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Abstract
Decentralized multi-robot systems typically perform coordinated motion planning by constantly broadcasting their intentions
to avoid collisions. However, the risk of collision between robots varies as they move and communication may not always
be needed. This paper presents an efficient communication method that addresses the problem of “when” and “with whom”
to communicate in multi-robot collision avoidance scenarios. In this approach, each robot learns to reason about other
robots’ states and considers the risk of future collisions before asking for the trajectory plans of other robots. We introduce
a new neural architecture for the learned communication policy which allows our method to be scalable. We evaluate and
verify the proposed communication strategy in simulation with up to twelve quadrotors, and present results on the zero-
shot generalization/robustness capabilities of the policy in different scenarios. We demonstrate that our policy (learned in a
simulated environment) can be successfully transferred to real robots.

Keywords Collision avoidance · Multi-robot communication · Multi-agent reinforcement learning · Aerial robots ·
Multi-robot systems

1 Introduction

Being able to account for the future trajectory of other
robots is of utmost importance for safe navigation in environ-
ments shared with other robots. Centralized systems achieve
this objective by using a central station to manage all of
the robots’ information and plans but they are difficult to
scale up to large teams. Instead, decentralized systems can
scale up by relying on each robot’s on-board computation
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capabilities. Some decentralized solutions have each robot
estimate other robots’ behaviors or future trajectories through
trainedparametric functions, e.g., neural networks (Zhu et al.,
2021). However, these solutions are generally computation-
ally expensive and may have inaccuracies stemming from
the lack of information on the other robot’s goals and local
observations. Instead, direct communication of each robot’s
trajectory intentionsmay allow to obtain accurate predictions
with less computational effort. Common communication
policies broadcast to all robots, employing distance-based
heuristics to communicate trajectory plans. However, much
of this information becomes redundant or unnecessary when
robot motions do not present a threat to others, e.g., when
they are far from each other, or may, at worst, harm the
multi-robot system’s performance (Talamali et al., 2021).
Besides, designing a set of rules to communicate efficiently
may be difficult as it would require to estimate a priori the
future value of communicating with other robots, which also
depends on their motion planner and dynamics. Since there
is no clear intuition on how to hand-engineer an adequate
trade-off between communication efficiency and safety, in
this work, we focus on the following two issues: (a) provid-
ing a solution to the problem of when and with whom to
communicate that can scale up to large teams of robots, and
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(b) how to couple this communication policy with existing
motion planning methods.

We propose an efficient communication policy method
combined with an optimal control motion planner for multi-
robot collision avoidance that can handle large multi-robot
systems with varying number of robots. The approach lever-
ages the strengths of learning methods for decision-making
andnonlinear recedinghorizon control, orNon-LinearModel
Predictive Control (NMPC) formulti-robotmotion planning.
In particular, we use Multi-Agent Reinforcement Learning
(MARL) to learn the robots’ communication policies. For
every robot and time instance, the policy selects a set of
other robots (Wheeler et al., 2019) and requests their trajec-
tory plans. Non-selected robots are assumed to follow their
last communicated which trajectory extended assuming con-
stant velocity. This last communicated trajectory is exploited
as long as they remainwithin a tolerance distance.Otherwise,
robots that do not follow their last communicated trajectory
are assumed to follow a constant velocity trajectory. Then,
we formulate a nonlinear optimization problem to generate
a safe trajectory. The planned trajectory takes into account
the requested and estimated trajectories represented as con-
straints in the receding horizon framework.

The main contributions of this work are:

• A combined communication policy and trajectory plan-
ning method for micro-aerial vehicles (MAVs), that
utilizes the strengths of non-linear model predictive con-
trol (NMPC) to plan safe trajectories, and multi-agent
reinforcement learning (MARL) to learn an efficient
communication policy.

• An on-line communication policy that uses MARL to
learn (off-line) when and with whom it is useful to
communicate, decreasing the amount of communication
while still achieving safe navigation and coordination
among robots.

• We introduce a new neural architecture for the learned
communication policy that scales to large and varying
number of robots while still providing safe navigation in
a variety of situations.

• We demonstrate that the communication policy, which
is trained in a simulator, works equally well in physical
MAVs.

We evaluate our method with team of varying number of
quadrotors in simulated scenarios requiring different levels
of interaction for safe navigation and compare it with four
other heuristic based methods for communication. We then
test the robustness of our method under different levels of
observation noise. Finally, we show that our method presents
zero-shot generalization properties when tested in scenarios
with more robots than during training while still maintaining
safety online.

In an earlier conferenceversionof thiswork (Serra-Gómez
et al., 2020), an early version of the framework to learn
a communication policy and its combination with a local
motion planner was introduced for a fixed number of robots.
In this paper, we extend the approach with a new neural
architecture and refine the training procedure of the com-
munication policy to render the final navigation policy safer
in interaction-rich situations, more robust to sampled train-
ing scenarios and scalable to robot teams of varying number
of robots. We show that our learning method enables the
emergence of more efficient and intuitive communication
behaviours than before, while maintaining a performance
similar to that of broadcasting policies with regards to safe
navigation.

2 Related work

2.1 Communication in collision avoidance

We focus ourwork on online localmotion planning formulti-
robot systems (also referred as multi-robot collision avoid-
ance), which has been actively studied over the past years.
Traditional reactive controller-level approaches include the
optimal reciprocal collision avoidance (ORCA)method (Van
Den Berg et al., 2011), the artificial potential field (APF)
based method (Yongjie & Yan, 2009), the buffered Voronoi
cell (BVC) approach (Zhou et al., 2017; Zhu&Alonso-Mora,
2019a), and control barrier functions (CBF) (Wang et al.,
2017). These methods are fully decentralized and each robot
only needs to know other robots’ current state, which can be
measured by the robot via its onboard sensors. Hence, com-
munication among robots is not necessary. However, these
reactive methods are inefficient since they typically plan one
time step ahead. This can result in overly conservative poli-
cies that are more vulnerable to deadlocks than predictive
collision avoidance methods. These issues can be overcome
by using a model predictive control (MPC) framework for
collision-free trajectory generation that accounts for the plans
of other robots in a receding horizonmanner (Zhu&Alonso-
Mora, 2019b).

For each robot to solve a local trajectory optimization
problem in the MPC framework, it needs to know the future
trajectories of other robots. One approach is to let each robot
communicate its planned trajectory with every other robot in
the team. Hence, robots can then update their own trajecto-
ries to be collision free with other robots’ trajectory plans,
as in these distributed MPC works (Luis et al., 2020; Zhu
& Alonso-Mora, 2019b). Another approach is to let each
robot predict other robots’ future motions based on its own
observations. For instance, Kamel et al. (2017) employs a
constant velocity model when predicting other robots’ future
trajectories. In that case, communication among robots is not
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required. However, such a prediction can be inaccurate and
may lead to unsafe trajectory planning, in particular when
the robots are moving at a high speed (Zhu & Alonso-Mora,
2019b). In this paper, we aim to develop a communication
policy, which determines “when” and “with whom” a robot
should communicate with another robot in the system, to
reduce the amount of communication while still keeping a
high-level of safety.

2.2 Communication scheduling

A lot of works tend to formulate the problem of efficient
communication in a receding horizon fashion. Some meth-
ods formulate the problem as a decentralized version of a
Markov Decision Process (Dec-MDP) (Roth et al., 2005)
or Partially Observable MDP (Dec-POMDP) (Becker et
al., 2009) and try to optimize a value function in which
communications are penalized. Others, such as Kassir et
al. (2016), choose to formulate a constrained optimization
problem where communications must be directly minimized
while still guaranteeing data flow throughout the network.
These approaches assume access to an analytical model or
require the design of a hand-engineered utility function to
estimate the future effects of communication, which might
not be available or intuitive to do, respectively. Recent work
(Best et al., 2018) manages to tackle this problem by trig-
gering communication whenever uncertainty over another
agent’s actions exceeds a threshold. Ultimately, however,
recedinghorizonmethods are limitedby their predictionhori-
zon and the need for hand-engineered evaluation heuristics,
which can unintentionally bias the resulting communication
processes. In this work, we use reinforcement learning meth-
ods to learn the communication policy. Through learning
from experience, this family of methods has the potential
to discover more general policies without the need for fine-
tuning hand-engineered heuristic functions.. limited by their
prediction horizon and need for heuristics to evaluate and
communication processes which puts a bias on it, while rein-
forcement learning may reach more general policies.

2.3 Learningmethods for coordination

One major challenge in Multi-Agent Reinforcement Learn-
ing (MARL) is the non-stationarity of multi-agent environ-
ments. This problem is caused by having multiple agents that
learn and change their policy every learning iteration, which
may result in the learning process being unstable. In order to
mitigate this challenge, recent works on MARL (Foerster et
al., 2018; Iqbal & Sha, 2019; Lowe et al., 2017; Rashid et al.,
2018; Son et al., 2019; Sunehag et al., 2018) perform cen-
tralized training and decentralized execution. This paradigm
has been applied in the field of non-communicating multi-
robot collision avoidance tasks (Everett et al., 2018, 2019)

to learn an end-to-end navigation policy. Yet, these methods
typically donot offer solid theoretical guarantees for collision
avoidance. Insteadwe aim to learn the communication policy
while leveraging already existing well-performing motion
planners, e.g., Zhu and Alonso-Mora (2019b).

