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Theory of spin and lattice wave dynamics excited by focused laser pulses

Ka Shen1, 2, ∗ and Gerrit E. W. Bauer3, 2

1The Center for Advanced Quantum Studies and Department of Physics,
Beijing Normal University, Beijing 100875, China

2Kavli Institute of NanoScience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
3Institute for Materials Research and WPI-AIMR, Tohoku University, Sendai 980-8577, Japan

We develop a theory of the spin wave dynamics excited by ultrafast focused laser pulses in a
magnetic film. We take into account both volume and surface spin wave modes in the presence of
applied, dipolar and magnetic anisotropy fields and include the dependence on laser spot exposure
size and magnetic damping. We show that the sound waves generated by local heating by an ultrafast
focused laser pulse can excite a wide spectrum of spin waves (on top of a dominant magnon-phonon
contribution). Good agreement with recent experiments supports the validity of the model.

I. INTRODUCTION

Generation, manipulation, and detection of spin polar-
ization by ultrafast laser pulses are powerful techniques
in the field of spintronics and magnetism [1–5]. Such
operations rely on laser pulse-induced demagnetization
due to heating [6], the change of magnetic anisotropy
due to charge transfer [1, 2], magneto-optical (inverse)
Faraday effect (IFE) [7–9], and (inverse) Cotton-Mouton
effect [10]. Recent experiments demonstrated magnetoe-
lastic coupling of coherent acoustic sound waves gen-
erated by the local heating caused by optical grat-
ings [11, 12] and laser spots [13–16] with spin waves.
Here we further develop the theory [15] to analyze the
spin wave excitation and subsequent dynamics for the
latter scenario.

Laser-induced spin (wave) dynamics has recently been
studied in a pump-probe setup, in which a strong pump
pulse is applied to excite the system and a second pulse
is used to read out the transient dynamics of the out-
of-plane magnetization by the Kerr or Faraday rotation
of linearly polarized light. In our previous work [15],
we simulated the magnetization dynamics coupled with
acoustic waves by the magnetoelastic interaction. We
assumed that the film is thick enough to allow simplifi-
cations such as the disregard of surface waves. Here we
extend our previous model by taking into account the
dipolar volume and surface spin waves of magnetic films
with arbitrary thickness [17], but disregard surface effects
on the phonons.

The modeling of the coupled magnon-phonon sys-
tem involves only a few and rather well-known param-
eters. We assume that the pump pulse generates heat.
The associated sudden lattice expansion generates ef-
fective magnetic fields via the magnetoelastic coupling.
Thereby, the local heating can excite spin waves not only
in the reciprocal space regime in which spin wave and
phonon frequencies are the same [11, 14, 15, 18, 19], but
also in the non-resonant regime as observed in recent
experiments [16]. Spin-wave-phonon resonant excitation
causes clear interference patterns in the the spatial dy-
namics, which are suppressed in the non-resonant case.
The resonant via non-resonant excitation can be tuned

by the magnetic field or the size of the laser spot. More-
over, the presence of large magnetic damping suppresses
the interference features in resonant excitation. Our nu-
merical results also reproduce the interference pattern in
momentum space as observed in experiments [16].

II. FORMALISM

A. Damon-Eshbach theory

We consider a magnetic film in the x-y plane made
from a cubic crystal with both cubic and uniaxial mag-
netic anisotropyies. The anisotropy energy reads

Han = Kc(m
2
xm

2
y +m2

xm
2
z +m2

ym
2
z) +Ku(1−m2

z), (1)

where we assume a cubic anisotropy coefficient Kc > 0
and uniaxial anisotropy coefficient Ku < 0. The equilib-
rium magnetization is aligned with an external magnetic
field along the x-axis. For weak excitation the magne-
tization unit vector normalized by the saturation mag-
netization M0 then reads m(r, t) ' (1,my,mz) where
|mx/y| � 1. To leading order the anisotropy and Zee-
man energies are

Han +HZ '
µ0

2
H̃M0m

2
y +

µ0

2
H̃ ′M0m

2
z (2)

with H̃ = H+ 2Kc/(µ0M0) and H̃ ′ = H̃−2Ku/(µ0M0),
where we omitted an irrelevant constant. The trans-
verse magnetization components, my and mz introduce
an effective dipolar field h(r, t) in the equations of mo-
tion [17, 20]

−ω2my = −iωγµ0hz + γµ0H̃
′(γµ0hy − γµ0H̃my),(3)

