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Abstract

In this thesis, a methodology is developed that allows for both reliable and computational
efficient robustness analysis of aircraft component distortion. This research applies to dis-
tortion caused by reductive manufacturing processes that are used to obtain monolithic
components from pre-stressed stock material. With the developed methodology, orienta-
tions of any component within rolled plate stock material can be found where distortion is
most robust. Part distortion is defined as a deviation in shape of an aircraft component from
original intent as a result of the component’s reductive manufacturing process. As extreme
precision is required in aircraft component assembly, the distortion phenomenon is highly
undesired. The developed methodology in this thesis contributes to AIRBUS’ objectives to
minimize part distortion related issues.
In this thesis, the fundamentals of part distortion are studied. It is found that aircraft com-
ponents distort as a result of residual stresses that are present in stock material from which
the components are manufactured. As residual stress in rolled plate is subjected to substan-
tial variation, part distortion is stochastic in nature. Positions of the components in rolled
plate are searched for where distortion is most robust. The robustness of distortion refers
to the insensitivity of distortion to uncertainty in residual stress. A mathematical stochastic
representation of residual stress in rolled plate is developed showing high coherence with
experimental measurement data provided by AIRBUS. For elementary geometries, the rela-
tionship between distortion robustness and residual stress is derived analytically.
The developed method for predicting distortion robustness is more than one hundred times
more efficient in terms of computation cost compared to state-of-the-art methods and al-
lows for reliable robustness predictions. In the developed method, three-dimensional po-
sitioning of a component in rolled plate can be simulated where state-of-the-art distortion
modeling tools usually stick to one dimension.
The developed methodology is put to the test in a case study concerning an aircraft stiffener
component. The case study emphasizes the significance of robustness predictions; distor-
tion dispersion is found to be relatively large compared to the distortion magnitude and
significant correlation is found between the component’s orientation in rolled plate and the
level of robustness. Positions of components in rolled plate can be found where distortion
is extremely robust. Moreover, a relationship is found between the component’s degree of
symmetry and the level of robustness.
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Chapter 1

Introduction

Environmental challenges, a rise in the crude oil price and an ever increasing competitive
market have demanded the aerospace industry as well as the automotive industry for more
fuel-efficient design and manufacture. The demand for fuel-efficient and lightweight air-
craft has fueled the use of high-strength alloys to enable design of thinner web and wall
features in structural components. It is estimated that usage of topology optimization on
the AIRBUS’ A350 aircraft wing ribs demonstrated in Fig. 1.1 resulted in 1000 kg of weight
savings per aircraft [1]. The downside is that these thin and lightweight designs come with
higher inherent residual stresses and have, due to their thin and lightweight design, low stiff-
ness to prevent part distortion from happening [2–4].

Figure 1.1: An optimized wing rib section (right) using topology optimization that fits into the wing
box (left) belonging to the AIRBUS A350 aircraft [1].

Part distortion is a common phenomenon in the product manufacturing life cycle and is
costing billions of loss in profit each year. Part distortion is defined as the deviation of shape
from original intent as a result of the component’s manufacturing process after it is released
from fixture [5]. This research concerns only components that are manufactured with re-
ductive manufacturing techniques, like milling, drilling and cutting. In Fig. 1.2, distortion
as a result of a cutting reductive manufacturing process is demonstrated [6]. It is estimated
that heat treatment distortion in German machine tool, automotive and transmission in-
dustry alone, is costing an economic loss of "850M [7]. Similarly, a study by Boeing, based
on four aircraft programs, estimated that rework and scrap costs related to part distortion
comes to in excess of 290 million dollars [8]. Due to the large impact of distortion, in 2005,
a "5.4M project named COMPACT was launched by the European Commission. The aim
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was to advance the understanding of residual stress and provide solutions to reduce and
eliminate part distortion in aluminum alloys for the aerospace industry.

Figure 1.2: Two examples of distortion as a result of a cutting reductive manufacturing process [6].

In current industry practice, managing part distortion during or after component manufac-
ture is not properly understood. Often designs are manufactured without any simulation
tool in advance, leading to long and expensive machining iterations on components [4].
In a further attempt to minimize distortion, material specifications or even suppliers are
changed. As a last resort, additional correction processes such as shot peening are applied.

Amongst others, COMPACT has advanced the state of the art in terms of understanding
residual stress and part distortion. Numerical modeling tools have been developed to pre-
dict distortion. First attempts have been made to minimize distortion by changing the ori-
entation of the component in stock material [5], like is shown in Fig. 1.3.

Figure 1.3: A cross sectional view of a piece of stock material is shown from which a typical tee section
component is machined. The figure shows five different offsets for the tee section within
a piece of stock material at which part distortion is evaluated [5].

Furthermore, components with various geometrical features have been studied to under-
stand the influence of design on residual stress distribution and part distortion [9]. An exam-
ple where different designs for a so-called H-plate are evaluated for distortion [10] is demon-
strated in Fig. 1.4.

Figure 1.4: The effect of variable design features on distortion is evaluated for a H-plate component.
Six different designs were considered which vary in thickness and in the type of stiffeners
used [10].

In addition to the work of COMPACT, initiatives have been taken by AIRBUS/EADS to mature
the technology for industrial exploitation. Industrial workflows were developed by AIRBUS
that empowers manufacturing engineers at shop floor level to find the optimal positioning
of components in stock material for minimal distortion [5].
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The current state of the art falls short on dealing with the stochastic nature of part distor-
tion. As will be elaborated upon later in this thesis, part distortion happens as a result of the
presence of residual stress in stock material. Residual stress in stock material is stochastic
in nature due to the uniqueness of the metallurgical and mechanical history of each indi-
vidual rolled plate production and due to different plate suppliers [6]. Residual stresses are
different for each rolled plate production since it is impossible to create equal conditions
during each production [6]. Since residual stress is stochastic in nature, part distortion as
a result of residual stress is stochastic in nature as well. In literature, the term robustness is
used for expressing the amount of variation (or dispersion) in distortion. Part distortion is
classified as robust when it is has low sensitivity to variation in rolled plate residual stress.
Experimental research has shown that robustness analyses are highly significant. A case
study performed by AIRBUS concerning a side cockpit window frame demonstrated that a
10% variation in residual stress predicts a variation as much as 50% in part distortion [11].
In order to save as much weight as possible and to cut material costs, aircraft components
tend to have highly complex design features (see Fig. 1.5). These complex design features
tend to make aircraft components highly sensitive to variation in residual stress. In other
words, a component manufactured from a given plate or batch of material might result in
distortion that is significantly different then distortion for another batch of material, or for
another material supplier.

Figure 1.5: Three different structural aircraft components, i.e. complex wing rib structures and land-
ing gear components, are shown that are machined from titanium alloy rolled plate [12].

Due to its high significance, efforts have been done to include robustness analyses in dis-
tortion modeling tools [10]. Methodologies were developed in which next to part distortion
also robustness can be evaluated. This way, positions of components in rolled plate can be
found where distortion is acceptable and has low sensitivity to variation in residual stresses.
In current state-of-the-art research, however, efforts of propagating the residual stress un-
certainty to distortion have proven to drastically worsen the computational efficiency of the
modeling tools. Brute-force Monte Carlo stochastic analyses are employed that are often
very costly in computational effort and commercial license requirements since a great num-
ber of numerical simulations is required to obtain reliable robustness results [11].

Up to now, state-of-the-art methodologies have failed to be of any use in industry. In July
2017, I myself have visited GROUPE ROSSI AERO based in Toulouse (France), which is one
of AIRBUS’ subcontractors specialized in aircraft component manufacturing. During this
visit, I learned that in industry no simulation tools at all are used to deal with part distor-
tion. Long machining iterations, referred to as multiple step machining, are current practice
to minimize part distortion. During my internship at AIRBUS from April to July 2017, I in-
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vestigated the effect of multiple step machining on part distortion. I discovered that stress
relaxation in between machining steps significantly diminishes part distortion [13].
The reason why state-of-the-art distortion prediction tools are not yet incorporated in in-
dustry is that they are not yet ready. Deterministic distortion tools have been developed,
however are meaningless due to the large variation in part distortion as a result of the stochas-
tic nature of rolled plate residual stress. Thereupon, robustness prediction tools have been
developed, however tend to worsen the computational efficiency of the simulation tools in
such a way that robustness predictions have become infeasible in terms of time and costs.

In this thesis, a methodology will be developed that can predict both part distortion as well
as its robustness as a function of the part’s position in stock material whilst requiring rela-
tively little computational effort. The title for this research is therefore as follows.

Computational efficient robustness analysis of aircraft component distortion accounting for
stochastic pre-stressed stock material in reductive manufacturing processes.

In Chapter 2, residual stress in rolled plate stock material and its origin will be examined.
With the help of by AIRBUS’ experimental stress measurements, a stochastic description for
residual stress in rolled plate will be formulated.
In Chapter 3, the fundamentals of part distortion will be examined. Analytical equations re-
lating part distortion to residual stress will be formulated. In several examples, part distor-
tion will be derived analytically. Based upon the analytical equations derived for distortion
and robustness, several optimization problems will be solved. Distortion and distortion ro-
bustness will be evaluated as a function of the component’s position in stock material. This
Chapter will conclude with a remark on to what extent analytical equations can be used to
solve distortion related problems and why the use of Finite Element Analyses are more ap-
propriate for solving distortion related problems for complex aircraft components.
In Chapter 4, a methodology will be formulated which allows for three-dimensional posi-
tioning of a component within rolled plate. Next, the state-of-the-art computational in-
efficient method for evaluating robustness will be examined. Subsequently, an improved
method will be introduced that is capable of evaluating robustness in a computational ef-
ficient manner. In Chapter 5, the developed improved method will be applied to a case
study concerning a characteristic aircraft stiffener component. Distortion robustness will
be evaluated as a function of the position of the component in stochastic pre-stressed stock
material, like is shown in Fig. 5.1. Chapter 6 will conclude with a final conclusion and in
Chapter 7, recommendations for future research will be listed.

Figure 1.6: For a stiffener component (blue) distortion robustness is evaluated as a function of its
position (green) in stochastic pre-stressed rolled plate stock material (black).
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Chapter 2

Residual stress in rolled plate and its
origin

Residual stresses are stresses locked into a rigid part in the absence of external forces or
thermal gradients and are the result of metallurgical and mechanical history of each mate-
rial point in the part and of the part as a whole during its manufacturing life cycle, according
to its definition [14]. Residual stress originates from manufacturing processes like quench-
ing, stretching, forging, casting, welding, machining, forming, etc., that are applied in the
manufacturing chain of the component from raw material. These processes are complex
combinations of heat transfer, mechanical deformation and metallurgical changes [5,15]. A
distinction is made between primary- and secondary process induced residual stress. The
role of the primary- and secondary processes in the manufacturing chain of the component
from raw material is illustrated in Fig. 2.1.

Figure 2.1: The role of primary- and secondary machining processes in the manufacturing chain of
a component from raw material. Both primary- and secondary machining processes in-
duce residual stress [16].

Primary or upstream processes imply machining processes used for the manufacture of
stock material from raw material. Secondary or downstream processes imply machining
processes used for the manufacture of the component from stock material. In the aerospace
industry, aircraft components are commonly made from stock material in the form of rolled
plate, extrusions or forgings [3] of which the production processes are illustrated in a nut-
shell in Fig. 2.2. In the aerospace industry, aluminum and titanium alloys are used to achieve
both lightweight- and high-strength components. In this research, rolled plate material will
be considered as stock material due to its wide use and its distinctive residual stress profile.
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Figure 2.2: Simplified schematic representations of the manufacturing processes of three types of
stock material used in the aeronautical industry, i.e. forgings (left), extrusions (middle)
and rolled plate (right). From these types of stock material, aircraft components are com-
monly manufactured. In this research, only rolled plate will be considered [17].

As both primary- and secondary processes induce residual stress, both processes are exam-
ined.

2.1 Residual stress due to primary- and secondary machin-
ing processes

The primary production processes where rolled plate is formed from raw material consist of
a number of steps. First, different alloying elements are mixed, melted, casted into an ingot
and cooled. The cast ingot is then heated, hot rolled and subsequently quenched. Quench-
ing is the most dominant stress-inducing process. In this process, the plate is rapidly cooled
in cold water in order to achieve desirable physical and mechanical material properties. In
Fig. 2.3, the two most dominant stress-inducting processes - being hot rolling and quench-
ing - in the manufacturing chain of rolled plate are displayed along with the final product,
rolled plate material.

Figure 2.3: The two most dominant stress-inducing processes in the primary production processes,
being hot rolling (left) and quenching (middle), where rolled plate stock material (right)
is formed from raw material [18].

Quenching induces undesirable high levels of residual stresses that approach even yield
strength magnitude as a result of large temperature gradients due to non-uniform cool-
ing in between intermediate layers of the plate [2, 3, 5, 19, 20]. When relatively thick parts
are initially immersed in the quench bath, the surfaces cool first and thus contract more
rapidly than the interior. Early in the quench, the hot interior provides little resistance to
the contraction of the surfaces. The soft interior plastically deforms to accommodate sur-
face contraction. Later in the quench, when the interior cools and wants to contract, its con-
traction is resisted by the now cold and relatively strong near-surface material. As a result,
tensile stresses develop in the interior. The material there wants to contract, but cannot.
These tensile interior stresses are balanced by compressive stresses that develop near the
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surface. These represent the forces that resist contraction of the cooling interior. A symmet-
ric through-thickness so-called M-shaped residual stress profile, typically found in rolled
plate, develops with maximum compression on each surface and maximum tension along
the centerline [6] in both rolling as transverse direction, such as is illustrated in Fig. 2.4.

Figure 2.4: A schematic drawing of the characteristic M-shaped residual stress profiles present in
rolled plate. These residual stress profiles are induced by the primary manufacturing
processes and own their shape mainly to the quenching process. The stress profiles vary
through the thickness and are homogeneous throughout rolling- and transverse direc-
tion.

After quenching, the stress peak magnitudes approach even yield strength. In order to re-
lieve these high quench-induced residual stresses, the rolled plate is mechanically stretched
at room temperature in the rolling direction to 1.5 to 3% plastic deformation [21]. In Fig.
2.5, the residual stress distributions in (7050-T74 Aluminum) rolled plate in both rolling as
transverse direction are illustrated before (left) and after (right) the mechanical stretching
stress-relieve process. The uniaxial stretch has relieved the stresses in both directions by a
factor of 10 approximately, while maintaining the characteristic M-shaped profile.

Figure 2.5: Residual stress profiles in both rolling- and transverse direction in (7050-T74 Aluminum)
rolled plate before (left) and after (right) the mechanical stretching stress-relieve process
[21]. The z-coordinate in the graphs corresponds with the 3-direction, or the through-
thickness direction, that is illustrated in Fig. 2.4.

The secondary production processes involve the reductive manufacturing techniques that
are used to obtain the component from rolled plate material. These reductive manufac-
turing techniques are based upon the principle of removing material in order to obtain a
monolithic component. In this research, the reductive manufacturing technique focused
upon is milling, which is demonstrated in Fig. 2.6.

10



Figure 2.6: Milling is a reductive manufacturing technique based upon the principle of removing
material in order to obtain a component such as the one that is illustrated (right) [22].

Reductive manufacturing techniques, such as milling, cutting and drilling, involve a combi-
nation of mechanical and thermal loading by which residual stress is induced. The induced
residual stress effects the already existing residual stress induced by the primary manufac-
turing processes. Secondary processes tend to induce compressive residual stress in the
sub-surface of the plate as it is a mechanically dominant process [3]. Fig. 2.7 shows the
through-thickness sub-surface residual stress profile induced by a typical cutting process of
(Aluminum 7050) rolled plate.

Figure 2.7: The penetration of the secondary machining induced stresses through the sub-surface
of (Aluminum 7050) rolled plate [23]. The secondary machining technique concerned is
cutting.

As can be seen, the induced residual stresses are in the order of magnitude of °200MPa to
°350MPa which penetrate to a depth of 0.5mm. The magnitude of these secondary induced
residual stresses are significantly larger than the magnitude of primary induced residual
stresses which are in the order of magnitude of 15MPa to 25MPa [23, 24]. However, sec-
ondary induced stresses only penetrate into the 0.5 mm subsurface of the geometry, hence
influencing only a small portion given that the rolled plate of interest has a thickness in the
range of 60-90 mm. Therefore it can be concluded that secondary induced residual stresses
can be neglected given the focus of this research. Only primary induced residual stresses
will be considered in this research.

2.2 A stochastic description of experimental residual stress
data

AIRBUS has conducted experimental measurements in order to determine the residual stress
present in a batch of twelve rolled plate samples from the type Al-Cu-Li 2050. An often used
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- destructive - method for extracting residual stress from stock material is the so-called layer
removal method [25], of which the functioning is explained in Fig. 2.8.

Figure 2.8: A schematic drawing of the functioning of the layer removal method. Strain gauges are
fixed onto the rolled plate stock material. Layers of material are removed and strain is
measured. Based on the strain measurements, the original residual stress profile is de-
duced [25].

As was demonstrated in Fig. 2.5, residual stress in rolled plate stock material is present in
both rolling as in transverse direction. In Fig. 2.9, the experimental residual stress data in
both rolling as transverse direction of the batch of twelve rolled plate samples is plotted
against ≥. ≥ is defined as ≥ = z

T with T being the thickness of the rolled plate and z being
the coordinate in through-thickness direction. In this thesis, residual stress will be denoted
with the symbol æ†, with stress in the rolling direction as æ†

11 and stress in the transverse
direction as æ†

22.

Figure 2.9: Experimental residual stress data provided by AIRBUS of a batch containing twelve rolled
plate samples. In both rolling (left) and transverse direction (right), stress is plotted
against ≥, where ≥ = z

T . The z-direction corresponds with the 3-direction or through-
thickness direction which is illustrated in Fig. 2.4 along with the rolling- and transverse
direction.

Fig. 2.9 demonstrates that the residual stress in each plate generally follows the same M-
shaped pattern of compressive stress near the surfaces and tensile stress in the core. It also
becomes evident that large variation is present between different rolled plate samples. It
is therefore inevitable to include stochastics in the mathematical description for residual

12
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stress. In this Chapter, a stochastic description of residual stress is found by curve-fitting
each rolled plate sample in both rolling as transverse direction to a chosen fit function and,
subsequently, by defining a comprehensive stochastic fit function based upon the twelve
curve-fitted fit functions. Since the obtained stochastic fit function will be based on only
twelve samples, it will not describe stochastics of rolled plate in general very accurately,
however it will provide certain insight.

First a fit function is chosen. The definition of residual stress, as will be elaborated upon
further in Chapter 3, implies that the residual stress profile in rolled plate must satisfy both
force equilibrium Z

A
æ†(z)d A = 0 (2.1)

and moment equilibrium Z

A
æ†(z)z d A = 0. (2.2)

A curve fit function must be chosen satisfying both conditions stated in Eq. 2.1 and Eq. 2.2.
The stress data shown in Fig. 2.9 appears to resemble the shape of sinusoidal functions. In
addition, a summation of sinusoidal functions with integer amounts of periods in ≥, such as

æ†(z) =
nX

i
c†

i cos(i 2º≥(z)), (2.3)

will satisfy both conditions for force- and moment equilibrium. In the equation above, n
represents the total number of individual cosine modes i . c†

i , the amplitude of cosine mode
i , is referred to as a fit function coefficient. In literature [5, 11, 21], summations of cosine
modes are frequently used to describe residual stress in rolled plate. Similarly will be done
in this research.

For each rolled plate sample k = 1. . . l with l = 12, the residual stress data is curve-fitted
to the above stated fit function. For curve-fitting, Matlab build-in Nonlinear Least-Squares
Solver lsqcurvefit is used. This solver solves nonlinear data-fitting problems in least-squares
sense [26].
In the least-squares method, a simple data set consists of m data points of data pairs (p j , q j )
for data points j = 1 · · ·m where p j is an independent variable and q j is a dependent variable
whose value is found by observation [27]. In this occasion, the measured residual stress in
transverse- æ†

11, j (z) or in rolling direction æ†
22, j (z) of data point j , represents the dependent

variables, q j , and the offset in rolled plate z j represents the independent variable, p j .

The least-squares method finds the optimal parameter values listed in Ø by minimizing the
sum,

S =
mX

j=1
r 2

j , (2.4)

of squared residuals, r j . In this occasion, vector Ø embodies a list of the fit function coef-
ficients c†

11,i and c†
22,i for cosine modes i = 1. . .n that are to be determined with the least-

squares method.
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The residual, r j , describes the fit of a model to the data points and is defined as the dif-
ference between the actual value of the dependent variable, q j , and the value predicted by
the fit function f (p j ,Ø),

r j = q j ° f (p j ,Ø). (2.5)

For both the rolling as transverse direction, twelve curve-fits were realized using the least-
squares method. For all twelve rolled plate samples, the optimal parameter values Ø have
been determined, like

Ø1,Ø2,Ø3, ... ,Ø12 =

2

666666664

c†
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c†
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c†
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c†
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11,6
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777777775

12

. (2.6)

The sum of the squared residuals, S, provides a measure for the quality of the fit. Only modes
i = 1. . .6 are considered for the fit functions, since adding other more modes leads to negli-
gible improvement of the quality of the fit. Three examples of the curve-fits of residual stress
in the rolling direction, æ†

11, where the obtained fit functions are plotted together with the
experimental stress data, are shown in Fig. 2.10.

Figure 2.10: Three examples, being plate 4 (left), plate 7 (middle) and plate 12 (right), of the rolling
direction where the experimental data of a specific plate is plotted (blue) together with
the - by the least-squares method - obtained curve-fit (red).

The obtained curve-fits appear to approximate the experimental data well.
Now that twelve fit functions Ø1,Ø2 . . .Ø12 having six fit function coefficients each have been
obtained by using the least-squares method for both the rolling- and transverse direction,
the stochastics can be deduced. First, the twelve fit functions for the rolling direction, ob-
tained in Eq. 2.6, are organized per fit function coefficient, like

c †
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11,2, ... ,c †
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. (2.7)
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Each fit function coefficient, c†
11,i , now has a dataset with a sample size of l = 12. Due to

the small sample size not much can be said about the distribution of the fit function co-
efficients. A normal distribution will be assumed for each fit function coefficient. Normal
distributions are often used to represent real-valued random variables whose distributions
are unknown [28]. A normal distribution is defined by two parameters, being the mean,
commonly denoted by µ, and the standard deviation, commonly denoted by æ. In Fig. 2.11,
the relation between these two parameters and the normal distribution is illustrated.

Figure 2.11: A plot of the normal distribution in which the significance of the two parameters - the
mean µ and standard deviation æ - that describe the normal distribution is demon-
strated graphically [28].

There is a distinction between the population mean and -standard deviation, symbolized by
µ andæ, respectively, and the sample mean and -standard deviation, symbolized by x and s,
respectively. Since this case concerns fit function coefficients having a finite sample size of
l = 12, the discrete random variable notation should be used. Since the symbol x is already
used for the x-coordinate in the coordinate system notation, the symbol of the population
mean, µ, will be used for the sample mean. The symbols µ and s, will thus be used to indi-
cate the sample mean and standard deviation, respectively. The obtained sample mean and
standard deviation will not very accurately describe the population mean- and standard de-
viation due the small sample size. For each fit function coefficient c†

11,i and c†
22,i for i = 1. . .n

with n = 6, the sample mean

µ= 1
l

lX

k=1
t (2.8)

and the variance

s2 = 1
l °1

lX

k=1

°
t °µ

¢2 , (2.9)

are determined. In these equations, the variable t has no physical meaning. The variable

t should be substituted with the fit function coefficients c†
11,i

ØØØ
k

and c†
22,i

ØØØ
k

with k being the

sample for k = 1. . . l with sample size l = 12.
The concluding fit functions that describe stochastic residual stress in rolled plate in rolling
direction is

æ†
11(z) =

nX

i
c†

11,i cos(i 2º≥(z)) for i = 1. . .6 (2.10)

and in transverse direction is

æ†
22(z) =

nX

i
c†

22,i cos(i 2º≥(z)) for i = 1. . .6. (2.11)
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In these equations, the fit function coefficients, c†
11,i and c†

22,i , are normally distributed. The
mean and standard deviation defining the normal distributions are listed in table 2.1.

Table 2.1: In this table the two parameters, being the mean µ and standard deviation s, defining the
normal distributions of the stress coefficients c†

11,i and c†
22,i are listed.

c†
11,i ªN

°
µ, s

¢
c†

22,i ªN
°
µ, s

¢

c†
11,1 ªN

°
µ=°27.0343, s = 4.0475

¢
c†

22,1 ªN
°
µ=°8.1936, s = 2.9313

¢

c†
11,2 ªN

°
µ= 6.1362, s = 3.8186

¢
c†

22,1 ªN
°
µ= 2.4317, s = 1.2281

¢

c†
11,3 ªN

°
µ= 7.8890, s = 1.9898

¢
c†

22,1 ªN
°
µ= 2.9584, s = 1.2097

¢

c†
11,4 ªN

°
µ=°1.4510, s = 2.4577

¢
c†

22,1 ªN
°
µ= 1.3215, s = 1.0429

¢

c†
11,5 ªN

°
µ= 1.0052, s = 2.0155

¢
c†

22,1 ªN
°
µ= 0.9406, s = 0.9294

¢

c†
11,6 ªN

°
µ= 0.8000, s = 0.9293

¢
c†

22,1 ªN
°
µ= 0.9406, s = 0.9294

¢

In order to see whether the determined fit functions for æ†
11(z) and æ†

22(z) formulated in Eq.
2.10 and Eq. 2.11, respectively, with normally distributed stress coefficients c†

11,i and c†
22,i as

are listed in Tab. 2.1 correlate with the experimental stress data, a Monte Carlo experiment
is done. For both rolling as transverse direction, the stress profiles of one thousand random
rolled plates are simulated by drawing random samples from the stress coefficient distribu-
tions. For each of the one thousand samples,æ†

11(z) andæ†
22(z) are subsequently plotted in a

graph along with the experimental stress data. These one thousand random samples repre-
sent a batch of a thousand rolled plate samples. These plots, for both rolling- and transverse
direction, are shown in Fig. 2.12.

Figure 2.12: The experimental stress data (blue asterisks) is plotted together with one thousand
random samples drawn from the normally distributed stress coefficients (thin colored
lines). The mean curve fit is also plotted (thick red line). The one thousand random
samples (representing a batch of one thousand random rolled plates) appears to corre-
late with the distribution of the experimental stress data.
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From Fig. 2.12, it appears that the experimental stress data lies within the area covered by
the one thousand random samples. Not much can be concluded about the accuracy of the
stochastic representation, other than that the stochastic representation appears to correlate
with the experimental stress data. The stochastic representation, however, is based on a
batch of twelve rolled plates. The reliability can obviously be improved by increasing the
sample size.
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Chapter 3

The fundamentals of part distortion

By definition, residual stresses are stresses locked into a rigid part in the absence of external
forces or thermal gradients [14]. Residual stresses in a body do not result in deformation of
the body as the equilibrium conditions are satisfied. In order for the body to be in equilib-
rium, the forces and moments produced by the residual stresses inside the body must be
equal to the external forces and moments acting on the body [29–32]. Since, by definition,
the external forces and moments acting on the body are zero, the condition for the residual
stress profile is implied: internal forces and moments generated by residual stress should be
equal to zero. In other words, residual stress inside a body must be self-equilibrated.

3.1 Self-equilibrated stress

Self-equilibrated residual stress implies two conditions, the first being the force equilibrium
condition and the second being the moment equilibrium condition. Force equilibrium for
any plane section area A of the whole body requires

Z

A
æ†(z)d A = 0 (3.1)

and moment equilibrium with respect to an arbitrary reference line in the section area A
demands Z

A
æ†(z)z d A = 0. (3.2)

æ†(z) symbolizes residual stress and z symbolizes the reference line distance of an element
d A of the area A. An example concerning a simple beam with rectangular cross section
where the two conditions for self-equilibrated stress are verified is shown in Fig. 3.1.
In Fig. 3.1, a beam is shown with rectangular cross section having a simplified one-dimensional
residual stress profile on plane section area A° A. This residual stress profile, æ†

11(z), can be
described by the function

æ†
11(z) = c cos

°
Ø(z ° z0)

¢
with Ø= 2º

h
.

18



Figure 3.1: An example of a simple beam (left) having a simplified one-dimensional residual stress
profile æ†

11(z) on plane section area A ° A (right). Note: the location of the coordinate
system’s origin is chosen arbitrarily in space.

The internal force generated by æ†
11(z) on plane section area A° A is equal to

Fint =
Z

A
æ†

11(z)d A

=
Zb

y=0

Zz0+h

z=z0

c cos
°
Ø(z ° z0)

¢
d z d y

= bc
Ø

≥
sin

°
Ø(z ° z0)

¢ØØ
z=z0+h ° sin

°
Ø(z ° z0)

¢ØØ
z=z0

¥

= 0.

and the internal moment generated by æ†
11(z) on plane section area A° A is equal to

Mint =
Z

A
æ†

11(z)z d A

=
Zb

y=0

Zz0+h

z=z0

c cos
°
Ø(z ° z0)

¢
z d z d y

= bc
Ø

z sin
°
Ø(z ° z0)

¢ØØ
z=z0+h

+ bc
Ø2

≥
cos

°
Ø(z ° z0)

¢ØØ
z=z0+h ° cos

°
Ø(z ° z0)

¢ØØ
z=z0

¥

= 0.

Since both the force equilibrium condition (Eq. 3.1) as the moment equilibrium condition
(Eq. 3.2) is met, the residual stress profile on plane section area A ° A illustrated in Fig. 3.1
is said to be self-equilibrated and no deformation will thus occur on this plane section.

3.2 Homogeneity of stress in rolled plate

In literature, residual stress in rolled plate stock material is generally assumed to be ho-
mogeneous. This means that the residual stress state does not vary along the rolling- and
transverse direction. This is illustrated in Fig. 3.2, where identical stress profiles are shown
for three arbitrarily chosen cross sections throughout the rolled plate’s rolling direction.
In theory however, the stress state throughout the rolling- and transverse direction cannot
be fully homogeneous due to the finite nature of rolled plate. The equilibrium condition and
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Figure 3.2: A two-dimensional view of rolled plate stock material where the stress state is assumed
to be homogeneous. The figure shows three arbitrarily chosen plane section areas A° A,
B °B and C °C all having identical stress profiles.

the absence of external loads require the boundaries of rolled plate to be traction-free. The
boundary conditions of the traction-free surfaces require that the normal and shear stress
components along the boundary plane are zero [33]. When, for example, a beam having a
one-dimensional stress profile like is shown in Fig. 3.3 is sectioned into two halves along a
cutting plane, the residual stresses on the cutting plane are fully released and new traction-
free surfaces are created. Stress relaxation at the cutting plane happens through deforma-
tion of the cut surface. The deformed boundary planes as a result of stress relaxation are
referred to by the rolled plate’s ’end-effects’.

Figure 3.3: An example where a beam having a one-dimensional residual stress profile is sectioned
into two halves along a cutting plane (left). The boundary conditions require the created
cut surfaces to be traction-free. As a result, the cut surfaces will deform (right) until the
stress at the boundaries is fully relieved [33].

In theory, residual stress in rolled plate is thus not fully homogeneous. Near the free sur-
faces a transition region exists as the residual profile reduces to zero. In the application of
aircraft component manufacture, rolled plate typically has large dimensions relatively to the
length of the transition region, like is shown in Fig. 3.4. Since the majority of the rolled plate
is unaffected by the end-effects, the end-effects can be ignored and residual stress can be
assumed homogeneous.

