

Delft University of Technology

Fast and Compact Image Segmentation using Instance Stixels

Hehn, Thomas; Kooij, Julian F.P.; Gavrila, Dariu M.

DOI
10.1109/TIV.2021.3067223
Publication date
2022
Document Version
Accepted author manuscript
Published in
IEEE Transactions on Intelligent Vehicles

Citation (APA)
Hehn, T., Kooij, J. F. P., & Gavrila, D. M. (2022). Fast and Compact Image Segmentation using Instance
Stixels. IEEE Transactions on Intelligent Vehicles, 7(1), 45-56. https://doi.org/10.1109/TIV.2021.3067223

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TIV.2021.3067223
https://doi.org/10.1109/TIV.2021.3067223

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3067223, IEEE
Transactions on Intelligent Vehicles

Fast and Compact Image Segmentation using Instance Stixels

Thomas M. Hehn, Julian F. P. Kooij and Dariu M. Gavrila1

Abstract—State-of-the-art stixel methods fuse dense stereo
disparity and semantic class information, e.g. from a Convolu-
tional Neural Network (CNN), into a compact representation of
driveable space, obstacles and background. However, they do not
explicitly differentiate instances within the same semantic class.
We investigate several ways to augment single-frame stixels with
instance information, which can be extracted by a CNN from
the RGB image input. As a result, our novel Instance Stixels
method efficiently computes stixels that account for boundaries
of individual objects, and represents instances as grouped stixels
that express connectivity.

Experiments on the Cityscapes dataset demonstrate that in-
cluding instance information into the stixel computation itself,
rather than as a post-processing step, increases the segmentation
performance (i.e. Intersection over Union and Average Precision).
This holds especially for overlapping objects of the same class.
Furthermore, we show the superiority of our approach in
terms of segmentation performance and computational efficiency
compared to combining the separate outputs of Semantic Stixels
and a state-of-the-art pixel-level CNN. We achieve processing
throughput of 28 frames per second on average for 8 pixel wide
stixels on images from the Cityscapes dataset at 1792x784 pixels.
Our Instance Stixels software is made freely available for non-
commercial research purposes.

I. INTRODUCTION

Self-driving vehicles require a detailed understanding of
their environment in order to react and avoid obstacles as
well as to find their path towards their final destination. In
particular, stereo vision sensors obtain pixel-wise 3D location
information about the surrounding, providing valuable spatial
information on nearby free space and obstacles. However,
as processing should be as fast as possible, it is essential
to find a compact and efficiently computable representation
of sensor measurements which is still capable to provide
adequate information about the environment [2], [3]. A com-
mon approach is to create a dynamic occupancy grid for
sensor fusion [4] and tracking [5], which provides a top-
down grid cell representation of occupied space surrounding
the ego-vehicle. Still, directly aggregating depth values into
an occupancy grid alone would disregard the rich semantic
information from the intensity image, and the ability to exploit
the local neighborhood to filter noise in the depth image.

A popular alternative in the intelligent vehicles domain is
the “stixel” representation, which exploits the image structure
to reduce disparity artifacts, and is computed efficiently [6].
By grouping pixels into rectangular, column-wise super-pixels
based on the disparity information, stixels reduce the com-
plexity of the stereo information. Later, class label informa-
tion obtained from deep learning has been incorporated into
the stixel computation and representation, so-called Semantic

1 All authors are with the Intelligent Vehicles Group, TU Delft, The
Netherlands. Primary contact: d.m.gavrila@tudelft.nl

Fig. 1: Top: Input RGB image (corresponding disparity image
not shown). Middle: Semantic Stixels [1] use a semantic
segmentation CNN to create a compact stixel representation
which accounts for class boundaries (stixel borders: white
lines, arbitrary colors per class). Note that a single stixel
sometimes covers multiple instances, e.g. multiple cars. Bot-
tom: Our Instance Stixels algorithm also accounts for instance
boundaries using additional information learned by a CNN
and clusters stixels into coherent objects (arbitrary colors per
instance).

Stixels [1]. Yet, obstacles are still just a loose collection of
upright “sticks” on an estimated ground plane, lacking object
level information. For example, the car stixels in the middle
row of figure 1 do not indicate where one car starts and its
neighboring car ends.

This paper introduces an object level environment repre-
sentation extracted from stereo vision data based on stixels.
Our method improves upon state-of-the-art stixel methods [1],
[7] that only consider semantic class information, by adding
instance information extracted with a convolutional neural
networks (CNN) from the input RGB image. This provides
several benefits: First, we obtain better stixels boundaries
around objects by fusing disparity, semantic, and instance
information in the stixel computation. Second, stixels belong-
ing to an object are connected vertically and horizontally
(see bottom image of figure 1) by clustering them based on
semantic and instance information. Third, the processing is

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 13:28:50 UTC from IEEE Xplore. Restrictions apply.

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3067223, IEEE
Transactions on Intelligent Vehicles

2

CNN

Stixel
Computation

Instanc es
S

em
an tics

D
ep th

RGB image

Disparity image
Class probabilities

Clustering

Instance offsets

C

Fig. 2: Instance stixel pipeline applied to a RGB and disparity input image pair obtained from a stereo camera. The RGB
image is processed by a Convolutional Neural Network (CNN) to predict offsets to the instance centers (HSV color coded) and
per-pixel semantic class probabilities (visualized as color gradient). The class probabilities are fused with the disparity input
image in the Stixel computation to provide a super-pixel representation of the traffic scene, which unifies Semantics, Depth and
additionally Instance output (left images). In the baseline algorithm (Semantic Stixels + Instance, dashed red arrow) the obtained
stixels are clustered based on the instance offsets to assign stixels to instances (not shown). In contrast, our proposed algorithm
(Instance Stixels, blue arrow) fuses the instance offset information with the other two channels in the Stixel Computation.
Subsequently, stixels are also clustered to form instances, but with improved adherence of stixels to instance boundaries (top
right image, arbitrary colors).

more efficient than computing Semantic Stixels [1] and per-
pixel instance labels separately.

II. RELATED WORK

The idea of stixels, regarding objects as sticks standing
perpendicular on a ground plane, was introduced by [6].
The stixel algorithm has found diverse applications in the
autonomous driving domain. Stixels were used as an integral
part of the pipeline for the Berthe Benz drive [8]. [9] develop
a collision warning system using only stereo-based stixels and
[10] used stixels to detect small unknown objects, such as
lost cargo. The original idea was further extended in [11] to a
multi-layer representation which used a probabilistic approach,
i.e. stixels do not need to be connected to the ground plane
anymore. In the multi-layer representation, stixels segment
the entire image into rectangular super-pixels, classified as
ground, object or sky. Additionally, a dynamic programming
scheme was presented for efficient real-time computation of
stixels. For even faster computation, this dynamic program-
ming scheme was then also implemented for the Graphical
Processing Unit (GPU) by [12]. In [13] stixels were compared
with other super-pixel algorithms as basis for multi-cue scene
labeling.

