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Abstract

For decades, marine propeller blades have been manufactured solely using alloys of metals like nickel, alu-
minium, bronze and stainless steel. However, recent studies have shown that using composites as material
for the propeller blades can have benefits. Due to the material the blades becomes self-adaptive (flexible).
The claimed benefits are for instance better corrosive characteristics, better vibration control and higher cav-
itation inception speeds. However, a challenge with flexible propellers is that in the design stage, the Fluid-
Structure Interaction (FSI) has to be taken into account. If simulations are performed, the method that is
mostly used is a coupling between an existing fluid solver and structural solver. The study presented in this
report is part of the Greenprop project, which has the aim to calculate the hydro elastic response of flexible
propellers by developing a coupling between a Boundary Element Method (BEM) and Finite Element Method
(FEM), i.e. BEM-FEM simulations. In these BEM-FEM simulations a pressure correction is applied for the tip
vortex, a viscous effect that is not captured by BEM. The settings of this correction showed a large influence
on the hydro elastic response of the propeller blades. The study presented in this report is aimed towards the
validation of BEM-FEM with Reynolds Averaged Navier Stokes (RANS) coupled to FEM. By using RANS, vis-
cous effects are taken into account. Within the scope of this study simulations are performed with the epoxy
propeller of Greenprop in a uniform wakefield, using RANS solver ReFRESCO and FE package ANSYS.

First, a 2D benchmark case is carried out. The reason for this case is to get familiar with the methods and
to check the reliability of the FSI module in ReFRESCO. It is concluded that the FSI module of ReFRESCO gives
similar results compared to literature. The FSI module is tested thoroughly and more insight is obtained in
the settings and performance of the FSI module of ReFRESCO. The benchmark case has led to the conclusion
that the FSI module is reliable and can be used in the propeller study.

Second, the propeller study is performed. This study is divided in a rigid and a flexible part. For the rigid
propeller case, the open water results are compared to experiments and BEM simulations both performed
by Greenprop. The accuracy of the RANS results is determined by evaluating the numerical uncertainty and
comparing to experimental results. For advance ratios up to 0.8 a good resemblance is found with a maximum
deviation of -4% for RANS compared to experiments. For advance ratios larger than 0.8 both the deviations
in results and numerical uncertainties of RANS increase. The influence of blockage, modelling- and experi-
mental errors are discussed. In the comparison with BEM lower thrust and torque are found for RANS, which
is attributed to viscous effects. The pressure distributions on the blade of RANS and BEM are compared. The
results found in the rigid propeller are used in the flexible propeller study.

For the RANS-FEM simulations of the flexible propeller, the FE model is coupled to the RANS solver. The
eigenfrequencies of the FE model are used as validation, the first two modes show a deviation of 0.3% and
0.8% compared to the Greenprop FE model. A decrease in thrust and torque is obtained for the flexible RANS-
FEM compared to the rigid RANS simulations. This led to an open water efficiency increase of -0.5% to -
1.7%. For BEM-FEM the same trends are visible in the influence of flexibility on thrust and torque. For the
deformation of the blade, bending and pitch are analysed. The bending deformation of the low advance
ratio shows a good resemblance with the experimental results, for pitch the difference was too large to draw a
conclusion. This is attributed to post processing and modelling errors at the tip of the blade in ReFRESCO. The
comparison of bending and pitch with BEM-FEM led to several recommendations according to the settings of
the correction applied in BEM-FEM. From the flexible propeller study it can be concluded that more insight is
gained in the response of the epoxy propeller in uniform flow obtained with RANS-FEM compared to RANS,
BEM-FEM and experiments.
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1
Introduction

For decades marine propeller blades have been manufactured solely using alloys of metals like nickel, alu-
minium, bronze and stainless steel. However, recent studies have shown that composites as material can
have benefits. On the one hand, these claimed benefits are due to the material properties, such as better
corrosive characteristics, low magnetic footprint and high strength and stiffness compared to weight. On the
other hand, the much larger deformation of the propeller can lead to other advantages compared to normal
marine propellers. The flexible propeller adapts to its working conditions, which can lead to better vibration
control, higher cavitation inception speeds, and even higher efficiency in off-design conditions.

A challenge of self-adaptive (flexible) propellers is that in the design stage, the deformation can no longer
be neglected as in rigid propeller design. The deformation of the propeller influences the flow, and the flow
influences the deformation. This interaction is called Fluid-Structure Interaction (FSI) . FSI has to be taken
into account in the design stage of a flexible propeller. The design methods used for flexible propellers con-
sist of experiments or numerical solvers. This study is aimed towards the validation of one of the possible
numerical solvers.

First, some general information on marine propellers is given. This is followed by a literature review on
self-adaptive (flexible) marine propellers. The introduction ends with the objectives and scope of this study.

1.1. Marine Propellers
Propellers are an important part of the propulsion system of ships. Their design depends on parameters like
size of the aft ship, velocity of the vessel and wakefield created by the vessel. Some geometrical characteristics
of marine propellers, essential for the understanding of this report, are outlined in the next section. In section
1.1.2 the method of expressing the performance of a marine propeller is explained, as these parameters and
methods are extensively used in this study.

1.1.1. Geometry
The propeller is connected to the engine shaft of a ship. The root of propeller blades is connected to the hub
which is coupled to the shaft. A schematic representation of a hub with one blade is shown in figure 1.1. The
orientation is as if looking from the aft of the ship including propeller.

The right hand side of the blade in figure 1.1 is called the leading edge (LE). This is the side of the propeller
entering the fluid first. This propeller is therefore rotating clockwise, also called a right-handed propeller. Op-
posite to the leading edge is the trailing edge (TE) . When looking at a cross section at a constant radius from
the hub, the geometry of figure 1.2 is found. In a cross section the leading- and trailing edge are often called
nose and tail respectively. The chord (c) is the circular segment connecting nose and tail. Note that in fig-
ure 1.2 the cross section is expanded. The midchord is the midpoint of this line, indicated in blue in the figure.

A parameter determined in the design stage of the ship and propeller is the skew. In figures 1.1 and 1.2 the
skew of the blade is expressed in two different ways, either in skew angle or distance. The skew angle(θS ) is

1
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Figure 1.1: Propeller geometry YZ-plane [7] Figure 1.2: Propeller geometry of a slice in the Xθ-plane [32]

depicted in figure 1.1. In figure 1.2 skew is expressed as the distance of the midchord point from the origin of
the propeller root, indicated by S. The advantage of highly skewed propellers can be a reduction of propeller
induced vibrations on the hull and an increase in cavitation inception speed [8].

The pitch angle (Φ) is the angle in which the propeller blade is turned towards the ship and equals the
rotation angle in the xθ-plane in figure 1.1. The distance the propeller travels after one revolution due to its
pitch angle is called nominal pitch. However, in reality, the distance travelled by the propeller is less than the
nominal pitch, due to slip between propeller and fluid [43]. The pitch angle thus determines the inflow angle
of the water onto the blade and thereby the load on the propeller blades. The amount of pitch is determined
in the design stage of the ship and its propulsion system, being influenced by the engine speed, requested
forward speed and loading on the blades. Another parameter determined in the design stage of the ship and
propeller is the rake of the propeller blades. Rake represents the axial shift of the blades from the origin. Rake
is shown in figure 1.2. With rake, a larger blade area can be obtained with the aft body of the ship as the
limiting factor.

1.1.2. Performance

The flow into the propeller is determined by the flow around the hull. This is called the wakefield. The effi-
ciency and performance of a propeller are often determined in open water. To measure the performance in
open water, model tests are performed in a uniform flow, without the influence of the ship hull on the inflow
of the propeller blades.

In figure 1.3 a cross section of a propeller blade is shown with relative water velocity (VR ) caused by the
forward velocity of the ship, or so called advance velocity (VA) and the blade rotation speed (np )[47]. The suc-
tion side of the propeller is located upstream in forward sailing condition. This side has the lowest pressure
due to the higher velocity at this side. On the pressure side the largest pressures are found.

The forces related to the flow velocities around the blade are also indicated in figure 1.3. The lift force (L)
that is generated, depends on the inflow velocities, angle of attack and the geometry of the blade. A drag force
(D) exists due to the fluid resistance on the blade. From this lift- and drag force, the thrust (T ) and torque (Q)
can be determined.
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Figure 1.3: Cross section of a propeller blade with forces resulting from
the inflow- and rotational velocity [47].

Explanation of the symbols of figure 1.3
- VA : Advance velocity
- np : Blade rotation speed
- VR : Relative water flow velocity
- α: Angle of attack
- L: Lift force
- D : Drag force
- T : Thrust force
- Q: Torque

The obtained thrust (T ) and torque (Q) by model tests in open water can be used to construct a so called
open water diagram. In an open water diagram the non-dimensional thrust (KT ), torque (KQ ) and efficiency
(ηO) are expressed against the advance ratio J , which is the dimensionless inflow condition. Parameters ρ
and D represent the water density and propeller diameter respectively, in the following equations [23] [47],

J = VA

np D
, KT = T

ρn2
p D4

, KQ = Q

ρn2
p D5

, ηO = JKT

2πKQ
(1.1)

Together these parameters are used to construct the open water diagram. The open water diagram is used
to show the propeller performance in uniform flow. An example of an open water diagram is shown in figure
1.4.

Figure 1.4: Example of an open water diagram [47]



4 1. Introduction

1.2. Flexible Marine Propellers
Self-adaptive marine propellers are made of composites or epoxy rather than metal alloys. Several of the
claimed benefits are outlined in the next section. Design methods that are most often used in literature are
explained and a literature review on research available on this subject is given.

1.2.1. Claimed Benefits
Benefits due to the material characteristics are that composite has high strength and stiffness combined with
low weight [18]. The corrosive characteristics make it a competitive material in the marine industry com-
pared to steel. Next to that, crack nucleation as in metal is prevented by using fibres in composites [5]. For
the application on navy vessels, the low magnetic footprint of composite marine propellers is of high impor-
tance [27].

The flexibility of the material forces the propeller to adapt its geometry to its working conditions [34]. This
results in deformation in response to the hydrodynamic loading, which can lead to reduced cavitation and
lower propeller- and hull vibrations [5][18]. In increasing load, the propeller may reduce pitch which can lead
to higher efficiency in off-design conditions by benefiting from the usually unwelcome velocity variation in
the wakefield behind a ship [34].