Figure 3.4: A schematic two-dimensional view of rolled plate stock material and illustrates the fact
that in the application of aircraft component manufacture the dimensions of the tran-
sition region (or end-effects) are negligible compared with the dimensions of the entire
rolled plate. A homogenous stress profile exists in the majority of rolled plate.

The presence of end-effects at the boundaries of rolled plate material can be corrected by
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applying boundary conditions such as the ones that are illustrated in Fig. 3.5. Having ap-
plied these boundary conditions, residual stress in rolled plate can be rightfully qualified as
homogenous.

Figure 3.5: A two-dimensional view of rolled plate with stress and applied external loads (blue) at
the boundaries. Due to the applied external loads, residual stress in the beam is now fully
homogenous.

In this research, residual stress in rolled plate will be assumed homogeneous, which implies
that boundary conditions such as ones illustrated in Fig. 3.5 are considered.

3.3 Machining considered as an one-to-one mapping of stress

Part distortion happens when stresses in the body do not satisfy the equilibrium conditions,
or, in other words, when stresses do not self-equilibrate. In this research, machining will be
considered as a one-step removal of material without influencing the stress in the remaining
material. This is illustrated in Fig. 3.6. The stress in the remaining geometry is considered
to be a one-to-one mapping of the stress from the rolled plate.

Figure 3.6: A piece of rolled plate stock material (left) from which a T-section component (right) is
manufactured. Machining is assumed to be a one-step removal of material with a one-to-
one mapping of residual stress from rolled plate to the remaining material. Consequently,
distortion happens through stress relaxation since the stresses in the remaining material
do no longer self-equilibrate.

By considering machining as an one-to-one mapping of stress, several assumptions are
made. To begin with, secondary process induced stresses are assumed to be negligible, the
reason for which was elaborated upon in Section 2.1. Furthermore, machining is assumed
to be a one-step removal of material. This would be a correct assumption if in practice the
entire part is machined from rolled plate in a single step while the material is held fixed
and cannot deform during the machining process. In reality, however, this is not the case.
During my internship at AIRBUS from April to July 2017, I visited an AIRBUS subcontractor
responsible for component manufacture named GROUPE ROSSI AERO, based in Toulouse
(France). I discovered that long machining iterations - referred to as multiple step machining
- are current practice in component manufacture [13]. During a machining step, the mate-
rial is held fixed and in between machining steps, the component is released from fixture as
a result of which stress relaxation occurs. As a result of stress relaxation in between steps,
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part distortion differs from when the part would have been machined in a single step. In
other words, part distortion is path dependent. The reason behind path dependency of part
distortion is explained by means of illustrations in Fig. 3.7 and Fig. 3.8 [13]. Fig. 3.7 illus-
trates a one-step machining sequence of a T-section from rolled plate. Beforehand, a set of
material points is marked. After the one-step machining sequence, the remaining material
contains the same set of marked material points at start.

Figure 3.7: A scenario where a T-section is manufactured from rolled plate in a single step. First,
a set of material points is marked. Subsequently, the marked set of material points is
machined in one-step while held in fixture. When released from fixture the remaining
material deforms. The remaining material contains the same marked material points that
were marked in the beginning [13].

Fig. 3.8 illustrates a multiple step machining sequence of a T-section from rolled plate. The
same set of material points is marked at start. In between steps, the material is released from
fixture as a result of which stress relaxation (or deformation) occurs in between machining
steps.

Figure 3.8: A scenario where the same T-section is manufactured from rolled plate in a multiple step
machining sequence. The same set of marked material points does not completely end
up in the remaining material after a multiple step machining sequence. The reason for
this is that the material deforms in between steps while the configuration of machining
paths does not change. As a result, a different set of material points ends up in the re-
maining material [13].
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Since the configuration of the machining paths does not change, a different set of material
points ends up in the remaining material than the marked set of material points at start.
To conclude, by assuming one-to-one mapping of stress from the rolled plate onto the re-
maining material, one-step machining is assumed and secondary process induced stresses
are not taken into account.

3.4 Analytical derivation of distortion

A slender beam with rectangular cross section is considered which will be cut in half such
as is illustrated in Fig. 3.9. As external loads - representing the clamping forces - are acting
on the two boundary planes, the residual stress profile in the beam, æ11(z), is homogeneous
throughout its length. Like is illustrated in the figure, isostatic boundary conditions are put
in place. In total, six displacement constraints are placed at three chosen material points po-
sitioned on cross section A-A, like is shown in the figure. This way, the beam’s six rigid body
modes are blocked. The beam can deform, however the beam as a whole cannot translate
in any of the three directions nor rotate about any of the three axes.

Figure 3.9: A beam which is in fixture (left) with a rectangular cross section (right) which is about to
be sectioned in half at the beam’s middle plane (scissor on dotted line). The beam’s stress
profile, æ†

11(z), is homogeneous through x as external loads representing the clamping
forces (blue) act on the boundary planes. Six displacement constraints (orange) are put
in place at three material points (red) positioned on cross section A-A.

The piece of stock material illustrated in Fig. 3.9 has material- and geometrical proper-
ties that are characteristic for aircraft components where distortion is relevant. For rolled
plate stock material, a 7000 series wrought Aluminum-Titanium alloy of the type 7050-T7451
(stretched), is considered. This alloy is favored for of its combination of high strength, stress-
corrosion-cracking resistance and toughness [34] and has a Young’s Modulus of E = 70.07GPa.
The magnitude of the residual stress is c = 20MPa, a magnitude typically found in rolled
plate. The piece of stock material furthermore has a thickness of h = 30mm, a length of
l = 1000mm and a width of b = 80mm. The piece of stock material is positioned at an arbi-
trarely chosen offset of z0 = 100mm with respect to the coordinate system in Fig. 3.9.

After the beam is cut in half, like was indicated in Fig. 3.9, the upper half of material is
removed. Fig. 3.10 shows the beam after machining.
The beam is still in fixture as the boundary loads are still acting at the boundary planes.
As the remaining material is still in fixture, deformation or stress relaxation has not yet oc-
curred. For the sake of convenience, a symmetry plane can be defined, like is shown in Fig.
3.11.
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Figure 3.10: The remaining material of the beam after the beam is sectioned in half like was indicated
in Fig. 3.9. The external boundary loads are still acting as the beam is still in fixture.

Figure 3.11: The same illustration of the remaining material after the beam is sectioned in half as in
Fig. 3.11. This time, a symmetry plane has been defined at cross section A-A marked
with a dotted line.

Since the stress profile present in the remaining material does not satisfy the equilibrium
conditions mentioned in Chapter 3.1, the beam deforms upon removal of the external bound-
ary loads (or clamping force). As can be concluded by observation of Fig. 3.11, the stress pro-
file does satisfy force equilibrium however does not satisfy moment equilibrium. Upon re-
moval of the external boundary loads, stress relaxation will therefore not lead to contraction,
however will result in bending, like is illustrated in Fig. 3.12. The remaining material de-
forms until the beam has relaxed in such a manner that the stress profile is self-equilibrated
once more. Fig. 3.12 illustrates the fact that some residual stress is still present after stress
relaxation. However, the stress profile that is present is self-equilibrated.

Figure 3.12: The remaining material upon removal of the external boundary loads, in other words:
when the remaining material is released from fixture. Stress relaxation or deformation
has occurred in the form of bending. Note that some residual stress is still present after
deformation. However, this remaining residual stress is self-equilibrated once more.
Note that the neutral y-axis is indicated (right).

Distortion of the beam can be derived analytically. Since in this case distortion occurs in the
form of bending, distortion is defined as wz(x = l ), being the translation of the neutral plane
in z-direction at the tip of the beam (x = l ). First, a mathematical description for the stress
profile, æ†

11(z), is formulated.

æ†
11(z) = c cos

µ
2º
h

(z ° z0)
∂
.
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The moment about the neutral y-axis, generated by the non-self-equilibrated stress profile
after material removal, My, is obtained by

My =
Z

A
æ†

11(z)(z ° z)d Ax

=
œ

æ†
11(z)(z ° z)d z d y. (3.3)

Note that since the stresses do no longer satisfy the equilibrium conditions, the moment
can no longer be taken with respect to an arbitrary reference line, like with the moment
equilibrium condition stated in Eq. 3.2. As the stresses do not satisfy the equilibrium condi-
tions, the moment must be taken about the body’s neutral y-axis. The neutral y-axis passes
through the body’s geometric centroid or centre of gravity (C.G.) and is indicated in Fig. 3.12.
The z-coordinate of the geometric centroid, z, is obtained by

z =
Sy

Ax
, (3.4)

in which
Sy =

Z

Ax

z d Ax =
œ

z d z d y (3.5)

and represents the first moment of area of the cross section about the neutral y-axis and

Ax =
Z

Ax

d Ax =
œ

d z d y (3.6)

and represents the area normal to x, which is the area of the cross section shown on the right
in Fig. 3.12.

The relationship between the deflection of the beam’s neutral x y-plane along the x in z-
direction, wz(x), and the moment generated by the stress, My , is sought. First, the material
is assumed to be homogeneous and to behave in a linear-elastic manner, as a result of which
Hooke’s law applies [35].

≤= æ

E
. (3.7)

The flexure formula relating the stress distribution to the internal resulting bending moment
applies since it is assumed that a linear variation in normal stress results in a linear variation
of normal strain [36].

æ=°M z
Iy

. (3.8)

The relationship between the beam’s curvature and Eq. 3.7 and Eq. 3.8 gives [37]

1
Ω
= M

E Iy
. (3.9)

When assuming small displacements with respect to the beam’s length - which can be as-
sumed in aircraft distortion related problems - the relationship between the curvature and
the deflection, wz(x), can be approximated to be [38]

1
Ω
= d 2wz

d x2 . (3.10)
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Combining Eq. 3.9 and Eq. 3.10 yields

d 2wz

d x2 = M
E Iy

. (3.11)

Integrating this expression and assuming boundary conditions of a beam clamped at x = 0,
by which w(x = 0) = 0 and d w(x=0)

d x = 0 hold, yields the expression

wz(x) =
My x2

2E Iy
, (3.12)

relating deflection wz(x) with the moment generated by the stress profile, My [38]. This ex-
pression is equivalent to the simple beam flexure formula ("Vergeet-mij-nietje") for a can-
tilever beam fixed at one end and a couple moment at the beam’s free end.

Iy =
Z

Ax

(z ° z)2 d Ax =
œ

(z ° z)2 d z d y (3.13)

is the second moment of area of the cross section about the neutral y-axis.
In Appendix A.1, the analytical distortion derivation is worked out for the beam that is cut in
half, which was illustrated in Fig. 3.9. The analytical solution for distortion, that in this case
is defined as wz(x=l ), was found to be

wz(x=l ) =°24cl 2

Ehº2 .

Substituting geometrical- and material properties l , h, c and E gives a distortion of

wz(x=l ) =°23.1mm.

Now, the same piece of stock material as was illustrated in Fig. 3.9 is considered, however in
this case a lower and upper part of material will be removed, like is illustrated in Fig. 3.13.

Figure 3.13: The same piece of stock material that was illustrated in Fig. 3.9. This time, material is
removed symmetrically from both sides. The displacement constraints are applied on
the remaining material.

After the beam is symmetrically machined from both sides, like was indicated in Fig. 3.13,
the upper and lower parts of material are removed. Fig. 3.14 shows the remaining material
after machining. The beam is still in fixture and stress relaxation has not yet occurred as the
boundary loads are still acting at the boundary planes.
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Figure 3.14: The remaining material of the beam after the beam is machined symmetrically from
both sides, as was indicated in Fig. 3.13. As the boundary loads are still acting on the
boundary planes, no deformation has yet occurred. A symmetry plane has been defined
at cross section A-A marked with a dotted line.

The stress profile in the remaining material does not satisfy the equilibrium conditions as a
result of which the beam deforms upon removal of the external boundary loads. As can be
concluded by observation of Fig. 3.14, this time the stress profile does satisfy moment equi-
librium however does not satisfy force equilibrium. Upon removal of the external boundary
loads, stress relaxation will therefore not result to bending, however will lead to contraction
like is illustrated in Fig. 3.15. The remaining material deforms until the beam has relaxed in
such a manner that the stress profile is self-equilibrated once more.

Figure 3.15: The deformed remaining material after removal of the external boundary loads. Stress
relaxation or deformation has occurred in the form of contraction. Some residual
stress is still present after deformation, however the remaining stress profile is self-
equilibrated once more.

The resultant force, Fx , generated by the non-self-equilibrated stress profile after material
removal is obtained by

Fx =
Z

Ax

æ†
11(z)d Ax

=
œ

æ†
11(z)d z d y. (3.14)

Since in this case distortion occurs in the form of contraction, distortion is defined as the
displacement of the beam’s tip in x-direction, wx(x=l ). The displacement of beam’s tip rel-
atively to the fixture, wx(x=l ), caused by the net force of the non-self-equilibrated stress
profile is obtained by [39]

wx(x=l ) =
Zl

0

Fx(x)d x
Ax(x)E

. (3.15)
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Since both Fx(x) and Ax(x) are constant throughout x, Fx(x) = Fx and Ax(x) = Ax , and as a
result Eq. 3.15 can be integrated to yield

wx(x=l ) = Fxl
AxE

. (3.16)

In Appendix A.2, the analytical distortion derivation is worked out for the beam that is sym-
metrically machined from both sides, as was illustrated in Fig. 3.13. The analytical solution
for distortion, that in this case is defined as wx(x=l ), was found to be

wx(x=l ) =°2cl
ºE

.

Substituting geometrical- and material properties l , c and E gives a distortion of

wz(x=l ) =°0.182mm.

In the first scenario, moment equilibrium was not satisfied which resulted in distortion
in the form of bending with wz(x=l ) = °23.1mm. In the second scenario, force equilib-
rium was not satisfied resulting in distortion in the form of contraction with wx(x=l ) =
°0.182mm. A bending moment seems to result in distortion significantly larger than dis-
tortion due to net force. Aircraft components tend to have slender and lightweight designs
with low stiffness in bending and large stiffness in contraction. This explains why only dis-
tortion in the form of bending is considered and distortion in the form of contraction can
often be neglected.

3.5 Example: T-section

Next to a beam with rectangular cross section, distortion can be analytically derived for
other geometries as well. Suppose that a structural beam with a T shaped cross section -
i.e. T-section - is manufactured from a piece of rolled plate stock material such as is illus-
trated in Fig. 3.16. Distortion of a T-section can be analytically derived as well.

Figure 3.16: A piece of stock material from which a T-section (dotted lines) is to be manufactured.
The T-section is machined with an offset of z1 with respect to the rolled plate’s bottom
face.

The same piece of stock material as in Chapter 3.4 is considered with a Young’s Modulus of
E = 70.07GPa and a residual stress magnitude of c = 20MPa. This time, the piece of rolled
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plate has slightly different geometry features, being a thickness of h = 80mm, a length of l =
1000mm and a width of b = 40mm. The flanks of the T-section geometry have a thickness
of t = 10mm and a height of p = 30mm. The piece of stock material is positioned at an
arbitrarily chosen offset of z0 = 100mm with respect to the coordinate system. The T-section
has an offset of z1 = 10mm with respect to the piece of rolled plate’s bottom face. After
manufacturing, a non-self-equilibrated stress profile is present in the remaining material,
such as is illustrated in Fig. 3.17.

Figure 3.17: The remaining material - a structural beam with a T shaped cross section - with its non-
self-equilibrated stress profile after manufacturing. Since external boundary loads are
still acting, distortion has not yet occurred.

When external boundary loads are removed, distortion occurs. Since Chapter 3.4 demon-
strated that distortion due to contraction is negligible compared with distortion due to bend-
ing, the deflection of the T-section’s tip at x = l , wz(x=l ), will be considered as a measure for
distortion.

Figure 3.18: The remaining material after stress relaxation due to removal of the boundary loads.
Note that the geometry bends about its neutral y-axis which passes through the geom-
etry’s centre of gravity (C.G.). Residual stress is still present after distortion.

In Appendix A.3, the analytical distortion derivation is worked out for the T-section that
is manufactured from rolled plate stock material. The analytically derived expression for
wz(x=l ) is considerably complex and is shown in a Matlab m-file in Fig. B.1. Substituting
geometric- and material properties yields a distortion of

wz(x=l ) =°6.9mm.

It can be concluded that distortion, wz(x=l ), can be analytically derived for a T-section ma-
chined from a piece of rolled plate. However, the derivations for the bending moment, My ,
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and the second moment of area, Iy , and thereby distortion, wz(x=l ), already become con-
siderably complex.

3.6 Distortion minimization based on analytical equations

Distortion has been analytically derived for prismatic beams - i.e. beams with constant cross
section throughout the beam’s length - with rectangular or T shaped cross sections. Based
on the obtained analytical equations for distortion, simple optimization problems can be
solved. For instance, a T-section which is to be manufactured at offset z1 with respect to the
bottom face of the piece of rolled plate, such as was illustrated in Fig. 3.16. The offset z1 can
be optimized for distortion wz(x=l , z1). The optimization problem formulation would be

minimize
z1

f (z1)

subject to g1 =
t +p + z1

h
°1 ∑ 0

with f (z1) = wz(x=l , z1)2.

Inequality constraint g1 makes sure that the T-section stays inside the piece of rolled plate
z ∑ (h ° (p + t )). In order to obtain a function where the minimal value represents the
value where distortion is zero, the objective function f (z1) is chosen to be equal to f (z1) =
wz(x=l , z1)2. Since a beam with a T shaped cross section is prismatic, even an offset z§

1 can
be found for which no distortion at all in the form of bending will occur, wz(x=l , z§

1 ) = 0. In
Fig. 3.19 distortion wz(x=l , z1) is plotted against offset z1 that ranges from 0 ∑ z1 ∑ (p + t ).

Figure 3.19: Distortion wz (x=l , z1) of the T-section illustrated in Fig. 3.16 which is machined from
rolled plate at offset z1 with respect to the bottom face of the piece of rolled plate.

As can be observed, distortion wz(x=l ) passes through wz(x=l , z§
1 ) = 0. The optimization

problem is solved in Appendix B.1 and the offset z§
1 for which distortion is approximately

equal to zero is found to be z§
1 = 21.9mm. Fig. 3.20 shows the positioning of the T-section at
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Figure 3.20: The offset z§
1 at which the T-section should be manufactured with respect to the bottom

face of the piece of rolled plate in order to have zero distortion in the form of bending.

offset z§
1 at which the T-section should be machined as a result of which no distortion in the

form of bending will occur.
A second design variable can be added to the optimization problem, such as for example
the thickness of the flanks, t , which was specified in Fig. 3.16. This time, offset z1 and flank
thickness t are optimized for distortion. The optimization problem formulation becomes

minimize
z1,t

f (z1, t )

subject to g1 =
t +p + z1

h
°1 ∑ 0

g2 =
t
b
°1 ∑ 0,

with f (z1, t ) = wz(x=l , z1, t )2.

A second inequality constraint g2 is added that dictates that the flank thickness does not
exceed the piece of rolled plate’s width t ∑ b. The objective function as a function of the
two design variables f (z1, t ) can be visualized in a contour plot which is shown in Fig. 3.21.
Appendix B.2 elaborates on the Matlab code used for obtaining the contour plot.
The solution for which the objective function is equal to zero, f (z1, t ) = 0, lies on a line which
is plotted in Fig. 3.21.

3.7 Robust optimization based on analytical equations

This time, the stock material from which the T-section is manufactured consists of a batch of
rolled plates that each have slightly different stress profiles. An optimization problem can be
formulated in which the offset z1 and flank thickness t of the T-section - manufactured from
rolled plate, as was illustrated in Fig. 3.16 - are optimized for robustness. A mathematical
description that resembles the distribution of stress in the batch was found by subjecting
stress coefficient c in æ†

11(z) to a normal distribution. As was agreed upon in Chapter 2.2,
the symbols µ and s will be used for the mean and standard deviation, respectively.

æ†
11(z) = c cos

°
Ø(z ° z0)

¢
with c ªN

°
µc = 20MPa, sc = 5MPa

¢
.

The standard deviation of distortion, swz , can be used to relate to robustness. A high stan-
dard deviation of distortion swz means that distortion has poor robustness; when the stan-
dard deviation of distortion is low, distortion is said to be robust. Since the standard de-
viation of stress coefficient c, sc , is known and the relationship between stress æ†

11(z) and
distortion wz(x=l , z1, t ) has been determined analytically (in Appendix A.3), the standard
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Figure 3.21: A contour plot showing objective function f (z1, t ), which relates to distortion magnitude
as a function of two design variables, being offset z1 and flank thickness t . The solution
where distortion is zero, f (z1, t ) = 0, lies on a (blue dotted) line which is shown in the
figure.

deviation of distortion can be determined analytically as well. Probability theory [40] states
that if the relation between function f2(z1, t ,c) and function f1(z1, t ) is like

f2(z1, t ,c) = c f1(z1, t ) with c ªN
°
µc , sc

¢
, (3.17)

than f2(z1, t ,c) is normally distributed as well, f2 ª N
°
µ f2 , s f2

¢
. The mean, µ f2 , can be de-

termined through

µ f2 =µc f1(z1, t ) (3.18)

and the standard deviation, s f2 , can be determined through

s f2 = sc f1(z1, t ). (3.19)

In this occasion, the function f1(z1, t ) is equal to

f1(z1, t ) = wz(x=l , z1, t ,c)
c

and is not stochastic since c is excluded. Function f2(z1, t ,c) symbolizes distortion and is
stochastic:

f2(z1, t ,c) = wz(x=l , z1, t ,c) with f2 ªN
°
µ f2 , s f2

¢
.

Now that a measure for distortion robustness - i.e. the standard deviation swz - is analytically
determined, offset z1 and flank thickness t can be optimized for robustness. An optimiza-
tion problem is formulated below where offset z1 and flank thickness t are optimized for
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robustness while constraining the distortion to a maximum of wz,max = 6mm (arbitrary).

minimize
z1,t

f (z1, t )

subject to g1 =
t +p + z1

h
°1 ∑ 0,

g2 =
t
b
°1 ∑ 0,

g3 =
wz(x=l , z1, t )

wz,max
°1 ∑ 0

with f (z1, t ) = swz (z1, t )

wz,max = 6mm.

The objective function as a function of the two design variables f (z1, t ) is visualized in a
contour plot which is shown in Fig. 3.22 of which the Matlab code is included in Appendix
B.3. Two inequality constraints g1 and g2 dictate that T-section dimensions may not exceed
rolled plate dimensions.

Figure 3.22: A contour plot visualizing the objective function f (z1, t ) as a function of two design vari-
ables, being offset z1 and flank thickness t . The objective function relates to robustness.
Two inequality constraints g1 and g2 dictate that T-section dimensions may not exceed
rolled plate dimensions. A third inequality constraint g3 (purple) dictates that distortion
may not exceed the maximum value of wz (x=l , z1, t ) ∑ 6mm.

3.8 Till what point can analytical equations be used?

For simple problems concerning prismatic beams, distortion and distortion robustness can
be determined analytically, as was done for beams with rectangular and T shaped cross sec-
tions in Sections 3.4 and 3.5. The analytical distortion derivation for a T-section was already
found to be considerably complex (Fig. A.2). Based on the analytical equations for distor-
tion and robustness, simple optimization problems can be solved, as was done in Sections
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3.6 and 3.7. Offset z1 of the beam in rolled plate and a geometric property such as the flank
thickness t have been optimized for distortion and robustness. The question is, till what
point can distortion and robustness be derived analytically and until what point can opti-
mization problems be solved based on analytical equations?
Two examples of aircraft components are shown in Fig. 3.23, which shows a structural
bracket belonging the AIRBUS A350 aircraft and in Fig. 3.24, which shows an engine air-
craft component. As becomes obvious, aircraft components are highly complex and non-
prismatic. Due to this complexity, it is nearly impossible to analytically derive distortion
and robustness. Therefore, Finite Element Analysis will be used for structural analyses con-
cerning complex aircraft components.
Note: for prismatic beams in homogeneous stress fields, optima can be found where distor-
tion in the form of bending of the whole component is equal to zero, like was discovered in
Sections 3.6 and 3.7. However, for non-prismatic beams in homogeneous stress fields, dis-
tortion in the form of bending is never equal to zero (unless the component is symmetrical)
since moment generated by the stress field is varying throughout the beam’s length.

Figure 3.23: A structural bracket belonging to the AIRBUS A350 aircraft [41].

Figure 3.24: An engine aircraft component [42].
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Chapter 4

A computational efficient method for
distortion robustness analyses

As was elaborated upon in Chapter 1, state-of-the-art modeling tools have been developed
that can predict distortion and robustness for aircraft components positioned in pre-stressed
stock material. Deterministic distortion modeling tools have been developed, however have
turned out to be meaningless due to the large variation in part distortion as a result of the
stochastic nature of rolled plate residual stress; Low distortion deduced for a given piece
of rolled plate might result in significant distortion for another piece of rolled plate. Con-
sequently, efforts have been made to develop robustness prediction tools. However, these
robustness prediction tools have proven to worsen the computational efficiency of Finite
Element Analyses drastically. In this Chapter, state-of-the-art robustness modeling tools
are evaluated and the reason for the computational inefficiency is elaborated upon. Subse-
quently, based upon the governing equations in the Finite Element Analyses, an improved -
computational efficient - method for evaluating robustness is introduced. Throughout this
Chapter, statements that are made will be supported by Finite Element Analyses concerning
a meshed beam that is illustrated in Fig. 4.1.

Figure 4.1: A meshed rectangular beam consisting of hexahedron elements which is positioned in
stock material at offset z1 = 50mm and is subjected to a two-dimensional stress field of
which the specifications were derived in Chapter 2.2. The beam has dimensions l1 =
50mm, l2 = 1000mm and l3 = 50mm. The thickness of stock material is h = 300mm. The
beam has a Young’s Modulus of E = 70.07GPa.

The accuracy of the Finite Element analyses is not our main concern herein, hence a coarse
mesh will suffice. Fig. 4.2 shows the mesh including the chosen set of iso-static boundary
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conditions and the centre node for which displacement in z-direction will be assessed as a
measure for distortion.

Figure 4.2: The meshed beam for which distortion and robustness will be evaluated. Rigid body
modes are blocked through the iso-static boundary conditions. Distortion is measured
as being the displacement in z-direction, u3, of the beam’s centre node.

The Finite Element simulations in this Chapter concern a beam that is positioned at an off-
set of z1 = 50mm (arbitrarily chosen) with respect to the rolled plate’s bottom face. Further-
more, the beam is not rotated about any of the x-, y- and z-axes (Æ = 0rad,Ø = 0rad,∞ =
0rad).

4.1 Relation between residual stress and displacements in Fi-
nite Element Analyses

Before elaborating on the state of the art of distortion robustness evaluation methods, the
governing equations relating displacements with residual stress are elaborated upon. The
governing equations consist of three types [43] which will be formulated in the numerical
discretized notation. The continuity equation relates the displacement field, u, with strain,
≤. The strain components are related to the displacements by the linear operation

≤= Du, (4.1)

wherein D is itself a function of u if geometric linearity assumptions are not invoked. In gen-
eral, geometric linearity assumptions are valid if the displacement gradient can be assumed
small. Since in the context of aircraft component distortion, displacements as a result of
residual stress are usually small with respect to component dimensions, geometric linearity
will be assumed like was done in the analytical equation relating displacement to curvature
in Eq. 3.10. The relation between strain, ≤, and displacement, u, is thus assumed linear as a
result of which D does not depend on u,

D = D[0]. (4.2)

The constitutive equation relates stress,æ, with internal strain, ≤. The residual stress matrix,
which is denoted by æ†, can be added as an extra term to the constitutive equation, like

æ= S≤+æ†. (4.3)

The equilibrium equation relates the external forces, f , with the stresses, æ, by

f = DTæ. (4.4)
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Substituting the continuity equation in the constitutive equation and subsequently the con-
stitutive equation in the equilibrium equation, yields the total equation relating external
forces, f , with displacements, u

f = DT
≥
SDu +æ†

¥
. (4.5)

Residual stress fields are those stresses present in a body in the absence of external loads, as
a result of which

f = 0 (4.6)

holds. The stiffness matrix can be defined as

DT SD = K . (4.7)

Since, due to geometric linearity, D is independent of u, D[0], stiffness matrix K is indepen-
dent of u as well, K [0]. Substituting Eq. 4.6 and Eq. 4.7 in the total equation in Eq. 4.5,
yields

0 = K [0]u +D[0]Tæ†. (4.8)

Since K and D do not depend on the displacement field u, Eq. 4.8 can be rewritten to the
static equilibrium equation relating the residual stress field,æ†, to the displacement field, u,
by

K u =°DTæ†. (4.9)

This equation is solved during a Finite Element Analysis and solving this equation requires
computational effort.

4.2 The residual stress matrixæ† as a function of translation
(z1) and rotation (Æ, Ø, ∞) of the residual stress field

The aim of the Finite Element Analysis is to obtain the displacement field u as a function of a
body’s orientation in a two-dimensional stress field. The relationship between the displace-
ment field u and residual stress matrix æ† has been derived in Section 4.1 and the equation
which is to be solved through the Finite Element Analysis was given in Eq. 4.9. The residual
stress matrix æ† forms the input for the Finite Element Analysis and the displacement field
u is the output of the Finite Element Analysis. In this Chapter, the relationship between the
residual stress matrixæ† that forms the input for the Finite Element Analysis and translation
(z1) and rotation (Æ, Ø, ∞) of the stress field with respect to the mesh is determined.

In the Finite Element Analysis, orienting the body within a stress field can be simulated by
orienting the stress field with respect to the mesh which is held fixed, such as is illustrated
in Fig. 4.3. The orientation of the body within stock material can be described by six degrees
of freedom or rigid body motions, being displacement of the body in three directions and
rotation of the body about three axes. Since the stress field is homogeneous along the x- and
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Figure 4.3: The meshed rectangular beam that was shown earlier in Fig. 4.1 which is positioned in
stock material having a two-dimensional stress field. Positioning of the beam inside stock
material is simulated by translating and rotating the stress field with respect to the (fixed)
mesh. The positioning of the beam within stock material is determined via four degrees
of freedom, being translation in z-direction and rotation about the x-, y- and z-axis.

y-direction, translating the body x- and y-direction has no effect on the stress mapping of
the stress fields on the elements. Only translation in z-direction is relevant. In other words,
the positioning of a body in stock material is determined by four degrees of freedom, being
translation in z-direction and rotation about the x-, y- and z-axes.
Let’s start with simulating translation in z-direction of a two-dimensional mesh with respect
to a one-dimensional stress field, such as is illustrated in Fig. 4.4. Translation of the body in
z-direction can be simulated by translating the stress field in z-direction with respect to the
mesh.

Figure 4.4: A two-dimensional mesh containing quadrilateral elements which is subjected to a one-
dimensional stress field æ11. Translating the mesh in z°direction with respect to the
stress field is simulated by translating the stress field z°direction and interpolating the
translated stress field based upon the z-coordinate of the element’s integration points.

For each two-dimensional quadrilateral element having a single integration point in the
centre, a stress tensor must be defined. This stress tensor [44] has three unique stress tensor
components, being æ11, æ13 and æ33. As the stress field in Fig. 4.4 contains only æ11, the
stress tensor components æ13 and æ33 are equal to zero, like is stated below.

