
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ens.ewi.tudelft.nl/

CAS-2022-03

M.Sc. Thesis

Modeling of router structure for
SNN-applicable NoC definitions

Yongkang Zhou B.Sc.

Abstract

Spiking neural networks (SNN), as the third-generation artificial neu-
ral network, has a similar potential pulse triggering mechanism to the
biological neuron. This mechanism enables the spiking neural net-
work to increase computing power compared to the traditional artifi-
cial neural network to process complex information. However, a large
number of interconnection resources is required. This requirement
is highly consistent with the characteristics of the network on chip
(NoC). This thesis is aimed at developing a scalable cycle-accurate
simulator based on Noxim, which provides a configurable NoC that
can simulate neuron-to-neuron communication for delivering spiking
traffic. This simulator achieves several configurable metrics including
topology and routing schemes, network size, the number of channels,
and neuron mapping methods. This thesis then evaluates the effects
of these metrics on performance for two kinds of traffic patterns. To
take power consumption and area into account, this thesis also pro-
vides an approximate estimate of area and power consumption for
trade-offs in the early-design stage.

Modeling of router structure for SNN-applicable NoC
definitions

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Electrical Engineering

by

Yongkang Zhou B.Sc.
born in Xiangyang, China

This work was performed in:

Circuits and Systems Group
Department of Microelectronics & Computer Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright © 2022 Circuits and Systems Group
All rights reserved.

Delft University of Technology
Department of

Microelectronics & Computer Engineering

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “Modeling of router structure for SNN-applicable NoC definitions ”
by Yongkang Zhou B.Sc. in partial fulfillment of the requirements for the degree of
Master of Science.

Dated: 08.03.2022

Chairman:
Prof.dr.ir. Rene van Leuken

Advisor:
Prof.dr.ir. Rene van Leuken

Committee Members:
Dr.ir. Amir Zjajo

Dr.ir. Arjan van Genderen

iv

Abstract

Spiking neural networks (SNN), as the third-generation artificial neural network, has
a similar potential pulse triggering mechanism to the biological neuron. This mecha-
nism enables the spiking neural network to increase computing power compared to the
traditional artificial neural network to process complex information. However, a large
number of interconnection resources is required. This requirement is highly consistent
with the characteristics of the network on chip (NoC). This thesis is aimed at develop-
ing a scalable cycle-accurate simulator based on Noxim, which provides a configurable
NoC that can simulate neuron-to-neuron communication for delivering spiking traffic.
This simulator achieves several configurable metrics including topology and routing
schemes, network size, the number of channels, and neuron mapping methods. This
thesis then evaluates the effects of these metrics on performance for two kinds of traffic
patterns. To take power consumption and area into account, this thesis also provides an
approximate estimate of area and power consumption for trade-offs in the early-design
stage.

v

vi

Acknowledgments

First, I would like to thank my supervisor, Prof.dr.ir. Rene van Leuken and Dr.ir.
Amir Zjajo provide this opportunity to work on this thesis project, give me a lot of
useful advice on my project. Their rigorous attitude towards science and knowledge
will affect my future life.

I would like to thank my company supervisors, Charles Lo, Shashanka Marigi Ra-
janarayana and Alexander de Graaf. Without their help and weekly meeting, I cannot
complete this project. I appreciate their kindness and patience.

I would like to thank all my colleagues at Innatera. Though we have to meet online
at most time due to COVID-19, they create a pleasant work environment and makes
me feel like work in a big family.

I would further like to thank my girlfriend Ziwei Xia and my family. Their support
gives me confidence to study for the master degree at TU Delft. Their encouragement
gives me great strength when I meet troubles.

Yongkang Zhou B.Sc.
Delft, The Netherlands
08.03.2022

vii

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Motivation . 1
1.2 Objective and approach . 2
1.3 Contributions . 2
1.4 Outline . 3

I Background 5

2 Neuromorphic computing background and state of the art 7
2.1 The neuron . 7
2.2 Spiking neuron models . 8

2.2.1 Hodgkin-Huxley model . 8
2.2.2 LIF model . 8
2.2.3 ANN model . 10

2.3 Noxim . 11
2.4 Neural communication schemes - Feed Forward Network 11
2.5 Address Event Representation . 11
2.6 Neuromorphic Projects . 12

II Methodology 17

3 Network and Interconnection implementation 19
3.1 Processing Element . 20

3.1.1 Architecture . 20
3.1.2 Broadcast . 21

3.2 Router . 22
3.2.1 Handshaking protocol . 22
3.2.2 Crossbar . 23

4 Evaluation framework architecture 25
4.1 Network Topologies . 25

4.1.1 Bidirectional Ring . 26
4.1.2 Multipath Ring(MPR) . 26
4.1.3 Mesh . 27

4.2 Neuron-to-PE Mapping Problems . 29
4.2.1 Sequential Mapping . 30

ix

4.2.2 Random Mapping . 30
4.2.3 Greedy Mapping . 31
4.2.4 Center Mapping . 32

4.3 Multiple channels . 33

III Results 35

5 Network simulation and evaluation 37
5.1 Latency calculation . 37
5.2 Input stimulus . 37

5.2.1 Uniform injection rate . 37
5.2.2 spike raster . 37

5.3 Performance simulation . 38
5.3.1 Assumptions . 38
5.3.2 Simulation with uniform injection rate 39
5.3.3 Simulation with spike raster . 40
5.3.4 Performance simulation . 41
5.3.5 Conclusion . 48

5.4 Power and Area estimation . 48
5.4.1 Power . 48
5.4.2 Area . 50

6 Conclusion and future work 55
6.1 Conclusion . 55
6.2 Future work . 55

x

List of Figures

2.1 Main Components and structures of a biological neuron[1] 7
2.2 Schematic representation of Hodgkin Huxley neuron model[2] 9
2.3 ANN neuron model . 10
2.4 Spiking neuron model . 11
2.5 Feed forward communication pattern 12
2.6 One-dimensional AER encoding . 12
2.7 SpiNNaker . 13
2.8 Neurogrid[3] . 14
2.9 TrueNorth[4] . 15

3.1 The Tile for mesh topology . 20
3.2 Encoder and Decoder Elements . 20
3.3 Simplified Neurosynaptic Array . 21
3.4 Communication schemes between Router-Router or PE-Router 22
3.5 A typical mesh router . 23
3.6 Multiplexer-based M ×N crossbar[5] 23

4.1 A 12-node ring topology . 25
4.2 A 12-node multipath ring topology . 27
4.3 A 4× 4 mesh topology . 28
4.4 An example of sequential mapping for neural network of size 8-5-3 . . . 31
4.5 An example of greedy mapping for neural network of size 8-5-3 32
4.6 Center mapping . 33
4.7 An example of multiple channels in PE output ports 34

5.1 Raster plot[6] . 38
5.2 An example of spike raster . 39
5.3 Average latency vs. Injection rate in different topologies 40
5.4 Latency comparison of different mapping methods in Mesh topology . . 41
5.5 Latency comparison of different mapping methods in MPR topology . . 41
5.6 a four-layer full-connected feed-forward network (1088-20-10-4) 42
5.7 Maximum latency vs. numbers of channels with sequential mapping . . 45
5.8 Latency comparison of different mapping methods and different numbers

of channels in Multipath ring . 45
5.9 Comparison of different mapping methods with different numbers of

channels in Mesh topology . 46
5.10 The visualized spiking traffic for four mapping methods in mesh 47
5.11 The number of spikes and maximum latency in different mesh size . . . 48
5.12 The number of spikes and maximum latency with different tile number

in MPR topology . 49
5.13 Maximum latency vs. number of channels in a time step of different cycles 49
5.14 Normalized energy in mapping methods in MPR and mesh 51
5.15 Normalized energy in different mesh size 51

xi

5.16 Average distance of spikes in different mesh size 52
5.17 Area estimation of network with different mesh size 52

xii

List of Tables

4.1 Comparison of different topologies . 29
4.2 Mapping result of neurons in sequential mapping 30
4.3 Comparison of different mapping methods 34

5.1 Configuration of network with simulation of uniform injection rate . . . 39
5.2 Configuration of network with simulation of spike raster 42
5.3 Performance of Mesh topology . 43
5.4 Performance of MPR topology . 43
5.5 Performance of Ring topology . 43
5.6 Maximum latency and number of spikes with broadcast/non-broadcast

in mesh network . 44
5.7 Correspondence of time step and clock frequency 47

xiii

xiv

Introduction 1
Neural network is considered the main driving force of the current development of arti-
ficial intelligence, and it has been a popular field for a long time. In 1958, Rosenblatt[7]
proposed ”perceptron”, a machine that can simulate human perception, and completed
the simulation of the perceptron on the IBM704. In 1960 he realized a neural com-
puter capable of recognizing some English letters based on the perceptron[8]. In the
mid-1980s, multi-layer artificial neural networks(ANN) emerged and developed deep
convolutional networks[9]. However, since ANN lacks the internal dynamic mechanism
of nerves, it is biologically inaccurate and cannot mimic the mechanism of biological
brain neurons accurately. Recently, the spiking neural network(SNN) is known as a
new generation of neural networks and has received more and more attention.