1.2.2. Design Methods
When it comes to the design of flexible marine propellers the performance should be determined in relation
to geometry changes. Several methods can be used for the determination of deformation and performance
of self adaptive propellers. Methods found in literature are:

• Experiments - Thrust, torque and deformation are measured in cavitation tunnels. Often image corre-
lation is used to capture the displacement of the blades. In some literature, cavitation is compared for
a flexible propeller and its rigid counterpart.

• Simulations - Using numerical methods to determine the deformations and performance of flexible
propellers.

When numerical methods are used for the design, the fluid-structure interaction should be taken into
account. The flexibility (stiffness) of the propeller has to be included in the simulation. To be able to simu-
late FSI, two methods are available, the partitioned- and monolithic approach. The partitioned approach is
mostly used for FSI problems, where two separate already existing codes for fluid and structure are used to
solve the FSI problem. In the monolithic approach one code is used for the whole FSI problem.

When a partitioned approach is chosen, a Finite Element Method (FEM) is used for the structural solver.
For the fluid solver, most often used methods are the Vortice Lattice Method (VLM), Boundary Element
Method (BEM) and Reynolds Averaged Navier Stokes (RANS). The differences in the fluid solvers are in the
level in which characteristics of the fluid are taken into account and how the equations are discretised. In this
study RANS is used towards the validation of BEM, VLM will not further be explained. For the understanding
of the next section it should be noted that in BEM the fluid is assumed to be irrotational and viscosity is ne-
glected. In RANS these characteristics are taken into account. Theory of BEM, RANS and FSI will be explained
in more detail in chapter 2.
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1.2.3. Literature
The literature available on flexible propellers can be roughly divided on the basis of design methods used, the
choice of fluid solver in the simulations, the geometry of the propeller, uniform- or non-uniform wake and
the parameters that are used for the analysis. Maljaars and Kaminski [30], give a clear overview of research on
flexible marine propellers. In the theory chapter 2 an overview is given of the most important literature for
this study.

The knowledge gaps identified in the paper of Maljaars and Kaminski [30] for the flexible propeller re-
search are that

• no comparative studies between RANS, BEM, and VLM for the FSI analysis of flexible propellers have
been presented in literature so far;

• most of the papers presented results in non-dimensional quantities for flexible propellers, whereas
deformations can give more insight in the behavior of the flexible propellers;

• knowledge on cavitation behavior or reduced acoustic signature of flexible propellers is very limited up
to now;

• no results have been published that demonstrate the actual efficiency improvement of flexible blades
on full scale;

• no investigation in fatigue/strength assessments have been performed.

One project that tries to fill in these knowledge gaps is Greenprop. The Greenprop project has the aim to
develop software for the design of flexible propellers for the maritime industry. More specifically,

"Greenprop focuses on the development of a coupling between a Finite Element Method (FEM) software and
a Boundary Element Method (BEM) in order to calculate the hydro-elastic response of flexible (composite) pro-
pellers in steady and unsteady flow" [28].

When comparing the results for bending- and pitch deformation of the flexible Greenprop propeller, dif-
ferences were found compared to the model experiments also performed by Greenprop. Several approxima-
tions and corrections are made in the BEM-FEM simulations. Therefore, it is not clear where this difference
originates. A possible cause for the differences can be the viscous effects not being captured by BEM. To val-
idate the BEM corrections, it is recommended to perform simulations with the same propeller with a solver
taking into account viscosity. More information on the Greenprop project is given in the theory chapter 2,
together with more literature on flexible marine propellers.

1.3. Objectives
Taking into account the research performed on flexible propellers until now, the knowledge gaps identified by
Maljaars and Kaminski [30] and the differences found by Greenprop [28], a clear knowledge gap can be filled
by performing coupled RANS-FEM simulations with the GreenProp propeller. By using RANS, viscous effects
are taken into account. The RANS-FEM results can be compared with BEM-FEM and experiments performed
with the same propeller. Therefore, RANS-FEM is used towards the validation of BEM-FEM.

RANS solver ReFRESCO is used for this study. The objectives of this study can be divided in the actual
propeller study using RANS-FEM and the validation of the FSI module of RANS solver ReFRESCO. The possi-
bility to include fluid-structure interaction in ReFRESCO is implemented since 2017 and is therefore relatively
new [21]. The code has been tested on several 2D cases only. Therefore, an important part of this study is to
validate this module.
The objectives of this study are to,

1. test the performance of the FSI module in ReFRESCO, by performing a benchmark case and compare
results to available literature;

2. validate the results of the open water diagram of the rigid propeller in RANS. By comparing to Green-
prop results of the experiments and BEM simulations.

3. verify the response of the propeller FE model by comparing to Greenprop FE- and physical model;
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4. analyse the response of the epoxy Greenprop propeller in RANS-FEM by observing the thrust, torque,
bending and pitch response and comparing to BEM-FEM and experimental results.

First a test case in 2D is performed to become familiar with the software and the FSI module of ReFRESCO.
Furthermore, ReFRESCO is validated against available literature, and a sensitivity analysis is performed to
investigate the influence of different settings which will be used in the propeller study. After the test case, the
actual propeller study is started. A flow diagram of the study is shown in figure 1.5.

Figure 1.5: Flowdiagram of research

The results of the RANS simulations are compared to the experimental data and to the BEM-FEM simu-
lations. It should be noted that in all the methods modelling errors are made. It is important to get an idea of
the measurement and simulation errors before any conclusion is drawn.

1.4. Scope
Within the scope of this study simulations are performed with the propeller of Greenprop, using RANS solver
ReFRESCO coupled to FEM. The epoxy propeller is used. This propeller is the most flexible one used by
Greenprop, leading to the highest deformation, compared to the composite propellers. Besides that, the FEM
modelling of this propeller is relatively simple as the propeller can be assumed isotropic. The bronze (rigid)
propeller is used to verify the open water diagram. Simulations are performed in a uniform wakefield, as
Greenprop results are available for these conditions only.

For the propeller study, simulations in the same conditions as the Greenprop simulations and experi-
ments are performed. Greenprop tested advance ratios in the range of 0.369 to 0.851. To reduce the amount
of simulations in this study it is chosen to focus on three conditions as performed by Greenprop. These condi-
tions have a varying advance ratio, and therefore angle of attack on the propeller blade. Advance ratios of the
three conditions are J= 0.369, 0.512 and 0.849. These were chosen to give a broad view on the effect of RANS
compared to BEM in the range of advance ratios tested by Greenprop. It is expected that by using RANS a
better resemblance is found with the experimental data compared to BEM. Especially in regions where there
is a large influence of viscous effects. Viscous effects include flow separation, boundary layer development
and tip vortex dynamics. These mostly appear in conditions with large angles of attack on the blade. This
corresponds to low advance ratios as becomes clear from figure 1.3.
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1.5. Overview Report
Before the actual study is started, a theoretical background is given in chapter 2 on solving methods of fluid
and structure, numerical methods and fluid structure interaction. After that the benchmark case is discussed.
This benchmark case is discussed in chapter 3. This benchmark case ends with a sensitivity study on propor-
tional damping, timestep and RBF radius.

The propeller part of this research is divided in a rigid- and a flexible propeller part. In figure 1.6, a flow
diagram of the propeller part is shown. In chapter 4, the rigid part of the propeller simulations is discussed.
The flexible part can be found in chapter 4. In both chapters the discretisation of fluid and structure are
discussed together with results of rigid and flexible propeller simulations. Chapter 6 contains the overall
conclusion and recommendations of this study.

Figure 1.6: Plan propeller study simulations and comparisons





2
Theoretical Background

In this chapter the theoretical background is given necessary for the understanding of the benchmark- and
propeller case chapters. Started is with literature on flexible marine propellers. Followed by the theory on
fluid- and structure and the solvers used for fluid and structure in this study. The chapter ends with the
description of fluid-structure interaction and how it is implemented in the solver.

2.1. Literature Flexible Propellers
In the introduction it was explained that the literature can be roughly divided in the basis of design methods
used, the choice of fluid solver in the simulations, the geometry of the propeller, uniform- or non-uniform
wake and the parameters that are used for the analysis. Some literature is summarised in this section.

In literature, whenever simulations are performed, most often a partitioned approach is used, with a sep-
arate fluid- and structural solver. The structural model of the propellers used in simulations, are mostly
constructed out of shell- or solid elements. When looking at the fluid solver used in literature, most of the
available research papers use either a BEM solver coupled to FEM (BEM-FEM) or a RANS solver coupled to
FEM (RANS-FEM). In most cases BEM was chosen for computational time and cost reasons rather than accu-
racy. Reasons for choosing RANS rather than BEM were that BEM assumes the fluid to be inviscid, while the
propeller operates in a viscous flow [18]. Especially for conditions where the viscous effects are significant a
RANS solver will perform better.

The geometry of the propellers used in literature mostly have large skew [18] [34] [5]. Especially for dis-
placement of the tip, the twist of the blade high skew is wanted. Maljaars and Dekker [29] showed that skew
angle has a large influence on the hydro-elastic response: "The movement of the thrust load causes, especially
in case of highly skewed propellers, a larger de-pitching moment. Based on these results it can be concluded
that the skew angle has a pronounced effect on the hydro-elastic response of a flexible propeller."

In this study RANS-FEM is used, therefore some literature on RANS-FEM of flexible propellers is further
outlined. Ducoin [13] used RANS-FEM for the modelling of a deformable hydrofoil. Simulations were com-
pared to experimental tests performed in a tunnel. It was concluded that the coupled method was accurate
for this case and ready to be implemented in more difficult marine structures like propellers and ship stabi-
lizers. Mulcahy [34] used a highly skewed propeller with five blades. Simulations of the rigid propeller were
compared to available literature. KT and KQ showed higher values when compared to literature. Then, a hy-
drofoil was modelled to check the convergence of the RANS-FEM coupling. After this a design was made for
a flexible propeller, with the aim of producing the same thrust in the design condition. RANS-FEM coupling
was used, but no information about the coupling of the non-matching grids was presented. Different ply
arrangements of the composites were considered. It was concluded that to obtain the largest deformation,
the propeller should be thin and highly skewed. The selection of appropriate composite materials should
be further investigated. In He et al[18], a highly skewed propeller was used with seven blades. Blades were
made out of carbon-fibre reinforced composites. The response in a non-uniform wake was analysed. Tip
node displacement, thrust- and torque coefficients and maximum von Mises stress were monitored during

9
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simulations. It was concluded that the stacking scheme of the fibres has a large influence on the loading of
the blade. The harmonic forces and moments of the composite blade were much smaller compared to the
metal blade.

