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Abstract 
In the field of photovoltaics, tandem cells have emerged as a promising technology with high power 

conversion efficiencies. The academic society grew interest toward this technology due to its high 

generation capabilities at low production costs. For the time being, most of the research efforts are 

limited to the lab performance of these cells. However, real life performance studies allow for better 

understanding of the design effects and yield potentials of this technology. 

The commercially available yield prediction tools do not involve energy yield prediction models 

for tandem modules. In addition, they fall short at modelling all the aspects influencing the PV 

energy yield. The PVMD Toolbox, developed by the Photovoltaic Materials and Devices group at 

Delft University of Technology, is proposed to serve this need. 

This thesis presents the work done to develop version 4 of the toolbox. A calibrated lumped element 

model (CLEM) was developed to simulate the electric performance at the cell level. The CLEM 

combines the accuracy of physical models with the speed of lumped-element models to generate 

hundreds of thousands of simulations within a single minute. Additional models were implemented 

in the toolbox to account for the effects of cell interconnections and metallization on the energy 

output. Besides, a cell mapping algorithm was developed to reduce the AEY simulation time. This 

algorithm proved beneficial by reducing the number of required electric simulations by 86% at the 

small cost of 0.226% bias. Afterwards, the accuracy of the thermal and electric models was 

validated against two datasets. The simulated results showed a great agreement to the measurements 

with total energy yield deviations from the measurement of 2.65% and 4.15%, compared to 7.43% 

in version 3. Therefore, version 4 of the toolbox offers more accurate simulations with a reduced 

computation speed by a factor of 45. 

The CLEM and cell interconnection models were utilized to perform energy yield simulations on 

tandem modules. Case studies were performed on c-Si/tandem modules to investigate the 

implications of design choices. After optimizing the STC output of four design options, the toolbox 

was used to simulate the energy yield for each of them. Then, the optical and electric performance 

of the modules were studied. The tandem modules proved advantageous, with energy yield increase 

ranging between 12.91% and 27.13% compared to SHJ modules. In addition, specific yield 

computations confirmed the sensitivity of tandem modules to meteorological conditions. The final 

result of this thesis is a first-time combination of modelling spectral irradiance, thermal, and cell 

and module electric aspects for energy yield simulations of tandem modules. 
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Nomenclature 
LCOE Levelised cost of energy 

c-Si Crystalline silicon 

SHJ Silicon heterojunction 

AOI Angle of incidence 

Λ Wavelength 

AM Air mass 

FF Fill factor 

𝜃𝑠 Solar zenith angle 

APE Average photon energy 

Iph Photo-generated current 

n Ideality factor 

I0 Saturation current 

Rs Series resistance 

Rsh Shunt resistance 

EQE External quantum efficiency 

STC Standard test conditions 

q Elementary charge 

kB Boltzmann constant 

Φ Photon flux 

σ Stefan-Boltzmann constant 

Eg Bandgap energy 

Vth Thermal voltage 

Kv Voltage thermal coefficient 

Ki Current thermal coefficient 

VBY Bypass voltage 

GHI Global horizontal irradiance 

DNI Direct normal irradiance 

DHI Diffuse horizontal irradiance 
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RMSE Root mean square difference 

MBD Mean bias difference 

SBF Slope of best-line fit 

WIA Willmott’s index of agreement 

EEx Extra-terrestrial irradiance 

Esc Solar constant 

kt Sky clearness index 

kd Diffuse coefficient 

TSS Steady-state temperature 

k thermal conductivity 

hforced Forced convection coefficient 

hfree Free convection coefficient 

SD Standard deviation of the residual 

U95 95% confidence interval 

2TT Two-terminal tandem 

4TT Four-terminal tandem 

RT Rear-textured 

DT Double-textured 

PR Performance ratio 
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1 Literature Study 

This chapter is a review of the status quo to formulate the research questions. Section 1.1 presents 

an introduction to the trends and future of photovoltaic energy technology. Section 1.2 includes an 

overview of tandem cell technology and its working principles. Afterward, section 1.3 introduces 

state-of-the-art photovoltaic energy yield simulation tools and their key attributes. Later, the 

constituents, features, and limitations of the current version of the PVMD energy yield simulation 

toolbox are described in section 1.4. Based on the previous sections, the thesis objectives are defined 

in section 1.5, followed by a concise thesis outline in section 1.6. 

1.1 Background 

Our energy requirements, as human civilization, are intensifying due to growing economies and 

rising standards of living. In fact, 2018 witnessed a 2.9% growth in primary energy consumption,  

accompanied by a 2% increase in carbon emissions from energy use [1]. Currently, fossil fuels are 

the major constituents of energy resources used. However, because of the finite available fossil 

reserves and the pollution dilemma, renewable energy use is being advocated. The goal of the Paris 

Agreement of limiting global warming to 2°C, requires complete decarbonisation of the power 

sector and electrification by 2050 [2].  

At present, a growing quantity of energy is being harvested from renewable energy sources, such 

as solar, wind, geothermal, hydro and tidal energy; the annual renewable energy generation grew 

from 3,898 TWh in 2009 to 6,191 TWh in 2017 [3]. Among the renewable energy sources solar 

energy is considered in favour when compared to other resources for several reasons. First, it is, by 

far, the energy source with the highest power potential available, with 23,000 TW incident power 

on the earth surface [4]. Besides, it is highly flexible in terms of capacity, with generation capacities 

ranging from watts to gigawatts. Furthermore, photovoltaic solar energy shows the most promising 

learning curve and the highest drop in costs among other available sources. This can be 

demonstrated by the large drop in global levelised cost of energy (LCOE) over the last years. Figure 

1.1 portrays the change of LCOE for different renewable energy resources between the years of 

2010 and 2018 [5]. The LCOE of solar photovoltaic, shown in yellow, shows the highest drop 

compared to other technologies. It decreased from $0.371/kWh in 2010 to $0.085/kWh in 2018, 

resulting in a 77% decrease over a period of 8 years.  
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Figure 1.1 Global LCOE of renewable energy generation technologies, 2010-2018 [5]. 

As a result, the photovoltaic industry has witnessed exponential growth since the beginning of the 

twenty-first century. Figure 1.2 shows the contribution of energy harvesting technologies to the net 

global generating capacity added in 2017 [6]. Not only did solar energy account for third of the 

global generation capacity added, but also it recorded a 30% market growth in 2017.  

 
Figure 1.2. Net power generating capacity added in 2017 [6]. 

With this growing contribution to the energy market, the economic and environmental benefits of 

this technology are becoming more evident [7]. In addition, governments and industry leaders are 

allocating investments for research and development in order to enhance the performance and 

durability of PV modules. Consequently, new promising technologies are emerging, such as bifacial 

modules, thin-film technologies, and tandem solar cells.   

1.2 Tandem Cell Technology 

Similar to other energy harvesting technologies, the efficiency of photovoltaic solar cells is limited 

by several factors. The Shockley-Queisser limit is one of the most recognized attempts to foresee 
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the maximum possible efficiency of a single junction solar cell [8]. Optical losses, mainly spectral 

mismatches, are the main factor that delimits the cell’s efficiency shown in blue and red in the 

figure below. Figure 1.3 depicts the three major loss mechanisms for a solar cell [9]. Thermalization 

and below bandgap losses are due to a mismatch in energy between the incident photons and the 

absorber’s bandgap. Other losses represent mainly the radiative recombination occurring after 

generating the charge carriers. Tandem cell technology presents a solution to reduce the spectral 

mismatch losses. This technology, is expected to be commercialized in 2020 [10]. 

 
Figure 1.3 The major loss mechanisms for a solar cell under AM 1.5 spectrum [9]. 

1.2.1 Working principle 

A tandem cell is a multi-junction solar cell where absorber layers of considerably different band 

gaps are combined. The purpose behind this design is to optimize the utilization of incident 

irradiance by reducing the spectral mismatch losses. The simplest design includes two cells: a top 

cell with a wide bandgap and a bottom cell with a narrow bandgap. Figure 1.4 shows the basic 

concept of tandem solar cells [11]. The top cell absorbs the higher energy photons leading to a drop 

in the thermalization losses. On the other hand, the bottom, cell absorbs the lower energy photons. 

Under the standard solar spectrum, this technology enables the solar cell to achieve high theoretical 

limits, reaching 46% for a multijunction cell with two sub-cells and 52% for a multijunction cell 

with three sub-cells [12]. 

 
Figure 1.4 Operating principle of tandem cell: a) Tandem cell concept b) Spectral regions for absorbing cells 

[11]. 
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1.2.2 Cell Configuration 

The connection between sub-cells has been also a topic of research. For two sub-cells, the two 

possible options are two-terminal (2T) and four-terminal (4T) connections. Figure 1.5 depicts the 

possible configurations for tandem cells with two sub-cells [13].  

 
Figure 1.5. Tandem cell configurations: a) 2T b) 4T stacked c) 4T decoupled [13]. 

4T tandem cells suffer from manufacturing obstacles that hinder their commercialisation. For 4T 

stacked tandem cells, the four terminals must have specified spectral and optical properties. On the 

other hand, the design of 4T decoupled tandem cells requires a dichroic mirror, an optical splitter 

that is very expensive for large scale manufacturing. The performance of 2T tandem cell, the easiest 

to manufacture and commercialise, can be impeded by current mismatch. The 2T architecture 

implies that the two sub-cells are connected in series. Thus, the component with the lowest current 

density will determine the overall current of the cell. To overcome the current mismatch challenge, 

researches are conducted to optimise the design parameters of monolithic tandem cells [14], [15]. 

1.2.3 Perovskite Attributes 

Perovskite is a material described by the formula ABX3, where A is a large cation, B is a small 

cation and X is an anion. Recently, perovskite has become a topic of interest in the photovoltaic 

industry because of its promising attributes. A key attribute is the strong optical absorption implying 

a smaller material thickness needed. The possibility of a thin-film application, combined with the 

low non-radiative recombination, reduces the losses of collecting the photo-generated charge 

carriers. Besides, the commercialization of large scale photovoltaic applications with perovskite is 

possible due to the ease of perovskite fabrication and diversity of methods [16]. The mentioned 

characteristics favour the perovskite as a material used for tandem cell design. 

1.3 Energy Yield Prediction 

1.3.1 Motivation 

Despite the auspicious features of the photovoltaic technology, an undeniable fact is hindering its 

progress; it is an intermittent source of energy. In fact, the intermittency of power generation creates 

a substantial challenge for power producers, utility companies and system operators [17]. This 

section presents three main benefits of developing accurate energy yield prediction models. 

At the technical level, fluctuating generation jeopardizes the grid stability and may result in 

electricity congestion, frequency swings and possible power outages [18], [19]. To avoid the risk 

of failure, many technical solutions are investigated. These solutions include the integration of 

storage, or response, systems and applying demand-side management algorithms and policies [20]–
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[22]. These solutions present additional, indirect, costs for installing and integrating photovoltaic 

systems.  

The total energy yield is a decisive factor in assessing investments in PV systems. Energy yield 

uncertainty of PV system have always questioned the credibility of any financial appraisal. 

Overestimating the energy yield of a prospective project implies overrating the profits of the project 

and thus may lead to financial losses. On the other hand, underestimating the energy yield would 

discourage potential investors. For energy trading, this uncertainty in power output results in low 

capacity credit in the day-ahead markets and reduced utilization of available plants [23]. As the 

penetration of photovoltaic technology to the power sector increases, the economic and social costs 

of it intensify [24]. Therefore, from an economic perspective, obtaining an accurate energy yield 

prediction for PV systems will reduce the effect of intermittency and encourage prospective 

investors.  

At the operational level, the output of a PV system is sensitive to numerous factors, especially for 

advanced technologies. An accurate model of a PV system can be an indicator of the system’s 

condition and may help in detecting any unusual occurrences. 

Therefore, developing prediction models for PV systems is needed to reduce the social, economic, 

and technical costs of generation uncertainty. These models would pave the way for more 

convenient decisions on the operational and strategic levels. An efficient forecast of the generated 

PV power will reduce the technical and economic challenges of integrating photovoltaic energy 

generation [25]. 

1.3.2 Energy yield prediction models 

The significant growth of the PV technology has motivated the development and continuous 

refinement of energy yield models. Not only are these tools beneficial for the modelling of energy 

output, but also they can be used to quantify the impacts of PV system design choices. At the 

fundamental level, most software packages are based on similar analytical models: an optical model 

to simulate the incident light interactions, a thermal model to estimate the module’s temperature, 

and an electric model to predict the module’s performance under the simulated conditions. Some 

packages allow the user to benefit from additional features. Below is a list of some of the 

commercial models with their characteristic features. 

SAM (System Advisor Model) is a simulation tool developed by the National Renewable Energy 

Laboratory (NREL) in the United States of America. Its scope of application extends beyond the 

photovoltaic technology to include geothermal, wind and biomass power. It involves the power 

output at an hourly or sub-hourly basis and investigates the effects of uncertainty by stochastic and 

probability of exceedance analyses. SAM allows the user to model a variety of systems, such as PV 

with battery storage and high concentration PV. Moreover, SAM is helpful for financial appraisals 

as it calculates financial metrics that include net energy savings, after-tax present value and payback 

period [26].  

PVsyst is another software package that was developed at the University of Geneva. It focuses on 

the technical side more than the economic. The software allows the user to define the project by 

specifying the desired power, PV technology and system location. Besides, it can be utilized to 
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consider additional issues such as grid storage and system aging [27]. PVsyst has a user-friendly, 

multilingual interface, and offers the users comprehensive reports and analyses about design aspects 

[28]. 

MoBiDiG (Modelling of Bifacial Distributed Gain) is another simulation tool developed in ISC 

Konstanz that models monofacial and bifacial modules. Similar to the previous tool, it is based on 

optical, thermal and electrical sub-models. Perez model is used to simulate the irradiance 

distribution across the sky dome. Moreover, the economic aspect is considered by calculating the 

LCOE for any given system. This tool achieves a great level of accuracy with a deviation of 4.9% 

for five extreme-days case [29].  

BIGEYE is a computational tool developed by ECN, part of TNO. It is mainly focused on modelling 

bifcial modules and optimizing the system design. The model requires meteorological data as an 

input to incident irradiance via three-dimensional view factors and calculate the temperature via 

thermal model [30]. Then, a single-diode electric model is implemented to simulate the hourly, 

daily, monthly or yearly energy yield of the system [31].  The BIGEYE model is capable of 

optimizing the system, or module, design in order to guarantee the highest possible energy output, 

lowest possible energy cost, or best alignment with the daily demand curve [32]. 

1.4 PVMD Toolbox version 3 

PVMD toolbox is a simulation tool developed by Photovoltaic Materials and Devices (PVMD) 

group members at Delft University of Technology. In fact, the current model is a result of 

accumulated effort and work by previous MSc students, Elias Garcia-Goma, Julen Garro Etxebarria 

and Zidan Wang. The latest version was developed by Zidan Wang in her master’s thesis 

“Improvements and Experimental Validation of the PVMD Toolbox” [33]. The main effort will be 

on improving version 3 of the PVMD Toolbox, which will be referred to as Toolbox. 

1.4.1 Toolbox description 

At the fundamental level, the toolbox is composed of five main models. The models, programmed 

on MatLab, run sequentially to simulate the coupled optical, thermal and electrical phenomena. 

Figure 1.6 shows the logic and flow of data within the toolbox, followed by a brief description of 

each of the five models. 
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Figure 1.6 Toolbox flowchart with optical, thermal and electric models. 

The Optical Models 

The Cell Level Model studies the light interactions inside the cell. GenPro4, a software 

package developed by Santbergen et al, is integrated into the toolbox. It utilizes ray optics 

and wave optics to achieve high accuracy at a tolerable computational cost. GenPro4 

models the solar cell layers as 1-D cross-sections and performs simulations in order to 

calculate external quantum efficiency as a function of wavelength [34]. Within this model, 
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the available cell technologies for simulation are mono-facial and bifacial crystalline silicon 

heterojunction (SHJ) as well as perovskite/c-Si tandem cells. The user can modify the cell 

design by adjusting the geometric properties of the cell layers. The cell characteristics, 

including layer texture, refractive indices and extinction coefficients are inputted into the 

model. Then, light interaction simulations are performed for every wavelength and angle 

of incidence. The output of this model is layer reflection, absorption, and transmission 

values for every angle of incidence and wavelength. 

The Module Level Model uses the optical properties of a single cell, output of the previous 

model, to simulate the performance of the module. The first task executed in this model is 

constructing the PV module. This can be done by arranging the cells, according to a given 

configuration, and sealing the module with an encapsulation material and glass layer at the 

front and back sides. Then, the module is placed on mounting frames on its corners. An 

additional option of adding reflectors with defined positions and tilt angles is available for 

users. After the construction of the module, Lux, a software developed by Santbergen [35], 

is integrated. This software performs ray-tracing simulations in order to create sensitivity 

maps. Sensitivity is defined as the module’s utilization of an incident spectrum. Its values 

range between 0, the case where the module absorbs 0% of the incident light, and 1, the 

case where the module fully utilizes the incident light. The sensitivity values are 

wavelength-dependent and can be calculated for the whole module or for individual cells. 