æ=
∑
æ11 æ13

æ31 æ33

∏
=

∑
æ11 0

0 0

∏
.
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æ11(z, z1) depends only on the integration’s point z-coordinate and the offset, z1, of the stress
field with respect to the mesh via the relationship that was obtained in Chapter 2, being

æ†
11(z, z1) =

6X

i=1
c†

11,i cos
µ

i 2º
h

≥
z + z1

¥∂
, (4.10)

in which h is the height of the stock material and z1 is the offset of the stress field with respect
to the origin of the coordinate system, which in this example is positioned at the geometric
centroid. Such as is illustrated in Fig. 4.4, for each element in the mesh, the stress tensor
is determined based upon the z-coordinate of the integration point and the offset, z1, by
solving Eq. 4.10. Suppose that the stress field is rotated with an angle µ about the y-axis,
such as is illustrated in Fig. 4.5.

Figure 4.5: A two-dimensional mesh containing quadrilateral elements which is subjected to a ro-
tated one-dimensional stress field æ11. Rotation of the mesh about the y°axis with re-
spect to the stress field is simulated by rotation of the stress field about the y°axis and
interpolating the rotated stress field based upon the z 0-coordinate of the element’s inte-
gration points.

The coordinates of the element’s integration points are known in the untransformed (i.e.
reference) coordinate system of the mesh. The integration point’s coordinates can be ex-
pressed in the transformed (i.e. rotated) coordinate system by making use of the so-called
coordinate transforms. Coordinate transforms represent rotations of the coordinate system
while the object is held constant by making use of the Q matrix [45]. The Q matrix for a
two-dimensional system is equal to

Q =
∑

cosµ sinµ
°sinµ cosµ

∏
. (4.11)

The Q matrix describes the relationship between the coordinates of a point with respect to
the reference coordinate system and the coordinates of the same point with respect to the
transformed coordinate system. The relationship between a vector described in the refer-
ence coordinate system and the same vector in the transformed coordinate system is

v 0 =Qv . (4.12)
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and in matrix notation is
∑

v 0
1

v 0
2

∏
=

∑
cosµ sinµ
°sinµ cosµ

∏
·
∑

v1

v2

∏
.

In this equation, v represents the coordinates of the integration point with respect to the
reference coordinate system and v 0 the coordinates of the integration point with respect to
the transformed coordinate system. From vector v 0, the z’-coordinate - i.e. v 0

2 - can be used
to obtain æ0

11 via Eq. 4.10, which is the xx 0-component of the stress tensor with respect to
the transformed coordinate system, æ0, like

æ0 =
∑
æ0

11 æ0
13

æ0
31 æ0

33

∏
=

∑
æ0

11 0
0 0

∏
.

The stress tensor of the integration point has been derived with respect to the transformed
coordinate system,æ0. However, the stress tensor of the integration point should be defined
with respect to the untransformed coordinate system, æ. In order to transform a stress ten-
sor to a different coordinate system, a tensor transformation must be done. A stress tensor in
the transformed coordinate system, æ0, is obtained from a stress tensor in the undeformed
coordinate system, æ, by [45]

æ0 =QæQT . (4.13)

In this case, the stress tensor in the transformed coordinate system, æ0, is known and the
stress tensor in the untransformed coordinate system, æ, is to be determined, like is illus-
trated in Fig. 4.6. The element with the integration point can be represented as an infinites-
imal material point having a two-dimensional stress state.

Figure 4.6: The two-dimensional stress state of an infinitesimal material point in the transformed
coordinate system (right) and in the untransformed coordinate system (left). In order to
obtain the stress tensor in the untransformed coordinate system, a tensor back transfor-
mation must be done.

When pre-multiplying both sides with QT and post-multiplying both sides with Q and mak-
ing use of the fact that QT =Q°1 by which QT Q = I , the tensor back transformation relation
is obtained [45], which is

æ=QTæ0Q . (4.14)

Up to this point a two-dimensional situation was considered. Both translation in z-direction
and rotation about the y-axis of the stress field with respect to the mesh was simulated. The
next step is to consider a three-dimensional situation in which the stress field can be rotated
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about three axes. The second stress direction æ22 will be taken into account as well.

In the three-dimensional situation, three basic coordinate transforms are formulated. A
basic coordinate transform describes the relationship between a transformed and an un-
transformed coordinate system which is rotated about one of three axes. The three basic
coordinate transform matrices are [45]

Q x(Æ) =

2

4
1 0 0
0 cosÆ sinÆ
0 °sinÆ cosÆ

3

5 , (4.15)

Q y (Ø) =

2

4
cosØ 0 °sinØ

0 1 0
sinØ cosØ

3

5 (4.16)

and

Q z(∞) =

2

4
cos∞ sin∞ 0
°sin∞ cos∞ 0

0 0 1

3

5 , (4.17)

where Æ, Ø and ∞ embody the Euler angles about the x-, y- and z-axes, respectively. Then,
the general coordinate transform can be obtained from these three basic coordinate trans-
form matrices by using matrix multiplication. The general coordinate transform describes
the relationship between the coordinates of a point with respect to the reference coordinate
system and the coordinates of the same point with respect to the transformed coordinate
system which is rotated about three axes simultaneously and is given by

Q(Æ,Ø,∞) =Q z(∞)Q y (Ø)Q x(Æ). (4.18)

With the use of the general coordinate transform that is stated in Eq. 4.18, the stress tensors
for all elements in the mesh as result of rotation of the stress field about three axes Æ, Ø and
∞ can be determined. In Fig. 4.7, the stress tensor components of a material point are shown
in the transformed and in the untransformed configuration.

Figure 4.7: The three-dimensional stress state of an infinitesimal material point in the transformed
coordinate system (right) and in the untransformed coordinate system (left). In order to
obtain the stress tensor in the untransformed coordinate system, a tensor back transfor-
mation must be done.

The procedure for obtaining the stress tensors with respect to the untransformed configu-
ration for all elements in the mesh remains equal to the procedure described in the two-
dimensional stress state scenario and is summarized.
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1. The rotations Æ, Ø, ∞ and the offset z1 of the stress field with respect to the mesh are
determined.

2. The basic coordinate transforms Q z(∞), Q y (Ø) and Q x(Æ) are determined based upon
rotationsÆ,Ø, ∞, by using Eq. 4.15, 4.16 and 4.17. Subsequently, the general coordinate
transform Q(Æ,Ø,∞) is obtained by using Eq. 4.18.

3. The coordinates of the element’s integration points with respect to the untransformed
coordinate system are stored in vector

v (x, y, z) =

2

4
v1(x)
v2(y)
v3(z)

3

5 .

4. A coordinate transform is performed in order to express the integration point’s coordi-
nates with respect to the transformed coordinate system, v 0, by using Eq. 4.12, which
is

v 0(x, y, z,Æ,Ø,∞) =Q(Æ,Ø,∞)v (x, y, z),

in which Q(Æ,Ø,∞) is the general coordinate transform which was obtained in step 2.

5. The stress componentsæ0
11 andæ0

22 of the transformed stress tensoræ0 are determined
by substituting the z 0-coordinate of v 0(x, y, z,Æ,Ø,∞) - i.e. v 0

3(x, y, z,Æ,Ø,∞) - into Eq.
4.19 and Eq. 4.20.

æ†
11(x, y, z, z1,Æ,Ø,∞) =

6X

i=1
c†

11,i¡i (x, y, z, z1,Æ,Ø,∞). (4.19)

æ†
22(x, y, z, z1,Æ,Ø,∞) =

6X

i=1
c†

22,i¡i (x, y, z, z1,Æ,Ø,∞). (4.20)

In these equations,

¡i (x, y, z, z1,Æ,Ø,∞) = cos
µ

i 2º
h

≥
v 0

3(x, y, z,Æ,Ø,∞)+ z1

¥∂
. (4.21)

6. The integration point’s stress tensor in the transformed configurationæ0 is determined

æ0 =

2

4
æ0

11 æ0
12 æ0

13
æ0

21 æ0
22 æ0

23
æ0

31 æ0
32 æ0

33

3

5=

2

64
æ†

11(x, y, z, z1,Æ,Ø,∞) 0 0
0 æ†

22(x, y, z, z1,Æ,Ø,∞) 0
0 0 0

3

75 .

7. A stress tensor back transformation is performed in order to obtain the integration
point’s stress tensor in the untransformed configuration æ

æ=QTæ0Q .

This procedure is repeated for each element in the mesh. The final matrix consisting all
stress tensors for each element in the mesh is the residual stress matrix æ†. This matrix
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forms the input for the Finite Element Analyses.

Now that the relation between the residual stress matrix æ† and the orientation of the stress
fields with respect to the mesh has been determined, a deterministic static analysis can be
done concerning the elementary beam shown in Fig. 4.1 with the mesh which was shown
in Fig. 4.2. In this static analysis, the stress coefficients c†

11,i and c†
22,i for i = 1 · · ·6 will be

Figure 4.8: The mesh of the elementary beam before the static analysis (increment 0) and after the
static analysis (increment 1).

assumed to be deterministic by nature, as a result of which the obtained displacement field
u is deterministic by nature as well. Fig. 4.8 shows the undeformed beam before the static
analysis (increment 0) and the deformed beam after the static analysis (increment 1). The
static analysis was performed in Abaqus. The implementation of the stress field mapping
and the deterministic static analysis in Abaqus and Python is elaborated in Appendix C.1.
As can be observed, the stress profile has fully relaxed as a result of stress relaxation.
The outcome of the deterministic static analysis is listed in Tab. 4.1.

Table 4.1: An overview of the results of the static analysis that are relevant. The static analysis con-
cerns an elementary beam subjected to a deterministic stress field having an offset z1 with
respect to the mesh, such as is illustrated in Fig. C.1.

Outcome of deterministic static analysis Symbol Value

Centre node displacement u3 °1.442096mm
Number of static analyses required m 1

Computation time t º 13sec

The value for distortion of the centre node obtained with a deterministic static analyses
will be compared to the mean value obtained using the state-of-the-art method and the
improved method for robustness evaluation obtained in Section 4.3 and 4.4, respectively.
Furthermore, the computational efficiency of the state-of-the-art method will be compared
with the computational efficiency of the improved method, by inspecting the number of
static analyses required, m, and the computation time, t .

4.3 State-of-the-art methods for robustness analyses

State-of-the-art methodologies for evaluating distortion robustness struggle with compu-
tational efficiency. A frequently used method to obtain stochastic information on distor-
tion - i.e. robustness - is the Monte Carlo method, also referred to by Monte Carlo exper-

43



iments [10, 11]. The Monte Carlo method is used when one wants to know the stochas-
tics of an unknown output distribution that is a function of an input of which the distri-
bution is known. One resorts to Monte Carlo experiments when the relation between the
output distribution and input distribution cannot be established analytically. The Monte
Carlo method relies on repeated random sampling of the input distribution and calculat-
ing the output as a function of the random samples in order to obtain numerical results for
the output distribution. By the law of large numbers, the numerically obtained distribution
converges to the analytical output distribution by increasing sample size m. Since the out-
put distribution is obtained by propagating random samples with a large sample size, this
method is considered to be a rough method. One can imagine that the Monte Carlo method
is a highly inefficient approach since a great deal of Finite Element Analyses are needed to
obtain stochastic information on the distortion distribution, which is extremely costly. Of-
ten concessions are made to the sample size m in order to reduce computational costs. This
however weakens the reliability of the obtained distribution since a substantial sample size
m is needed to approach the analytical output distribution. The Monte Carlo method ap-
plied to obtaining information about the distortion distribution is illustrated in Fig. 4.9.

Figure 4.9: The Monte Carlo loop used for obtaining the distortion distribution. For each iteration,
a static analysis must be performed which is computationally costly. If sample size m
is large enough, the numerically obtained output distribution converges - by the law of
large numbers - to the analytical distortion distribution.

At the end of the Monte Carlo experiments, m displacement fields {u}1 · · · {u}m are obtained,
in which {u}k is a vector containing displacements for each node in the mesh. For each node
in the mesh, m displacements are obtained which form a displacement distribution for each
node. The mean and standard deviation of this displacement distribution can subsequently
be obtained by applying Eq. 2.8 and 2.9, which were used in Section 2.2 for obtaining the
distribution the stress coefficients. If the sample size m is chosen large enough, the ob-
tained displacement distribution approaches the analytical displacement distribution. The
individual steps in the Monte Carlo experiments shown in Fig. 4.9 are elaborated below.

1. A random sample set {c†
11,1,c†

11,2, ..,c†
11,6}k and {c†

22,1,c†
22,2, ..,c†

22,6}k is drawn from the

normally distributed fit coefficients c†
11,i ª N (µc†

11,i
, sc†

11,i
) and c†

22,i ª N (µc†
22,i

, sc†
22,i

),

like is illustrated in Fig. 4.10. The stochastic parameters for the normally distributed
fit coefficients were determined in Section 2.2.

2. Based upon the random sample set of stress coefficients {c†
11,1,c†

11,2, ..,c†
11,6}k and

{c†
22,1,c†

22,2, ..,c†
22,6}k , which were determined in the previous step, and a mapping of
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Figure 4.10: This figure illustrates that a random sample set k is drawn from the normally distributed
stress coefficients c†

11,i and c†
22,i

the rotated (Æ, Ø and ∞) and translated (z1) stress fields to the elements in the mesh,
the residual stress matrix {æ†}k is determined by employing the methodology that was
elaborated upon in Section 4.2. The residual stress matrix {æ†}k includes stress tensors
of all elements in the mesh of which the individual stress tensor components were
related to the stress coefficients by

{æ†
11(x, y, z, z1,Æ,Ø,∞)}k =

6X

i=1
{c†

11,i }k¡i (x, y, z, z1,Æ,Ø,∞)

and by

{æ†
22(x, y, z, z1,Æ,Ø,∞)}k =

6X

i=1
{c†

22,i }k¡i (x, y, z, z1,Æ,Ø,∞)

The residual stress matrix {æ†}k forms the input for the Finite Element Analysis.

3. A static analysis is executed in Abaqus in order to obtain the displacement field {u}k .
The input for the static analysis is the residual stress matrix {æ†}k which was obtained
in the previous step. As was elaborated upon in Section 4.1, the displacement field
{u}k is obtained through Finite Element Analyses by solving the equation

K {u}k =°DT {æ†}k .

The obvious downside of applying the state-of-the-art method is that a large sample size m
is necessary in order to reliably describe the distortion distribution. In practice, a sample
size of m > 1000 is needed to obtain reliable results. Since for each sample a separate static
analysis must be executed, this method is very costly in terms of computational effort. In
practice, often concessions are made to the sample size, weakening the reliability of the ro-
bustness analysis.

Since the relation that is solved by Finite Element Analyses in step 3 has a linear appearance,
the question rises why the state of the art resorts to the expensive Monte Carlo experiments
at all. This is since often geometric nonlinearity is assumed, as a result of which D does de-
pend on displacement field u, D[u], by which stiffness matrix K does depend on u as well,
K [u]. When assuming geometric nonlinearity, the relation in step 3 does become nonlinear.
Furthermore, the state of the art resorts to Monte Carlo experiments since no efforts have
been made to establish the relation between a stress field having multiple stochastic input
variables and a single stochastic output analytically. The improved method in Section 4.4
will show that a single output distribution depending on multiple input distributions can be
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determined analytically.

The state-of-the-art methodology for evaluating robustness, which was elaborated upon in
this Chapter, will be employed for the elementary beam that was shown in Fig. 4.1. Fig. 4.11
visualizes the outcome of the state-of-the-art method in a scatter plot (left) and a histogram
(right). The scatter plot shows the centre node displacement for each Monte Carlo itera-
tion and the histogram visualizes the occurrence of the centre mode displacement, which
appears to be similar to the histogram of a normal distribution.

Figure 4.11: A scatter plot (left) of the centre node (node 1038) displacement u3 per Monte Carlo
iteration and a histogram (right) of the occurance of the centre node displacement.

The implementation of the state-of-the-art method in Abaqus and Python is elaborated in
Appendix C.2. Tab. 4.2 summarizes the outcome of the state-of-the-art method for obtain-
ing distortion robustness of the elementary beam that was shown in Fig. 4.1.

Table 4.2: An overview of the outcome of the state-of-the-art method employed for evaluating dis-
tortion robustness of the elementary beam that was shown in 4.1 and that was subjected
to a stochastic stress field as was specified in Section 2.2.

Outcome of the state-of-the-art method Symbol Value

Mean value of centre node displacement µu3 °1.445049mm
Standard deviation of centre node displacement su3 3.078326£10°1 mm

Number of static analyses required m 10000
Computation time t º 85157sec

As can be concluded, the state-of-the-art method is highly costly in computational effort,
since a great number of static analyses were required to evaluate distortion robustness.
10000 static analyses were performed in order to achieve high reliability. The mean value
of the centre node displacement, µu3 , is approximately equal to the centre node displace-
ment obtained in the deterministic static analysis of which the outcome was listed in Tab.
4.1.
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4.4 Improved method for robustness analyses

It can be concluded that the state-of-the-art method for evaluating distortion robustness
which was elaborated upon in Section 4.3 is highly inefficient in terms of computational ef-
fort. Particularly considering the complex Finite Element geometries and large number of
degrees of freedom encountered in practice. Considering the fact that linearity assumptions
are invoked in the governing equations, as was substantiated in Section 4.1, distortion ro-
bustness can be evaluated whilst requiring relatively little computational effort.

Let’s start by recalling Eq. 4.9 which was derived in Section 4.1 and describes the relationship
between the displacement field, u, and the residual stress matrix, æ†, which was

K u =°DTæ†.

For explanation purposes, an elementary mesh will be considered consisting of a single ele-
ment having a single integration point. Furthermore, a stress field is considered which is not
rotated about any of the three axes with respect to the mesh (Æ= 0,Ø= 0,∞= 0). The state-
ments derived in this Chapter will also hold for meshes containing multiple elements and
for stress fields that are rotated with respect to the mesh. Considering these assumptions,
the residual stress tensor, æ†, is constituted as

æ† =

2

64
æ†

11 æ†
12 æ†

13
æ†

21 æ†
22 æ†

23
æ†

31 æ†
32 æ†

33

3

75=

2

64
æ†

11(x, y, z, z1) 0 0
0 æ†

22(x, y, z, z1) 0
0 0 0

3

75 .

where the stress tensor components æ†
11(x, y, z, z1) and æ†

22(x, y, z, z1) depend on the coor-
dinates of the integration point (x, y, z) and the offset of the stress field with respect to the
mesh (z1), as was stated in Eq. 4.19 and in Eq. 4.20, respectively and as is repeated below.

æ†
11(x, y, z, z1) =

6X

i=1
c†

11,i¡i (x, y, z, z1).

æ†
22(x, y, z, z1) =

6X

i=1
c†

22,i¡i (x, y, z, z1).

In these equations, ¡i (x, y, z, z1) was stated to be (Eq. 4.21)

¡i (x, y, z, z1) = cos
µ

i 2º
h

≥
z + z1

¥∂
.

æ† can be rewritten into two terms, æ†
11 and æ†

22, like

æ† =æ†
11 +æ†

22 =

2

4
æ†

11(x, y, z, z1) 0 0
0 0 0
0 0 0

3

5+

2

4
0 0 0
0 æ†

22(x, y, z, z1) 0
0 0 0

3

5 . (4.22)

Substituting Eq. 4.19 and Eq. 4.20 for æ†
11(x, y, z, z1) and æ†

22(x, y, z, z1), respectively, yields

æ†
11 =

6X

i=1
c†

11,i

2

4
¡i (x, y, z, z1) 0 0

0 0 0
0 0 0

3

5 . æ†
22 =

6X

i=1
c†

22,i

2

4
0 0 0
0 ¡i (x, y, z, z1) 0
0 0 0

3

5 . (4.23)
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For the sake of convenience, individual stress mode matrices ¡11,i and ¡22,i are defined for
i = 1 · · ·6. ¡11,i and ¡22,i are independent of the stochastic stress coefficients c†

11,i and c†
22,i ,

as a result of which these matrices are deterministic by nature. These individual stress mode
matrices are stated below.

¡11,i =

2

4
¡i (x, y, z, z1) 0 0

0 0 0
0 0 0

3

5 . ¡22,i =

2

4
0 0 0
0 ¡i (x, y, z, z1) 0
0 0 0

3

5 . (4.24)

Substituting¡11,i and¡22,i in Eq. 4.23 and æ†
11 and subsequently æ†

22 in Eq. 4.22, yields

æ† =
6X

i=1
c†

11,i¡11,i +
6X

i=1
c†

22,i¡22,i . (4.25)

Substituting the obtained expression for æ† into the equation for static equilibrium in Eq.
4.9, which was derived in Chapter 4.1, yields

K u =°DTæ†

=°DT

√
6X

i=1
c†

11,i¡11,i +
6X

i=1
c†

22,i¡22,i

!

. (4.26)

This expression can be rewritten to

K u =
6X

i=1
c†

11,i

°
°DT¡11,i

¢
+

6X

i=1
c†

22,i

°
°DT¡22,i

¢
. (4.27)

Twelve individual mode displacement fields U 11,i and U 22,i can be defined for i = 1 · · ·6 that
are independent of the stochastic stress coefficients c†

11,i and c†
22,i , respectively. These dis-

placements fields are deterministic by nature and are obtained through solving the equa-
tions below.

KU 11,i =°DT¡11,i .

KU 22,i =°DT¡22,i . (4.28)

Substituting the expressions obtained in Eq. 4.28 into the equation in Eq. 4.27, yields

K u =
6X

i=1
c†

11,i

°
KU 11,i

¢
+

6X

i=1
c†

22,i

°
KU 22,i

¢
.

Simplifying this expression, leads to the relation between the individual mode displacement
fields U 11,i and U 22,i that do not depend on the stochastic stress coefficients c†

11,i and c†
22,i ,

and the total displacement field u that does depend on the stochastic stress coefficients,
with

u =
6X

i=1
c†

11,iU 11,i +
6X

i=1
c†

22,iU 22,i . (4.29)

The purpose of rewriting expression 4.9 to expression 4.29 is that displacement fields U 11,i

and U 22,i have been defined that are deterministic by nature. The stochastics of the total

48



displacement field u can subsequently be determined through a linear combination of the
deterministic displacement fields U 11,i and U 22,i and the stochastic stress coefficients c†

11,i

and c†
22,i , like is formulated in Eq. 4.29.

Via Eq. 4.29, the parameters describing the stochastics, being the mean and standard de-
viation, of the total displacement field u can be derived analytically. Probability theory [40]
states that a function containing a summation of normally distributed parameters itself has
a normal distribution as well. Consider a function f (x) which is a function of variable x
which is normally distributed and constant a which is deterministic by nature, like

f (x) = ax with x ªN
°
µx , sx

¢
. (4.30)

As was agreed upon in Chapter 2.2, the symbols µ and s are used for the mean and standard
deviation, respectively. The mean, µ f , and standard deviation, s f , describing the normal
distribution of function f (x), are subsequently obtained through solving the equations be-
low.

µ f = aµx (4.31)

s f = asx (4.32)

Now, consider a function g (x1, x2, x3) which is a function of variables x1, x2 and x3 which are
normally distributed and constants a, b and c which are deterministic by nature, like

g (x1, x2, x3) = ax1 +bx2 + cx3 with x1 ªN
°
µx1 , sx1

¢

x2 ªN
°
µx2 , sx2

¢

x3 ªN
°
µx3 , sx3

¢
. (4.33)

This time, the mean, µg , and standard deviation, sg , describing the normal distribution of
function g (x1, x2, x3), are obtained through solving the equations below.

µg = aµx1 +bµx2 + cµx3 . (4.34)

sg =
q°

asx1

¢2 +
°
bsx2

¢2 +
°
csx3

¢2. (4.35)

In the same manner, based upon Eq. 4.29, the mean and standard deviation, µu and su
respectively, of the total displacement field u can be derived analytically. The normal dis-

tributions of stress coefficients c†
11,i ª N

≥
µc†

11,i
, sc†

11,i

¥
and c†

22,i ª N
≥
µc†

22,i
, sc†

22,i

¥
are known.

This time, the mean and standard deviation,µu and su respectively, are in vector form since
they describe the normal distributions of the displacements for all nodes in the mesh. The
mean and standard deviation, µu and su respectively, of the normal distributions of the dis-
placements for each node in the mesh can be determined through solving the equations
below.

µu =
6X

i=1
µc†

11,i
U 11,i +

6X

i=1
µc†

22,i
U 22,i . (4.36)

su =

vuut
6X

i=1

≥
sc†

11,i
U 11,i

¥2
+

6X

i=1

≥
sc†

22,i
U 33,i

¥2
. (4.37)

The methodology developed in this Chapter for obtaining the distortion distribution in a
computational efficient manner can be summarized as:
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1. Twelve static analyses are executed in Abaqus in order to obtain the twelve individ-
ual mode displacement fields U 11,i and U 22,i for i = 1 · · ·6. The inputs for the static
analyses are the individual mode matrices ¡11,i and ¡22,i for i = 1 · · ·6, which were
formulated in Eq. 4.24. The individual mode displacement fields U 11,i and U 22,i are
obtained through Finite Element Analyses by solving the equations below.

KU 11,i =°DT¡11,i ,

KU 22,i =°DT¡22,i , for i = 1 · · ·6.

2. The two parameters describing the distortion distribution of the total displacement
field u, being the mean and standard deviation, µu and su respectively, are analyti-
cally determined through solving the equations stated in Eq. 4.36 and Eq. 4.37 and
repeated below. The mean and standard deviations of the stress coefficients c†

11,i ª
N

≥
µc†

11,i
, sc†

11,i

¥
and c†

22,i ª N
≥
µc†

22,i
, sc†

22,i

¥
for i = 1 · · ·6 are known and were stated in

Tab. 2.1.

µu =
6X

i=1
µc†

11,i
U 11,i +

6X

i=1
µc†

22,i
U 22,i .

su =

vuut
6X

i=1

≥
sc†

11,i
U 11,i

¥2
+

6X

i=1

≥
sc†

22,i
U 33,i

¥2
.

The obtained mean and standard deviation of the distortion distribution, µu and su
respectively, are vectors in which the distortion distribution for each node in the mesh
is stored.

The developed methodology has substantially improved the state-of-the-art methodology
for evaluating distortion robustness. With the developed methodology, m = 12 static analy-
ses suffice and the distortion robustness can be derived analytically. With the state-of-the-
art methodology, distortion robustness is evaluated numerically and more than m > 1000
static analyses were needed to obtain a reliable evaluation of distortion robustness. Fewer
than m < 1000 static analyses would weaken the reliability of the obtained distribution. With
the developed methodology, significant simulation time can be spared since robustness can
be evaluated in a computational efficient manner.

The improved methodology for evaluating robustness, which was elaborated upon in this
Chapter, will be employed for the elementary beam that was shown in Fig. 4.1. The imple-
mentation of the improved method in Abaqus and Python is elaborated in Appendix C.3.
Tab. 4.3 summarizes the outcome of the improved method for evaluating distortion robust-
ness.
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Table 4.3: This table provides an overview of the outcome of the improved method employed for
evaluating distortion robustness of the elementary beam that was shown in 4.1 and that
was subjected to a stochastic stress field as was specified in Chapter 2.2.

Outcome of the improved method Symbol Value

Mean value of centre node displacement µu3 °1.442096mm
Standard deviation of centre node displacement su3 3.078827£10°1 mm

Number of static analyses required m 12
Computation time t º 76sec

The mean value for distortion, µu3 , and the standard deviation of distortion, su3 , obtained
with the improved method is approximately equal to the values obtained with the state-
of-the-art method which were listed in Tab. 4.2. Furthermore, it can be concluded that
the improved method for evaluating robustness significantly reduces computational effort.
Where m = 10000 static analyses were needed with the state-of-the-art method to reliably
evaluate the distortion robustness, only m = 12 static analyses are needed for evaluating
robustness with the improved method.
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Chapter 5

Case study

Now that an improved - computational efficient - method for predicting distortion robust-
ness has been validated for the elementary beam that was considered in Chapter 4, the im-
proved method can be applied to a case study that concerns a real, i.e. characteristic, aircraft
component. In this case study, distortion robustness is to be predicted for a stiffener com-
ponent that is manufactured from a piece of rolled plate, such as is illustrated in Fig. 5.1.
The piece of rolled plate is subjected to a two-dimensional stress field that is stochastic by
nature. The stochastics of the stress fields in the piece of rolled plate will be considered to
be equal to the stochastics derived in Chapter 2.2 which were based on experimental mea-
surements and are summarized in Tab. 2.1.

Figure 5.1: A piece of rolled plate stock material (left) from which a stiffener component (right) is
manufactured. The two-dimensional stress field present in the piece of rolled plate is
stochastic by nature such as was specified in Chapter 2.2. In this case study, distortion
robustness will be assessed as a function of the position of the component in the piece of
rolled plate.

First, in Section 5.1, the distortion magnitude and distortion robustness will be evaluated as
a function of translation of the stiffener component in z-direction throughout the thickness
of the piece of rolled plate. Subsequently, in Section 5.2, the component will be rotated
about the y-axis at a fixed offset z1. At last, in Section 5.3, the optimal position in terms of
offset z1 and angle Ø for robust distortion of the stiffener component will be determined.
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5.1 Translation z1 of the stiffener component in z-direction

First, the stochastic two-dimensional stress field will be translated in z-direction with re-
spect to the iso-statically fixed stiffener component, such as is illustrated in Fig. 5.2. Through-
out 0mm ∑ z1 ∑ 190mm both the distortion magnitude as well as distortion robustness will
be assessed. The domain 0mm ∑ z1 ∑ 190mm will be discretized into 21 design values for
z1 for which the distortion magnitude and distortion robustness will be assessed by using
Finite Element Analyses. Distortion robustness will be predicted in computational efficient
manner by using the improved method which was elaborated in Section 4.4. As a measure
for distortion, the displacement in z-direction of the centre node, uc,3, located on the bot-
tom centre line (indicated as a red line in Fig. 5.2), will be considered. As a measure for
distortion robustness, suc,3 , being the standard deviation of the centre node’s displacement
in z-direction, will be considered.

Figure 5.2: The two-dimensional stochastic stress field will be translated in z-direction throughout
the range 0mm ∑ z1 ∑ 190mm with respect to the iso-statically fixed stiffener component.
As a measure for distortion and distortion robustness, the displacement in z-direction of
the centre node located on the bottom centre line (red line) and its standard deviation,
uc,3 and suc,3 respectively, will be considered. The coordinate system shown in the illus-
tration is affiliated with the piece of rolled plate, i.e. the two-dimensional stress field.

An optimization problem can be formulated in which an offset z1 is sought at which dis-
tortion is most robust while constraining the magnitude of distortion to a maximum. The
optimization problem formulation is as follows.

minimize
z1

f (z1)

subject to g =
µ

uc,3(z1)
u3,max

∂2

°1 ∑ 0

0mm ∑ z1 ∑ 190mm

with f (z1) = 2suc,3 (z1)

u3,max = undetermined.

(5.1)

In Fig. 5.3, the objective function f (z1) is plotted together with the mean distortion curve
µuc,3 (z1). At each instance of z1, displacement of the centre node in z-direction can be
described by a normal distribution having a mean and standard deviation. In order to il-
lustrate distortion robustness throughout 0mm ∑ z1 ∑ 190mm, the mean-distortion-plus-
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two-standard-deviations curve µuc,3 +2suc,3 and the mean-distortion-minus-two-standard-
deviations curve µuc,3 °2suc,3 are plotted as well. These two curves form a bandwidth con-
taining four standard deviations suc,3 . 95.4 %, being the equivalent of four standard devia-
tions (see Fig. 2.11), of distortion of the centre node in z-direction, uc,3, occurs within this
interval.

