers represent the highest and lowest values in the data.

middle row elements, resulting in 80 active elements. The choice
was made for computational efficiency, as it reduces the number
of elements. Although this limits the shape of the beam in
the elevation direction, it allows for a focused investigation of
beamforming performance in the lateral direction. The pixel
spacing is dz = dx = 90 µm.

1) Matched Filter Results: Simulations are conducted using
equidistantly distributed point scatterers within the imaging
area. The encoding matrix C was optimized with dimensions
80× 5, focusing on an image subset ranging from around 50
mm to 90 mm in the z-axis and −12 mm to 12 mm in the x-axis
which is shown with the red rectangle in Fig. 9(a). This image
subset contains 90× 44 = 3960 equidistantly distributed pixels.
Here, the distance between each pixel used for the optimization
is 0.54 mm in the z and x directions, 6 times the interpixel
distance. Its performance was compared to the 5-bit Barker code,
single pulse plane-wave, and 5-bit random code. The imaging
region ranges from 5 mm to 90 mm. Fig. 9(a) displays the results
obtained from compounding 10 transmissions, all subject to the
same level of additive white Gaussian noise (SNR = 10 dB).

In Fig. 9(a), the imaging result beginning at 55 mm with
the optimized code is more detectable and more robust to the
noise than the Barker code, the plane-wave, and random codes
in the deeper regions. Note that the proposed coding scheme is
optimized for the area between 50 mm and 90 mm. Therefore,
the performance enhancement is expected in that area. As a
trade-off, the optimized code has a lower resolution than the
other alternatives. Another trade-off of the optimized code is
that it results in a narrower field of view compared to other
methods. The top left and right point scatterers are not detectable
since the near field between 5 mm to 50 mm is ignored for
optimization, and some information loss may exist in the near
field area. Among other methods, the 5-bit Barker code seems
to have higher SNR than the other but slightly degrades the axial
resolution compared to the plane-wave or random codes, leading

to visible side lobes at point targets as the Barker code does
not possess perfect side lobe cancellation after pulse compres-
sion [32]. To quantify this, a vertical line atx = [−0.6875]mm is
analyzed. Along the axial direction, 19 scatterers are considered
to compute the average main lobe-to-side lobe ratio, which is
found to be 8.46 dB. The optimized code performs even worse
in this regard, yielding a lower ratio of 3.38 dB. Conversely,
the random code exhibits better axial resolution than the other
methods, particularly in the near-field area [26]. However, the
SNR of the random code is notably lower than other methods.
In conclusion, the trade-off between the SNR of the optimized
code and axial resolution is also observed in Fig. 9(a).

The results are numerically analyzed by comparing the SNR
in the four scenarios. For this calculation, a line atx = [−0.6875]
mm is picked. We aim to give the reader a richer view of what
is happening with the SNR at various depths. The middle line
is chosen as the limited optimization region affects the field of
view in the corners. Boundary effects have less influence on the
middle. This region is where the optimization is most effective,
providing a more reliable and representative evaluation of the
method. The highest-intensity and lowest-intensity regions are
determined on this line. It results in 19 high-intensity regions,
corresponding to approximate locations of 19 point scatterers at
x = [−0.6875] mm. Then 19 lowest intensity regions in this
line are selected and considered as background noise. Each
SNR value is computed between a high-intensity region and
neighboring a low-intensity region and results in 19 SNR values.
Using these 19 SNR values, the box plots of the SNR data from
each method are shown in Fig. 9(c). The optimized code has the
highest SNR among all methods. A single pulse plane-wave has
the highest variation. If we look at the median SNR value, the
optimized code has an SNR gain of 4.4 dB, while the Barker code
has a gain of 2.5 dB compared to the single short pulse. Note
that the optimized and Barker codes maintain a more consistent
SNR performance than single pulse and random code.
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Fig. 10. Autocorrelation function for 3-bit, 5-bit, and 10-bit optimized codes.