The general stixel framework offers various possibilities
for extensions and modifications. For instance, [14] compared
the effects of different methods for initial ground manifold
modeling. Driven by the requirements of autonomous driving,
[15] applied a Kalman filter to track single stixels. Stixel
tracking was then further improved by [16]. Yet, stixels are
generally tracked independently and not as parts of an object.
In order to obtain object information [17], [18], [19], [20]
group the Dynamic Stixels based on shape cues and graph

cuts and thus rely on tracking Stixels over time. Stixels are
also applied in semantic scene segmentation with more general
classes than ground, object and sky. For this purpose, semantic
information can be obtained by using object detectors for
suitable classes [21] or Random Decision Forest classifiers
[22] and then including that information in the Stixel gen-
eration process. [1] extend this idea by incorporating the
output of a Fully Convolutional Neural Network (FCN) in
the probabilistic stixel framework. They named their approach
Semantic Stixels. Based on Semantic Stixels and focusing on
non-flat road scenarios, [7] generalize stixels to also model
slanted surfaces, e.g. not strictly perpendicular to the road
anymore, including piece-wise linear road surfaces.

Meanwhile, many more deep neural network architectures
have been proposed in the computer vision literature to im-
prove classification and image segmentation tasks on per pixel
basis. For instance, Residual Neural Networks [23] facilitate
training of deeper networks by learning residual functions.
Dilated Residual Networks [24] (DRN) improve on this work
by maintaining a higher resolution throughout the fully con-
nected network, while working with the same receptive field.
As a consequence, they are useful for applications that require
spatial reasoning such as object detection or, as in our case,
instance segmentation. In order to enforce consistency between
semantic and instance segmentation, recently the term panoptic
segmentation was introduced in [25] and has led to further
improvement in the field [26]. Unfortunately, one cannot treat
instance segmentation as a classification problem, as is done
for semantic segmentation. A main reason is that the number
of instances varies per image, which prohibits a one-to-one
mapping of network output channels to instances. Instead
of predicting instance labels directly, [27] trains a CNN to

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 13:28:50 UTC from IEEE Xplore. Restrictions apply.

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3067223, IEEE
Transactions on Intelligent Vehicles

map each pixels in an image onto a learned low-dimensional
space such that pixels from the same instance map close
together. Object masks are then obtained in post-processing by
assigning pixels to cluster centers in this space. [28] instead
use supervised learning to map pixels to a specific target
space, namely the 2D offsets from the given pixel towards
its instance’s center and then rely on clustering all pixels into
instances. The Box2Pix method [29] uses 2D center offset
predictions for instances, but instead of clustering they are
associated with bounding boxes found through a bounding
box detection branch. In order to avoid an additional bounding
box detection branch, [30] learn a clustering bandwidth and
confidence per pixel and thereby speed up the grouping of
pixels to instances.

Our objective is to create efficient stixel representations
rather than pixel-accurate instance segmentation in images,
and to avoid overhead of clustering all pixels into instances
before reducing them to a compact representation. Still, we
follow insights from the work on per-pixel instance segmen-
tation to improve stixel computation, deal with the unknown
number of instances in an image, and enable the clustering
of stixels into instances. Building upon our prior conference
publication [31], the main contributions are thus summarized
as:
• We present Instance Stixels, a method to include instance

information into stixels computation, which creates better
stixels, and allows grouping to instance IDs from a single
stereo frame.

• We investigate three different ways to include the instance
information, and show that adding the information into
the stixel computation itself results in more accurate in-
stance representations than only using it to cluster Seman-
tic Stixels or alternatively assigning Semantic Stixels to
instances using pixel-based methods. Further we compare
the trade-off between computation speed and instance
segmentation performance for these three variations to
showcase the favorable properties of Instance Stixels.

• We investigate the use of a novel regularizer for Instance
Stixels which replaces the former prior term in Stixels.
This simplifies the model and leads to improved instance
segmentation.

• Our entire implementation of the optimized pipeline for
Semantic Stixels and Instance Stixels is provided as open-
source to the scientific community for non-commercial
research purposes.

III. METHODS

This section will first briefly summarize the original dispar-
ity Stixel and Semantic Stixel formulations in subsection III-A.
Subsection III-B then explains how to integrate the instance
information from a trained CNN into the stixel computation it-
self for improved stixel segmentation. Finally, subsection III-C
will discuss how the instance information can be used to
cluster stixels belonging to the same object.

The clustering step could be applied to any stixel computa-
tion method. We therefore consider two options:

• Clustering stixels from a standard Semantic Stixels
method [1], such that instance offset information is only
considered here at this final clustering step. This baseline
approach corresponds to the red arrow in Figure 2. In
our experiments we shall refer to this combination as the
Semantic Stixels + Instance method.

• Clustering based on our novel instance-aware stixels
computation from section III-B, see the blue arrow in
Figure 2. We name this combination our novel Instance
Stixels method.

Conceptually, Instance Stixels are a natural extension to
Semantic Stixels as they extend disparity and semantic seg-
mentation information with additional instance information to
compute a compact representation from a stereo image pair.
These stixels also receive an object id which groups them into
instances.

A. Stixels

In the following, an outline of the derivation of the original
Stixels and Semantic Stixels framework is presented. For a
more detailed derivation, see [32] and [1].

1) Disparity Stixels: Following the notation of [32], the full
stixel segmentation of an image is denoted as L = {Lu|0 ≤
u < W} with W being the total number of stixel columns in
the image. Thus, given a selected stixel width w, it follows
that W = image width

w . The segmentation of column u contains
Lu = {sn|1 ≤ n ≤ Nu ≤ h} contains at least one but at
most height h stixels sn. A stixel sn = (vbn, v

t
n, cn, fn(v)) is

described by the bottom and top rows, respectively vbn and vtn,
that delimit the stixel. Additionally, a stixel is associated with
a class cn ∈ {g, o, s} (i.e. ground, object, sky) and a function
fn which maps each row of the image to an estimated disparity
value.

The aim is to find the best stixel segmentation L∗ given a
measurement (e.g. a disparity image) D, i.e. it maximizes the
posterior probability

L∗ = arg max
L

p(L|D). (1)

According to Bayes’ rule, this can be rewritten as

p(L|D) =
p(D|L)p(L)

p(D)
. (2)

Here, the normalization factor p(D), constant in L, can be
discarded in the maximization task. Since each column u ∈
{0, ...,W −1} of the image is treated independently, the MAP
objective can further be simplified:

L∗ = arg max
L

W−1∏
u=0

p(Du|Lu)p(Lu). (3)

Here, p(Du|Lu) denotes the column’s likelihood of the dis-
parity data, and p(Lu) is a prior term modeling the pairwise
interaction of vertically adjacent stixels. This is explained in
more detail in [11].

Assuming all rows are equally likely to separate two stixels,
the column likelihood term can be written as product of

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 13:28:50 UTC from IEEE Xplore. Restrictions apply.