Figure 5.3: A plot of the objective function f (z1) (blue line), a plot of the mean distortion µuc,3 (red
line) and plots of the mean distortion plus two standard deviations µuc,3 +2suc,3 and the
mean distortion minus two standard deviations µuc,3 ° 2suc,3 (red dotted lines). 95.4 % -
being the equivalent of four standard deviations - of distortion of the centre node in z-
direction, uc,3, falls within the area between the red dotted lines.

On closer inspection of Fig. 5.3, several observations can be made.

• The dispersion of distortion is relatively large - i.e. robustness is relatively poor - with
respect to the magnitude of distortion. Including robustness analyses in part distor-
tion problems thus seems highly relevant.

• A single destinctive trough is present at z1 = 123.5mm at which distortion seems to be
extremely robust, i.e 2suc,3 (z1) = 0.1915mm. At other values for z1, robustness seems
to be fairly constant - i.e. fluctuating between 2suc,3 (z1) º 0.5 - 0.7mm. Note that since
the z1 domain is discretized, a lower trough is plausibly existing.

• At some instances of z1, the distortion interval is located in the positive as well as the
negative domain, i.e. distortion can be either positive or negative implying that for
individual pieces of rolled plate in a batch, the curvature of the machined component
can be either convex or concave.

• Deterministic distortion passes through zero at four occasions of z1. One occasion
seems more favorable to the others for it has high robustness. At the Optimum, which
is located at z1 º 123.5mm, distortion robustness is high 2suc,3 º 0.2mm while at the
same time the magnitude of distortion is low, uc,3 º 0mm.

54

Not shown due to confidentiality



As was mentioned earlier in Section 3.8, aircraft components tend to be highly non-prismatic
due to their highly complex design features. As a result, components can deform in a differ-
ent way than would be expected from the deformation behavior of a prismatic component.
In Fig. 5.4, both prismatic- as non-prismatic deformation behavior is illustrated.

Figure 5.4: Examples of prismatic- and non-prismatic deformation behavior of the bottom centre line
of the stiffener component illustrated in Fig. 5.2. Both the undeformed (black line) as the
deformed bottom centre line (red line) are illustrated together with an example of the
stiffener component showing prismatic (left) and non-prismatic behavior (right) at given
offsets z1. Prismatic deformation behavior occurs with both prismatic and non-prismatic
components; non-prismatic deformation behavior could occur with non-prismatic com-
ponents.

When non-prismatic deformation behavior occurs, deformation of the bottom centre node
(indicated in Fig. 5.3) will not be a proper measure for distortion. For instance, distortion
can be zero at one node and non-zero at another node. Therefore, it seems wise to consider
a line of nodes throughout the component’s length along which distortion is measured, such
as is illustrated in Fig. 5.5.

Figure 5.5: The stiffener component together with the bottom centre line. Distortion along the bot-
tom centre line is measured by considering a number of equally distributed nodes i at
which distortion is evaluated in z-direction.

The deformation of the stiffener component’s bottom centre line can be visualized. The de-
formed bottom centre line will be referred to as distortion curve. In this case, 21 equally
spaced nodes along the bottom centre line were chosen. The distortion curves of the stiff-
ener component are plotted for all of the 21 discrete steps between 0mm ∑ z1 ∑ 190mm and
are depicted in Fig. D.1 in Appendix D.1.

On closer inspection of Fig. D.1 in Appendix D.1, it can be concluded that the stiffener
component shows mainly prismatic deformation behavior (one example of non-prismatic
deformation behavior was found at z1 = 129mm in Fig. 5.4). At four instances of z1, which
are shown in Fig. 5.6, several interesting distortion curve scenario’s were found. At offset
z1 = 0mm, the distortion curves can turn out to be either convex or concave, depending on
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from which rolled plate in the batch the component is manufactured. At offsets z1 = 76mm
and z1 = 190mm, all stiffener components manufactured from the entire batch will show
exclusively convex and concave deformation, respectively. At offset z1 = 123.5mm, robust-
ness is very high and the magnitude of distortion relatively low, which corresponds to the
results found in Fig. 5.3.

Figure 5.6: The distortion curves of the stiffener components for four instances of offset z1, being
z1 = 0mm, z1 = 76mm, z1 = 123.5mm and z1 = 190mm, respectively. All 21 instances
throughout 0mm ∑ z1 ∑ 190mm are included in Appendix D.1. The blue line represents
the mean distortion curve, the yellow line represents the mean-minus-two-standard-
deviations distortion curve and the red line represents the mean-plus-two-standard-
deviations distortion curve. 95.4 % - being the equivalent of four standard deviations -
of distortion curves will fall within the area between the yellow and red line.

A more appropriate measure for distortion and distortion robustness of the stiffener com-
ponent can be formulated. One that takes non-prismatic deformation behavior into con-
sideration. The amount of distortion, symbolized by fu , can be quantified by taking the
Euclidean magnitude of all displacements in z-direction of the selection of bottom centre
line nodes i with i = 1 · · ·n with n being the number of nodes, like

fu =
s

nX

i=1

°
ui ,3

¢2. (5.2)

Subsequently, the amount of robustness, symbolized by fsu , can be quantified by taking the
Euclidean magnitude of the standard deviations of the displacements ui ,3 for bottom centre
line nodes i = 1 · · ·n, like

fsu =
s

nX

i=1

°
sui ,3

¢2. (5.3)

Since the stiffener component shows mainly prismatic deformation behavior, displacement
in z-direction of the centre node, uc,3, as was formulated in the optimization problem in Eq.
5.1, will suffice as a measure for distortion. For components that show non-prismatic defor-
mation behavior, Eq. 5.2 and Eq. 5.3 would be more appropriate as a measure for distortion
and distortion robustness, respectively.

The optimal offset z1 at which the stiffener component is to be manufactured from the piece
of rolled plate for which distortion robustness is highest, together with the resulting distor-
tion distribution of the bottom centre line is visualized in Fig. 5.7.
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Figure 5.7: On the left, the optimal position of the stiffener component (blue) with respect to the
piece of rolled plate at offset z1 = 123.5mm is shown for which distortion robustness is
highest. On the right, the distortion distribution of the stiffener component’s bottom cen-
tre line is visualized. The blue curve represents the mean distortion curve µu3 , the blue
dotted curves represent the mean-minus-two-standard-deviations and the mean-plus-
two-standard-deviations curves, µu3 °2su3 and µu3 +2su3 , respectively. Distortion of the
bottom centre line will occur in between the blue dottes lines with a probability of 95.4 %.

In Tab. 5.2, the computational effort that was required for the robustness analysis of transla-
tion of the component in z-direction with respect to the piece of rolled plate is summarized.
Equivalent to the robustness analysis in Section 5.1, in total, 252 static analyses were re-
quired.

Table 5.1: An overview describing the computational effort that was required for performing a ro-
bustness analysis for the stiffener component as a function of its offset z1 inside the piece
of rolled plate using the improved method which was elaborated in Chapter 4.4.

Computational effort parameter Symbol Value

Number of design value iterations n 21
Number of static analyses per design value iteration m 12

Total number of static analyses required ° 252
Total computation time t 1h 45min 50sec
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5.2 Rotation Ø of the stiffener component about the y-axis

Next, the stochastic two-dimensional stress field is rotated with angle Ø about the y-axis
with respect to the iso-statically fixed stiffener component, such as is illustrated in Fig. 5.8.
The origin of the stress field is located at the component’s centre, as is illustrated in Fig. 5.8,
such that rotation of the component about its centre is simulated. During the rotation, the
component is held fixed at offset z1 = 38mm (arbitrary) with respect to the piece of rolled
plate’s bottom face, which is equivalent to a distance of 93mm between the origin and the
bottom face of the piece of rolled plate.

Figure 5.8: The two-dimensional stochastic stress field will be rotated about the y-axis throughout
the discretized range 0mm ∑Ø∑ 360° with respect to the iso-statically fixed stiffener com-
ponent. As a measure for distortion and distortion robustness, the Euclidean magnitude
of all centre line node displacements in x-, y- and z-direction, ui ,1, ui ,2 and ui ,3 and their
standard deviations, sui ,1 , sui ,2 and sui ,3 respectively, will be considered.

In Section 5.1, only displacements in z-direction were considered for determining the amount
of distortion and distortion robustness. In the case of rotation of the component about the
y-axis, displacements in other directions will become significant as well. This becomes ap-
parent in Appendix D.2 where the distortion curves of the stiffener component are depicted
throughout the discretized interval 0° ∑ Ø ∑ 360°. Distortion curves for displacement in x-,
y- and z-direction are depicted in Fig. D.2, Fig. D.3 and D.4, respectively. It seems wise to
consider displacements in all three directions (x, y and z) for expressing the amount of dis-
tortion and distortion robustness.

As was mentioned in Fig. 5.8, the Euclidean magnitude of all centre line node displace-
ments in x-, y- and z-direction, ui ,1, ui ,1 and ui ,1 respectively and their standard deviations,
sui ,1 , sui ,1 and sui ,1 respectively, will be considered as measure for distortion and distortion
robustness. The amount of distortion, symbolized by fu , is obtained through solving

fu =
s

nX

i=1

°
ui ,1

¢2 +
nX

i=1

°
ui ,2

¢2 +
nX

i=1

°
ui ,3

¢2. (5.4)

Subsequently, the amount of robustness, symbolized by fsu , is obtained through solving

fsu =
s

nX

i=1

°
sui ,1

¢2 +
nX

i=1

°
sui ,2

¢2 +
nX

i=1

°
sui ,3

¢2. (5.5)
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Again, an optimization problem can be formulated in which rotation Ø is sought for which
distortion is most robust while constraining the magnitude of distortion to a maximum. The
optimization problem formulation is as follows.

minimize
Ø

f (Ø)

subject to g =
µ

fu(Ø)
fu,max

∂2

°1 ∑ 0

0° ∑Ø∑ 360°

with f (Ø) = 2 fsu (Ø)

fu,max = undetermined.

(5.6)

In Fig. 5.9, the objective function f (Ø) = 2 fsu (Ø), which relates to robustness as was for-
mulated in Eq. 5.5, is plotted along with the magnitude of distortion, fu , which was formu-
lated in Eq. 5.4. The mean-distortion-plus-two-standard-deviations curve, fu+2 fsu , and the
mean-distortion-minus-two-standard-deviations curve, fu °2 fsu , are plotted as well. These
two curves form a bandwith containing four standard deviations fsu . Within this bandwith,
distortion will occur with a probability of 95.4 %.

Figure 5.9: A plot of the objective function f (Ø) (blue line), the magnitude of distortion fu (red line),
the mean-distortion-plus-two-standard-deviations fu + 2 fsu and the mean-distortion-
minus-two-standard-deviations fu ° 2 fsu (red dotted lines). The Euclidean magnitude
of distortion will occur between the blue dotted lines with a probability of 95.4 %.

On closer inspection of Fig. 5.9, several observations can be made.

• The distortion pattern seems to be symmetrical about Ø = 180°. This seems logical
since distortion should be indifferent to whether the component is rotated in clockwise-
or counterclockwise sense.

• Robustness, which is manifested by 2 fsu (Ø) in Fig. 5.9, varies between 2 fsu (Ø) º 1.3°
2.1mm and seems thus to be fairly consistent.
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• Distortion is most robust ( fsu º 1.3mm) at Ø º 140° and least robust ( fsu º 2.1mm)
at Ø º 180°. The Optimum seems to be at Ø º 140° (and obviously Ø º 220°) where
robustness is highest and the distortion magnitude is relatively low.

The optimal angle Ø at which the stiffener component is to be manufactured from the piece
of rolled plate (while the distance from the centre of the component to the piece of rolled
plate’s bottom face is held fixed at 93mm) for which distortion robustness is highest is vi-
sualized in Fig. 5.10 together with the resulting distortion distribution of the bottom centre
line.

Figure 5.10: On the left, the optimal position of the stiffener component (blue) with respect to the
piece of rolled plate at angle Ø = 140° at fixed offset is shown for which distortion ro-
bustness is highest. On the right, the distortion distribution of the stiffener compo-
nent’s bottom centre line is visualized, in which distortion is defined as the magnitude
|u| of distortion in x-, y- and z-direction. The blue curve represents the mean distortion
curve µ|u|, the blue dotted curves represent the mean-minus-two-standard-deviations
and the mean-plus-two-standard-deviations curves, µ|u|°2s|u| and µ|u| +2s|u|, respec-
tively. Distortion of the bottom centre line will occur in between the blue dotted lines
with a probability of 95.4 %.

In Tab. 5.2, the computational effort that was required for the robustness analysis of rotation
Ø of the component about the y-axis at fixed offset is shown. Like for the robustness analysis
in Section 5.1, in total, 252 static analyses were required.

Table 5.2: An overview of the computational effort that was required for the robustness analysis for
the stiffener component as a function of its angle Ø at fixed offset in the piece of rolled
plate using the improved method which was elaborated in Chapter 4.4.

Computational effort parameter Symbol Value

Number of design value iterations n 21
Number of static analyses per design value iteration m 12

Total number of static analyses required ° 252
Total computation time t 1h 31min 32sec
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5.3 Optimal position of stiffener component in piece of rolled
plate in terms of offset z1 and angle Ø

Distortion magnitude and distortion robustness have been evaluated as a function of trans-
lation of the stiffener component in z-direction and rotation about its y-axis at fixed offset
z1 within the piece of rolled plate, separately. The optimal position for robust distortion
can now be determined by assessing distortion robustness for translation in z-direction and
rotation about the y-axis at the same time. The stochastic two-dimensional stress field will
now be rotated with angleØ about the y-axis and translated with offset z1 in z-direction with
respect to the iso-statically fixed stiffener component, such as is illustrated in Fig. 5.11.

Figure 5.11: The two-dimensional stochastic stress field will be rotated about the y-axis through-
out the discretized range 0mm ∑Ø∑ 360° and translated in z- direction throughout the
discretized range 0mm ∑ z1 ∑ 190mm with respect to the iso-statically fixed stiffener
component. As a measure for distortion and distortion robustness, again the Euclidean
magnitude of all centre line node displacements in x-, y- and z-direction, ui ,1, ui ,2 and
ui ,3 and their standard deviations, sui ,1 , sui ,2 and sui ,3 respectively, will be considered.

As was elaborated in Section 5.2, the Euclidean magnitude of displacements of all nodes on
the bottom centre line in three directions, ui ,1, ui ,2 and ui ,3 and their standard deviations,
sui ,1 , sui ,2 and sui ,3 will be considered as a measure for distortion magnitude fu (Eq. 5.4) and
distortion robustness fsu (Eq. 5.5), respectively. The optimization problem formulation in
which both offset z1 and rotation Ø are optimized for robustness, is as follows.

minimize
z1,Ø

f (z1,Ø)

subject to g =
µ

fu(z1,Ø)
fu,max

∂2

°1 ∑ 0

0mm ∑ z1 ∑ 190mm

0° ∑Ø∑ 360°

with f (z1,Ø) = 2 fsu (z1,Ø)

fu,max = 7 (arbitrarily chosen).

(5.7)

Note that the maximum distortion magnitude, fu,max, was chosen to be equal to 7mm (ar-
bitrary). The maximum distortion magnitude refers to the Euclidean magnitude of all node
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displacements in x-, y- and z-direction (Eq. 5.4) and not to the maximum value of distor-
tion.

For each combination of offset z1 throughout the discretized range 0mm ∑ z1 ∑ 190mm
and of angle Ø throughout the discretized range 0° ∑ Ø ∑ 360°, distortion magnitude and
distortion robustness are evaluated. In total, distortion magnitude, fu , and distortion ro-
bustness, fsu , is evaluated for 21£21 = 441 combinations of z1 and Ø. The computational
effort that was required for the robustness analysis of the positioning, i.e. offset z1 and angle
Ø, of the stiffener component in the piece of rolled plate is summarized in Tab. 5.3.

Table 5.3: An overview of the computational effort that was required for the robustness analysis for
the optimal position in terms of offset z1 and angle Ø of the stiffener component in the
piece of rolled plate using the improved method which was elaborated in Section 4.4.

Computational effort parameter Symbol Value

Number of design value iterations n 21£21 = 441
Number of static analyses per design value iteration m 12

Total number of static analyses required ° 5292
Total computation time t 34h 53min 0sec

Distortion magnitude fu(z1,Ø) as a function of offset z1 and angle Ø can be visualized in a
surface plot which is shown in Fig. 5.12.

Figure 5.12: A surface plot visualizing distortion magnitude fu(z1,Ø) as a function of both offset z1

and angle Ø of the stiffener component within the piece of rolled plate.

On closer inspection of Fig. 5.12, several observations can be made.

• Distortion magnitude fu(z1,Ø) seems to be symmetrical about Ø = 180°. This seems
logical since distortion should be indifferent to whether the component is rotated in
clockwise- or counterclockwise sense.
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• The distortion path fu(z1,Ø= 180°) seems to equivalent to the distortion path fu(z1,Ø=
0°), but then mirrored about z1 = 190mm: fu(z1,Ø = 180°) = fu(190mm° z1,Ø = 0°).
This seems logical since distortion should be equivalent when translating a compo-
nent faced upwards (Ø= 0°) in positive z-direction from bottom to top, to when trans-
lating the component faced downwards (Ø= 180°) in negative z-direction from top to
bottom, due to symmetry of the stress profile.

In the same manner, distortion robustness fsu (z1,Ø) as a function of offset z1 and angle Ø
can be visualized in a surface plot which is shown in Fig. 5.13.

Figure 5.13: A surface plot visualizing distortion robustness fsu (z1,Ø) as a function of both offset z1

and angle Ø of the stiffener component within the piece of rolled plate.

On closer inspection of Fig. 5.13, several observations can be made.

• Similarly as for distortion magnitude fu(z1,Ø), distortion robustness fsu (z1,Ø) seems
to be symmetrical about Ø = 180° and the distortion path fu(z1,Ø = 180°) seems to
equivalent to the distortion path fu(z1,Ø= 0°), but then mirrored about z1 = 190mm.

• Significant variation in distortion robustness is perceived for different combinations
of offset z1 and angle Ø. In other words, the degree of distortion robustness is highly
dependent on the position of the component inside the piece of rolled plate. This
demonstrates that robustness evaluation of components for their position inside rolled
plate is highly relevant. Combinations of offset z1 and angle Ø can be found where dis-
tortion is considerably more robust then for other combinations of offset z1 and angle
Ø.

• Several distinctive troughs can be found where distortion seems to be extremely ro-
bust. Similarly, various peaks can be found where robustness is very poor.

The optima can be identified more conveniently by displaying top views of the surface plots
for fu(z1,Ø) and fsu (z1,Ø) side by side, such as is done in Fig. 5.14.
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Figure 5.14: On the left, a top view of the surface plot of distortion magnitude fu(z1,Ø) is shown. On
the right, a top view of distortion robustness fsu (z1,Ø) is shown. Unfavorable combina-
tions of z1 and Ø are colored yellow: large distortion magnitudes and poor robustness.
Favorable combinations of z1 and Ø are colored blue: small distortion magnitudes and
high robustness. Six troughs can be identified (right) as being blue squares where dis-
tortion is extremely robust.

On closer inspection of Fig. 5.14, several observations can be made.

• In total, six troughs can be identified where distortion is extremely robust. All of these
six troughs seems to be located in areas where distortion magnitude is extremely low
as well and thus can all six be considered local optima.

• It can not be stated that when distortion magnitude is low, distortion is robust as well.
Troughs can be identified with extremely low distortion magnitudes, however at which
distortion robustness is at its highest (for example, see lower left corner and upper left
corner: distortion magnitude troughs and distortion robustness peaks).

A more convenient way of visualizing both the objective function f (z1,Ø) and constraint
g (z1,Ø), formulated in the optimization problem formulation (Eq. 5.7), in a single figure
is by employing a contour plot which is shown in Fig. 5.15. The areas enclosed by the red
lines represent the infeasible domains of constraint g (z1,Ø). Within these domains, distor-
tion magnitude, fu(z1,Ø), is larger than the arbitrarily chosen value of fu(z1,Ø) = 7mm (see
optimization problem formulation in Eq. 5.7).
On closer inspection of Fig. 5.15, several observations can be made.

• As was observed in Fig. 5.14, six optima can be distinguished which are all located in
the feasible domain of constraint g (z1,Ø).

• Areas can be found where distortion robustness is relatively good but where distortion
magnitude is high. Contrarily, areas can be found where distortion robustness is poor
but where distortion magnitude satisfies the constraint.

• It thus seems relevant to consider both distortion robustness, fu(z1,Ø), as distortion
magnitude, fsu (z1,Ø), when choosing the right combination of offset z1 and angle Ø
where distortion is both acceptable and robust.
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Figure 5.15: A contour plot visualizing the objective function, f (z1,Ø), relating to distortion ro-
bustness and the constraint, g (z1,Ø), relating to the distortion magnitude, which were
defined in the optimization problem formulation in Eq. 5.7. The red lines indicate
where the maximum value for distortion magnitude is reached, fu(z1,Ø) = 7mm, and
where the constraint is equal to g (z1,Ø) = 0. The areas enclosed by the red lines point
out the infeasible domains of the constraint where the distortion magnitude exceeds
fu(z1,Ø) > 7mm (arbitrarily chosen).

The six optima that were found are listed in Tab. 5.4. All six optima seem to have very low and
approximately equivalent values for distortion magnitude, fu , and distortion robustness,
fsu .

Table 5.4: The location in terms of offset z1 and angle Ø of the six optima that were found in the
contour plot in Fig. 5.15, together with the corresponding values for distortion magnitude
fu(z1,Ø) and distortion robustness fsu (z1,Ø).

Variable Optimum 1 Optimum 2 Optimum 3 Optimum 4 Optimum 5 Optimum 6

z1 123.5mm 66.5mm 57mm 57mm 133mm 133mm
Ø 0° 180° 216° 144° 36° 324°
fu 0.87 0.87 0.8093 0.7205 0.8093 0.7205
fsu 0.09287 0.09287 0.06352 0.05822 0.06352 0.05822

In Fig. 5.4, for all six optima, the front view of the positioning (i.e. offset z1 and angle Ø) of
the stiffener component within the piece of rolled plate’s through-thickness is illustrated.
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Figure 5.16: A front view of the positioning in terms of offset z1 and angle Ø of the stiffener compo-
nent within the rolled plate’s through-thickness is illustrated for all six optima that were
listed in Tab. 5.4.

On closer inspection of Fig. 5.16, several observations can be made.

• It appears that Optimum 1 and Optimum 2 involve a similar configuration of the com-
ponent in the piece of rolled plate. The positioning of the component in the piece of
rolled plate for Optimum 2 is equal to the positioning at Optimum 1 if it was mirrored
about an imaginary x y-symmetry plane located at half the rolled plate’s thickness.
This makes sense since the stress profile within the piece of rolled plate is symmetri-
cal.

• It can be concluded that optima 3-6 involve a similar configuration of the compo-
nent in the piece of rolled plate as well. At Optimum 3, the stiffener component is
rotated counter-clockwise with 144° and at Optimum 4, the stiffener component is ro-
tated clockwise with 144°. As was concluded in Chapter 5.2, distortion is indifferent
to whether the component is rotated in clockwise or counterclockwise sense. Optima
5-6 have configurations that are equivalent to the configurations at optima 3-4 if they
were mirrored about an imaginary x y-symmetry plane located at half the rolled plate’s
thickness. These optima have equivalent distortion as optima 3-4 due to the symmet-
rical nature of the rolled plate’s stress profile.

• Hence, two different configurations exist at which the stiffener component is to be
manufactured inside the piece of rolled plate as a result of which distortion magni-
tude is low and distortion robustness is high. Distortion magnitude and -robustness
is equivalent when the component would be mirrored about the y z-symmetry plane
and the x y-symmetry plane. This since i) distortion is equivalent whether the compo-
nent is rotated in clockwise sense or in counterclockwise sense and ii) since the rolled
plate’s residual stress profile is symmetrical by nature.

The first configuration at which the stiffener component is to be manufactured inside rolled
plate in order for distortion to be both low and robust, is illustrated in Fig. 5.17. Distortion
magnitude and -robustness is equivalent when the component would be mirrored about
the x y-symmetry plane. Strictly speaking, the component can be mirrored about the y z-
symmetry plane as well, however, since the component is symmetrical with respect to the
y z-symmetry plane, this would imply the same position.
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Figure 5.17: The first configuration is shown where distortion magnitude is low and distortion ro-
bustness to be high. Distortion magnitude and -robustness is equivalent when the com-
ponent would manufactured at the position mirrored about the x y-symmetry plane
(offset z1 = 66.5mm and angle Ø = 180°). Note that the component can be mirrored
about a y z-symmetry plane as well, however this will yield the same two positions.

The second configuration at which the stiffener component is to be manufactured inside
rolled plate in order for distortion to be both low and robust, is illustrated in Fig. 5.18. Dis-
tortion magnitude and -robustness is equivalent when the component would be mirrored
about the x y-symmetry plane and when the original- and mirrored position would be mir-
rored about the y z-symmetry plane.

Figure 5.18: The second configuration is shown. Distortion magnitude and -robustness is equiva-
lent when the component would manufactured at the position mirrored about the x y-
symmetry plane and when the original and mirrored position would be mirrored about
the y z-symmetry plane.

In Appendix D.3, the application of the improved method for the robustness analysis of dis-
tortion of the stiffener component as a function of its position in terms of offset z1 and angle
Ø inside the piece of rolled plate is elaborated.
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5.4 Physical explanation for the presence of robustness
troughs where distortion is extremely robust

In this case study it appeared that, generally, distortion has poor robustness throughout the
entire domain of offset z1 and angle Ø. At certain locations, however, sudden troughs oc-
cur where both distortion is extremely robust and distortion magnitude is low. When for
instance recalling Fig. 5.3, in which the distortion distribution was shown as a function of
translation of the stiffener component in z-direction; more or less significant variation in
distortion can be observed throughout the entire domain of offset z1, except for a sudden
dip that is present around z1 º 110-140mm. Likewise is the case in Fig. 5.13, in which dis-
tortion robustness was visualized as a function of both translation z1 and rotation Ø of the
stiffener component. At six certain locations, sudden troughs were observed where distor-
tion is extremely robust and distortion magnitude is low.

In order to explain the presence of these robustness troughs where distortion is extremely
robust, an elementary beam with rectangular cross section is considered. The slender beam
(dimensions: l = 1000mm, b = 170mm, h = 50mm) is translated in z-direction through
the same piece of rolled plate that was considered in this case study (see Fig. 5.1) having a
stochastic stress field of which the specifics were listed in Tab. 2.1. The distortion distribu-
tion of the rectangular beam as a function of translation in z-direction through the piece of
rolled plate is shown in Fig. 5.19. This distribution was obtained analytically.

Figure 5.19: The distortion distribution of a slender prismatic beam with rectangular cross section
as function of translation in z-direction throught the piece of rolled plate. The blue line
relates to robustness and the red line represents mean distortionµuc,3 . The area enclosed
between the red dotted lines contains four standard deviations implying that 95.4 % of
distortion of the centre node will occur in between these two dotted lines.

On closer inspection of Fig. 5.19, it can be observed that the same phenomenon occurs
where distortion has poor robustness throughout the entire domain of z1, however a sudden
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dip is present halfway at z1 = 125mm where distortion is extremely robust. At z1 = 125mm,
the standard deviation of distortion of the centre node, su3 , is even equivalent to zero.

The reason for the standard deviation of distortion to be equivalent to zero when the rect-
angular beam is positioned exactly halfway the piece of rolled plate’s thickness, is that 1) the
stochastic cosine fit function is always symmetrical with respect to the rolled plate’s middle
x y-symmetry plane since it consists of a summation of integer cosine periods (Eq. 2.10-
2.11), and 2) that the beam with rectangular cross section is symmetrical with respect to the
rolled plate’s middle x y-symmetry plane. When the cross section is symmetrical with re-
spect to the rolled plate’s middle x y-symmetry plane and when the geometry is centered
with respect to z, the moment generated by the stress profile will always be equivalent to
zero, no matter what values are chosen for the stress coefficients. This since the stress fit
function is also symmetrical with respect to the rolled plate’s middle x y-symmetry plane.
Fig. 5.20 shows three examples of prismatic beams with symmetrical cross sections that are
centered with respect the rolled plate’s height. Since the stochastic stress profile is symmet-
rical by nature as well, distortion of the symmetrical geometries will be zero for all possible
stress profiles from the residual stress distribution.

Figure 5.20: On the left, a side view of the piece of rolled plate is shown which is subjected to a resid-
ual stress distribution. 1000 random samples are shown and each one of them is sym-
metrical about the x y-symmetry plane. On the right, a front view is shown with three
cross sections that are symmetrical about the x y-symmetry plane. When the cross sec-
tions are centered with respect to z, distortion will be equivalent to zero for all 1000
random residual stress profiles.

Residual stress profiles can, in theory, be asymmetrical by nature as well and still satisfy the
equilibrium equations (Eq. 3.1-3.2). In this thesis however, the stress fit functions were cho-
sen to be symmetrical by nature. The question that remains is whether it was realistic to
assume that residual stress in rolled plate is symmetrical by nature. In order to validate this
assumption, experimental data of residual stress in a batch of rolled plate, which was elabo-
rated upon in Section 2.2, can be examined for symmetry. By inspection of Fig. 2.9 and Fig.
2.10 it can be concluded that experimental measurements of residual stress in rolled plate
show indeed a high degree of symmetry. The assumption that residual stress in rolled plate
is symmetrical seems to be realistic.

Aircraft components tend to have highly complex designs features and are as a result often
not symmetrical. The stiffener component considered in this case study, for example, is not
symmetrical. Optima however still seem to exist where distortion is extremely robust. This
is since components can be asymmetrical, however, still have a degree of symmetry. Compo-
nents that have a high degree of symmetry, have optima with high robustness; components
with a low degree of symmetry have optima that are less robust.
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Chapter 6

Conclusions

With respect to the developed methodology in this thesis, several conclusions can be drawn.

• A methodology has been developed that allows for both reliable and computational
efficient robustness prediction of aircraft component distortion which is a result of a
reductive manufacturing process from stochastic pre-stressed rolled plate material.
The developed methodology can be applied to any aircraft component.

In the current state of the art, deterministic modeling tools were developed to pre-
dict part distortion. Deterministic distortion predictions, however, appeared to be
meaningless since residual stress in rolled plate is subjected to substantial variation.
Consequently, efforts were made to predict the stochastics of distortion - referred to
as robustness predictions. These efforts, however, worsened the computational effi-
ciency of the Finite Element Analyses drastically, such that robustness predictions be-
came infeasible in terms of time and costs. Brute force Monte Carlo simulations were
employed relying on random sampling of the residual stress distribution in order to
obtain numerical results of the distortion distribution. In these Monte Carlo simula-
tions, a trade-off had to be made between computational efficiency and reliability. A
low sample size meant acceptable computation costs but poor reliability; a high sam-
ple size meant good reliability but high computation costs. Assuring reliability of the
robustness prediction, a sample size of m > 1000 is recommended suggesting that at
least 1000 static analyses were required.