Raj and Reddy [35], investigated the cavitation inception of different ply arrangements of composite pro-
pellers compared to its rigid counterpart. FLUENT and ANSYS were used for the CFD-FEM coupling. In
this study non-matching grids were used and no information on interpolation schemes was presented. They
found a slightly larger operating range of advance ratio J without cavitation for the flexible propellers. It must
be noted that in this paper a 4-bladed propeller was used with moderate skew and large blade areas com-
pared to other propellers found in literature. Taketani [42] compared cavitation tunnel tests to RANS-FEM
simulations, using STAR-CCM+ for the fluid modelling and ABAQUS for the FEM modelling. However, no in-
formation about the interpolation scheme was given. Results from the cavitation tunnel showed lower thrust
and torque for the composite propellers. It was found that deformation has an optimum level, when thrust
dropped below a certain level the propeller efficiency decreases. Cavitation lowered for the composite pro-
peller compared to its aluminium counterpart. However, the method of capturing the deformations showed
some inaccuracies.

Parameters that are used for comparison to rigid counterpart propellers or performance prediction are
mostly non-dimensional thrust and torque, (tip) displacement and pressure. Maljaars [29] concluded that
thrust is not the right quantity to qualify the accuracy of the results, since the difference in thrust due to the
flexibility has the same order of magnitude as the inaccuracy of BEM. For experimental tests, digital image
correlation revealed to be a promising measuring technique.

This study is on the validation of RANS-FEM towards BEM-FEM used by Greenprop. In the Greenprop
project BEM solver Procal was used. BEM-FEM Simulations and model tests are performed in a cavitation
tunnel by Greenprop for one rigid and three flexible propellers (one full epoxy and two composite). In the
BEM solver three different corrections were applied [28]. A minimum pressure coefficient to lower the suc-
tion peak that is overestimated by BEM. This correction is applied to improve the fit of the calculated torque
closer to measured torque. The second correction is a pressure correction at the tip. As there is a wing tip
vortex, pressures at the tip will be zero. This tip vortex is not captured by BEM making it necessary to apply
a correction. The third correction is due to the fact that BEM does not take into account viscosity. A viscous
correction is implemented in BEM solver Procal. Simulations were performed with different values for these
corrections.
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2.2. Fluid
In the introduction it was explained that RANS solver ReFRESCO is used for the fluid part. In this section
some background knowledge is given on the Navier Stokes equations behind RANS, including assumptions
and simplifications made to these equations. Furthermore, ReFRESCO is introduced. Only the most impor-
tant methods and settings of ReFRESCO for the understanding of the report are discussed here. For more
background knowledge on ReFRESCO it is referred to the ReFRESCO website of MARIN[31]. The last sub-
section consists of the numerical errors occurring in simulations and methods to quantify these numerical
errors.

2.2.1. Navier-Stokes Equations
The conservation laws describe the state of a fixed volume over time. The conservation of mass states that
the amount of incompressible fluid mass in a certain volume remains the same[2]. Newton’s second law
states that the change of momentum of a volume equals the total force on the volume [45], which leads to the
conservation of momentum equations. The energy equation describes the change of internal energy, while
keeping the total amount the same. The general conservation law can be described by using integrals over
the volume domain (Ω) and surface of the domain(S)[17],

d

d t

∫
Ω

UdΩ+
∫

S
F (U ) ·ndS =

∫
Ω

S(U , t )dΩ (2.1)

In this equation U is the conserved state, F the flux of the conserved state, n the outward pointing unit
normal to the surface and S the source term[17]. The Navier-Stokes equations describe the fluid behaviour
and consist of the conservation of mass and momentum equations, equations 2.2a and 2.2b, respectively[2].

d

d t

∫
Ω
ρdΩ+

∫
S

(ρ~v) ·~ndS = 0 (2.2a)

d

d t

∫
Ω
ρvi dΩ+

∫
S
ρvi~v ·~ndS =

∫
S

T ·~ndS +
∫
Ω
ρ fi dΩ (2.2b)

with P the surface forces and fi the body forces [2]. In this study it is assumed is that the fluid is isothermal,
therefore the energy equations are left out of the Navier Stokes equations. Next to the assumption of the fluid
being isothermal, other assumptions and simplifications of the Navier-Stokes equations are possible. These
are outlined in the next subsection.

Assumptions and simplifications
Different assumptions lead to simplifications of the Navier-Stokes equations. The mathematical models used
in different fluid solvers differ in which simplifications are applied. Some of these simplifications are shown
in figure 2.1.

Figure 2.1: Navier-Stokes and assumptions

• Reynolds Averaging: This is used to separate tur-
bulent fluctuations from the mean flow. The
flow variables of the Navier Stokes are divided in
a fluctuating and averaging part [4]. The effect
of the turbulent fluctuations are accounted for
through turbulence models [45].

• Steady state: For steady state the state of the
fluid does not change in time. The time deriva-
tives in the conservation equations can be left
out.

• Incompressible: For incompressible fluids the density remains the same over time. The ∂ρ
∂t term can be

left out of the Navier Stokes equations.
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• Inviscid: The flow field can be divided in two regions. One region is called the boundary layer where
friction is important. The region outside the boundary layer is frictionless (potential flow) [1]. When
the fluid is said to be inviscid, the viscous stresses can be neglected and the so called Euler equations
are obtained.

• Irrotational: The velocity field of the fluid particles is assumed to have no rotational directions. When
the fluid is assumed both inviscid and irrotational the Laplace equations are obtained. In a Boundary
Element Method (BEM) the Laplace equations are solved.

2.2.2. Numerical Methods
When a fluid problem is solved numerically, a discrete representation of the fluid domain is obtained by
dividing in either volumes, elements or panels depending on the solvers used. Different numerical methods
are known to solve the fluid equations. All with different accuracy and level in which properties are taken into
account. In the introduction, section 1.2.2, it was explained that the RANS solver is used in this study which
is compared to BEM. The assumptions made in these two solvers were outlined in figure 2.1.

RANS solver ReFRESCO
ReFRESCO stands for Reliable & Fast RANS Equations (solver for) Ships, Cavitation and Offshore. It solves the
multi-phase unsteady incompressible RANS equations. The pressure velocity coupling is achieved using a
SIMPLE segregated method. ReFRESCO is capable of simulating moving, deforming grids and includes sev-
eral turbulence models. ReFRESCO runs on Linux workstations and HPC clusters. The code is parallelised
using MPI and subdomain decomposition [31].

A typical solving process in ReFRESCO consists of three iteration loops, the time loop, outer loop and
inner loop [4]. Within a time step the outerloop is solved. Within the outerloop all equations are solved in
the inner loops. These consists of the momentum equations, pressure correction equation and velocity field
and turbulence model. Iterative methods are used to solve these large systems of equations. An iterative
method is explained by Wesseling [45]: "An iterative method generates successive approximations y1, y2, ....
If lim y i = y , for i → ∞, this method is said to converge. A number of iterations i is needed to obtain a
sufficiently accurate solution y[45]." The convergence criteria govern the accuracy of the solution. One of
the iterative methods is the velocity pressure coupling. In the ReFRESCO theory report [4] this coupling is
described by, "Velocity- pressure coupling is achieved by either solving the coupled mass-momentum system
directly or by using a segregated SIMPLE pressure correction method. All other equations are treated in a segre-
gated manner, which means that the equations for a certain variable are solved for all cells. Then the equations
for the next variable are solved for all cells etc [4]."

Several turbulence models are implemented in ReFRESCO. Two of them are used in this study, namely the
k −ω (SST 2003) and k −p

kL model. Both models are eddy-viscosity based turbulence models. In Rijpkema
et al [38] these two turbulence models were used in a propeller case as well. It is explained that the k −ω SST
model is a combination of the k −ω model in the viscous sub layer and logarithmic part and k − ε models in
the wake region of the boundary layer. The k−p

kL is a scale adaptive simulation model, being able to recog-
nise and adjust to resolved scales in the simulation. This model is more applicable in unsteady simulations
and has better iterative convergence. In the results of Rijpkema et al [38], it is described that the differences
in performance characteristics between k−ω SST model and k−p

kL were within 0.5%. The iterative conver-
gence of the k−p

kL model improved compared to the k−ωmodel. More information on turbulence models
can be found in the ReFRESCO theory manual [4].

In ReFRESCO the possibility of a moving grid method is implemented. The moving grid method is used
in the propeller study. In this method several options are available to simulate the flow around the propeller.
In this study the absolute formulation (AFM) is used in which the RANS equations are solved in the moving
reference frame but written in terms of absolute or inertial reference frame quantities[4].

Discretisation
In each grid cell the conservation laws as described in section 2.2.1 are defined. The mesh is an important
part. The level of refinement that is needed is dependent on the method used. When viscosity is taken into
account a boundary layer around an object is present. To capture this phenomenon the mesh around the
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object should be sufficiently fine to resolve the high gradients of the flow [45]. The y+ value should be below
1 to resolve the flow. For y+ below 50 wall functions are used for Re of around 106.

A QUICK scheme for the convective flux discretisation is the most accurate. This scheme is second order
accurate, leading to the discretisation error becoming four times smaller when the grid is refined two times.
This leads to a grid independent solution. The central differencing scheme is second order as well. A blending
factor of one indicates that the central differencing scheme is used and a blending factor of zero equals the
use of the first order upwind scheme. For a full description of these schemes, it is referred to the ReFRESCO
theory manual[4].

Next to the spatial discretisation of the grid, time discretisation is used to solve the problem over time.
In the benchmark case and rigid propeller case steady simulations are performed. In these simulations the
time-derivative is zero and only one single time step is calculated [4]. For the unsteady FSI simulations the
second order backward difference method is used. This method is further outlined in section 2.4.