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3067223, IEEE
Transactions on Intelligent Vehicles

individual terms for Nu stixels, Lu = {s1, ..., sNu
}. Since

only disparity values of the rows within each stixel contribute
to its likelihood, those terms can in turn be factorized over the
rows vbn ≤ v ≤ vtn of each stixel n ∈ {1, ..., Nu}. Hence, the
final objective is [32]:

L∗ = arg max
L

W−1∏
u=0

Nu∏
n=1

vt
n∏

v=vb
n

p(dv|sn, v)p(Lu). (4)

Here the term p(dv|sn, v) includes different disparity models
per geometric class. For sky stixels this model is simple:
fsky(v) = 0. The disparity of object stixels is assumed
to be normally distributed around the mean stixel dispar-
ity fobject,n(v) = 1

vt
n+1−vb

n

∑vt
n

v′=vb
n
dv . Furthermore, ground

stixels rely on a previous estimation of the ground plane
parameters α (the slope) and vhorizon (horizon estimate in
the image), which can be obtained for example from v-
disparity [33]. The assumed disparity model for ground stixels
fground(v) = α(vhorizon − v) is then linear and the same for
all columns. For details, we refer to [12].

In practice, the MAP problem (equation 4) is written as an
energy minimization problem by turning the product over prob-
abilities into a sum of negative log probabilities, which is then
solved efficiently through Dynamic Programming (DP) [32],
[12]. DP will efficiently minimize the energy function

E(Lu) =

Nu∑
n=1

Ep(sn−1, sn) + Ed(sn) (5)

for many stixel hypotheses Lu = {s1, ..., sNu
}, which

consists of unary terms Ed(sn) and pairwise energy terms
Ep(sn−1, sn). Intuitively, the unary energy term Ed(sn) de-
scribes the disparity deviation of the disparity models de-
scribed above. The pairwise term for n = 1 reads Ep(s0, s1)
and is a special case since s0 is not defined. In all other cases,
this pairwise term only evaluates the plausibility of a given
stixel segmentation. Note that this in particular means that this
pairwise term is independent of the disparity data. We have
omitted these details here for simplicity [32].

2) Semantic Stixels: The Semantic Stixels method [1] in-
troduced an additional semantic data term to associate each
stixel with one class label ln ∈ {1, ..., C}. Thus, Semantic
Stixels are characterized by sn = (vbn, v

t
n, cn, fn(v), ln). First,

a semantic segmentation CNN is trained on RGB images with
annotated per-pixel class labels. Then, when testing on a test
image, the softmax outputs σ(p, l) for all semantic classes
l of all pixels p are kept (note that in a standard seman-
tic segmentation task, only the class label of the strongest
softmax output would be kept). The unary data term Ed(sn)
of the original disparity stixel computation is then replaced
by Eu(sn) = Ed(sn) + ωlEl(sn), thereby adding semantic
information from the network activations,

El(sn) = −
∑
p∈Pn

log σ(p, ln). (6)

Here Pn are all pixels in stixel sn, and ωl a weight factor.

B. Instance Stixels

Instance Stixels expand the idea of Semantic Stixels by
additionally training a CNN to output a 2D estimation of the
position of the instance center for each pixel. This estimation
is predicted in image coordinates, as proposed in [29], [28].
More specifically, the CNN predicts 2D offsets Ωp ∈ R2

(i.e. x and y direction) per pixel, which are relative to the
pixel’s location in the image. As a consequence, for all pixels
p belonging to the same instance j, adding their ground truth
offset Ω̂p to the pixel location (xp, yp) will result in the same
instance center location

µ̂j = Ω̂p + (xp, yp). (7)

We refer to such a network as the Offset CNN and an example
of its output is visualized in figure 2. The ground truth instance
centers are defined as the center of mass of the ground
truth instance masks. Note that instances are commonly only
considered for certain semantic classes, e.g. cars, pedestrians
and bicycles. Let I ⊂ N denote said set of instance relevant
classes. For all other classes, the target offset is (0, 0).

Instance Stixels incorporate the Offset CNN prediction into
the stixel computation. Let µp denote the instance center
estimate obtained from the CNN for some pixel p, and
µ̄n =

∑
p∈Pn

µp the mean over all pixels in an instance stixel
sn = (vbn, v

t
n, cn, fn(v), ln, µ̄n). We model the instance term

depending on the center estimates of the pixels and the mean
instance center of the current stixel hypothesis sn:

Ei(sn) =

{∑
p∈Pn

||µp − µ̄n||22, if ln ∈ I∑
p∈Pn

||µp − (xp, yp)||22, otherwise.
(8)

In other words, for instance classes, the instance term favors
stixels which combine pixels that consistently point to the
same instance center. For non-instance classes, i.e. ln /∈ I,
offsets Ωp = µp − (xp, yp) deviating from zero contribute to
the instance energy term. Without this, classes with instance
information would generally have higher energy and thus be
less likely than the non-instance classes.

With the instance energy term, the unary energy becomes

Eu(sn) = ωdEd(sn) + ωsEs(sn) + ωiEi(sn). (9)

This also introduces weights ωd and ωi for the disparity and
instance terms for more control on the segmentation.

A useful side effect is that each instance stixel receives a
mean estimate of its instance center pixel coordinates, which
will be used when clustering stixels into objects, discussed in
Section III-C.

C. Clustering stixels with instance information

We now describe how output from an Offset CNN can
be used in a post-processing step to cluster stixels. Note the
favorable computational complexity of grouping a low number
of stixels rather than individual pixels as in conventional
instance segmentation tasks, e.g. 2000 stixels vs. 1.4M pixels.

First, the per-pixel offsets from the Offset CNN are aggre-
gated into a per-stixel offset estimate by averaging the CNN’s

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 13:28:50 UTC from IEEE Xplore. Restrictions apply.

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3067223, IEEE
Transactions on Intelligent Vehicles

predictions over the pixels in the stixel (this is already done
for Instance Stixels, as noted in Section III-B). Hence, each
stixel is equipped with an estimate of its instance center in 2D
image coordinates, as well as a semantic class label.

Then, the estimated instance centers and semantic class
prediction are used to group stixels to form instances. Sep-
arately for each semantic class, we aim to find clusters in
the estimated instance centers. Note that this condition on
the semantic class also qualifies Instance Stixels for panoptic
segmentation. The final clustering is done using the DBSCAN
algorithm [34] as it estimates the number of clusters (i.e.
instances) and performs well when the data has dense clusters.
DBSCAN has only two parameters: the maximum distance
between neighboring data points ε and the minimum size, as
in cardinality, γ of the neighborhood of a data point in order
to consider this point a core point. Additionally, we introduce
a size filter parameter which prevents stixels that are smaller
(i.e. cover less rows) than ρ to be considered a core point. This
modification prevents small stixels, which lie on the border of
two instances, to merge those instances together. Nevertheless,
they are assigned to one of those adjacent instances during the
clustering procedure.

D. Unary Regularization

The original Stixel MAP formulation considers a prior term
p(Lu) (equation 4) which models pairwise interactions of
vertically adjacent stixels. The prior term contains detailed
models of the expected segmentation. For example, it models
the probability of a ground stixel to be found below a sky
stixel and vice versa. In the end, the modelled probabilities
are usually estimated heuristically.

At the same time, this prior term acts as a regularizer.
Without this regularization effect, the resulting stixels tend to
be very small simply to fit the data terms as well as possible.
In an extreme case with stixels of a width of 1 pixel, this
would lead to stixels of also height equal to 1 pixel, which
means in the end that each stixel corresponds to a single pixel.
Consequently, the stixel segmentation would not be any more
compact than the pixel-wise representation.