Regarding tasks that require communication, several
works have been published recently. Many of them focus
on learning what content should be shared among agents,
be it in the form of explicit messages (Li et al., 2020a), a
composition of binary signals (Foerster et al., 2016) and pre-
defined symbols (Mordatch & Abbeel, 2018), policy hidden
layers (Sukhbaatar et al., 2016), or by directly sharing param-
eters among agents (Gupta et al., 2017). The most relevant
to our work additionally focus on learning, in a scalable way,
policies that are able to appropriately choose when and with
whom to communicate or cooperate in collision avoidance
tasks. Jiang andLu (2018) assign roles to every agent,making
some of them in charge of organizing a common communica-
tion channel with their neighbours. However, regions where
there is no agentwith such a role are left without coordination
capabilities. Instead, Das et al. (2019), Li et al. (2020b) and
Zhai et al. (2021) present end-to-end MARL algorithms that
design an attention module to assign and weight the impor-
tance of the messages received from other agents. While
previous methods use dense attention mechanisms, Sun et
al. (2020) proposes an adaptive sparsity-inducing activation
function to enable learning a sparse communication graph.
Along these lines, Ding et al. (2020) learn to choose whom
to communicate with and evaluate the received messages to
choose an action.

Similarly, the method we present in this paper can also
be considered as an attention module targeting other agents.
However, we set our communications to be unilateral to pro-
mote asymmetrical behaviour. Additionally, we decouple the
problem of communication and motion planning, allowing
the combination of our method with existing and well-tested
solutions for motion planning in collision avoidance tasks.

3 Preliminaries

In this paper, we address the problem of deciding when
and with whom to communicate during a multi-robot col-
lision avoidance task. Though the proposed formulation is
intended to be general, we are inspired by the results obtained
in Zhu and Alonso-Mora (2019b), which show how in a
collision-avoidance scenario, methods that incorporate com-
munication have a clear advantage over those that do not.
We approach the information-sharing process as a MARL
problem where the robots must learn to request information
effectively. In this section, we set the context for our tar-
geted communication process by formulating the problem of
multi-robot collision avoidance. We provide an overview of
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the Non-Linear Model Predictive Control method used for
motion control, as well as our MARL framework, introduc-
ing relevant notations for this work.

3.1 Multi-robot collision avoidance

Consider a team of n robots moving in a shared workspace
W ⊆ R

3, where each robot i ∈ I = {1, 2, . . . , n} ⊂ N is
modeled as an enclosing sphere with radius r . The dynamics
of each robot i ∈ I are described by a discrete-time equation
as follows,

xt+1
i = f(xti ,u

t
i ), x0i = xi (0), (1)

where xti ∈ X ⊂ R
nx denotes the state of the robot with

dimension nx , typically including its position pti ∈ R
3 and

velocity vti ∈ R3 (amongst others, see Sect. 4.1.1), and uti ∈
U ⊂ R

nu the control inputs with dimension nu . The function
f is the model of the robot and is detailed in “Appendix A”.
The super-script ·t indicates the time step t . X and U are the
admissible state space and control space respectively. xi (0) is
the initial state of robot i . Any pair of robots i and j from the

group are mutually collision-free if
∥
∥
∥pti − ptj

∥
∥
∥ ≥ 2r ,∀i �=

j ∈ I,∀t = 0, 1, . . . . Each robot has a given goal location
gi , which generally comes from some high-level path planner
or is specified by some user.

Robots in the team are allowed to communicate. Commu-
nication is assumed to be ideal, e.g., robots can communicate
with each other perfectly and instantaneously. We also
assume a point-to-point network topology. The implemen-
tation is viable provided that communication protocols with
low energy consumption, such as a mesh network where
links are established using Bluetooth LE, are utilized. Under
this communication protocol, point-to-point communication
topologies generally use less bandwidth than broadcasting
topologies and scale better with the number of robots as
they allow for redundant or unnecessary communication to
be avoided. Robots can associate other robots with the mes-
sages they send since, in practice, each sender could add its
ID to the message or the receiving robot could infer it using
the first position of the received trajectory.

The objective ofmulti-robot collision avoidance is to com-
pute a local motion uti for each robot in the group, that
respects its dynamics constraints, makes progress towards
its goal location gi and is collision-free with other robots
in the team for a time horizon τ = N�t , where �t is the
sampling time and N is the number of discrete steps.

3.2 Distributedmodel predictive control

The key idea of using distributed model predictive control
to solve the multi-robot collision avoidance problem is to

formulate it as a receding horizon constrained optimization
problem. For each robot i ∈ I, the discrete-time constrained
optimization formulation is

min
x0:Ni ,u0:N−1

i

N−1
∑

k=0

J ti (x
k
i ,u

k
i ) + J N

i (xNi , gi )

s.t. x0i = xi (0),

xk+1
i = f(xki ,u

k
i ),

∥
∥
∥pki − pkj

∥
∥
∥ ≥ 2r ,

uk−1
i ∈ U , xki ∈ X ,

∀ j �= i ∈ I; ∀k ∈ {0, 1, . . . , N }.

(2)

where J ki (xki ,u
k
i ) and J N

i (xNi , gi ) are the stage and terminal
costs, respectively (Zhu &Alonso-Mora, 2019b) (defined on
“Appendix B”). At each time step, each robot in the team
solves online the constrained optimization problem (2) and
then executes the first step control inputs, in a receding-
horizon fashion. In this paper, the generated future plans of
robot i are also called robot i’s (future) trajectory intentions.

3.3 Problem formulation

For each robot to solve problem (2), it has to know the
future trajectories of other robots in the team. Aside from
the particular case of prioritized sequential motion planning
schedules, obtaining the exact information on future trajecto-
ries beforehand is generally not feasible. Thus, other robots’
future positions can be approximated either by estimating
their predictions (Zhu et al., 2021) or by requiring them to
communicate their trajectory intentions, computed during the
previous time step (Zhu & Alonso-Mora, 2019b).

At time t , let T̂ t
j |i = {pt+1:t+N

j | predicted at time t} be
the N-time horizon trajectory of robot j ∈ I, j �= i that
robot i assumes and uses in solving the problem (2), where
the hat ˆ indicates that it is what robot i knows about the
other agent’s trajectory. Further denote by T t

i = {pt :t+N
i |

predicted at time t} the trajectory for robot i planned at time
t . As mentioned, there are two ways for robot i to approxi-
mate the future trajectory of robot j , namely T̂ t

j |i :

• Without communication: robot i predicts another rob-
ot’s future trajectory based on their current states, that
is

T̂ t
j |i = prediction(xtj ), ∀ j �= i ∈ I. (3)

In Kamel et al. (2017), each robot was considered to
follow constant velocity model for the prediction. How-
ever, this approach ignores the previously communicated
information on future trajectory intentions from other
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robots, even when they could potentially hold more
information on other robots’ future positions than con-
stant velocity estimates. Our prediction model uses the
last communicated trajectory plans and expands it by
assuming constant velocity. If robot j strays past a prede-
termined distance from its last communicated trajectory
intentions, then robot j is estimated to follow a constant
velocity model from its current position (Sect. 4.4).

• Communication request: Robot i can request other
robots j in the team to communicate their planned tra-
jectories at each time step, that is:

T̂ t
j |i (0 : N − 1) = T t−1

j (1 : N ), ∀ j �= i ∈ I. (4)

where T̂ t
j |i (a : b), with a ≤ b, represents the subse-

quence of T̂ t
j |i that goes from the ath to the bth-indexed

element (inclusive). At time t , the last position of the
communicated path of robot j : T̂ t

j |i (N ) = p̂N
j |i , cannot

be communicated as it is beyond the N-time horizon at
time step t−1. Therefore it is estimated by assuming con-
stant velocity of robot j : p̂N

j |i = p̂N−1
j |i + (p̂N−1

j |i − p̂N−2
j |i ).

Both of the two methods have their advantages and disad-
vantages. Fully communicatingmethods allowmore accurate
predictions and achieve safe collision avoidance as long as a
feasible solution is found, but they require a large amount of
communication among robots. If there is no communication,
the robot may plan an unsafe trajectory if its prediction on
other robots’ trajectories deviates from their real ones or an
overly conservative trajectory to avoid collisions.

Motivated by these facts, this paper aims to solve the prob-
lem of “with whom to communicate” for each robot in the
team for collision avoidance. More precisely, at each time
step, each robot i decides whether or not to request a trajec-
tory intention from every other robot j . If robot i decides
to request robot j , robot j should communicate its planned
trajectory to robot i . If robot i decides not to request robot j ,
it predicts robot j’s future trajectory based on its last com-
municated trajectory intention and the observed current state
of robot j .

Denote byπ t
i = {ctj |i | ∀ j �= i} the communication vector

of robot i at time t , in which ctj |i = 1 indicates that robot i
requires a communicated trajectory from robot j . Otherwise
ctj |i = 0. Note that cti |i = 0 since the robot does not need
to communicate with itself. Let π t = {π t

1; . . . ;π t
n} be the

communication matrix of the multi-robot system at time t in
an episode of length Te. We define the communication cost
of the system to be

C(π t ) = 1

Nc(n)

n
∑

i

n
∑

j

ctj |i . (5)

Fig. 1 Schema of the proposed method for efficient communication.
π t
i (zi ) is the communication policy dependent on the observation zi .