2.2.3. Numerical errors
Due to the discrete presentation in panels, elements or volumes the numerical approach introduces errors.
The errors consist of round off-, modelling-, discretisation- and iterative errors. Round-off errors are related
to the finite precision of computers[14]. It is assumed that the round-off errors are negligible compared to
the other errors. The modelling errors are introduced due to the mathematical model used for the fluid flow
phenomena. These modelling errors are tried to be kept small by choosing correct models and settings for
the flow behaviour that is expected. The iterative error is introduced by solving the partial differential equa-
tions iteratively. This error is explained in the next subsection. The discretisation error is due to the discrete
representation of the fluid grid. This error is explained in the last subsection.

Iterative Errors
The iterative error is mostly monitored by residuals, representing the part of the equations that is left after
an iteration loop. The iterative error should be several orders lower than the discretisation error[15]. The
iterative error can be expressed by the L1, L2 or L∞ norm, by using norms of the change in solution from one
iteration to the other [14]. The L∞ and L2 are used in this study and defined by,

L∞(4φ) = M ax(|4φi |) 1 ≤ i ≤ Np (2.3)

L2(4φ) =

√√√√∑Np

i=1(|4φi |)2

Np
(2.4)

where Np is the total number of nodes of a given grid and 4φ the local change of a flow quantity.

Discretisation Errors
Generally, the discretisation error can be reduced by introducing more elements or volumes. When con-
structing the fluid grid, the jump estimators can indicate whether refinement is needed in the grid. The jump
estimators measure variation in results between two consecutive cell centres. If the step between two cell
centres is too large the mesh should be refined at that location. During ReFRESCO simulations, the jump
estimators can be monitored. The error estimators used in this method are [46],

Je =
√

e2
e

2L2(4φ)
(2.5)

With:
ee = local error of an element e2

e = 5
4N

∑N
k=1(φL −φR )2.

L2(4φ) = L2 norm of a scalar variable φ.
N = number of element faces.
5 = Volume of an element.
φL ,φR = Left and right values of a face of a volume element.

For the evaluation of the discretisation error the method of Eça and Hoekstra [14] is used in this study. In
this method grids are coarsened or refined to obtain several geometrically similar grids that only differ in cell
size and therefore in number of elements. The order of accuracy (p) is found by:
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φi −φo =αhp
i (2.6)

with φi the solution at grid node i , φo the estimated exact solution, a constant α, grid size hi and order of
accuracy p. The unknowns can be determined when there are at least three or more grids available. φo , α
and p are obtained with a least squares fit of the data, minimizing the function Y ,

Y (φo ,α, p) =
√∑

i=1
(φi − (φo +αhp

i ))2 (2.7)

For a full description of this method, it is referred to the paper of Eça and Hoekstra [14].

2.3. Structure
The elastic modulus and moment of inertia are important parameters describing the stiffness of the material
of the structure. This stiffness, together with the mass and damping of the structure is used to describe the dy-
namic behaviour, which can be expressed by the equations of motion. The equations of motion and Rayleigh
damping are described in the next sections. In the FSI part of this study, FEM is used for the structural model,
therefore, FEM is described in the last subsection.

2.3.1. Equations of Motion
The dynamic behaviour of a structure can be described by using the mass (m), damping (c) and stiffness (k)
of the structure. When a structure, with one degree of freedom, is loaded with force F , the acceleration (ẍ),
velocity (ẋ) and displacement (x) of the structure can be derived from the equations of motion,

mẍ + cẋ +kx = F (2.8)

When the system of n degrees of freedom is left vibrating after an initial disturbance by an impulsive force
F the frequencies at which it vibrates are called the eigenfrequencies. The system has n eigenfrequencies and
corresponding modes, which describe the motion of the system at each frequency[36]. The eigenfrequencies
and corresponding modes can be derived by mass normalizing the equations of motion,

ẍ + k

m
x = F

m
The natural frequency is then obtained by solving,

ωn =
√

k

m

For larger structures, with more degrees of freedom, the mass, damping and stiffness are described in
matrices, [M ], [C ] and [K ], respectively. The acceleration, velocity and displacement are vectors with length
corresponding to the number of degrees of freedom, {ẍ}, {ẋ} and {x}, respectively. The equations of motion
are then,

[M ]{ẍ}+ [C ]{ẋ}+ [K ]{x} = {F } (2.9)

for large systems these equations need to be solved numerically. For the determination of the eigenfrequen-
cies and modes modal analysis can be used, in which the displacement of the masses are expressed as a linear
combination of the normal modes of the system [36].

A system with a discrete number of degrees of freedom is called a discrete system and a system with
infinite number of degrees of freedom is called a continuous system. Most of the time, continuous systems are
treated as discrete systems [36]. For the benchmark case the derivation of the eigenfrequency is determined
using a continuous system for the plate. This method is further described. A beam is chosen, because this
can be used for the Benchmark case described in chapter 3. The equations of motion for a free vibration of a
uniform beam can be described by [36],

E I
∂4w

∂x4 (x, t )+ρA
∂2w

∂t 2 (x, t ) = 0 (2.10)

A solution of the form w(x, t ) =W (x)T (t ) is chosen. When this solution for w(x, t ) is filled in 2.10 the follow-
ing expression is found:
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c2

W (x)

∂4W (x)

∂x4 =− 1

T (t )

∂2T (t )

d t 2 =ω2
n (2.11)

∂4W (x)

∂x4 −α4
nW (x) = 0

∂2T (t )

d t 2 +ω2
nT (t ) = 0 (2.12)

with α4
n = ω2

n
c2 = ρAω2

m
E I . The natural frequency can be derived from this equation by ωn = (αnL)2

√
E I
ρAl 4 .

For W(x) a solution in the form of W (x) =Ce sx can be found with s4 −α4
n = 0. This leads to W (x) =C 1eαn x +

C 2e−αn x+C 3e iαn x+C 4e−iαn x . Constants C1, C2,C3, C4 andαn can be derived from the boundary conditions.
When a beam is used that is clamped at one end and free at the other end. The following boundary conditions
can be identified. At the clamped end the deflection (W (x)) and slope ( ∂w

∂x ) are zero. At the free end the

bending moment (E I ∂
2w
∂x2 ) is zero. If these boundary conditions are inserted in the equation of W(x) αn is

obtained which leads to the equation for the natural frequency. For common boundary conditions these
values for αn l can be found in Rao [36], for the first four eigenmodes of a fixed-free beam,

αn l = 1.8751,4.6941,7.8548,10.9955, .. for n = 1,2,3,4, .. (2.13)

2.3.2. Damping
Damping that influences the structural dynamics can be categorized into viscous damping, hysteresis damp-
ing, coulomb damping and radiation damping [16]. For this study, viscous damping will have the most effect.
Rao [36], clearly describes viscous damping: "When mechanical systems vibrate in a fluid medium such as
air, gas, water or oil, the resistance offered by the fluid to the moving body causes energy to be dissipated. In
this case, the amount of dissipated energy depends on many factors, such as the size and shape of the vibrating
body, the viscosity of the fluid, the frequency of the vibration and the velocity of the vibrating body. In viscous
damping, the damping force is proportional to the velocity of the vibrating body[36]."

Structural damping can be added to the system by Rayleigh damping. The damping matrix is then com-
posed by a fraction of the mass and stiffness matrix as in equation 2.14. The coefficients α and β are depen-
dent on the frequency range and desired damping coefficient [6].

[C ] =α[M ]+β[K ] (2.14)

Critical damping is the lowest damping for which the oscillatory movement is totally damped, so no os-
cillations occur. The fraction of this critical damping is called the damping coefficient. If Rayleigh damping is
to be applied for a steady system, for instance 5 % critical damping is found. Thenα andβ can be determined
using the frequency range (ω1,ωm) and selected damping ratios (ζ1,ζm). β is obtained using equation 2.15, α
by evaluating equation 2.16.

β= 2ζ1ω1 −2ζmωm

ω2
1 −ω2

m
(2.15)

2ζ1ω1 =α+βω2
1 (2.16)

2.3.3. Numerical Methods
To solve the structural response Finite Element Methods (FEM) can be used. The structural model is then
discretised in a finite number of elements. Different types of elements are available dependent on the type of
problem. The elements differ in degrees of freedom and physics involved. In this study only solid elements
are used, because the fluid structure interaction module of ReFRESCO can only include solid elements.

The elements that are used in this study are linear solid elements (SOLID185) and quadratic solid ele-
ments (SOLID186). SOLID185 is a 3D solid element having eight nodes and three translational degrees of
freedom at each node. SOLID186 is its higher order version, that contains 20 nodes and exhibits quadratic
displacement behaviour. Both elements support plasticity, hyperelasticity, creep, stress stiffening, large de-
flection and large strain capabilities [40]. It is important to know the behaviour of the structure before an
element type is chosen. For structures where bending is dominant, shear locking can occur when using lin-
ear solid elements, as the curvature is not modelled accurately [16]. For a description of this phenomenon it
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is referred to section 2.3.3. When using linear solid elements, more than one element through bending direc-
tion should be used to avoid shear locking.

In this study it is assumed that a linear elastic behaviour of the structures (benchmark and propeller)
suffices. This means that deformations are assumed to be small and that the deformation is linear with the
force applied [40]. For geometrically non-linear behaviour this does not hold. The structure responds non-
linearly to the large deformations. Maljaars [28], showed that it was valid for the Greenprop propeller to
assume linear elastic behaviour.

2.4. Fluid Structure Interaction
In the introduction it was explained that interaction between the fluid and structure should be taken into
account for flexible propellers. In this chapter the physics are explained together with different approaches
used to solve FSI problems.

2.4.1. General FSI
The equation of motion for an object with fluid structure interaction can be generally expressed as:

[M ]ẍ + [C ]ẋ + [K ]x = F (x) (2.17)

The left side of this expression is governed by the structural characteristics: mass [M], damping [C] and
stiffness [K], whereas the right hand side represents fluid loading on the structure which is partly dependent
on the deformation x of the structure.

2.4.2. Solving of FSI
As explained in the introduction, different approaches are used to solve the FSI problem, e.g. a monolithic
approach where the whole system is solved using the same software or a partitioned approach where fluid
and structure problems are solved in separate programs.

In a monolithic approach the fluid and structure equations are solved simultaneously, using a single
solver. This increases the stability of the simulation because their mutual influence is evaluated directly [12].
In a partitioned approach there is no flow change when the structural response is calculated. This introduces
an extra error next to the numerical errors in the simulations. A coupling mechanism is necessary to evaluate
the interaction of the two solvers. The partitioned approach is mostly used for FSI simulations. The biggest
advantage of this approach is that existing and optimized software can be used for the fluid and structural
problem.