These values are plotted on a circle representing the position of incident light on the sky 

dome.  

The Sky Level Model studies the distribution of incident irradiance across the sky. This 

model utilizes direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI) 

available on solar radiation databases such as Meteonorm. Then, Perez diffuse irradiance 

model is applied to simulate the light incident from predefined elements across the sky 

dome. To convert the irradiance intensity value into a spectrum, air mass (AM) is calculated 

according to the solar zenith angle. Based on AM value, the solar spectrum is given for the 

considered time and location. In addition, the impact of shading caused by nearby objects 

or neighbouring cells is considered according to the principle of horicatcher [36], which 

corrects incident irradiance based on the skyline of studied location. The output of this sky 

model is incident spectrum from sky elements for all modelled hours of the year.  

The Thermal Model 

With the available sensitivity map and sky irradiance from the optical models, the photo-

generated current is calculated for the cells. Then, the model takes the photo-generated 

current, incident irradiance and weather conditions as an input to calculate the temperature. 

Using fluid dynamics relations, the model calculates the temperature on an hourly basis. 

Due to the small cross section between the neighbouring cells, thermal conduction between 

cells is assumed to be negligible. Then, the temperature is calculated for each cell 

individually. Because the time constant of a module is in the range of 7 minutes [9], steady-

state models are used for the thermal calculation.  
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The Electric Model 

In this model, the electric performance of the module is simulated via the one-diode model. 

Similar to thermal and optical models, individual cells or the whole module can be 

considered. The model utilizes the calculated temperature and datasheet thermal 

coefficients to simulate the effect of temperature on the module’s performance. 

Subsequently, based on the photo-generated current and module’s properties, hourly I-V 

curves are created via the diode model. Then, maximum power points are identified, and 

the DC annual energy yield of the system can be calculated.  

1.4.2 Features and limitations 

The toolbox offers the user a variety of options for energy yield simulation. Regarding available 

technologies, the toolbox is capable of simulating the performance of mono facial as well as bifacial 

SHJ cells. Unlike common commercial software, the toolbox also simulates perovskite/c-Si tandem 

cells. Besides, the user is able to modify the photovoltaic system design by considering the effects 

of reflectors and shading caused by neighbouring modules or nearby objects. In addition, the last 

version models the irradiance distribution across the sky and considers the AM spectra. This had 

led to an 8.6% accuracy when validating the toolbox outputs. 

However, some limitations hinder the performance of the toolbox. The first limitation of the toolbox 

lies in the electrical model. Although the diode model is capable of effectively stimulating the 

electric performance, enhancements are needed in order to maintain its accuracy under varying 

operating conditions. Fill factor is a key element in determining the DC yield of a PV module. It is 

highly influenced by series resistance, shunt resistance and diode properties [37]. In the latest 

version, several modifications were implemented to account for temperature’s influence on the 

model’s parameters. Yet, the ideality factor, as well as shunt and series resistances, is assumed to 

be constant. This may have been a source of inaccuracy in the toolbox. 

The current version of the toolbox does not fully consider the losses resulting from cell-to-module 

transition. In fact, the geometric losses are accounted for by setting cells spacing and module’s 

borders. In addition, optical losses, such as the influence of glass and encapsulant, are calculated 

via the optical models. However, the toolbox does not take into consideration the influence of solar 

cells interconnections. 

The last limitation of the toolbox is the limited amount of experimental validation. Last year, 

experimental validation was carried out under standard test conditions and real-life conditions. The 

validation has resulted in an 8.6% accuracy. However, experimental validation was only 

implemented on the global level and for a short period of time. In fact, model-level validation can 

help in assessing individual performance and identifying sources of inaccuracy. In addition, 

performing further validation will examine the robustness and accuracy of the toolbox under 

different conditions. 
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1.5 Thesis objectives 

Based on the prior work of students on the PVMD Toolbox, this thesis aims at developing version 

4 with additional features and amended performance. Therefore, the main research goal is to 

implement: 

Improvements and Experimental Validation of Energy Yield Modelling for Photovoltaic Systems- 

Extending the Energy Yield Prediction Model to Tandem PV Modules 

To serve this purpose, the following sub-goals are defined as: 

Objective I: Improving the Electric Model 

To simulate the electric performance of a solar cell, a one-diode model is implemented. 

Although the model generates acceptable results, it is desired to improve its accuracy. The 

effectiveness of this model will be compared with available models in the literature. In 

addition, the effects of several factors, such as operating temperature and irradiance, on the 

equivalent circuit parameters will be investigated. This can be done by utilizing the 

Advanced Semiconductor Analysis (ASA) package, developed at TU Delft. ASA is an 

optoelectronic simulator that models devices based on amorphous and crystalline 

semiconductors using one-dimensional semiconductor equations [38]. The program’s 

outputs will be set as a reference to enhance the accuracy of the diode model implemented 

in the toolbox. Furthermore, cell interconnections are to be taken into account. This can be 

done by implementing a metallization model. In addition, the influence of cells connections 

on the module’s I-V curve is to be studied. 

Objective II: Validating Toolbox Results 

After refining the current models and implementing the described modifications, an 

experimental validation of the toolbox will be conducted. In fact, the validation will not be 

limited to the predicted energy output of the toolbox. The results and performance of the 

thermal model will be examined. Consequently, the source of any inaccuracy will be 

identified and resolved. Besides, this would preclude the possibility of any deviations. 

Objective III: Tandem Modules - Case Study 

Record efficiencies for tandem solar cells are usually measured at the cell level in a lab under 

standard test conditions and AM1.5 spectrum. However, the performance of tandem modules 

is highly sensitive to operating conditions. To demonstrate the capabilities of version 4 of 

the Toolbox, a case study will be performed to predict the energy yield of tandem modules. 

The developed electric model, along with the existing optical models, will be used to 

compare the performance of different design choices. 

1.6 Thesis Outline 

The thesis report comprises 6 chapters. Below is a brief description of the chapters’ contents. 
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Chapter 2 provides details on the developed electric model at the cell level. Then, based on ASA 

simulations, the effects of absorbed irradiance and operating temperature on cells’ performance are 

studied. The final result is a calibrated lumped element model (CLEM) that can predict I-V curves 

of a solar cell based on the operating conditions.  

Chapter 3 utilizes the developed model in chapter 2 to simulate the electric performance at the 

module level. First, solar cells’ interconnections are studied. Then, a metallization model is 

implemented. Finally, a cell mapping algorithm, that improves the computation speed, is developed 

and analysed. The work presented in chapter 2 and 3 serves the first objective by modelling the 

electric behaviours at the cell and module levels. 

Chapter 4 presents the results of toolbox models’ validations. The thermal model is improved and 

validated. Then, the results of electric model simulations are compared with two different datasets. 

Chapter 5 applies the models developed in chapters 2 and 3 to perform a case study on the annual 

energy yield of c-Si/Perovskite tandem modules. A case study is performed to analyse the AEY of 

different design options. 

Chapter 6 includes answers of the research questions and provides suggestions to extend the scope 

of simulation options 
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2 Electric Model – Cell Level 

This chapter describes the work on improving the electrical model at the cell level. The function of 

this model is to generate I-V curves for given irradiance level and temperature based on user input. 

The user input can be I-V curves or input from module datasheet. Section 2.1 presents a brief 

overview of the lumped element model used, the one-diode model. Section 2.2 includes a brief 

overview of common parameter extraction techniques in literature. Afterwards, section 2.3 

describes the state-of-the-art cells used as model cells for the toolbox simulations. The parameter 

extraction method based on ASA simulations is explained in section 2.4. Section 2.5 includes a 

comparison between extraction results and findings from literature. In section 2.6, a method for 

coupling the effects of irradiance and temperature on the parameters is developed. Section 2.7 

presents Lambert-W function, an explicit function that will be used for faster electric simulations. 

Then, section 2.8 presents the formulation of a Calibrated Lumped Element Model (CLEM) and a 

comparison between the CLEM results and simulations performed by ASA. In section 2.9, a 

parameter extraction method, based on datasheet input, is described. Finally, section 2.10 

summarizes the work and results of this chapters and draws out conclusions. 

2.1 Overview on the diode models  

In the field of photovoltaics, the behaviour of devices and systems is weather-dependent. In other 

words, the I-V curves of these devices is affected by the incident irradiance and their operating 

temperature. Therefore, predicting the electric output requires simulations at diverse operating 

conditions. Two main approaches are used to simulate the behaviour of a system: The physical 

model and the lumped element method. For photovoltaic simulations, the first approach is based on 

solving semi-conductor equations in a system of finite elements. Although this method can generate 

accurate results, it represents a massive computational load if applied for every cell in the PV system 

over the simulation period timesteps. 

On the other hand, the lumped element approach is based on representing the physical phenomena 

inside the cell by lumped elements. The one and two-diode models are widely used for simulating 

the photovoltaic behaviour due to their simplicity and capability of generating results with 

acceptable accuracy. Research was conducted to assess the accuracy and usability of these models 

as well as simpler models with fewer number of components [39]. However, in this report, the five-

parameter one-diode model will be used for solar cell simulations.  

Figure 2.1 shows the diode-model equivalent circuit followed by its governing equation (2.1). 
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Figure 2.1. The one-diode model equivalent circuit. 

𝐼 = 𝐼𝑝ℎ − 𝐼0 ∙ {𝑒𝑥𝑝 [
𝑞(𝑉 + 𝐼 ∙ 𝑅𝑠)

𝑛 ∙ 𝐾𝐵 ∙ 𝑇
] − 1} −

𝑉 + 𝐼 ∙ 𝑅𝑠

𝑅𝑠ℎ
 (2.1) 

The parameters used in the diode equivalent circuit are: 

• The photo-generated current (Iph): it quantifies electron-hole pairs generated from absorbed 

photons as explained in equation 2.2. Its value is used for the ideal current source. 

𝐼𝑝ℎ = 𝑞 ∙ 𝐴 ∙ ∫ 𝐸𝑄𝐸(𝜆) ∙
∞

0

𝛷(𝜆) ∙ 𝑑𝜆 (2.2) 

• The ideality factor (n): it is a dimensionless quantity that identifies the dominant 

recombination mechanism in the solar cell [40]. It is a characteristic of the diode. 

• The saturation current (I0): it is the sum of recombination currents resulting from 

recombination mechanisms inside the solar cell. It is also a characteristic of the diode. 

• The series resistance (Rs): it is the ohmic losses resulting from charge carriers’ movement 

inside the solar cell bulk. 

• The shunt resistance (Rsh): it quantifies the leakage of the charge carries movement inside 

the solar cell. There are several factors that impact the value of this quantity. These factors 

include edge shunts, recombinative crystal defects, scratches and bulk cracks and holes 

[41]. 

Each of these five parameters represents a physical phenomenon occurring inside the solar cell. The 

dynamics and magnitude of these phenomena are highly impacted by the incident irradiance 

intensity and operating temperature. 

2.2 I-V curves and parameter extraction techniques 

The solution for equation 2.1 is an I-V, or J-V, curve relating the output current to voltage. Figure 

2.2 shows an illuminated J-V curve with its respective P-V curve for a typical solar cell. In addition, 

the cell’s external parameters are labelled. 
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Figure 2.2 Dark and illuminated J-V curves of a typical solar cells with external parameters. 

Below are the external parameters: 

• VOC: the open-circuit voltage 

• JSC: the short-circuit current density 

• PMAX: the maximum output power on the J-V curve 

• VMPP & JMPP: the voltage and current density at the maximum power point 

• FF: the fill factor, a dimensionless parameter that measures the squareness of a J-V curve. 

It is defined by the following equation: 

𝐹𝐹 =
𝑉𝑀𝑃𝑃 ∙ 𝐽𝑀𝑃𝑃

𝑉𝑂𝐶 ∙ 𝐽𝑆𝐶
 (2.3) 

Despite the convenience of the lumped element model as a performance predictive tool, it suffers 

from a shortcoming: the parameters, included in equation 2.1, are not easily identified. Therefore, 

to create a diode model, a reverse process of parameter extraction from simulated or measured I-V 

curves has to be executed. The extraction can be challenging because the mathematical system is 

underdetermined. In other words, fitting five parameters from a single curve can result in an infinite 

set of solutions. Although all the fitted solutions are mathematically valid, only one of them 

represents the physical parameters of the solar cell [42]. Several techniques were developed to 

ensure the extraction of the realistic parameters of a solar cell equivalent circuit. These techniques 

can be categorized into two main types: those using distinctive points on the I-V curve, and others 

utilizing the whole curve. 

Some of the developed techniques for parameter fittings include applying approximations and 

assumptions to simplify the governing equation over certain regions of the I-V curves. These 

assumptions are based on previous knowledge of parameters’ order of magnitude or physical 

essence [43]. Other techniques are based on using mathematical tools, such as pade´ approximants 

and Lambert W-function [44]–[46]. Furthermore, efforts have been exerted to exploit computer 

algorithms for the parameter fittings. These algorithms include artificial neural networks, harmony 

search-based algorithms and genetic algorithms [47]–[50]. 
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2.3 Reference Cells 

The chosen reference cells for the optical and electric simulations are novel cells with high 

efficiencies. The model cells are silicon heterojunction and perovskite solar cells. The toolbox can 

simulate any of the two cells, in addition to tandem cells formed by the model cells. GenPro4 is 

used to match the cells’ designs to obtain comparable optical performance to the reference cells. 

Afterwards, the cells’ electric properties are tuned using ASA to match the I-V curves of the model 

cells. 

2.3.1 Silicon heterojunction cell 

The reference cell is the silicon heterojunction fabricated by Kaneka Corporation with an efficiency 

of 25.1% [51]. This cell consists of an n-type c-Si wafer, with an a-Si:H i/p stack in the front and 

a-Si:H i/n stack at the back. Moreover, the design includes a transparent conductive oxide front 

contact and metallic rear contact.  

First, the cell layout was tuned to match the optical performance of the model cell using GenPro4. 

The selected materials for the design cells were chosen based on the layout mentioned in the 

manufacturer’s paper. Then, using n, refractive index, and k, absorption coefficient, datasets 

available in the PVMD group, a trial and error process was performed to match the GenPro4 

simulated EQE with the manufacturer’s EQE. The layers’ thicknesses were tuned so that the optical 

performance of the design cell showed a good agreement with the reference cell.  

Afterwards, based on the generation profile results from GenPro4, Carlos Ruiz Tobon, a Postdoc in 

the PVMD group, optimized the electric properties of the cell materials using ASA7. The 

optimization process included constraints that limit the electric properties within the physical 

values. Figure 2.3 compares the optical and electric performance of the designed cell to those of the 

reference cells[52]. Detailed description of the cell design can be found in appendix A. 

 

Figure 2.3 Comparison of a) EQE and b) J-V curve between reference cell and designed cell [52]. 
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2.3.2 Perovskite cell 

The reference cell is the novel perovskite cell fabricated at KRICT with an efficiency of 22.7% 

[53]. The cell design includes a perovskite layer with TiO2 and FTO at the front side and P3HT and 

a metallic rear contact at the back side. Figure 2.4 compares the optical and electric performance of 

the designed cell to those of the reference cells [54]. 

 

Figure 2.4 Comparison of a) EQE and b) J-V curve between reference cell and designed cell [54]. 

The same steps taken to tune the SHJ design were used for the design of the perovskite cell. As 

mentioned in section 1.2.3, perovskite is a material with a general formula of ABX3, where A, B 

and X are ions. The ions choice affects the material’s optical and electric properties. Therefore, the 

small difference in optical performance between the design and reference cells can be linked to the 

difference in n and k values between the PVMD dataset and the material used by the manufacturer. 

This difference in the EQE resulted in a lower photo-generated current of the design cell when 

compared to the reference cell. Detailed description of the cell design can be found in appendix A. 

2.4 Parameters extraction based on ASA J-V curves 

The purpose behind the developed electric model is to combine the benefits of the two modelling 

approaches: speed and accuracy. The lumped element model is a fast tool for simulating I-V curves. 

However, the lumped elements are usually considered as constants. As mentioned in section 2.1, 

these elements represent physical phenomena in the solar cells. The magnitude and dynamics of 

these phenomena are sensitive to the operating irradiance and temperature.  

Based on simulations generated by physical model, ASA, the behaviour of the model parameters is 

studied. Therefore, it would be possible to express these parameters as functions of irradiance and 

temperature. Plugging these functions in the lumped element model results in a calibrated lumped 

element model (CLEM). In short, the steps included in this methodology are defined in figure 2.6. 
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Figure 2.5 Flow chart showing steps needed to form a CLEM. 