Furthermore, the performance of different bit-length opti-
mized codes (3-bit, 5-bit, and 10-bit) is compared. The results
are shown in Fig. 9(b) and (c). As the bit-length increases,
the SNR also increases. Note that longer codes have higher
main lobe levels after pulse compression, resulting in a stronger
signal relative to the noise, especially in the deeper regions.
However, the use of longer codes also involves a trade-off.
Specifically, a 10-bit code exhibits lower resolution for point
scatterers compared to the 3-bit and 5-bit codes. As can be seen
from the autocorrelation function of optimized codes in Fig. 10,
the 10-bit code has the highest main lobe amplitude but the
lowest main lobe to side lobe ratio which is only 1.19. The 3-bit
code has the lowest main lobe level but has a main lobe-to-side
lobe ratio of 5, which is equal to the 5-bit Barker code.

2) LSQR Results: Instead of reconstructing the image with
the matched filter, we can also seek a better fit between the data
and the model by applying LSQR to improve the resolution
of the optimized code results. Experiments with the number
of iterations from 1 to 16 were conducted. Fig. 11(a) displays
images obtained at different iteration steps. The optimized code
results show that the image resolution improves as the number
of iterations increases. However, after around 10 iterations, the
image starts to overfit with the noise. Especially in deeper areas
with lower signal levels, it leads to a decrease in the SNR
and overall image quality. We observed this effect visually in
the reconstructed images, where noise patterns become more
prominent. Furthermore, the point scatterers at two sides at the
top of the image become visible within the increasing number of
iterations, which were not clear in matched filter reconstructions
in Fig. 9(a) with optimized code.

The LSQR results from the optimized code are compared to
those from the Barker code, as shown in Fig. 11(b). The results
indicate that LSQR does not significantly improve the SNR
for the Barker code. Although the resolution improves slightly
with an increase in the number of iterations, the near-field area
starts to overfit with the noise after 7 iterations. Analyzing
the normalized residual curve for these two coded excitation
schemes reveals that the residual does not decrease significantly
for Barker codes compared to optimized codes with the addition
of more iterations (Fig. 12).

In a direct comparison of the best performance image using
LSQR between these two transmission schemes (e.g., the 10th
iteration for optimized codes and the 7th iteration for Barker
codes), the optimized codes still outperform Barker codes
in terms of SNR in deeper areas while achieving a decent

Fig. 11. Simulated imaging performance for a probe geometry matching that
of a clinical transducer for (a) Optimized code using Least Squares QR (LSQR)
algorithm (b) Barker code using LSQR algorithm. Here, we show the images
after 1 to 16 iterations.

Fig. 12. Normalized residual curves for Barker code and optimized code when
adding iteration in LSQR.

resolution. Fig. 13 shows the contrast signal for a vertical
line located at position 0.24 mm on x-axis in the image. The
scatterers show clear peaks before 60 mm for both methods.
The Barker code starts to fail in the area deeper than 60 mm,
while the optimized code still maintains a good contrast.

C. Doppler Flow Simulations

In this section, the blood flow imaging simulation is done
in k-Wave using MATLAB. The clinical transducer setting de-
scribed in Section IV-B is used here. A flow phantom with a size
of 90 × 20 mm is generated with a 9 mm diameter parabolic
blood vessel that is placed 55 mm away and angled at 25◦ from
the transducer surface. The flow velocity is 9 cm/s, and the
blood-to-tissue level is−67 dB. The simulated number of frames
is 30. The tissue density is modeled as a random distribution
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Fig. 13. Image contrast of a vertical line from the image at 0.24 mm on x-axis
to noise comparison between optimized code at 10th and Barker code at 4th
iteration.

with a mean value of approximately 1000 kg/m3. The scatterer
density in the blood vessel region is also randomly distributed
with values ranging from 1000 kg/m3 to 1020 kg/m3, where the
vessel wall is assumed static. The imaging performance of the
5-bit optimized code and 5-bit Barker code is compared for 10
transmissions. The matched filter is used for beamforming, and
after compounding, an SVD filter is applied to all the temporal
compounded images to gain the final power Doppler image [12].