The developed improved - computational efficient - method requires only 12 static
analyses based upon which robustness is subsequently determined analytically. The
developed method for predicting robustness is thus > 100 times more efficient in
terms of computation cost. Moreover, the robustness prediction is more reliable since
the reliability now only depends on the quality of the experimental measurements and
the choice for its mathematical stochastic representation. Tab. 6.1 shows a brief com-
parison between the state-of-the-art and improved method for robustness prediction.
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Table 6.1: A comparison between the state-of-the-art- and improved method for robustness evalu-
ation. *number of static analyses required per design iteration **derivation of standard
deviation

State-of-the-art method Improved method

Computation costs > 1000 static analyses* 12 static analyses*

Reliability numerical derivation** analytical derivation**
& limited to sample size

• The developed methodology developed in this thesis (see Section 4.2) allows for simu-
lation of three-dimensional positioning of a component within rolled plate. The three-
dimensional position of a component can be described by four degrees of freedom,
being rotation about the x-, y- and z-axes and translation in z-direction. Translation
in x- and y-direction are not relevant since residual stress in rolled plate only varies in
z-direction and is constant in both x- and y-direction.

Figure 6.1: Four degrees of freedom that determine the three dimensional position of a component
in rolled plate.

In the current state of the art, positioning of the component within rolled plate was
limited to a single degree of freedom, being translation of the component in z-direction
of rolled plate. Note that in the case study, only translation in z-direction and rotation
about the y-axis were considered. The developed methodology, however, allows for
rotation about the x- and z-axes as well.

• A mathematical stochastic representation of residual stress in rolled plate was devel-
oped showing coherence with the experimental data provided by AIRBUS (see Fig.
2.12). The reliability of the mathematical description is limited, however, since the
experimental data concerns only twelve pieces of rolled plate. The fit function was
chosen to be symmetrical since each individual measurement showed a high degree
of symmetry.

• Distortion and distortion robustness can be obtained analytically for prismatic com-
ponents. Robustness optimization problems concerning prismatic components can
be solved based on analytical equations (see Section 3.8). Since aircraft components
tend to have highly complex design features and are as a result highly non-prismatic,
Finite Element Analyses will be resorted to for distortion and distortion robustness
analyses.
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The developed methodology in this thesis was employed in a case study in Chapter 5. In this
case study, distortion robustness was evaluated for an aircraft component as a function of
its position in rolled plate. Several conclusions regarding distortion robustness predictions
were drawn in the case study.

• Robustness analyses are highly relevant since the dispersion of distortion is relatively
large with respect to the magnitude of distortion. It would therefore be meaningless to
only take into account deterministic distortion. For example, in some cases, distortion
can be dispersed in such a way that components can distort in either a convex or a
concave manner, depending from which rolled plate in the batch the component is
manufactured (see Fig. 5.6).

• Robustness analyses are highly relevant since robustness is highly correlated with the
positioning of a component within rolled plate (see Fig. 5.13). Positions can be found
where distortion is significantly more robust than for other positions.

• For components that are symmetrical in shape about a certain plane, positions within
rolled plate can be found where distortion is both fully robust (i.e. standard deviation
equal to zero) and where distortion has a magnitude of zero (see Fig. 5.19). The com-
ponent should be positioned in such a way that the plane about which the component
is symmetrical coincides with the rolled plate’s residual stress symmetry plane. At this
position, distortion magnitude and -standard deviation are both equal to zero since
the stochastic fit function is formulated in such a way that residual stress is always
symmetrical with respect to the rolled plate’s middle x y-symmetry plane. For each
random sample drawn from the stochastic fit function, the bending moment induced
by residual stress on the component will always be equal to zero.

• For components that are not symmetrical about a certain plane, still, positions can be
found where distortion is both highly robust and approaches zero. This is since com-
ponents can be asymmetrical, however, still can show a degree of symmetry. Compo-
nents that show a high degree of symmetry have optima with high robustness; com-
ponents that show a low degree of symmetry have optima that are less robust.

• Non-symmetrical components should be positioned in such a way that the plane about
which the components is most symmetrical coincides with the rolled plate’s residual
stress symmetry plane.

• A component should be designed in such a way that is has a high degree of symmetry
about a certain plane. This is, in literature, referred to by design for distortion and
robustness which forms one of AIRBUS’ future objectives in the scope of this research.
This will be mentioned as a recommendation for future research in Chapter 7.

72



Chapter 7

Recommendations for future research

Several recommendations for future research can be made with respect to improving the
computational efficiency of the developed methodology.

• The twelve static analyses that are required to determine distortion robustness in the
improved method can be run simultaneously, since the twelve static analyses do not
depend on one another. This way, computational efficiency can be improved by a
factor of 12.

• Explore alternative fit functions for the stochastic experimental data. Fit functions
can possible be found that have a lower number of stochastic variables (currently be-
ing twelve) as a result of which the computational costs can possibly be lowered even
more.

• In the case study, the optimal position - in terms of offset z1 and angleØ - of the aircraft
component was determined by assessing every combination of offset z1 and angle Ø.
In literature, this is referred to as design space exploration; the whole design space,
with offset z1 and angle Ø as design variables, has been explored for distortion robust-
ness. At the end, the optimal combination of offset z1 and angle Ø at which distortion
was most robust was chosen by observation.

One can imagine that this is a time consuming process. In the future, gradient-based
optimization can be introduced. A gradient-based optimizer uses a optimization se-
quence in which the choice of the subsequent design iteration depends on both the
output and gradient information of the previous design iteration. This way, not the
entire design space has to be explored, but the optimal combination of the design
variables can be found by converging to local and global minima.

It must be said that a great deal of static analyses would be required when employing
gradient-based optimization, since gradients (also referred to by sensitivies) must be
determined for each of the twelve displacement fields per design iteration. Further-
more, when introducing more design variables, for each design variable extra sensi-
tivities must be determined. For an optimization problem containing many design
variables, so-called adjoint sensitivity can be used in order to scale down the number
of static analyses needed for determining sensitvities.
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Several recommendations for future research can be made with respect to improving the
reliability of the distortion robustness predictions.

• Improve reliability of mathematical stochastic representation of the experimentally
measured residual stress data by increasing the sample size, i.e. by increasing the
number of rolled plate’s that are measured.

• Compare the developed methodology for distortion and robustness analysis with re-
ality. See whether a machined component at a certain position in a number of pieces
of rolled plate shows the same distortion behavior as is predicted with the developed
simulation tool.

Several recommendations for future research can be made with respect to design for distor-
tion robustness.

• Up to now, distortion robustness was optimized by varying the position of compo-
nents within rolled plate. One of AIRBUS’ objectives, however, is to change the com-
ponent’s design itself in order to maximize distortion robustness. This is referred to in
literature as design for distortion robustness. You could say that so far we dealt with
positioning for distortion robustness. To this end, topology optimization would be a
suitable method. The material layout itself will be optimized in such a way that dis-
tortion robustness is maximized.

Since topology optimization basically is an optimization problem with many design
variables, adjoint sensitivities should be resorted to in order to save computation costs
for the sensitivity analyses. When a computational efficient method has been devel-
oped for the sensitivity analyses, the developed methodology in this thesis can be im-
plemented in a topology optimization sequence.

• As was already mentioned in the conclusions, the case study demonstrated that the
degree of symmetry of a component design relates to the degree of robustness. For
a design with a high degree of symmetry about a certain plane, distortion would be
highly robust and approach to zero when the component is positioned in such a way
that its symmetry plane coincides with the rolled plate’s residual stress symmetry plane.

This knowledge can be applied to the topology optimization sequence. The optimiza-
tion problem can be formulated in such a way that a symmetrical design is more fa-
vorable than a non-symmetrical design.
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Appendix A

Analytical distortion derivations

A.1 Analytical distortion derivation of a beam cut in half

This appendix concerns the analytical derivation for distortion of a piece of stock material
that is cut in half, like is illustrated in Fig. A.1.

Figure A.1: This figure shows a beam or piece of stock material with rectangular cross section that is
about to be cut in half as a result of which distortion will occur in the form of bending.
Details shown in this figure were elaborated earlier in Fig. 3.9.
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The moment, My , induced by æ†
11(z)
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Deflection of the beam wz(x) at x = l gives

wz(x=l ) =
My l 2

2E Iy
=°24cl 2

Ehº2

Substituting geometrical- and material properties l , h, c and E as were declared earlier in
chapter 3.4 gives

wz(x=l ) =°0.0231m

=°23.1mm
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A.2 Analytical distortion derivation of a beam machined from
both sides

This appendix concerns the analytical derivation for distortion of a piece of stock material
that is symmetrically machined from both sides, like is illustrated in Fig. A.2.

Figure A.2: This figure shows a beam or piece of stock material with rectangular cross section that is
about to be symmetrically machined from top and bottom as a result of which distortion
will occur in the form of contraction. Details shown in this figure were elaborated earlier
in Fig. 3.13.
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Displacement of the beam in x-direction at x = l , wx(x=l ), is obtained by
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Substituting geometrical- and material properties l , c and E as were declared earlier in chap-
ter 3.4 gives

wz(x=l ) =°0.000182m

=°0.182mm
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A.3 Analytical distortion derivation of a tee section

This appendix concerns the analytical derivation for distortion of a Tee Section that is ma-
chined from a piece of stock material, like is illustrated in Fig. A.3.

Figure A.3: This figure shows a piece of stock material from which a Tee Section (dotted lines) is to be
manufactured. The Tee Section is machined with an offset of z1 with respect to the rolled
plate’s bottom face. This is the same figure as Fig. 3.16
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The moment, My , induced by æ†
11(z), with help of MATLAB® symbolic integration
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The second moment of area about the neutral y-axis, Iy , with help of MATLAB® symbolic
integration
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The expressions for My and Iy displayed above were already quite complex. The final ex-
pression for the deflection of the Tee Section’s tip at x = l , wz(x=l ) is not displayed in this
appendix since this expression contains too many terms. wz(x=l ) is obtained by means of
MATLAB® symbolic integration which can be found in m-file fanalyticalderivation.m shown
in Fig. A.1. The full expression for wz(x=l ) is shown in m-file fwz.m shown in Fig. A.2. Sub-
stituting geometrical- and material properties as were stated in chapter 3.5, yields a deflec-
tion of

wz(x=l ) =
My l 2

2E Iy

=°0.0069m

=°6.9mm

Matlab code A.1: fanalayticalderivation.m

1 clear; close all; clc;
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2

3 syms c h z z0 z1 t b y p l E
4 beta=2*pi/h;
5 sigma11=c*cos(beta*(z°z0));
6

7 Ax=int(int(1,z,(z0+z1),(z0+z1+t)),y,0,b)+int(int(1,z,(z0+z1+t),...
8 (z0+z1+t+p)),y,(b/2°t/2),(b/2+t/2))
9 Sy=int(int(z,z,(z0+z1),(z0+z1+t)),y,0,b)+int(int(z,z,(z0+z1+t),...

10 (z0+z1+t+p)),y,(b/2°t/2),(b/2+t/2))
11 z_=Sy/Ax
12

13 f=sigma11*(z°z_);
14 My=int(int(f,z,(z0+z1),(z0+z1+t)),y,0,b)+int(int(f,z,(z0+z1+t),...
15 (z0+z1+t+p)),y,(b/2°t/2),(b/2+t/2))
16 g=(z°z_)^2;
17 Iy=int(int(g,z,(z0+z1),(z0+z1+t)),y,0,b)+int(int(g,z,(z0+z1+t),...
18 (z0+z1+t+p)),y,(b/2°t/2),(b/2+t/2))
19

20 wz=(My*l^2)/(2*E*Iy)

Matlab code A.2: fwz.m

1 function wz=fwz(l,b,h,p,t,z0,z1,c,E)
2 wz=°(l^2*(b*c*((h^2*cos((2*pi*z1)/h))/(4*pi^2) ...
3 ° (h^2*cos((2*pi*(t + z1))/h))/(4*pi^2) ...
4 + (h*sin((2*pi*z1)/h)*(z0 + z1))/(2*pi) ...
5 ° (h*sin((2*pi*(t + z1))/h)*(t + z0 + z1))/(2*pi)) ...
6 ° c*t*((h^2*cos((2*pi*(p + t + z1))/h))/(4*pi^2) ...
7 ° (h^2*cos((2*pi*(t + z1))/h))/(4*pi^2) ...
8 + (h*sin((2*pi*(p + t + z1))/h)*(p + t + z0 + z1))/(2*pi) ...
9 ° (h*sin((2*pi*(t + z1))/h)*(t + z0 + z1))/(2*pi)) ...

10 + (b^2*c*h*t^2*(sin((2*pi*(t + z1))/h) ...
11 ° sin((2*pi*z1)/h)))/(4*pi*(b*t + p*t)) ...
12 ° (c*h*p^2*t^2*(sin((2*pi*(t + z1))/h) ...
13 ° sin((2*pi*(p + t + z1))/h)))/(4*pi*(b*t + p*t)) ...
14 ° (b*c*h*t^3*(sin((2*pi*(t + z1))/h) ...
15 ° sin((2*pi*(p + t + z1))/h)))/(4*pi*(b*t + p*t)) ...
16 ° (c*h*p*t^3*(sin((2*pi*(t + z1))/h) ...
17 ° sin((2*pi*(p + t + z1))/h)))/(2*pi*(b*t + p*t)) ...
18 + (b*c*h*p*t^2*(sin((2*pi*(t + z1))/h) ...
19 ° sin((2*pi*z1)/h)))/(2*pi*(b*t + p*t)) ...
20 + (b*c*h*p^2*t*(sin((2*pi*(t + z1))/h) ...
21 ° sin((2*pi*z1)/h)))/(4*pi*(b*t + p*t)) ...
22 + (b^2*c*h*t*z0*(sin((2*pi*(t + z1))/h) ...
23 ° sin((2*pi*z1)/h)))/(2*pi*(b*t + p*t)) ...
24 + (b^2*c*h*t*z1*(sin((2*pi*(t + z1))/h) ...
25 ° sin((2*pi*z1)/h)))/(2*pi*(b*t + p*t)) ...
26 ° (b*c*h*t^2*z0*(sin((2*pi*(t + z1))/h) ...
27 ° sin((2*pi*(p + t + z1))/h)))/(2*pi*(b*t + p*t)) ...
28 ° (b*c*h*t^2*z1*(sin((2*pi*(t + z1))/h) ...
29 ° sin((2*pi*(p + t + z1))/h)))/(2*pi*(b*t + p*t)) ...
30 ° (c*h*p*t^2*z0*(sin((2*pi*(t + z1))/h) ...
31 ° sin((2*pi*(p + t + z1))/h)))/(2*pi*(b*t + p*t)) ...
32 ° (c*h*p*t^2*z1*(sin((2*pi*(t + z1))/h) ...
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33 ° sin((2*pi*(p + t + z1))/h)))/(2*pi*(b*t + p*t)) ...
34 + (b*c*h*p*t*z0*(sin((2*pi*(t + z1))/h) ...
35 ° sin((2*pi*z1)/h)))/(2*pi*(b*t + p*t)) ...
36 + (b*c*h*p*t*z1*(sin((2*pi*(t + z1))/h) ...
37 ° sin((2*pi*z1)/h)))/(2*pi*(b*t + p*t))))/(2*E*((b*t^3)/12 ...
38 ° (b*((p^2*t^3)/12 ° (t*(3*p^4 + 6*p^3*t ...
39 + 4*p^2*t^2))/12))/(b + p)^2 ...
40 + (p*t*(4*b^2*p^2 + 6*b^2*p*t + 3*b^2*t^2 ...
41 + 2*b*p^3 + p^4))/(12*(b + p)^2)));
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Appendix B

Distortion and robustness optimization
based on analytical equations

B.1 Distortion optimization of a Tee Section for offset z1

This appendix includes the MATLAB® code used for an optimization problem where the
optimal offset, z§

1 , is to be found where distortion, wz(x=l , z§
1 ), is minimized. The fmincon

solver in MATLAB® is used to solve this optimization problem.

Figure B.1: This figure shows the same illustration as in Fig. 3.16 where a Tee Section is to be man-
ufactured at an offset z1 from the bottom face of a piece of rolled plate material. The
optimal offset z§

1 is to be found where distortion is minimized.

The objective function relating the objective f (z1) = wz(x=l , z1)2 with offset z1, as was elab-
orated in chapter 3.6, is captured in a separate function m-file, objective.m, shown in Fig.
B.1. The expression for wz(x=l , z1) was analytically derived in chapter 3.5.

The fmincon code is captured in a second m-file, fminconsolve.m, shown in Fig. B.2. The
offset z§

1 where distortion wz(x=l , z§
1 ) is minimal was found to be

z§
1 = 0.0219m = 21.9mm

At which distortion is found to be

wz(x=l , z§
1 ) = 1.0684£10°13 m
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Matlab code B.1: objective.m

1 function f=objective(l,b,h,p,t,z0,z1,c,E)
2 wz=°(l^2*(b*c*((h^2*cos((2*pi*z1)/h))/(4*pi^2) ...
3 ° (h^2*cos((2*pi*(t + z1))/h))/(4*pi^2) ...
4 + (h*sin((2*pi*z1)/h)*(z0 + z1))/(2*pi) ...
5 ° (h*sin((2*pi*(t + z1))/h)*(t + z0 + z1))/(2*pi)) ...
6 ° c*t*((h^2*cos((2*pi*(p + t + z1))/h))/(4*pi^2) ...
7 ° (h^2*cos((2*pi*(t + z1))/h))/(4*pi^2) ...
8 + (h*sin((2*pi*(p + t + z1))/h)*(p + t + z0 + z1))/(2*pi) ...
9 ° (h*sin((2*pi*(t + z1))/h)*(t + z0 + z1))/(2*pi)) ...

10 + (b^2*c*h*t^2*(sin((2*pi*(t + z1))/h) ...
11 ° sin((2*pi*z1)/h)))/(4*pi*(b*t + p*t)) ...
12 ° (c*h*p^2*t^2*(sin((2*pi*(t + z1))/h) ...
13 ° sin((2*pi*(p + t + z1))/h)))/(4*pi*(b*t + p*t)) ...
14 ° (b*c*h*t^3*(sin((2*pi*(t + z1))/h) ...
15 ° sin((2*pi*(p + t + z1))/h)))/(4*pi*(b*t + p*t)) ...
16 ° (c*h*p*t^3*(sin((2*pi*(t + z1))/h) ...
17 ° sin((2*pi*(p + t + z1))/h)))/(2*pi*(b*t + p*t)) ...
18 + (b*c*h*p*t^2*(sin((2*pi*(t + z1))/h) ...
19 ° sin((2*pi*z1)/h)))/(2*pi*(b*t + p*t)) ...
20 + (b*c*h*p^2*t*(sin((2*pi*(t + z1))/h) ...
21 ° sin((2*pi*z1)/h)))/(4*pi*(b*t + p*t)) ...
22 + (b^2*c*h*t*z0*(sin((2*pi*(t + z1))/h) ...
23 ° sin((2*pi*z1)/h)))/(2*pi*(b*t + p*t)) ...
24 + (b^2*c*h*t*z1*(sin((2*pi*(t + z1))/h) ...
25 ° sin((2*pi*z1)/h)))/(2*pi*(b*t + p*t)) ...
26 ° (b*c*h*t^2*z0*(sin((2*pi*(t + z1))/h) ...
27 ° sin((2*pi*(p + t + z1))/h)))/(2*pi*(b*t + p*t)) ...
28 ° (b*c*h*t^2*z1*(sin((2*pi*(t + z1))/h) ...
29 ° sin((2*pi*(p + t + z1))/h)))/(2*pi*(b*t + p*t)) ...
30 ° (c*h*p*t^2*z0*(sin((2*pi*(t + z1))/h) ...
31 ° sin((2*pi*(p + t + z1))/h)))/(2*pi*(b*t + p*t)) ...
32 ° (c*h*p*t^2*z1*(sin((2*pi*(t + z1))/h) ...
33 ° sin((2*pi*(p + t + z1))/h)))/(2*pi*(b*t + p*t)) ...
34 + (b*c*h*p*t*z0*(sin((2*pi*(t + z1))/h) ...
35 ° sin((2*pi*z1)/h)))/(2*pi*(b*t + p*t)) ...
36 + (b*c*h*p*t*z1*(sin((2*pi*(t + z1))/h) ...
37 ° sin((2*pi*z1)/h)))/(2*pi*(b*t + p*t))))/(2*E*((b*t^3)/12 ...
38 ° (b*((p^2*t^3)/12 ° (t*(3*p^4 + 6*p^3*t ...
39 + 4*p^2*t^2))/12))/(b + p)^2 ...
40 + (p*t*(4*b^2*p^2 + 6*b^2*p*t + 3*b^2*t^2 ...
41 + 2*b*p^3 + p^4))/(12*(b + p)^2)));
42 f=wz^2;

Matlab code B.2: fminconsolve.m

1 close all; hold off; clear; clc;
2

3 %constants
4 l=1.000;
5 b=0.040;
6 h=0.080;
7 p=0.030;
8 t=0.010;
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9 c=20*10^6;
10 E=70.07*10^9;
11 z0=0.100;
12

13 %plot of objective function
14 n=100;
15 z1_vec=linspace(0,(p+t),n);
16 for i=1:n
17 f(i)=objective(l,b,h,p,t,z0,z1_vec(i),c,E)
18 end
19 figure(1)
20 plot(z1_vec,f)
21 grid on
22 set(gca,'fontsize',11.5)
23

24 %fmincon
25 A=[];
26 B=[];
27 Aeq=[];
28 Beq=[];
29 LB=0;
30 UB=p+t;
31 z1_0=t;
32 f_0=objective(l,b,h,p,t,z0,z1_0,c,E);
33 [z1,f_val]=fmincon(@(z1) ...

objective(l,b,h,p,t,z0,z1,c,E),z1_0,A,B,Aeq,Beq,LB,UB)
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B.2 Distortion optimization of a tee section for offset z1 and
flank thickness t

In this appendix, the MATLAB® code is shown for an optimization problem where offset z1

and flank thickness t of the Tee Section in Fig. B.2 manufactured from a piece of rolled plate
are optimized for distortion.

Figure B.2: This figure shows the same illustration as in Fig. 3.16. The optimal offset z1 and flank
thickness t is to be found where distortion is minimized.

The m-file fcontourplot.m, shown in Fig. B.3, contains the MATLAB® code used for creating
the contour plot. The inequality constraints are coded in a separate function m-file, fcon-
straints.m, shown in Fig. B.4.

Matlab code B.3: fcontourplot.m

1 clf; hold off; clear; clc; close all;
2

3 %constants
4 l=1.000;
5 b=0.040;
6 h=0.080;
7 p=0.030;
8 c=20*10^6;
9 E=70.07*10^9;

10 z0=0.100;
11

12 %contour plot and surf plot
13 n=100;
14 z1_vec=linspace(0,h,n);
15 t_vec=linspace(0,b,n);
16

17 for i=1:1:length(z1_vec)
18 for j=1:1:length(t_vec)
19 z1=z1_vec(i);
20 t=t_vec(j);
21 f(j,i)=objective(l,b,h,p,t,z0,z1,c,E);
22 [c1,c2,ceq]=fconstraints(z1,t,h,b,p);
23 fc1(j,i)=c1;
24 fc2(j,i)=c2;
25 end
26 end
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27

28 figure(1)
29 contour(z1_vec,t_vec,f,[1e°6 5e°6 1e°5 2e°5 3e°5 4e°5 5e°5 6e°5 7e°5 ...

8e°5],'ShowText','on')
30 hold on
31 contour(z1_vec,t_vec,fc2,[0.0 0.0],'r') %c2
32 contour(z1_vec,t_vec,fc2,[0.025 0.025],'r°°')
33 grid
34 xlabel('Offset 0\leqz_1\leq(h°p) in [m]')
35 ylabel('Flank thickness 0\leqt\leq b in [m]')
36 title('Contour plot distortion w_z(x=l, z_1, t)')
37 axis([0 (h°p) 0 b])
38 legend('Value of objective function f(z_1,t)','Inequality ...

constraint','Infeasible domain')
39 set(gca,'fontsize',11.5)

Matlab code B.4: fconstraints.m

1 function [c1,c2,ceq] = fconstraints(z1,t,h,b,p)
2 %normalised
3

4 c1=t/b°1;
5 c2=(t+p+z1)/h°1;
6 ceq=[];
7

8 end
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B.3 Robustness optimization of a tee section for offset z1 and
flank thickness t

In this appendix, the MATLAB® code is shown for an optimization problem where offset z1

and flank thickness t of the Tee Section in Fig. B.3 manufactured from a piece of rolled plate
are optimized for robustness.

Figure B.3: This figure shows the same illustration as in Fig. 3.16. The offset z1 and flank thickness t
are optimized for robustness.

The m-file fcontourplot.m, shown in Fig. B.5, contains the MATLAB® code used for creating
the contour plot. The inequality constraints are coded in a separate function m-file, fcon-
straints.m, shown in Fig. B.6.

Matlab code B.5: fcontourplot.m

1 clf; hold off; clear; clc; close all;
2

3 %constants
4 l=1.000;
5 b=0.040;
6 h=0.080;
7 p=0.030;
8 E=70.07*10^9;
9 z0=0.100;

10

11 %contour plot and surf plot
12 n=100;
13 z1_vec=linspace(0,h,n);
14 t_vec=linspace(0,b,n);
15

16 %stochastics
17 c_mean=20*10^6;
18 c_std=5*10^6;
19

20 for i=1:1:length(z1_vec)
21 for j=1:1:length(t_vec)
22 z1=z1_vec(i);
23 t=t_vec(j);
24 wz_specific=objective(l,b,h,p,t,z0,z1,1,E);
25 wz_mean=c_mean*wz_specific;
26 wz_std(j,i)=c_std*wz_specific;
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27 wz_std_abs(j,i)=sqrt((wz_std(j,i))^2);
28 f(j,i)=(wz_mean)^2;
29 [c1,c2,c3] = fconstraints(f(j,i),z1,t,h,b,p);
30 fc1(j,i)=c1;
31 fc2(j,i)=c2;
32 fc3(j,i)=c3;
33 end
34 end
35

36 figure(1)
37 contour(z1_vec,t_vec,wz_std_abs,[0.0001 0.0005 0.001 0.0015 0.002 ...

0.0025 0.003],'ShowText','on')
38 grid
39 hold on
40 contour(z1_vec,t_vec,fc2,[0.0 0.0],'r')
41 contour(z1_vec,t_vec,fc2,[0.025 0.025],'r°°')
42 contour(z1_vec,t_vec,fc3,[0.0 0.0],'m')
43 contour(z1_vec,t_vec,fc3,[0.15 0.15],'m°°')
44 xlabel('Offset 0\leqz_1\leq(h°p) in [m]')
45 ylabel('Flank thickness 0\leqt\leq b in [m]')
46 title('Contour plot robustness s_{wz}(z_1, t)')
47 axis([0 (h°p) 0 b])
48 legend('Value of objective function f(z_1,t)','Inequality constraint ...

g_2','Infeasible domain g_3','Inequality constraint ...
g_3','Infeasible domain g_3')

49 set(gca,'fontsize',11.5)

Matlab code B.6: fconstraints.m

1 function [c1,c2,c3] = fconstraints(fobj,z1,t,h,b,p)
2 %normalised
3

4 c1=t/b°1;
5 c2=(t+p+z1)/h°1;
6 c3=fobj/(3.6e°5)°1;
7

8 end
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Appendix C

Finite element simulations concerning an
elementary beam with rectangular cross
section

C.1 Deterministic static analysis

This appendix concerns a Finite Element Analysis for an elementary beam that is illustrated
in Fig. 4.1 with a mesh that was shown in Fig. 4.2. The stress field is positioned at offset
z1 = 50mm and is not rotated with respect to the x-, y- or z-axis (Æ = 0rad,Ø = 0rad,∞ =
0rad). The two-dimensional stress field is assumed to be deterministic in nature and the
stress coefficients c†

11,i and c†
22,i for i = 1 · · ·6 are chosen to be equal to the mean values that

were defined in chapter 2.2.

Figure C.1: This figure is identical to the figure shown in Fig. 4.1. The rectangular beam is positioned
at offset z1 = 50mm having a two-dimensional stress field such as the one that is mathe-
matically derived in chapter 2.2. The mesh consist of three-dimensional hexahedron el-
ements. The beam has dimensions l1 = 50mm, l2 = 1000mm and l3 = 50mm. The thick-
ness of stock material is h = 300mm. The beam has a Young’s Modulus of E = 70.07GPa.

The static analyses are executed in Finite Element software Abaqus©. The input for Finite
Element Analyses in Abaqus© are written in so-called input files (.inp). In these input files
elements, nodes, and element sets are created. Furthermore, material properties are de-
fined and boundary conditions are formulated. The input file sim.inp, shown in Fig. C.1,
contains the main structure for the Finite Element Analysis in which the separate input files
for nodes definition, elements definition and element set definition are summoned besides
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the separate input files for boundary condition definition, material definition and step def-
inition.

Abaqus Input file code C.1: sim.inp

1 *Heading
2 *Initial conditions, type=stress, user
3 *Part, name=Part°1
4 *End Part
5 *Assembly, name=Assembly
6 *Instance, name=Part°1°1, part=Part°1
7 15., 13.75, 0.
8 **
9 *Include, input=sim_nds.inp

10 **
11 *Include, input=sim_els.inp
12 **
13 *Include, input=sim_sts.inp
14 **
15 *Include, input=sim_bcs.inp
16 **
17 *Include, input=sim_simp.inp
18 **
19 *Include, input=sim_stp.inp
20 **

The input file simnds.inp, shown in Fig. C.2 contains the coordinate definition of the nodes
in the mesh. Only a part is shown, since the mesh contains 2075 nodes.

Abaqus Input file code C.2: simnds.inp

1 *Node
2 1, °15., °13.75, 1000.
3 2, °15., °1.25, 1000.
4 3, °15., 11.25, 1000.
5 4, °15., 23.75, 1000.
6 5, °15., 36.25, 1000.
7 6, °15., °13.75, 987.804871
8 7, °15., °1.25, 987.804871
9 8, °15., 11.25, 987.804871

10 9, °15., 23.75, 987.804871
11 10, °15., 36.25, 987.804871
12 11, °15., °13.75, 975.609741
13 12, °15., °1.25, 975.609741
14 13, °15., 11.25, 975.609741
15 14, °15., 23.75, 975.609741
16 15, °15., 36.25, 975.609741
17 16, °15., °13.75, 963.414612
18 ...............................................
19 a part has been left out
20 ...............................................
21 2072, 35., °1.25, 0.
22 2073, 35., 11.25, 0.
23 2074, 35., 23.75, 0.
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24 2075, 35., 36.25, 0.

The input file simels.inp, shown in Fig. C.3 contains the definition of the elements in the
mesh based upon the nodes which were defined in the input file simnds.inp. Only a part is
shown, since the mesh contains 1312 elements.

Abaqus Input file code C.3: simels.inp

1 *Element, type=C3D8R
2 1, 416, 417, 422, 421, 1, 2, 7, 6
3 2, 417, 418, 423, 422, 2, 3, 8, 7
4 3, 418, 419, 424, 423, 3, 4, 9, 8
5 4, 419, 420, 425, 424, 4, 5, 10, 9
6 5, 421, 422, 427, 426, 6, 7, 12, 11
7 6, 422, 423, 428, 427, 7, 8, 13, 12
8 7, 423, 424, 429, 428, 8, 9, 14, 13
9 8, 424, 425, 430, 429, 9, 10, 15, 14

10 9, 426, 427, 432, 431, 11, 12, 17, 16
11 10, 427, 428, 433, 432, 12, 13, 18, 17
12 11, 428, 429, 434, 433, 13, 14, 19, 18
13 12, 429, 430, 435, 434, 14, 15, 20, 19
14 13, 431, 432, 437, 436, 16, 17, 22, 21
15 14, 432, 433, 438, 437, 17, 18, 23, 22
16 15, 433, 434, 439, 438, 18, 19, 24, 23
17 16, 434, 435, 440, 439, 19, 20, 25, 24
18 ..................................................
19 a part has been left out
20 ..................................................
21 1309, 2066, 2067, 2072, 2071, 1651, 1652, 1657, 1656
22 1310, 2067, 2068, 2073, 2072, 1652, 1653, 1658, 1657
23 1311, 2068, 2069, 2074, 2073, 1653, 1654, 1659, 1658
24 1312, 2069, 2070, 2075, 2074, 1654, 1655, 1660, 1659

The input file simsts.inp, shown in Fig. C.4 contains the definition of element- and node
sets used for the boundary conditions (Set-A123, Set-B12, Set-C2) and the centre node of the
mesh at which displacement u3 is measured (Set-NodeDist).