1.1 Motivation

In the recent years, Spiking Neural Networks(SNNs), which originate from computa-
tional neuroscience, have been researched deeply in the field of neuromorphic engineer-
ing and brain-like inspired computing due to their rich spatiotemporal dynamic char-
acteristics, diverse coding mechanisms, and hardware-compatible event-driven charac-
teristics.

Compared with traditional neural networks, spiking neural networks are more like
the results of bionics research than those based on mathematical research. From the
neuron model to the network structure, it is based on the biological neural network,
and it has a lot of advantages that are suitable for hardware implementation, such
as the working mode of threshold used in the spiking neuron model. Research on
how to use hardware to achieve efficient computation of spiking neural networks has
a long history, resulting in multiple classic designs. Early researches include designing
and implementing several basic units with neuron working functions in FPGA, and
then realizing the calculation of spiking neural network through the interconnection
between units[10]. However, in order to simulate the complete function of neurons, the
hardware resource overhead of a unit neuron is too large, coupled with the resource
overhead of implementing large-scale inter-neuron interconnections on-chip, this design
cannot implement a large-scale spiking neural network in a single chip. Later research
on the use of multi-chip interconnects to achieve larger-scale network designs[11] offered
additional solutions.

In a multi-core SNN architecture, spikes are generated from one core (usually an
analog array and encoder/decoder, etc.) to another. In general, the network should
be as transparent as possible in that a spike produced by a neuron should immediately
appear at any target synapse. However, this is impractical at scale. Instead, spikes
must be encoded and transmitted across a chip. The SNN-based NoC is required to

1

provide high traffic capacity because each neuron in the network has a large fan-out,
and neurons are usually divided into groups when implementing them into hardware.
Thus, the synapse among neurons can be divided into local synapses, which connect
neurons in the same group, and global synapses which connect different neuron groups.
In this project, we mainly focus on global communication and explore different metrics
of networks that can affect the performance and can be implemented to hardware.

1.2 Objective and approach

The objective of this work is to implement a network evaluation framework. This
framework is used to determine what sort of interconnection network would work well
for input spiking traffic and can easily quantify and compare different spike routing
architectures in terms of latency, energy consumption, and area. The approach to
achieve the goal is as follows:

• Implement an interconnect network for SNN.

The SNN-based chip has a multi-core feature. This feature required an intercon-
nect network instead of traditional bus architecture in the chip design. In this
case, the evaluation framework is required to integrate interconnect networks with
different topologies.

• Mapping neurons to network.

In spiking neural networks, neurons are connected (usually in feed-forward con-
nections) and spikes are transmitted from input to output. A significant problem
is to design a proper unit in hardware to place neurons. Also, different mapping
methods bring about different performances.

• Implement latency performance evaluation framework

In this project, the evaluation framework should have the ability to measure the
cycle-accurate latency of every single spike. The values of global latency including
average latency and maximum latency are required to be obtained for analysis.

• Power and Area estimation

The design of NoC for SNNs is required to consider trade-offs among latency,
energy consumption, and area. Besides latency calculation in the network, a
feasible method to estimate power consumption and area is needed to make the
framework more comprehensive.

1.3 Contributions

The mainly contributions of this project follows:

• Three types of topologies, including ring, multi-path ring, and mesh for SNN
application as well as corresponding routing schemes are implemented.

2

• Four neuron-to-cluster mapping methods are developed.

• The configurable evaluation framework for SNN networks is implemented. This
framework works in synchronous and can inject spikes based on the external spike
raster.

• The development of an approximate framework to estimate energy consumption
and area in a network. The power and area parameter is unknown since no
hardware implementation is completed. These parameters can still be estimated
and be approximate to the real result.

1.4 Outline

This thesis is organized as follows: Chapter 2 presents some previous research that
relates to this work, basic concepts, and state-of-the-art research. The architecture of
the core of SNN used to accommodate neurons and send/receive spikes and intercon-
nections are described in Chapter 3. Chapter 4 focuses on the detailed design method,
such as the architecture of the network, the microarchitecture of the components of
NoC, and the neuron mapping algorithms. Chapter 5 provides the simulation results
(latency) of different topologies with different variable settings. Chapter 6 gives the
conclusion of the thesis and lists some interesting directions that can be explored in
future work.

3

4

Part I

Background

5

Neuromorphic computing
background and state of the art 2
2.1 The neuron

The neuron, or we can call it a nerve cell, is organized by a soma (the cell body),
dendrites, and a single axon. The neuron is an electrically excitable cell that transmits
information with other same cells by partly electrical and partly chemical signals. The
interconnect between these two cells are called synapses and they are unidirectional.
Generally, each neuron has 1,000 to 10,000 synaptic connections to other neurons[12]. In
the communication process, the neuron is electrically excitable and its membranes need
to maintain the voltage gradient. If the voltage changes sufficiently in a short period of
time, the neuron will produce an all-or-nothing electrochemical pulse called an action
potential. The action potential, usually seen as an all-or-nothing electrochemical pulse,
will be produced by neurons. This potential will be transmitted along the axon and
activates the destinate synapses when reaching the destination.

Figure 2.1: Main Components and structures of a biological neuron[1]

7

2.2 Spiking neuron models

In view of the dynamic characteristics of the potential of neurons at work, neurophys-
iologists have implemented a lot of models. They are the basic units of the spiking
neural network and determine the basic dynamic characteristics of the network. In-
fluential models include Hodgkin-Huxley Model, LIF (leaky integrate-and-fire) model,
and ANN model, which are introduced below.

2.2.1 Hodgkin-Huxley model

In 1952, Hodgkin and Huxley[13] measured the action potential of giant squid axons,
and proposed a theoretical mathematical model (HH model) of the electrical activity
mechanism of neurons and corresponding circuit simulations, laying the foundation for
the generation and propagation mechanism of action potentials.

I = CM
dV

dt
+ gKn

4(V − VK) + g1n
4(V − Vl) + gNa

m3h(V − VNa), (2.1)

dm

dt
= αn(V)(1− n)− βn(V)n, (2.2)

dm

dt
= αm(V)(1−m)− βm(V)m, (2.3)

dh

dt
= αh(1− h)− βh(V)h; (2.4)

where I is membrane current density; CM is the membrane capacitance per unit
area; V represents membrane potential; gK = gKn

4, gNa = gNa
m3h, and gl are the

conductivity densities of potassium ions, sodium ions and other ions, respectively; VK
, VNa , and Vl represent the reversal potentials of several ion channels; n, m, and h
are assumed to be certain particle concentrations related to ion transport, and their
corresponding α and β symbolize the movement of the particles into or outside the
membrane. Rate. In the HH model, the generation mechanism between the Na+, K+

plasma channels, and the action potential is clearly modeled, and the potential change
curve recorded by the biological nerve tissue experiment is accurately approximated.

2.2.2 LIF model

As early as 1907, Lapicque proposed the Integrate-and-fire (I&F) model[14]. The pro-
cess of action potential is: ”If the membrane potential is higher than the threshold Vth,
the neuron will excite the pulse, then the membrane potential will fall back to the reset
potential Vreset”. The model describes the change law of the sub-threshold potential,
of which the simplest and most common is the LIF model[15]:

τm
dV

dt
= Vreset − V +RmI (2.5)

8

Figure 2.2: Schematic representation of Hodgkin Huxley neuron model[2]

where τm represents the membrane time constant, Vrest represents the resting po-
tential, and Rm and I represent the impedance and input current of the cell membrane,
respectively.

9

Figure 2.3: ANN neuron model

2.2.3 ANN model

ANN neuron model[16], we also briefly discuss the basic neuron structure in artificial
neural networks for comparison. The ANN neuron model retains the information pro-
cessing function of biological neurons with multiple inputs and single outputs, but its
threshold characteristics and the action potential machine makes a further abstract
simplification, and its modeling is as follows:

yli = φ(
nl−1∑
j=0

wl−1
ij xl−1

j) (2.6)

Among them, the output value yli of the i-th neuron located in the l layer is cal-
culated by the nonlinear activation function φ(·) after the weighted summation of the
output xl−1

j of the nl−1 neurons in the previous layer. Compared with SNN, ANN
Neurons use high-precision continuous activation function values instead of discrete
pulse sequences for communication, abandoning operations in the time domain and
only retaining the spatial domain structure of layer-by-layer calculation. Although the
expression accuracy of SNN is lower, it retains more abundant Neuron dynamics, in
addition to receiving input in the spatial domain, the current state is also naturally
affected by past historical moments. Therefore, SNN may have stronger spatiotemporal
data processing potential. In addition, due to the existence of threshold characteristics,
SNN’s impulse signal is usually sparse, and the calculation is event-driven (executed
only when the pulse arrives). Combining the 0/1 pulse signal expression form can avoid
the high cost of multiplication calculation in ANN, showing the characteristics of ultra-
low power consumption, which also contributes to the birth of many neuromorphic
hardware.