When a partitioned approach is used, two discretisations are necessary, one for the fluid solver and one
for the structural solver. For these grids there are two possibilities. One option is to use identical grids for fluid
and structure leading to a point matching configuration. Another option is to use different grids for structure
and fluid. This often occurs as the fluid grid normally requires a finer mesh than the structure. By using two
different resolutions the computational time can be drastically reduced. A drawback of the partitioned ap-
proach is that the equations are not solved simultaneously in time due to the different solvers [2].

If there are two grids with different resolutions, an interpolation scheme is necessary to ensure correct
displacement of the fluid grid from the structural response and correct loading transfer from fluid to structure
interface. An interface coupling method is used for this purpose which is explained later on in detail. The fluid
grid is remeshed using the result of the last time step. This is done by iterating until a converged solution is
obtained [21]. A typical solving routine of a partitioned FSI problem is shown in figure 2.2.

2.4.3. FSI in ReFRESCO
The FSI module of ReFRESCO was recently implemented by Jongsma and Windt [20]. In this module, the
equations of motion is solved by taking into account the fluid load, solved by ReFRESCO and the deformation
of the structure. Damping can be added through Rayleigh damping. A full description of the implementation
of FSI in ReFRESCO is found in the report of Jongsma[21]. Some of the equations and methods are outlined
for the understanding of this study.
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Figure 2.2: Overview of iteration scheme of one timestep [21]

In the FSI module of ReFRESCO the damping of the structure is neglected. The equations of motion of
equation 2.17 is then,

[M ]ẍ + [K ]x = F (x) (2.18)

the [M ] and [K ] matrices of the structural solid model are used for the evaluation of the equations of motion.
These matrices only need to be derived and included once, as they do not change during simulation. Three
files are used as output from ANSYS. The .full (containing the [K] and [M] matrices), .rst (geometry) and the
.intnodes file (containing the coordinates of the nodes on the interface of the structure). The flow diagram of
the procedure during one time step of FSI in ReFRESCO is illustrated in figure 2.2.

To be able to solve a set of first order differential equations, the equations of motion are defined as:

dQ

d t
+ AQ =

(
F
0

)
, with: Q =

(
Mu̇

u

)
and A =

[
0 K

−M−1 0

]
(2.19)

To solve this set of equations numerically in time, different solution schemes can be used with f (Q, t ) =
(
F
0

)
−

AQ [21]. Three solution schemes are incorporated in the FSI module, the Cranck-Nicholson, second order
backward-difference scheme and the Newmark time integration. In this study the second order backward-
difference, or so-called three-time level is used. Defined by,

3Qn+1 −4Qn +Qn−1

24 t
= f (Qn+1, t n+1) (2.20)

Two non-identical grids are used for the fluid and structure. An interpolation is needed for the transfer
of load across the fluid-structure interface. This coupling method is explained in the next section. This in-
terpolation is also used in the grid deform method, which governs the deformation of the fluid grid after the
deformation of the structure is transferred across the interface.

2.4.4. Interface Coupling
The coupling of deformation and loads across the fluid structure interface is implemented in the FSI module
of ReFRESCO by Jongsma [21]. In that report a description of the method and implementation can be found.
However, for the completeness of this report, the method is also described here.

At the interface of the fluid and structure kinematic- and dynamic boundary conditions can be described[10],
these conditions on the continuous interface Γ are defined by,

u f = us on Γ (2.21a)
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ps ns = p f n f on Γ (2.21b)

with u f and us the displacements, ps and p f the stress tensors and ns and n f the outward normal of the
structure and fluid interface. These boundary conditions state that either the displacement fields of fluid
and structure interface are equal. The other states that the pressure on the fluid side of the interface is in
equilibrium with the structural side. For the discrete representation and derivation of the coupling equations
one is referred to appendix A. A conservative coupling approach is obtained if the energy is conserved across
the fluid-structure interface[10]. This is the case when,∫

Γ f
u f ·p f n f d s =

∫
Γs

us ·ps ns d s (2.22)

In the FSI module of ReFRESCO the total amount of energy, energy change and energy loss are monitored
during a time step. For the creation of the interpolation matrix different methods can be used. In this study
an RBF interpolation is used which is now further outlined.

Radial Basis Function Interpolation
In de Boer et al [10], the Radial Basis Function (RBF) interpolation is described as the approximation of a
quantity transferred from mesh A to mesh B, by a sum of basis functions both at the interface of A and B. A
typical interpolation function is,

wi (x) =
nA∑
j=1

γ jφ(|x −xA j |)+q(x) i = {A,B}, w = {u, pn} (2.23)

in which φ is a radial basis function and xA j the nodes at interface of grid A at which the values are known.
Interpolation constant γ and polynomial q(x) can be obtained by satisfying,

wA(xA j ) = WA j (2.24a)

nA∑
j=1

γ j h(xA j ) = 0 (2.24b)

with WA the discrete values of wA at the interface of mesh A and for all polynomials h with a degree less or
equal than that of polynomial q[9]. The minimal degree of polynomial q depends on the chosen RBF function
[10]. The values of mesh A and mesh B can be written in matrix form as,

WB = [
ΦAB QB

][
ΦA A Q A

QT
A 0

]−1 [
WA

0

]
(2.25)

in whichΦAB is the matrix containing the evaluation of the basis functionφAi B j =φ(||xAi−xB j ||) andΦA A the
basis function of φAi A j =φ(||xAi −xA j ||), QB and Q A are row vectors containing

[
1 xA j ,B j y A j ,B j zA j ,B j

]
.

The first two matrices of equation 2.25 form the transformation matrix. The number of rows and columns of
this matrix is equal to the number of fluid or structure points on the interface[10].

There are several RBF functions that can be chosen. In the FSI module of ReFRESCO the C 2 function with
compact support is used. Compact support means that only the mesh nodes inside a spere with radius r
around a centre are influenced by the movement of this centre[9]. In the FSI module of ReFRESCO the inter-
polation works as follows, "The subroutine starts by determining the communication that must be performed.
For this purpose, a loop is performed over the vertices of the CFD interface nodes. Inside this loop, there is a loop
over all nodes of the FE interface. For every combination of nodes, the rbf is evaluated.[20]"

Due to the deforming structure, the fluid grid has to be deformed. For this purpose the RBF method is
used as well. Aitken under-relaxation is used to speed up convergence of the fixed point iteration [3] [21]. A
greedy method is applied for the RBF interpolation to reduce the size of the computation. The greedy method
starts with a small subset of mesh cells and searches for the largest error. The cells with the largest error are
included in the next interpolation [37].
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Benchmark Case

A benchmark case is performed by carrying out RANS-FEM simulations using ReFRESCO and ANSYS. Reason
for the benchmark case is to get familiar with the methods and to check the reliability of the FSI module in
ReFRESCO, therefore a simple test case is chosen with available reference literature. A sensitivity analysis
is performed on settings and methods to analyse the influence and effect on results, which can be used for
further analysis in the actual propeller study. This chapter starts with an explanation of the benchmark case
with properties of the flow and structure. Hereafter, the numerical set-up of the fluid- and structural grid
are outlined, together with the settings and types of simulations performed. The simulation and sensitivity
analysis results are discussed and this chapter ends with a conclusion on this benchmark case.

3.1. Case Description
The benchmark case consists of a 2D flexible thin plate clamped perpendicular to a bottom plate. With a
uniform air flow applied parallel to the bottom plate. The thin plate has a height of 1 m and thickness of 0.01
m. The domain is rectangular with the inflow 5 m in front of the plate and the outflow 10 m after the plate. The
coordinate system and dimensions are shown in figure 3.1. Due to this air flow the plate will start oscillating
in the direction of the in- and outflow of the domain. The density of the plate is 1200 kg/m3 and has an elastic
modulus of 3.5 GPa, which is comparable to the material of plastic disposable coffee cups. The medium is air
with density of 1 kg/m3 with a velocity of 10 m/s. The corresponding Reynolds number is 50. The properties
of plate and medium are presented in table 3.1. The RANS-FEM simulations are performed using ReFRESCO
and ANSYS. First fluid- and structural grids are constructed, after which simulations are performed.

Figure 3.1: Dimensions of benchmark case with flexible thin plate [25]

The simulation results are compared to the PhD thesis of de Nayer [11] and MSc. thesis of Lesmana [25]
who both performed this test case. De Nayer used a structured fluid grid of 30,000 cells, Lesmana an un-
structured grid consisting of 16,938 cells both in the ISIS-CFD RANS solver. Both structural models consist of
quadratic solid elements with 100 elements in height using structural solver Zorglib.

19
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Fluid Solid

Density ρ 1 1200 kg/m3

Poisson’s ratio ν - 0.32 -
Young’s modulus E - 3.5 GPa

Dynamic viscosity µ 0.2 - Pa s
Moment of inertia I - 8.3e-8 m4

Table 3.1: Properties of flexible plate and domain [25]

3.2. Structural Model
First, the structural model of the flexible thin plate is constructed. FE solver ANSYS is used because the output
of this FE solver is supported by the FSI module of ReFRESCO. The FSI solver of ReFRESCO can only include
solid elements, therefore solid elements are used for this model. Only the flexible plate of figure 3.1 is mod-
elled in ANSYS. Clamped boundary conditions are applied at the bottom plate, and a free end on the top.

For the geometry of the plate it is most straightforward to make use of rectangular structural solid ele-
ments. The elements that can be chosen are linear solid elements (SOLID185) and quadratic solid elements
(SOLID186). SOLID185 is a 3D solid element having eight nodes and three translational degrees of freedom at
each node. SOLID186 is its higher order version, that contains 20 nodes and exhibits quadratic displacement
behaviour. Both elements support plasticity, hyperelasticity, creep, stress stiffening, large deflection and large
strain capabilities [40].

Important is to know the behaviour of the structure before an element type is chosen. To analyse whether

the deformation is dominated by bending or shear the length to beam ratio (l /b) and slenderness ratio ( G AL2

E I )
can be evaluated. The plate is long compared to its width which also follows from the ratios. For long beams
bending is dominating in the deformation. For short beams this is mostly shear deformation. The length to
beam ratio for this case is 100 and the slenderness ratio around 500. Therefore, the bending will be dominant
in the plate compared to shear [41].