Abaqus Input file code C.4: simsts.inp

1 *Nset, nset=Set°all, generate
2 1, 2075, 1
3 *Elset, elset=Set°all, generate
4 1, 1312, 1
5 *Solid Section, elset=Set°all, material=Material°1
6 ,
7 *End Instance
8 *Nset, nset=Set°A123, instance=Part°1°1
9 413,

10 *Nset, nset=Set°B12, instance=Part°1°1
11 3,
12 *Nset, nset=Set°C2, instance=Part°1°1
13 2073,
14 *Nset, nset=Set°NodeDist, instance=Part°1°1
15 1038,
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16 *End Assembly

The input file simsimp.inp, shown in Fig. C.5 contains the definition of the material proper-
ties of the mesh.

Abaqus Input file code C.5: simsimp.inp

1 *Material, name=Material°1
2 *Elastic
3 70070., 0.33

The input file simbcs.inp, shown in Fig. C.6 contains the definition of the iso-static boundary
conditions acting on the mesh, preventing rigid body modes.

Abaqus Input file code C.6: simbcs.inp

1 *Boundary
2 Set°A123, 1, 1
3 Set°A123, 2, 2
4 Set°A123, 3, 3
5 *Boundary
6 Set°B12, 1, 1
7 Set°B12, 2, 2
8 *Boundary
9 Set°C2, 2, 2

The input file simstp.inp, shown in Fig. C.7 contains the step definition of the Finite Ele-
ment Analysis. The step definition determines, amongst other things, that the Finite Ele-
ment Analysis concerns a static analysis. Furthermore, a node output is created in which
displacement u3 is stored, which is used in this example as a measure for distortion of the
beam.

Abaqus Input file code C.7: simstp.inp

1 *Step, name=Step°1, nlgeom=NO
2 *Static
3 1., 1., 1e°05, 1.
4 *Restart, write, frequency=0
5 *Output, field, variable=PRESELECT
6 *Output, history, variable=PRESELECT
7 *Output, history, frequency=99999
8 *Node Output, nset=Set°NodeDist
9 U2,

10 *End Step

The Abaqus© static analysis of which the details are defined in the input files, is launched
from the Cluster with the .sub file submit.sub which is shown in Fig. C.8.

Cluster job code C.8: submit.sub

1 #!/bin/bash
2 #PBS °l nodes=1:ppn=1

97



3 #PBS °N yanj
4 #PBS °M N
5 #PBS °e hpc06.err
6 #PBS °o hpc06.log
7

8 #Print time and date
9 date

10 echo °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
11 echo °n 'Job is running on nodes '; cat $PBS_NODEFILE
12 echo °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
13 echo PBS: qsub is running on $PBS_O_HOST
14 echo PBS: originating queue is $PBS_O_QUEUE
15 echo PBS: executing queue is $PBS_QUEUE
16 echo PBS: working directory is $PBS_O_WORKDIR
17 echo PBS: execution mode is $PBS_ENVIRONMENT
18 echo PBS: job identifier is $PBS_JOBID
19 echo PBS: job name is $PBS_JOBNAME
20 echo PBS: node file is $PBS_NODEFILE
21 echo PBS: current home directory is $PBS_O_HOME
22 echo PBS: PATH = $PBS_O_PATH
23 echo °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
24

25 #Go to working directory
26 cd ${PBS_O_WORKDIR}
27

28 #Clean up:
29 rm *.so
30 rm *.msg
31 rm *.dat
32 rm *.odb
33 rm *.log
34 rm *.err
35

36 #Make scratch directory
37 DIR=${PWD}
38 TMP=${DIR}
39

40 #Write directory name and scratch path
41 echo °n $TMP > scr.dir
42

43 TMP=${PWD##*/}
44

45 #Total number of procs
46 #cat ${PBS_NODEFILE} | wc °l | tr °d " \t\n\r" > m_c.int
47

48 #Get num procs per node
49 #sort ${PBS_NODEFILE} | uniq °c | tr °d " \t\n\r" > node.file
50 #cat node.file | sed 's/n.*//' > n_c.int
51

52 n_c=$( cat n_c.int )
53 tmp=$( cat scr.dir )
54

55 module load intel/2013sp1
56 module load mpi/openmpi°1.8.8°intel
57 module load abaqus
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58 export LM_LICENSE_FILE=27000@flexserv1.tudelft.nl
59

60 ulimit °s unlimited
61

62 python StaticAnalysis.py
63

64 #Clean up:
65 rm *.sta
66 rm *.prt
67 rm *.sim
68 rm *.dir
69 rm *.com
70 rm *.pyc
71 rm *.so
72 rm U3.dat
73 rm .modules
74

75

76 echo °n "END: "
77 date
78 echo "°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°"

Within the submit.sub file, the python script StaticAnalysis.py is launched, which is shown
in Fig. C.9. The python script StaticAnalysis.py writes the offzet z1 to a seperate .dbl file and
launches funcStaticAnalysis.py, in which the static analysis is executed.

Python code C.9: StaticAnalysis.py

1 from __future__ import division #decimal division
2 #import matplotlib.pyplot as plt
3 from inputvalues import L,h
4 import funcStaticAnalysis
5 import timeit
6 import os
7 import shutil
8

9 ##°°°°°°°°°°°° 1: Create Plot directory °°°°°°°°°°°°##
10 #delete old 'Plots' directory
11 Plotsdir='Plots'
12 if os.path.exists(Plotsdir):
13 shutil.rmtree(Plotsdir)
14

15 #create new 'Plots' directory
16 os.makedirs(Plotsdir)
17

18 #total DSE run°time count
19 start_time_totalDSE = timeit.default_timer()
20

21

22 ##°°°°°°°°°°°° 2: single simulation °°°°°°°°°°°°##
23 z1=50
24

25 #create z1.dbl
26 fo=open('z1.dbl','w+') #creates it for us if not already created
27 fo.write( '%e' % z1 )
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28 fo.close()
29

30 U3_centrenode=funcStaticAnalysis.fStaticAnalysis(z1)
31

32 #end timer StaticAnalyses
33 elapsed_totalScript = timeit.default_timer() ° start_time_totalDSE
34 print("°°° computation time for total Script run is %s seconds °°°" ...

% elapsed_totalScript)

The script funcStaticAnalysis.py, which is shown in Fig. C.10, executes the Abaqus® static
analysis and collects the results.

Python code C.10: funcStaticAnalysis.py

1 from __future__ import division #decimal division
2 import math
3 import os
4 import random
5 import timeit
6 #import matplotlib.pyplot as plt
7 import shutil
8

9 def fStaticAnalysis(z1):
10

11 ##°°°°°°°°°°°° 1: Run sim.inp, extract displacement for ...
°°°°°°°°°°°°##

12 #start timer Static Analyses
13 start_time_StaticAnalyses = timeit.default_timer()
14

15 os.system('abaqus double job=sim user=StressMapping cpus=1 ...
scratch=/home/ycejanssens memory=32gb')

16 os.system("abaqus python ExtractU3fromodb.py")
17

18 with open('U3.dat') as file:
19 for line in file:
20 U3_centrenode=float(line)
21

22

23 ##°print mode displacements°##
24 print("***°°°°°°°°° RESULTS for z1%e °°°°°°°°°***" %z1)
25 print( 'U3_centrenode at z1=%e [mm] is %e [mm]' % ...

(z1,U3_centrenode) )
26

27 ##°end timer StaticAnalyses°##
28 elapsed_StaticAnalyses = timeit.default_timer() ° ...

start_time_StaticAnalyses
29 print("°°° computation time for Static Analyses is %s seconds ...

°°°" % elapsed_StaticAnalyses)
30

31 return U3_centrenode

The static analysis that is launched in funcStaticAnalysis.py summons a SIGINI subroutine
StressMapping.f which is written in Fortran®. The SIGINI subroutine facilitates the assign-
ment of the stress tensors to each element in the mesh based on the orientation of the stress
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field and the coordinates of the elements. The methodology used for defining the stress
tensors based on the element’s coordinates and the orientation of the stress field was elabo-
rated upon in chapter 4.2. The SIGINI subrouting written in StressMapping.f is the same as
the one that is used in the case study in appendix ?? which is shown in Fig. ??.

The script ExtractU3fromodb.py, which is shown in Fig. C.11, extracts the displacement of
the centre node (node 1038 )in z-direction from the .odb file sim.odb which contains the
results of the static analysis.

Python code C.11: ExtractU3fromodb.py

1 if __name__ == "__main__":
2

3 from odbAccess import openOdb
4 odb=openOdb('sim.odb')
5

6 dataU3 = odb.steps['Step°1'].historyRegions['Node ...
PART°1°1.1038'].historyOutputs['U3'].data[1]

7 dataU3str=str(dataU3)
8 len_firstpart=len('(1.0, ')
9 U3=float(dataU3str[len_firstpart:°1])

10

11 fo=open('U3.dat','w+') #creates it for us if not already ...
created

12 fo.write( '%e' % U3 )
13 fo.close()

Fig. C.2 shows the undeformed beam before the static analysis (increment 0) and the de-
formed beam after the static analysis (increment 1).

Figure C.2: This figure shows the mesh of the elementary beam before the static analysis (increment
0) and after the static analysis (increment 1). The mapping of the stress field to the ele-
ments is visible at increment 0. The internal stress is fully relaxed at increment 0.

The results of the static analysis are listed in Tab. C.1.
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Table C.1: This table provides an overview of the results of the static analysis that are relevant. The
static analysis concerns an elementary beam subjected to a deterministic stress field hav-
ing an offset z1 with respect to the mesh, such as is illustrated in Fig. C.1.

Outcome of deterministic static analysis Symbol Value

Centre node displacement u3 °1.442096mm
Number of static analyses required m 1

Computation time t º 13sec



C.2 State-of-the-art method

In this appendix, the state-of-the-art method for evaluating distortion robustness is applied
to the elementary beam positioned in rolled plate stock material as was illustrated in Fig. 4.1
with a mesh such as was shown in Fig. 4.2. The stress field is positioned at offset z1 = 50mm
with respect to the bottom face of the rolled plate and is not rotated with respect to the x-,
y- or z-axis (Æ = 0rad,Ø = 0rad,∞ = 0rad). The two-dimensional stress field is stochastic in
nature with the specifics that were determined in chapter 2.1.

Figure C.3: This figure is identical to the figure shown in Fig. 4.1. The rectangular beam is positioned
at offset z1 = 50mm having a two-dimensional stress field such as the one that is mathe-
matically derived in chapter 2.2. The mesh consist of three-dimensional hexahedron el-
ements. The beam has dimensions l1 = 50mm, l2 = 1000mm and l3 = 50mm. The thick-
ness of stock material is h = 300mm. The beam has a Young’s Modulus of E = 70.07GPa.

The input files used in the state-of-the-art method are identical to the input files that were
shown in Fig. C.1 - C.7. The state-of-the-art method concerning the Monte Carlo simula-
tions is launched from the Cluster using the same submit.sub file as the one that was shown
in Fig. C.8. This time, however, the python script StateoftheArtMethod.py is launched, which
is shown in Fig. C.12.

Python code C.12: StateoftheArtMethod.py

1 from __future__ import division #decimal division
2 #import matplotlib.pyplot as plt
3 from inputvalues import L,h
4 import funcStateoftheArtMethod
5 import timeit
6 import math
7 import random
8 import os
9 import shutil

10

11

12 #total DSE run°time count
13 start_time_totalDSE = timeit.default_timer()
14

15 ##°°°°°°°°°°°° 0: constants °°°°°°°°°°°°##
16 s11_1_mean=°8.1936
17 s11_2_mean=2.4317
18 s11_3_mean=2.9584
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19 s11_4_mean=1.3215
20 s11_5_mean=0.9406
21 s11_6_mean=1.0299
22

23 s22_1_mean=°27.0343
24 s22_2_mean=6.1362
25 s22_3_mean=7.8890
26 s22_4_mean=°1.4510
27 s22_5_mean=1.0052
28 s22_6_mean=0.8000
29

30 s11_1_std=2.9313
31 s11_2_std=1.2281
32 s11_3_std=1.2097
33 s11_4_std=1.0429
34 s11_5_std=0.9294
35 s11_6_std=0.7252
36

37 s22_1_std=4.0475
38 s22_2_std=3.8186
39 s22_3_std=1.9898
40 s22_4_std=2.4577
41 s22_5_std=2.0155
42 s22_6_std=0.9293
43

44 m_MonteCarlo=10000
45

46 # make sure s_11_log.dbl, s_22_log.dbl, ...
U3_MonteCarloIteration_log.dbl, U3_mean_log.dbl, U3_std_log.dbl ...
are empty

47

48 logfile_s11='s_11_log.dbl'
49 if os.path.isfile(logfile_s11):
50 os.remove(logfile_s11)
51

52 open('s_11_log.dbl', 'a').close()
53

54 logfile_s22='s_22_log.dbl'
55 if os.path.isfile(logfile_s22):
56 os.remove(logfile_s22)
57

58 open('s_22_log.dbl', 'a').close()
59

60 logfile_U3_MonteCarloIteration='U3_MonteCarloIteration_log.dbl'
61 if os.path.isfile(logfile_U3_MonteCarloIteration):
62 os.remove(logfile_U3_MonteCarloIteration)
63

64 open('U3_MonteCarloIteration_log.dbl', 'a').close()
65

66 logfile_U3_mean='U3_mean_log.dbl'
67 if os.path.isfile(logfile_U3_mean):
68 os.remove(logfile_U3_mean)
69

70 open('U3_mean_log.dbl', 'a').close()
71
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72 logfile_U3_std='U3_std_log.dbl'
73 if os.path.isfile(logfile_U3_std):
74 os.remove(logfile_U3_std)
75

76 open('U3_std_log.dbl', 'a').close()
77

78

79

80 ##°°°°°°°°°°°° 1: Monte Carlo °°°°°°°°°°°°##
81

82 z1=50
83

84 #create z1.dbl
85 fo=open('z1.dbl','w+') #creates it for us if not already created
86 fo.write( '%e' % z1 )
87 fo.close()
88

89 U3_MonteCarloIteration=[0]*m_MonteCarlo
90

91 start_time_StaticAnalyses = timeit.default_timer()
92 for i in range(m_MonteCarlo):
93 s11_1_MonteCarlo=random.normalvariate(s11_1_mean,s11_1_std)
94 s11_2_MonteCarlo=random.normalvariate(s11_2_mean,s11_2_std)
95 s11_3_MonteCarlo=random.normalvariate(s11_3_mean,s11_3_std)
96 s11_4_MonteCarlo=random.normalvariate(s11_4_mean,s11_4_std)
97 s11_5_MonteCarlo=random.normalvariate(s11_5_mean,s11_5_std)
98 s11_6_MonteCarlo=random.normalvariate(s11_6_mean,s11_6_std)
99

100 s22_1_MonteCarlo=random.normalvariate(s22_1_mean,s22_1_std)
101 s22_2_MonteCarlo=random.normalvariate(s22_2_mean,s22_2_std)
102 s22_3_MonteCarlo=random.normalvariate(s22_3_mean,s22_3_std)
103 s22_4_MonteCarlo=random.normalvariate(s22_4_mean,s22_4_std)
104 s22_5_MonteCarlo=random.normalvariate(s22_5_mean,s22_5_std)
105 s22_6_MonteCarlo=random.normalvariate(s22_6_mean,s22_6_std)
106

107

108 #create s_11.dbl and s_22.dbl which will be used in analyses
109 fo=open('s_11.dbl','w+') #creates it for us if not already ...

created
110 fo.write( '%e\n%e\n%e\n%e\n%e\n%e' % ...
111 (s11_1_MonteCarlo,s11_2_MonteCarlo,s11_3_MonteCarlo, ...
112 s11_4_MonteCarlo,s11_5_MonteCarlo,s11_6_MonteCarlo))
113 fo.close()
114

115 fo=open('s_22.dbl','w+') #creates it for us if not already ...
created

116 fo.write( '%e\n%e\n%e\n%e\n%e\n%e' % ...
117 (s22_1_MonteCarlo,s22_2_MonteCarlo,s22_3_MonteCarlo, ...
118 s22_4_MonteCarlo,s22_5_MonteCarlo,s22_6_MonteCarlo))
119 fo.close()
120

121 #calculate U3_MonteCarloIteration
122 U3_MonteCarloIteration[i] ...
123 =funcStateoftheArtMethod.fStateoftheArtMethod(z1)
124
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125 #writes s_11, s_22 and U3_MonteCarloSimulations to logfiles
126 fo=open('s_11_log.dbl','a') #appends
127 fo.write( 's11 at Monte Carlo iteration %e:\n' % (i))
128 fo.close()
129

130 fo=open('s_11_log.dbl','a') #appends
131 fo.write( '%e\n%e\n%e\n%e\n%e\n%e\n' % ...
132 (s11_1_MonteCarlo,s11_2_MonteCarlo,s11_3_MonteCarlo, ...
133 s11_4_MonteCarlo,s11_5_MonteCarlo,s11_6_MonteCarlo))
134 fo.close()
135

136 fo=open('s_22_log.dbl','a') #appends
137 fo.write( 's22 at Monte Carlo iteration %e:\n' % (i))
138 fo.close()
139

140 fo=open('s_22_log.dbl','a') #appends
141 fo.write( '%e\n%e\n%e\n%e\n%e\n%e\n' % ...
142 (s22_1_MonteCarlo,s22_2_MonteCarlo,s22_3_MonteCarlo, ...
143 s22_4_MonteCarlo,s22_5_MonteCarlo,s22_6_MonteCarlo))
144 fo.close()
145

146 fo=open('U3_MonteCarloIteration_log.dbl','a') #appends
147 fo.write( 'U3_MonteCarloIteration at Monte Carlo iteration ...

%e:\n' % (i))
148 fo.close()
149

150 fo=open('U3_MonteCarloIteration_log.dbl','a') #appends
151 fo.write( '%e\n' % (U3_MonteCarloIteration[i]))
152 fo.close()
153

154 print("***°°°°°°°°° RESULTS for iteration_%e °°°°°°°°°***" %i)
155 print( 'U3_MonteCarloIteration at iteration_%e [mm] is %e [mm]' ...

% (i,U3_MonteCarloIteration[i]) )
156

157

158 elapsed_StaticAnalyses = timeit.default_timer() ° ...
start_time_StaticAnalyses

159 print("°°° computation time for State°of°the°art method is %s ...
seconds °°°" % elapsed_StaticAnalyses)

160

161

162 ##°°°°°°°°°°°° 2: determine displacement distribution °°°°°°°°°°°°##
163

164 #mean
165 print( 'number of samples (m_MonteCarlo) is %e' % m_MonteCarlo )
166

167 U3_mean=sum(U3_MonteCarloIteration)/m_MonteCarlo
168 print( 'U3_mean is %e in [mm]' % U3_mean )
169

170 fo=open('U3_mean_log.dbl','a') #appends
171 fo.write( 'U3_mean for %e Monte Carlo iterations is:\n' % ...

(m_MonteCarlo))
172 fo.close()
173

174 fo=open('U3_mean_log.dbl','a') #appends
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175 fo.write( '%e\n' % (U3_mean))
176 fo.close()
177

178 #standard deviation
179 sumsq=0
180 for j in range(m_MonteCarlo):
181 sumsq=sumsq+(U3_MonteCarloIteration[j]°U3_mean)**2
182

183 U3_std=math.sqrt(sumsq/(m_MonteCarlo°1))
184 print( 'U3_std is %e in [mm]' % U3_std )
185

186 fo=open('U3_std_log.dbl','a') #appends
187 fo.write( 'U3_std for %e Monte Carlo iterations is:\n' % (m_MonteCarlo))
188 fo.close()
189

190 fo=open('U3_std_log.dbl','a') #appends
191 fo.write( '%e\n' % (U3_std))
192 fo.close()
193

194

195

196 #end timer StaticAnalyses
197 elapsed_totalScript = timeit.default_timer() ° start_time_totalDSE
198 print("°°° computation time for total Script run is %s seconds °°°" ...

% elapsed_totalScript)

Within python script StateoftheArtMethod.py, python script funcStateoftheArtMethod.py shown
in Fig. C.13 is launched which launches the static analysis for each Monte Carlo simulation
and subsequently extracts the u3 displacement of the centre node after the static analysis.
The python script ExtractU3fromodb.py, which was shown in Fig. C.11, extracts the dis-
placement of the centre node (node 1038 )in z-direction from the .odb file after each static
analysis.

Python code C.13: funcStateoftheArtMethod.py

1 from __future__ import division #decimal division
2 import math
3 import os
4 import random
5 import timeit
6 #import matplotlib.pyplot as plt
7 import shutil
8

9 def fStateoftheArtMethod(z1):
10

11 ##°°°°°°°°°°°° 1: Run sim.inp, extract displacement °°°°°°°°°°°°##
12

13 os.system('abaqus double job=sim user=StressMapping cpus=1 ...
scratch=/home/ycejanssens memory=32gb')

14 os.system("abaqus python ExtractU2fromodb.py")
15

16 with open('U3.dat') as file:
17 for line in file:
18 U3_MonteCarloIteration=float(line)
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19

20 return U3_MonteCarloIteration

The static analyses that are launched in funcStateoftheArtMethod.py summon the SIGINI
subroutine StressMapping.f which is shown in appendix ?? in Fig. ??. The SIGINI subrou-
tine facilitates the assignment of the stress tensors to each element in the mesh based on
the orientation of the stress field and the coordinates of the elements.

At the end of the state-of-the-art method for robustness evaluation, a vector named u3 is
obtained containing the displacements in z-direction (u3) of the centre node (node 1038)
for all 10000 Monte Carlo iterations. In Fig. C.4, on the left, a scatter plot is shown of all
displacements obtained at each Monte Carlo iteration. In the same figure, on the right, the
occurance of each displacement is depicted in a histogram.

Figure C.4: This figure shows a scatter plot (left) of the centre node (node 1038) displacement u3

per Monte Carlo iteration and a histogram (right) of the occurance of centre node (node
1038) displacement u3.

The obtained distribution appears to resemble the shape of a normal distribution. The
mean displacement xu3 and standard deviation of the displacement su3 can be obtained
from this data set as was elaborated upon in chapter 4.3. The outcome of the state-of-the-
art method used for obtaining the distortion distribution of the elementary beam shown in
fig. 4.1 is listed in Tab. C.2.

Table C.2: This table provides an overview of the outcome of the state-of-the-art method employed
for evaluating distortion robustness of the elementary beam that was shown in 4.1 and
that was subjected to a stochastic stress field as was specified in chapter 2.2.

Outcome of the state-of-the-art method Symbol Value

Mean value of centre node displacement xu3 °1.445049mm
Standard deviation of centre node displacement su3 3.078326£10°1 mm

Number of static analyses required m 10000
Computation time t º 85157sec

It becomes evident that even for an elementary mesh such as the one that is considered in
this appendix, obtaining reliable robustness information using the state-of-the-art method
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is computationally highly inefficient, as the computation time was equal to t º 85157sec.
Furthermore, the mean value of the centre node displacement, xu3 , seems to be approx-
imately equal to the deterministic value for the centre node displacement which was ob-
tained with the deterministic static analysis of which the results were listed in Tab. 4.1.

109



C.3 Improved method

In this appendix, the improved method for evaluating distortion robustness is applied to the
elementary beam positioned in rolled plate stock material as was illustrated in Fig. 4.1 with
a mesh such as was shown in Fig. 4.2. The stress field is positioned at offset z1 = 50mm with
respect to the bottom face of the rolled plate and is not rotated with respect to the x-, y- or
z-axis (Æ= 0rad,Ø= 0rad,∞= 0rad). The two-dimensional stress field is stochastic in nature
with the specifics that were determined in chapter 2.1.

Figure C.5: This figure is identical to the figure shown in Fig. 4.1. The rectangular beam is positioned
at offset z1 = 50mm having a two-dimensional stress field such as the one that is mathe-
matically derived in chapter 2.2. The mesh consist of three-dimensional hexahedron el-
ements. The beam has dimensions l1 = 50mm, l2 = 1000mm and l3 = 50mm. The thick-
ness of stock material is h = 300mm. The beam has a Young’s Modulus of E = 70.07GPa.

The input files used in the state-of-the-art method are identical to the input files that were
shown in Fig. C.1 - C.7. The improved method for robustness evaluation is launched from
the Cluster using the same submit.sub file as the one that was shown in Fig. C.8. This time,
however, the python script ImprovedMethod.py is launched, which is shown in Fig. C.14.

Python code C.14: ImprovedMethod.py

1 from __future__ import division #decimal division
2 #import matplotlib.pyplot as plt
3 from inputvalues import L,h
4 import funcImprovedMethod
5 import timeit
6 import os
7 import shutil
8

9

10 #total DSE run°time count
11 start_time_totalDSE = timeit.default_timer()
12

13

14 ##°°°°°°°°°°°° 2: single simulation °°°°°°°°°°°°##
15 z1=50
16

17 #create z1.dbl
18 fo=open('z1.dbl','w+') #creates it for us if not already created
19 fo.write( '%e' % z1 )
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20 fo.close()
21

22 deterministic_U3,mean_U3,std_U3=funcImprovedMethod.fImprovedMethod(z1)
23

24 print('deterministic_U3 is %e' % (deterministic_U3))
25 print('mean_U3 is %e' % (mean_U3))
26 print('std_U3 is %e' % (std_U3)
27

28 #end timer StaticAnalyses
29 elapsed_totalScript = timeit.default_timer() ° start_time_totalDSE
30 print("°°° computation time for total Script run is %s seconds °°°" ...

% elapsed_totalScript)

Within the script ImprovedMethod.py, the script funcImprovedMethod.py is called, which is
shown in Fig. C.15. In this script, the improved method for evaluating robustness, which
is further elaborated in chapter 4.4, is executed. Twelve static analyses are performed in
order to obtain the individual mode displacement fields U 11,i and U 22,i for i = 1 · · ·6. Subse-
quently, the final displacement field u including stochastic information is obtained via the
twelve displacement fields.

Python code C.15: funcImprovedMethod.py

1 from __future__ import division #decimal division
2 import math
3 import os
4 import random
5 import timeit
6 #import matplotlib.pyplot as plt
7 import shutil
8 import numpy
9

10 def fImprovedMethod(z1):
11

12

13 ##°°°°°°°°°°°° 0: stress coefficients °°°°°°°°°°°°##
14 c_11_1=°8.1936
15 c_11_2=2.4317
16 c_11_3=2.9584
17 c_11_4=1.3215
18 c_11_5=0.9406
19 c_11_6=1.0299
20

21 c_22_1=°27.0343
22 c_22_2=6.1362
23 c_22_3=7.8890
24 c_22_4=°1.4510
25 c_22_5=1.0052
26 c_22_6=0.8000
27

28

29 ##°°°°°°°°°°°° 1: Run sim.inp, extract displacement °°°°°°°°°°°°##
30 #start timer Static Analyses
31 start_time_StaticAnalyses = timeit.default_timer()
32
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33 ### Displacement of individual mode U11,1
34 os.system('abaqus double job=sim user=StressMapping_Phi11_mode1 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
35 os.system("abaqus python ExtractU3fromodb.py")
36

37 with open('U3.dat') as file:
38 for line in file:
39 U3_11_mode1=float(line)
40

41 ### Displacement of individual mode U11,2
42 os.system('abaqus double job=sim user=StressMapping_Phi11_mode2 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
43 os.system("abaqus python ExtractU3fromodb.py")
44

45 with open('U3.dat') as file:
46 for line in file:
47 U3_11_mode2=float(line)
48

49 ### Displacement of individual mode U11,3
50 os.system('abaqus double job=sim user=StressMapping_Phi11_mode3 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
51 os.system("abaqus python ExtractU3fromodb.py")
52

53 with open('U3.dat') as file:
54 for line in file:
55 U3_11_mode3=float(line)
56

57 ### Displacement of individual mode U11,4
58 os.system('abaqus double job=sim user=StressMapping_Phi11_mode4 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
59 os.system("abaqus python ExtractU3fromodb.py")
60

61 with open('U3.dat') as file:
62 for line in file:
63 U3_11_mode4=float(line)
64

65 ### Displacement of individual mode U11,5
66 os.system('abaqus double job=sim user=StressMapping_Phi11_mode5 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
67 os.system("abaqus python ExtractU3fromodb.py")
68

69 with open('U3.dat') as file:
70 for line in file:
71 U3_11_mode5=float(line)
72

73 ### Displacement of individual mode U11,6
74 os.system('abaqus double job=sim user=StressMapping_Phi11_mode6 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
75 os.system("abaqus python ExtractU3fromodb.py")
76

77 with open('U3.dat') as file:
78 for line in file:
79 U3_11_mode6=float(line)
80

81
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82 ### Displacement of individual mode U22,1
83 os.system('abaqus double job=sim user=StressMapping_Phi22_mode1 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
84 os.system("abaqus python ExtractU3fromodb.py")
85

86 with open('U3.dat') as file:
87 for line in file:
88 U3_22_mode1=float(line)
89

90 ### Displacement of individual mode U22,2
91 os.system('abaqus double job=sim user=StressMapping_Phi22_mode2 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
92 os.system("abaqus python ExtractU3fromodb.py")
93

94 with open('U3.dat') as file:
95 for line in file:
96 U3_22_mode2=float(line)
97

98 ### Displacement of individual mode U22,3
99 os.system('abaqus double job=sim user=StressMapping_Phi22_mode3 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
100 os.system("abaqus python ExtractU3fromodb.py")
101

102 with open('U3.dat') as file:
103 for line in file:
104 U3_22_mode3=float(line)
105

106 ### Displacement of individual mode U22,4
107 os.system('abaqus double job=sim user=StressMapping_Phi22_mode4 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
108 os.system("abaqus python ExtractU3fromodb.py")
109

110 with open('U3.dat') as file:
111 for line in file:
112 U3_22_mode4=float(line)
113

114 ### Displacement of individual mode U22,5
115 os.system('abaqus double job=sim user=StressMapping_Phi22_mode5 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
116 os.system("abaqus python ExtractU3fromodb.py")
117

118 with open('U3.dat') as file:
119 for line in file:
120 U3_22_mode5=float(line)
121

122 ### Displacement of individual mode U22,6
123 os.system('abaqus double job=sim user=StressMapping_Phi22_mode6 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
124 os.system("abaqus python ExtractU3fromodb.py")
125

126 with open('U3.dat') as file:
127 for line in file:
128 U3_22_mode6=float(line)
129

130
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131 ##°print mode displacements°##
132 print("***°°°°°°°°° RESULTS for ystar_%e °°°°°°°°°***" %z1)
133 print( 'U3_11_mode1 at z1=%e [mm] is %e [mm]' % (z1,U3_11_mode1) )
134 print( 'U3_11_mode2 at z1=%e [mm] is %e [mm]' % (z1,U3_11_mode2) )
135 print( 'U3_11_mode3 at z1=%e [mm] is %e [mm]' % (z1,U3_11_mode3) )
136 print( 'U3_11_mode4 at z1=%e [mm] is %e [mm]' % (z1,U3_11_mode4) )
137 print( 'U3_11_mode5 at z1=%e [mm] is %e [mm]' % (z1,U3_11_mode5) )
138 print( 'U3_11_mode6 at z1=%e [mm] is %e [mm]' % (z1,U3_11_mode6) )
139 print( 'U3_22_mode1 at z1=%e [mm] is %e [mm]' % (z1,U3_22_mode1) )
140 print( 'U3_22_mode2 at z1=%e [mm] is %e [mm]' % ...