We argue that this modeling of pairwise interactions is
especially useful for disparity-based stixels, since there more
detailed semantic information is missing. Instance Stixels
however do extract semantic and instance information from
the RGB images and thus this modeling may be unnecessary.
Therefore, we propose to replace this prior term by a simple
unary regularization term

Ep(sn) =
wR

vtn + 1− vbn
(10)

which penalizes small stixels. The regularization constant wR

is the only parameter that needs to be determined and is
comparable to the different weighting factors of the data terms.

IV. IMPLEMENTATION

We provide an open source Instance Stixels implementation
which has been optimized for computational performance on
the Cityscapes dataset [35]. As input it requires the RGB

and disparity image of a scene and outputs a set of stixels
comprising information about 3D position, semantic class and
instance label. Note that in general, Instance Stixels may also
operate only on the RGB image without relying on an disparity
image and as a result do not compute the depth of a stixel.

The first step in the Instance Stixel pipeline as depicted
in figure 2 is the CNN which predicts for each pixel the
probability of each semantic class and the 2D instance center
offset vectors in pixels. On Cityscapes this results in an
output depth of 19 + 2 = 21 channels in total. Any standard
semantic segmentation network architecture could be used as
the basis for the Semantic Segmentation and Offset CNN by
increasing the output depth by 2 channels and training those
to predict instance offset vectors. In our implementation, we
use Dilated Residual Networks [24] (DRN) as our underlying
architecture due to their favorable properties for these tasks,
as discussed in Section II. Furthermore, we exploit the fact
that, unlike the general method presented in that paper, our
implementation is computes stixels of a fixed width of 8 pixels
and remove any upsampling layers in the DRN architecture.
The implementation of the DRN is largely based on the
PyTorch [36] code provided by the authors of [24]. In order to
optimize CNN inference for efficiency, we make use of mixed
precision capabilities of NVIDIA Volta GPUs using the Apex
utilities [37] without loss of accuracy.

The second step in the pipeline consists of the actual
stixel computation. For this purpose, we extended the open-
source disparity Stixel CUDA-implementation introduced in
[12]. Amongst other features, such as the computation of
Semantic Stixels according to [1] and handling of invalid
disparity measurements, our extension comprises the Instance
Stixels presented here. Techniques to optimize for efficiency,
such as the use of prefix sums (aka. cumulative sums), have
been adapted and reused from the original implementation.
[12] provides a detailed explanation of those ideas.

Lastly, the stixels are clustered based on the mean instance
center estimate. To this end, we utilize the GPU-based DB-
SCAN implementation of cuML [38] and customize it to
include the size filter ρ described in section III-C.

In summary, all components are implemented on the GPU
which reduces the effective number of required host-device
copy operations to two, namely copying the RGB and disparity
images to device memory and retrieving the resulting stixel
segmentation from device memory. The source code of our
implementation is available online1.

V. EXPERIMENTS

A. Dataset, metrics and pre-processing

The computation of stixels require a RGB camera image
and the corresponding disparity image obtained from a stereo
camera setup. We use the Cityscapes dataset [35] for our
experiments, as it consists of challenging traffic scenarios.
Further, it provides ground truth annotations for semantic and

1Code available at https://github.com/tudelft-iv/instance-stixels

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 13:28:50 UTC from IEEE Xplore. Restrictions apply.

https://github.com/tudelft-iv/instance-stixels

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3067223, IEEE
Transactions on Intelligent Vehicles

instance segmentation. The performance on these two tasks is
evaluated using the standard Cityscapes metrics [35].

Semantic segmentation performance is measured by the
Intersection-over-Union (IoU) = TP

TP+FP+FN , where TP, FP,
and FN denote the number of true positives, false positives
and false negatives over all pixels in the dataset split. An
instance mask is considered correct if the overlap with its
ground truth mask surpasses a specific threshold. The Average
Precision (AP) corresponds to an average over the precision for
multiple thresholds. Average Precision (AP50%) only considers
an overlap of at least 50% as true positive. The metric also
allows to provide confidence score for each instance mask. We
did not make use of this option and always set the confidence
score to 1 for all compared algorithms.

The disparity images provided in the Cityscapes dataset
exhibit noisy regions introduced due to bad disparity mea-
surements at the vertical image edges and the hood of the
car. Inaccurate disparity data may harm the performance of
disparity based Stixels. Although Semantic Stixels are already
more robust due to the second modality, we aim to suppress
such effects. Therefore, we crop all images symmetrically (top:
120px, bottom: 120px, left: 128px, right: 128px) to ensure
that our experiments are not influenced by disparity errors.
Following [1], we are using the official validation as test set.
Therefore, we split the official training set into a separate
training subtrain and validation set subtrainval (validation
cities: Hanover, Krefeld, Stuttgart).

B. Training the CNN

The CNN takes an RGB image as input and predicts the
semantic class probabilities and two channels for the offset
vectors. Thus, it is a single CNN that provides the output
of the Semantic Segmentation and Offset CNN, which were
discussed separately in section III. For training, we construct
a loss that allows us to steer the focus between consistency
and accuracy of the prediction. Here, we consider a prediction
consistent when all pixels of a ground truth instance mask
point towards the same 2D position, i.e. all predictions for
the instance center (equation 7) are the same. Offset accuracy
is directly measured by the deviation of each single pixel
from the center of mass of the ground truth instance mask.
We argue that, for the predicted offsets, consistency is more
important than accuracy. This is best illustrated by an example:
consider a single instance in an image and all predicted
offsets of that instance do not point to the center of mass
of the instance, but instead to a different single point. As
a result, this prediction would be consistent, as all offsets
point to the same point, and at the same inaccurate as that
point does not match the ground truth instance mask’s center
of mass. Despite the fact that this single point is not the
training target, the clustering on this inaccurate, but consistent
prediction would work perfectly since all the pixels of the
instance are mapped to a single point and thus form a distinct
cluster. This observation holds for both the instance-aware
stixel computation and the clustering. Nevertheless, enforcing
a certain degree of accuracy avoids trivial solutions such as

all pixel offsets in the image point to the same single point
which would render clustering impossible.

Let j ∈ J denote all ground truth instance masks in an
image, Pj all pixels of that mask and PB all background pixels
which are not part of any instance mask. For all pixels p the
CNN predicts an offset Ωp and using equation 7 the predicted
center µp can be computed. Further, µ̄j = 1

|Pj |
∑

p∈Pj
µp

denotes the corresponding mean of the predicted centers and
µ̂j the center of mass of the ground truth instance mask. Our
offset loss

LO =
∑
j∈J

 αa

|Pj |1

∑
p∈Pj

||µp − µ̂j ||1 +
αc

|Pj |
∑
p∈Pj

(µp − µ̄j)
2

+

αa

|PB |
∑
p∈PB

||Ωp||1 (11)

thus comprises a consistency term based on µ̄j , an accuracy
term based on µ̂j and a background term. The weights αa and
αc provide the means to find a favorable trade-off between
those terms. The full loss L = LO + LS further includes
a semantic loss LS , namely a 2D cross-entropy semantic
segmentation loss, on the the first 19 semantic output channels.