10

Figure 2.4: Spiking neuron model

2.3 Noxim

Several open-source simulator, such as Noxim, Booksim and Atlas exists. The base
structure of Noxim[17] is used and a novel simulator in this project is built upon
Noxim. Noxim is an open-source software simulator used for network simulation. This
simulator can provide cycle-accurate simulation and allows users to collect different
evaluation results, such as the number of packets, traffic in the network, latency and
power consumption.

2.4 Neural communication schemes - Feed Forward Network

The neural communication schemes represents how synapses work as interconnections
among such a large number of neurons. Feed forward neural network[18], as shown
in Figure 2.5, is most common neural networks. In general, the feed-forward network
contains three parts. The first and last layers are called input and output layer, respec-
tively, and rest layers in the middle are hidden layers. All signals are sent from input
to output layer through hidden layers in one direction.

2.5 Address Event Representation

The frequency of events in biological neurons is about 10 kHz - 20 kHz. This frequency
is tolerable compared to modern digital processing systems. However, each neuron
in the system works independently and has the characteristics such as asynchronous
and self-timed. If the events generated by the neuron are processed separately, the
system is prone to event conflicts and cause information loss, and the structure of the
information transmission network between neurons will also become large and complex,
hence difficult to implement it in a circuit. Therefore, it is necessary to design a neuron
encoding circuit to record the time and address of each event. By encoding the event
and multiplexing it on a bus, it is output in order according to the time sequence of
the event, without the need for separate processing of the event. Thus, it can solve
the communication transmission and conflict problems when the neurons in the system
generate events. This module that multiplexes events onto the bus for processing is
called AER encoding circuit[19][20][21]. The operating mechanism of AER in the neural

11

Figure 2.5: Feed forward communication pattern

Figure 2.6: One-dimensional AER encoding

network is: when the impulse neuron in the network has an event output, it only needs
to output the neuron’s address and other attributes in the way of impulsive information
transmission, and then restore the event through the processing unit. Figure 2.6 shows
a schematic diagram of AER encoding. Each row represents the pulse event in the
network. The row address encoding information of the event is output through the
encoder, and then the address and encoding time of the event are restored by the
decoding circuit.

2.6 Neuromorphic Projects

Spiking neuron networks and neuromorphic hardware have been researched by many
research institutions and corporations. In the past 10 years, the SpiNNaker chip of the

12

University of Manchester, the Neurogrid of Stanford University, the IBM TrueNorth,
Intel Loihi are some representatives. Some neuromorphic chip projects are introduced
briefly as following:

• SpiNNaker[22][23] is a digital neuromorphic computing platform. A single chip
contains 18 ARM processor cores and 128 MB of off-chip DRAM memory, and
each ARM core can simulate nearly 1,000 Neurons, DRAM memory is used to
store synaptic parameters. SpiNNaker can support a variety of neuron dynamics
models, including LIF, Izhikevich and Hodgkin-Huxley models, and even support
synaptic learning functions. Based on the chip architecture, the SpiNNaker team
has further developed a PCB board containing 48 chips. It is estimated that about
1,200 pieces of this circuit board will be needed to achieve one percent of the scale
of the human brain. The neurons are interconnected using a hexagonal topology
to form a huge neuromorphic network.

Figure 2.7: SpiNNaker

• Neurogrid[3] uses the sub-threshold simulation electrical characteristics of sili-
con transistors to simulate the dynamic behavior of neuron ion channels in real
time, including axon circuits, cell body circuits, refractory periods and calcium
potassium ion circuits, synaptic circuits, etc. This method to simulate circuits
can support complex neuron models such as Hodgkin-Huxley model. By using
the dynamic system method, various neuron models can be mapped to analog
circuits. Figure 2.8 shows the Neurogrid system, each computing core contains
256× 256 neurons, the 16 computing cores of each circuit board are connected by
a tree-topology routing network, which can simulate a million-level neuron net-
work, and the power consumption is only 3.1W. The entire system consists of a
motherboard and a daughter board Composition, the motherboard uses analog
circuits to achieve neuron dynamics, while the daughter board uses digital circuits
to achieve routing communication between neurons.

13

Figure 2.8: Neurogrid[3]

• DYNAPs[24] also use transistors to simulate electrical characteristics to achieve
neuronal dynamics. It uses a heterogeneous routing topology with higher storage
efficiency. 2D grid routing topology is used between chips, and The computing
cores in the chip adopt a tree structure routing topology (each parent node has 4
child nodes), and the computing core uses multicast and tag matching for rout-
ing packet transmission, and the matching process is content-addressed memory
(CAM) is completed. This routing structure can combine the advantages of the
low latency of the tree topology and the low bandwidth requirements of the grid
topology. The actual manufacturing system configuration is that a single board
contains 9 chips, and a single chip contains 4 computing cores, a single core con-
tains 256 neurons, and a single neuron has 64 fan-in and about 4,000 fan-out
capabilities.

• TrueNorth[12] single chip contains 4,096 computing cores (shown in Figure 2.9).
The computing cores are connected by 2D grid routing, which can be expanded
by multiple slices. Each computing core includes 256 neurons and a 256×256 size
synaptic array. It supports the basic LIF neuron model and its many variants.
Each neuron shares 4 strengths of synaptic weights. Due to the use of an event-
driven asynchronous synchronous circuit hybrid design, the calculation is only
started when there is a pulse event input. The power consumption is only tens or
hundreds of milliwatts when simulating a spiking neural network with a scale of
one million neurons.

• BrainScaleS[25] uses sub-threshold analog electrical characteristics for neuron
dynamics simulation. It is produced in 180nm CMOS technology. A single wafer
contains 352 chips, a total of 352 × 512 neurons. The digital board is equipped
with FPGA for routing communication.

• Rolls[26] neuromorphic processor is a mix-signal neuromorphic learning circuit.
It was fabricated with a 180nm CMOS process. It uses sub-threshold analog cir-

14

Figure 2.9: TrueNorth[4]

cuits to realize neuron and synaptic dynamics, without pursuing network scale
(single chip only has 256 neurons, 256×256 short-term plasticity synapses and
256×256 long-term plasticity synapses). The area is only 51.4mm2 and it acco-
madates approximately 12.2 million transistors.

15

16

Part II

Methodology

17

Network and Interconnection
implementation 3
Due to the improvement of integrated circuit manufacturing technology, the design
density of chips has gradually increased, but the performance of the bus-based global on-
chip data communication method is improved slowly. As the number of cores integrated
into a single chip gradually increases, network-on-chip (NoC), routing-based on-chip
communication method is proposed.

The on-chip network has the following advantages:

1. Multiple nodes in the network can be interconnected using different physical links.
As the number of on-chip cores and links increases, the network bandwidth of the
NoC using multi-node interconnection is much greater than that based on the
shared bus.

2. NoC can use the same router circuit to expand to different topologies, such as
mesh network, butterfly network, etc.

3. As the number of cores in the chip increases, the power consumption caused by
data communication also gradually increases. The power consumption in NoC is
related to the distance among cores. The shorter the distance is, the lower the
power consumption is.

4. In NoC, only adjacent cores are interconnected, which greatly reduces the length
of the interconnect links and reduces the difficulty of back-end design and signal
integrity design.

5. Multi-core systems based on NoC can use globally asynchronous locally syn-
chronous design to reduce clock power consumption.

For general network on chip, there are three main blocks [27]. First, links are the
most important because it physically connects the nodes and acts as the key role to
achieve the communication among cores. The second unit is called router. Basically,
the router can receive packets (spikes) from the link and transmit the data to the core
linked to it or adjacent output link based on the address carried by the packet. The last
block is the network interface, which makes the logic connection between the network
and cores.

The basic unit of the NoC in this project is named as Tile. Tiles can be viewed
as the nodes in the network. Each of them connects their neighbors and is required
to achieve computing and receiving/transmitting functions. A tile mainly includes
Processing element(PE) and Router which is shown in Figure 3.1.