(z1,U3_22_mode2)) )
141 print( 'U3_22_mode3 at z1=%e [mm] is %e [mm]' % ...

(z1,U3_22_mode3)) )
142 print( 'U3_22_mode4 at z1=%e [mm] is %e [mm]' % ...

(z1,U3_22_mode4)) )
143 print( 'U3_22_mode5 at z1=%e [mm] is %e [mm]' % ...

(z1,U3_22_mode5)) )
144 print( 'U3_22_mode6 at z1=%e [mm] is %e [mm]' % ...

(z1,U3_22_mode6)) )
145

146 ##°Total deterministic displacement U3°##
147 U3_deterministic=c_11_1*U3_11_mode1+c_11_2*U3_11_mode1+ \
148 c_11_3*U3_11_mode1+c_11_4*U3_11_mode1+ ...

\
149 c_11_5*U3_11_mode1+c_11_6*U3_11_mode1+ ...

\
150 c_22_1*U3_11_mode1+c_22_2*U3_11_mode1+ ...

\
151 c_22_3*U3_11_mode1+c_22_4*U3_11_mode1+ ...

\
152 c_22_5*U3_11_mode1+c_22_6*U3_11_mode1
153 print( 'deterministic_U3 at z1=%e [mm] is %e [mm]' % ...

(z1,deterministic_U3) )
154

155 ##°end timer StaticAnalyses°##
156 elapsed_StaticAnalyses = timeit.default_timer() ° ...

start_time_StaticAnalyses
157 print("°°° computation time for Static Analyses is %s seconds ...

°°°" % elapsed_StaticAnalyses)
158

159

160 ##°°°°°°°°°°°° 2: Analytical robustness evaluation °°°°°°°°°°°°##
161 #start timer Monte°Carlo
162 start_time_MonteCarlo = timeit.default_timer()
163

164 c11_1_std=2.9313
165 c11_2_std=1.2281
166 c11_3_std=1.2097
167 c11_4_std=1.0429
168 c11_5_std=0.9294
169 c11_6_std=0.7252
170

171 c22_1_std=4.0475
172 c22_2_std=3.8186
173 c22_3_std=1.9898
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174 c22_4_std=2.4577
175 c22_5_std=2.0155
176 c22_6_std=0.9293
177

178 #theoretical mean derivation
179 mean_U3=c_11_1*U3_11_mode1 + c_11_2*U3_11_mode2 + \
180 c_11_3*U3_11_mode3 + c_11_4*U3_11_mode4 + \
181 c_11_5*U3_11_mode5 + c_11_6*U3_11_mode6 + \
182 c_22_1*U3_22_mode1 + c_22_2*U3_22_mode2 + \
183 c_22_3*U3_22_mode3 + c_22_4*U3_22_mode4 + \
184 c_22_5*U3_22_mode5 + c_22_6*U3_22_mode6
185

186

187 #theoretical var and std derivation
188 var_U3=(c11_1_std*U3_11_mode1)**2 + (c11_2_std*U3_11_mode2)**2 + \
189 (c11_3_std*U3_11_mode3)**2 + ...

(c11_4_std*U3_11_mode4)**2 + \
190 (c11_5_std*U3_11_mode5)**2 + ...

(c11_6_std*U3_11_mode6)**2 + \
191 (c22_1_std*U3_22_mode1)**2 + ...

(c22_2_std*U3_22_mode2)**2 + \
192 (c22_3_std*U3_22_mode3)**2 + ...

(c22_4_std*U3_22_mode4)**2 + \
193 (c22_5_std*U3_22_mode5)**2 + ...

(c22_6_std*U3_22_mode6)**2
194

195

196 std_U3=math.sqrt(var_U3)
197

198

199 elapsed_MonteCarlo = timeit.default_timer() ° start_time_MonteCarlo
200 print("°°° computation time for State°of°the°Art method is %s ...

seconds °°°" % elapsed_MonteCarlo)
201

202

203 return deterministic_U3, mean_U3, std_U3

At each static analysis for U 11,i or U 22,i that are performed in funcImprovedMethod.py, the
corresponding stress mode matrices ¡11,i and ¡22,i form the input. There are thus twelve
Fortran scripts needed for the assignment of stress tensors to the elements in the mesh for
each of the twelve individual static analyses, which are shown in Fig. C.16-C.27.

Fortran code C.16: StressMappingS11Mode1.f

1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 !°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°!
5 ! lop.eq.0 °> start of the analysis !
6 ! lop.eq.1 °> start of the current analysis increment !
7 ! lop.eq.2 °> end of the current analysis increment !
8 ! lop.eq.3 °> end of the analysis !
9 ! lop.eq.4 °> beginning of a restart analysis !

10 ! lop.eq.5 °> start of the step (#kstep) !
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11 ! lop.eq.6 °> end of the step (#kstep) !
12 !°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°!
13 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
14 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
15 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
16 !
17 subroutine uexternaldb(lop,lrestart,time,dtime,kstep,kinc)
18 !
19 include 'aba_param.inc'
20 !
21 #include <SMAAspUserSubroutines.hdr>
22 !
23 ! General
24 !
25 integer lop,io
26 integer i,j,k
27 logical exists
28 dimension time(2)
29 double precision dmp
30 !
31 ! Strings
32 !
33 character(99) :: scr
34 character(99) :: fln
35 !
36 ! Arrays
37 !
38 DOUBLE PRECISION s_11(*)
39 POINTER (s_11_ptr, s_11)
40 !
41 DOUBLE PRECISION C_2(*)
42 POINTER (C_2_ptr, C_2)
43 !
44 DOUBLE PRECISION s_33(*)
45 POINTER (s_33_ptr, s_33)
46 !
47 DOUBLE PRECISION O_F(*)
48 POINTER (O_F_ptr, O_F)
49 !
50 DOUBLE PRECISION H_T(*)
51 POINTER (H_T_ptr, H_T)
52 !
53 DOUBLE PRECISION alpha_deg(*)
54 POINTER (alpha_deg_ptr, alpha_deg)
55 !
56 DOUBLE PRECISION beta_deg(*)
57 POINTER (beta_deg_ptr, beta_deg)
58 !
59 DOUBLE PRECISION gamma_deg(*)
60 POINTER (gamma_deg_ptr, gamma_deg)
61 !
62 ! ALWAYS GET SCRATCH
63 !
64 exists=.false.
65 inquire(file='../scr.dir', exist=exists)
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66 if(exists) then
67 open(unit=666,file='../scr.dir')
68 read(666,'(a)') scr
69 close(666)
70 else
71 print*, 'FILE ERROR; scr.dir not found'
72 stop
73 endif
74 !
75 ! START OF THE ANALYSIS
76 !
77 if(lop.eq.0) then
78 !
79 print*, trim(scr)
80 !
81 s_11_ptr = SMAFloatArrayCreate(11,6,0.d0)
82 C_2_ptr = SMAFloatArrayCreate(12,6,0.d0)
83 s_33_ptr = SMAFloatArrayCreate(13,6,0.d0)
84 O_F_ptr = SMAFloatArrayCreate(14,3,0.d0)
85 H_T_ptr = SMAFloatArrayCreate(15,1,0.d0)
86 alpha_deg_ptr = SMAFloatArrayCreate(16,1,0.d0)
87 beta_deg_ptr = SMAFloatArrayCreate(17,1,0.d0)
88 gamma_deg_ptr = SMAFloatArrayCreate(18,1,0.d0)
89 !
90 ! Read stress components, part height, and offset
91 !
92 fln= trim(scr)//'/s_11.dbl'
93 exists=.false.
94 inquire(file=fln, exist=exists)
95 if(exists) then
96 open(unit=205,file=fln)
97 i=1
98 do
99 read(205,*,iostat=io) dmp

100 if(io/=0) exit
101 s_11(i) = dmp
102 i=i+1
103 enddo
104 close(205)
105 else
106 print*, 'FILE ERROR; s_11.dbl not found'
107 stop
108 endif
109 !
110 fln= trim(scr)//'/C_2.dbl'
111 exists=.false.
112 inquire(file=fln, exist=exists)
113 if(exists) then
114 open(unit=205,file=fln)
115 i=1
116 do
117 read(205,*,iostat=io) dmp
118 if(io/=0) exit
119 C_2(i) = dmp
120 i=i+1
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121 enddo
122 close(205)
123 else
124 print*, 'FILE ERROR; C_2.dbl not found'
125 stop
126 endif
127 !
128 fln= trim(scr)//'/s_33.dbl'
129 exists=.false.
130 inquire(file=fln, exist=exists)
131 if(exists) then
132 open(unit=205,file=fln)
133 i=1
134 do
135 read(205,*,iostat=io) dmp
136 if(io/=0) exit
137 s_33(i) = dmp
138 i=i+1
139 enddo
140 close(205)
141 else
142 print*, 'FILE ERROR; s_33.dbl not found'
143 stop
144 endif
145 !
146 fln= trim(scr)//'/O_F.dbl'
147 exists=.false.
148 inquire(file=fln, exist=exists)
149 if(exists) then
150 open(unit=205,file=fln)
151 i=1
152 do
153 read(205,*,iostat=io) dmp
154 if(io/=0) exit
155 O_F(i) = dmp
156 i=i+1
157 enddo
158 close(205)
159 else
160 print*, 'FILE ERROR; OFF.dbl not found'
161 stop
162 endif
163 !
164 fln= trim(scr)//'/H_T.dbl'
165 exists=.false.
166 inquire(file=fln, exist=exists)
167 if(exists) then
168 open(unit=205,file=fln)
169 read(205,*,iostat=io) dmp
170 H_T(1) = dmp
171 close(205)
172 else
173 print*, 'FILE ERROR; H_T.dbl not found'
174 stop
175 endif
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176 !
177 fln= trim(scr)//'/alpha_deg.dbl'
178 exists=.false.
179 inquire(file=fln, exist=exists)
180 if(exists) then
181 open(unit=205,file=fln)
182 read(205,*,iostat=io) dmp
183 alpha_deg(1) = dmp
184 close(205)
185 else
186 print*, 'FILE ERROR; alpha_deg.dbl not found'
187 stop
188 endif
189 !
190 fln= trim(scr)//'/beta_deg.dbl'
191 exists=.false.
192 inquire(file=fln, exist=exists)
193 if(exists) then
194 open(unit=205,file=fln)
195 read(205,*,iostat=io) dmp
196 beta_deg(1) = dmp
197 close(205)
198 else
199 print*, 'FILE ERROR; beta_deg.dbl not found'
200 stop
201 endif
202 !
203 fln= trim(scr)//'/gamma_deg.dbl'
204 exists=.false.
205 inquire(file=fln, exist=exists)
206 if(exists) then
207 open(unit=205,file=fln)
208 read(205,*,iostat=io) dmp
209 gamma_deg(1) = dmp
210 close(205)
211 else
212 print*, 'FILE ERROR; gamma_deg.dbl not found'
213 stop
214 endif
215 !
216 else
217 !
218 ! IF NOT START OF THE ANALYSIS (access values)
219 !
220 s_11_ptr = SMAFloatArrayAccess(11)
221 C_2_ptr = SMAFloatArrayAccess(12)
222 s_33_ptr = SMAFloatArrayAccess(13)
223 O_F_ptr = SMAFloatArrayAccess(14)
224 H_T_ptr = SMAFloatArrayAccess(15)
225 alpha_deg_ptr = SMAFloatArrayAccess(16)
226 beta_deg_ptr = SMAFloatArrayAccess(17)
227 gamma_deg_ptr = SMAFloatArrayAccess(18)
228 !
229 endif
230 !
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231 !
232 !
233 end subroutine
234 !
235 SUBROUTINE SIGINI(SIGMA,COORDS,NTENS,NCRDS,NOEL,NPT,LAYER,
236 1 KSPT,LREBAR,NAMES)
237 C
238 INCLUDE 'ABA_PARAM.INC'
239 C
240 #include <SMAAspUserSubroutines.hdr>
241 !
242

243 ! !!!°°°°°°°0: declarations°°°°°°°!!!
244 DOUBLE PRECISION, DIMENSION(3,3) :: Rx
245 DOUBLE PRECISION, DIMENSION(3,3) :: Ry
246 DOUBLE PRECISION, DIMENSION(3,3) :: Rz
247 DOUBLE PRECISION, DIMENSION(3,3) :: Rx_backrotation
248 DOUBLE PRECISION, DIMENSION(3,3) :: Ry_backrotation
249 DOUBLE PRECISION, DIMENSION(3,3) :: Rz_backrotation
250 DOUBLE PRECISION, DIMENSION(3,3) :: R1
251 DOUBLE PRECISION, DIMENSION(3,3) :: R
252 DOUBLE PRECISION, DIMENSION(3,3) :: R1_backrotation
253 DOUBLE PRECISION, DIMENSION(3,3) :: R_backrotation
254 DOUBLE PRECISION, DIMENSION(3,3) :: R_T
255 DOUBLE PRECISION, DIMENSION(3,3) :: R_backrotation_T
256 DOUBLE PRECISION, DIMENSION(3,1) :: COORDS_wrtC_transformed
257 DOUBLE PRECISION, DIMENSION(3,1) :: COORDS_wrtC
258 DOUBLE PRECISION, DIMENSION(3,3) :: sigma_transformed
259 DOUBLE PRECISION, DIMENSION(3,3) :: sigma_originalconfiguration
260 DOUBLE PRECISION, DIMENSION(3,3) :: sigma_step1
261 DOUBLE PRECISION alpha
262 DOUBLE PRECISION beta
263 DOUBLE PRECISION gamma
264 DOUBLE PRECISION xbar
265 DOUBLE PRECISION ybar
266 DOUBLE PRECISION zbar
267

268 INTEGER i
269 DIMENSION SIGMA(NTENS),COORDS(NCRDS)
270 CHARACTER NAMES(2)*80
271 !
272 DOUBLE PRECISION PI
273 !
274 DOUBLE PRECISION s_11(*)
275 POINTER (s_11_ptr, s_11)
276 !
277 DOUBLE PRECISION C_2(*)
278 POINTER (C_2_ptr, C_2)
279 !
280 DOUBLE PRECISION s_33(*)
281 POINTER (s_33_ptr, s_33)
282 !
283 DOUBLE PRECISION O_F(*)
284 POINTER (O_F_ptr, O_F)
285 !
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286 DOUBLE PRECISION H_T(*)
287 POINTER (H_T_ptr, H_T)
288 !
289 DOUBLE PRECISION alpha_deg(*)
290 POINTER (alpha_deg_ptr, alpha_deg)
291 !
292 DOUBLE PRECISION beta_deg(*)
293 POINTER (beta_deg_ptr, beta_deg)
294 !
295 DOUBLE PRECISION gamma_deg(*)
296 POINTER (gamma_deg_ptr, gamma_deg)
297 !
298 s_11_ptr = SMAFloatArrayAccess(11)
299 C_2_ptr = SMAFloatArrayAccess(12)
300 s_33_ptr = SMAFloatArrayAccess(13)
301 O_F_ptr = SMAFloatArrayAccess(14)
302 H_T_ptr = SMAFloatArrayAccess(15)
303 alpha_deg_ptr = SMAFloatArrayAccess(16)
304 beta_deg_ptr = SMAFloatArrayAccess(17)
305 gamma_deg_ptr = SMAFloatArrayAccess(18)
306 !
307 PI=4.D0*DATAN(1.D0)
308 !
309

310 ! !!!°°°°°°°1: COORD with respect to Centroid°°°°°°°!!!
311 xbar=85d0
312 ybar=55d0
313 zbar=500d0
314

315 COORDS_wrtC(1,1)=COORDS(1)°xbar
316 COORDS_wrtC(2,1)=COORDS(2)°ybar
317 COORDS_wrtC(3,1)=COORDS(3)°zbar
318

319

320 ! !!!°°°°°°°2: rotation matrices Rx, Ry, Rz, R, R_T and their ...
backrotation matrices°°°°°°°!!!

321

322 ! Rx and Rx_backrotation
323 alpha=alpha_deg(1)/360d0*2d0*PI
324

325 Rx(1,1) = 1d0
326 Rx(1,2) = 0d0
327 Rx(1,3) = 0d0
328 Rx(2,1) = 0d0
329 Rx(2,2) = dcos(alpha)
330 Rx(2,3) = dsin(alpha)
331 Rx(3,1) = 0d0
332 Rx(3,2) = °dsin(alpha)
333 Rx(3,3) = dcos(alpha)
334

335 Rx_backrotation(1,1) = 1d0
336 Rx_backrotation(1,2) = 0d0
337 Rx_backrotation(1,3) = 0d0
338 Rx_backrotation(2,1) = 0d0
339 Rx_backrotation(2,2) = dcos(°alpha)
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340 Rx_backrotation(2,3) = dsin(°alpha)
341 Rx_backrotation(3,1) = 0d0
342 Rx_backrotation(3,2) = °dsin(°alpha)
343 Rx_backrotation(3,3) = dcos(°alpha)
344

345 ! Ry and Ry_backrotation
346 beta=beta_deg(1)/360d0*2d0*PI
347

348 Ry(1,1) = dcos(beta)
349 Ry(1,2) = 0d0
350 Ry(1,3) = °dsin(beta)
351 Ry(2,1) = 0d0
352 Ry(2,2) = 1d0
353 Ry(2,3) = 0d0
354 Ry(3,1) = dsin(beta)
355 Ry(3,2) = 0d0
356 Ry(3,3) = dcos(beta)
357

358 Ry_backrotation(1,1) = dcos(°beta)
359 Ry_backrotation(1,2) = 0d0
360 Ry_backrotation(1,3) = °dsin(°beta)
361 Ry_backrotation(2,1) = 0d0
362 Ry_backrotation(2,2) = 1d0
363 Ry_backrotation(2,3) = 0d0
364 Ry_backrotation(3,1) = dsin(°beta)
365 Ry_backrotation(3,2) = 0d0
366 Ry_backrotation(3,3) = dcos(°beta)
367

368 ! Rz and Rz_backrotation
369 gamma=gamma_deg(1)/360d0*2d0*PI
370

371 Rz(1,1) = dcos(gamma)
372 Rz(1,2) = dsin(gamma)
373 Rz(1,3) = 0d0
374 Rz(2,1) = °dsin(gamma)
375 Rz(2,2) = dcos(gamma)
376 Rz(2,3) = 0d0
377 Rz(3,1) = 0d0
378 Rz(3,2) = 0d0
379 Rz(3,3) = 1d0
380

381 Rz_backrotation(1,1) = dcos(°gamma)
382 Rz_backrotation(1,2) = dsin(°gamma)
383 Rz_backrotation(1,3) = 0d0
384 Rz_backrotation(2,1) = °dsin(°gamma)
385 Rz_backrotation(2,2) = dcos(°gamma)
386 Rz_backrotation(2,3) = 0d0
387 Rz_backrotation(3,1) = 0d0
388 Rz_backrotation(3,2) = 0d0
389 Rz_backrotation(3,3) = 1d0
390

391 ! R and R_backrotation (R=Rz*Ry*Rx)
392 R1=matmul(Ry,Rx)
393 R=matmul(Rz,R1)
394
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395 R1_backrotation=matmul(Ry_backrotation,Rx_backrotation)
396 R_backrotation=matmul(Rz_backrotation,R1_backrotation)
397

398 ! R_T transposed and R_backrotation_T transposed
399 R_T(1,1) = R(1,1)
400 R_T(1,2) = R(2,1)
401 R_T(1,3) = R(3,1)
402 R_T(2,1) = R(1,2)
403 R_T(2,2) = R(2,2)
404 R_T(2,3) = R(3,2)
405 R_T(3,1) = R(1,3)
406 R_T(3,2) = R(2,3)
407 R_T(3,3) = R(3,3)
408

409 R_backrotation_T(1,1) = R_backrotation(1,1)
410 R_backrotation_T(1,2) = R_backrotation(2,1)
411 R_backrotation_T(1,3) = R_backrotation(3,1)
412 R_backrotation_T(2,1) = R_backrotation(1,2)
413 R_backrotation_T(2,2) = R_backrotation(2,2)
414 R_backrotation_T(2,3) = R_backrotation(3,2)
415 R_backrotation_T(3,1) = R_backrotation(1,3)
416 R_backrotation_T(3,2) = R_backrotation(2,3)
417 R_backrotation_T(3,3) = R_backrotation(3,3)
418

419 ! !!!°°°°°°°3: determine COORDS_wrtC in rotated/transformed ...
orientation°°°°°°°!!!

420 ! °°°°°°° COORDS_wrtC'=R*COORDS_wrtC ...
°°°°°°°

421 COORDS_wrtC_transformed=matmul(R,COORDS_wrtC)
422

423

424 ! !!!°°°°°°°4: fill sigma_transformed°°°°°°°!!!
425 sigma_transformed(1,1)=
426 dcos(1d0*2d0*PI*(COORDS_wrtC_transformed(2,1)+O_F(1)+ybar)/H_T(1))
427 sigma_transformed(1,2)=0d0
428 sigma_transformed(1,3)=0d0
429 sigma_transformed(2,1)=0d0
430 sigma_transformed(2,2)=0d0
431 sigma_transformed(2,3)=0d0
432 sigma_transformed(3,1)=0d0
433 sigma_transformed(3,2)=0d0
434 sigma_transformed(3,3)=0d0
435

436

437 ! !!!°°°°°°°5: determine sigma in original ...
configuration/coordinate system°°°°°°°!!!

438 ! °°°°°°° sigma=R_backrotation*sigma'*R_backrotation_T ...
°°°°°°°

439 sigma_step1=matmul(sigma_transformed,R_backrotation_T)
440 sigma_originalconfiguration=matmul(R_backrotation,sigma_step1)
441

442 SIGMA(1)=sigma_originalconfiguration(1,1)
443 SIGMA(2)=sigma_originalconfiguration(2,2)
444 SIGMA(3)=sigma_originalconfiguration(3,3)
445 SIGMA(4)=sigma_originalconfiguration(1,2)
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446 SIGMA(5)=sigma_originalconfiguration(1,3)
447 SIGMA(6)=sigma_originalconfiguration(2,3)
448

449 RETURN
450 END
451 !

The Fortran scripts for the other eleven stress modes are equal to the Fortran script that was
shown in Fig. C.16, except for a small section containing the definition of the transformed
stress matrix. For each stress mode, the sections shown in Fig. C.17-C.27 must be substi-
tuted in Fig. C.16.

Fortran code C.17: Section of StressMappingS11Mode2.f

1 ! !!!°°°°°°°4: fill sigma_transformed°°°°°°°!!!
2 sigma_transformed(1,1)=
3 dcos(2d0*2d0*PI*(COORDS_wrtC_transformed(2,1)+O_F(1)+ybar)/H_T(1))
4 sigma_transformed(1,2)=0d0
5 sigma_transformed(1,3)=0d0
6 sigma_transformed(2,1)=0d0
7 sigma_transformed(2,2)=0d0
8 sigma_transformed(2,3)=0d0
9 sigma_transformed(3,1)=0d0

10 sigma_transformed(3,2)=0d0
11 sigma_transformed(3,3)=0d0

Fortran code C.18: Section of StressMappingS11Mode3.f

1 ! !!!°°°°°°°4: fill sigma_transformed°°°°°°°!!!
2 sigma_transformed(1,1)=
3 dcos(3d0*2d0*PI*(COORDS_wrtC_transformed(2,1)+O_F(1)+ybar)/H_T(1))
4 sigma_transformed(1,2)=0d0
5 sigma_transformed(1,3)=0d0
6 sigma_transformed(2,1)=0d0
7 sigma_transformed(2,2)=0d0
8 sigma_transformed(2,3)=0d0
9 sigma_transformed(3,1)=0d0

10 sigma_transformed(3,2)=0d0
11 sigma_transformed(3,3)=0d0

Fortran code C.19: Section of StressMappingS11Mode4.f

1 ! !!!°°°°°°°4: fill sigma_transformed°°°°°°°!!!
2 sigma_transformed(1,1)=
3 dcos(4d0*2d0*PI*(COORDS_wrtC_transformed(2,1)+O_F(1)+ybar)/H_T(1))
4 sigma_transformed(1,2)=0d0
5 sigma_transformed(1,3)=0d0
6 sigma_transformed(2,1)=0d0
7 sigma_transformed(2,2)=0d0
8 sigma_transformed(2,3)=0d0
9 sigma_transformed(3,1)=0d0

10 sigma_transformed(3,2)=0d0
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11 sigma_transformed(3,3)=0d0

Fortran code C.20: Section of StressMappingS11Mode5.f

1 ! !!!°°°°°°°4: fill sigma_transformed°°°°°°°!!!
2 sigma_transformed(1,1)=
3 dcos(5d0*2d0*PI*(COORDS_wrtC_transformed(2,1)+O_F(1)+ybar)/H_T(1))
4 sigma_transformed(1,2)=0d0
5 sigma_transformed(1,3)=0d0
6 sigma_transformed(2,1)=0d0
7 sigma_transformed(2,2)=0d0
8 sigma_transformed(2,3)=0d0
9 sigma_transformed(3,1)=0d0

10 sigma_transformed(3,2)=0d0
11 sigma_transformed(3,3)=0d0

Fortran code C.21: Section of StressMappingS11Mode6.f

1 ! !!!°°°°°°°4: fill sigma_transformed°°°°°°°!!!
2 sigma_transformed(1,1)=
3 dcos(6d0*2d0*PI*(COORDS_wrtC_transformed(2,1)+O_F(1)+ybar)/H_T(1))
4 sigma_transformed(1,2)=0d0
5 sigma_transformed(1,3)=0d0
6 sigma_transformed(2,1)=0d0
7 sigma_transformed(2,2)=0d0
8 sigma_transformed(2,3)=0d0
9 sigma_transformed(3,1)=0d0

10 sigma_transformed(3,2)=0d0
11 sigma_transformed(3,3)=0d0

Fortran code C.22: Section of StressMappingS22Mode1.f

1 ! !!!°°°°°°°4: fill sigma_transformed°°°°°°°!!!
2 sigma_transformed(1,1)=0d0
3 sigma_transformed(1,2)=0d0
4 sigma_transformed(1,3)=0d0
5 sigma_transformed(2,1)=0d0
6 sigma_transformed(2,2)=0d0
7 sigma_transformed(2,3)=0d0
8 sigma_transformed(3,1)=0d0
9 sigma_transformed(3,2)=0d0

10 sigma_transformed(3,3)=
11 dcos(1d0*2d0*PI*(COORDS_wrtC_transformed(2,1)+O_F(1)+ybar)/H_T(1))

Fortran code C.23: Section of StressMappingS22Mode2.f

1 ! !!!°°°°°°°4: fill sigma_transformed°°°°°°°!!!
2 sigma_transformed(1,1)=0d0
3 sigma_transformed(1,2)=0d0
4 sigma_transformed(1,3)=0d0
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5 sigma_transformed(2,1)=0d0
6 sigma_transformed(2,2)=0d0
7 sigma_transformed(2,3)=0d0
8 sigma_transformed(3,1)=0d0
9 sigma_transformed(3,2)=0d0

10 sigma_transformed(3,3)=
11 dcos(2d0*2d0*PI*(COORDS_wrtC_transformed(2,1)+O_F(1)+ybar)/H_T(1))

Fortran code C.24: Section of StressMappingS22Mode3.f

1 ! !!!°°°°°°°4: fill sigma_transformed°°°°°°°!!!
2 sigma_transformed(1,1)=0d0
3 sigma_transformed(1,2)=0d0
4 sigma_transformed(1,3)=0d0
5 sigma_transformed(2,1)=0d0
6 sigma_transformed(2,2)=0d0
7 sigma_transformed(2,3)=0d0
8 sigma_transformed(3,1)=0d0
9 sigma_transformed(3,2)=0d0

10 sigma_transformed(3,3)=
11 dcos(3d0*2d0*PI*(COORDS_wrtC_transformed(2,1)+O_F(1)+ybar)/H_T(1))

Fortran code C.25: Section of StressMappingS22Mode4.f

1 ! !!!°°°°°°°4: fill sigma_transformed°°°°°°°!!!
2 sigma_transformed(1,1)=0d0
3 sigma_transformed(1,2)=0d0
4 sigma_transformed(1,3)=0d0
5 sigma_transformed(2,1)=0d0
6 sigma_transformed(2,2)=0d0
7 sigma_transformed(2,3)=0d0
8 sigma_transformed(3,1)=0d0
9 sigma_transformed(3,2)=0d0

10 sigma_transformed(3,3)=
11 dcos(4d0*2d0*PI*(COORDS_wrtC_transformed(2,1)+O_F(1)+ybar)/H_T(1))

Fortran code C.26: Section of StressMappingS22Mode5.f

1 ! !!!°°°°°°°4: fill sigma_transformed°°°°°°°!!!
2 sigma_transformed(1,1)=0d0
3 sigma_transformed(1,2)=0d0
4 sigma_transformed(1,3)=0d0
5 sigma_transformed(2,1)=0d0
6 sigma_transformed(2,2)=0d0
7 sigma_transformed(2,3)=0d0
8 sigma_transformed(3,1)=0d0
9 sigma_transformed(3,2)=0d0

10 sigma_transformed(3,3)=
11 dcos(5d0*2d0*PI*(COORDS_wrtC_transformed(2,1)+O_F(1)+ybar)/H_T(1))
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Fortran code C.27: Section of StressMappingS22Mode6.f

1 ! !!!°°°°°°°4: fill sigma_transformed°°°°°°°!!!
2 sigma_transformed(1,1)=0d0
3 sigma_transformed(1,2)=0d0
4 sigma_transformed(1,3)=0d0
5 sigma_transformed(2,1)=0d0
6 sigma_transformed(2,2)=0d0
7 sigma_transformed(2,3)=0d0
8 sigma_transformed(3,1)=0d0
9 sigma_transformed(3,2)=0d0

10 sigma_transformed(3,3)=
11 dcos(6d0*2d0*PI*(COORDS_wrtC_transformed(2,1)+O_F(1)+ybar)/H_T(1))

The outcome of using the improved method to evaluate robustness of distortion is listed in
Tab. C.3.

Table C.3: This table provides an overview of the outcome of the improved method employed for
evaluating distortion robustness of the elementary beam that was shown in 4.1 and that
was subjected to a stochastic stress field as was specified in chapter 2.2.

Outcome of static analysis Symbol Value

Mean value of centre node displacement µu3 °1.442096mm
Standard deviation of centre node displacement su3 3.078827£10°1 mm

Number of static analyses required m 12
Computation time t º 76sec

The improved method seems to yield correct results, since the values obtained for the mean
and standard deviation of the centro node displacement, xu3 and su3 , respectively, are equal
to the values obtained with the state-of-the-art method of which the outcome was shown in
Tab. C.2.
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Appendix D

Case study

D.1 Distortion curves for translation z1 in z-direction

The distortion curves of the bottom centre line of the stiffener component as a function of
translation of the stiffener comonent in z-direction with respect to rolled plate in 21 discrete
steps are shown In Fig. D.1. Only distortion curves in z-direction are concerned.
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Figure D.1: The stiffener component is translated in z-direction in 21 discrete steps from 0mm ∑
z1 ∑ 190mm. For each step of z1, the mean distortion curve (blue line), the mean-plus-
two-standard-deviations distortion curve (red line) and the mean-minus-two-standard-
devations distortion curve (yellow line) are plotted. The area in between the red and yel-
low line represents the area where 95.4 % of distortion of the component’s bottom centre
lines will occur.