−ω2mz = iωγµ0hy − γµ0H̃(−γµ0hz + γµ0H̃
′mz).(4)

Here, γ is the gyromagnetic ratio. We disregard the ex-
change coupling since it is small compared to the dipolar
and anisotropy fields for the wave vector range of our
present interest (∼ 1/µm) [15, 16]. By applying continu-
ity boundary conditions of in-plane hy and out-of-plane
hz + M0mz fields at the interfaces to the vacuum and
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non-magnetic substrate, we arrive at the characteristic
equation [17, 20]

(1 + κ)2
[
(k(i)z )2/k2

]
− 2(1 + κ)(k(i)z /k) cot(k(i)z d)

= 1− v2 sin2 θ (5)

where

(k(i)z )2 = −1 + κ̃ sin2 θ

1 + κ
k2 (6)

κ =
ωHωM

(ωHωH′ − ω2)
(7)

κ̃ =
ωH′ωM

(ωHωH′ − ω2)
(8)

ν =
ωωM

(ωHωH′ − ω2)
(9)

and d and θ are the film thickness and the angle between
in-plane wave vector k and x-axis, respectively. Here,
ωM = γµ0M0, ωH = γµ0H̃, and ωH′ = γµ0H̃

′. The so-
lutions of Eq. (5) are the spin wave frequency dispersion
ωjk for a magnon with wave vector k and band index j.
The corresponding wave functions (My(z),Mz(z))jk are
obtained by substituting the frequencies into the bound-
ary conditions of Eqs. (3) and (4) [17].

B. Linear response theory

In linear response the spatiotemporal dynamics of the
non-equilibrium magnetization driven by a transverse
magnetic field reads

mi(z, r, t) =
1

M0

∑
k

eik · r

×
∫
dz′dt′χij(z, z

′,k, t, t′)Hj
T (z′,k, t′),(10)

where χ and HT are the spin susceptibility tensor and to-
tal effective magnetic field, respectively, with i, j = y, z.

We derive the multi-mode spin susceptibility by in-
troducing the torque exerted by the transverse field,
τ = γx̂× (µ0HT ), i.e.,(

τmy
(z)

τmz
(z)

)
(k, t) =

(
−γµ0H

z
T (z)

γµ0H
y
T (z)

)
(k, t), (11)

which can be expanded into the spin wave modes(
τmy

(z)
τmz

(z)

)
(k, t) =

∑
j

ajk(t)

(
My(z)
Mz(z)

)
jk

, (12)

where ajk(t) is the excitation rate of the j-th mode. From
the orthonormality condition [21]∫

dz(M∗y,jMz,j′ −M∗z,jMy,j′) = iδjj′ , (13)

we observe that the expansion coefficients are a mode-
resolved Zeeman energy

ajk = −iγµ0

∫
dz(M∗y,jH

y
T +M∗z,jHz

T ). (14)

At a given time t, all spin waves generated in the past
t′ < t can contribute to the local magnetization. The
precession of a spin wave mode jk excited at time t′

carries out precessional motion and reads at time t(
my(z)
mz(z)

)
jk

(t) = ajk(t′)e−iωjk(t−t′)
(
My(z)
Mz(z)

)
jk

.

(15)
By substituting ajk, we arrive at an explicit expression
for the spin susceptibility

χ(z, z′,k, t, t′) = −iγµ0M0

∑
j

e−iωjk(t−t′)

×
(
My,j(z)M∗y,j(z′) My,j(z)M∗z,j(z′)
Mz,j(z)M∗y,j(z′) Mz,j(z)M∗z,j(z′)

)
k

.(16)

Dissipation can be included by introducing a prefactor
(1−iα) in front of ωjk, with α being the Gilbert damping
constant.

Next we derive the driving field HT in Eq. (10). In
the long-wavelength limit, the magnetoelastic coupling
energy [22, 23] in our configuration reads

Hmec =
∑

i,j∈{y,z}

(b+ aδij)Sijmimj + 2b
∑

i∈{y,z}

Sixmi,

(17)
which gives rise to a spin generating torque

τmy
= (b/~)(Sxz + Szx), (18)

τmz = (b/~)(Sxy + Syx), (19)

where a and b are magnetoelastic coupling coefficients
and Sij = (∂iRj + ∂jRi)/2 are the stresses due to a lat-
tice displacement Rx,y,z. With some algebra [15, 24] and
comparison with Eq. (11), we find the resulting effective
magnetic field acting on a spin wave with wave vector k

HT (z,k, t) = i∆1[ŷ(Rl sin 2θ +Rt cos 2θ) + ẑRz cos θ]
(20)

where ∆1 = bk/(~γµ0) and Rl, Rt are the longitudinal
and transverse displacements relative to k.