T t−1
j is the trajectory plan of robot j at the previous time step. And T̂ t

j |i
is the combination of obtained and estimated trajectories of the other
robots

where Nc(n) = n(n−1)/Te is a normalization factor depend-
ing on the number of agents and the length of the episode,
that represents themaximumamount of communications that
can happen within a system of n robots across Te timesteps.
The objective of this paper is to find a policy for each robot
i ,

π t
i = πi (xt1, x

t
2, . . . , x

t
n) = {ctj |i | ∀ j �= i} (6)

that minimizes C(π t ) while ensuring that the robots are
collision-free with each other in the system.

4 Method

An overview of the proposed method is given in Fig. 1. It
consists of two components: a learned communication policy,
which we introduce as WW2C, that decides with whom to
communicate, and a NMPC planner.

Every time step, based on its partial observation of the
current joint state zti , every robot targets a set of other robots

π t
i and requests their intended trajectory plans T̂ t

j |i = T t−1
j

according to a learnt parametric policyπi,θi (z
t
i ). Those robots

not targeted are estimated to follow a previously commu-
nicated trajectory extended assuming constant velocity or,
in case it is no longer useful, a constant velocity model
T̂ t
j |i = prediction(xtj ) as described in Sect. 3.3.
A receding horizon optimization is then employed to plan

the future intended trajectory T t
i for robot i . To guarantee the

safety of such a trajectory, the resulting path is constrained
to not intersect with T̂ t

j |i for any j �= i . The first action
input from the computed plan is applied and a new obser-
vation is gathered. Along this work we assume that robots
plan and execute actions in a synchronized fashion. While
this assumption is necessary for learning the communica-
tion policy, it can be alleviated during test time since robots
employ previously received or estimated trajectories (Zhu et
al., 2021).
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4.1 Reinforcement learning setup

We formulate a multi-robot reinforcement learning problem
to compute an efficient communication policy. By consider-
ing the MPC based motion planner as part of the transition
function, this problem can be transformed into a decentral-
ized POMDP (Bernstein et al., 2002). The decentralized
POMDP is composed of six components, including state
space, action space, observation space, reward function, tran-
sition model and observation model.

4.1.1 State spaceX

For every robot i , xi ∈ X must account for the current phys-
ical state, its goal position, its sequence of intended future
positions, computed during the previous time step by the
motion planner, and its knowledge on other robots’ future
trajectory plans. Therefore, the state at time t can be defined
as:

xti := [gi , pti , vti , T t−1
i , T̂ t−1

−i |i ], (7)

X t := {xt1, xt2, ..., xtn}, (8)

where gi , p
t
i , v

t
i ∈ R

3 are the goal, position and velocities of

robot i at time t , and T̂ t−1
−i |i = {T̂ t−1

j |i | ∀ j �= i}. Then, X t is
the joint state of the whole multi-robot system. Following a
similar formulation as Everett et al. (2019), robot i only has
access to the information of its own state xti and the terms
from other robots j that can be estimated through its sensors,
such as their positions and velocities.

4.1.2 Observation spaceZ

We assume all robots are within sensor range (e.g., camera,
lidar,...) of each other and can always estimate the relative
positions and velocities of all other robots. Each robot also
knows the relative position of its own goal from a mission
planner. For robot i , partial observations on the joint state at
time t are:

zti = [vti , pti,g, {d tj |i } j∈I\i , { ptj |i } j∈I\i , {vtj |i } j∈I\i ], (9)

where dtj |i , p
t
j |i and vtj |i are the relative distances, positions

and velocities of the other robots with respect to the i th robot,
and pti,g is the relative position of robot i’s goal. The joint
observation from all robots is denoted by zt = {zt1, ..., ztn} ∈
Z

4.1.3 Action spaceA = ×i∈IAi

As it has already been introduced in Sect. 3.3, we denote by
π t
i = {ctj |i | ∀ j �= i} the communication vector of robot i

at time t . Note we have dropped the i th element as the robot
cannot communicate with itself. Therefore the action space
for robot i is:

Ai = {0, 1}n−1

Note that the dimensionality of the action space depends
on the number of agents. Thismatterwill be further addressed
later in 4.2.

4.1.4 Reward Ri(xt,�t)

The reward function is chosen based on the multiple behav-
iors we want to achieve. It aims for the learned commu-
nication policy to communicate as little as possible while
allowing each robot in the team to reach its goal and avoid col-
lisions. The reward value R(xt , π t ) is the immediate reward
that every robot i gets at a state x ∈ X after applying the
communication vector π t

i .
Global rewards are often used in multi-agent systems in

order to capture coordinating coupled behaviors. However,
this often leads to multi-agent credit assignment problems
during training (Rahmattalabi et al., 2016). In this work we
attempt to capture coupled behaviors by employing the same
reward function conditionned to each robot’s state individu-
ally. Since all agents share the same architecture and policy
parameters, this allows to quickly learn to properly punish
pairwise interactions such as collisions and communication-
sas all samples from all robots can be used in the same
way to compute the gradients and update the parameters of
the communication policy. Also, even though reward signals
are individual, optimising the same set of parameters for all
agents at the same time allows to account for coordinating
behaviours when there are more than two agents crossing
paths. The reward function is composed of the following
weighted combination of terms:

Ri (xt , π t
i ) = wg Rg,i (xt ) + wcoll Rcoll,i (xt )

+ wc Rc,i (π
t )

(10)

where wg , wcoll , wc are the weights for each term. Each
reward term is defined:

Rg,i (xt ) =
{

rg
∥
∥
∥ pti,g − pti

∥
∥
∥ ≤ ri

0 otherwise

with rg > 0 is a tuned reward given at the end of the episode
if robot i is within its goal, ri is the radius of the smallest
sphere containing the robot. This reward gives an incentive
to learn communication patterns that stir the robot toward its
own goal.
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Rcoll,i (xt ) =

⎧

⎪⎪⎨

⎪⎪⎩

−rcoll ∀ j ∈ I, i �= j,
∥
∥
∥ pti − ptj

∥
∥
∥ ≤ ri + r j

0 otherwise

where rcoll > 0 is a tuned penalty term for the collision
between any two robots.

Finally the local penalization term for path plan requests
is similar to the global version introduced before in Sect. 3.3
and has the form:

Rc,i (π
t ) = −Ci (π

t ) = − 1

Ni (n)

n
∑

j �=i

ctj |i .

where Ni (n) is a local normalization term depending on the
number of agents.

4.1.5 Observation modelO(zt+1, xt+1,�t)

We assume that every robot i can directly observe the
positions and velocities of other robots. Although not all
information is observed, the observation vector is determined
completely by the given state vector xt+1.

4.1.6 Transition model T(xt+1,�t, xt)

The transition model can be decomposed into a communi-
cation step and a physical action step. The communication
step is stochastic, only during training (see Sect. 4.2), and
models the effects of communication π t on the constrained
optimization problem used to compute the control actions
applied at time step t , ut . Then, the robot model f , intro-
duced in Sect. 3.1, determines the joint state at the next time
step xt+1. Note that, since we are sharing parameters, the
communication matrix π t depends directly on the shared
policy. The robots employed in this paper are quadrotors,
thus the state transition can be interpreted as the quadrotor
model introduced in “Appendix A”.

4.2 Network architecture

Given the input (observation zti ) and output (action π t
i ), we

elaborate on the communication policy network mapping
zti to π t

i . We want each robot to process all the informa-
tion from the environment and decide whether it needs to
make a request to any of the other robots. While concate-
nation of other robots observed information is possible at
low scales, learnt policies are bound to quickly deteroriate in
performance as the input vector dimensionality grows expo-
nentially with the number of robots. We need an architecture
that can provide a compact representation of the observed
information of an arbitrary number of other robots, while still

being able to leverage that information and choose whether
each robot’s trajectory is needed to compute a safe trajectory.
Therefore, we need an architecture that can pool together
all the information coming from all different robots while
still being able to output a different signal for each one of
them.

There are several recentworks in the fieldmotion planning
that use information pooling mechanisms. Often, simulated
laser scanner observations allow to consider all information
in the environment without having to explicitly define each
element and its properties (Fan et al., 2020; Wang et al.,
2020). However, individual information on each of the other
agents and their interaction with the environment are lost.
Other works address this issue by using Recurrent Neural
Networks (RNN) (Hochreiter & Schmidhuber, 1997) over
the sequence of other robots observations (Brito et al., 2021;
Everett et al., 2019). While these methods allow to learn the
additional coupled effects resulting from adding each robot
into the environment representation, they are not permuta-
tion invariant and their performance depends on the heuristic
ordering method chosen to feed the elements into the net-
work.Methods using Graph Neural Networks (GNN) (Gama
et al., 2019), represent elements in the environment as ver-
tices in a graph and allow to learn a permutation equivariant
and compact representation of the set of observed informa-
tion on each one of the vertices (Li et al., 2020a). In Kurin
et al. (2020), attention mechanisms (Vaswani et al., 2017)
are formulated as a GNN for the particular case of fully
connectedgraphs and are used tomapa set of sensormeasure-
ments from an agent withmultiple limbs, to a set of actions to
be applied by each one of them.We build our policy network
on top of the attention-based architecture proposed in Kurin
et al. (2020) and extend its use to homogeneous multi-agent
environments.