As mentioned in section 1.5, the ASA package is utilized in order to model the electric performance 

of the solar cell. As a first step, a series of simulations were performed with only one variable 

changing, while the other is fixed at the STC value. The purpose behind these simulations is to 

cover the largest possible set of operating conditions. Thus, 12 simulations were performed with 

temperature values ranging between 250 and 360 K (-23.15 °C and 87.15 °C) while irradiance is 

held constant at AM 1.5G.  On the other hand, 16 simulations were performed with irradiance 

ranging between 100 W/m2 and 1500 W/m2 under 25 °C temperature. It is important to note that 

irradiance levels were generated by scaling the AM 1.5 spectrum to avoid any spectral effect. With 

ASA output being available, the parameters can be extracted and their dependence on irradiance 

and temperature can be studied. Figure 2.6 shows the generated I-V curves by ASA at different 

irradiance levels and temperature for the SHJ model cell. The thick plots represent the I-V curves 

at STC conditions. 

 

Figure 2.6 ASA I-V curves for different irradiance levels (left) and different temperature levels (right). 
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2.4.1 Simultaneous approach 

The ASA generated J-V curves were imported to MatLab. Then, numerical functions, such as 

fmincon and fminsearch, were used to fit simultaneously all the diode model parameters, hence the 

name Simultaneous Approach. Figure 2.5 presents the fitted series resistance values, shown as blue 

circles, as the irradiance intensity varies; the red line connecting the points is a guide for the eye. 

 

Figure 2.7 Series resistance fitting results using a) unconstrained and b) constrained simultaneous approaches. 

Figure 2.2.a shows the results of unconstrained fittings. The parameters are fitted without lower or 

upper bounds. From this graph, the first flaw of this approach can be recognized: the unrealistic 

fitting results shown here as negative resistance values. To overcome this issue, constrained fitting 

was tested. Figure 2.2.b shows the results of this approach. Although this eliminates the unrealistic 

resistance values, the approach still suffers from the absence of any trend in the fitted results. In 

addition, the fitted values are highly sensitive to the initial guess. Therefore, a new approach that 

relies more on the physical significance of the fitted parameters is to be investigated. 

2.4.2 Parameter-by-parameter approach 

In this approach, the extraction of parameters is done by applying physical knowledge to create 

valid approximations.  

In the short-circuit region, the J-V curve can be approximated as the equation 2.4: 

𝐽 = 𝐽𝑝ℎ −
𝑉 + 𝐽 ∙ 𝑅𝑠

𝑅𝑠ℎ

 (2.4) 

This equation can be reorganized to obtain equation 2.5: 

𝐽 =  
𝐽𝑝ℎ ∙ 𝑅𝑠ℎ − 𝑉

𝑅𝑠ℎ + 𝑅𝑠

 (2.5) 

Assuming series resistance is negligible when compared to shunt resistance, photo-generated 

current density can be approximated as short-circuit current density according to the following 

equation: 
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𝐽𝑠𝑐 = 𝐽𝑝ℎ ∙
𝑅𝑠ℎ

𝑅𝑠ℎ + 𝑅𝑠

 ≈ 𝐽𝑝ℎ (2.6) 

In addition, the shunt resistance can be approximated using the derivative of the J-V curve in the 

short-circuit region. This result agrees with observations from the literature [55]. 

𝑑𝐽

𝑑𝑉
|

𝐽≈𝐽𝑠𝑐

= −
1

𝑅𝑠ℎ + 𝑅𝑠

≈ −
1

𝑅𝑠ℎ

 (2.7) 

After calculating the photo-generated current and shunt resistance, the next step is to approximate 

the ideality factor and saturation current. This procedure is used by Mayer [56] to study the 

influence of irradiance on ideality factor. First, the lumped model implicit equation is considered at 

the open circuit point. Assuming large shunt resistance, the resulting equation is shown below. 

0 = 𝐽𝑝ℎ − 𝐽0 ∙ 𝑒𝑥𝑝 (
𝑞 ∙ 𝑉𝑜𝑐

𝑛 ∙ 𝑘𝐵 ∙ 𝑇
) (2.8) 

Equation 2.8 can be rearranged to express the open circuit voltage as a function of other variables. 

𝑉𝑜𝑐 =
𝑛 ∙ 𝑘𝐵 ∙ 𝑇

𝑞
∙ (ln 𝐽𝑠𝑐 − ln 𝐽0) (2.9) 

Then, using values of Voc and Jph at different irradiance level, the above equation can be used to 

calculate the ideality factor and saturation current density via equations 2.10 and 2.11 

𝑛 =
𝑞

𝑘𝐵 ∙ 𝑇
∙

𝑑 𝑉𝑜𝑐

𝑑(ln 𝐽𝑠𝑐)  
 (2.10) 

𝐽0 =
𝑞

𝑛(𝐺) ∙ 𝑘𝐵 ∙ 𝑇
∙ 𝑦 (2.11) 

where y is the intercept of the plot. The method assumes a constant saturation current as irradiance 

varies; however, the saturation current can vary significantly versus temperature and thus needs to 

be modelled. Baruch et. al developed an equation that describes the minimum value of a diode’s 

saturation current [57]. The variation of this value is given by the equation 2.12 

𝐽0 =
𝑞

𝑘𝐵

∙
15 𝜎

𝜋4
∙ 𝑇3 ∫

𝑥

𝑒𝑥 − 1
𝑑𝑥  ; 𝑢 =

𝐸𝑔

𝑘𝐵 ∙ 𝑇

∞

𝑢

 (2.12) 

Where σ is Stefan-Boltzmann constant and Eg is the material bandgap. The material bandgap is 

temperature dependent and can be expressed as a function of temperature via equations 2.13 for c-Si 

[58]and 2.14 for perovskite [59]. 

𝐸𝑔(𝑇) = 1.12 − 2.3 ∙ 10−4 ∙ (𝑇 − 300)  (2.13) 
𝐸𝑔(𝑇) = 𝐸𝑔(𝑇0) − 4.1376 ∙ 10−7 ∙ (𝑇 − 𝑇0)2 (2.14) 

Equation 2.14 expresses the temperature dependence of perovskite of formula 

PMMA/CH3NH3PbI3. For this model, it is assumed that the perovskite material of the solar cell 
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follows the same behaviour. The variation of saturation current as a function of temperature is 

assumed to follow the same trend described in equation 2.12. In other words, the calculated 

saturation current from irradiance values is assumed to be the saturation current at STC temperature, 

298.15 K, then a scaled version of equation 2.12 is used to model the effect of temperature on the 

saturation current density. After calculating the saturation current density values versus 

temperature, the variation of ideality factor versus temperature can be calculated using equation 

2.9. 

Finally, with all parameters available, regression is performed on equation 2.1 to calculate the last 

parameter, series resistance. 

Using this approach, it was possible to estimate the parameters of a solar cell from J-V curves. After 

the J-V curve fittings were completed, mathematical functions were used to model the behaviour 

of the diode model parameters as temperature or irradiance intensity varies. Thus, each parameter 

was expressed as a function of temperature at 1000W/m2 irradiance intensity and as a function of 

irradiance intensity at 25 °C. The parameters variations and fitted functions can be found in 

appendix B. 

2.5 Fitting Results and Discussion 

After the parameters’ extraction and fittings, it is possible to assess the extraction method. Although 

there are no reference values of the model cells for comparison, the general trends of parameters’ 

behaviour are compared to observations from the literature. For this assessment, the silicon 

heterojunction cell is used. This is because silicon is a mature technology, with more research 

conducted and more available material and results than perovskite. Table 2.1 presents the parameter 

trends resulted from fitting and found in the literature. It is important to note that the order of 

parameters in this table is the same as the order of their extraction from a J-V curve. 

Table 2.1 Parameter behavior from extraction compared to observations from literature. 

Except for the effect of irradiance on saturation current, the trends of all parameters match the 

observations from literature. This method calculates the ideality factor based on the values at the 

open-circuit region. However, it has been proven that the value of ideality factor can vary with the 

injection level, since the injection level determines the dominant recombination mechanism and 

thus the value of ideality factor [64]. These are the only limitations in the parameter extraction 

method described in this section. 

Parameter 
Irradiance Intensity Effect Temperature Effect 

Fitting Literature Fitting Literature 

Iph poly. increase poly. increase [60] poly. increase poly. increase  [61] 

Rsh exp. decrease exp. decrease [62] poly. increase poly. decrease [61] 

Rs poly. increase poly. increase [60] poly. decrease poly. decrease [63] 

n poly. decrease decrease [64] poly. decrease poly. decrease  [61] 

I0 constant poly. increase [62] exp. increase exp. increase [63] 
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2.6 Operating Conditions Coupling 

As mentioned in the previous section, using the parameter-by-parameter approach and 

mathematical fittings, it was possible to express the equivalent circuit parameters as one-

dimensional functions of temperature at fixed irradiance or functions of irradiance at fixed 

temperatures. However, a solar cell is expected to operate in a broad variety of operating conditions. 

Thus, to guarantee accurate modelling, the irradiance and temperature effects need to be coupled. 

In fact, equations simulating the effects of irradiance and temperature on open-circuit voltage and 

short-circuit current are available in the literature. For the short-circuit current, a widely used 

expression is presented in equation 2.15 [65]. 

𝐼𝑆𝐶(𝐺∗, 𝑇∗) = 𝐼𝑆𝐶(𝑆𝑇𝐶) ∙
𝐺∗

𝐺𝑆𝑇𝐶
∙ [1 + 𝑘𝑖 ∙ (𝑇∗ − 𝑇𝑆𝑇𝐶)] (2.15) 

Consider the following simplifications: 

𝐼𝑆𝐶(𝐺∗)

𝐼𝑆𝐶(𝑆𝑇𝐶)
=

𝐺∗

𝐺𝑆𝑇𝐶
 (2.16) 

𝐼𝑆𝐶(𝑇∗)

𝐼𝑆𝐶(𝑆𝑇𝐶)
= [1 + 𝑘𝑖 ∙ (𝑇∗ − 𝑇𝑆𝑇𝐶)] (2.17) 

Plugging in these simplifications in equation 2.15 results in equation 2.18, which can be reduced to 

equation 2.19: 

𝐼𝑆𝐶(𝐺∗, 𝑇∗) = 𝐼𝑆𝐶(𝑆𝑇𝐶) ∙
𝐼𝑆𝐶(𝐺∗)

𝐼𝑆𝐶(𝑆𝑇𝐶)
∙

𝐼𝑆𝐶(𝑇∗)

𝐼𝑆𝐶(𝑆𝑇𝐶)
 (2.18) 

𝐼𝑆𝐶(𝐺∗, 𝑇∗) =
𝐼𝑆𝐶(𝐺∗) ∙ 𝐼𝑆𝐶(𝑇∗)

𝐼𝑆𝐶(𝑆𝑇𝐶)
 (2.19) 

Using similar steps, the same result can be obtained for open-circuit voltage. These two quantities 

can be described as expressions of the diode equivalent-circuit parameters. Therefore, it can be 

concluded that if this relation is valid for coupling irradiance and temperature effects for VOC and 

ISC, it can be used for the diode equivalent-circuit parameters. As a conclusion, equation 2.20 was 

used to couple the effects of irradiance and temperature on the equivalent-circuit parameters. 

𝑋(𝐺∗, 𝑇∗) =
𝑋(𝐺∗) ∙ 𝑋(𝑇∗)

𝑋(𝑆𝑇𝐶)
     ;      𝑋 ∈ {𝐼𝑝ℎ, 𝐼0, 𝑛, 𝑅𝑠, 𝑅𝑠ℎ } (2.20) 

2.7 Lambert W-function 

The governing equation of the diode model (Equation 2.1) is ideal at describing the relation between 

the cell’s voltage and current. However, it is an implicit equation. This results in a limitation of the 

mentioned equation in terms of deriving relations and computation speed for an energy yield 

software. Therefore, research was conducted to develop solutions that ease the computation process. 

These solutions include the Bishop’s algorithm [66] and the Lambert W-function [46]. Lambert W-
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function is based on the work of Johan Lambert and Leonhard Euler in the mid-late 18th century[67], 

[68]. It is defined as follows: 

𝑓𝑜𝑟 𝑧 = 𝑥 ∙ 𝑒𝑥 , 𝑊(𝑧) = 𝑥 (2.21) 

For photovoltaic simulations, the explicit equation relating current to voltage is [69]: 

𝐼 =
𝑅𝑠ℎ ∙ (𝐼0 + 𝐼𝑝ℎ) − 𝑉

𝑅𝑠ℎ + 𝑅𝑠

−
𝑛 ∙ 𝑉𝑡ℎ

𝑅𝑠

∙ 𝑊(𝑧) (2.22) 

𝑧 =
𝑅𝑠ℎ ∙ 𝑅𝑠 ∙ 𝐼0

𝑛 ∙ 𝑉𝑡ℎ ∙ (𝑅𝑠ℎ + 𝑅𝑠)
∙ 𝑒𝑥𝑝 [

𝑅𝑠ℎ

𝑅𝑠ℎ + 𝑅𝑠

∙
𝑅𝑠 ∙ (𝐼𝑝ℎ + 𝐼0) + 𝑉

𝑛 ∙ 𝑉𝑡ℎ

] (2.23) 

The benefits of this function in the field of photovoltaics are plentiful. It can be used to derive 

explicit expression that relate the diode-model parameters. In addition, it allows a much faster 

computation speed for solar cell simulation while maintaining high accuracy. Simulations 

performed on MatLab show that the computation using the Lambert W-function is faster solving 

the implicit equation, equation 2.1, by an order of 10,000. Therefore, the Lambert-W function will 

be implemented in the CLEM to generate I-V curves based on irradiance and temperature values. 

2.8 Accuracy of CLEM 

The development of the electric model started with 2 simulated datasets using ASA: simulations 

under varying irradiance with STC temperature, and simulations under STC irradiance with varying 

temperatures. With the irradiance and temperature effects being modelled and coupled, a Calibrated 

Lumped Element Model (CLEM) can be created. This model employs the diode equivalent circuit 

to simulate the electric behaviour of the cell. In order to test the accuracy of the fittings and coupling 

method, equation 2.20, the output of CLEM was compared to ASA simulations under operating 

conditions far from the STC. Two scenarios were considered: low irradiance-low temperature and 

high irradiance-high temperature. Then, the outcomes of ASA and the CLEM were compared. With 

these scenarios, the parameter extraction and the fittings of their behaviour could be tested. Figures 

2.8 and 2.9 present the results of ASA and CLME simulations for the mentioned scenarios. 
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Figure 2.8 The results of ASA and CLEM simulations of the model SHJ for a) low irradiance-low temperature b) 

high irradiance - high temperature. 

 

 

Figure 2.9 The results of ASA and CLEM simulations of the model perovskite cell  for a) low irradiance-low 

temperature b) high irradiance - high temperature. 

Table 2.2 presents the percentage errors of CLEM simulations for the two scenarios. 

Table 2.2 Percentage errors of the CLEM under the two scenarios. 

 SHJ cell Perovskite cell 

Low G – Low T High G – High T Low G – Low T High G – High T 

PMPP -0.94% -0.74% -1.08% -0.80% 

VOC 1.18% -0.57% -0.54% -0.37% 

Therefore, it can be concluded that the CLEM can perform electric simulations with a small error 

margin. In terms of computation speed, the average time required for ASA simulation is one minute. 

On the other hand, the CLEM is capable of performing hundreds of thousands of simulations within 

a single minute. 
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2.9 Datasheet Model 

Besides using I-V curves from ASA, the toolbox offers the option of energy yield prediction based 

on input from datasheet. This option allows for more flexibility in the simulation options. However, 

due to the limited input data, assumptions are needed for the parameters’ extraction. This model is 

based on the user input of the following parameters: 

• Maximum power (PMax-Module) 

• Open-circuit voltage (VOC-Module) 

• Short-circuit current (ISC) 

• Number of cells (N) 

• Maximum power point voltage (VMPP-Module) 

• Maximum power point current (IMPP) 

• Voltage thermal coefficient (Kv) 

• Current thermal coefficient (Ki) 

The first step for this model is calculating the characteristic quantities per cell: 

𝑉𝑂𝐶−𝑐𝑒𝑙𝑙 =
𝑉𝑂𝐶−𝑀𝑜𝑑𝑢𝑙𝑒

𝑁𝑐𝑒𝑙𝑙𝑠

 ;  𝑃𝑀𝑃𝑃−𝑐𝑒𝑙𝑙 =
𝑃𝑀𝑃𝑃−𝑀𝑜𝑑𝑢𝑙𝑒

𝑁𝑐𝑒𝑙𝑙𝑠

  ;   𝐼𝑆𝐶−𝑐𝑒𝑙𝑙 = 𝐼𝑆𝐶−𝑚𝑜𝑑𝑢𝑙𝑒 (2.24) 

Afterwards, the photo-generated current densities, resulting from optical simulations are scaled to 

match the input’s specifications. By performing this step, it is assumed that the simulated cell has 

the same, yet scaled, spectral response as the model cell. 

𝐽𝑝ℎ−𝑜𝑝𝑡 = 𝐽𝑝ℎ−𝑜𝑝𝑡 ∙
𝐼𝑀𝑜𝑑𝑢𝑙𝑒−𝑆𝑇𝐶

𝐽𝑚𝑜𝑑𝑒𝑙 𝑐𝑒𝑙𝑙−𝑆𝑇𝐶 ∙  𝐴𝑐𝑒𝑙𝑙

 (2.25) 

After modifying the optical simulations’ results and calculating the cell’s parameters, the parameter 

extraction steps are performed. 