C. Lattice displacement due to heating

Here, we model the lattice distortion created by the
heating effect of a focused laser. Since local thermal-
ization is complete within several picoseconds [25] after
the pump pulse, the local temperature rises step-like on
the nanosecond scale of the magnetization dynamics. We
therefore assume a temperature profile

T (r, t) = T0 + δT ·Θ(t) exp(−r2/W 2 − Γt), (21)
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where δT is the temperature increase at the center of the
exposed area. W and Γ describe the spot size and tem-
perature relaxation rate, respectively, while we disregard
the slow heat diffusion [14]. The sudden temperature
increase is a thermodynamic force to which the lattice
reacts by a rapid elastic deformation accompanied by
emission of lattice waves in the form of, e.g., Rayleigh
and surface skimming longitudinal waves [11], as well as
bulk phonons. The spatial profile of the displacement
dynamics can, in principle, be calculated numerically by
a careful treatment of the boundaries, leading to a mode-
dependent penetration depth. Here we simplify our task
by disregarding the mode-dependent mixing between Rz
and Rl, which as we will show later retain all observed
features in the experiments.

We introduce the penetration depth dp as a param-

eter, i.e., Rz(z, r, t) = e−z/dpRz(r, t) and Rl(z, r, t) =
e−z/dpRl(r, t), where the displacements at the free sur-
face Rz(r, t) and Rl(r, t) are obtained from the equations
of motion,

∂2tRl(r, t)− c2l∇2Rl(r, t) = η(3λ+ 2µ)∂rT (r, t),(22)

∂2tRz(r, t)− c2t∇2Rz(r, t) = ζη∇2T (r, t). (23)

Here, we introduce an in-plane thermoelastic pressure
stress [26, 27] and a “bulge” shear stress [28], respectively.
ct and cl are transverse and longitudinal sound velocity.
We introduced the thermoelastic expansion coefficient η
and a thickness-dependent parameter ζ [15]. Eq. (23) has
the static solution Rz(r) ∝ δT (r).

Eqs. (22) and (23) can be solved in momentum space,
leading to

Rl(k, t) = C1k

∫
dω

2π

exp(iωt−W 2k2/4)

(ω + clk)(ω − clk)(ω − iΓ)
,(24)

Rz(k, t) = C2k
2

∫
dω

2π

exp(iωt−W 2k2/4)

(ω + ctk)(ω − ctk)(ω − iΓ)
,(25)

with C1 = η(3λ+ 2µ)δT and C2 = ζηδT . Rl and Rz are
the sources of the laser-induced magnetoelastic torques.
We assume that the back action of the magnetization
on the lattice is a weak perturbation that may be disre-
garded.

III. RESULTS

Here we present numerical solutions to the system of
equations formulated in the previous sections and com-
pare them with recent experiments. Assuming that the
film is thinner than the optical extinction length, the
Faraday/Kerr-type measurement, the Faraday/Kerr an-
gle (ΘF ) is proportional to the out-of-plane magnetiza-
tion mz integrated over the magnetic film, i.e.,

ΘF (r, t) ∝
∑
k

eik · r
∑
j

mz,j(k, t). (26)
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FIG. 1: Snapshot at 4 ns after an ultrafast laser pulse due
to shear stress (left) and pressure stress (right) with external
magnetic field and spot size in (a)-(b) µ0H = 4 mT and
W = 2.5 µm, (c)-(d) µ0H = 40 mT and W = 2.5 µm, (e)-(f)
µ0H = 40 mT and W = 1.5 µm. The gray scale reflects the
out-of-plane magnetization in arbitrary units.

with mz,j(k, t) =
∫
mz,j(k, z, t)dz. The heat diffusion is

slow compared to spin wave/sound wave frequencies, i.e.,
Γ� |ωjk|, |ctk|, therefore

mz,j(k, t) ∝ e−z/dpM∗z,j,k ·Mz,j,kke
−W 2k2/4 cos θ

×
[
e−iωjkt − 1

ωjk
− e−iωjkt − e−ictkt

2(ωjk − ctk)
− e−iωjkt − eictkt

2(ωjk + ctk)

]
,

(27)

from the shear and

mz,j(k, t) ∝ e−z/dpM∗y,j,k ·Mz,j,ke
−W 2k2/4 sin 2θ

×
[
e−iωjkt − 1

ωjk
− e−iωjkt − e−iclkt

2(ωjk − clk)
− e−iωjkt − eiclkt

2(ωjk + clk)

]
.