Our communication policy architecture is depicted in
Fig. 2. We design a five-hidden-layer neural network as a
non-linear function approximation of the policy πθ . For
each robot i , we arrange the information on the other
robots {d tj |i } j∈I\i , { ptj |i } j∈I\i , {vtj |i } j∈I\i into a sequence

of vectors {(d tj |i , ptj |i , vtj |i )} j∈I\i and append the observed
information on robot i at the end of each element in the
sequence. Our policy network consists of three parts: an
encoder layer, a transformer block and a decoder layer. Each
one of these layers have the property of being permutation
equivariant and enable processing sequences with an arbi-
trary number of vectors, even during testing. The encoder
layer consists of a linear layer applied independently to each
element of the sequence, mapping each element ztj to a

latent representation of higher dimension z̃tj . We employ a
three-layered transformer (Vaswani et al., 2017), to allow
each element z̃tj in the sequence to exchange information
among themselves and encode the information present in
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Fig. 2 Proposed network policy architecture. Information from the ego
and other robots is marked respectively in orange and red. Red arrows
show the flow of information through the architecture of each individ-

ual robot j. Architecture layers are marked in green. Concatenation and
Sum operations are marked in blue. Outputs are shown in purple (Color
figure online)

the environment while still providing a different result for
each element. However, information on each robot’s relative
position and velocities are still very important regardless of
the additional information and coupled effects coming from
other robots in the environment. To preserve this informa-
tion, we concatenate each element j with its counterpart z̃tj ,
which also enables the transformer block to focus on learn-
ing the coupled effects in communication arising fromhaving
multiple agents in the environment.

The network has two decoder heads applied indepen-
dently to each one of the sequence outputs: one computes
the communication action for each robot j : π t

i , while
the other estimates the state-value function: V π (xt ) =
Ex∼pπθ

,a∼πθ [
∑∞

k=0 γ k Ri (xk, a) | x0 = xt ]. Both of them
start with a multi-layer perceptron with a hidden layer with
a ReLU non-linearity and an output linear layer. The first
head outputs a 2-dimensional vector per robot of communi-
cation scores that we project onto the probability 1-simplex
with a softmax activation function resulting in the vector
[p j |i , 1 − p j |i ]. To enhance exploration, during training the
output action is sampled from the resulting Bernoulli dis-
tribution B(p j |i ). While testing, we follow a deterministic
policy where robot i requests j’s trajectory intentions when
p j |i > 0.5.

The second head outputs a scalar representing the con-
tribution Vj |i of each robot j to the value function. Similar
to the use of value decomposition networks in collaborative
multi-agent tasks (Sunehag et al., 2018), we model agent’s i
value function as V π (zti ) = ∑n

j �=i, j=1 Vj |i .

4.3 Multi-scenario multi-stage training

In order to learn a robust communication policy, we present
a multi-stage training scheme in varied scenarios with a clear
separation between training and test regime.

4.3.1 Training algorithm

Here we focus on learning a robust communication pol-
icy that, in combination with an MPC for motion planning,
allows large multi-robot systems to coordinate and navigate
at least as safely as when using broadcasting communica-
tion policies. To accomplish this, we use the extension to
homogeneous multi-agent systems developed in Fan et al.
(2020) of the on-policy policy gradient algorithm: Proximal
Policy Optimization (PPO) (Schulman et al., 2017) under
the assumption of parameter sharing across agents (Gupta
et al., 2017), although the general framework is agnostic to
the specific RL training algorithm. For this matter, we take
the centralized learning, decentralized execution paradigm,
which is already popular in multi-agent reinforcement learn-
ing for decentralized systems (Everett et al., 2019; Lowe
et al., 2017). In particular, the individual policy shared by
all agents is learned in a centralized way from the experi-
ences gathered by all robots simultaneously during training.
This has been shown to allow the policies of homogeneous
agents to be trained more efficiently, and mitigate the non-
stationarity in the environment dynamics that arises from
having multiple agents learning at the same time. While
testing, each robot has copy of the learned policy which is
executed in a decentralized fashion.

Algorithm 1 describes the proposed training strategy
which alternates between gathering experiences (zti , π

t
i ,

R(xti , π
t
i ), z

t+1
i ) from all robots and performing PPO gra-

dient updates. PPO is an on-policy method that addresses
the high-variance and the difficult hyper-parameter tuning
in policy gradient methods for continuous control problems.
As suggested in Schulman et al. (2017), in this particular
PPO implementation (Liang et al., 2017), we add to the sur-
rogate objective an entropy bonus and a value function loss
to ensure sufficient exploration and account for the shared
parameters between the policy and the value function. We

123



Autonomous Robots (2023) 47:1275–1297 1283

Algorithm1 PPO formultiple agents with parameter sharing
1: Initialize policy network πθ and value function Vφ . Set hyper-

parameters as shown in Table 1. Note that θ and φ share the same
set of parameters except for the decoder layer.

2: for iteration = 1,2,..., do
3: for Robot i = 1,2,...,n do
4: // Collect data in parallel. We define r ti = Ri (xti , π

t
i )

5: for e = 1,2,...,ne do
6: Run comm. policy πθ for episode e, collecting {zti , r ti , π t

i }
where t ≤ Te (Algorithm 2)

7: Estimate and collect advantages using GAE (Schulman et al.,
2016): Ât

i = ∑Te−t
l=0 (γ λ)lδt+l

i where δti = r ti + γ Vφ(zt+1
i ) − Vφ(zti )

8: Estimate and collect target values: V t
target (x

t
i ) =

∑Te
t ′>t γ

t ′−t r t
′
i

9: end for
10: end for
11: πold ←− πθ

12: //Update policy and value function
13: for j = 1,...,Eπ do
14: for b = 1,...,(neTen)//nminibatch do
15: Sample minibatch Db from collected rollout data D

16: //Surrogate objective. We define: hit (θ) = πθ (π t
i |zti )

πold (π t
i |zti )

17: LO (θ) = E
(zti ,r

t
i ,π

t
i ,V

t
target (x

t
i ), Â

t
i )∼Db

[min(hit (θ) Ât
i , clip(h

i
t (θ),

1 − ε, 1 + ε) Ât
i ) + βK L[πold | πθ ]]

18: //Value function Loss
19: LV F (φ) = E

(zti ,r
t
i ,π

t
i ,V

t
target (x

t
i ), Â

t
i )∼Db

[(V t
target (x

t
i ) −

Vφ(zti ))
2]

20: //Entropy objective. We define S[πθ ](zti ) as the entropy of the
policy distribution πθ (π

t
i | zti )

21: LS(θ) = E
(zti ,r

t
i ,π

t
i ,V

t
target (x

t
i ), Â

t
i )∼Db

[S[πθ ](zti )]
22: //Total PPO objective
23: LPPO (θ, φ) = LO (θ) − c1LV F (φ) + c2LS(θ)

24: Update policy param. θ with lrθ by Adam (Kingma & Ba,
2015) with respect to LPPO (θ, φ)

25: end for
26: end for
27: //Adapt KL penalty coefficient
28: if K L[πold | πθ ] > 2K Ltarget then
29: β ←− 1.5β
30: else if K L[πold | πθ ] < 0.5K Ltarget then
31: β ←− β/2
32: end if
33: end for

refer the reader to Schulman et al. (2017) and Fan et al.
(2020) for more information on the method’s equations and
details. The hyperparameters used for training are detailed in
Table 1.

As explained in Fan et al. (2020), this multi-robot adap-
tation of the PPO algorithm can be parallelized and easily
scaled to large-scale multi-robot systems since every robot
counts as an independentworker gathering data. This reduces
the sampling time cost and makes the algorithm suitable for
training a large number of robots in various scenarios, profit-
ing from frameworks specialized in distributed computation
[i.e., Ray (Moritz et al., 2018) and RLlib (Liang et al., 2017)]
to accelerate our network’s convergence.

Table 1 Hyperparameters for PPO training algorithm

Parameter Value

Lambda λ 1.0

Gamma γ 0.99

Episodes each iteration ne 40

Episode time steps/episode Te 100

Number of epoch per iteration Eθ 30

SGD minibatch size nminibatch 512

Clip param. ε 0.3

KL target K Ltarget 0.01

Learning rate lrθ 5e−5

KL coeff. β 0.2

Value function loss coeff. c1 1

Entropy loss coeff. c2 0.001

Gradient Clipping 0.1

4.3.2 Training scenarios

While proper exploration of the action and state spaces is
crucial for the quality, robustness and generalization charac-
teristics of the learned communication policy, it is difficult to
achieve proper exploration of the state space since our policy
only decides on whom to communicate with. Therefore, it is
necessary to design interaction-rich training scenarios where
the robots can samplemeaningful experiences that will allow
them to learn when it is necessary to cooperate and request
other robots future trajectory intentions.

We have created a simulation environment (Zhu &
Alonso-Mora, 2019b) where a group of twelve drones nav-
igate from an initial position to a goal position and may
communicate their trajectory plans to perform collision
avoidance. We have designed fourthree different scenarios
to train our communication policy, as depicted in the left
column of Fig. 3. Each scenario requires increasing levels of
interaction and cooperation to perform collision avoidance,
ranging from a simple scenario where almost no communi-
cation is needed (e.g., Fig. 3a) to complex scenarios where
the drones must communicate (e.g., Fig. 3c) to successfully
avoid each other. The employed scenarios are:

• Random navigation (Fig. 3a): Each robot must to move
to a random goal position.