Ideally, calculating ideality factor and saturation current values requires a number of open-circuit 

voltage and short-circuit current values at different irradiance levels. If these inputs are not 

available, the ideality factor is assumed to be 1 at STC, then the saturation current can be calculated 

as follows: 

𝐼0 =
𝐼𝑆𝐶

𝑒𝑥𝑝 (
𝑞 ∙ 𝑉𝑜𝑐

𝑛 ∙ 𝑘𝐵 ∙ 𝑇
)
 

(2.26) 

The saturation current is assumed to be constant with irradiance. The effect of irradiance on the 

ideality factor is modelled as in literature (Table 2.1). Afterwards, the variation of saturation current 

versus temperature is approximated as in section 2.4.2, using equation 2.12. With the saturation 

current being available, the variation of ideality factor as a function of voltage can be calculated via 

equation 2.27. 
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𝑛(𝑇) =
𝑞

𝑘𝐵 ∙ 𝑇
∙

𝑉𝑜𝑐 ∙ 𝐾𝑉 ∙ (𝑇 − 298.15)

ln [
𝐼𝑠𝑐 ∙ 𝐾𝑖 ∙ (𝑇 − 298.15)

𝐼0(𝑇)
]
 

(2.27) 

At STC, shunt resistance can be calculated from the I-V curve using equation 2.7. Then, after 

calculating all other parameters, the series resistance can be calculated from the implicit equation 

by on the maximum power point. The effects of irradiance intensity and temperature on the shunt 

and series resistances are approximated via literature findings presented in table 2.1. 

Overall, table 2.3 summarizes the methods for modelling the effects of operating conditions on the 

one-diode model parameters. 

Table 2.3 Summary of assumptions for the datasheet model. 

 Irradiance (Iph) Temperature 

Photo-generated current Optical simulations Thermal coefficient 

Ideality factor Literature Equation 2.27 

Shunt resistance Literature Literature 

Series resistance Literature Literature 

Saturation current Constant Equation 2.12 

2.10 Conclusions and recommendations 

This chapter describes the improvements made to model the electric performance of PV cells. Two 

design cells for toolbox simulations were introduced: SHJ by Kaneka with an efficiency of 25.1% 

and perovskite cell by KRICT with an efficiency of 22.7%.  

The parameter-by-parameter approach was successful at extracting the diode model parameters 

from simulated I-V curves. Based on the coupled effects of irradiance and temperature, a calibrated 

lumped element model (CLEM) was defined in section 2.8. In addition to its computation speed, the 

CLEM simulations proved to be accurate with error percentages limited to 1.18% when compared 

to ASA simulations. As a conclusion, the work of this chapter serves the first thesis objective by 

developing a model that simulates the electric performance at the cell level.   

Despite the improvements implemented on the cell models, there is still room for improvements. 

The CLEM simulations and parameter-by-parameter outputs can be validated against measured 

values. In addition, more reference cells can be added to the toolbox to offer more simulation 

options.  



Series-connected cells  27 

 

 

 

3 
3 Electric Model – Module Level 

This chapter is a complement to the previous chapter. The models developed and implemented 

allow the transition of electric simulations from the cell-level to the module-level. Sections 3.1 

studies the effect of series-connection among solar cells. In section 3.2, the effects of bypass diode 

on the I-V curve of the module are modelled. Afterwards, section 3.3 describes an existing model 

to approximate the metallization losses. In section 3.4, an algorithm to speed up the electric 

simulations is developed and examined. Section 3.5 summarizes the work presented in this chapter 

and draws conclusions, followed by recommendations for future work in section 3.6.   

3.1 Series-connected cells 

In most photovoltaic modules, the solar cells are connected in series to limit the ohmic losses. A 

drawback of this connection is the possible energy loss if the cells are operating at different 

conditions. The reason behind this is that the current in a series-connected circuit must be equal for 

all circuit elements. A fast approximation of the short-circuit current in series-connected solar cells 

is the minimum value across cells. However, this approach is not accurate, especially if the curve 

slope is significant due to low shunt resistance.  

Because the current is uniform across the cells, it would be more convenient to express cells’ 

voltages as functions of current. Knowing that the voltage is additive in a series-connected circuit, 

the total voltage of the circuit can be expressed as follows: 

𝑉𝑡𝑜𝑡𝑎𝑙 (𝐼) = ∑ 𝑉𝑛(𝐼)

3

𝑛=1

 (3.1) 

In addition, the short-circuit current of the branch can be calculated by solving the following 

equation: 

𝑉𝑡𝑜𝑡𝑎𝑙 (𝐼𝑠𝑐) = ∑ 𝑉𝑛(𝐼𝑠𝑐) = 0

3

𝑛=1

 (3.2) 

To demonstrate how the developed model works, an example will be presented. Figure 3.1 shows 

an equivalent circuit of three series-connected solar cells. Note that the cells’ parameters were 

chosen to clearly demonstrate the effects. 
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Figure 3.1 The equivalent circuit of three series-connected solar cells. 

The output of this approach can be demonstrated in figure 3.2. 

 

Figure 3.2 The I-V curves of the three cells and of the cell assembly. 

Point S, representing the short-circuit point of the branch, is at (6.206, 0). To check the validity of 

this approach, the summation of three cells’ voltages will be calculated: 

∑ 𝑉𝑛(6.206) =

3

𝑛=1

𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶 = −1.061 + 0.446 + 0.615 = 0 (3.3) 
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At the short circuit point of the branch, cell 3 operates in reverse bias whereas cells 1 and 2 operate 

in forward bias. Therefore, the used equations account for the effects of power dissipation. 

3.2 Bypass diode 

During the operation of a photovoltaic module, the cells can be shaded because of the surrounding 

geometry and thus receive dissimilar irradiance intensities. As a result, the current limitation 

phenomenon explained in the previous section can occur. In addition, the shaded cells would 

operate in reverse bias, raising their temperature. The creation of these hotspots leads to accelerated 

aging and a higher possibility of unexpected failures or even fire initiation [70]. To avoid these 

risks, bypass diodes can be installed in the module. These electronic elements allow the current to 

bypass in a parallel branch, limiting the power dissipation. These elements can dissipate a small 

quantity of power due to their forward voltage. Figure 3.3 shows the forward voltage as a function 

of the bypass current at different operating temperatures [71]. This graph is for SM74611 smart 

bypass diode, manufactured by Texas Instruments. 

 

Figure 3.3 Forward voltage vs. current at different temperatures for SM74611 bypass diode [71]. 

To model the effect of the bypass diode on Equation 3.4: 

𝑉𝑡𝑜𝑡𝑎𝑙 (𝐼) = ∑{max[𝑉𝑛(𝐼), 0] − 𝑉𝐵𝑌𝑛}

𝑛

𝑛=1

 (3.4) 

The first term in the summation limits the minimum voltage of all cells to zeros in order to cancel 

the effects of power dissipation. The second term, VBY, is the forward voltage function of the 

bypass diode, defined as following: 

𝑉𝐵𝑌𝑛 = 𝑓(𝐼𝑠𝑐𝑚𝑎𝑥 − 𝐼𝑠𝑐𝑛 , 𝑇) (3.5) 

Figure 3.4 shows the equivalent circuit of three series-connected solar cells. This circuit will be 

used to demonstrate the output of equations 3.4 and 3.5 and generated I-V curves shown in figure 

3.5. 
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Figure 3.4 Equivalent circuit of three series-connected cells with bypass diodes. 

 

Figure 3.5 I-V curves of the three cells and of the cell assembly. 

In the previous example, a bypass diode was connected to every cell in the equivalent circuit. 

However, for most photovoltaic modules, a bypass diode is connected to a branch of series-

connected cells. Therefore, for the module electric simulations, branches of series-connected cells 

are modelled via equation 3.1. Then, the effects of bypass diodes are considered on the modelled 

branches. The toolbox offers the user the choice of choosing 0, 3 or 6 bypass diodes for a single 

module. 
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3.3 Metallization effects 

Connecting the solar cells inside a module is usually done via metallization grids. The research on 

optimizing losses from metallization has resulted in many metallization layouts. Nevertheless, for 

this version of the toolbox, front metal contact with antenna layout is considered. The implemented 

model has been developed by a master’s student in the PVMD group at Delft University of 

Technology [72]. Therefore, for detailed derivations and assumptions used, the mentioned reference 

can be reviewed. 

3.3.1 Metallization model 

The first step for modelling the metallization effects is dividing the solar cell into a number of unit 

cells for optical and electrical analysis. The division of the solar cell assures symmetry and ease the 

calculations. Equations 3.6 and 3.7 describe the number and dimensions of the unit cells, followed 

by figure 3.6 demonstrating the division of the solar cell into unit cells.  

𝑁𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙𝑠 = 𝑁𝑏𝑢𝑠𝑏𝑎𝑟𝑠
2 (3.6) 

𝐿𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙 =
𝐿𝑠𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙

𝑁𝑏𝑢𝑠𝑏𝑎𝑟𝑠

 (3.7) 

 

 

Figure 3.6 Division of a solar cell into unit cells. 

Table 2.4 presents the geometric and electric parameters used for deriving the metallization losses. 

Table 3.1 Parameter definition of the metallization grid. 

Quantity Symbol Unit 

Number of finger rows nf - 

Number of current extraction points ns - 

Finger length lf m 

Finger width Wf m 

Half finger pitch D m 

Half finger spacing S m 

Half current extraction distance H m 
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Busbar length Lunit cell m 

Busbar width Wb m 

ITO thickness tITO m 

Finger thickness tf m 

Busbar thickness tb m 

ITO resistivity ρITO Ωm 

Finger resistivity ρf Ωm 

Busbar resistivity ρb Ωm 

Contact resistivity rc Ωm2 

ITO sheet resistance R□ITO Ω/□ 

Finger sheet resistance R□f Ω/□ 

Busbar sheet resistance R□b Ω/□ 

The shading factor resulting from the metallization grid is shown in equation 3.8. It is a ratio of the 

area covered by fingers and busbars to the unit cell area.  

𝑆ℎ𝑎𝑑𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑊𝑓 ∙ 𝑙𝑓 + 𝐷 ∙ 𝑊𝑏

2 ∙ 𝑛𝑓 ∙ 𝐷2
 (3.8) 

In addition to the optical losses, metallization results in ohmic losses. The developed model 

considers four main components for the electric resistance: ITO, finger, contact and busbar. 

Equation 3.9 shows the total resistance in the unit cell. The contributions of the mentioned 

componentes are shown successively in the equation. 

𝑅𝑇 =
1

12
∙
𝑅□ITO ∙ 𝑆

𝑛𝑓 ∙ 𝑙𝑓

+
1

6
∙
𝑅□f ∙ 𝑙𝑓

𝑛𝑓 ∙ 𝑊𝑓

+
𝑅□ITO ∙ 𝐿𝑡

4 ∙ 𝑛𝑓 ∙ 𝑙𝑓

∙ coth (
𝑊𝑓

2 ∙ 𝐿 ∙ 𝑡
) +

1

6
∙
𝑅□𝑏 ∙ 𝐻

𝑛𝑠 ∙ 𝑊𝑏

 (3.9) 

3.3.2 Implementing the model 

So far, equations 3.8 and 3.9 quantify the effects of metallization on the unit cell. In this sec 

Due to symmetry, the shading factor of the solar cell is equal to the shading factor of the unit cell. 

Therefore, effect of shading can be modelled as follows 

𝐽𝑝ℎ−𝑐𝑒𝑙𝑙 = 𝐽𝑝ℎ−𝑜𝑝𝑡𝑖𝑐𝑎𝑙 ∙ (1 − 𝑆𝐹) (3.10) 

The unit cells are connected in parallel. This can be verified by the fact that the current of the solar 

cell is equal to the summation of the unit cells’ currents whereas the voltage of the solar cell is equal 

to that of the unit cells. As a result, the modelled resistances of unit cells are connected in parallel 

as well. Thus, the metallization resistance for the solar cell can be expressed via equation 3.11. 

𝑅𝑠𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙 =
𝑅𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

𝑁𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙𝑠

 (3.11) 

The modelled cell voltage, via CLEM, is corrected in equation 3.12. 

𝑉(𝐼) = 𝑉(𝐼) ∙ [1 − 𝐼 ∙ 𝑅] (3.12) 
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3.4 Cell Mapping 

Due to the number of sub models and factors in the electric model, the electric simulation required 

for energy yield can be slow. The implementation of Lambert W-function reduces, to a large extent, 

the time needed for cell-level simulations. However, with the large number of simulations and 

interpolations required, the toolbox may remain slow. In fact, the total number of simulations for a 

60-cell SHJ module for an annual energy yield calculation exceeds 270,000. Moreover, this number 

can drastically increase for different modelling scenarios, such as tandem modules or energy yield 

simulation of a PV array. 

3.4.1 Operating conditions bins 

The energy yield prediction requires electric simulations of solar cells at various operating 

conditions. Figure 2.14 depicts the frequency of operating conditions occurrence with bins of 4 

A/m2 and 1 °C.  

 

Figure 3.7 Frequency of cell operating conditions with bins of 4 A/m2 and 1 °C. 

From the figure, a positive relation between the photo-generated current and temperature can be 

noticed. This can be expected because a higher photo-generated current implies higher incident 

irradiance and therefore higher cell temperature. Another observation is that some bins represent 

the operating conditions of more than a thousand cells. In fact, the number of colored bins is 2683, 

compared to 270,000 combinations of operating conditions. Therefore, there could be a room for 

reducing the number of required simulations for AEY by representing the output of solar cells by 

the outputs of bins. 

The suggested algorithm for reducing the computation speed is called Cell Mapping. This algorithm 

is based on three main steps: 

1. The operating conditions of each solar cell for every time step is mapped into bins. 

Therefore, only the bins representing solar cells are considered rather than considering 

every possible bin. 
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2. Simulating the I-V curves for the representative bins using CLEM, developed in chapter 2. 

3. The I-V curve of each solar cell is assumed to be identical to that of the cell’s representing 

bin. 

3.4.2 Bin size analysis 

The drop of simulations number is accompanied by inaccuracies. Figure 3.8 Shows a schematic of 

a bin representing 5 cells, plotted a x. The I-V curves of each of the 5 solar cells will be represented 

by an I-V curve generated based on the bin’s center. Simulation errors are expected due to this 

approximation. The four corners of the bin are the furthest from the center. Therefore, the largest 

possible error due to this algorithm is expected when a cell lies on one of the four corners. 

  

Figure 3.8 Schematic of a bin representing 5 cells. 

For simplicity, the effects of photo-generated current and temperature on the cell’s power is 

assumed to be linear. Table 3.2 presents symbols used for bin size analysis. 

Table 3.2 Symbols used for bin size analysis 

Symbol Quantity 

RJ Range of photo-generated current [0, 460] A/m2 

RT Range of operating temperature [-10, 60] °C 

KJ Derivative of power over photo-generated current 

KT Derivative of power over temperature 

SJ Half the bin’s dimension (photo-generated current) 

ST Half the bin’s dimension (temperature 

The sizing of the bins affects the computation gain and the resulting inaccuracy of the mapping 

algorithm. Assuming the effects of photo-generated current and temperature can be coupled similar 
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to equation 2.20, the maximum possible error, represented in figure 3.8, can be expressed in 

equation 3.13. 

𝐸𝑟𝑟𝑜𝑟 = 𝑃 ∙ (1 + 𝐾𝐽 ∙ 𝑆𝐽) ∙ (1 + 𝐾𝑇 ∙ 𝑆𝑇) − 𝑃 = 𝑃 ∙ [𝐾𝐽 ∙ 𝑆𝐽 + 𝐾𝑇 ∙ 𝑆𝑇 + 𝐾𝐽 ∙ 𝑆𝐽 ∙ 𝐾𝑇 ∙ 𝑆𝑇] (3.13) 

 

Where P is the power generated at the center of the bin. In addition, the sizing can affect the number 

of available bins and thus the number of simulations required. Equation 3.14 expresses the number 

of available bins. 

𝑁𝑏𝑖𝑛𝑠 =
𝑅𝐽 ∙ 𝑅𝑇

𝑆𝐽 ∙ 𝑆𝑇

 (3.14) 

From equations 3.13 and 3.14, it can be concluded that there is a trade-off between the mapping 

errors and the computation gain. Therefore, an optimization can be performed to enhance the 

mapping results, the smallest possible mapping error with the largest possible mapping gain. For 

this optimization, two variables are defined: the bin aspect ratio and the bin size. 

3.4.2.1 Aspect ratio of the bin 

The aspect ratio of the bin is defined as the ratio of the bin’s dimensions. Based on equations 3.13 

and 3.14, the mapping error can vary even if the number of available bins is constant. Therefore, 

the purpose of optimizing the aspect ratio is to guarantee the smallest possible error for a fixed 

number of bins. 

From equation 3.14, it can be inferred that a fixed number of bins results in a fixed bin area A. 

Therefore, for a fixed number of bins, the bin’s dimensions can be related via equation 3.15. 

𝑆𝐽 =
𝐴

𝑆𝑇

 (3.15) 

Substituting this expression in equation 3.13 results in the following equation. 