For structures where bending is dominant, shear locking can occur when using linear solid elements, as
the curvature is not modelled accurately [16]. For a description of this phenomenon is referred to section
2.3.3. When using linear solid elements, more than one element through bending direction should be used
to avoid shear locking.

First, the analytical formulas are given which are used for reference of the convergence study. Then, the
structure grid is constructed by performing a convergence study on different elements sizes of the structural
model and check the response with the analytical values.

3.2.1. Analytical Reference
As a reference for the convergence study of the ANSYS model, analytical values of natural frequency and de-
flection for a clamped beam are used. In both cases Euler-Bernoulli beam theory is used, which only takes
into account pure bending and neglects the effect of shear. Assumptions made in this theory are that de-
flections are small, the neutral surface does not change during bending and the deformation due to shear is
neglected[16]. In the last section it was demonstrated that bending will be dominant in the deformation of
the plate. However, shear deformation could still have an effect. These assumptions should be kept in mind
when comparison is made with the results of the ANSYS model.

The natural frequency of a clamped beam can be derived from the equations of motion. Using the Euler
Bernoulli beam, the natural frequency equation is obtained by evaluating the boundary conditions of a beam
clamped at one end and free on the other end [36]. For the derivation of these equations using modal analysis
it is referred to section 2.3.1, of the theory chapter. The equation for natural frequency ωn of modes n =
1,2,3, .. derived there, reads,

fn = α2
n

2π
·
√

E I

ρAl 4 With: α2
n = 1.875,4.694,7.885, .. for n = 1,2,3, .. (3.1)
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The natural frequency of the first mode is obtained by evaluating equation 3.1, with n=1. A frequency of 2.753
Hz was found, equal to de Nayer [11] and Lesmana [25].

For deflection of the plate the following analytical equation is used.

δmax = ql 4

8E I
(3.2)

The analytical displacement is calculated with a distributed loading of 50 N/m, elastic modulus of 3.5 GPa
and moment of inertia of 8.3E-8 m4 which leads to a maximum displacement of 0.0215 m, equal to reference
values.

3.2.2. Grid Study
The element distribution of the grid is analysed by considering different distributions and comparing the re-
sults to the natural frequency and deflection determined in last section. The case is 2D, therefore, only the
dimensions in x and y direction are defined in reference literature. However, as solid elements are used and
the structural grid is eventually coupled to a 3D finite volume method, a dimension in z-direction (depth) is
necessary as well. Dimensions of 0.01 and 0.02 are considered.

In table 3.2 the results for different element sizes are given when using linear solid elements (SOLID185).
Left side of the table contains elements with a z-dimension of 0.01 m and the right side of 0.02 m. The element
sizes, corresponding number of elements and the deviation from the analytical results are presented.

Chosen dim. For z [m] 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02

Element size x [m] 0.0025 0.005 0.00125 0.0025 0.005 0.0025 0.005 0.005
Nr. elements in x 4 2 8 4 2 4 2 2

Element size y [m] 0.01 0.01 0.005 0.005 0.005 0.0025 0.005 0.005
Nr. elements in y 100 100 200 200 200 400 200 200

Element size z [m] 0.005 0.005 0.005 0.0025 0.005 0.01 0.01 0.005
Nr. elements in z 2 2 2 4 2 2 2 4

Aspect Ratio [-] 4 2 4 2 1 4 2 1

Total nr of elements 800 400 3200 3200 800 3200 800 1600

Nat. Freq. [Hz] 3.228 3.153 2.884 2.867 2.783 2.796 2.792 2.783
% from analytical sol. 17.2% 14.5% 4.8% 4.1% 1.1% 1.6% 1.4% 1.1%

Max. Displ in x [m] 0.0157 0.0164 0.0196 0.0198 0.0211 0.0209 0.0209 0.0211
% from analytical sol. -27% -24% -9% -8% -2% -3% -3% -2%

Table 3.2: Convergence study FE model with SOLID185 using different element sizes and dimensions for z

From the convergence study of table 3.2 it becomes clear that the natural frequency found in ANSYS is
between 1.1 and 17 % higher than the analytically derived natural frequency. The deflection found in ANSYS
is between 27 to 2 % lower. These deviations from the analytical values can be due to the Aspect Ratio (AR) of
the elements. Numerically, the best solutions are found for an element aspect ratio of 1. This also becomes
clear from the results of table 3.2. The best approximation is found for an aspect ratio of 1, when all element
sizes are 0.005 m.

Deviation from the analytical results can be also due to assumptions made in the analytically derived val-
ues. The assumptions of pure bending, will lead to lower frequency and higher deflection when shear plays a
role. However, as the ANSYS model seems to be "stiffer" it can be concluded that this is not the reason for the
deviation from the analytical values, and bending is indeed dominant in the deformation of the plate.

Another reason for deviation can be the shear locking effect as linear elements are used. Due to the use
of linear solid elements it is expected that the shear locking effect will lead to higher stiffness to bending and
lower deflection. This is probably the cause for the higher frequency and lower displacement found with this
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ANSYS model. It is expected that with higher order elements (SOLID186) this effect will be smaller. The re-
sponse, when using quadratic solid elements (SOLID186) and the same element distribution, is closer to ana-
lytical results compared to the linear solid elements. Leading to a natural frequency of 2.76 and displacement
of 0.0214 m, this is 0.3 % and 0.4 % from the analytical solution respectively. However, for a first reference
SOLID185 is chosen for further analysis and assumed to be sufficiently accurate. The chosen ANSYS model
with an element size of 0.005 in all directions, is given in figure 3.2 and table 3.3.

Element size x 0.005 m
Nr elements in x 2

Element size y 0.005 m
Nr elements in y 200

Element size z 0.005 m
Nr elements in z 2

Natural Frequency 2.783 Hz
% From analytical solution 1.1 %

Max. Displacement in x 0.0211 m
% From analytical solution -2 %

Table 3.3: Element sizes structure grid in ANSYS Figure 3.2: ANSYS model SOLID185 - Benchmark case

3.3. Fluid Model
The fluid grid is created using the program HEXPRESS, yielding unstructured full hexahedral meshes [19].
Dimensions of the computational domain are chosen equivalent to figure 3.1 with a total length of 15 m and
height of 3.25 m. The dimension in z-direction is 0.01 m, corresponding to the structure grid, The Reynolds
number of this problem is 50, based on the length of the plate and a uniform flow of air of 10 m/s, it is expected
that the fluid flow is smooth without turbulent effects as in results of de Nayer and Lesmana [11] [25]. The
applied boundary conditions are listed in table 3.4.

Boundary condition

Inlet Velocity at boundary = 10 m/s
Outlet Pressure at outlet = 0.0 m/s

Plate Velocity is zero at the wall, No wall functions applied (y+ should be <1).
Bottom domain Velocity is zero at the wall, No wall functions applied (y+ should be <1).

Top domain Pressure at top = 0.0 m/s
Left domain Velocity normal to the wall is zero, tangential velocity at wall is free.

Righ domain Velocity normal to the wall is zero, tangential velocity at wall is free.

Table 3.4: Boundary conditions on different walls of the fluid domain

First, a fluid grid is composed consisting of a total of 26,506 cells with a refinement near the plate and
bottom. Then, a simulation is performed to check the accuracy of the grid. This is done by evaluating the y+
values and jump estimators which will be explained next. Depending on this evaluation the grid is refined or
coarsened and different grid densities are obtained. Of the final grid the numerical uncertainty is determined
before the final simulations are performed.

3.3.1. Discretisation
The accuracy of the grid is checked by evaluating the y+ values and jump estimators after a simulation. The y+
is the non-dimensional wall distance, used to indicate the grid spacing adjacent to the wall. The aimed value
for y+ is depending on Reynolds number. To resolve the fluid equations down to the wall, i.e. without the use
of wall function, an y+ below one is desired for low Reynolds numbers[39]. The y+ values are monitored at
the plate bottom.

Evaluation of y+ values on the initial grid show that y+ at the bottom plate is much smaller than 1 and
thus does not need refinement near the bottom of the plate. This is due to the low Reynolds number of 50.
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The mesh at the bottom cells can be coarsened, which is applied in the revised second grid.

The jump estimators measure variation in results between two consecutive cell centres, which is a mea-
sure of the discretisation error. If the step between two cell centres is too large the mesh should be refined at
that location. The error estimators used in this method are described in section 2.2.3 of the theory chapter.
In the paper of Windt [46] the discretisation error was investigated in a boundary layer, small errors ( <5 %)
were found for jump estimators between 10−4 and 10−5. Therefore, the jump estimators of this grid are kept
in this range.
Evaluation of the jump estimators of the initial grid results show that refinement is needed in front of and
after the plate as visible in figure 3.4. The grid is refined by placing a box around the plate, which is refined
more than the surrounding cells (grid 2). This box refinement is based on the grid of Lesmana [25], with di-
mensions of 4.5 x 2 m around the plate. After evaluation the cells among the box are refined as well, leading
to grid 3 in figure 3.8 and 3.9. This grid is used in further simulations.

Figure 3.3: Initial fluid grid 1 (26,506 cells) Figure 3.4: Jump estimators of initial fluid grid 1

Figure 3.5: Grid 2, with box around plate (14,576 cells) Figure 3.6: Jump estimators of grid 2

Figure 3.7: Grid 3, with box and finer grid (19,389 cells) Figure 3.8: Jump estimators grid 3
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Figure 3.9: Domain of final fluid grid (19,389 cells)

3.4. Simulations
With the fluid- and structural grid obtained in the last sections simulations can now be performed. Two
types can be distinguished, one where the plate is rigid, flexibility is not taken into account and only a RANS
simulation is performed with the fluid grid. Other simulations are with the flexible plate by performing FSI
(RANS-FEM) simulations. An overview of these simulations is given in figure 3.10. First the settings of the
rigid and FSI simulations are outlined, for the understanding of these sections it is recommended to read the
theoretical background on ReFRESCO and FSI in ReFRESCO of chapter 2.2.2 and 2.4. In section 3.5, the re-
sults are presented. For the rigid plate the pressure, streamlines and numerical uncertainty are determined,
whereas for the flexible plate the pressure, deflection, frequency and numerical uncertainty are determined.