19

Figure 3.1: The Tile for mesh topology

3.1 Processing Element

3.1.1 Architecture

The Processing Element is the computing unit of the system. Neurons are laid out in
neurosynaptic arrays inside. In other words, a Processing Element can be viewed as a
collection of neurons as well as AER encoders and decoders.

Figure 3.2: Encoder and Decoder Elements

Aside from the neurosynpatic cores themselves, there can be other blocks that pro-
duce or consume spikes. In particular, spike encoders take raw data and produce spikes
that need to be sent to particular neuron inputs. Encoders basically implement the
input layer of the SNN and only produce spikes. Decoders are the opposite in that
they receive spikes and perform some analysis on them but do not directly produce
new spikes. Finally, there may be off-chip interfaces that produce/consume spikes.

20

These components, shown in Figure 3.2 can be thought of as implementing the neurons
contained at the input layer (encoders) or output layer (decoders) of an SNN.

3.1.2 Broadcast

When mapping spiking neural networks to hardware, a significant number of neurons
can be assigned to a single PE. This number can reach 256 or more. Considering that
the data channels of PE in all directions are limited, in some cases, certain input ports
will have to receive peak traffic, which will cause severe congestion. However, in most
cases, the spikes sent to different neurons are exactly the same, because these spikes
usually come from the same neuron in the previous layer, which is called fan-in neuron
or upstream neuron. The fan-in neuron can only generate and send a spike to the core,
and broadcast to its connected downstream neurons, which are called fan-out neurons.
A simplified neurosynaptic array that can support broadcasting is shown in Figure 3.3.
The spike signal is sent from the input port to the internal PE. Each block in the figure
can be seen as a weighted synapse for each input that contributes to a certain neuron.
The horizontal line connects the external fan-in neuron and all fan-out neurons in this
PE. This is the realization of broadcasting.

Figure 3.3: Simplified Neurosynaptic Array

21

3.2 Router

Router is the unit that receive and transmit spikes in the NoC. A router for NoC is
required to compose of a number of input ports, a number of output ports that are
connected to adjacent shared links, a crossbar switch that connects all the input ports
and output ports and determine how spikes flow, and local input and output port to
communicate the local PE to the network.

Figure 3.4: Communication schemes between Router-Router or PE-Router

The microarchitecture of a router determines the delay of the critical path which
determines delay of each hop and impact the maximum system frequency. It affects
the usage rate of links and buffers in the whole network. It also influences the power
consumption of the system, including both dynamic energy and leakage energy. In
addition, the microarchitecture and underlying circuits have an impact on the area of
the network.

When a router receives a spike, it will forward the packet according to the address.
A typical data packet will carry its source address and destination address. In this
project, the packet destination address is generated based on the destination neuron
address. This neuron address is related to the PE address depending on the applying
mapping method (described in Chapter 4 in detail). The router will transmit the packet
to the destination in reference to the address and routing schemes of topology.

3.2.1 Handshaking protocol

The communications between router and router/PE use traditional handshaking proto-
col with request/acknowledge signals. The upstream router/PE keeps sending a spike
along with a ”request” signal from the beginning of the simulation, which will con-
tinue until the downstream router/PE returns the ”acknowledge” signal. Each spike
transmission of one hop takes two cycles in the system.

22

Figure 3.5: A typical mesh router

Figure 3.6: Multiplexer-based M ×N crossbar[5]

3.2.2 Crossbar

The crossbar is the core unit of a router. The crossbar is usually a M × N switch
(M input and N output), which is corresponding to the input and output ports of the
router. Crossbar can be used to design systems with very high bandwidths. It is usually
composed of many multiplexers. Multiplexers are set at all output ports to select data
sent from all the input ports. Figure 3.6 shows a typical structure of crossbar.

23

24

Evaluation framework
architecture 4
In this chapter, the evaluation framework for neuromorphic network hardware is de-
scribed with emphasis on the design idea, the topology implementation, mapping
method, and multiple channels.

4.1 Network Topologies

Network topologies can be viewed as the arrangement of links and nodes of networks.
The network topology affects the physical layout of chips and also connections among
nodes. Topology and its size can determine the number of hops that a spike is sent
through and the wire lengths between hops as well. Both these two factors will affect
transmitting latency significantly. Several common network topologies, such as ring,
mesh, and torus[28] exists. The network topology For different SNN applications with
different traffic patterns, the most efficient network topology can be different. In this
evaluation framework, three mainstream topologies (ring, multipath ring and mesh)
are implemented.

Figure 4.1: A 12-node ring topology

25

4.1.1 Bidirectional Ring

4.1.1.1 Characteristics

The ring is relatively simple topology where its nodes have only 3 connections. 2 of
these ports are connected to the network, while the other one is connected to the neuron
array. However, the ring topology leads to a large diameter for large number of nodes
in the network, and consequently the hop distance for spikes may be quite large.

4.1.1.2 Routing schemes

The ring topology has only 2 ports for each router to connect the network. The choices
for routing spikes is limited compared with MPR and mesh. For this reason, the routing
scheme is based on the router index as following:

1. Calculate the distance between the routers of the destination PE and source PE

2. If the distance is larger than half of the ring size, send the spike clockwise.

3. If the distance is equal to or smaller than half of the ring size, send the spike
counterclockwise.

4.1.2 Multipath Ring(MPR)

4.1.2.1 Characteristics

Figure 4.2 shows a specific Multi-path Ring, which is similar to the ring. It forms a ring
and all node degrees are 5 (four connect to the network and one port links to local PE).
MPR has a high clustering coefficient[29]. However, MPR has the same weak point
with ring topology: large hop distances when applied to large networks. The diameter
of MPR network is:

D =

{
N
2

,if N = 2k
N+1
2

,if N = 2k + 1
(k = 1, 2, 3...). (4.1)

where N is the number of nodes.

4.1.2.2 Routing schemes

The routing algorithm for MPR topology is presented in Algorithm 1. Since 5 con-
nections for each router can be divided into 3 parts: local, close and far connections,
we named 5 directions as Local, Far cw, Close cw. Far ccw, Close ccw. cw and ccw
represent clockwise and counterclockwise, which are the directions of data flow in the
ring.

26

Figure 4.2: A 12-node multipath ring topology

Algorithm 1: Routing algorithm for Multipath ring network

Data: Ring size (Nring), Index of current node (Icurrent) and destination node (Idest)
Result: Select output directions
Initialization;
foreach spike in network do

Ioffset = |Idest − Icurrent| ;
if Ioffset < bNring/2c then

if Ioffset = 1 then
Direction = Close cw;

else
Direction = Far cw;

else if Ioffset > bNring/2c then
if Ioffset = 1 then

Direction = Close ccw;
else

Direction = Far ccw;

else if Ioffset = 0 then
Direction = Local;

end

4.1.3 Mesh

4.1.3.1 Characteristics

The two-dimensional mesh topology, which is frequently used in NoC architectures, is
built by making all tiles into a rectangular lattice. Each tile connects adjacent tiles in

27

four directions (north, south, west, and east). Figure 4.3 shows a regular mesh topology
with 4× 4 nodes. Each router in a mesh topology also has 5 ports, which is the same
with MPR.

Figure 4.3: A 4× 4 mesh topology

The mesh network is flexible compared to ring-shape group topologies because it
has two-dimensional routing links. In the entire network, the nodes are fully connected,
which has the advantages of security and reliability. After a node fails, it will only affect
the two nearby nodes. However, since spikes need to be transmitted via other tiles in
the network, a large number of overlaps between communication links will happen.
This could lead to partial congestion. Thus, resulting in large waiting queues and high
latency.

4.1.3.2 Routing schemes

The routing algorithm adopts the XY routing algorithm. It is a fixed target routing
algorithm with a simple implementation method and no deadlock. It is suitable for
data routing of low-load multi-core chips such as impulse neural network chips. The
XY routing algorithm is as follows in Algorithm 2.

4.1.3.3 Conclusion

Table 4.1 shows some typical metrics of different kinds of topologies, where N is the
number of nodes in the network, k is the number of buffers in a direction of a single

28

Algorithm 2: XY Routing for 2D mesh network

Data: Coordinates of current tile (Xcurrent,Ycurrent) and destination tile
(Xdestination,Ydestination)

Result: Select output directions
Initialization;
foreach spike in network do

Xoffset = Xdestination −Xcurrent ;
Yoffset = Ydestination − Ycurrent ;
if Xoffset < 0 then

Direction = West ;
end
if Xoffset > 0 then

Direction = East ;
end
if Xoffset = 0 and Yoffset < 0 then

Direction = North ;
end
if Xoffset = 0 and Yoffset > 0 then

Direction = South ;
end
if Xoffset = 0 and Yoffset = 0 then

Direction = Local ;
end

end

router. These metrics will be important for the energy and area estimation in Chapter
5.