𝐸𝑟𝑟𝑜𝑟 = 𝑃 ∙ [𝐾𝐽 ∙
𝐴

𝑆𝑇

+ 𝐾𝑇 ∙ 𝑆𝑇 + 𝐴 ∙ 𝐾𝐽 ∙ 𝐾𝑇] (3.16) 

In order to minimize the error, a derivative of its expression is derived then set to be zero. 

 

𝑑 𝐸𝑟𝑟𝑜𝑟

𝑑 𝑆𝑇

= 𝑃 ∙ [−
𝐾𝐽 ∙ 𝐴

𝑆𝑇
2 + 𝐾𝑇] = 0 (3.17) 

−
𝐾𝐽 ∙ 𝐴

𝑆𝑇
2 + 𝐾𝑇 = 0 →    

𝐴

𝑆𝑇
2 =

𝐾𝑇

𝐾𝐽

→    
𝐴

𝑆𝑇
2 =

𝐾𝑇

𝐾𝐽

→  
𝑆𝐽

𝑆𝑇

=
𝐾𝑇

𝐾𝐽

 
(3.18) 

Therefore, for the least mapping error with a constant number of bins, an expression is calculated 

for the optimal aspect ratio. For the Kaneka model cell, this aspect ratio is equal to the following: 

 
𝑆𝐽

𝑆𝑇

=
1.333 𝐴 𝑚2⁄

1°C
 

(3.19) 
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3.4.2.2 Bin size 

After calculating the optimal aspect ratio, bin sizing can be directly related to the maximum 

mapping error. Figure 3.9 shows the effects of bin size on the computation gain and the mapping 

error of a solar cell.  

 

Figure 3.9 Computational gain(N/N0) and maximum mapping error for different bin dimensions. 

The computation gain (N/N0) is defined as the ratio of the number of bins’ simulations to the number 

of solar cells’ simulations. The maximum power error is calculated based on equation 3.13 for a 

model solar cell with the conventional area. The tradeoff between the computation gain and the 

mapping error can be observed from the graph. For the toolbox simulations, the chosen bin’s 

dimensions are 0.40 A/m2 and 0.3 °C.  

3.4.3 Mapping results 

After defining the mapping steps and the bins’ dimensions, the effect of this algorithm is assessed. 

The assessment is done by comparing the outputs of AEY simulations before and after 

implementing this algorithm. Figure 3.10 depicts the hourly yield differences between the 

simulations with mapping and without mapping for a 60-cell module. 
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Figure 3.10 Hourly yield differences between the simulations without and with mapping algorithm. 

Two types of errors can be observed in the figure above: a random error and a systematic error. For 

most timesteps, the mapping algorithm slightly overestimates the module’s yield. This can be 

related to the representation of cells with bins. The slight differences in photo-generated current 

values among the cells, resulting in small quantities of dissipated power, are neglected because of 

this representation. Due to this error, the mapping algorithm results in an overestimation of energy 

yield by 0.226%. 

Knowing that the module’s STC power output is 340 Watts, the highest recorded hourly error is 

1.24%. On the other hand, the number of simulations at the cell level is reduced by 86%. This results 

in a faster AEY simulation by a factor of 5. In fact, compared to version 3, the electric simulation 

time for AEY for a 60-cell SHJ module has dropped from 1.5 hours to less than 2 minutes (4 CPUs, 

3 GHz, 8 GB RAM). Using this algorithm, it would be to quickly simulate the output of larger 

modules, such as 72-cell modules or 144-half-cell modules. 

3.5 Conclusions  

The objective of this chapter was to develop a model that simulates the electric performance at the 

module level. The effects of cells interconnections were modelled and implemented. In addition, a 

cell mapping algorithm was developed to enhance the computation speed of the electric model. It 

is based one representing the solar cells by bins to decrease the number of required simulations. 

Afterwards, the bin’s aspect ratio and size were optimized to guarantee the minimum mapping error 

for a fixed number of simulations. The algorithm was then assessed to examine its effects on 

accuracy and computation gain. For a bin size of 0.4 A/m2 and 0.3 °C, the number of required 

simulations dropped by 86%, with an energy yield error of 0.226%. 

In short, the work in this chapter present a great improvement to the toolbox. In addition, the electric 

simulation time dropped by a factor of 45, compared to version 3. 
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3.6 Recommendations 

In this chapter, an existing model was implemented to simulate the optical and electric effects of 

metallization. However, this model is only valid for FBC, antenna layout. Therefore, the 

metallization model can be modified to include other FBC layouts as well as IBC metallization. In 

addition, the model can be improved by accounting for temperature and injection level effects on 

the metallization losses. The metallization models are valid to simulate the connection among solar 

cells based on crystalline silicon technology. It is recommended to develop a model that accounts 

for interconnection among laser scribed thin film solar cells. 

The current electric model assumes series connection among solar cells in the module. However, 

new module designs, such as half-cell modules and smart modules, guarantee better performance 

and higher resilience against varying operating conditions. Therefore, it is suggested to improve the 

current model in order to simulate the performance of new module designs. 
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4 
4 Model Validation 

 

In this chapter, the performance of the thermal and electric models in the toolbox are analysed and 

validated against real-life measurements. Section 4.1 describes the validation methodology and 

statistical indicators used. In section 4.2, various GHI decomposition models are introduced and 

their suitability for the Dutch climate is checked. After choosing the GHI decomposition technique, 

the thermal model is validated in section 4.3 The thermal model is adjusted to include the dynamic 

thermal behaviour and thereby demonstrating minimize lower differences with measurements at 

higher temperatures. Afterwards, section 4.4 describes the validation of the electric model against 

measurements recorded at TU Delft. In the following section, the model is validated again against 

a dataset from NREL. The validation results are summarized, and conclusions are drawn in section 

4.6, followed by recommendations for future work in section 4.7. 

4.1 Validation Methodology and Criteria 

Due to the lack of access to laboratories in the COVID-19 situation, it was not possible to carry out 

new measurements for data validation. Thus, existing recorded measurements were used to validate 

the toolbox models. In this section, the validation methodology will be explained. In addition, the 

statistical indicators used to assess the toolbox models will be described.  

4.1.1 Measured Data at TU Delft 

This data was provided by Hesan Ziar, an assistant professor in the PVMD group. Electric and 

temperature measurements were conducted on an in-house module in the monitoring station at Delft 

University of Technology. This module consists of 16 5 inch, series-connected MAXEON GEN II 

solar cells [73]. Wind speed, ambient temperature and GHI were recorded every 10 minutes. In 

addition, the DC power output and maximum power voltage and current values were recorded every 

minute. The data was recorded between 25 July and 9 October 2019. The available data is used to 

validate the outputs of the thermal and electric models in the toolbox. However, the optical model 

takes DHI and DNI, rather than GHI, as inputs. Therefore, the validation requires investigating GHI 

decomposition models in order to run the optical model in the toolbox. Figure 4.1 shows the 

measured I-V curve of the in-house module at STC. 
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Figure 4.1 Measured I-V curve at STC of the in-house module. 

4.1.2 NREL Data 

This dataset was provided by NREL upon request. In includes measurements of irradiance, 

temperature, and electric parameters. For this validation, there is no need for GHI decomposition 

as DHI and DNI were recorded at each timestep. The measurements were recorded for a 72-cell 

HIT module deployed in Cocoa, Florida during the period of January 2011 till March 2012 [74]. 

4.1.3 Statistical Indicators 

The purpose of data validation is to assess the quality of models in predicting the output. This is 

possible by comparing the modelled data to measured data of the real system at the same weather 

conditions. In order to document the quality of the modelled data, and therefore of the model itself, 

statistical indicators are used to assess the performance of the models for an adequate period of 

time. For this validation, three indicators of deviation and one indicator of overall performance of 

the model. These indicators are used to assess the thermal and electric models in the toolbox [75]. 

In addition, the indicators are used to determine the best GHI decomposition technique. Note that 

the measured data points are denoted by m and the modelled, or predicted, values are denoted by p. 

Root mean square difference (RMSD)  

It quantifies the scattering of modelled data points with respect to the measured values. 

𝑅𝑀𝑆𝐷 = √
∑ (𝑚𝑖 − 𝑝𝑖)2𝑁

1

𝑁
 (4.1) 

Mean bias difference (MBD) 

It is used to study the average bias of the model outputs compared to measurements. Negative MBD 

value indicates an underestimation of the simulated values and vice versa.  

𝑀𝐵𝐷 =
∑ (𝑚𝑖 − 𝑝𝑖)𝑁

1

𝑁
 (4.2) 

Slope of best-line fit (SBF) 
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It is the slope of regression line that describe the variation of the modelled output versus the 

measured values. An SBF value close to one indicates an agreement between the modelled and 

measured outputs.  

𝑆𝐵𝐹 =
∑ [(𝑚𝑖 − �̅�) ∙ (𝑝𝑖 − �̅�)]𝑁

1

∑ (𝑚𝑖 − �̅�)2𝑁
1

 (4.3) 

 

Willmott’s index of agreement (WIA) 

It is an index developed by Willmott in 1981 to assess the overall accuracy of a model [76]. This 

index values varies between 0 for complete disagreement and 1 for perfect agreement. 

𝑊𝐼𝐴 = 1 −
∑ (𝑚𝑖 − 𝑝𝑖)2𝑁

1

∑ (|𝑝𝑖 − �̅�| + |𝑚𝑖 − �̅�|)2𝑁
1

 (4.4) 

From the definition above, it can be inferred that the smaller the fraction the more accurate the 

model is. The numerator of the fraction is a summation of the square of the individual errors. 

Therefore, smaller errors result in a smaller numerator and a higher index value. The denominator 

consists of an expression that quantifies how far are the measurements and predicted data points are 

from the mean of measured data points. This indicates that the effect of errors for data points far 

from the mean is less significant.   

4.2 GHI Decomposition 

The global horizontal irradiance (GHI) refers to the instantaneous power incident on a horizontal 

plane per unit area (W/m2). This quantity is composed of normal and diffuse incident irradiance. 

The direct normal irradiance (DNI), or direct beam irradiance, is the irradiance on a plane 

perpendicular to the line connecting the plane to the solar disc. On the other hand, the diffuse 

horizontal irradiance (DHI) is the scattered component of the solar irradiation throughout the sky 

dome. These three quantities can be related via the following relation [77]: 

𝐺𝐻𝐼 = 𝐷𝐻𝐼 + 𝐷𝑁𝐼 ∙ cos (𝜃𝑧) (4.5) 

The available measured quantity for data validation is only GHI. Knowing that the diffuse and 

normal components are needed for optical simulations, GHI decomposition models are to be 

investigated to generate DHI and DNI values for the optical model. 

4.2.1 Input Parameters 

Air Mass 

In addition to the solar zenith angle, air mass is one of the inputs required for decomposition models. 

It represents the ratio of the direct optical path followed by the solar irradiance to the overhead path 

length. This quantity can be calculated from the solar zenith angle via equation 4.6 [78]. 

𝐴𝑀 =
1.002432 ∙ 𝑐𝑜𝑠2(𝜃𝑧) + 0.148386 ∙ cos(𝜃𝑧) + 0.0096467

𝑐𝑜𝑠3(𝜃𝑧) + 0.149864 ∙ 𝑐𝑜𝑠2(𝜃𝑧) + 0.0102963 ∙ cos(𝜃𝑧) + 0.000303978
 (4.6) 
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Sky Clearness Index 

Sky clearness index is the ratio of the incident irradiance on Earth surface to the extra-terrestrial 

irradiance on the Earth’s atmosphere. Due to the elliptical orbit of the Earth around the sun, the 

extra-terrestrial irradiance varies throughout the year. This variation can be modelled via equation 

4.7 [79]. 

𝐸𝐸𝑥 = 𝐸𝑆𝐶 ∙ [1 + 0.033 ∙ 𝑐𝑜𝑠 (
2 ∙ 𝜋 ∙ 𝑑𝑛

365
)] (4.7) 

Where: 

Esc: Solar constant = 1,367 W/m2 

dn: day number in the year 

After calculating the extra-terrestrial irradiance, sky clearness index can be calculated as follows 

[80]: 

𝑘𝑡 =
𝐺𝐻𝐼

𝐸𝐸𝑥 ∙ cos (𝜃𝑧)
 (4.8) 

4.2.2 Decomposition Models 

In this section, two decomposition models from literature and two models developed at TU Delft, 

by Ajay Jamodkar, are introduced. 

Lee Model 

This model was developed by K. Lee [81]. It takes the sky clearness index as an only input. The 

model is defined in equation 4.9: 

𝑘𝑑 = {
 0.92, 𝑘𝑡 ≤ 0.2

0.691 + 2.4306 ∙ 𝑘𝑡 − 7.3371 ∙ 𝑘𝑡
2 + 4.7002 ∙ 𝑘𝑡

3, 𝑘𝑡 > 0.2
 (4.9) 

Reindl-2 Model 

This model was developed by D. T. Reindl in 1990. It takes the solar elevation angle and the sky 

clearness index as inputs. The diffuse coefficient is calculated via a piece-wise function shown in 

equation 4.10 [82]. 

𝑘𝑑 = {

1.020 − 0.254 ∙ 𝑘𝑡 + 0.0123 ∙ sin(𝑎𝑠) , 𝑘𝑡 ≤ 0.3

1.400 − 0.1749 ∙ 𝑘𝑡 + 0.177 ∙ sin(𝑎𝑠) , 0.3 < 𝑘𝑡 < 0.78

0.486 ∙ 𝑘𝑡 − 0.182 ∙ sin(𝑎𝑠) , 𝑘𝑡 ≥ 0.78

 (4.10) 

Dutch-I and Dutch-II Models 

The Dutch-I and Dutch-II models are based on Liu-Jordan models and developed by a A. Jamokdar, 

a master’s student at TU Delft [83].  Both models are piecewise relations that over seven regions of 
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km values. The Dutch-I model describes the diffuse factor as a linear function of clear sky factor 

and the cosine of zenith angle.  

𝑘𝑑 = 𝑐1 + 𝑐2 ∙ 𝑘𝑡 + 𝑐3 ∙ cos (𝜃𝑧) (4.11) 

On the other hand, the Dutch-II model estimates the diffuse factor from quadratic relations of the 

same inputs. 

𝑘𝑑 = 𝑓1 + 𝑓2 ∙ 𝑘𝑡 + 𝑓3 ∙ cos(𝜃𝑧) + 𝑓4 ∙ 𝑘𝑡 ∙ cos(𝜃𝑧) + 𝑓5 ∙ 𝑘𝑡
2 + +𝑓6 ∙ cos(𝜃𝑧)2 (4.12) 

Table 4.1 presents the coefficients for Dutch-I and Dutch-II models over the clear sky index ranges. 

Table 4.1 Dutch-I and Dutch-II coefficients over the clear sky index regions. 

Clear sky 

index range 

Dutch-I model 

coefficients 

Dutch-II model coefficients 

c1 c2 c3 f1 f2 f3 f4 f5 f6 

[0, 0.3] 0.99 -0.09 0.01 1.00 -0.02 -0.02 0.08 -0.06 -0.01 

[0.3,0.4] 1.14 -0.67 0.07 0.93 0.37 0.05 -0.08 -0.61 -0.04 

[0.4,0.5] 1.54 -1.79 0.18 1.36 -0.16 0.53 1.96 -2.76 -0.17 

[0.5,0.6] 1.65 -2.04 0.23 2.36 -4.63 0.07 -0.69 2.56 0.67 

[0.6,0.75] 1.49 -1.76 0.12 2.75 -7.75 3.03 -6.20 6.60 1.41 

[0.75,0.8] -0.17 0.81 -0.32 12.57 -31.99 -0.65 -1.45 21.68 1.25 

[0.8,1] 0.00 0.69 -0.35 -2.45 6.97 -1.81 0.76 -3.79 0.73 

 

4.2.3 Results 

The four models, described in the previous section, were used to estimate the diffuse factor for a 

sample year in the Netherlands. Dataset set for a sample year was downloaded from The Dutch PV 

Portal 2.0. Then, the simulated diffuse irradiance values were calculated according to equation 

4.13. In fact, the comparison of the decomposition models’ performance was based on the DHI 

values rather than kd values. This is because the magnitude of resulting residuals in optical 

simulations depend on the DHI mismatch, not on the kd mismatch. 

𝐷𝐻𝐼 = 𝑘𝑑 ∙ 𝐺𝐻𝐼 (4.13) 

Figure 4.2 shows the modelled DHI values vs. the measurements, followed by the calculated 

statistical indicators of the four models presented in table 4.2. 
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Figure 4.2 Modelled DHI values vs. measured values for the four models. 

Table 4.2 Statistical indicators for the GHI decomposition models. 

Models RMSD [W] MBD [W] SBF WIA 

Lee 41.71 12.23 0.9439 0.9582 

Reindl-2 19.71 3.39 0.9544 0.9904 

Dutch-I 30.71 17.17 1.0663 0.9794 

Dutch-II 37.87 20.57 1.1437 0.9709 

It can be inferred from the calculated indicators that Reindl-2 outperforms the three other models. 