(28)

from the pressure. The angular dependences, cos 2θ and
sin 2θ, come from those in Eq. (20).

We adopt the following parameters [16] for
Lu2.3Bi0.7Fe4.2Ga0.8O12 with saturation magnetiza-
tion µ0M0 = 78 mT. The transverse and longitudinal
sound velocities are ct = 3000 m/s and cl = 5500 m/s,
and the Gilbert damping coefficient is typically 10−4 [29].
The gyromagnetic ratio is γ/2π = 28 GHz/T. The cubic
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anisotropy constant Kc = 230 J/m3 and uniaxial
anisotropy constant Ku = −1200 J/m3, supplying inter-
nal fields 2Kc/M0 = 7.4 mT and 2Ku/M0 = −38 mT.
The thickness d = 4 µm. These parameters used in
Eq. (5) reproduce the measured spin wave disper-
sions [16]. Assuming d� dp, e

−z/dp ≈ 1.

In Fig. 1 we plot the snapshots at 4 ns after the pump
pulse. The left and right panels illustrate the transient
response to shear and pressure stresses, respectively. The
results for different applied magnetic fields and spot sizes
display common features such as two(four)-node circular
wave fronts from the shear(pressure) actuation. The di-
ameter of the wave front for shear (pressure) stress is 12
(22) µm, which agrees with ctt (clt), i.e., the propagating
distance of the transverse (longitudinal) acoustic pulses
from the origin in a time interval t.

Figs. 1(a) and (b) are calculated for a magnetic field
µ0H = 4 mT and spot size W = 2.5 µm. In addition to
the wave front we observe additional fringes due to the
strong coupling in reciprocal space at the (anti)crossing
point of the spin wave and phonon dispersions [15, 18, 22].

The Gaussian factor e−k
2W 2/4 in Eqs. (27) and (28) sup-

presses spin waves with k > kc = 2/W . At 4 mT, the
wave vector of the intersection point kin of spin wave
and longitudinal (transverse) phonon branches is around
0.9(1.7)/µm [see Fig. 2(a)], which is comparable with kc,
implying the excitation of magnon-polarons, i.e., the fully
hybridized state of the magnons and phonons [15, 18].
Since the longitudinal component (along k) of the spin
wave group velocity is smaller than the sound velocities,
the spin waves lag behind the acoustic pulse and gener-
ate the observed ripples. The wavelength of these ripples
reflects the wavelength of the spin waves at the cross-
ing [also see Fig. 4(b)]. With increasing magnetic field,
the spin wave dispersion is shifted to higher frequencies
and the intersection points move to larger momenta, such
that ultimately kc < kin. In this limit ωjk ± ctk ∼ ωjk
in Eqs. (27) and (28), which cancels the spin wave phase
e−iωjkt. The dynamics is then solely governed by the
acoustic pulse. Indeed, in Fig. 1(c) and (d) for 40 mT
the primary circles around the wave front dominate. In
Fig. 1(e) and (f), we shrink the size of the laser spot
to 1.5 µm and by enlarging kc recover (somewhat) the
fringes inside the ring in the pressure actuated signal in
Fig. 1(f).

More information can be distilled by a Gabor trans-
formation of the spatiotemporal spectra ΘF (r, t) [16],
i.e., by calculating the time-resolved spectra ΘG

F (ω0, τ) =
(1/τg

√
π)
∫
dte−iω0tΘF (t) exp(−(t − τ)2/τ2g ). τg stands

for the time window of the Gabor transform and τ is the
center time. For the shear stress response this leads to

ΘG
F (k, ω0, τ) ∝ cos θ

∑
j

|Mz,j,ω0,k|2ke−W
2k2/4eiω0τ

×
(e−iωjkτ−τ2

g (ωjk−ω0)
2/4 − eictkτ−τ

2
g (ω0+ctk)

2/4

2(ωjk + ctk)

FIG. 2: Gabor spectra at center times τ=2, 5, and 10 ns,
for left, middle and right panels, respectively. Here θ = π/12
and the Gabor window τd = 4 ns. The spot size and external
field in the upper panels are 2.5 µm and 4 mT, while those
in the lower (middle) panels are 1.5 (2.5) µm and 40 mT,
respectively.