Table 4.1: Comparison of different topologies
Topology Degree of tile Links Routers Buffers

Ring 3 2N N k · 3N
Multipath Ring 5 3N N k · 5N

Mesh 5 3N − 2
√
N N k · 5N

4.2 Neuron-to-PE Mapping Problems

Neuron mapping is the procedure that divides neurons into several clusters and map-
ping these clusters to the mapping algorithm is very important as it determines many
properties of the traffic. The key requirement of mapping is to reduce spikes that are
sent to the network as much as possible, and hence less congestion and lower power
consumption. There are two main considerations to achieve this goal. The first strategy
is to group connected neurons to the same PE as much as possible, which makes the
communication local, and thus these spikes will not be sent to the network. Another
strategy is trying to assign neurons in the same layer to the same PE. Since a spike is

29

broadcast the all the fan-out neurons of the next layer in the same cluster, this method
can reduce a large number of duplicate spikes in the global interconnect.

4.2.1 Sequential Mapping

Sequential mapping, as the name suggests, maps neurons sequentially in average based
on the neuron index. The steps to implement sequential mapping are described as
following:

1. Decide the number of neurons in each PE.

2. Arrange neurons in order based on their index and group them, the number of
each group is the result in step 1.

3. Place groups of neurons sequentially in PE based on the index of PEs.

Sequential mapping method does not consider which layer the neurons belong to
and the neighbor relationships among neurons. Since delivering traffic pattern contains
the information of the number of neurons, the result can be expressed as an array that
makes neuron ID and Tile ID corresponds. We assume there is a feed forward network
with 8 input, 5 hidden and 3 output neurons and the applied network has 4 tiles, the
result is shown in Table 4.2 and is visually represented in 4.4. Since the neuron index
are usually ordered from the input layer to the output layer, neurons in the same PE
belongs to the same layer in most cases. Thus, sequential mapping can significantly
reduce latency by broadcasting.

Table 4.2: Mapping result of neurons in sequential mapping
Neuron ID Tile ID

0,1,2,3 0

4,5,6,7 1

8,9,10,11 2

12,13,14,15 3

4.2.2 Random Mapping

Random mapping is that all the neuron cells are randomly distributed among the PEs
in the network for all analyzed topologies. This distribution is easily achieved and it
can ensure that the traffic distributions on every link are as even as possible. In this
case, if the network can support input traffic, there will be no congestion. However,
since the distribution of neurons is totally random, it means that neurons belonging
to the same layer will be assigned to different PEs separately and it could be quite
far away. Thus, random mapping in most cases can not get significant benefits from
broadcast (illustrated in Chapter 3).

30

Figure 4.4: An example of sequential mapping for neural network of size 8-5-3

4.2.3 Greedy Mapping

Greedy mapping algorithm was tested as an optional method for mapping in the frame-
work. It is a mapping algorithm to reduce the traffic injected into the network, which
could be applied in the ring, MPR, and mesh topology. The idea of this method to
achieve this goal is to place connected neurons to the same PE as much as possible.
This way can convert more connections to local synapses inside the PE and minimize
the tile-to-tile traffic. The steps to place neurons are described as following:

1. Decide the number of neurons in each PE.

2. Select an unplaced neuron with most fan-out neurons and place it to the PE with
largest vacancy.

3. Select the neighbor neuron of the neuron in step 2 and place it to the same PE.
Repeat this step until there is no neighbors or no vacancy in the PE.

31

Figure 4.5: An example of greedy mapping for neural network of size 8-5-3

4. If there is no unplaced neuron, the placement is completed. Otherwise, return to
step 2.

4.2.4 Center Mapping

Central mapping is proposed as optimization of sequential mapping. It only applies
to mesh networks. In large fan-in neural networks, the neurons in the hidden layers
and the output layer will be placed on the PE in the lower right corner. This means
that some input spikes from the upper left corner will take more delay and greater
jump distance to reach the destination, and consume a lot of unnecessary energy. And
since all traffic is from top to bottom, from left to right, there will be some hot spots
and congestion, and many channels will be underused. Therefore, the center mapping
targets to reduce these shortcomings. By mapping the hidden layer and output layer to
the center of the mesh, the input layer will be placed around it, which will significantly

32

Figure 4.6: Center mapping

reduce the distance from the source to the destination. This does not mean that the
hidden layers and the output layer are only placed in one PE. It determines and selects
the core PE based on the ratio of neurons in each layer to the total neurons.

1. Calculate the number of neurons in each PE to make neuron distribution in av-
erage based on the number of PEs and the total number of neurons .

2. Calculate the number of PEs to be used to place neurons in hidden and output
layers.

3. Select most central PEs as the number in step 2 in mesh topology and place
neurons in hidden and output layers in these PEs.

4. Assign the rest neurons (neurons in the first layer) around PEs in step 3.

4.3 Multiple channels

Single channel in NoC has small resource consumption. However, it usually works when
the number of neurons in one PE is small. But in some cases, when the neuron array
is quite large and the injection rate is relatively high or the NoC is running in some
specific routing schemes which cause some hot spots in the network, single channel will
cause significant congestion. In those cases, multi-channel design is feasible.

The multiple channels design is shown in Figure 4.7. Each channel will correspond to
a Fifo (spike queue). As it is mentioned in Chapter 3, when a neuron generates a spike,

33

Table 4.3: Comparison of different mapping methods
Mapping methods Advantages Disadvantages

Sequential mapping
Easily achieve and good

mapping for broadcasting
Large distances and

congestions

Random mapping
• Distribute traffic evenly and

cause less congestion
• Promote utilization of network

Inject large number of
spikes into networks

Greedy mapping
Result in more internal connections

and less spikes into network
Not suitable for large

input pattern

Center mapping
• Relatively short distance
• As an improvement method of

sequential mapping

• Hotspots generation
• Only works for mesh

the spike which has been encoded is sent to the queue and stored in the queue until
the request signal is sent from the connected router. If there are multiple channels in
the network, a spike will choose which queue it will be sent with a round-robin arbiter.
Each spike is not restricted to certain responding channels, which means all spikes
can be sent to every channel and the channel choice only depends on the arbitration
strategies.

Figure 4.7: An example of multiple channels in PE output ports

34

Part III

Results

35

Network simulation and
evaluation 5
In this Chapter, some experiments are performed to verify whether the simulator is
working as expected and evaluate the effect of some metrics of the network on perfor-
mance. We succeed in performing simulations with two kinds of feed-forward networks
with different input stimulus, the uniform injection rate and spike raster.

Furthermore, this chapter provides a method to roughly estimate power consump-
tion and area. Since energy and area plays a important role in network on chip design,
this method can be used in early design to find out the trade-off among performance,
energy and area.

5.1 Latency calculation

The latency of each single spike is calculated by two time stamps. It is from the time
when the spike is generated by the source neuron to the time when the spike is received
by the destination neuron. The latency includes the time when the spike is waiting in
the queue before sent to the network. The maximum latency is calculated by traversing
all the latency of spikes sent in the network during the simulation time and finding out

the maximum result. The average latency is
∑

ti
Nspike

, while ti is the latency of single spike

and Nspike is the number of neurons. All the timing values are recorded in cycles.

5.2 Input stimulus

5.2.1 Uniform injection rate

The first traffic pattern for NoC simulation is uniform random process. A uniform
random process computes the probability of firing a spike at some interval. We use
injection rate to represent the probability which varies in 0 to 1. Injection rate is the
probability of generating a spike in each cycle. For example, if p(spike) = 0.5, which
means every neuron will generate a spike in each two cycles in average in a long period
of simluating time. To receive the designated spiking rate, clock frequency is needed to
take into account. In general, the spiking rate as an input of simulator will be required
as a certain value. For example, if the clock speed is 10MHz and the required spike rate
of 50Hz, we want one spike every 10M/50 = 200k cycles. Therefore, the probability of
spiking in any particular cycle is 50/10M = 0.0005%.

5.2.2 spike raster

For the neuron arrays, the most important information of spikes or action potentials is
timing. Therefore, a more realistic spike traffic pattern can be obtained by using spike

37

rasters generated by the MATLAB simulator. In Figure 5.1, a synchronized raster plot
is shown. In the plot, each node represents a generated spike. All the spikes are sent
synchronously, which means spikes generated in a period of time are buffered until a
synchronization event and sent out together as a event.

Figure 5.1: Raster plot[6]

A spike raster is a 2-D binary matrix(shown in Figure 5.2). The first (Y) axis
represents the neuron index and the second (X) axis represents a time step. At each
time step, the column of values shows which neuron generated a spike. For example,
in Figure , in time step 0, neurons 3, 4 and 5 generated spikes. A time step depends
on the step size, for example a step of 1 microsecond results in spikes being generated
at 0us, 1us, 2us.. 15us.