This observation agrees with previous studies at TU Delft. Still, it slightly overestimates the DHI 

values, especially for low-mid range values; this can be noticed in the graph and from the SBF 

value. After choosing the decomposition model, the DHI and DNI values can be estimated based 

on the GHI measurements. Then, the optical and thermal models become ready for simulations. 

4.3 Thermal Model Validation 

The operating temperature is a decisive factor that influences the module’s performance and output 

power. In fact, a photovoltaic module’s temperature varies on a daily and seasonal basis. Therefore, 
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an accurate thermal model is a prerequisite for accurate energy yield simulations. In the toolbox, a 

one-dimensional, lumped-element thermal model is used to calculate individual cell temperatures 

within the module. The current model neglects cross-sectional heat transfer and the effects of power 

dissipation in case of current mismatch among series-connected cells. The key factors affecting the 

thermal behaviour are absorbed solar irradiance, convection heat transfer (natural and forced), and 

radiative cooling with the ground and the sky. In this section, the results of the thermal model 

present in version 3 will be presented. In addition, applied modifications will be discussed and an 

assessment of the thermal model performance will be carried out. 

4.3.1 Initial Model 

The fluid dynamics model, implemented by Elias Garcia Goma [36], is a steady state, textbook 

model [84]. For energy yield study, the timestep for the toolbox simulations is one hour. Knowing 

that the time constant for a photovoltaic module thermal response  is close to 7 minutes [85], it is 

convenient to perform steady state analysis. However, for a validation with a timestep of 5 minutes, 

the module would still be in the transient phase. This may account for an inevitable inaccuracy. In 

addition, the formula for modelled temperatures must be modified to account for the change in 

timestep. Figure 4.3 demonstrates the module’s thermal response and the module’s temperature 

after a 5-minute timestep. 

 

Figure 4.3 Module thermal response. 

The module’s thermal response is defined by equation 4.14: 

𝑇(𝑡) = 𝑇𝑠𝑠 + (𝑇𝑖 − 𝑇𝑠𝑠) ∙ 𝑒𝑥𝑝(−𝑡
𝜏⁄ ) (4.14) 

Where T is the instantaneous temperature, TSS is the steady state temperature, Ti is initial 

temperature and τ is the time constant. Therefore, for the thermal model, the temperature equation 

can be written as follows: 

𝑇𝑛+1 = 𝑇𝑠𝑠 + 0.5105 ∙ (𝑇𝑛 − 𝑇𝑠𝑠) (4.15) 

After modifying the temperature equation, the modelled was compared to the measured 

temperatures. Note that the assessment is conducted by comparing the average temperatures. Figure 

4.4 shows the measured and modelled temperatures for the week with highest deviation.  
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Figure 4.4 Measured and modelled temperatures for the week with highest deviation using the initial model. 

As shown, there is a significant deviation between the measured and modelled values, with the 

highest recorded deviation exceeding 30 
°C. Therefore, there is a room for improving the model. 

4.3.2 Modified Model 

In this section, the applied modifications to the thermal model are discussed. These modifications 

include adjusting the assumptions or approximations without changing the model’s essence. 

Conductive coefficient 

In the original model, the conduction of glass was only considered. However, the module’s structure 

includes layers of Tedlar and EVA. Then, a new coefficient is implemented to account for the series-

connected conductive coefficients.  

ℎ𝑐 =
1

1
ℎ𝑔𝑙𝑎𝑠𝑠

+
1

ℎ𝐸𝑉𝐴
+

1
ℎ𝑇𝑒𝑑𝑙𝑎𝑟

=
1

𝑑𝑔𝑙𝑎𝑠𝑠

𝑘𝑔𝑙𝑎𝑠𝑠
+

𝑑𝐸𝑉𝐴

𝑘𝐸𝑉𝐴
+

𝑑𝑇𝑒𝑑𝑙𝑎𝑟

𝑘𝑇𝑒𝑑𝑙𝑎𝑟

 
(4.16) 

Where d and k are the layer thickness and the thermal conductivity. Table 4.3 presents the 

thicknesses and thermal conductivities of the considered layers. 

Table 4.3 Thicknesses and thermal conductivities of the considered layers [86]. 

Material Thickness [mm] Thermal conductivity [W/m.K] 

Glass 4 1.7  

EVA 2 0.235  

Tedlar 2 0.158  
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Convective coefficients 

In the thermal model, the convective coefficient equation does not account for the air flow type 

(laminar/turbulent) or for the ambient temperature effect. The original approximation is shown in 

equation 4.17. 

ℎ𝑓𝑜𝑟𝑐𝑒𝑑 = 5.78 + 3.86 ∙ 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 (4.17) 

However, equation may account for free convective and radiative effects [87]. The new 

approximation for the forced convective coefficient is [88]: 

ℎ𝑓𝑜𝑟𝑐𝑒𝑑 = 2.8 + 3 ∙ 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 (4.18) 

In addition, the mixed convective coefficient was approximated as the sum of the forced and free 

coefficients. A more accurate formula is demonstrated in equation 4.19 [9]. 

ℎ𝑚𝑖𝑥𝑒𝑑 = (ℎ𝑓𝑜𝑟𝑐𝑒𝑑
3 + ℎ𝑓𝑟𝑒𝑒

3
)

1
3⁄

 (4.19) 

After applying the mentioned modifications, the modelled and measured temperatures were 

compared again. Figure 4.5 shows the temperature variations of the new thermal model for the same 

simulation time of figure 4.4. 

 

Figure 4.5 Measured and modelled temperatures for the week with highest deviation. 

A noted observation from the graph is the significant decrease in deviation between the modelled 

and measured values. The maximum deviation during the whole period dropped to 17 °C. Besides, 

the plots show that the model underestimates the module’s temperature during the peak hours and 

the late hours of the day. 
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4.3.3 Results and discussion 

To analyse the possible benefits from applying the mentioned modifications to the thermal model, 

the data point plots of the thermal models’ outputs during operating hours are presented in figure 

4.6.  

 

Figure 4.6 Comparison of the initial and modified models' performances. 

The improvement in the thermal model’s behaviour can be observed visually. To further assess the 

two models, table 4.4 presents their statistical indicators. 

Table 4.4 Statistical indicators for initial and modified thermal models. 

Models RMSD (°C) MBD (°C) SBF WIA 

Initial 8.764 -6.096 0.544 0.830 

New 4.389 -1.966 0.896 0.969 

The increase in WIA indicator confirms the, visual, observation from figure 3.5. Still, The MDB 

indicates that the modified model underestimates the module’s temperature. In addition, the SBF 

value shows that as the simulated temperature increases, the underestimation of the module’s 

temperature increases as well. 

Although the new thermal model proves to result in an acceptable performance, the statistical 

indicators show that there is a room for further improvement. Suggestions are presented below for 

future work: 

1. Accounting for the air flow type (laminar or turbulent) when calculating the convective 

coefficients 

2. Accounting for wind direction when considering the convective heat transfer. It has been 

proven that for the same wind speed, the convective coefficient may vary by more than 

40% depending on the angle between the module and the air flow direction [89]. 

3. Accounting for the temperature effect on the material properties, such as the thermal 

conductivity. 
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4.4 Electric model validation – TU Delft data 

This section aims at validating the output of the new electric model, described in chapters 2 and 3, 

within the toolbox. Comparing the modelled output to measured values is important to assess the 

accuracy of the electric model. In this section, the DC power output and the operating voltage and 

current at maximum power point are validated. 

In order to evaluate the performance of the electric model, the remaining deviations originating 

from the thermal model must be eliminated. Therefore, the measured cell temperatures are used as 

inputs to the electric model. The available measured temperatures are for 7 cells at each time step. 

To compensate for the missing temperature values of the remaining 9 cells, the mean and standard 

deviation of the measured temperature values were calculated at every time step. Then, values were 

generated for the 9 cells using a normal distribution based on the calculated mean and standard 

deviation. 

On the other hand, with the available measurements, it was not possible to eliminate the potential 

errors of the optical model simulations. These errors are either caused by the optical model itself or 

the GHI decomposition technique. After generating the temperature values, the electric 

performance was simulated based on the electric parameters of the in-house photovoltaic module. 

The outputs comparison will be performed on two levels. At the macro-level, the errors of daily 

and total yield values are calculated. On the other hand, the micro-level assessment is concerned 

with the individual output differences. 

4.4.1 Macro-Level Validation 

The first step for validation is comparing the results at the macro-level, the daily and total yield. 

The measured and simulated DC energy output are 14.614 kWh and 14.226 kWh. Hence, the 

simulated energy yield is 2.65% lower than the measured one. The same inputs were used for energy 

yield simulation on version 3 of the toolbox, resulting in an energy yield error of 7.43%. In addition 

to the total energy yield comparison, the daily energy yield values are compared. Figure 4.7 shows 

the daily energy yield deviation throughout the simulation period. 

 

Figure 4.7. Daily energy yield error throughout the simulation period. 
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As expected from the -2.65% yield error, the model underestimates the energy yield for most of the 

days. The maximum deviation magnitude between the measured and modelled daily energy yield 

values is -19.54 Wh, equivalent to the module’s output for 24 minutes under STC. Table 4.5 

presents the statistical indicators for the daily energy yield. RMSE and MBD are expressed as 

percentages of mean daily yield. The SBF value, being lower than one, implies that the electric 

model underestimates the power output for days with high energy yield. 

Table 4.5 Statistical indicators for daily energy yield. 

 RMSD MBD SBF WIA 

Daily yield 4.49% -2.65% 0.9718 0.9976 

 

4.4.2 Micro-Level Validation 

The validation at the micro-level, 5-minute timestep, is important to analyse the model’s behavior 

and pinpoint the possible sources of error. Figure 4.8 shows the measured and modelled electric 

parameters during August 21-22. 

 

Figure 4.8 Measured and simulated electric parameters during August 21 and 22. 

From the VMPP plot, it can be noted that the model underestimates the voltage in the early and late 

hours of the day, or during the times of low irradiance and low IMPP values. To validate this 

observation, figure 4.9 shows the voltage bias error variation as a function of modelled IMPP values. 
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Figure 4.9 The voltage bias error vs. modelled Impp. 

In order to further analyse the model’s performance, figure 4.10 shows the modelled parameters 

versus the measured values, followed by calculated statistical indicators presented in table 4.6. 

 

Figure 4.10 Modelled electric parameters vs. measured values. 

Table 4.6 Statistical indicators for the electric model parameters. 

Quantities RMSD MBD SBF WIA 

DC Power 5.94% -0.824% 0.9769 0.9891 

IMPP 17.37% -0.092% 0.8443 0.9143 

VMPP 27.90% -11.17% 2.7238 0.2740 

VMPP (IMPP >1A) 4.19% -2.517% 0.5309 0.7599 

 

Based on figure 4.10 and table 4.6, the modelled DC power output agrees to a good extent with the 

measurements, with a small negative bias. On the other hand, the scattered IMPP values result in a 

high RMSD value, even though the MBD is almost null. This is expected because of the GHI 

decomposition. Finally, the VMPP values exhibit a large deviation from the measurements. However, 

when neglecting values modelled at low irradiance levels, the VMPP shows a better agreement with 

the measured values. 
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4.5 Electric model validation – NREL data 

The data validation for a longer period and different location is an opportunity to test the accuracy 

and robustness of the electric model. In addition, the used dataset contains measured values of DHI 

and DNI. Thus, the error resulting from GHI decomposition is eliminated. However, another source 

of error is present for this dataset. Due to the long period, the module’s performance has degraded 

over time. In fact, the module’s STC short circuit current and power output decreased by 0.3% and 

1.7% respectively between the start and the end of deployment at Cocoa, Florida [90].  

The available values were measured during the day. Therefore, it is not possible to validate the 

thermal model based on this set of data. Besides, the measured temperature is an average module 

temperature. To account for temperature difference among cells, a standard deviation value of 1 °C 

was assumed to generate random cell temperature values based on normal distribution. Finally, the 

measured irradiance values were not available in 1,046 time steps, out of a total of 38,377; thus 

these time steps were neglected for the validation. 

4.5.1 Macro-level validation 

The measured and simulated energy yield of the studied module are 286 kWh and 274.12 kWh, 

respectively. Therefore, the energy yield percentage error is -4.15%. In addition to the total energy 

yield, the daily energy yield values were compared. Figure 4.11 shows the daily energy yield 

deviation for the layout period. The days with missing irradiance values are shaded. 

 

Figure 4.11 Daily energy yield errors in Wh throughout the layout period. 

The model underestimates the daily energy yield for the majority of the days. The highest deviation 

was recorded on February,1 2011. The model underestimated the energy yield by 86.44 Wh. To put 

this quantity into perspective, it is equal to the power output of the module under STC conditions 

for 25 minutes. Table 4.7 presents the statistical indicators for the daily energy yield. RMSE and 

MBD are expressed as percentages of mean daily yield. 
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Table 4.7 Statistical indicators for daily energy yield 

 RMSD MBD SBF WIA 

Daily yield 4.49% -4.16% 0.9773 0.9968 

 

4.5.2 Micro-level validation 

The micro-level validation is important to assess the instantaneous output of the electric model. In 

this section, five electric parameters will be validated. Figure 4.12 presents a comparison between 

the modelled electric values and the recorded measurements, followed by calculated statistical 

indicators in table 4.8. 

 

Figure 4.12 Modelled electric parameters vs. measured values. 

Table 4.8 Statistical indicators of the electric model parameters. 

Quantities RMSD MBD SBF WIA 

DC Power 3.674% -1.777% 0.9610 0.9967 

ISC 3.707% -1.880% 0.9389 0.9962 

VOC 2.928% -1.726% 1.2352 0.8514 

IMPP 3.871% -2.079% 0.9371 0.9959 

VMPP 4.018% -0.886% 1.5073 0.7733 

Based on the above graphs and table, the modelled values show a good agreement with the 

measurements. The short-circuit current errors, affecting the energy yield, are simulated via the 

optical models. However, that the optical models have been previously validated and showed a 
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small error margin for the previous validation. Therefore, a probable cause of energy yield error is 

the errors in recorded irradiance values. 

4.5.3 Confidence intervals 

With the growing share of photovoltaic technology in the energy mix in power markets, the 

uncertainty in the yield generation may lead to economic losses or grid-stability problems [91]. 

Therefore, efficient market operations require uncertainty analysis in addition to the single value 

yield prediction [92]. The data points for Cocoa validation allows to calculate an 95% confidence 

interval for the electric model power output.  

To calculate the confidence interval, the standard deviation of the residual (SD) must be calculated 

first. It can be calculated via the following equation. 

𝑆𝐷 =
√∑ 𝑁 ∙ (𝑝𝑖 − 𝑚𝑖)

2 − [∑(𝑝𝑖 − 𝑚𝑖)
2]1 2⁄

𝑁
 (4.20) 

Where N is the number of data points, and pi and mi are the predicted and measured data points, 

respectively. Based on the standard deviation of the residuals and root mean square difference 

(equation 3.1), the 95% confidence interval can be calculated by equation 4.21 [75]. 

𝑈95 = 1.96 ∙ (𝑅𝑀𝑆𝐷2 + 𝑆𝐷2)1 2⁄  (4.21) 

The confidence interval for the HIT05667 deployed in Cocoa is 20.6 Watts, or 9.57% of the STC 

power output. This value is fixed for the deployment period. The calculated value is tested for 

February-1-2011, the day with the highest recorded deviation between the measurements and 

simulations.  

 

Figure 4.13 The simulated and measured power output and the 95% confidence interval on February-1-2011 
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It can be noted from the figure that the measured data points are within the 95% confidence interval 

of the electric simulations, even for the day with the highest recorded deviation. The confidence 

interval can be even narrower, relative to the modelled output, if the electric model is calibrated or 

when considering a larger time step such as hourly or daily energy yield simulations.  

4.6 Conclusion 

In this chapter, the thermal and electric models within the PVMD toolbox are validated. Section 4.1 

presents the validation layouts and the four statistical indicators used to assess the models’ accuracy 

and behaviours.  

Section 4.2 presents four GHI decomposition models. Based on an assessment of the models’ 

outputs with reference to given data from a sample year in Netherlands, Reindl-2 decomposition 

model is the best model among the four considered options. This model is used to decompose the 

measured GHI values for TU Delft data validation. 

In section 4.3, the original thermal model is assessed based on measurements at TU Delft. Then, a 

few modifications were applied in order to enhance the model’s performance. After applying the 

modifications, the new model is assessed again. The modifications result in a significant reduction 

in RMSD from 8.76 °C to 4.39 °C and reduce the maximum deviation from 31 to 17 °C. Afterward, 

few recommendations are given for further enhancing the thermal model. 

Section 4.4 presents validation of the new electric model, as presented in chapter 2, against 

measurements recorded at TU Delft. The energy yield deviation of the electric model and the 

PVMD toolbox are -2.65% and -2.34%. However, the higher accuracy of the latter is based on a 

masked error since the thermal model underestimates the module’s temperature. In addition, the 

maximum recorded daily energy yield deviation is -19.54 Wh, equivalent to the STC power output 

for 24 minutes. After analysing the data points, it is noted that the main source of deviation is the 

underestimation of the module’s voltage. 