Different levels of white Gaussian noise at the noise-to-blood
level of −30, −15, and 0 dB are added to the measurement data.
The results are shown in Fig. 14. The SNR and the contrast-
to-noise ratio (CNR) are calculated for each image, where the
blood vessel area and the tissue area are indicated by the black
and white rectangular in Fig. 14 respectively. These regions are
selected considering the actual locations of the blood vessel
and the tissue area in the simulated flow image. We aimed to
observe the effect of different codes around the boundaries of
the blood vessel. After SVD filtering, the PDI results at a noise
level of 0 and−15 dB show that the blood vessel images from the
optimized code exhibit a better distinction between vessel and
background regions and have stronger intensity compared to the
ones from the Barker code (Fig. 14). In the deeper area (below 60
mm), the optimized code exhibits an improved contrast between
the vessel and the background compared to the Barker code. The
optimized code exhibits a clear advantage over the Barker code
for a high noise level (−30 dB). The numerical results show that
the optimized code has consistent and higher SNR and CNR
across different noise levels. For the noise levels 0, −15, and
−30 dB, the optimized code has SNR gains of 2.33, 4.3, and
7.78 dB compared to the Barker code. The optimized code is
more robust for high-level noise. The blood flow simulation
result demonstrates the ability of the proposed optimized code to
improve the SNR of the Doppler images in deep areas. The reso-
lution problems exhibited by the optimized code in the previous
sections are not very severe in the Doppler flow simulation.

V. DISCUSSIONS AND FUTURE WORK

A. Discussions

In this work, a model-based approach is embraced as it allows
for more flexibility in handling the diverse coded excitation
scheme used in our method. For a fair comparison between dif-
ferent coding schemes, we applied model-based beamforming
to all coded excitations in order to ensure that any differences
in performance are not due to the choice of beamforming. This

approach allowed for the design of the coded excitation scheme
with CRB minimization (Eig-Opt, Det-Opt, Trace-Opt) or FIM
maximization (FIM-Opt). Note that the matched filter method
prioritizes SNR, which is maximized by the matched filter, over
spatial resolution. Therefore, all methods can suffer from slight
resolution loss.

Theoretically, we can obtain the optimal solution with an
exhaustive search for CRB minimization, resulting in a single
transmission that captures the entire region of interest but has a
high computational cost. Since the optimization problem is non-
convex, convex relaxation and subsampling are used, leading
to suboptimal solutions and performance degradation. A more
feasible FIM-Opt approach is proposed to reduce the complex-
ity further, providing practical solutions that approximate the
ideal case, with multiple randomizations to compensate. Diverse
codes ensure that different parts of the region of interest are
emphasized with each transmission, producing a more compre-
hensive and meaningful image. This diversity benefits scenarios
with multiple transmissions.

Simulations in Sections IV-A1 and IV-A2 concluded that
FIM-Opt is a cost-efficient solution that performs slightly bet-
ter than the Eig-Opt and Trace-Opt for the same optimization
area. Besides, FIM-Opt with an enlarged optimization area
outperforms the Trace-Opt and Eig-Opt optimized for a small
area in terms of resolution, although FIM-Opt is still computa-
tionally more efficient.

In Section IV-A3 FIM-optimized code achieves the highest
SNR and robustness to the noise and lowest CRB. However, its
lower main lobe-to-side lobe ratio introduces a trade-off between
SNR and resolution. For example, Barker codes are specifically
designed to have good autocorrelation properties, allowing for
axial resolution retrieval comparable to a single short pulse.
The findings in Section IV-B1 also support these arguments.
Moreover, increasing bit lengths results in higher SNR but in
lower resolution and hence suffers from this trade-off. To estab-
lish a balance between SNR and resolution, LSQR is employed
in Section IV-B2, and an improvement is observed until the
10th iteration for the optimized code. However, there is still
a need for optimized codes that maximize the main lobe-to-side
lobe ratio while minimizing CRB without using any advanced
beamforming methods.