+
e−iωjkτ−τ2

g (ωjk−ω0)
2/4 − e−ictkτ−τ

2
g (ctk−ω0)

2/4

2(ωjk − ctk)

−e
−iωjkτ−τ2

g (ωjk−ω0)
2/4 − e−τ

2
g (ω0)

2/4

ωjk

)
. (29)

Assuming equal importance of shear and pressure
stresses, we plot in Fig. 2 the total response (absolute
value of ΘG

F ) as function of frequency ω0 and the wave
vector modulus k along θ = π/12 for three center times
τ = 2 (left), 5 (middle), and 10 ns (right) after the arrival
of the pump pulse.

The parameters in Fig. 2(a) are the same as those in
Fig. 1, i.e., W = 2.5 µm and µ0H = 4 mT. The flat and
linear bands correspond to spin wave and (transverse and
longitudinal) acoustic wave dispersion relations, respec-
tively. One may wonder why the pure phonon branches
are so visible in a measurement of the magnetization.
The answer can be traced back to the two phase factors,
e±ict(l)kt and e−iωjkt, in Eqs. (27) and (28). The former
is the phase of the AC driving field (from the phonons)
while the latter is that of the responding oscillator (spin
wave). When the frequency of the AC driving resonates
with a spin wave mode the response is dominated by
(e−iωjkt − e−ict(l)kt)/(ωjk − ct(l)k) ∝ t. The magnetiza-
tion amplitude at the intersection of the spin waves with
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FIG. 3: (Color online) Time evolution of Gabor spectra along
ω0 = ctk for θ = π/12 and time window τd =1 ns with
magnetic field (a) 4 mT and (b) 40 mT, respectively. The
spot size is W = 2.5 µm. On the green and white dashed
lines ctkτ/(2π) and (ωjk − ctk)τ/(2π) become integers, re-
spectively.

both transverse and longitudinal phonon dispersions is
strongly enhanced and increases with time, reflecting the
energy transfer from acoustic to spin waves under reso-
nant condition [also see Fig. 3(a)]. Note that the diver-
gence for large t is cut-off by the damping and hybridiza-
tion that is disregarded in Eq. (29). When the magnetic
field increases to 40 mT in Fig. 2(b), the resonance is
shifted far out into momentum space and is not signifi-
cantly excited anymore [also see Fig. 3(b)]. The resonant
excitation (by pressure stress) is switched on again in
Fig. 2(c) in which the spot size reduced to 1.5 µm, which
is consistent with the interpretation of Fig. 1 above. The
zero frequency branches in Fig. 2 originate from the time-
independent term in the bracket of Eqs. (27) and (28),
which is the magnetic response to static local thermal
expansion in the exposed area (see left panel in Figs. 1
and Figs. 4).

The phase factors in Eq. (29) cause interference fea-
tures in the time domain. Focusing on the phonon
branches by substituting ω0 = ctk and τg → 0,

|ΘG
F (k, ω0, τ)| ∼

∣∣∣1− eiωjkτ

ωjk
− 1− ei(ωjk−ctk)τ

2(ωjk − ctk)

−1− ei(ωjk+ctk)τ

2(ωjk + ctk)

∣∣∣ (30)

vanishes when ωjkτ/(2π) and (ωjk − ctk)τ/(2π), and
hence ctkτ/(2π), are integers. For finite τg, the cancel-
lation is not exact, but as can be seen in Fig. 3 with
τg = 1 ns, an interference pattern remains visible in the
time evolution of the Gabor spectra that reflects the con-
dition for destructive interference derived from Eq. (30)
[see green dashed curves for integers of ctkτ/(2π) and
white dashed curves for (ωjk − ctk)τ/(2π)]. These inter-
ference patterns have already been observed and reported
in Ref [16], but without the explanation provided here.

Interference effects are also visible in the real space
dynamics such as, for example, the hot spots around
y = ±15 µm in Figs. 1 (b) (also seen in experiments [30]).
The spin wave dispersion around the mode crossing de-
pends weakly on k but strongly on the angle θ between k
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FIG. 4: Snapshots at 4 ns after ultrafast laser pulse due to
pressure stress with external magnetic field at 40 mT. The
spot size W is taken to be (a) 2.5 µm and (b) 1.5 µm, respec-
tively and the Gilbert damping is enhanced to α = 0.1.