Section 4.5 validates the electric model against a dataset from NREL. An energy yield deviation of 

-4.16% is recorded. Besides, the highest deviation in the daily energy yield is -86.44 Wh, equivalent 

to the STC power output for 25 minutes. The statistical indicators of the electric parameters show 

that the module’s current is slightly underestimated during high irradiance conditions, whereas the 

module’s voltage is underestimated at low irradiance conditions. Finally, the 95% confidence 

interval is calculated and demonstrated for 5-minute time step simulations. 

4.7 Recommendations 

Despite the improvement of the modified thermal model accuracy, the module temperature error is 

still significant. A possible source of error is modelling the forced convection coefficient as a linear 

function of wind speed. However, the nature of air flow, laminar or turbulent, affects the magnitude 

of convective coefficient [93]. In addition, experiments has shown that the convective coefficient 

is influenced by the wind direction and the module tilt angle [94]. Considering these two effects, as 

well as implementing a finite element thermal model, are recommended for better accuracy.  
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As mentioned in section 4.5, the electric performance of PV modules degrades over time. Therefore, 

implementing a degradation model can be useful for energy yield calculations. Finally, it is 

suggested to perform more models validation to examine the accuracy of the toolbox under various 

climates. 
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5 
5 Tandem Modules – Case Study 

 

In this chapter, the developed, and validated, electric models will be implemented to simulate the 

electric performance of tandem modules. Section 5.1 includes a literature review over c-

Si/perovskite tandem modules. Afterwards, section 5.2 presents the procedure of optimizing the 

STC power output for each of the design options. In section 5.3, the optical and electric outputs 

resulting from AEY simulations are presented and analysed. Finally, the work is summarized, and 

conclusions are drawn in section 5.4, followed by recommendations for future work in section 5.5. 

5.1 Literature Review 

Spectral mismatch is one of the key factors for limiting the efficiency of a solar cell. The harvested 

energy from an absorbed photon is limited by the bandgap of the absorber material. Consequently, 

the excess photon energy is dissipated via thermalization. 

In order to improve the optical performance of a solar cell, research has been conducted on multi-

junction cells, or tandem cells. The design of this cell includes two or more absorber layers with 

different bandgap values. This results in a better spectral performance. In figure 5.1, the useful 

energy for crystalline silicon and crystalline silicon/perovskite under AM 1.5 spectrum. This figure 

assumed perfect absorption up to the wavelength corresponding to the absorber’s bandgap. 

 

Figure 5.1 Useful energy for c-Si and for Pervoskite/c-Si tandem cells under AM 1.5 spectrum. 
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5.1.1 Tandem cells 

As mentioned before, c-Si/Perovskite tandem cells are considered for this report. The top sub-cell 

is the novel perovskite cell fabricated by KRICT with efficiency of 22.7% [54]. For the bottom sub-

cell, the silicon heterojunction model cell fabricated by Kaneka with an efficiency of 25.1% is 

considered [52]. Section 2.3 presents the two model cells as well as the methodology used to model 

their optical and electric behaviours. Aside from removing the back reflector of the model cells, no 

other modifications were applied to their design. 

After defining the tandem cell, the tandem module can be defined as 60 square cells. GenPro4 and 

Lux optical models are used to generate a sensitivity map of the tandem module. Combining this 

map with irradiance data results in photo-generated current values for each of the sub-cells. In 

addition, the fluid dynamics model assumes a negligible thermal mass for the cells. Thus, the two 

sub-cells are assumed to operate at the same temperature.  

After modelling the sub-cells’ temperature and photo-generated current values, the electric 

simulations can be performed. The calibrated lumped element model, presented in chapter 2, is used 

to generate the I-V curves of the sub-cells for each tandem cell and time step. In addition, the models 

developed in chapter 3 are used to simulate the electric performance at the module-level. These 

models account for series-connection between the cells, the bypass-diode behaviour, and the 

influence of metallization on the electric performance.  

The considered types of tandem cells are two-terminal (2T) and four-terminal (4T) stacked tandem 

cells. In the 2T tandem cells, the two sub-cells are series-connected. Therefore, the I-V curve of the 

tandem cell can be obtained by applying the series-connection model to the two sub-cells. On the 

other hand, the electric outputs of the sub-cells in a 4T tandem cell are decoupled. Thus, inter-cell 

connections are considered separately for the top and bottom sub-cells. In other words, the electric 

output of the tandem module, at any time step, includes two separate I-V curves. Finally, the 

metallization model is applied for the 2T tandem cell and for the bottom sub-cell, silicon 

heterojunction, for the 4T cell. 

5.1.2 Cell architecture 

In addition to the tandem type, cell architecture has a great influence on the tandem cell behaviour. 

Light management techniques are critical for enhancing the optical performance of the solar cell. 

One of the most important techniques is surface texturing which leads to scattering of the incident 

light and can improve the optical performance by a theoretical limit of 4n2, where n is the refractive 

index of the absorber material [95].  

Two designs are considered for surface texturing in tandem cells: a double-side texture design that 

involves texturing of the front and rear surfaces of the two sub-cells, and a rear-side texture design 

that involves texturing of the rear surface of the bottom sub-cell. Figure 5.2 illustrates the mentioned 

architectures as well as a planar reference device for a given 2T tandem cell design[96]. 
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Figure 5.2 Three architecture options for tandem cell design [96]. 

The 4T tandem cell design assumes stacked, yet electrically decoupled, perovskite and silicon 

heterojunction sub-cells. On the other hand, the electric performance is coupled in 2T tandem cells. 

Therefore, four design options are available: 2TT-RT, 2TT-DT, 4TT-RT and 4TT-DT. 

The difference in architectures and working principles among the considered tandem modules 

implies dissimilar optical behaviours. Therefore, a comprehensive comparison between the 

considered tandem options requires an optimized tandem cell design. To verify this hypothesis, the 

outputs of a study for the energy yield of 2T tandem modules are presented in figure 5.3 [96]. In 

5.3-b, the different shades of green represent different perovskite bandgaps, ranging from 1.55eV 

for the lightest to 1.88 eV for the darkest. 

 

Figure 5.3 Effect of perovskite absorber layer thickness on the energy yield output for a) double-side texture and 

b) planar tandem cells [96]. 
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Although this study only considers 2T tandem modules, it clearly shows the effects of the cell 

architecture on the optimal perovskite thickness. It can be noted that a module with double-side 

texture outperforms the planar module in terms of energy yield. Another important observation is 

that the energy yield for planar module is more sensitive to the perovskite thickness. Without texture 

the near infrared response is worse, due to a lack of light trapping. Thus, a 2T tandem will be limited 

by the bottom cell more quickly as the perovskite thickness increases than one with better light 

trapping. 

5.2 Optimizing power output 

For this case study, maximum power output of the 4 design options optimize at STC. The considered 

degree of freedom for optimization is the perovskite thickness. Assuming no effect of the perovskite 

thickness on its electric properties, GenPro4 was used to estimate the optimal perovskite thickness 

for the four considered cells. Optical simulations were run for perovskite thicknesses ranging 

between 300 and 400 nm, with an increment of 10 nm. The results of these simulations are depicted 

in figure 5.4. The points in the figure depict the simulation values and the lines represent fits of the 

variation trends. 

 

Figure 5.4 The STC photo-generated current of Perovskite and SHJ sub-cells for a) rear-textured cell b) double-

textured cell. 

For both cell architectures, the same trend can be observed; larger perovskite thickness implies a 

higher Jph of perovskite and a low Jph of SHJ. Nevertheless, the double-textured cell outperforms 

the rear-textured cell due to better light management. With the optical simulation results being 

available, the optimization criteria before choosing the optimal thicknesses. 

For 2T tandem cells, power dissipation, resulting from current mismatch, is a significant loss 

mechanism. Therefore, the optimization criterion is minimizing difference in photo-generated 

currents between top and bottom cells at STC. Therefore, the optimal perovskite thicknesses are 
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318 nm for rear-textured tandem module and 307 nm for double-texture tandem module. On the 

other hand, the electric output of the sub-cells in a 4T tandem cell is decoupled. Thus, the 

optimization criterion is maximum power output. Figure 5.5 shows the output power density for 

perovskite and SHJ sub-cells vs. photo-generated current. 

 

Figure 5.5 Power density for perovskite and SHJ sub-cells vs. photo-generated current density. 

Although the efficiency of the SHJ (25.1%) is higher than that of the perovskite cell (22.7%), the 

perovskite cell is more efficient for the same photo-generated current. This is due to the larger 

bandgap of perovskite, resulting in a larger amount of energy harvested from absorbed photons. 

Therefore, for a maximum energy yield, the optimal perovskite thickness is 400 nm for both cell 

architectures. The I-V curves of the optimized designs at STC are shown in figure 5.6.  

 

Figure 5.6 J-V curves at STC of a) 2TT-RT b) 4TT-RT c) 2TT-DT d) 4TT-DT 
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The resulting power densities, from shown J-V curves, are depicted in figure 5.7. As mentioned 

before, the energy generation contribution of the perovskite is larger than that of SHJ for 4T cells. 

In fact, the 4TT-DT outperforms the other options with an STC efficiency of 31.5%. This was 

expected since this option combines good light management with electric decoupling of sub-cells.  

 

Figure 5.7 Maximum power densities at STC of the four design options. 

The best design option offers a higher efficiency than the reference SHJ cell by 25.5%. 

Nevertheless, these modules are not expected to only perform under STC conditions. In the next 

section, the performance of these options under real life conditions will be assessed. 

5.3 Modelling Results 

After optimizing the STC power output of design options, the toolbox was used for an annual energy 

yield simulation of the tandem modules based on the four design options. The metallization and 

bypass diode effects were considered for the 2T tandem module and the bottom sub-cell of the 4T 

tandem modules. The simulations were performed for 72-cell modules, with a tilt angle of 40°, 

based on weather data of a sample year in Delft. Table 5.1 shows the calculated power output of 

the four modules. 

Table 5.1 STC efficiencies of the four modules. 

Modules 2TT-RT 4TT-RT 2TT-DT 4TT-DT 

STC Power [Watts] 496 517 526 549 

5.3.1 Optical performance 

Before assessing the simulated electric output, it is crucial to examine the optical outputs of the 

toolbox simulations. In fact, analysing the optical results can create a better understanding of the 

weather effects on energy generation. This analysis will only include 2T tandem modules because 

they are highly affected by current mismatches. Figure 4.8 shows the hourly mismatch between the 

perovskite and silicon heterojunction sub-cells throughout the year for rear-textured modules. It 

also includes a plot of the maximum daily solar altitude in Delft. 
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Figure 5.8 a)Hourly current mismatch for 2TT-DT module and b) maximum daily solar altitude throughout the 

year. 

From the above figure, a clear seasonal variation of the current mismatch can be noticed. The same 

trend, or curve, is visible in the plot of the maximum daily solar altitude. This observation is linked 

to the irradiance model that is resolved based on the AM spectrum. Lower solar altitudes during the 

winter months imply higher optical air mass values. Consequently, a higher optical air mass implies 

a lower average photon energy of the spectrum and thus higher photo-generated current of the 

bottom sub-cell.  A similar trend is followed by the rear-textured tandem module. 

Although both 2T tandem modules exhibit similar seasonal variations, their different architectures 

still lead to different optical, and therefore electric, outputs. To analyse the distinct behaviours of 

the two modules, the weekly dissipated photo-generated current value is used. This quantity is 

defined as the summation of the weekly summation of the hourly photo-generated current dissipated 

due to current mismatches. Figure 5.9 shows the variation of the defined quantity over the year. 

 

Figure 5.9 Weekly dissipated photo-generated current of 2TT-DT and 2TT-RT. 
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From the above figure, it can be noted that the current mismatch for the two tandem modules leads 

to significant electric losses. Nevertheless, the two modules exhibit slightly different seasonal 

variations. The double-textured module has a smaller current mismatch in the period extending 

between September and April. On the other hand, more power is dissipated by this module between 

April and September. 

This observation can be related to the seasonal solar altitude, shown in figure 5.8-b, and the effect 

of the cell architecture on the optical performance. As explained before, during the winter period, 

the near infrared component of the spectrum is higher compare to the summer period. However, the 

top cell light management, in the 2TT-DT module, allows a higher absorption potential in the top 

cell. This results in a better performance of this architecture when compared to 2TT-RT. This 

advantage is reversed in the summer period, where the current absorbed by the top cells of 2TT-DT 

increases with the increase of the spectrum APE. In short, when compared to 2TT-RT, the 2TT-DT 

exhibits advantages for low APE spectrum, during the winter, and suffers from more losses for high 

APE spectrum, during the summer. 

5.3.2  Electric performance 

The toolbox was used to simulate the energy yield of the considered modules. Figure 5.10 shows 

the monthly energy yield of the four modules.  

 

Figure 5.10 Monthly energy yield of the four design options 

The monthly energy yield of the four modules follow the same seasonal variation. As expected, 

based on the modules’ designs, the 2TT-RT module generates the least energy yield. This is due to 

the power dissipation and the light management technique used. On the other hand, 4TT-DT 

outperforms the other modules since it combines electric decoupling with a good light management 

technique. The benefit of four-terminal modules, compared to two-terminal, is significant during 

the summer due to the large solar elevation angles. 

Figure 5.11 presents the annual energy yield of the four modules compared to the single junction 

module, the base case. 
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Figure 5.11 Annual energy yield of the four modules, compared to the SJ module. 

The results show the benefit of electric decoupling of the sub-cells of four-terminal modules, for 

both cell architectures. In addition, the double-textured architecture proves to increase the AEY of 

PV modules. The highest recorded energy yield is for the 4TT-DT, with 590.5 kWh. This quantity 

represents 27.16% increase compared to the SJ-DT, with an AEY of 464 kWh. In order to analyse 

the influence of the weather on the modules’ output, specific yield is calculated. Equation 5.1 shows 

describes the definition of this quantity 

𝑆𝑌 =
𝐴𝐸𝑌

𝑃𝑆𝑇𝐶

 [𝑘𝑊ℎ 𝑘𝑊𝑝⁄ ] (5.1) 

Based on equation 5.1, table 5.2 presents the calculated values of the four modules, compared to 

the base case. 

Table 5.2 Specific yield of the base case and the four modules. 

Modules SJ-DT 2TT-RT 2TT-DT 4TT-RT 4TT-DT 

Specific yield 

[kWh/kWp] 

1143 1056 1052 1081 1075 

 

Because it is the least sensitive to spectral variations, the SJ-DT had the highest specific yield 

among the considered modules. Besides, the four-terminal modules generated a higher specific 

yield compared to the two-terminal modules. This is a result of the absence of power dissipation in 

this design. An interesting observation is that the modules, based on rear-textured architecture, had 

a higher specific yield than double-textured modules. This result implies that the DT modules are 

more sensitive to the meteorological conditions that RT modules. 

The previous section presents the simulated energy yields of the four design options. These 

simulations were based on existing irradiance models in the toolbox. In this section, these irradiance 

models are presented. In addition, their associated assumptions, and their implications, are 

discussed. This is a motivation for improving the existing models for better simulation results.  
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An accurate spectral resolution is a prerequisite for accurate optical simulations of solar cells, 

especially for tandem cells where the optical behaviour of the two (or more) sub-cells are coupled. 

In order to account for this variation, the toolbox contains a dataset of AM solar spectra. Based on 

the solar zenith angle, this data is used to model the spectral resolution of solar irradiance. While 

this data is accurate for describing the direct normal irradiance, it may result in some errors in the 

diffuse spectrum. The diffuse irradiance is mainly caused by the scattering of the incident solar 

irradiance in the atmosphere. Therefore, the spectral composition of diffuse irradiance can be 

modelled as a function of the cloud coverage, albedo, turbidity and ground reflection [97].  

5.4 Conclusions 

This chapter presents case studies for energy yield simulations of c-Si/Perovskite tandem modules. 

The simulations were performed by utilizing the developed electric models in chapters 2 and 3. 

Section 5.1 includes a literature review to study the different tandem cell layouts and architectures. 

and modelling assumptions are defined. Based on the review, four design options were considered: 

2TT-RT, 2TT-DT,4TT-RT and 4TT-DT. Section 5.2 presents the STC power optimization 

procedure for the four design options. Based on defined criteria, the optimization resulted in optimal 

perovskite thicknesses for the design options: 307 nm for 2TT-DT, 318 nm for 2TT-RT and 400 

nm for the 4TT designs. In section 5.3, the toolbox was used to simulate the performance of the 

four tandem modules. Then, the optical and electric outputs were analysed. Compared to SJ module, 

the tandem modules generated more energy yield. The increase percentage ranges between 12.93% 

for 2TT-RT and 27.13% for 4TT-DT. However, the specific yield of the tandem modules was lower 

than that of the SJ module. Therefore, it can be concluded that tandem modules are more sensitive 

to meteorological conditions.  