• Random swapping (Fig. 3c): The group of robots is
arranged in pairs. Then each robot switches position with
its counterpart.

• Asymmetric swapping (Fig. 3e): We split the R
2 x–y

plane into twelve quadrants and randomly initialize each
robot in a different quadrant with random initial position.
Then, each robot swaps positions with a robot from the
diametrically opposed quadrant.
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The learned communication policy depends on the sce-
narios on which it is trained. For instance, if an agent is
trained only on the first scenario it will learn a no communi-
cation behavior. In contrast, if only trained in the last one, it
may learn to always communicate. Hence, we employ cur-
riculum learning (Bengio et al., 2009), training the agents
first in a simple scenario, where communication is generally
not needed, and subsequently introducing more difficult and
complex scenarios where the agents must learn when and
with whom to communicate. We design the learning process
in three stages of 12,500 episodes, through which we sam-
ple episodes from a scenario pool. During the first stage the
scenario pool only has the first type of scenario, thus we sam-
ple random navigation scenarios with probability one. In the
second step, we add the second type to the scenario pool,
sampling the new scenario 75% of times. Finally, during the
last stage we add the asymmetric swapping type to the pool,
sampling this one 75% of times and 12.5% each of the others.

4.3.3 Training/test regime differentiation

As explained in Sect. 4.3.2, the learned communication pol-
icy cannot explore directly the state space since only the
MPC is in charge of motion planning. Also, communication
is not the only source of cooperation as the other robot’s tra-
jectory intentions can be approximated by constant velocity
models. This results in our robots rarely exploring collisions
or dangerous situations even when not communicating, thus
creating sparsity and a lack of collision experiences to learn
from. On top of this, while all communications are punished
instantaneously when they happen, there is a delay between
issuing a communication request (or not) and its associated
reward for completing the episode successfully (or colliding).

We apply a crucial change between the training and testing
regimes to promote exploration of the state space, specially
collision events. During training, we turn off constant veloc-
ity predictions whenever robot i does not communicate with
robot j to request its trajectory intentions. This makes robot i
MPC planner virtually blind to robot j future intended posi-
tions. This will ultimately result in a learnt communication
policy that keeps track and decides to request trajectory inten-
tions from all robots that might put the safety of our future
trajectory at risk, or need to be cooperated with. As seen in
Sect. 5.6.3, this modification results in an efficient and intu-
itive communication policy that is as safe as broadcasting
policies. During testing, we turn on once again trajectory
estimations whenever there is no communication both as a
safety layer and to avoid generating oscillating trajectories
due to switching on andoff constraints related to other robots’
future trajectories in the MPC.

Themain idea of turning robot i blind to robot j whenever
it does not request j’s trajectory intentions, is to force colli-
sions to happen whenever necessary communications are not

effectuated. This way, it is easier to discriminate and learn
the cause and effect relationship between a communication
signal being (not) triggered between i and j and their subse-
quent collision (not) being avoided. The intuition behind this
training approach is to learn with whom to cooperate rather
than with whom to communicate as it results in a policy that
puts the attention in those other robots in the team that need to
be cooperated with to achieve safe navigation. Although less
information for the motion planner during training results
in a suboptimal policy for testing, i.e., more communica-
tive than necessary, we argue that the additional information
can help in some situations and, at worst, will not make the
resulting policy less safe. This is why the found solution is
able to achieve similar performance to broadcasting policies
in terms of safety. The robot motion planning loop during
training and testing are detailed in Algorithm 2.

Algorithm 2WW2C framework
1: Inputs: Number of robots n. Starting and goal positions and initial

velocities: {p0i ,pi,g, v0i },∀i ∈ I. Training/Testing communication
policy. n number of robots. Episode length: Te. Maximum velocity:
vmax .

2: Initialize n robots in their initial positions and velocities. Copy an
instance of the learned/still in training communication policy πθ to
all robots.

3: Initialize within each robot a set of last communicated trajectories
{Dj } j �=i . Obtain the first observation of the environment {z0i }i∈I

4: for time step t = 0,1,...,Te do
5: for robot i = 1,2,...,n do
6: //Compute π t

i = {ctj |i } j �=i
7: if training then
8: π t

i ∼ B(πθ (zti ))
9: else
10: π t

i = 1[πθ (zti ) > 0.5]
11: end if
12: //Compute T̂ t−1

j |i
13: for robot j �= i, i = 1, ..., n do
14: if ctj |i == 1 then
15: //Traj. intention requested
16: T̂ t−1

j |i = T t−1
j

17: Dj ←− T t−1
j

18: else if not training then
19: //Traj. int. predicted (alg. 3)
20: T t−k−1

j ←− Dj , k > 0

21: T̂ t−1
j |i = pred(T t−k−1

j , vtj ,p
t
j )

22: else
23: T̂ t−1

j |i = ∅
24: end if
25: end for
26: {T t

i ,uti } ←− Solve eq.11 with gi = pi,g
27: end for
28: {zt+1}i∈I ←− Step({uti }i∈I)

29: end for
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4.4 Predicting and generating safe trajectory
intentions

4.4.1 Informed constant velocity estimations

At time step t, robot i can obtain T̂ j |i either by communi-
cating and requesting robot j’s future trajectory intention
(T̂ t

j |i = T t−1
j ) or directly by computing an estimation of said

trajectory intentions (T̂ t
j |i = prediction(xtj )). Algorithm 3

depicts the structure of the prediction function.
Whenever robot i requests robot j’s trajectory intentions

at time step t , it stores both the last communicated trajectory
T t−1
j and the time step of communication t . Every subse-

quent time step t + k, we make sure the last communicated
trajectory is not obsolete, and that robot j is within a pre-
defined tolerance region around its trajectory intention rtol .
If any of these conditions is not true, the last communi-
cated trajectory is discarded and robot j’s future positions
are estimated by assuming it will follow constant velocity. If
the communicated information is not discarded, we take the
remaining N −1−k steps from the tail of the communicated
trajectory, and expand them until obtaining a set of N future
positions by assuming constant velocity.

4.4.2 Generating safe trajectory intentions

At time t , given robot i’s requests for information π t
i , we can

determine T̂ t−1
j |i . Then, robot i’s computed trajectory inten-

tions T t
i and control inputs uti are computed by solving a

constrained optimization problem. This optimization prob-
lem computes the optimal future values for {(xt+l+1

i ,ut+l
i ) |

∀l = 0, ..., N − 1}, that minimize, over a N-time step
horizon, a given cost function (defined in “Appendix B”).
The solution of the problem is constrained to follow the
robot’s dynamic model f and account for the estimates of
other robots’ trajectory intentions T̂ t−1

j |i to avoid future colli-
sions (equality and inequality constraints). The sequence of
intended future positions in {xt+l+1

i | ∀l = 0, ..., N − 1} is
used to constructT t

i , while only thefirst value of the sequence
{ut+l

i | ∀l = 0, ..., N − 1}, uti , is used.
The sequence {(xt+l+1

i ,ut+l
i ) | ∀l = 0, ..., N − 1} is

computed at every time step t by formulating and solving the
following constrained optimization problem:

min
x0:Ni ,u0:N−1

i

N−1
∑

k=0

J ki (xki ,u
k
i ) + J N

i (xNi , gi )

s.t. x0i = xti ,

xk+1
i = f(xki ,u

k
i ),

∥
∥
∥pk+1

i − p̂k+1
j |i

∥
∥
∥ ≥ 2r , ∀ j ∈ I\{i}

uki ∈ U , xk+1
i ∈ X ,

(11)

Algorithm 3 Informed constant velocity estimator of robot
j

1: Inputs: Last communicated trajectory at time step t − k: T̂ t−k−1
j |i ,

j’s current velocity and position: ptj v
t
j . Hyperparameters in table

2.
2: reject = 0
3: if k ≥ N − 1 then
4: reject = 1

5: else if
∥
∥
∥T̂ t−k−1

j |i (k) − ptj

∥
∥
∥ > rtol then

6: reject = 1
7: end if
8: if reject then
9: T̂ t−1

j |i = {p̂t+l
j | p̂t+l+1

j = p̂t+l
j + �tvtj , l = 0, ..., N − 1; p̂tj =

ptj }
10: else
11: //Expand the tail of the last communicated trajectory. Note that

we consider: T̂ t−k−1
j |i (0) = pt−k−1

j

12: Tail = {p̂t+l
j | p̂t+l

j = T̂ t−k−1
j |i (k+1+ l), l = 0, ..., N −k−2}

13: stepcte_v = T̂ t−k−1
j |i (N − 1) − T̂ t−k−1

j |i (N − 2) //Cte. velocity
step at the end of the tail

14: T̂ t−1
j |i = Tail ∪ {p̂t+l

j | p̂t+l+1
j = p̂lj + stepcte_v; l = N − k −

1, ..., N − 1; p̂t+N−k−2
j = T̂ t−k−1

j |i (N − 1)}
15: end if
16: return T̂ t−1

j |i

Table 2 Hyperparameters for the WW2C framework

Parameter Value

Episode length Te 100

Trajectory prediction horizon N 20

Time step length �t 0.05 s

Tolerance length rtol 0.1 m

where p̂k+1
j |i are extracted from T̂ t−1

j |i . J ki (xki ,u
k
i ) and J N

i (xNi ,

gi ) are the stage and terminal cost functions to beminimized,
which are defined in “Appendix B”. Function f is the non-
linear discrete function representing the dynamic model of
the robot