and x-axis [16]. Although the longitudinal group velocity
(along k) is small, the transverse one (perpendicular to k)
can therefore be large, allowing spin waves to propagate
sideways to the local wave front [15]. When the magnetic
damping is sufficiently weak, many spin waves with dif-
ferent group velocities live long enough to arrive at the
same location and interfere with each other, resulting
in the hot spots. In samples with large magnetic damp-
ing, these interference patterns are suppressed as demon-
strated already in Ref. [15] and confirmed by Fig. 4(a)
and (b), where we use a larger Gilbert damping con-
stant α = 0.1. In this case, only the spin waves excited
within a relatively short time interval (∼lifetime) before
the measurement instant survive. Those spin waves are
not able to propagate over a sufficient long distance to
create an interference pattern. The remaining oscillations
within the main wave front are stronger in 4(b) than (a),
which is caused by the difference between resonant (b)
vs. non-resonant (a) excitation: In (b), the wavelength
of the propagating spin wave shows a clear angular de-
pendence, because the spin wave dispersion and therefore
the dominant crossing modes strongly depend on θ [16],
while the dynamics in Fig. 4 (a) is mainly governed by
the isotropic sound waves, as discussed above. Moreover,
the static spin response to the local thermal expansion
in the exposure area becomes visible in both (a) and (b)
(see the feature around the origin) and is not suppressed
by magnetic damping [15].

Finally, we apply our model to reanalyze the experi-
ment by Ogawa et al. [14], where similar phenomena were
found but explained by stimulated Raman scattering in
the strong coupling regime. Our model shows that it
may be caused solely by local heating. A close compar-
ison with experiments requires the material parameters
that are not all given in Ref. [14]; we therefore adjust
them to fit experimental data. We can reproduce most
of the experimental curves with a single set of parame-
ters in the caption of Fig. 5, where we plot two snapshots
for an external magnetic field of 70 mT. The good agree-
ment with experiments supports our hypthesis that spin
waves are generated by local heating. In the calculation
we use a gyromagnetic γ/2π = 8.4 GHz/T in order to fit
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FIG. 5: Snapshots at (a) 3.45 and (b) 6 ns by fitting the
experiment results in 40 µm thick doped iron Garnet by
Ogawa et al. [14]. The fitting parameters are α = 0.25,
spot size W = 2.5 µm, sound velocities ct = 3.5 km/s and
cl = 6.5 km/s. In this calculation, Kc = Ku = 0 are used.

the spin wave frequency at 70 mT. This might be caused
by the fact that the magnetic anisotropy of the sample,
is disregarded in our calculations by lack of better in-
formation. When we use the common value in insulator
γ/2π = 28 GHz/T, the internal magnetic field is esti-
mated to be around 50 mT.

IV. CONCLUSION AND DISCUSSION

In summary, we report calculations of the coupled
lattice and spin wave dynamics excited by focused
laser pulses that agree well with recent experiments by
Hashimoto et al. [16, 30]. The characteristics of reso-
nant and non-resonant excitations, size effect and mag-
netic damping are included. Our model takes into ac-
count all dipolar-exchange spin wave modes. The model
can be extended to include magneto-optical and tran-
sient demagnetization torques generated by an ultrafast-
laser pulse [7, 9, 13] by inverting our Eq. (10), although
the present experiments analyzed here do not provide

unequivocal evidence for their existence. Very recently,
Hashimoto et al. [31] interpreted the spatiotemporal dis-
tribution of the laser-induced magnetization dynamics
in terms of the magnetic fields induced by demagneti-
zation of the laser hot spot. Its symmetry is identical to
that of a heat-induced pressure wave, so it is difficult to
draw conclusions about the dominant excitation mecha-
nism. Furthermore, the demagnetization cannot explain
the patterns generated by the shear stress. We therefore
conclude that the experiments by Ogawa et al. [14] and
Hashimoto et al. [16, 30, 31] are proof of magnetoelas-
tic effects with possible contributions from heat-induced
demagnetization.

In principle, we can compute the energy flowing back
from spin wave to acoustic wave by introducing the mag-
netoelastic coupling non-perturbatively into the equa-
tions of motion for spin and acoustic waves as in Ref. [15],
which we refrained from doing here, because the time
scale of the magnetoelastic coupling strength is two or-
ders magnitude larger than that of the spin wave dynam-
ics (∼ns). It is therefore a very good approximation to
treat here the magnetoelastic coupling as a perturbation.
A non-perturbative calculation would be necessary, for
instance, to obtain the arcs in the left figure of Fig. 4(b)
in Ref. [15] which are caused by the inverse Faraday ef-
fect with large magnetic damping. The extension of the
non-perturbative treatment to multi-spin wave modes is
subject of a future study.
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