5.5 Recommendations 

The irradiance model is a key factor in determining the thermal and electric behaviour of the 

modelled PV module. The current irradiance model resolves spectrally the incident irradiance based 

on the AM spectrum. Although this can be considered as a good approximation, research has shown 

that the spectral composition of diffuse irradiance can be influenced by several factors including 

ground reflection, aerosol scattering and cloud scattering [97]. Thus, implementing a spectral model 

for the diffuse irradiance is crucial for better accuracy, especially for tandem modules simulation. 

In addition, the current irradiance model does not consider the possible effects of the cloud coverage 

on the irradiance distribution and, consequently, the module POA irradiance. Therefore, the 

influence of cloud coverage is to be studied. Finally, irradiance model validation is suggested to 

assess the possibility of inaccuracy. 

In this, the developed work focused on investigating the effects of architecture and electric 

configurations (2T and 4T) on c-Si/Pervoskite tandem cells. Three-terminal tandem configuration 

is a less known design with efficiency that can reach 32% for c-Si/Perovskite tandem cells. It is 

recommended to model this configuration using equivalent circuits. In addition, it is recommended 

to optimize the AEY of tandem cells by modifying the top cell design, absorber bandgap and 

thickness, for a given location and weather data. 
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6 
6 Conclusions  

This chapter presents answers to the research questions defined in chapter 1, draws conclusions, 

and gives recommendations for future development. The MSc thesis project aimed at improving 

the PVMD Toolbox, an energy yield prediction software package for photovoltaic systems. In short, 

the main purpose of the project is to develop an 

“Improved Electrical Model and Experimental Validation of the PVMD Toolbox- 

Extending the Energy Yield Prediction Model to Tandem PV Modules” 

Section 6.1 summarizes the work done to achieve the defined thesis objectives. Section 6.2 includes 

the improvements implemented on the toolbox code. Finally, an outlook for future work is 

presented in section 6.3 

6.1 Conclusions 

This section summarizes the results and draws conclusions. 

Electric Model Improvements 

In chapter 2, an electric model was developed at the cell level. First, reference cells were chosen 

for the toolbox simulations. Then, input parameters of GenPro4 and ASA7 were adjusted to match 

the optical and electric behaviour of the reference cells from literature under standard test 

conditions. Parameter-by-parameter approach was successful at extracting the diode model 

parameters based on the simulated I-V curves. Based on the fittings of extracted parameters, a 

Calibrated Lumped Element Model was introduced.  

In chapter 3, the electric model is extended to simulate the electric behaviour on the module-level 

based on the generated I-V curves of individual cells. The effects of power dissipation and bypass 

diodes were modelled. Furthermore, a metallization model, already developed by a master’s student 

in the PVMD group, was implemented to account for shading and series resistance effects. Finally, 

a cell mapping algorithm was developed and implemented to the toolbox. For an annual energy 

yield simulation of a silicon heterojunction module, this algorithm decreased the number of cell 

simulations by 86%, reducing the computation time of the electric model by a factor of 5. Besides, 

the AEY error resulting from this algorithm was 0.22% and the root mean square difference of the 

hourly predicted yield was 0.13% of the STC power output. 

As a conclusion, the work presented in chapters 2 and 3 fulfilled the first objective of the thesis by 

developing a model that simulates the electric behaviour at the cell and module levels. Compared 

to version 3 of the toolbox, the developed electric model is more realistic because it accounts for 

the effects of temperature and irradiance on all diode-model parameters as well as the cells’ 

connections influence. In addition, the computation time for the electric model was drastically 
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reduced. For an annual energy yield simulation of silicon heterojunction, the electric simulation 

time dropped by a factor of 45, from 1.5 hours to less than 2 minutes (4 CPUs, 3 GHz, 8 GB RAM). 

After implementing the electric model, two datasets were used to validate the thermal and electric 

models in the toolbox. Electric and temperature measurements for an in-house module were 

recorded at TU Delft. In addition, a dataset for a HIT module in Cocoa – Florida, provided by 

NREL, was used. The data recorded at Delft contained GHI as the only irradiance measurements. 

After comparing four decomposition models, Reindl-2 was selected as the most appropriate for the 

Dutch climate. Upon validating the existing thermal model in the toolbox, the results showed that 

it underestimates the module’s temperature with a RMSD of 8.674 °C and an MBD of -6.096 °C. 

Various modifications were implemented on the conductive and convective coefficients in the 

thermal model. As a result, the modified version showed better agreement with the measurements 

as the RMSD and MBD dropped to 4.389 °C and -1.966 °C, respectively. Afterwards, the electric 

model outputs (Pmpp,Vmpp, Impp) were validated against measurements. The simulated 

parameters showed a good agreement with the measurements. The accuracy of the toolbox has 

improved with the energy yield error  -2.65%, compared to 7.43% for version 3. Besides, the largest 

daily energy yield was -19.54 Wh, equivalent to module STC power output for 24 minutes. 

The validation based on NREL data tested the electric model robustness as it was recorded in 

different location and for a longer period. Again, the simulated electric parameters were compared 

to the recorded measurements. The simulated values showed a good agreement with the 

measurements with an AEY error of -4.15% and a highest daily yield error of only 86.44 Wh, 

equivalent to module STC power output for 25 minutes. In addition, it was possible to calculate the 

95% confidence interval of the module’s power output.  

The developed electric model was utilized for tandem modules simulations. The considered cell 

architecture options were rear-textured and double-textured designs. In addition, the electric 

configuration options included two-terminal (2T) and four terminal (4T). Assuming 72-cell tandem 

modules with the same size of SHJ commercial modules, simulations were run for the four design 

options based on Delft weather data. Out of the four options, the 4T-double textured tandem module 

resulted in the highest AEY, with a 27.16% increase compared to a SHJ module. Nevertheless, 

tandem modules generated lower specific yield, compared to a SHJ module, with small advantage 

of four-terminal modules over two terminal ones. 

6.2 Toolbox improvements 

In addition to the implementation of developed models in the toolbox, several improvements were 

applied on the toolbox to guarantee a user-friendly experience. These improvements include: 

• Easy input of simulations options, such as simulation period, metallization parameters, 

number of bypass diodes and a better representation of the simulation outputs 

• Possibility of performing optical simulations to a thin film module layout 

• Autosaving the generated plots and data as png and dat files in Results folder  

• Possibility of loading saved optical simulation results for a faster use 
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Besides, an AC/DC power conversion model was implemented by Tim Stark, MSc student in the 

PVMD group. 

6.3 Outlook – extending the energy yield simulation 

The current version of the toolbox simulates the AEY of a single module. However, most 

photovoltaic systems, such as solar farms and solar roofs, include more than one module. Therefore, 

it is recommended to extend the application of the toolbox to simulating the AEY of PV arrays. In 

fact, the developed cell mapping algorithm can limit the computation time for PV arrays because 

the cells are expected to operate at similar conditions. Besides, the implemented power conversion 

model allows to simulate the power electronics at the array level. 
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A 
A. Reference Cells Design 

This appendix presents a detailed design of the reference cells.  

 

 

Figure A.1 The design of SHJ reference cell. 

 

Figure A.2 Absorption of different layers under STC irradiance. 
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Table A.1 Optical properties of SHJ reference cell layers. 

λ 

(nm) 

ITO [98] a-Si(p):H [99] a-Si(i):H c-Si(n) [100] a-Si(n) [101] Al [102] 

n k n k n k n α n k n k 

300 2.290 0.366   4.410 1.802 5.060 1.7E6 3.750 3.156 6.768 41.03 

325 2.342 0.271   4.410 1.802 5.140 1.2E6 4.176 2.803 6.013 38.15 

350 2.308 0.174 4.275 1.356 4.410 1.802 5.480 1.0E6 4.476 2.420 5.446 35.63 

375 2.271 0.094 4.186 1.028 4.601 1.404 6.705 5.0E5 4.667 2.041 4.874 33.37 

400 2.232 0.041 4.083 0.769 4.752 1.148 5.590 9.5E4 4.771 1.682 4.450 31.50 

425 2.195 0.022 3.964 0.569 4.793 0.943 5.010 4.5E4 4.808 1.356 4.058 29.85 

450 2.157 0.012 3.837 0.413 4.748 0.769 4.680 2.6E4 4.793 1.068 3.671 28.26 

475 2.118 0.006 3.709 0.294 4.686 0.551 4.455 1.6E4 4.741 0.821 3.371 26.93 

500 2.084 0.003 3.588 0.203 4.607 0.402 4.290 1.1E4 4.662 0.612 3.070 25.60 

525 2.059 0.003 3.482 0.137 4.541 0.311 4.170 8.3E3 4.566 0.442 2.850 24.48 

550 2.040 0.004 3.390 0.088 4.425 0.236 4.080 6.4E3 4.462 0.307 2.630 23.35 

575 2.023 0.004 3.314 0.053 4.310 0.161 4.005 5.1E3 4.355 0.204 2.446 22.35 

600 2.008 0.004 3.251 0.034 4.205 0.108 3.940 4.1E3 4.250 0.130 2.264 21.37 

625 1.994 0.005 3.200 0.021 4.111 0.070 3.890 3.4E3 4.155 0.081 2.123 20.55 

650 1.980 0.006 3.156 0.014 4.031 0.037 3.840 2.8E3 4.072 0.051 1.987 19.78 

675 1.967 0.006 3.120 0.009 3.964 0.020 3.810 2.3E3 4.001 0.032 1.880 19.05 

700 1.953 0.007 3.089 0.007 3.906 0.010 3.770 1.9E3 3.942 0.021 1.772 18.32 

725 1.940 0.007 3.063 0.005 3.881 0.005 3.745 1.6E3 3.893 0.014 1.684 17.72 

750 1.926 0.008 3.040 0.004 3.859 0.002 3.720 1.3E3 3.851 0.009 1.595 17.14 

775 1.912 0.009 3.021 0.003 3.810 0.001 3.705 1.1E3 3.815 0.006 1.517 16.57 

800 1.897 0.010 3.003 0.002 3.790 4E-4 3.680 8.5E2 3.784 0.004 1.440 16.00 

825 1.883 0.011 2.988 0.002 3.766 1E-4 3.665 6.8E2 3.757 0.003 1.384 15.44 

850 1.868 0.012 2.975 0.002 3.737 4E-5 3.650 5.4E2 3.734 0.002 1.329 14.89 

875 1.852 0.013 2.963 0.001 3.709 1E-5 3.635 4.1E2 3.713 0.002 1.293 14.43 

900 1.836 0.014 2.952 0.001 3.684 3E-6 3.620 3.1E2 3.695 0.001 1.259 13.98 

925 1.820 0.015 2.942 0.001 3.664 9E-7 3.605 2.3E2 3.678 0.001 1.243 13.56 

950 1.803 0.017 2.933 0.001 3.649 1E-6 3.590 1.6E2 3.663 0.001 1.229 13.16 

975 1.786 0.018 2.925 0.001 3.634 1E-6 3.580 1.1E2 3.650 0.001 1.219 12.83 

1000 1.768 0.020 2.918 0.001 3.619 1E-6 3.570 6.4E1 3.638 4E-4 1.210 12.50 

1025 1.753 0.021   3.619 1E-6 3.560 3.5E1 3.627 3E-4 1.210 12.13 

1050 1.734 0.023   3.619 1E-6 3.550 1.6E1 3.617 3E-4 1.210 11.81 

1075 1.715 0.025   3.619 1E-6 3.550 7.1E0 3.608 2E-4 1.205 11.49 

1100 1.694 0.027   3.619 1E-6 3.540 3.5E0 3.599 2E-4 1.201 11.17 

1125 1.673 0.029   3.619 1E-6 3.535 1.8E0 3.591 1E-4 1.205 10.87 

1150 1.652 0.031   3.619 1E-6 3.530 0.680 3.584 1E-4 1.212 10.58 

1175 1.630 0.034   3.619 1E-6 3.525 0.145 3.577 1E-4 1.234 10.31 

1200 1.606 0.036   3.619 1E-6 3.520 0.020 3.571 1E-4 1.257 10.04 
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Figure A.3 The design of perovskite reference cell. 

 
Figure A.4 Absorption of different layers under STC irradiance. 
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Table A.2 Optical properties of perovskite reference cell layers. 

λ 

(nm) 

FTO [103] TiO2 [104] Per. [105] PTAA [106] Ag [102] 

n k n k n k n k n k 

300 2.289 0.078 2.998 0.412 1.675 0.926 1.472 1.47E-1 1.346 0.986 

325 2.140 0.018 2.891 0.137 1.686 0.959 1.430 2.87E-1 0.546 0.572 

350 2.069 0.009 2.691 0.007 1.833 1.193 1.450 4.36E-1 0.115 1.318 

375 2.031 0.007 2.558 0.000 2.244 1.333 1.657 6.33E-1 0.060 1.764 

400 2.005 0.005 2.487 0.000 2.624 1.078 2.099 5.33E-1 0.050 2.103 

425 1.985 0.004 2.440 0.000 2.646 0.832 2.009 4.22E-2 0.043 2.402 

450 1.969 0.003 2.405 0.000 2.612 0.735 1.865 3.11E-2 0.040 2.648 

475 1.956 0.003 2.379 0.000 2.615 0.705 1.804 3.09E-2 0.050 2.901 

500 1.943 0.002 2.358 0.000 2.670 0.643 1.778 3.45E-2 0.050 3.130 

525 1.932 0.002 2.341 0.000 2.745 0.577 1.766 2.71E-2 0.051 3.362 

550 1.922 0.002 2.328 0.000 2.773 0.460 1.751 1.55E-2 0.060 3.597 

575 1.912 0.002 2.316 0.000 2.746 0.360 1.734 8.49E-3 0.052 3.800 

600 1.902 0.002 2.306 0.000 2.690 0.281 1.720 5.58E-3 0.055 4.009 

625 1.893 0.002 2.298 0.000 2.641 0.234 1.709 4.28E-3 0.058 4.215 

650 1.883 0.002 2.290 0.000 2.595 0.209 1.701 3.50E-3 0.052 4.409 

675 1.874 0.002 2.284 0.000 2.563 0.199 1.693 2.94E-3 0.047 4.605 

700 1.864 0.003 2.278 0.000 2.544 0.193 1.687 2.50E-3 0.041 4.802 

725 1.854 0.003 2.273 0.000 2.541 0.188 1.682 2.16E-3 0.036 4.998 

750 1.844 0.003 2.269 0.000 2.557 0.172 1.677 1.88E-3 0.031 5.194 

775 1.834 0.003 2.265 0.000 2.569 0.115 1.673 1.65E-3 0.033 5.383 

800 1.824 0.004 2.261 0.000 2.517 0.033 1.669 1.47E-3 0.037 5.569 

825 1.814 0.004 2.258 0.000 2.423 0.002 1.666 1.32E-3 0.040 5.758 

850 1.803 0.005 2.255 0.000 2.371 0.000 1.663 1.19E-3 0.040 5.965 

875 1.792 0.005 2.252 0.000 2.343 0.000 1.660 1.08E-3 0.040 6.171 

900 1.781 0.006 2.249 0.000 2.326 0.000 1.657 9.84E-4 0.040 6.370 

925 1.769 0.006 2.247 0.000 2.314 0.000 1.654 9.04E-4 0.040 6.555 

950 1.757 0.007 2.245 0.000 2.304 0.000 1.652 8.35E-4 0.040 6.740 

975 1.745 0.008 2.243 0.000 2.296 0.000 1.650 7.75E-4 0.040 6.925 

1000 1.732 0.008 2.241 0.000 2.289 0.000 1.648 7.22E-4 0.040 7.160 

1025 1.719 0.009 2.239 0.000 2.283 0.000 1.646 6.76E-4 0.040 7.426 

1050 1.706 0.010 2.238 0.000 2.277 0.000 1.644 6.35E-4 0.040 7.691 

1075 1.692 0.011 2.236 0.000 2.270 0.000 1.642 5.98E-4 0.045 7.896 

1100 1.678 0.012 2.235 0.000 2.268 0.000 1.640 5.66E-4 0.053 8.061 

1125 1.664 0.014 2.233 0.000 2.267 0.000 1.638 5.36E-4 0.061 8.227 

1150 1.649 0.015 2.232 0.000 2.262 0.000 1.636 5.11E-4 0.069 8.393 

1175 1.633 0.017 2.231 0.000 2.257 0.000 1.634 4.87E-4 0.077 8.558 

1200 1.618 0.018 2.229 0.000   1.633 4.66E-4 0.085 8.724 
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B 
B. Fitted Diode-Model Parameters 

This appendix contains the parameters extraction results, shown as red circles, and the mathematical 

fittings of the parameters’ behaviours, shown as blue line. 

Silicon Heterojunction Model Cell - Irradiance Effect 

 

Figure B.1 Irradiance effect on SHJ parameters. 
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Silicon Heterojunction Model Cell - Temperature Effect 

 

 

Figure B.2 Temperature effect on SHJ parameters. 
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Perovskite Model Cell - Irradiance Effect 

 

Figure B.3 Irradiance effect on perovskite parameters. 
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Perovskite Model Cell - Temperature Effect 

 

Figure B.4 Temperature effect on perovskite cell parameters. 
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