It is important to note that the output (not the input) of
the CNN is downscaled by a factor 8. We also downscale
the ground truth output by that factor for training. The reason
for this is that upscaling, unless nearest neighbor upscaling
is used, introduces interpolation errors that result in a smooth
transition of the offset vectors between two instances. As a
consequence, this would also result in an interpolation of the
predicted means of two neighboring instances at pixels close to
the borders, which in the end yields worse clustering results.
To overcome this issue, we use nearest neighbor upscaling
when passing the predicted images to the Stixel algorithms.
The loss of resolution is compensated by the fact that our
Stixels work at a resolution of width 8.

In practice, we found that training the drn d 38 architecture
with αa = αc = 1e − 4 and the drn d 22 architecture with
αa = 1e− 5 and αc = 1e− 4 worked well. We minimize the
loss function using the Adam optimization [39] (learning rate
of 0.001, β1 = 0.9 and β2 = 0.999). Further, we apply zero
mean, unit variance normalization based on the training data
to the input data and use horizontal flipping to augment our
training data. The networks were trained for 500 epochs and
with a batch size of 20 images. From these 500 epochs, we
chose the best performing model for each architecture based
on the semantic IoU on the validation set.

C. Hyperparameter optimization

The stixel algorithms we evaluate offer several hyperparam-
eters that require tuning: the weighting of the data terms for
the Stixel computation ωd, ωs and ωi, as well as the DB-
SCAN parameters ε, γ and ρ. The stixel framework provides
more parameters from which we set the stixel width to 8
pixels throughout our experiments. Remaining parameters are
set based on recommendations from [32] and [12]. For the
Pixelwise baseline we only need to tune ε and γ. Additionally,

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 13:28:50 UTC from IEEE Xplore. Restrictions apply.

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3067223, IEEE
Transactions on Intelligent Vehicles

0 5 10 15 20 25 30
Frames per second

11

12

13

14

15

16

AP
 [%

]

Pixelwise 38

IS 38

SS+I 38

IS 22

SS+I 22

SS 38+UPS

SS 22+UPS

(a) Instance performance vs. frames per second.

0 5 10 15 20 25 30
Frames per second

64

65

66

67

68

Io
U

[%
]

Pixelwise 38

IS 38

SS+I 38

IS 22
SS+I 22

SS 38+UPS

SS 22+UPS

(b) Semantic performance vs. frames per second.

Fig. 3: Trade-off between segmentation performance and processing speed. Each data point represents the average performance
of an algorithm on the Cityscapes validation set (all classes, cropped to 1792x784 pixels). The colors indicate different CNN
architectures (drn d 22 or drn d 38), the symbols differentiate the base algorithm to obtain the instances (triangle: Instance
Stixels, square: Semantic Stixels + Instance, circle: Semantic Stixels + UPSNet, cross: Pixelwise. If the symbol is filled with
color, the unary regularization term was used instead of the pairwise energy term in the stixel computation (section III-D).

CNN Unary
regularization

AP [%] AP50 [%] IoU [%] cat IoU [%] FPS Avg. number
of stixels

Pixelwise drn d 38 - 12.5± 0.3* 25.3± 0.7* 68.2 85.0 0.5 1404928**
SS+I drn d 22 - 11.3 25.4 64.1 80.2 27.5 2095
SS+I drn d 22 X 11.3 25.7 64.6 81.8 28.2 1765
SS+I drn d 38 - 14.7 30.3 66.6 80.8 22.0 1270
SS+I drn d 38 X 15.3 31.6 66.5 81.3 22.1 4795
SS+UPS drn d 22 - 12.7 28.5 64.1 80.2 5.3 2095
SS+UPS drn d 38 - 14.1 30.8 66.6 80.8 5.1 1270
IS drn d 22 - 11.8 26.3 63.8 79.9 27.7 1384
IS drn d 22 X 12.6 26.8 64.3 81.1 28.1 2673
IS drn d 38 - 15.8 31.1 66.4 80.5 22.0 1421
IS drn d 38 X 16.3 32.4 66.9 81.9 22.2 2278

TABLE I: Performance of the Pixelwise baseline and different variations of stixel algorithms that provide instance segmentation
(rows) with respect to various metrics (columns). Results are computed on the Cityscapes validation set (all classes, cropped
to 1792x784 pixels). Best results per metric are highlighted in boldface. * The results of the Pixelwise baseline were averaged
over three runs and are reported with the corresponding standard deviation. All other algorithms are consistent over multiple
runs. ** The resulting segmentation is represented as 1792 · 784 = 1404928 pixels, since no stixels are involved here.

in this baseline the large number of data points requires the
clustering algorithm to process the data in batches which leads
to non-deterministic results.

The parameter tuning is performed using Bayesian opti-
mization [40] on the subtrainval validation set for 100 iter-
ations. The score is computed as Semantic IoU+1.5·Instance
AP. We weighted Instance AP higher as this is our main focus.
The optimization is performed separately for each algorithm
unless noted otherwise.

D. Comparison of algorithmic variations

To analyze the capabilities of our proposed method, we
vary four different aspects of computing stixels with instance
information.

1) Pixelwise: In this baseline setup, the pipeline as shown
in figure 2 is run entirely without stixels, by removing
the Stixel Computation. The semantic class is determined
according to the largest class probabilities. During the
clustering step, pixels of the same semantic class are
clustered based on their predicted instance centers.

2) SS+UPS: Represents the combination of state-of-the-art
methods to augment stixels with instance information.
Based on a separate instance segmentation method, a
stixel is assigned to an instance by majority vote of the
pixel-level prediction. For this purpose, we utilize the
following state-of-the-art methods: a pretrained instance
segmentation method called UPSNet [26] and Semantic
Stixels [1]. On pixel-level, UPSNet achieves AP perfor-

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 13:28:50 UTC from IEEE Xplore. Restrictions apply.

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3067223, IEEE
Transactions on Intelligent Vehicles

mance of 33.1% on the cropped validation set.
3) Semantic Stixels + Instance vs. Instance Stixels (SS+I

vs. IS): Corresponds to setting ωi = 0, which resembles
Semantic Stixels [1]), versus ωi > 0 in the stixels
computation (see equation 9).

4) Pairwise vs. unary: Describes whether the stixel com-
putation takes the pairwise term into account or instead
regularizes the height of a stixel based on the unary
regularization term as described in section III-D.

5) drn d 22 vs. drn d 38: Denotes the different base ar-
chitectures of the Dilated Residual Network [24] used
to predict semantic probabilities and instance offsets.
The architecture drn d 38 is deeper and requires more
memory.

Due to the fact that our subtrainval set overlaps with the
training set of the UPSNet, we cannot use the subtrainval set
for hyperparameter tuning. Hence, we use the same weights for
the Semantic Stixels of SS+UPS as the corresponding SS+I.