5.3 Performance simulation

5.3.1 Assumptions

To simplify the problem, a set of assumptions are made:

• All neurons, including those in middle layers, generate spikes based on the input
stimulus. The behavior of neurons in hidden layers has already taken into account.

• All data packets (spikes) are of same size and each packet has only one flit.

• The simulation with random mapping in the same topology and the same size of

38

Figure 5.2: An example of spike raster

network uses the same random seed and can implement the same neuron distri-
bution.

• The size of queue in PEs is infinite as buffers to store generated spikes in PEs.

5.3.2 Simulation with uniform injection rate

5.3.2.1 Experiment Setting

In this experiment, unless otherwise specified, the setting of the network is presents
in Table 5.1. While the buffer size represents the number of buffers in one direction
of a router and simulating time represents the time that the simulator was running.
The generating time is the time that neurons are generating spikes from the simulation
startup, When the time is not within the generation time, the injection rate is 0, neurons
no longer produce spikes.

Table 5.1: Configuration of network with simulation of uniform injection rate
The number of layers of neural network 3

The number of neurons in one layer 20

The number of total neurons 60

The number of PEs 20

Buffer size 4

Mesh size (row × column) 4 × 5

Simulating time (cycles) 100k

Generating time (cycles) 20k

39

5.3.2.2 Simulation results

In the uniform random process, every simulated neurons generate spikes and send to
the network. The destination of spikes are randomly generated and this traffic pattern
is tested for the average performance and traffic capacity of network.

Figure 5.3 plots the latency curve versus spike injection rate with different topolo-
gies. The plot shows that mesh topology has the best performance and ring topology is
the worst. The curves of different topologies in the plot have the similar trends. when
the injection rate is small, the latency is kept low and does not have significant increase
as the injection rate increases. When the injection rate increases to a turning point, the
average latency increases rapidly. The turning point, which we could called saturation
point, represents the critical injection rate, the peak traffic that the NoC can support.
When the injection rate is larger than this value, the number of spikes generated by
neurons are more than that the network can transmit in time. Thus, spikes will wait
and accumulate in queues and buffers, which increase the latency significantly.

Figure 5.3: Average latency vs. Injection rate in different topologies

Figure 5.4 and Figure 5.5 plots average latency when using different mapping meth-
ods in Mesh and MPR topology. We can conclude that random mapping results in the
lowest average latency and greedy mapping gets the worst for both mesh and MPR.
The reason is that the number of neurons in this traffic pattern is limited and there
are only a small number of neurons in each PE. In the given case there are 3 neurons
per PE, which means broadcast has little effect on latency and the advantage of the
uniform traffic of random mapping is revealed.

5.3.3 Simulation with spike raster

5.3.3.1 Experiment setting

In the simulation, a four-layer feed-forward network which is presented in Figure 5.6
is implemented to evaluate our framework. This spike neural network has 1088 input

40

Figure 5.4: Latency comparison of different mapping methods in Mesh topology

Figure 5.5: Latency comparison of different mapping methods in MPR topology

neurons, 4 output neurons and 20 and 10 neurons in hidden layers respectively. This
network is full connected. The configurable parameters and settings include the topolo-
gies, the size of network, the buffer size, the number of channels and mapping methods.
Unless otherwise specified, the experiment setting of the simulator is presents in Table
5.2.

5.3.4 Performance simulation

5.3.4.1 Topology

In Table 5.3 to 5.5 the results of Mesh, MPR and Ring topology are shown. They
include queue size, maximum and average latency of different mapping methods and the

41

Table 5.2: Configuration of network with simulation of spike raster
The number of PEs 36

The number of total neurons 1122

Buffer size 4

Mesh size 6× 6

Simulating time (cycles) 100k

Clock frequency 50MHz

Time step 600 cycles

Figure 5.6: a four-layer full-connected feed-forward network (1088-20-10-4)

number of channels. When using spike raster as stimulus, maximum latency determines
the highest system frequency, therefore what we concerns most is maximum latency
instead of average latency. The influences of single metric is presented in the following
sections. To make explanation easier, we mainly use Mesh and MPR.

5.3.4.2 Broadcast

The first issue that should be addressed is how broadcast influence the latency. The
traffic throughput and latency evaluation was performed, with and without broadcast
in two kinds of mapping methods, sequential mapping and random mapping in mesh

42

Table 5.3: Performance of Mesh topology
Number of channels 1 4 8 16 32

Center
maximum latency 2179 547 275 139 71

queue size 32 8 4 2 1
average latency 188.287 52.9643 30.4378 19.2261 13.6293

Sequential
maximum latency 2173 547 275 139 71

queue size 31 8 4 2 1
average latency 258.45 68.3615 36.8595 21.1122 13.2424

Random
maximum latency 3923 979 484 230 113

queue size 504 126 63 32 16
average latency 260.192 65.6971 36.4354 22.752 16.465

Greedy
maximum latency 2157 543 273 139 73

queue size 117 30 15 8 4
average latency 84.1347 30.8194 22.4613 18.3971 16.4299

Table 5.4: Performance of MPR topology
Number of channels 1 4 8 16 32

Sequential
maximum latency 2177 433 273 137 71

queue size 56 14 7 4 2
average latency 162.93 29.8837 21.1564 12.0998 7.70895

Random
maximum latency 3250 2951 429 212 108

queue size 728 741 91 46 23
average latency 235.142 63.0408 31.134 19.1763 13.4049

Greedy
maximum latency 2177 497 273 137 69

queue size 491 134 60 30 15
average latency 151.96 34.8013 21.0227 12.6759 8.87381

Table 5.5: Performance of Ring topology
Number of channels 1 4 8 16 32

sequential
maximum latency 2131 535 269 137 71

queue size 56 14 7 4 2
average latency 320.487 102.596 66.2823 48.1683 39.1112

random
maximum latency 12174 3116 1587 790 389

queue size 728 182 91 46 23
average latency 1056.44 266.826 137.916 76.3558 47.4038

greedy
maximum latency 2173 547 305 139 73

queue size 56 14 7 4 2
average latency 309.071 118.623 96.556 71.026 63.3873

topology. Table 5.6 presents the comparison of latency performance of network and
indicate how broadcast can promote the performance. The total number of spikes that
all the neurons generate is 134,088. In the network with sequential mapping, neurons
in the same layer are often mapped to the same or neighbor PE. With broadcast, there

43

is sharp decrease in the number of spikes injected to the network and correspondingly,
maximum latency in the simulation with broadcast is significantly lower than that
in the simulation without broadcast. In contrast, the performance of network with
random mapping with broadcast does not improve much as expected because neurons
are randomly placed. We can conclude that broadcast is the method to reduce the
latency by reducing throughput of network and it can play a bigger role in some adjacent
mapping methods like sequential mapping.

Table 5.6: Maximum latency and number of spikes with broadcast/non-broadcast in mesh
network

Broadcast Non-broadcast

Sequential Mapping
Max latency (cycles) 547 11125

Number of spikes 9208 134088

Random Mapping
Max latency (cycles) 1178 1387

Number of spikes 110828 134088

5.3.4.3 Number of channels

The effect of changing the number of channels on performance are shown in Figure 5.7.
The number of channels varies from 1 to 32. Due to the relatively large numbers of
spikes injected to the network based on the spike raster and limited traffic capacity, a
single channel results in high latency. The result can be more than 2000 cycles, which
is higher than cycles of a time step. Large maximum latency means spikes cannot
reach the destination in one step. That leads to errors in the system. When the
number of channels increases, the maximum latency decreases. We can conclude that
the maximum latency is inversely proportional to the number of channels.

5.3.4.4 Mapping methods

Figure 5.8 shows the maximum latency performance of three different mapping meth-
ods in the multipath ring topology. Random mapping results in the highest maximum
latency. As explained in the Table 5.6, random mappings get less benefit from broad-
casting. Multiple copies of the same spikes from the same neurons are transmitted
to the network system and have to wait in the FIFOs of PEs and routers until there
are free channels. Sequential mapping and greedy mapping gave approximately close
results in the simulation and mapping methods matters more in small numbers of chan-
nels. When a large number of channels are used in the network, the maximum delay
results of different mapping methods are very close and even the same. The reason is
that a large number of channels provide enough traffic capacity to the network, and the
injected spikes do not reach the upper limit of the traffic that the network can support.

Figure 5.9 presents the maximum latency performance of different mapping methods
in mesh topology. Since the random mapping result in a quite large latency, it is not
shown in the figure. For the rest three mapping methods, the sequential mapping has

44

Figure 5.7: Maximum latency vs. numbers of channels with sequential mapping

Figure 5.8: Latency comparison of different mapping methods and different numbers of chan-
nels in Multipath ring

the worst performance and the greedy mapping has the best. The result is similar to
MPR.