The simulation results in Section IV-C demonstrate that the
optimized code offers improved SNR and CNR compared to the
Barker code, again with a trade-off for the resolution. This is
common in clinical imaging and often depends on the diagnos-
tic context. For example, in scenarios where noise dominates,
stronger vessel contrast can improve overall visibility, even if
boundaries appear smoother. Our results indicate that small
vessel visibility is not significantly compromised, as shown by
the improved CNR metrics.

B. Limitations and Future Work

Our work can be considered as an initial attempt for the usage
of optimized coded-excitation and it has a lot of potential for
future research direction.
� As highlighted before, future work needs to achieve bal-

anced enhancement of SNR and resolution. For example,
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Fig. 14. (a) Power Doppler images from 5-bit Barker code with noise-to-blood levels at 0, −15, and −30 dB. (b) Power Doppler images from the optimized
code. All the images are shown with the same colormap spectrum from 0 to −40 dB. (c) SNR and CNR of the Barker code and optimized code. They are calculated
using the ROI shown in (a) and (b), where the black and white rectangular shows the blood vessel and the background region, respectively.

adding a resolution-related constraint (e.g., related to the
autocorrelation property) to the problems in (15), (25), (22)
or (29) can improve the resolution.

� This work considered amplitude encoding. However, bi-
phase encoding can be easier to implement for more prac-
tical purposes with the Verasonics system. In the opti-
mization function, we then need a binary constraint where
c ∈ {−1, 1}NK .

� The optimization problem poses a computational com-
plexity challenge. Future research on developing efficient
algorithms rather than subsampling can be more useful.

� Another computational problem is due to the model-based
approach. Although a direct application of DAS beamform-
ing is not possible as each transmitter sends a different
coded pulse, a decoding matrix for the optimized encoding
matrix can be developed. Then, an initial implementation of
the decoding matrix makes applying the DAS beamforming
possible. Still, the design of the decoding matrix poses a
computational challenge. For a similar discussion, [50] can
be considered.

� Conducting Phantom and in Vivo experiments with the
Verasonics can validate the applicability of the proposed
method and are needed as future work.

� The proposed model-based framework for coded excita-
tion can be useful for systems with compressive sensing
or more advanced image reconstruction techniques with
fewer sensors [51].

VI. CONCLUSION

In this work, we have proposed optimizing a coded excitation
scheme. For this, we designed an optimized code represented by
a generalized encoding matrix in a linear signal model. Then,
we employed the minimization of the CRB for the unknown
coding matrix. The minimization of the maximum eigenvalue,
determinant, and trace of the CRB matrix has been proposed, but

its computational complexity makes the optimization infeasible
for a large area of interest. Therefore, instead of minimizing the
trace of the CRB, maximizing the trace of the FIM has been
proposed. It results in a computationally less complex problem
that can be solved by finding the eigenvector of a small-sized ma-
trix corresponding to the largest eigenvalue. We used a densely
sampled high-frequency array to compare the performance of
the CRB’s minimization and the FIM’s maximization for point
scatterer data. Then, the suboptimal FIM-based method is cho-
sen to compare its performance with the state-of-the-art. It is
observed that while the SNR increases, the resolution decreases
as the autocorrelation property is not considered. We also tested
the suboptimal FIM-based method with a numerical model
of the clinical transducer on the point scatterer data. Again,
we obtained a tradeoff between SNR and resolution. We also
observed that LSQR can drastically improve the resolution of
the optimized code with a slight decrease in SNR. Finally, blood
flow simulations are done using a clinical transducer, and the
optimized code exhibits consistent and higher SNR and CNR
at different noise levels. Future work highlights the need to
balance SNR and resolution and computationally more efficient
optimization schemes.
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