1) Processing speed vs. Segmentation Performance: In the
following we compare the different stixel methods for in-
stance segmentation regarding the trade-off of segmentation
performance and processing speed. The main indicators for
segmentation performance are the instance AP and the se-
mantic IoU as described in section V-A. Processing speed is
measured as the number of frames the pipeline can process
per second. Here, to compute the frames per second we
average the processing time of the frames in the validation
set, which takes into account the processing time of all three
modules (CNN, Stixel Computation and Clustering, see figure
2), but neglects data loading and visualization. All frames are
processed sequentially on a NVIDIA Titan V GPU.

Figure 3 illustrates the trade-off between processing speed
and instance as well as semantic performance in a com-
pact manner. Table I extends the figure by providing further
segmentation metrics and also the complexity of the image
representation as the average number of stixels per frame on
the official Cityscapes validation set.

In terms of segmentation performance, the illustrations show
that the choice of the network architecture of the CNN,
indicated by the color of the points, has the most prominent
effect (green: drn d 38 and blue: drn d 22). For both seg-
mentation metrics, even the best algorithm based on drn d 22
performing worse than the worst stixel algorithm based on
drn d 38. Within the same architecture however, Instance
Stixels (IS) generally perform better than Semantic Stixels +
Instance (SS+I) in terms of instance AP, but not always in
terms of semantic IoU. Further, for both algorithms (IS and
SS+I), using the unary regularization term (filled symbols) sur-
passes its pairwise counterpart (non-filled symbols) or at least
remains on par. Interestingly, the CNN architecture choice
also affects the comparison in instance AP of Instance Stixels
and Semantic Stixels + UPSNet (SS+UPS). For drn d 22, IS
22 with unary regularization achieves similar instance AP as
SS+UPS 22. For drn d 38, SS+UPS obtains worst instance
AP of all stixel methods. The semantic IoU of SS+UPS
is limited by its SS+I counterpart by construction. Overall,

Instance Stixels based on the drn d 38 architecture and using
the unary regularization outperforms all other stixel-based
algorithms in both segmentation metrics. Only the Pixelwise
algorithm surpasses this performance in the semantic IoU, but
not the instance AP. The same observations generally also hold
for the extended instance and semantic segmentation metrics
AP50% and the category IoU [35] as listed in table I.

To a certain degree, segmentation performance comes at
a trade-off regarding processing speed. Notably, the speed is
mainly determined by the choice of the CNN as well. The
Pixelwise pipeline is by far the slowest algorithm for these
tasks at only 0.5 frames per second. Stixel methods based
on drn d 38 are favorable compared to methods relying on
UPSNet, but not as fast as methods based on drn d 22.
Among the same architecture the differences in processing
speed are only minor and are listed in table I. Additional
analysis showed that the processing speed is steady over all
frames, regardless of the number of instances or stixels in an
image. The complexity of the segmentation, quantified by the
average number of stixels per frame, varies between algorithms
exhibiting no obvious correlation. Among the Instance Stixels
the highest average number stixels per frame is at most 2673.

2) Qualitative analysis: The consequences of the different
algorithm variations as described in section V-D are depicted
in figure 4 when applied on an real traffic scene image from
the subtrainval set. Figures 4a and 4b show the input data.
Instance segmentation results in the left column (4 (c),(e),(g)
and (i)) based on the drn d 22 architecture show in general
more errors than in the right column (4 (d),(f),(h) and (j))
which is based on the drn d 38 architecture. Especially figures
(g),(i) and (j) show several stixels which overlap two instances.

Figure 5 visualizes the full results (3D position, semantic
and instance segmentation) of Instance Stixels (drn d 38,
unary regularization) on three scenes (columns). Based on the
input RGB images (top row), the CNN predicts the offset
vectors (center rows). The offset vectors are visualized in
HSV color space, where the hue indicates the direction and
the saturation the magnitude of the offsets. The fourth row
shows the segmentation of the scenes. The overlaid colors
illustrate the semantic class per pixel, whereas the white
contours around objects mark the borders of instances. The
bottom row shows top down views of the scene based on
the per stixel disparity information and location within the
input image. In these illustrations the road and the sidewalk
are illustrated as polygons. Their boundaries are based on the
ground plane estimation. Sky stixels are discarded and non-
instance stixels are drawn as circles. Their radius indicates the
size of the respective stixel in the image. Stixels of the same
instance are connected by a line. Per column, we only connect
the stixel that are closest to the ego-vehicle. As a result of our
instance segmentation, we can also filter outliers. Specifically,
we do not include stixels that are further than 3 meters away
from the mean top down position of the instance. Also, we
removed the stixel artefacts of the Mercedes-Benz Star from
the top down view based on their position in the image.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 13:28:50 UTC from IEEE Xplore. Restrictions apply.

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3067223, IEEE
Transactions on Intelligent Vehicles

(a) Input: Original image. (b) Input: Disparity image.

(c) Instance Stixels 22, unary regularization (ours). (d) Instance Stixels 38, unary regularization (ours).

(e) Instance Stixels 22 (ours). (f) Instance Stixels 38 (ours).

(g) Semantic Stixels + Instance 22, unary regularization (baseline). (h) Semantic Stixels + Instance 38, unary regularization (baseline).

(i) Semantic Stixels + Instance 22 (baseline). (j) Semantic Stixels + Instance 38 (baseline).

Fig. 4: Qualitative analysis of instance segmentation results from Semantic Stixels + Instance (baseline) and Instance Stixels
(proposed algorithm) using different architectures as well as comparing the pairwise energy term and the unary regularization.
Figure (a) and (b): The input RGB and disparity image. Below, the left column shows instance segmentation results obtained
using the drn d 22 architecture as basis for the CNN. Likewise, the right column Instances are indicated by arbitrary colors.
White areas denote stixels that cannot be assigned to specific instances, but their predicted semantic class is an instance class.
Black areas indicate that the predicted semantic class is not an instance class.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 13:28:50 UTC from IEEE Xplore. Restrictions apply.

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3067223, IEEE
Transactions on Intelligent Vehicles

(a) Input RGB image. (b) Input RGB image. (c) Input RGB image.

(d) Input disparity image. (e) Input disparity image. (f) Input disparity image.

(g) Intermediate offset prediction. (h) Intermediate offset prediction. (i) Intermediate offset prediction.

(j) Instance Stixels, unary regularization. (k) Instance Stixels, unary regularization. (l) Instance Stixels, unary regularization.

(m) Instance Stixels 38, unary regularization. (n) Instance Stixels 38, unary regularization. (o) Instance Stixels 38, unary regularization.

Fig. 5: Illustration of stixel segmentations including spatial top down view of the scene. Each column is a separate scene,
the top two rows show the corresponding inputs, the center row shows the offsets predicted by the CNN and the bottom two
rows visualize the output of Instance Stixels (drn d 38, unary regularization). In the third row from the top, the overlaid
color indicates the semantic class of a stixel, whereas the white contour around objects indicate the segmented instances. The
last row shows the top view of the scene. Instances are visualized as lines, road and sidewalk stixels are plotted as polygons
based on the obtained ground plane estimation. Stixels of class sky are discarded in this illustration. All remaining stixels (e.g.
buildings and poles) as points and their radius indicates the stixels size.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 13:28:50 UTC from IEEE Xplore. Restrictions apply.