5 Simulation experiments

In this section we first describe our implementation of the
proposed method. Next, we provide a thorough evalua-
tion of our learned communication policy by comparing it
with our previous approach (Serra-Gómez et al., 2020) and
other communication baselines in several scenarios requir-
ing increasing cooperation efforts to navigate safely. A video
demonstrating the results of this paper is available (seeExten-
sion 1).
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5.1 Training setup

We train our communication policy for a team of twelve
quadrotors moving in R

3 and following Parrot Bebop 2
dynamics. We rely on the solver Forces Pro (Domahidi &
Jerez, 2014) to generate optimized NMPC code and its cor-
responding Python wrapper. As in Zhu et al. (2019), the time
step used in the NMPC is 0.05 s and the prediction hori-
zon is N = 20 (1 s ahead). The constraints are formulated
as soft-constraints to ensure the feasibility of the problem,
and the solver iterations have been limited to 600 to have
at least a control frequency of 20 Hz. Note that the frame-
work is agnostic to the choice of solver as long as it allows
a control frequency of 20 Hz. The learning algorithm and
the training of our policy were implemented in Tensorflow,
using the RLlib framework (Liang et al., 2017). The Critic
and Actor models follow the architecture shown in Sect. 4.2
and were trained for 37,200 episodes using an Intel i9-9900
CPU@3.10G Hz computer. The hyperparameters used for
training are explained in the Table 1. The simulation time
step is set to 0.05 s, which is the robot’s control period. The
quadrotors’ dimensions are represented by a sphere of radius
r = 0.3 m and their maximum speed is vmax = 4.25 m/s.
Computingboth the communicationpolicy and theMPCcon-
trol inputs takes less than 0.01 s per robot for each time step,
which allows for a real-time implementation of the frame-
work with a control and communication frequency of 20 Hz.
No noise is added into the simulation environment during
the training process, in order to optimize the policy with
low variance. Values for the reward weights were wg = 10,
wcoll = 10, wc = 10. Tuned reward and penalty terms were
rg = 1, rcoll = 1 and Ni (n) = 100(n − 1). Goal reward is
only received once during the episode. Episodes are finished
after reaching 100 time steps or when all agents reach the
goal.

5.2 Baselines

We introduce and compare our method with four other com-
monly used heuristic communication policies:

• Full communication (FC): At each time step each robot
broadcasts its trajectory plans.

• No communication (NC): The robots never exchange
their trajectory plans and a Constant Velocity model is
used by each robot to infer the others trajectories.

• A distance-based communication policy (ε-DBCP): If
the distance between two robots distance is smaller than
a threshold ε (in meters) then the agents broadcast their
trajectory information. ε ∈ {4.25m, 8.5m}, which is once
and twice the maximum distance within planning hori-
zon, respectively.

Fig. 3 Simulation results for each scenario using our communication
policy. The three figures on the left show the scenarios used for train-
ing while the three on the right are the ones used for testing. Solid
lines represent the trajectories executed by the drone-swarm. Yellow
represents the positions where the drones communicate their trajectory
plans. Blue depicts the positions where the drones do not communi-
cate. Green and Red represent the initial and goal position of each
drone, respectively. Increasing opacity represents the episode progres-
sion (Color figure online)

Full communication and no communication policies give
us a reference on what are the expected maximum and min-
imum performances in terms of safety and communication
requests. On the one hand, since full communication poli-
cies allow each robot to request trajectory intentions from
all robots at every time step, we can consider it to be an
over-conservative communication policy. Thus, if safe nav-
igation is not achievable by applying full communication in
a particular sampled episode, we can consider that it is dif-
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Fig. 4 Policy evolution throughout the training.We train three seeds and
evaluate them every 400 training episodes for 100 episodes. We show
the evolution of themean and standard deviation of their performance in
each of the presented scenarios. Communication requests are normal-
ized by the results that would be obtained for the full communication
policy. We use the results obtained for the full communication policy to
normalize the number of communication requests of the learned policy
between [0,1]

ficult to find a better communication policy that can achieve
collision avoidance for this particular configuration of robot
initial positions and goals. On the other hand, no communica-
tion policies provide a reference on the expected minimum
performance of the framework when only constant veloc-
ity estimations are used to predict other robots trajectory
intentions. Other baselines (ε-DBCP) give us a sense of our
learned method’s efficiency and safety in comparison with
hand-crafted, reasonable and strong heuristics. The MPC

motion planner is implemented with the same parameters
for all baselines.

5.3 Testing scenarios

To evaluate and compare our method with the baselines we
design scenarios where we can evaluate how communication
policies adapt to different levels of interaction. Therefore,
aside from the scenarios used for training (see Sect. 4.3.2),
we define three additional ones:

• Rotation (Fig. 3b): All drones are arranged in a cir-
cle and must rotate one position either clockwise or
counter-clockwise. This is a control scenario where no
communication should be necessary. Therefore it allows
us to evaluate the adaptability and communication effi-
ciency of the policy.

• Group swapping (Fig. 3d): We arrange the twelve
drones in two groups of six symetrically opposed. Then,
each drone must swap positions with its symmetrical
counterpart.

• Symmetric swapping (Fig. 3f): All drones are arranged
in a circle in symmetrically opposed initial positions and
swap places with the opposite drone. As with the asym-
metric swapping scenario, communication is required for
all drones to ensure collision-free trajectories.

All scenarios used for evaluation are depicted in Fig. 3.

5.4 Performance evaluation

We evaluate the performance of the proposed learned
collision-avoidance policy in terms of its safety and commu-
nication efficiency.We present multiple performancemetrics
and then compare our method with the indicated baselines.
The metrics are:

• Collision rate Proportion of episodes where there has
been a collision between any of the robots in the team.

• Number of communication requests along the episode
Total number of communication requests throughout the
episode. In deterministic scenarios, where we are certain
of the low or high need for cooperation, this metric will
allow to discern the adaptability of each model.

• Time to achieve the goal Number of time steps needed to
reach the goal. Failed episodes,where a collision has hap-
pened, are not accounted for when computing the mean
and standard deviation.

Figure 4 shows the evolutionof the learnedpolicy through-
out training in terms of average collision rate and number of
communication requests for all scenarios. To account for the
effect of different network initialization seeds into the final
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Fig. 5 Performance evaluation for each scenario of the communication
baselines and our learned policy. For our trained policy, we run three
seeds and take their average performance and standard deviation. We
run each method for 1000 episodes, gathering results for each metric.
For collision rates, we show the proportion of episodes where we obtain

at least one collision. For communication requests and number of time
steps, we show the results for those episodes without collisions. In case
none of the sampled episodes end without collisions, no bar is shown
for that policy

learned policy, we train three different initialization seeds
and show the average and standard deviation of their perfor-
mance in all our evaluations.
Wenormalize our results in communication requests between
[0,1] using those obtained for the full/no communication poli-
cies for the same sets of sampled episodes for each scenario
since this gives us a reference on the maximum/minimum
values that we can score in both metrics. We can see that our
method is able to learn an adaptable policy thatmakes close to
no requests in simple settings such as Rotation, Random nav-
igation and Random swapping scenarios while marginally
affecting the number of collisions obtained in more difficult
settings such asGroup swapping,Asymmetric and Symmetric
swapping scenarios. We can observe that our learned policy
can adapt to the different amounts of communication that are
required to achieve safe navigation. Note how at the end of
training, the collision rate decreases drastically.

Figure 5 compares the learned communication policy
against the proposed baselines using these metrics. The sce-
narios are ordered according to their levels of interaction. The
results obtained for the no communication policy show cor-
relation between the different complexity in scenarios and
the need for communication. As shown in Fig. 5a, the col-
lision percentage of our method (WW2C) is the same or
very similar as all other conservative baselines in all sce-
narios (0.4% difference at most). Even in the most complex
scenarios, such as asymmetric swapping, we show that the
difference in collisions is not significant in comparison with
the safest communication policy: full communication. The
clear advantage of our method is illustrated in Fig. 5b, where
WW2Cshows better results by communicating less than 50%
and 30% in comparison with 4.25 m heuristic and the full
communication in the worst cases. We show that the learned

policy can adapt better to scenarios of different complexities
since there is also a clear correlation between the amount of
communication requested at each scenario and the expected
need for cooperation shown in Fig. 5a.

Due to our setup not allowing our drone to stop instan-
taneously, it will collide rather than run into deadlocks.
Therefore, the success rate for any method is equivalent to
one minus its collision rate. We show that the learned com-
munication policy still manages to succeed in practically all
scenarios with little effect in the time it needs to achieve
the goal in comparison with the baselines. Our reward func-
tion accounts for achieving the goal only at the end of the
episode. This is due to our main priority being to decrease
the amount of communication while maintaining safety and
avoiding deadlocks. We find that, although our reward func-
tion does not motivate achieving the goal as fast as possible,
the sacrifice in terms of additional time steps is not signifi-
cant.