Figure 3.10: Simulations Benchmark case

3.4.1. Settings Rigid Plate
Simulations are performed by applying uniform flow of 10 m/s to the rigid plate. Steady calculations can be
carried out as the Reynolds number of 50 is low and turbulent fluctuations in the flow will not be present.
The flow will reach an equilibrium at around t = 10 s [25]. When only this equilibrium state of the fluid is
to be captured, steady simulations can be performed. The fluid grid of figure 3.9 is used with the boundary
conditions of table 3.4.

Within an iteration step of the outer loop, the complete non-linear system of equations is solved. The
convergence tolerance of the outer loop is set to 1E-6. A QUICK scheme is used for the momentum solver.
Velocity-Pressure coupling is achieved by solving the coupled mass-momentum system directly [4].
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3.4.2. Settings Flexible Plate
RANS-FEM simulations are performed by coupling the ANSYS FEM model constructed in section 3.2 to the
fluid. Before simulations are carried out, it is checked whether the location of the structural nodes is correct
in the fluid grid. As explained in the theory chapter about FSI module in ReFRESCO, section 2.4.3, the FEM
model is coupled by three output files of ANSYS, the geometry, mass- and stiffness matrix and a file containing
information of the interface nodes of the structure grid. This file can be loaded into the fluid grid geometry
to check whether the nodes properly connect.

Due to the flexibility of the plate, it is expected that the plate will start deflecting in response to the airflow
of 10 m/s which is applied at once, without a ramp function. The FSI simulation requires an unsteady simula-
tion to be performed, even though it is expected that the plate will reach an equilibrium and after some time
a steady outcome is obtained. This is due to the grid deform method solving the deformation of the fluid grid
due to the fluid structure interaction. This method updates the fluid grid corresponding to the deformation
of the structure.

The convergence tolerance of 1E-6 of the outerloop is equal to the rigid simulations. A segregated mass
momentum solver type is used, which means that the mass equation is solved for all cells, after which the
subsequent equation is solved for all cells [4]. A coupled solver was not possible with FSI module during the
time of the simulations. A quick scheme is used as in the rigid simulations.

Additional settings required for the FSI simulations are due to additional time discretisation of the un-
steady simulation and due to the FSI module of ReFRESCO. A timestep of 4t = 0.01 s is used, equal to 4t of
de Nayer [11] and Lesmana [25]. Time discretisation is solved by using a implicit three time level scheme. The
grid deform method uses RBF interpolation with a radius of 0.8 m, a greedy method and a convergence tol-
erance of 1E-4. The load transfer across the interface of fluid and structure is governed by RBF interpolation
with radius of 0.4 m and a convergence tolerance of 1E-12.

During the simulation the force on the plate is monitored, which is obtained from the pressure integrated
over the plate area. The deformation of the plate is monitored by the x-coordinate at the top of the plate. The
force and deformation are both stored in a text file at every time step.

3.5. Results Rigid plate
In this section results of the steady simulations with the rigid plate are presented. As explained in the previous
section, first RANS simulations are performed with the rigid plate using the fluid grid obtained in section 3.3.
Steady simulations are performed with uniform inflow of 10 m/s applied at once. First, the discretisation
error is determined, then the results of the steady rigid plate simulations are compared to de Nayer [11] and
Lesmana [25].

3.5.1. Numerical Uncertainty
The discretisation error is determined using the numerical uncertainty method of Eça and Hoekstra [14]. In
this method the error is estimated by performing simulations with identical grids having different cell density.
For a description of this method it is referred to the theoretical background, chapter 2.2.3.

Four grids with different density are used. Fluid grid 3, from now on grid A, of figure 3.9 is refined three
times leading to four grids with different grid density, grids A, B, C and D of table 3.5. For the refinement, the
adaptive grid refinement method in ReFRESCO is used. Within this method each cell of the grid is refined
either 2, 4 or 8 times in x- and y direction. Where the initial grid has 1 cell, the refined grids have either 4, 16
or 64 cells. The number of cells for the refined grids are given in table 3.5.

The results of the uncertainty analysis are shown in figure 3.11. The relative step size of 8 at the x-axis,
represents the unrefined grid, step size 1 is the finest grid refined eight times. On the y-axis the converged
value for the force is given. The estimated uncertainty based on the fit through the results is 0.03 %. It can be
concluded that the result is very accurate (second order). Due to the grid being accurate and the increased
computational time of the finer grids, the initial grid of figure 3.9 is used in further simulations.
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Figure 3.11: Uncertainty analysis

Grid name Amount of cells Iterations

grid A 19,389 413
grid B 77,556 691
grid C 310,224 1032
grid D 1,240,896 8824

Table 3.5: Different grid densities used for uncertainty anal-
ysis, with corresponding number of iterations until a con-
verged solution is obtained

3.5.2. Pressure and Streamlines Results
The results of the RANS simulations with the rigid plate are expressed in pressure and streamlines of the fluid
at the converged solution. This equilibrium pressure is shown in figure 3.12 and streamlines in figure 3.14.
The result found by Lesmana [25] for the rigid plate is given as reference in figures 3.13 and 3.15.

Figure 3.12: Pressure steady simulation (ReFRESCO) Figure 3.13: Pressure distribution at t=10 s (Lesmana [25])

Figure 3.14: Streamlines steady simulation (ReFRESCO) Figure 3.15: Streamlines velocity at t=10 s (Lesmana [25])

The pressure distribution shows maximum positive values at the top and front area of the plate. At the
back of the plate the pressure is negative. Forces on the plate are monitored by integrating the pressure over
the area. A total force of 54 N in x-direction is found representing the pressure integrated over the entire plate.
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3.6. Discussion Rigid Results
The pressure results and streamlines found for the rigid plate (figures 3.12, 3.14) are compared to results
found by de Nayer [11] and Lesmana [25]. Comparable results were found as becomes clear from figures 3.13
and 3.15. The streamlines show the same behaviour. In figure 3.13 a larger area of highest pressure is visible
and a higher low pressure region on the right side of the plate. When comparing this pressure distribution to
the results of the RANS simulation of figure 3.12, it becomes clear that a smaller region of highest pressure is
found and a lower pressure on the right side of the plate. These differences can be due to the different fluid
solvers or discretisation of the problem. However, it can be concluded that the overall pressure difference
between left and right side of the plate is the same.

3.7. Results Flexible Plate
In this section the RANS-FEM results of the flexible plate simulations are explained. Within these simula-
tions the structural ANSYS FEM model of figure 3.2 is coupled to the fluid grid. Unsteady simulations are
performed with a uniform air flow of 10 m/s with settings as explained in section 3.4.

First the numerical uncertainty is determined of these steady equilibrium results. Then the deflection
and frequency results are outlined and discussed.

3.7.1. Numerical Uncertainty
The discretisation error of the FSI simulations is determined in the same way as for the rigid simulations of
section 3.5.1. The first three refined grids of table 3.5, are used for the numerical uncertainty method. The
result is shown in figure 3.16, it is visible that the discretisation error is still very low, 0.07% (rounded to 0.1%
in the figure). Therefore, the FSI simulations are carried out with the coarsest grid having 19.389 cells of figure
3.9.

Figure 3.16: Numerical uncertainty FSI simulation

3.7.2. Deflection
The pressure distribution in the response of the flexible plate is shown in Figure 3.17. It is clearly visible that
at the start of the simulation a large pressure is visible at the frontal area of the plate and a low pressure at the
upper back of the plate. This low pressure is due to the separated flow behind the plate. In the second figure
it is visible that the flow separates after 0.13 s.

The tip displacement in x-direction is monitored in figure 3.18 with pointers indicating at which time
steps figure 3.17 is obtained. The motion is damped due to viscous damping of the plate in the air flow. The
equilibrium displacement after approximately 4 seconds is 0.024 m. The pressure reaches an equilibrium
state as well as shown in the last figure of 3.17.
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Response at start Response after 0.13 s

Response after 0.3 s Response after 4 s

Figure 3.17: FSI response at different timesteps

Figure 3.18: Tip displacement, red pointers indicate the timesteps where plots of 3.17 are defined
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3.7.3. Response Frequency
From figure 3.18 it becomes clear that the plate vibrates in the first 5 seconds of the response. It is expected
that the frequency of this vibration is close to the natural frequency of the plate. When a Hanning window
and Fast Fourier Transform (FFT) is applied to the first 5 s of the response from figure 3.18 with 4t = 0.01 s, a
frequency of 2.734 Hz is found. The first 5 seconds are only used because after 5 seconds the displacement is
damped and has an equilibrium value of 0.024 m.

Figure 3.19: FFT applied on response of calculation with
4t=0.01 s

3.8. Discussion Flexible Results
The equilibrium displacement of 0.024 m found after t=5 s is equal to displacements found by both de Nayer
[11] and Lesmana [25]. The frequency of 2.734 Hz is comparable to Lesmana[25] and de Nayer[11] who found
2.73 and 2.71 Hz, respectively. The natural frequency found in the modal analysis of the ANSYS model was
2.78 Hz. The reason for the frequency being lower in the simulation response is probably the viscous damp-
ing of the plate in the flow. This is not a free undamped vibration as in the modal analysis, leading to a lower
frequency in the simulations. Expected is that when a smaller time step 4 t is chosen higher frequencies are
found in the response as well.

RBF interpolation is used for the transformation of load and deformation across the interface of fluid and
structure. It is checked whether the deflection in ANSYS is the same compared to the deflection response of
ReFRESCO. By importing the pressure distribution from ReFRESCO in the ANSYS model, the same displace-
ment of 0.024 m was found. The performance of the interpolation is also determined the other way around.
A steady simulation is performed with the deformed solution after t = 5 s as grid. When the interpolation of
pressure across the interface works properly, the forces on the plate should be the same. A difference of 0.009
% was found in the forces. It can be concluded that the results are the same as found in reference literature
and that the loads and deformation are correctly transferred throughout the interface. The RBF interpolation
and time step are discussed further in the sensitivity analysis.