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3067223, IEEE
Transactions on Intelligent Vehicles

VI. DISCUSSION

Results presented in section V-D show that adding the in-
stance term, that distinguishes IS and SS+I, increases instance
AP. Minor drawbacks in terms of semantic IoU may be due to
hyperparameter optimization which values instance AP more
than semantic IoU. Despite the increased instance AP, the
segmentation for far away objects (e.g. the truck in the left-
hand part of figure 4a) and tightly overlapping objects (e.g.
pedestrians in the left-hand part figure 5a) remain challenging.
Overall, the choice of the CNN appears to be more important
to the segmentation than the effect of the instance term. No-
tably, using a state-of-the-art pixelwise instance segmentation
CNN, such as UPSNet [26], and combining it with Semantic
Stixels falls behind significantly in terms of processing speed.
UPSNet requires on average 0.15 seconds of processing time
per frame which on its own yields only 6.6 frames per second.
Compared to the pixelwise UPSNet result, the instance AP of
SS + UPSNet has decreased by more than 50%. A drop in
overall accuracy is likely, since the stixels group pixels along
predefined coarse column borders and thus inherently decrease
the granularity of the prediction. Further, SS do not consider
the instance term introduced for IS, thus stixels may overlap
two different instances. UPSNet cannot change this afterwards
which leads to worse performance. Lastly, a pixelwise cluster-
ing approach shows weak instance segmentation performance
at a runtime of 0.5 FPS that is dominated by the clustering
algorithm suffering from the large amount of points.

The benefits of a purely stixels-based instance segmentation
method however is not only observed in processing speed, but
also in term of segmentation complexity. Pixelwise methods
result in more than 1.4 million independent predictions. Our
Instance Stixels on average require between 1384 and 2673
stixels per frame to describe the same amount of pixels.
This means Instance Stixels reduce the complexity of the
representation by factors between 525.6× - 1015.1×.

Aside from image segmentation, Instance Stixels provide
position estimates in 3D space. As a result, top down views
of a scene can be extracted, similar to a grid map. In contrast
to a grid map, our representation is continuous and does not
discretize 3D space. In this top down representation, imperfect
disparity measurements, become apparent, for example in that
the back of cars do not appear as straight lines. Further, it
also show the inaccuracies of the ground plane and horizon
estimation, which is here based on v-disparity [33]. In the
stixel model, stixels above the horizon cannot be classified
as ground. This leads to artefacts as seen on the road behind
the two cars in figure 5j. As the ground plane estimation is
crude, the polygons of the road stixels overlap sometimes with
stixels of obstacles. Combining Instance Stixels with LiDAR
measurements as shown in [41] may improve both, the depth
estimation and the ground plane estimation. As this is an
orthogonal approach, not related to instance segmentation, we
made use of our object based representation to for example
filter outliers in the depth measurements of a single object.

The rich information about both, the static and dynamic sur-

rounding, contained in Instance Stixels can benefit subsequent
utilization in an autonomous driving pipeline. For example,
Instance Stixels provide a rich and efficient representation for
path planning, object tracking, and mapping.

VII. CONCLUSIONS

This paper introduced Instance Stixels to improve stixel
segmentation by considering instance information from a
CNN, and performing a subsequent stixel clustering step. Our
experiments showed multiple benefits of including the instance
information already in the segmentation step, opposed to only
clustering Semantic Stixels. First, quantitative and qualitative
analysis show that Instance Stixels adhere better to object
boundaries. Second, Instance Stixels provide more accurate
instance segmentation than Semantic Stixels augmented with
instance information from a pixel-level instance segmentation
network. Third, Instance stixels still preserve the favorable
stixel characteristics in terms of compactness of the segmen-
tation representation (on average less than 2673 stixels per
image) and computational efficiency (up to 28 FPS at a resolu-
tion of 1792x784). In future work, the integration of additional
sensor modalities as shown in [41] and temporal information
to enforce consistency are potential research directions.

ACKNOWLEDGMENT

This work received support from the Dutch Science Foun-
dation NWO-TTW within the Sensing, Mapping and Local-
ization project (nr. 14892). We further thank the authors of
[12] and [24] for kindly providing their code and pre-trained
CNN models to the scientific community.

REFERENCES

[1] L. Schneider, M. Cordts, T. Rehfeld, D. Pfeiffer, M. Enzweiler,
U. Franke, M. Pollefeys, and S. Roth, “Semantic Stixels: Depth is not
enough,” in IEEE Intelligent Vehicles Symposium, 2016, pp. 110–117.

[2] S. Sivaraman and M. M. Trivedi, “Looking at vehicles on the road:
A survey of vision-based vehicle detection, tracking, and behavior
analysis,” IEEE Trans. on Intelligent Transportation Systems, vol. 14,
no. 4, pp. 1773–1795, 2013.

[3] M. Braun, S. Krebs, F. Flohr, and D. M. Gavrila, “Eurocity persons:
A novel benchmark for person detection in traffic scenes,” IEEE Trans.
on Pattern Analysis and Machine Intelligence, vol. 41, no. 8, pp. 1844–
1861, Aug 2019.

[4] D. Nuss, T. Yuan, G. Krehl, M. Stübler, S. Reuter, and K. Dietmayer,
“Fusion of laser and radar sensor data with a sequential monte carlo
bayesian occupancy filter,” in IEEE Intelligent Vehicles Symposium,
2015, pp. 1074–1081.

[5] R. Danescu, F. Oniga, and S. Nedevschi, “Modeling and tracking the
driving environment with a particle-based occupancy grid,” IEEE Trans.
on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1331–1342,
2011.

[6] H. Badino, U. Franke, and D. Pfeiffer, “The stixel world - a compact
medium level representation of the 3d-world,” in 31st DAGM Symposium
on Pattern Recognition. Berlin, Heidelberg: Springer-Verlag, 2009, pp.
51–60.

[7] D. Hernandez-Juarez, L. Schneider, A. Espinosa, D. Vázquez, A. M.
López, U. Franke, M. Pollefeys, and J. C. Moure, “Slanted stixels:
Representing san franciscos steepest streets,” British Machine Vision
Conference 2011, 2018.

[8] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller, ...,
and E. Zeeb, “Making bertha drive - an autonomous journey on a historic
route,” IEEE Intelligent Transportation Systems Magazine, vol. 6, no. 2,
pp. 8–20, Summer 2014.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 13:28:50 UTC from IEEE Xplore. Restrictions apply.

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3067223, IEEE
Transactions on Intelligent Vehicles

[9] W. Sanberg, G. Dubbelman, and P. de With, “From stixels to asteroids:
Towards a collision warning system using stereo vision,” in IS&T
International Symposium on Electronic Imaging, 2019.

[10] S. Ramos, S. Gehrig, P. Pinggera, U. Franke, and C. Rother, “Detecting
unexpected obstacles for self-driving cars: Fusing deep learning and
geometric modeling,” IEEE Intelligent Vehicles Symposium, pp. 1025–
1032, 2017.

[11] D. Pfeiffer and U. Franke, “Towards a Global Optimal Multi-Layer
Stixel Representation of Dense 3D Data,” British Machine Vision
Conference, pp. 51.1–51.12, 2011.