We visualize the spiking traffic of 6× 6 mesh topology in all four different mapping
methods in Figure 5.10. Each subfigure is composed of 36 squares, which represents
36 tiles in the network. Each square consists of 5 small colored blocks. Four around

45

Figure 5.9: Comparison of different mapping methods with different numbers of channels in
Mesh topology

represents four directions of the router, and the center block represents the the channel
to the local PE. The brighter the color block is, The larger traffic in the corresponding
direction of the router is.

Since spikes are unidirectionally transmitted in the feed forward network and the
number of neurons in output layer are quite small compared to total number of neu-
rons, the neurons in output layer are all placed in the lower right corner in sequential
mapping. Thus, all the traffic transmission is from top left to bottom right and the tile
in the lower right corner receives the highest traffic. Similarly, the network using center
mapping has the highest traffic in the center. Network using random mapping has the
highest and most average throughput. All the visualized traffic meets the design idea
and the simulation results.

5.3.4.5 Time step and clock frequency

In common spike rasters for SNN application, the timescale of time step of input is
1µs, and different SNN-based NoC systems could work in different clock frequency.
Therefore, The cycles in a time step are different. To make the repeated simulation
easier, we change the clock cycles in single time step to simulate different clock period
instead of changing system frequency directly. To make the effect of clock frequency
more intuitive, we use ring topology which has smaller traffic capacity and a spike
raster with a very large injection rate as the stimulus. In this section, the comparison
between networks with a time step of 25 cycles and 600 cycles shows in Figure 5.13
and the corresponding clock frequency is in Table 5.7. Obviously, A network with a
time step of 25 cycles performs worse, especially in small number of channels. The
reason is that the simulation with a time step of 25 cycles does not guarantee that

46

(a) sequential mapping (b) center mapping

(c) random mapping (d) greedy mapping

Figure 5.10: The visualized spiking traffic for four mapping methods in mesh

the spike will reach its destination in 25 cycles. This will cause congestion and this
congested spikes will be accumulated in FIFOs and queues during the simulation time
and become serious as the simulation runs. Thus, this congestion will be reflected in
the performance.

Table 5.7: Correspondence of time step and clock frequency
Time step (cycles) Clock frequency (µs)

25 0.5

600 12

5.3.4.6 Network size

The larger mesh size results in large hop distances, which means more average hops
cost for spikes in the network. On the other hand, a large mesh size provides more
traffic capacities and leads to less congestion in the router buffer. Figure 5.11 shows

47

Figure 5.11: The number of spikes and maximum latency in different mesh size

the comparison of the effect of mesh size in the network. In most cases, the maximum
latency and the number of spikes are positively correlated and the spike numbers of
test cases are all around 4000, except for 10×10 mesh. The number of spikes in 10×10
mesh reaches a very high result and the maximum latency is even smaller. The reason
is that larger network size results in fewer neurons in each tile, which means that the
extremely large network size could be possible to cause widely distributed neurons of
the same layer and the benefit of broadcast would be small. A similar result of MPR
topology is shown in Figure 5.12.

5.3.5 Conclusion

On the basis of the above experiments, we can conclude that multipath ring topology
with sequential mapping with 25 tiles and 4 channels could be a feasible option for
delivering spiking traffic pattern in the experiment. This configuration combination
has the lowest maximum latency and relatively low traffic in the network.

5.4 Power and Area estimation

5.4.1 Power

In the digital circuits, the energy includes two components: the dynamic energy, which
signals switch from one level to another, and the static energy which is mainly the
leakage energy of buffers. The dynamic energy can be expressed as:

Edynamic = 0.5αCV 2
DD (5.1)

48

Figure 5.12: The number of spikes and maximum latency with different tile number in MPR
topology

Figure 5.13: Maximum latency vs. number of channels in a time step of different cycles

where α is a value is related to the clock frequency fclk, C is the total switching
capacitance and VDD is the supply voltage.

There are various methods that have been proposed to evaluate power consumption
and the area of a network. [30][31] proposed a power-area interconnection network
simulator named Orion 1.0/2.0. For power consumption estimation, Orion makes a set

49

of architectural power models for interconnection routers. The power models include
clock, allocators and arbiters, FIFO buffers, and physical links. These power models
are implemented in low-level architectural descriptions. The area models are divided
into router area and link area. The area estimation in Orion 2.0 is computing the area
of each building block separately and summing them up.

Since almost all the methods in the literature use low-level description models to
evaluate power consumption and area, which is not feasible for our framework, a rough
estimation is needed. [32] proposed a method by estimating the average energy of a
flit based on the hops that it passes through. The power consumption for every single
spike can be expressed as follows:

Espike(d) = d · Elink + (d+ 1)Erouter (5.2)

where Elink and Erouter is the energy that a spike traverses a link and a router, and
d represents the number of links it passes through. The total energy is to sum the
energy of all spikes in the network up.

We use the similar normalized method in [33]. For the MPR network, we would
consider that the far links will be longer than close links when implementing on the
hardware, the Elink is given by 5.3:

Elink =

{
1 ,if close link

2 ,if far link
(5.3)

For the mesh network, in physical implementation, the vertical links are longer than
the horizontal links. Thus, the Elink is given as following:

Elink =

{
1 ,if horizontal link

4 ,if vertical link
(5.4)

Figure 5.14 shows the comparison of power consumption of mesh and MPR NoC
with different mapping methods.

Figure 5.15 presents how energy changes when applying different mesh sizes and
Figure 5.16 shows the average distance of spikes in NoCs of the different mesh sizes.
The average distance is to calculate the average number of hops that all spikes in the
network traverse. Compared Figure 5.15, 5.16 and 5.11, the energy is highly propor-
tional relationship to average hop distance and the number of spikes sending to the
network.

5.4.2 Area

The rough area estimation is expressed as following:

A = Nrouter ×NbufferSize × Abuffer +
∑

Alink (5.5)

where Nrouter is the number of routers in the network, NbufferSize is the number of
buffers in a single router. In the simulation of this project, all the NbufferSize is always
16. The area of a single buffer is set to 30.

50

Figure 5.14: Normalized energy in mapping methods in MPR and mesh

Figure 5.15: Normalized energy in different mesh size

We set a parameter for links in different topology, for the MPR network:

Alink =

{
1 ,if close link√

2 ,if far link
(5.6)

51

Figure 5.16: Average distance of spikes in different mesh size

For mesh network:

Alink =

{
1 ,if horizontal link

2 ,if vertical link
(5.7)

Figure 5.17: Area estimation of network with different mesh size

In this case, we can derive the normalized area comparison in Figure 5.17. The area

52

is proportional to the size of the network. Using different topologies while using the
same number of cores will not make much of a difference in area. This is because we
set the tile area as a relatively large number and the link area doesn’t occupy much
normalized area in the system. However, the accurate parameter depends on the area
parameters of the real device and should be set based on the selected process and device
size. It is worth emphasizing that this section just provides a possible method for area
estimation and cannot be used for accurate calculation.

53

54

Conclusion and future work 6
6.1 Conclusion

In this thesis, we have implemented a cycle-accurate network simulation framework
for SNN-application that can receive spike input traffic patterns. The framework is
configurable with three topologies, four different mapping methods, different network
size,s and the number of channels. In addition, this thesis also provides a rough method
to estimate the energy and area cost of the network on chip, which could present a
trade-off among performance, power, and area.

To find an efficient solution, the framework is tested by using a spike raster as the
input stimulus to test its functions and the influence of every single metric on perfor-
mance and compare broadcast and non-broadcast. The result shows that multipath ring
topology with sequential mapping with 25 tiles and 4 channels has good performance
for this specific case.

6.2 Future work

Since this thesis is still at the exploratory stage, there could be a lot of scope for future
work to investigate deeply.

• More topologies can be achieved such as tree, small world and torus topology.
Topology has significant effect on the global latency performance. Other topolo-
gies can also be tested and can receive better performance.

• For the evaluation framework, building a router that can support multicast could
improve the performance of network. In most cases, fan-outs of a single neuron
cannot be assigned to one PE. Thus, a number of copies of a spike will be sent
to network, which increase the traffic load of networks. The multicast technology
can significantly reduce the traffic.

• For the routing schemes, especially in mesh topology, more routing schemes should
be achieved. At present, the path of transmitting spikes is relatively fixed and
duplicated, which results in hotspots and high possibility of congestion. New rout-
ing schemes like dynamic routing algorithms could be a solution for congestion.
Unlike static routing, dynamic routing algorithm allows routers to select proper
destination instead of fixed destination.