5.5 Robustness and zero-shot generalization
capabilities

Our approach allows to obtain a policy that is capable to
generalize to an arbitrary number of robots in the environ-
ment, and to scenarios requiring different levels of interac-
tion.Thus, we demonstrate the generalization of the learned
communication policy with a series of experiments.

5.5.1 Lower/larger scale multi-robot systems

We evaluate the performance of our method trained with 12
agents, on scenarios with a higher/lower number of agents.
More specifically, in Fig. 6, we show the obtained results
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Fig. 6 Results obtained when testing the full communication and our
policywith 6, 12, 18 and 24 drones.Ourmethod has been trainedwith 12
drones. Showed communication requests are have been scaled using the

mean communication requests of the full communication policy under
each scenario/number of agents

from simulating 6, 12, 18 and 24 robots in each of the training
and testing scenarios for 1000 episodes in comparison to the
performance shown by the full communication policy under
the same conditions.

We show that our method is able to communicate at
least 70% less in comparison with the full communication
policy, while still being capable to adapt to scenarios requir-
ing different levels of interaction. Note that the normalized
communication requests for each scenario does not change
significantly with the number of agents, even showing a
decreasing tendency when scaling up to 24 agents. This
indicates that our communication policy generalizes well to
environments with additional agents.

Regarding the obtained collision rates, our method gener-
alizes well and shows better results when there are less robots
in the environment. There is a degradation of performance
when the number of agents in the environment is higher than
seen during training. However, the degradation obtained for
our method is low (i.e., less than 2% for 18 agents, and less
than 10% for 24 agents) and is similar to the degradation
seen when using full communication for the same numbers
of agents.

5.5.2 Noisy positions and velocities

We also evaluate the robustness of our communication
method under different levels of noisy inputs. We add a
multiple of a gaussian noise to the other agents’ relative
positions and velocities in our observation vector zti to
simulate the effects of sensor measurement errors and local-
ization uncertainties on our learned communication policy.
The added measurement noise is zero mean with covari-
ance: � = diag(0.06 m, 0.06 m, 0.06 m)2. We simulate
1000 episodes for each scenario under three levels of noise:
�, 2�, 4�. In Fig. 7, we show that our method is robust to
these different levels of the added measurement noise since

both performance and behaviour in terms of collision rates
and communication requests suffer non-significant changes.
In fact, note how the collision rates for each level of noise
remains very low (> 1%) and similar to the other results.

5.6 Ablation study

We analyse the key design choices we have introduced in
this paper in comparison to Serra-Gómez et al. (2020). Two
main changes that we introduce are a model architecture that
is able to function with an arbitrary number of robots, and a
difference in conditions between training and testing regimes
to obtainmore robust and adaptable communication policies.
Overall, these two changes allow to learn policies that can
decide better when and with whom to communicate. We also
changed the reinforcement learning algorithm from MAD-
DPG (Lowe et al., 2017) to PPO (Schulman et al., 2017)
with parameter sharing (Gupta et al., 2017). This was nec-
essary as MADDPG requires one state-action value function
per agent, which scales badly with the number of agents and
tends to learn specialized agent roles that are situation spe-
cific. PPO, on the other hand, only requires one state-value
function for all agents and can learn the same communica-
tion policy for all agents using parameter sharing as well,
avoiding over-specialization to specific scenarios.

We perform an ablation study to justify the modifications
applied to the previous approach (Serra-Gómez et al., 2020).
First, we will address the implementation of a targeted scal-
able attention-based architecture to encode the information
of the dynamic environment. Second, we will empirically
justify our decision of disabling informed constant veloc-
ity estimations whenever there’s no communication during
training.
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Fig. 7 Results obtained when testing our policy in presence of noise
of the observed robot’s positions and velocities. Standard deviations
are taken over the results taken when evaluating 3 seeds of the trained
policy over 1000 episodes

5.6.1 Evaluation metrics and output models

We compare the different ablations across the same scenarios
mentioned in Sect. 5.4 showing the evolution of their train-
ing according to the following metrics (sorted in descending
priority order):

• Collision rate: Defined in Sect. 5.4.
• Number of communication requests:Defined in Sect. 5.4.

Similar to our method in Sect. 4.2, each ablated commu-
nication policy outputs a normalized 2-dimensional vector
[p j |i , 1− p j |i ] for each other robot j . This vector represents
a Bernoulli distribution B(p j |i ). The communication policy

Fig. 8 Performance evaluation over the ablated versions presenting dif-
ferent policy architectures. We add the performance of our own method
for comparison. Standard deviations are taken over the results taken
when evaluating 3 seeds of each trained policy over 1000 episodes

is stochastic if it samples such distribution to decide whether
to request robot j’s trajectory intentions (c j |i ∼ B(p j |i )).
The policy is deterministic if it decides to communicate by
comparing the mean of the distribution to a predetermined
threshold (ctj |i = 1[p j |i > 0.5]). For fair comparison, we
evaluate every ablation both as a stochastic and determinis-
tic policy and show the one obtaining the best performance
across all different evaluation scenarios.

5.6.2 Scalable attention-based architecture

One of the main limitations of our previous approach (Serra-
Gómez et al., 2020) is its difficulty to scale to multi-robot
teams larger than four quadrotors, let alone react to an arbi-

123



Autonomous Robots (2023) 47:1275–1297 1291

trary number of robots in the environment. Similar to Everett
et al. (2019) and Kurin et al. (2020), in this work we address
this challenge by incorporating three layers of transformer
blocks into the core of the network architecture to encode
the environment, which allows to provide a communication
action for an arbitrary number of other robots. In Fig. 8, we
compare our approach with two ablated versions.

Ablated architecture 1 concatenates all the encoded vec-
tors from other robots and substitutes the transformer block
by three 64 neuron fully-connected layers with a ReLu acti-
vation. The decoder layer maps the resulting hidden layer
to a vector of 2(n − 1) communication scores. This ablated
version cannot be used for a different number of agents than
in training. The aim of this ablated version is to showcase
the benefits of using each other drone individual informa-
tion while using attention mechanisms to encode the state of
the environment and compute each communication signal. In
Fig. 8, we show that the architecture used in this work is able
to scale better to larger multi-robot systems both in terms of
collision rate and number of communication requests across
episodes. These results also remark the importance of pre-
cise communication. A higher amount of communication
requests do not necessarily translate to a safer communi-
cation policy.

Ablated architecture 2 also replaces the transformer block
with three fully-connected layers of 64 neurons with ReLu
activation functions. However, it processes each robot’s
information individually to decide whether to communi-
cate or not. This network solves a simpler problem than
the precedent ablated version since it learns to communicate
with another other robot by only considering the information
on its distance, relative position and velocity. Surprisingly,
Fig. 8 shows that this second ablation performs similar to
our attention-based architecture. The intuition behind these
results is that, at least in the tested scenarios, the individual
relative information of every other robot contains most of the
information that is relevant to decide whether to communi-
cate with it or not. Although our method seems to result in
slightly less collisions in all scenarios, we cannot draw a solid
conclusion on this since the performance is not significantly
different. In fact, while it is logical that there should be situa-
tionswhere the attentionmodulewould add a clear advantage
over the pairwise communication ablation, it seems difficult
to identify and reproduce these scenarios.

5.6.3 Training-test environment separation

As explained in Sect. 4.3.3, distinction between test and train-
ing regimes was applied to increase the amount of collision
experiences and increase the causality between lack of com-
munication and collision events. The result of doing this is an
efficient learned communication policy that is able to adapt

Fig. 9 Performance evaluation over the ablated versions trained while
enabling the prior information predictions. We add the performance of
our own method for comparison. Standard deviations are taken over the
results taken when evaluating 3 seeds of each trained policy over 1000
episodes

to different scenarios with variating levels of interaction and
still be practically as safe as full communication policies.

However, it could be unclear whether the same results
could still be achievedbyfinding the rightweighting trade-off
between collision event and communication event penaliza-
tions. To verify this,wemodify the reward function by adding
a weighting variable ρ, as shown in Eq.12, and attempt to
fine-tune it by training three models under different values
for it: ρ = {0.98, 0.90, 0.50}. Informed constant velocity
estimations are enabled during training. Note that ρ = 0.5

123



1292 Autonomous Robots (2023) 47:1275–1297

results in the original reward function proposed in Sect. 4.1.4.

Ri (xt , π t
i ) = wg Rg,i (xt ) + 2ρwcoll Rcoll,i (xt )

+ 2(1 − ρ)wc Rc,i (π
t
i )

(12)

The values of ρ were chosen to showcase howdifficult and
counter-intuitive it is to properly balance communication and
collision penalties when the training and test environment
are the same. Rather than a wide range of parameters, Fig. 9
shows which values of ρ are necessary to obtain a policy
that matches ours in terms of collision rates (ρ = 0.98),
communication requests (ρ = 0.90), andwhat happenswhen
we balance both objectives equally (ρ = 0.50).

In Fig. 9, we compare our method with different versions
of the ablated model trained under the given different val-
ues for ρ. Increasing the value of the ρ hyperparameter
results in learningmore conservative communicationpolicies
that make more communication requests to navigate more
safely. We can argue that fixing such value around ρ = 0.90
yields similar performance to our method as it is just slightly
lower in terms of communication requests in the most com-
plex training scenario: Asymmetric swapping. However, we
show crucial differences in terms of fine-tuning difficulty,
adaptability and reliability of the learned policy. In rotation
scenarios, we should learn to decrease communications as
no interaction is needed to perform safe navigation in this
setting.