[12] D. Hernandez-Juarez, A. Espinosa, J. C. Moure, D. Vázquez, and A. M.
López, “GPU-Accelerated real-Time stixel computation,” IEEE Winter
Conf. on Applications of Computer Vision, pp. 1054–1062, 2017.

[13] M. Cordts, T. Rehfeld, M. Enzweiler, U. Franke, and S. Roth, “Tree-
structured models for efficient multi-cue scene labeling,” IEEE Trans.
on Pattern Analysis and Machine Intelligence, vol. 39, no. 7, pp. 1444–
1454, 2017.

[14] N. H. Saleem, H. Chien, M. Rezaei, and R. Klette, “Effects of ground
manifold modeling on the accuracy of stixel calculations,” IEEE Trans.
on Intelligent Transportation Systems, vol. 20, no. 10, pp. 3675–3687,
Oct 2019.

[15] D. Pfeiffer and U. Franke, “Efficient representation of traffic scenes by
means of dynamic stixels,” in IEEE Intelligent Vehicles Symposium, June
2010, pp. 217–224.

[16] B. Günyel, R. Benenson, R. Timofte, and L. Van Gool, “Stixels Motion
Estimation without Optical Flow Computation,” in European Conference
on Computer Vision (ECCV). Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 528–539.

[17] F. Erbs, A. Barth, and U. Franke, “Moving vehicle detection by optimal
segmentation of the dynamic stixel world,” in IEEE Intelligent Vehicles
Symposium, 2011, pp. 951–956.

[18] F. Erbs, B. Schwarz, and U. Franke, “Stixmentation-probabilistic stixel
based traffic scene labeling.” in BMVC, 2012, pp. 1–12.

[19] ——, “From stixels to objects - a conditional random field based
approach,” in IEEE Intelligent Vehicles Symposium, 2013, pp. 586–591.

[20] F. Erbs, A. Witte, T. Scharwächter, R. Mester, and U. Franke, “Spider-
based stixel object segmentation,” in IEEE Intelligent Vehicles Sympo-
sium, 2014, pp. 906–911.

[21] M. Cordts, L. Schneider, M. Enzweiler, U. Franke, and S. Roth, “Object-
level priors for stixel generation,” in German Conference on Pattern
Recognition. Springer, 2014, pp. 172–183.

[22] T. Scharwächter and U. Franke, “Low-level fusion of color, texture and
depth for robust road scene understanding,” in IEEE Intelligent Vehicles
Symposium, June 2015, pp. 599–604.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, June 2016.

[24] F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual networks,” in
Computer Vision and Pattern Recognition), 2017.

[25] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollar, “Panoptic
segmentation,” in IEEE Conference on Computer Vision and Pattern
Recognition, June 2019.

[26] Y. Xiong, R. Liao, H. Zhao, R. Hu, M. Bai, E. Yumer, and R. Urtasun,
“Upsnet: A unified panoptic segmentation network,” in Computer Vision
and Pattern Recognition, 2019.

[27] B. De Brabandere, D. Neven, and L. Van Gool, “Semantic instance
segmentation with a discriminative loss function,” in Deep Learning for
Robotic Vision, workshop at CVPR 2017. CVPR, 2017, pp. 1–2.

[28] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2018.

[29] J. Uhrig, E. Rehder, B. Fröhlich, U. Franke, and T. Brox, “Box2pix:
Single-shot instance segmentation by assigning pixels to object boxes,”
in IEEE Intelligent Vehicles Symposium, 2018.

[30] D. Neven, B. D. Brabandere, M. Proesmans, and L. V. Gool, “Instance
segmentation by jointly optimizing spatial embeddings and clustering
bandwidth,” in IEEE Conference on Computer Vision and Pattern
Recognition, June 2019.

[31] T. M. Hehn, J. F. P. Kooij, and D. M. Gavrila, “Instance stixels:
Segmenting and grouping stixels into objects,” in IEEE Intelligent
Vehicles Symposium, June 2019, pp. 2542–2549.

[32] D. Pfeiffer, “The stixel world,” Ph.D. dissertation, Humboldt-Universität
zu Berlin, 2012.

[33] R. Labayrade, D. Aubert, and J.-P. Tarel, “Real time obstacle detection
in stereovision on non flat road geometry through v-disparity represen-
tation,” in IEEE Intelligent Vehicle Symposium, 2002, pp. 646–651.

[34] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

[35] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, ..., and B. Schiele, “The cityscapes dataset for semantic urban scene
understanding,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[36] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in NIPS-W, 2017.

[37] NVIDIA Corporation. (visited on: 2019-11-26) Apex: A pytorch
extension: Tools for easy mixed precision and distributed training in
pytorch. [Online]. Available: https://github.com/NVIDIA/apex

[38] R. D. Team, RAPIDS: Collection of Libraries for End to End GPU
Data Science, 2018. [Online]. Available: https://rapids.ai

[39] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd Int. Conf. Learn. Representations, 2014.

[40] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in Advances in neural information
processing systems, 2012, pp. 2951–2959.

[41] F. Piewak, P. Pinggera, M. Enzweiler, D. Pfeiffer, and M. Zöllner,
“Improved semantic stixels via multimodal sensor fusion,” in German
Conference on Pattern Recognition. Springer, 2018, pp. 447–458.

Thomas Hehn received his Bachelors degree in
2014 and his Master’s degree in 2017, both in
Physics from Heidelberg University, Germany. In
2018, he received the best paper award of the
German Conference on Pattern Recognition for his
research on decision tree algorithms done at the
Heidelberg Collaboratory for Image Processing. He
is currently working toward the Ph.D. degree at Delft
University of Technology. His research focuses on
computer vision for autonomous driving.

Julian Kooij obtained the Ph.D. degree in artificial
intelligence at the University of Amsterdam in 2015,
where he worked on unsupervised machine learning
and predictive models of pedestrian behavior. In
2013 he worked at Daimler AG on path prediction of
vulnerable road users for highly-automated vehicles.
In 2014 he joined the computer vision lab of the TU
Delft, and since 2016 he is an Assistant Professor in
the Intelligent Vehicles group, part of the Cognitive
Robotics department at the same university. His
research interests include developing novel proba-

bilistic models and machine learning techniques to infer and anticipate critical
traffic situations from multi-modal sensor data.

Dariu M. Gavrila received the Ph.D. degree in
computer science from Univ. of Maryland at Col-
lege Park, USA, in 1996. From 1997, he was with
Daimler R&D, Ulm, Germany, where he became a
Distinguished Scientist. 2016, he moved to TU Delft,
where he since heads the Intelligent Vehicles group
as Full Professor. His research deals with sensor-
based detection of humans and analysis of behavior,
recently in the context of the self-driving cars in ur-
ban traffic. He received the Outstanding Application
Award 2014 and the Outstanding Researcher Award

2019, both from the IEEE Intelligent Transportation Systems Society.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 09,2021 at 13:28:50 UTC from IEEE Xplore. Restrictions apply.

https://github.com/NVIDIA/apex
https://rapids.ai