• To achieve low-power operation, the interconnection communication systems that
transport spikes between neuromorphic arrays and external interfaces will be de-
veloped as asynchronous circuits. The project can be extended to explore different

55

asynchronous switch designs that route address events between neuromorphic ar-
rays.

56

Bibliography

[1] Jennifer Walinga and Charles Stangor. Introduction to psychology-1st canadian
edition. 2014.

[2] Jornt R De Gruijl, Paolo Bazzigaluppi, Marcel TG de Jeu, and Chris I De Zeeuw.
Climbing fiber burst size and olivary sub-threshold oscillations in a network setting.
PLoS Comput Biol, 8(12):e1002814, 2012.

[3] Ben Varkey Benjamin, Peiran Gao, Emmett McQuinn, Swadesh Choudhary,
Anand R Chandrasekaran, Jean-Marie Bussat, Rodrigo Alvarez-Icaza, John V
Arthur, Paul A Merolla, and Kwabena Boahen. Neurogrid: A mixed-analog-
digital multichip system for large-scale neural simulations. Proceedings of the
IEEE, 102(5):699–716, 2014.

[4] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun
Sawada, Filipp Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Naka-
mura, et al. A million spiking-neuron integrated circuit with a scalable communi-
cation network and interface. Science, 345(6197):668–673, 2014.

[5] James Aweya. Switch/Router Architectures: Systems with Crossbar Switch Fabrics.
CRC Press, 2019.

[6] Simbrain 3.0 documentation. Accessed: 16-08-2021.

[7] Frank Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386, 1958.

[8] Frank Rosenblatt. Perceptron simulation experiments. Proceedings of the IRE,
48(3):301–309, 1960.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. Advances in neural information process-
ing systems, 25:1097–1105, 2012.

[10] Daniel Roggen, Stéphane Hofmann, Yann Thoma, and Dario Floreano. Hardware
spiking neural network with run-time reconfigurable connectivity in an autonomous
robot. In NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings.,
pages 189–198. IEEE, 2003.

[11] B Glackin, T Martin McGinnity, Liam P Maguire, QX Wu, and Ammar Belatreche.
A novel approach for the implementation of large scale spiking neural networks on
fpga hardware. In International Work-Conference on Artificial Neural Networks,
pages 552–563. Springer, 2005.

[12] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John
Arthur, Paul Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon

57

Nam, et al. Truenorth: Design and tool flow of a 65 mw 1 million neuron pro-
grammable neurosynaptic chip. IEEE transactions on computer-aided design of
integrated circuits and systems, 34(10):1537–1557, 2015.

[13] Eugene M Izhikevich, Joseph A Gally, and Gerald M Edelman. Spike-timing dy-
namics of neuronal groups. Cerebral cortex, 14(8):933–944, 2004.

[14] Louis Lapique. Recherches quantitatives sur l’excitation electrique des nerfs traitee
comme une polarization. Journal of Physiology and Pathololgy, 9:620–635, 1907.

[15] Peter Dayan and Laurence F Abbott. Theoretical neuroscience: computational
and mathematical modeling of neural systems. Computational Neuroscience Series,
2001.

[16] Lei Deng, Yujie Wu, Xing Hu, Ling Liang, Yufei Ding, Guoqi Li, Guangshe Zhao,
Peng Li, and Yuan Xie. Rethinking the performance comparison between snns and
anns. Neural Networks, 121:294–307, 2020.

[17] Vincenzo Catania, Andrea Mineo, Salvatore Monteleone, Maurizio Palesi, and Da-
vide Patti. Noxim: An open, extensible and cycle-accurate network on chip simu-
lator. In 2015 IEEE 26th international conference on application-specific systems,
architectures and processors (ASAP), pages 162–163. IEEE, 2015.

[18] Daniel Svozil, Vladimir Kvasnicka, and Jiri Pospichal. Introduction to multi-layer
feed-forward neural networks. Chemometrics and intelligent laboratory systems,
39(1):43–62, 1997.

[19] Kwabena A Boahen. A burst-mode word-serial address-event link-i: Transmitter
design. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(7):1269–
1280, 2004.

[20] Kwabena A Boahen. A burst-mode word-serial address-event link-ii: Receiver
design. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(7):1281–
1291, 2004.

[21] Kwabena A Boahen. A burst-mode word-serial address-event link-iii: Analysis
and test results. IEEE Transactions on Circuits and Systems I: Regular Papers,
51(7):1292–1300, 2004.

[22] Steve B Furber, Francesco Galluppi, Steve Temple, and Luis A Plana. The spin-
naker project. Proceedings of the IEEE, 102(5):652–665, 2014.

[23] Eustace Painkras, Luis A Plana, Jim Garside, Steve Temple, Francesco Galluppi,
Cameron Patterson, David R Lester, Andrew D Brown, and Steve B Furber. Spin-
naker: A 1-w 18-core system-on-chip for massively-parallel neural network simu-
lation. IEEE Journal of Solid-State Circuits, 48(8):1943–1953, 2013.

[24] Saber Moradi, Ning Qiao, Fabio Stefanini, and Giacomo Indiveri. A scalable multi-
core architecture with heterogeneous memory structures for dynamic neuromorphic
asynchronous processors (dynaps). IEEE transactions on biomedical circuits and
systems, 12(1):106–122, 2017.

58

[25] Johannes Schemmel, Daniel Brüderle, Andreas Grübl, Matthias Hock, Karlheinz
Meier, and Sebastian Millner. A wafer-scale neuromorphic hardware system for
large-scale neural modeling. In 2010 IEEE International Symposium on Circuits
and Systems (ISCAS), pages 1947–1950. IEEE, 2010.

[26] Ning Qiao, Hesham Mostafa, Federico Corradi, Marc Osswald, Fabio Stefanini,
Dora Sumislawska, and Giacomo Indiveri. A reconfigurable on-line learning spiking
neuromorphic processor comprising 256 neurons and 128k synapses. Frontiers in
neuroscience, 9:141, 2015.

[27] Érika Cota, Alexandre de Morais Amory, and Marcelo Soares Lubaszewski. Re-
liability, Availability and Serviceability of Networks-on-chip. Springer Science &
Business Media, 2011.

[28] Natalie Enright Jerger, Tushar Krishna, and Li-Shiuan Peh. On-chip networks.
Synthesis Lectures on Computer Architecture, 12(3):27–28, 2017.

[29] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-
world’networks. nature, 393(6684):440–442, 1998.

[30] Hang-Sheng Wang, Xinping Zhu, Li-Shiuan Peh, and Sharad Malik. Orion:
A power-performance simulator for interconnection networks. In 35th Annual
IEEE/ACM International Symposium on Microarchitecture, 2002.(MICRO-35).
Proceedings., pages 294–305. IEEE, 2002.

[31] Andrew B Kahng, Bin Li, Li-Shiuan Peh, and Kambiz Samadi. Orion 2.0: A
power-area simulator for interconnection networks. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 20(1):191–196, 2011.

[32] George BP Bezerra, Stephanie Forrest, Melanie Moses, Al Davis, and Payman
Zarkesh-Ha. Modeling noc traffic locality and energy consumption with rent’s
communication probability distribution. In Proceedings of the 12th ACM/IEEE
international workshop on System level interconnect prediction, pages 3–8, 2010.

[33] Andrei Ardelean, Amir Zjajo, Sumeet Kumar, and Rene van Leuken. Energy-
efficient multipath ring network for heterogeneous clustered neuronal arrays. In
2018 IEEE EMBS International Conference on Biomedical & Health Informatics
(BHI), pages 190–193. IEEE, 2018.

59

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Objective and approach
	Contributions
	Outline

	I Background
	Neuromorphic computing background and state of the art
	The neuron
	Spiking neuron models
	Hodgkin-Huxley model
	LIF model
	ANN model

	Noxim
	Neural communication schemes - Feed Forward Network
	Address Event Representation
	Neuromorphic Projects

	II Methodology
	Network and Interconnection implementation
	Processing Element
	Architecture
	Broadcast

	Router
	Handshaking protocol
	Crossbar

	Evaluation framework architecture
	Network Topologies
	Bidirectional Ring
	Multipath Ring(MPR)
	Mesh

	Neuron-to-PE Mapping Problems
	Sequential Mapping
	Random Mapping
	Greedy Mapping
	Center Mapping

	Multiple channels

	III Results
	Network simulation and evaluation
	Latency calculation
	Input stimulus
	Uniform injection rate
	spike raster

	Performance simulation
	Assumptions
	Simulation with uniform injection rate
	Simulation with spike raster
	Performance simulation
	Conclusion

	Power and Area estimation
	Power
	Area

	Conclusion and future work
	Conclusion
	Future work