Note how the value of ρ has high impact on the con-
verged policy for the ablated versions. In particular, their
collision rate and overall communication amount throughout
all scenarios variate greatly as shown in Fig. 9. In contrast,
our method allows us to decrease the number of communi-
cations while hardly compromising safety by just applying a
simple modification.

Additionally, ablated versions fail to adapt to different
scenarios. Policies trained with high values for ρ (≥ 0.90)
tend to over-communicate, requesting other robots’ trajec-
tory intentions even when both of them are not moving.
Instead, for lower values of ρ (≤ 0.90 and specially≤ 0.50),
learned policies tend to under-communicate as they rely too
much on the predicted trajectory intentions which compro-
mises their collision rate. In particular, a balanced value of
ρ = 0.5 that equally punishes collisions and communica-
tion already results in close to 0 communication requests
and high collision rates. We won’t get any further inter-
esting results from lower ρ values since that would mean
a policy even closer to the no communication policy base-
line. Enabling informed constant velocity estimations during
training results in learned policies that leverage how much
they can rely on informed constant velocity estimations. In
practice, this means that we have a stochastic policy that con-
trols the expected frequency of trajectory intention requests.
While it is another valid strategy, it lacks adaptability and is

less reliable and intuitive in complex scenarios. This explains
why policies trained under high values for ρ tend to overcom-
municate in all scenarios (Fig. 9).

6 Real experiments

In this section, we demonstrate that our communication pol-
icy learned through reinforcement learning in simulation can
be deployed on physical quadrotors (see also Extension 2).
In the following subsections, we first briefly introduce the
hardware setupof our framework.Then,wepresent themulti-
robot scenarios used for evaluation.

6.1 Hardware setup

As in Zhu and Alonso-Mora (2019b), our experimental plat-
form is the Parrot Bebop 2 quadrotor. The radius of each
quadrotor is set as 0.30 m in the MPC. An external motion
capture system (Optitrack) is used to measure the pose of
each quadrotor, which provides an estimated pose for each
quadrotor. We then use an UKF to estimate the state of
quadrotors (Zhu & Alonso-Mora, 2019b). We use an Intel
i7 CPU@2.6GHz computer for the communication policy
and planner and use Robot Operating System (ROS) to send
commands to the quadrotors. The communication policy and
the NMPC configurations are explained in Sect. 5.1.

6.2 Multi-robot scenarios

In this section, we design three scenarios to validate that
the behaviors learnt in simulation during training (Fig. 3)
can be reproduced in real multi-drone teams. These experi-
ments have been designed to showcase the adaptability of the
communication policy to different amount of drones and to
motion planning tasks requiring different amounts of inter-
action.

First, in Fig. 10awe let two drones follow parallel trajecto-
ries (analogous to the rotation scenario in 2-drone settings) to
verify that the learned communication policy does not com-
municate when it is not necessary. Additionally, we let them
swap positions (Fig. 10b) to demonstrate that two robots can
reliably avoid each other using this framework and to ver-
ify the adaptability of our learned communication policy to
different situations along the episode (i.e., they do not com-
municate unless needed to avoid collisions). Finally, we add
a third robot to the environment and let them perform the
swapping scenario (Fig. 10c). Note that the communication
policy is the same for all robots and does not need retraining
when their number changes.

In Fig. 10d, we plot the minimum distance among drones
and the number of communications registered along these
three scenarios. We show that in all three cases, our frame-
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Fig. 10 Validation of our trained policy in real experiments

work manages to avoid collisions with a minimal number of
communication requests, and to adapt to a different number
of robots without retraining or tuning the parameters from
the NMPC.

To show the relationship between communication requests
and distance holds even in real environments, we perform
9 swapping experiments with two drones (Fig. 10b) while
keeping record of the distance between them and the number
of communications. Although there are overlaps among the
distance distributions, the box plot in Fig. 11 shows a clear
relationship between the distance between drones and the
number of communications. Note that the outliers in the 0-
communication distribution and the overlaps between boxes
could bedue to the fact that the learned communicationpolicy
does not behave symmetrically in space. As seen in Fig. 11,
this means that the two drones do not necessarily commu-
nicate at the same time and does not behave equally before
and after the intersection (Fig. 10d). Our results show there-
fore that the proposed learned communication strategy allows

Fig. 11 Box plot on the two-drone distance distribution for different
levels of communication. The dotted line indicates the collision distance
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physical quadrotors to navigate tight situations with lower
communication requests to avoid collisions.

7 Conclusions

In this paper, we have introduced an efficient communica-
tion policy integrating the strengths of MARL and NMPC
in collision avoidance tasks. Simulation results show that
our policy learns when and from whom to request planned
trajectories to successfully avoid collisions. Experimental
results show that the learned communication policy can be
deployed on physical quadrotors. Further testing and the
extension of our method to heterogeneous multi-robot sys-
tems is left for future work. Our method reduces the amount
of communication requests significantly while achieving
collision-free motions, practically achieving the same safety
as more conservative communication baselines. The analysis
and extension of our method under imperfect and delayed
communication conditions are also left for future work. In
comparison with Serra-Gómez et al. (2020), we use an archi-
tecture that enables us to scale our approach to higher and
varying number of agents during and after training. Further-
more, we introduce a training method which allows to learn
safe policies without sacrificing adaptability. Future work
will investigate how to prioritize episodes from scenarios
which are rich in information to improve sample efficiency.
Finally, our learned communication policy can only influ-
ence and coordinate the motion planning of each robots to
a certain extent. It can only choose when additional infor-
mation is needed to generate safe trajectories, but cannot
modify this information nor modify the plans generated by
the NMPC directly. Learning how to modify the information
and/or plans generated by the NMPC to compensate for a
lack in accuracy of our model is left for future work as well.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-023-10127-
3.
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Appendix A dynamic model

In this work, we use the same drone model and specifica-
tions for the Parrot Bebop2 SDK as in Zhu and Alonso-Mora
(2019b). According to the Parrot Bebop2 SDK, the control
inputs to the quadrotor are given by u = [φc, θc, vzc , ψ̇c] ∈
R
4, where φc and θc are the desired roll and pitch angles, vzc

is the desired linear velocity in the z-axis and ψ̇c is the yaw
rate. To simulate the drone dynamics, we extend the state
of each drone, as defined in Sect. 4.1.1, with information of
its orientation (φ, θ, ψ). We use a first order low-pass Euler
approximation of the quadrotor dynamics (Zhu & Alonso-
Mora, 2019b),where the dynamics of the state velocity vector
are:

⎧

⎪⎨

⎪⎩

[

v̇x
v̇y

]

= RZ (ψ)

[

tan θ

− tan φ

]

g − kD

[

vx
vy

]

,

v̇z = 1
τvz

(kvzvzc − vz),

(A1)

where g = 9.81 m/s2 is the earth’s gravity, RZ (ψ) ∈ SO(2)
is the rotation matrix along the drone’s local z-axis, kD is the
drag coefficient, kvz and τvz are the gain and time constant of
vertical velocity. The attitute dynamics of the quadrotor are:

φ̇ = 1

τφ

(φc − φ), θ̇ = 1

τθ

(θc − θ), ψ̇ = ψ̇c (A2)

where τφ, τθ are the time constants of roll and pitch angles
respectively. In thiswork, due to the drone being able tomove
in any direction with any yaw angle, we fix the drone’s yaw
angle to zero. Consequently, ψ̇c = 0
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Appendix B cost functions

The components of the cost function J ki (xki ,u
k
i ), k =

0, 1, . . . , N −1 and J N
i (xNi , gi ) are defined in the following.

Goal navigation

We minimize the displacement between the trajectory’s ter-
minal position and the robot’s goal location, and define a
terminal cost

J N
i (xNi , gi ) = wN

i

∥
∥pN

i − gi
∥
∥

∥
∥p0i − gi

∥
∥

, (B3)

where wN
i ∈ R

+ is a tuning weight coefficient.

Control input cost

One of the stage cost terms is to minimize the control input,

J ki,u(u
k
i ) = wi,u

∥
∥
∥uki

∥
∥
∥ , (B4)

where wi,u ∈ R
+ is a tuning weight coefficient.

Collision cost

To improve safety, a stage collision potential field cost is
introduced between the robot and each other robot,

J ki, j,c(x
k
i ) =

{

wi,c(dpot − dki j ), if dki j < dpot,

0, otherwise .
(B5)

where wi .c ∈ R
+ is a tuning weight coefficient, dki j =

∥
∥
∥pki − p̂kj

∥
∥
∥ is the distance between robot i and each other

robot j , and dpot is the specified potential field distance, a
scalar hyperparameter that establishes the limits of the poten-
tial field. The field grows linearly once a robot enters its limits
as seen in Eq. B5. Then the collision potential cost is defined
as

J ki,c(x
k
i ) =

∑

j∈I, j �=i

J ki, j,c(x
k
i ). (B6)

Finally, the overall stage cost is

J ki (xki ,u
k
i ) = J ki,u(u

k
i ) + J ki,c(x

k
i ). (B7)
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