D.2 Distortion curves for rotation Ø about the y-axis

The distortion curves of the bottom centre line of the stiffener component as a function of
rotation of the stiffener component about the y-axis with respect to rolled plate in 21 dis-
crete steps are elaborated. Distortion curves in x-, y- and z-direction are depicted in Fig.
D.2, D.3 and D.4, respectively.
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Figure D.2: The stiffener component is rotated about the y-axis in 21 discrete steps from 0° ∑
Ø ∑ 190°. For each step of Ø, the mean distortion curve (blue line), the mean-plus-
two-standard-deviations distortion curve (red line) and the mean-minus-two-standard-
devations distortion curve (yellow line) are plotted in x-direction. The area in between
the red and yellow line represents the area where 95.4 % of distortion of the component’s
bottom centre lines will occur.



Figure D.3: The stiffener component is rotated about the y-axis in 21 discrete steps from 0° ∑
Ø ∑ 190°. For each step of Ø, the mean distortion curve (blue line), the mean-plus-
two-standard-deviations distortion curve (red line) and the mean-minus-two-standard-
devations distortion curve (yellow line) are plotted in y-direction. The area in between
the red and yellow line represents the area where 95.4 % of distortion of the component’s
bottom centre lines will occur.



Figure D.4: The stiffener component is rotated about the y-axis in 21 discrete steps from 0° ∑
Ø ∑ 360°. For each step of Ø, the mean distortion curve (blue line), the mean-plus-
two-standard-deviations distortion curve (red line) and the mean-minus-two-standard-
devations distortion curve (yellow line) are plotted in z-direction. The area in between
the red and yellow line represents the area where 95.4 % of distortion of the component’s
bottom centre lines will occur.



D.3 The improved method applied to the case study

1. The geometry is imported in Abaqus/CAE©. In Abaqus/CAE©, the geometry is meshed,
iso-static boundary conditions are put in place and node-sets for each node on the
bottom centre line are created. Fig. D.5 shows the mesh of the stiffener component
consisting of hexahedron elements.

Figure D.5: This figure shows the mesh of the stiffener component containing hexahedron elements.
Iso-static boundary conditions are put in place on the bottom plane of the component
assuring that all rigid body modes are blocked.

2. An input file (.inp) is generated in Abaqus/CAE©. For reasons of clarity, the input
file is splitted into multiple input files such that the main input file sim.inp calls sim-
els.inp in which the elements are defined, sim-nds.inp in which the nodes are defined,
sim-sts.inp, sim-simp.inp in which the material is defined, sim-bcs.inp in which the
boundary conditions are defined and sim-stp.inp in which the step definition is de-
fined. These input files were shown earlier - for a different geometry - in Fig. C.1-C.7.

3. The entire analysis is launched from the cluster computer network using a .sub file
like the one that was used for the deterministic analysis of the elementary beam in
Fig. C.8.

4. The submit.sub file launches a Python© script called ImprovedMethod.py which is
shown in Fig. D.1. The Python© script ImprovedMethod.py calls the Python© script
funcImprovedMethod.py for a number of combinations of offset z1 and angle Ø.

5. In the Python© script funcImprovedMethod.py (Fig. D.2) the improved method for
evaluating robustness (elaborated in chapter 4.4) is executed. For a given combina-
tion of offset z1 and angle Ø, individual static analyses for all twelve cosine modes are
performed. For each of the twelve analyses different stress mapping Fortran© scripts
are called. These are equivalent to the Fortran© scripts that were shown earlier in Fig.
C.16-C.27. Subsequently, displacements for all nodes on the bottom centre line in all
three directions are collected from the .odb files.

6. Within funcImprovedMethod.py, the static analyses are launched after which the dis-
placements in three directions of all nodes on the bottom centre line are extracted
from the .odb files via ExtractUfromodb.py which is shown in Fig. D.5. After this, mean
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displacement is obtained analytically for all nodes in all three directions separately by
calling Python© script funcAnMean.py (Fig. D.3). Likewise, the variance and standard
deviation of displacement is obtained analytically for all nodes in all three directions
by calling Python© script funcAnVariance.py (Fig. D.4). At the end, for each combina-
tion of offset z1 and angle Ø, mean displacement and standard deviation of all nodes
for all three directions are written to text files (.dat).

7. The measures for distortion magnitude and distortion robustness, which were formu-
lated in Eq. 5.4,5.5- are subsequently determined for each combination of offset z1

and angle Ø.

Python code D.1: ImprovedMethod.py

1 from __future__ import division #decimal division
2 #import matplotlib.pyplot as plt
3 import funcImprovedMethod
4 import timeit
5 import os
6 import shutil
7

8

9 #total DSE run°time count
10 start_time_totalDSE = timeit.default_timer()
11

12 L=300
13 h=110
14

15 n_intervals=20
16

17 #create alpha_deg.dbl
18 alpha_deg=0.0
19 fo=open('alpha_deg.dbl','w+')
20 fo.write( '%e' % alpha_deg )
21 fo.close()
22

23 #create beta_deg.dbl
24 beta_deg=0.0
25 fo=open('beta_deg.dbl','w+')
26 fo.write( '%e' % beta_deg )
27 fo.close()
28

29 ##°°°°°°°°°°°° 1: DSE °°°°°°°°°°°°##
30 for j in range(n_intervals+1):
31

32 z1=(L°h)/n_intervals*j
33

34 #create O_F.dbl
35 fo=open('O_F.dbl','w+')
36 fo.write( '%e' % z1 )
37 fo.close()
38

39 for i in range(n_intervals+1):
40
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41 gamma_deg=360/n_intervals*i
42

43 #create gamma_deg.dbl
44 fo=open('gamma_deg.dbl','w+')
45 fo.write( '%e' % gamma_deg )
46 fo.close()
47

48 funcImprovedMethod.fImprovedMethod(i,j,z1,alpha_deg,beta_deg,gamma_deg)
49

50 ##°°°°°°°°°°°° 1: DSE °°°°°°°°°°°°##
51

52

53 #end timer StaticAnalyses
54 elapsed_totalScript = timeit.default_timer() ° start_time_totalDSE
55 print("°°° computation time for total Script run is %s seconds °°°" ...

% elapsed_totalScript)

Python code D.2: funcImprovedMethod.py

1 from __future__ import division #decimal division
2 import math
3 import os
4 import random
5 import timeit
6 #import matplotlib.pyplot as plt
7 import shutil
8 import numpy
9 import funcImportvaluefromFile

10 import funcAnMn
11 import funcAnVr
12

13 def fImprovedMethod(i,j,z1,alpha_deg,beta_deg,gamma_deg):
14

15

16 ##°°°°°°°°°°°° 0: constants °°°°°°°°°°°°##
17 s_11_1=°8.1936
18 s_11_2=2.4317
19 s_11_3=2.9584
20 s_11_4=1.3215
21 s_11_5=0.9406
22 s_11_6=1.0299
23

24 s_33_1=°27.0343
25 s_33_2=6.1362
26 s_33_3=7.8890
27 s_33_4=°1.4510
28 s_33_5=1.0052
29 s_33_6=0.8000
30

31

32 ##°°°°°°°°°°°° 1: Run sim.inp, extract displacement °°°°°°°°°°°°##
33 #start timer Static Analyses
34 start_time_StaticAnalyses = timeit.default_timer()
35
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36 ### Sigma11, Mode 1
37 os.system('abaqus double job=sim user=StressMapping_S11_Mode1 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
38 os.system("abaqus python ExtractU2fromodb.py")
39

40 #node 1
41 U1_N1_Mode1_Sigma11=funcImportvaluefromFile.fImportvaluefromFile(1,1)
42 U2_N1_Mode1_Sigma11=funcImportvaluefromFile.fImportvaluefromFile(2,1)
43 U3_N1_Mode1_Sigma11=funcImportvaluefromFile.fImportvaluefromFile(3,1)
44

45 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
46 similar for other 20 nodes on distortion centre line
47 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
48

49 ### Sigma11, Mode 2
50 os.system('abaqus double job=sim user=StressMapping_S11_Mode2 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
51 os.system("abaqus python ExtractU2fromodb.py")
52

53 U1_N1_Mode2_Sigma11=funcImportvaluefromFile.fImportvaluefromFile(1,1)
54 U2_N1_Mode2_Sigma11=funcImportvaluefromFile.fImportvaluefromFile(2,1)
55 U3_N1_Mode2_Sigma11=funcImportvaluefromFile.fImportvaluefromFile(3,1)
56

57 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
58 similar for other 20 nodes on distortion centre line
59 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
60

61 ### Sigma11, Mode 3
62 os.system('abaqus double job=sim user=StressMapping_S11_Mode3 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
63 os.system("abaqus python ExtractU2fromodb.py")
64

65 U1_N1_Mode3_Sigma11=funcImportvaluefromFile.fImportvaluefromFile(1,1)
66 U2_N1_Mode3_Sigma11=funcImportvaluefromFile.fImportvaluefromFile(2,1)
67 U3_N1_Mode3_Sigma11=funcImportvaluefromFile.fImportvaluefromFile(3,1)
68

69 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
70 similar for other 20 nodes on distortion centre line
71 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
72

73 ### Sigma11, Mode 4
74 os.system('abaqus double job=sim user=StressMapping_S11_Mode4 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
75 os.system("abaqus python ExtractU2fromodb.py")
76

77 U1_N1_Mode4_Sigma11=funcImportvaluefromFile.fImportvaluefromFile(1,1)
78 U2_N1_Mode4_Sigma11=funcImportvaluefromFile.fImportvaluefromFile(2,1)
79 U3_N1_Mode4_Sigma11=funcImportvaluefromFile.fImportvaluefromFile(3,1)
80

81 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
82 similar for other 20 nodes on distortion centre line
83 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
84

85 ### Sigma11, Mode 5
86 os.system('abaqus double job=sim user=StressMapping_S11_Mode5 ...
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cpus=1 scratch=/home/ycejanssens/ memory=32gb')
87 os.system("abaqus python ExtractU2fromodb.py")
88

89 U1_N1_Mode5_Sigma11=funcImportvaluefromFile.fImportvaluefromFile(1,1)
90 U2_N1_Mode5_Sigma11=funcImportvaluefromFile.fImportvaluefromFile(2,1)
91 U3_N1_Mode5_Sigma11=funcImportvaluefromFile.fImportvaluefromFile(3,1)
92

93 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
94 similar for other 20 nodes on distortion centre line
95 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
96

97 ### Sigma11, Mode 6
98 os.system('abaqus double job=sim user=StressMapping_S11_Mode6 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
99 os.system("abaqus python ExtractU2fromodb.py")

100

101 U1_N1_Mode6_Sigma11=funcImportvaluefromFile.fImportvaluefromFile(1,1)
102 U2_N1_Mode6_Sigma11=funcImportvaluefromFile.fImportvaluefromFile(2,1)
103 U3_N1_Mode6_Sigma11=funcImportvaluefromFile.fImportvaluefromFile(3,1)
104

105 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
106 similar for other 20 nodes on distortion centre line
107 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
108

109 ### Sigma33, Mode 1
110 os.system('abaqus double job=sim user=StressMapping_S22_Mode1 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
111 os.system("abaqus python ExtractU2fromodb.py")
112

113 U1_N1_Mode1_Sigma33=funcImportvaluefromFile.fImportvaluefromFile(1,1)
114 U2_N1_Mode1_Sigma33=funcImportvaluefromFile.fImportvaluefromFile(2,1)
115 U3_N1_Mode1_Sigma33=funcImportvaluefromFile.fImportvaluefromFile(3,1)
116

117 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
118 similar for other 20 nodes on distortion centre line
119 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
120

121 ### Sigma33, Mode 2
122 os.system('abaqus double job=sim user=StressMapping_S22_Mode2 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
123 os.system("abaqus python ExtractU2fromodb.py")
124

125 U1_N1_Mode2_Sigma33=funcImportvaluefromFile.fImportvaluefromFile(1,1)
126 U2_N1_Mode2_Sigma33=funcImportvaluefromFile.fImportvaluefromFile(2,1)
127 U3_N1_Mode2_Sigma33=funcImportvaluefromFile.fImportvaluefromFile(3,1)
128

129 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
130 similar for other 20 nodes on distortion centre line
131 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
132

133 ### Sigma33, Mode 3
134 os.system('abaqus double job=sim user=StressMapping_S22_Mode3 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
135 os.system("abaqus python ExtractU2fromodb.py")
136
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137 U1_N1_Mode3_Sigma33=funcImportvaluefromFile.fImportvaluefromFile(1,1)
138 U2_N1_Mode3_Sigma33=funcImportvaluefromFile.fImportvaluefromFile(2,1)
139 U3_N1_Mode3_Sigma33=funcImportvaluefromFile.fImportvaluefromFile(3,1)
140

141 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
142 similar for other 20 nodes on distortion centre line
143 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
144

145 ### Sigma33, Mode 4
146 os.system('abaqus double job=sim user=StressMapping_S22_Mode4 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
147 os.system("abaqus python ExtractU2fromodb.py")
148

149 U1_N1_Mode4_Sigma33=funcImportvaluefromFile.fImportvaluefromFile(1,1)
150 U2_N1_Mode4_Sigma33=funcImportvaluefromFile.fImportvaluefromFile(2,1)
151 U3_N1_Mode4_Sigma33=funcImportvaluefromFile.fImportvaluefromFile(3,1)
152

153 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
154 similar for other 20 nodes on distortion centre line
155 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
156

157 ### Sigma33, Mode 5
158 os.system('abaqus double job=sim user=StressMapping_S22_Mode5 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
159 os.system("abaqus python ExtractU2fromodb.py")
160

161 U1_N1_Mode5_Sigma33=funcImportvaluefromFile.fImportvaluefromFile(1,1)
162 U2_N1_Mode5_Sigma33=funcImportvaluefromFile.fImportvaluefromFile(2,1)
163 U3_N1_Mode5_Sigma33=funcImportvaluefromFile.fImportvaluefromFile(3,1)
164

165 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
166 similar for other 20 nodes on distortion centre line
167 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
168

169 ### Sigma33, Mode 6
170 os.system('abaqus double job=sim user=StressMapping_S22_Mode6 ...

cpus=1 scratch=/home/ycejanssens/ memory=32gb')
171 os.system("abaqus python ExtractU2fromodb.py")
172

173 U1_N1_Mode6_Sigma33=funcImportvaluefromFile.fImportvaluefromFile(1,1)
174 U2_N1_Mode6_Sigma33=funcImportvaluefromFile.fImportvaluefromFile(2,1)
175 U3_N1_Mode6_Sigma33=funcImportvaluefromFile.fImportvaluefromFile(3,1)
176

177 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
178 similar for other 20 nodes on distortion centre line
179 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
180

181 ##°end timer StaticAnalyses°##
182 elapsed_StaticAnalyses = timeit.default_timer() ° ...

start_time_StaticAnalyses
183 print("°°° computation time for Static Analyses is %s seconds ...

°°°" % elapsed_StaticAnalyses)
184

185

186 ##°°°°°°°°°°°° 2: analytical distribution derivation °°°°°°°°°°°°##
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187 #start timer Monte°Carlo
188 start_time_MonteCarlo = timeit.default_timer()
189

190 s11_1_mean=s_11_1
191 s11_2_mean=s_11_2
192 s11_3_mean=s_11_3
193 s11_4_mean=s_11_4
194 s11_5_mean=s_11_5
195 s11_6_mean=s_11_6
196

197 s33_1_mean=s_33_1
198 s33_2_mean=s_33_2
199 s33_3_mean=s_33_3
200 s33_4_mean=s_33_4
201 s33_5_mean=s_33_5
202 s33_6_mean=s_33_6
203

204 s11_1_std=2.9313
205 s11_2_std=1.2281
206 s11_3_std=1.2097
207 s11_4_std=1.0429
208 s11_5_std=0.9294
209 s11_6_std=0.7252
210

211 s33_1_std=4.0475
212 s33_2_std=3.8186
213 s33_3_std=1.9898
214 s33_4_std=2.4577
215 s33_5_std=2.0155
216 s33_6_std=0.9293
217

218 ###°Analytical mean derivation°###
219

220 ### N1 ###
221 #U1
222 mean_U1_N1_analytical=funcAnMn.fAnalyticalMean(U1_N1_Mode1_Sigma11,\
223 U1_N1_Mode2_Sigma11,\
224 U1_N1_Mode3_Sigma11,\
225 U1_N1_Mode4_Sigma11,\
226 U1_N1_Mode5_Sigma11,\
227 U1_N1_Mode6_Sigma11,\
228 U1_N1_Mode1_Sigma33,\
229 U1_N1_Mode2_Sigma33,\
230 U1_N1_Mode3_Sigma33,\
231 U1_N1_Mode4_Sigma33,\
232 U1_N1_Mode5_Sigma33,\
233 U1_N1_Mode6_Sigma33)
234

235 #U2
236 mean_U2_N1_analytical=funcAnMn.fAnalyticalMean(U2_N1_Mode1_Sigma11,\
237 U2_N1_Mode2_Sigma11,\
238 U2_N1_Mode3_Sigma11,\
239 U2_N1_Mode4_Sigma11,\
240 U2_N1_Mode5_Sigma11,\
241 U2_N1_Mode6_Sigma11,\
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242 U2_N1_Mode1_Sigma33,\
243 U2_N1_Mode2_Sigma33,\
244 U2_N1_Mode3_Sigma33,\
245 U2_N1_Mode4_Sigma33,\
246 U2_N1_Mode5_Sigma33,\
247 U2_N1_Mode6_Sigma33)
248

249 #U3
250 mean_U3_N1_analytical=funcAnMn.fAnalyticalMean(U3_N1_Mode1_Sigma11,\
251 U3_N1_Mode2_Sigma11,\
252 U3_N1_Mode3_Sigma11,\
253 U3_N1_Mode4_Sigma11,\
254 U3_N1_Mode5_Sigma11,\
255 U3_N1_Mode6_Sigma11,\
256 U3_N1_Mode1_Sigma33,\
257 U3_N1_Mode2_Sigma33,\
258 U3_N1_Mode3_Sigma33,\
259 U3_N1_Mode4_Sigma33,\
260 U3_N1_Mode5_Sigma33,\
261 U3_N1_Mode6_Sigma33)
262

263 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
264 similar for other 20 nodes on distortion centre line
265 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
266

267

268 ###°Analytical Variance°###
269

270 ### N1 ###
271 #U1
272 Variance_U1_N1_analytical=funcAnVr.fAnalyticalVar(U1_N1_Mode1_Sigma11,\
273 U1_N1_Mode2_Sigma11,\
274 U1_N1_Mode3_Sigma11,\
275 U1_N1_Mode4_Sigma11,\
276 U1_N1_Mode5_Sigma11,\
277 U1_N1_Mode6_Sigma11,\
278 U1_N1_Mode1_Sigma33,\
279 U1_N1_Mode2_Sigma33,\
280 U1_N1_Mode3_Sigma33,\
281 U1_N1_Mode4_Sigma33,\
282 U1_N1_Mode5_Sigma33,\
283 U1_N1_Mode6_Sigma33)
284

285 #U2
286 Variance_U2_N1_analytical=funcAnVr.fAnalyticalVar(U2_N1_Mode1_Sigma11,\
287 U2_N1_Mode2_Sigma11,\
288 U2_N1_Mode3_Sigma11,\
289 U2_N1_Mode4_Sigma11,\
290 U2_N1_Mode5_Sigma11,\
291 U2_N1_Mode6_Sigma11,\
292 U2_N1_Mode1_Sigma33,\
293 U2_N1_Mode2_Sigma33,\
294 U2_N1_Mode3_Sigma33,\
295 U2_N1_Mode4_Sigma33,\
296 U2_N1_Mode5_Sigma33,\
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297 U2_N1_Mode6_Sigma33)
298

299 #U3
300 Variance_U3_N1_analytical=funcAnVr.fAnalyticalVar(U3_N1_Mode1_Sigma11,\
301 U3_N1_Mode2_Sigma11,\
302 U3_N1_Mode3_Sigma11,\
303 U3_N1_Mode4_Sigma11,\
304 U3_N1_Mode5_Sigma11,\
305 U3_N1_Mode6_Sigma11,\
306 U3_N1_Mode1_Sigma33,\
307 U3_N1_Mode2_Sigma33,\
308 U3_N1_Mode3_Sigma33,\
309 U3_N1_Mode4_Sigma33,\
310 U3_N1_Mode5_Sigma33,\
311 U3_N1_Mode6_Sigma33)
312

313 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
314 similar for other 20 nodes on distortion centre line
315 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
316

317

318 ###°Analytical Standard deviation°###
319

320 ### N1 ###
321 std_U1_N1_analytical=math.sqrt(Variance_U1_N1_analytical)
322 std_U2_N1_analytical=math.sqrt(Variance_U2_N1_analytical)
323 std_U3_N1_analytical=math.sqrt(Variance_U3_N1_analytical)
324

325 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
326 similar for other 20 nodes on distortion centre line
327 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
328

329

330 ##°°°°°°°°°°°° 3: Write to files °°°°°°°°°°°°##.
331 ## Mean
332 Textfile_mean_U1='mean_U1_j%s_i%s.dat' % (j,i)
333 fo=open(Textfile_mean_U1,'w+') #creates it for us if not ...

already created
334 fo.write('%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e ... \
335 \n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n'\
336 % (mean_U1_N1_analytical,mean_U1_N2_analytical,\
337 mean_U1_N3_analytical,\
338 mean_U1_N4_analytical,mean_U1_N5_analytical,\
339 mean_U1_N6_analytical,\
340 mean_U1_N7_analytical,mean_U1_N8_analytical,\
341 mean_U1_N9_analytical,\
342 mean_U1_N10_analytical,mean_U1_N11_analytical,\
343 mean_U1_N12_analytical,\
344 mean_U1_N13_analytical,mean_U1_N14_analytical,\
345 mean_U1_N15_analytical,\
346 mean_U1_N16_analytical,mean_U1_N17_analytical,\
347 mean_U1_N18_analytical,\
348 mean_U1_N19_analytical,mean_U1_N20_analytical,\
349 mean_U1_N21_analytical) )
350 fo.close()
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351

352 Textfile_mean_U2='mean_U2_j%s_i%s.dat' % (j,i)
353 fo=open(Textfile_mean_U2,'w+') #creates it for us if not ...

already created
354 fo.write( '%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e ... \
355 \n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n'\
356 % (mean_U2_N1_analytical,mean_U2_N2_analytical,\
357 mean_U2_N3_analytical, \
358 mean_U2_N4_analytical,mean_U2_N5_analytical,\
359 mean_U2_N6_analytical, \
360 mean_U2_N7_analytical,mean_U2_N8_analytical,\
361 mean_U2_N9_analytical, \
362 mean_U2_N10_analytical,mean_U2_N11_analytical,\
363 mean_U2_N12_analytical, \
364 mean_U2_N13_analytical,mean_U2_N14_analytical,\
365 mean_U2_N15_analytical, \
366 mean_U2_N16_analytical,mean_U2_N17_analytical,\
367 mean_U2_N18_analytical, \
368 mean_U2_N19_analytical,mean_U2_N20_analytical,\
369 mean_U2_N21_analytical) )
370 fo.close()
371

372 Textfile_mean_U3='mean_U3_j%s_i%s.dat' % (j,i)
373 fo=open(Textfile_mean_U3,'w+') #creates it for us if not ...

already created
374 fo.write( '%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e ... \
375 \n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n'\
376 % (mean_U3_N1_analytical,mean_U3_N2_analytical,\
377 mean_U3_N3_analytical, \
378 mean_U3_N4_analytical,mean_U3_N5_analytical,\
379 mean_U3_N6_analytical, \
380 mean_U3_N7_analytical,mean_U3_N8_analytical,\
381 mean_U3_N9_analytical, \
382 mean_U3_N10_analytical,mean_U3_N11_analytical,\
383 mean_U3_N12_analytical, \
384 mean_U3_N13_analytical,mean_U3_N14_analytical,\
385 mean_U3_N15_analytical, \
386 mean_U3_N16_analytical,mean_U3_N17_analytical,\
387 mean_U3_N18_analytical, \
388 mean_U3_N19_analytical,mean_U3_N20_analytical,\
389 mean_U3_N21_analytical) )
390 fo.close()
391

392

393 ## Std
394 Textfile_std_U1='std_U1_j%s_i%s.dat' % (j,i)
395 fo=open(Textfile_std_U1,'w+') #creates it for us if not ...

already created
396 fo.write( '%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e ... \
397 \n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n'\
398 % (std_U1_N1_analytical,std_U1_N2_analytical,\
399 std_U1_N3_analytical, \
400 std_U1_N4_analytical,std_U1_N5_analytical,\
401 std_U1_N6_analytical, \
402 std_U1_N7_analytical,std_U1_N8_analytical,\
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403 std_U1_N9_analytical, \
404 std_U1_N10_analytical,std_U1_N11_analytical,\
405 std_U1_N12_analytical, \
406 std_U1_N13_analytical,std_U1_N14_analytical,\
407 std_U1_N15_analytical, \
408 std_U1_N16_analytical,std_U1_N17_analytical,\
409 std_U1_N18_analytical, \
410 std_U1_N19_analytical,std_U1_N20_analytical,\
411 std_U1_N21_analytical) )
412 fo.close()
413

414 Textfile_std_U2='std_U2_j%s_i%s.dat' % (j,i)
415 fo=open(Textfile_std_U2,'w+') #creates it for us if not ...

already created
416 fo.write( '%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e ... \
417 \n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n'\
418 % (std_U2_N1_analytical,std_U2_N2_analytical,\
419 std_U2_N3_analytical, \
420 std_U2_N4_analytical,std_U2_N5_analytical,\
421 std_U2_N6_analytical, \
422 std_U2_N7_analytical,std_U2_N8_analytical,\
423 std_U2_N9_analytical, \
424 std_U2_N10_analytical,std_U2_N11_analytical,\
425 std_U2_N12_analytical, \
426 std_U2_N13_analytical,std_U2_N14_analytical,\
427 std_U2_N15_analytical, \
428 std_U2_N16_analytical,std_U2_N17_analytical,\
429 std_U2_N18_analytical, \
430 std_U2_N19_analytical,std_U2_N20_analytical,\
431 std_U2_N21_analytical) )
432 fo.close()
433

434 Textfile_std_U3='std_U3_j%s_i%s.dat' % (j,i)
435 fo=open(Textfile_std_U3,'w+') #creates it for us if not ...

already created
436 fo.write( '%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e ... \
437 \n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n%e\n'\
438 % (std_U3_N1_analytical,std_U3_N2_analytical,\
439 std_U3_N3_analytical, \
440 std_U3_N4_analytical,std_U3_N5_analytical,\
441 std_U3_N6_analytical, \
442 std_U3_N7_analytical,std_U3_N8_analytical,\
443 std_U3_N9_analytical, \
444 std_U3_N10_analytical,std_U3_N11_analytical,\
445 std_U3_N12_analytical, \
446 std_U3_N13_analytical,std_U3_N14_analytical,\
447 std_U3_N15_analytical, \
448 std_U3_N16_analytical,std_U3_N17_analytical,\
449 std_U3_N18_analytical, \
450 std_U3_N19_analytical,std_U3_N20_analytical,\
451 std_U3_N21_analytical) )
452 fo.close()
453

454 return
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Python code D.3: funcAnMean.py

1 from __future__ import division #decimal division
2

3 def fAnalyticalMean(M1_S11,M2_S11,M3_S11,M4_S11,M5_S11,M6_S11, \
4 M1_S33,M2_S33,M3_S33,M4_S33,M5_S33,M6_S33):
5

6 S11_1=°8.1936
7 S11_2=2.4317
8 S11_3=2.9584
9 S11_4=1.3215

10 S11_5=0.9406
11 S11_6=1.0299
12

13 S33_1=°27.0343
14 S33_2=6.1362
15 S33_3=7.8890
16 S33_4=°1.4510
17 S33_5=1.0052
18 S33_6=0.8000
19

20 mean=S11_1*M1_S11+S11_2*M2_S11+S11_3*M3_S11+\
21 S11_4*M4_S11+S11_5*M5_S11+S11_6*M6_S11+\
22 S33_1*M1_S33+S33_2*M2_S33+S33_3*M3_S33+\
23 S33_4*M4_S33+S33_5*M5_S33+S33_6*M6_S33
24

25 return mean

Python code D.4: funcAnVariance.py

1 from __future__ import division #decimal division
2

3 def fAnalyticalVar(M1_S11,M2_S11,M3_S11,M4_S11,M5_S11,M6_S11, \
4 M1_S33,M2_S33,M3_S33,M4_S33,M5_S33,M6_S33):
5

6 S11_1_std=2.9313
7 S11_2_std=1.2281
8 S11_3_std=1.2097
9 S11_4_std=1.0429

10 S11_5_std=0.9294
11 S11_6_std=0.7252
12

13 S33_1_std=4.0475
14 S33_2_std=3.8186
15 S33_3_std=1.9898
16 S33_4_std=2.4577
17 S33_5_std=2.0155
18 S33_6_std=0.9293
19

20 variance=(S11_1_std*M1_S11)**2 + (S11_2_std*M2_S11)**2 + ...
(S11_3_std*M3_S11)**2 + \

21 (S11_4_std*M4_S11)**2 + (S11_5_std*M5_S11)**2 + ...
(S11_6_std*M6_S11)**2 + \

22 (S33_1_std*M1_S33)**2 + (S33_2_std*M2_S33)**2 + ...
(S33_3_std*M3_S33)**2 + \
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23 (S33_4_std*M4_S33)**2 + (S33_5_std*M5_S33)**2 + ...
(S33_6_std*M6_S33)**2

24

25 return variance

Python code D.5: ExtractUfromodb.py

1 if __name__ == "__main__":
2

3 from odbAccess import openOdb
4 odb=openOdb('sim.odb')
5

6 #N1
7 dataU2 = odb.steps['Step°1'].historyRegions['Node ...

PART°15°1.3221'].historyOutputs['U2'].data[1]
8 dataU2str=str(dataU2)
9 len_firstpart=len('(1.0, ')

10 U2_N1=float(dataU2str[len_firstpart:°1])
11

12 fo=open('U2_N1.dat','w+') #creates it for us if not ...
already created

13 fo.write( '%e' % U2_N1 )
14 fo.close()
15

16

17 dataU1 = odb.steps['Step°1'].historyRegions['Node ...
PART°15°1.3221'].historyOutputs['U1'].data[1]

18 dataU1str=str(dataU1)
19 len_firstpart=len('(1.0, ')
20 U1_N1=float(dataU1str[len_firstpart:°1])
21

22 fo=open('U1_N1.dat','w+') #creates it for us if not ...
already created

23 fo.write( '%e' % U1_N1 )
24 fo.close()
25

26

27 dataU3 = odb.steps['Step°1'].historyRegions['Node ...
PART°15°1.3221'].historyOutputs['U3'].data[1]

28 dataU3str=str(dataU3)
29 len_firstpart=len('(1.0, ')
30 U3_N1=float(dataU3str[len_firstpart:°1])
31

32 fo=open('U3_N1.dat','w+') #creates it for us if not ...
already created

33 fo.write( '%e' % U3_N1 )
34 fo.close()
35

36 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
37 same steps are repeated for the other 20 nodes on the distortion ...

line
38 °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
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