3.9. Sensitivity Analysis
To get more insight in the behaviour of different methods and parameters in the FSI module of ReFRESCO
a sensitivity analysis is performed. The influence of added Rayleigh damping, different time steps and RBF
radii are analysed and discussed. Damping can be useful for the propeller study later on. Damping can be
added to obtain an equilibrium steady equation earlier. The influence of the time step is analysed to see the
effect of the magnitude of the time step on the captured response. The RBF radius is checked as the RBF
provides a crucial part of the transfer of loads and deformations across the fluid- structure interface. More
insight in the performance of RBF is useful for further analysis.
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3.9.1. Rayleigh Damping
The influence of Rayleigh damping on the result of flexible plate simulations is analysed. By adding damping,
energy is dissipated reducing the amplitude of the vibration [16]. More information on damping is given in
the theory chapter 2.3. Damping can be added to the system to limit the peak response or when the final
equilibrium solution is requested, rather than the initial response of the structure. For the flexible propeller
this can be useful as tests are performed in a uniform wakefield and only the final equilibrium result is used
for analysis as explained in the scope of section 1.4.

From the flexible plate response it becomes clear that there is already damping in the system. This is
probably viscous damping due to the structure interacting with air. From the response, this damping can
be determined by the maximum at t = T compared to n consecutive maxima at t = T +nT , by using the
logarithmic decrement (δ) [36] defined by,

δ= 1

n
ln

x(t )

x(t +nT )
(3.3)

From this logarithmic decrement the damping ratio (ζ) is determined with [36],

ζ= δ√
(2π)2 +δ2

(3.4)

By comparing the first peak and last peak of the response in figure 3.20 a logarithmic decrement of δ = 0.13
and corresponding damping ratio of ζ= 0.021 is found.

Figure 3.20: Amplitudes of the simulation without Rayleigh damping used for determination of logarithmic decrement

In the FSI module of ReFRESCO an option for added Rayleigh damping, is built in. This means that an α

and β can be defined for mass- and stiffness proportional damping, respectively. Damping matrix [C ] is then
defined by,

[C ] =α[M ]+β[K ] (3.5)

Coefficients α and β are obtained by choosing a critical damping coefficient. Critical damping is the
lowest damping for which the oscillatory movement is totally damped. The fraction of this critical damping
is called the damping coefficient. Then α and β can be determined using the frequency range (ω1,ωm) and
selected damping ratios (ζ1,ζm). The damping ratios correspond to the chosen amount of critical damping.
α and β are obtained by evaluating equations 3.7 and 3.6 [6].

β= 2ζ1ω1 −2ζmωm

ω2
1 −ω2

m
(3.6)

2ζ1ω1 =α+βω2
1 (3.7)

Two critical damping ratios are chosen, 0.1 and 0.05, in the range of ω/2π = 2−3 Hz. Corresponding α
and β are: α= 1.255 and α= 2.507 and corresponding β= 0.0032 and 0.0064.

The response of these two simulations together with the response of the system without proportional
damping are given in figure 3.21 and corresponding maximum values at t = T and t = nT in table 3.6.
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Figure 3.21: Response of system with and without proportional damping

Alpha 0 1.255 2.507
Beta 0 0.0032 0.0064

Ampl 1st peak 0.163 0.148 0.137
Ampl 2nd peak 0.098 0.073 0.058
Ampl 3rd peak 0.074 0.049 0.039
Ampl 4th peak 0.059 0.039 0.034
Ampl 5th peak 0.050 0.034 0.031

ζ (1st vs 5th peak) 0.0378 0.0468 0.0472

Table 3.6: Amplitudes found for response of figure 3.21

3.9.2. Discussion Rayleigh Damping
The system already shows damping without any added proportional damping. This is probably due to vis-
cous damping exerted by the interaction of air and structure due to its velocity in the medium. From figure
3.21 and table 3.6 it becomes clear that when proportional damping is added for ζ= 0.05, the maximum val-
ues compared to the initial response are lowered with 0.015 to 0.025 m every period T . This leads to a damped
response after approximately 6 periods. For ζ = 0.1 this is between 0.025 and 0.04 m every period T , and a
damped response after 4 periods.

The corresponding damping ratios determined from the logarithmic decrements of the response are
shown in table 3.6. Differences between the damping ratios are due to the different methods of determining
the coefficients. One is experimentally by comparing maximum values, the other is by choosing a damping
coefficient in a certain range of frequencies. Another reason for the differences can be the effect of numeri-
cal damping of the solving method. When the exact amount of damping is needed, this influence should be
further analysed.

3.9.3. Time Step
The time of a simulation is subdivided into a discrete number of time steps. This is called time discretisation.
To fully capture the response the time step should be chosen carefully. If the time step is chosen too large,
the solver will not be able to capture the response. Parts of the response are "jumped over" by the time step.
Furthermore, solvers can become inaccurate or unstable if the time step is chosen too small. Therefore, the
effect of the time step should be checked. The natural frequency of the system found in section 3.7 is 2.73
Hz which corresponds to a natural period of 0.366 s. To ensure at least 10 data points in one period, the
time step should be smaller than 0.04 s. Simulations with 4t = 0.001 to 0.1 s are performed to analyse the
behaviour. The displacement responses for the time steps 4t = 0.005 to 0.1 are shown in figures 3.22 and 3.23.
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Figure 3.22: Tip displacements for different timesteps
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Figure 3.23: Tip displacements for different time steps in one figure

The force response is shown in figure 3.24, for time step 4t = 0.005 s and smaller. The response showed
higher frequency signals on top of the signal obtained with time step 4t = 0.01 s. When the time step further
decreases, peaks occur in the response between t = 2 s and 2.5 s for 4t = 0.001 s. For 4t = 0.003 s these peaks
did occur as well, however, later in the signal and with lower amplitude.

3.9.4. Discussion Time Step
The response of 4t = 0.01 s and 4t = 0.005 s are close to each other. When the time step is larger than 0.01 the
response is not fully captured and as a consequence damped earlier. In figure 3.23, all responses are plotted
together. It becomes clear that the equilibrium response after t=5 s is the same for all time steps 4t.

Mean equilibrium displacements for 4t = 0.005 - 0.1 are the same. For the forces this holds for 4t = 0.003
- 0.1. The peaks in the force response of smaller time step 4t = 0.003 s are probably due to an error occurring
in ReFRESCO. The pressure shows fluctuations between two consecutive cells, which wrongly determines the
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Figure 3.24: Forces for different time steps

force on the plate. After the peak the simulation continues and seems to converge when the pressure fluctua-
tions are not present. This phenomenon is probably not due to FSI simulations as it can occur in ReFRESCO
simulations without FSI as well.

From this analysis on the magnitude of the time step 4t, it is concluded that in order to capture the full
displacement response, the time step should be chosen sufficiently small. The method of ensuring at least 10
data points in one period of the vibration response seems a suitable rule of thumb.

The time step should not be chosen too small, as peaks in the pressure can occur leading to several peaks
in the force response. When only the final equilibrium state is requested in a steady simulation a larger time
step suffices, as the larger time steps showed the same final equilibrium displacement and mean force.

3.9.5. RBF Interpolation

Two different grids are used for the fluid and structure. Therefore, interpolation between the grids is neces-
sary to transfer load of the fluid to the structure across the interface. Also, deformation has to be transferred
from the structure through the interface to the fluid grid. The RBF interpolation is used for the transfer of
loads and deformation across the interface between fluid and structure. For a description of the RBF in-
terpolation it is referred to theory chapter 2.4.4. As this is an integral part of the fluid-structure interaction
simulation, performance of RBF is analysed.

In the theory chapter it was explained that a higher RBF radius generally leads to a more accurate solution
[9]. When a cell moves, only the nodes inside a circle with this RBF radius are influenced by the movement
of this cells’ centre. However, the size of the problem that is solved increases with increasing RBF radius. The
influence of the magnitude of this RBF radius is analysed by performing simulations with different RBF radii
of 0.2, 0.4, 0.6 and 0.8 m.

For a radius of 0.2 the grid deformation crashes at the plate top. If the response of the simulation with
RBF radius 0.8 and 0.4 are compared a difference in plate top displacement for the first peak in the response
of 0.00025 m (figure 3.25) is found. It can be seen that when the total displacement of the plate declines the
different response for two RBF radii also decreases and becomes close to zero after t=3 s.
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Figure 3.25: Difference in tip displacement between response with RBF radius 0.8 and 0.4

3.9.6. Discussion RBF Interpolation
From this analysis it follows that the RBF radius should be larger than 0.2 m. Reason for the instability at low
RBF radius is the geometry of the model. The plate top consists of an abrupt angle of 90 degrees. This asks
for a large RBF radius for stability.

The difference between response of RBF radius of 0.4 and 0.8 shows a difference in displacement of
0.00025 m for the first peak. This is approximately 0.2% from the total displacement of the first peak, found
with a RBF radius of 0.8. The difference in displacement decreases together with the response of the plate.
It can be concluded that for simulations where only the final equilibrium displacement is needed, the error
between RBF radii is lower. However, for a stable and accurate solution the RBF radius should be chosen
sufficiently large. In the FSI module of ReFRESCO, the total work, total energy loss and change in energy per
time step are monitored, these are shown in figure 3.26. From this figure it becomes clear that after some time
the energy loss and change become zero, when the equilibrium is reached.
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Figure 3.26: The total amount of work, energy loss and change of energy at the interface



3.10. Summary and Conclusions 35

3.10. Summary and Conclusions
In this chapter a benchmark case is carried out on a 2D flexible thin plate clamped perpendicular to the bot-
tom. With a uniform air flow applied that is parallel to the bottom plate. Simulations are carried out as if
the plate is rigid and flexible, either by performing RANS and RANS-FEM simulations using ReFRESCO and
ANSYS. The reason for this benchmark case is to get familiar with the methods and to check the reliability of
the FSI module in ReFRESCO. The results are compared to literature and a sensitivity analysis is carried out.

The fluid grid is created using the program Hexpress and consists of an unstructured hexahedral mesh.
The final mesh was obtained by improving the initial grid by monitoring the y+ and jump estimators. The
numerical uncertainties of the final mesh are 0.03 % and 0.07 % for rigid and FSI results, respectively.

The structural model is build up of linear solid elements (SOLID185). A grid study is carried out, com-
paring the deflection and natural frequency with analytical values. Before the simulations are carried out,
it is checked whether the fluid and structure interface are correctly outlined. The conclusions drawn in this
chapter are outlined here.

1. The FE model has a deviation of -2% and 1.1% for deflection and natural frequency, respectively. Quadratic
solid elements (SOLID186) give a result closer to the analytical solutions of 0.4% and 0.3% for deflec-
tion and natural frequency, respectively. This difference between linear- and quadratic solid elements
is assigned to the shear locking effect. The linear solid model is assumed to be sufficiently accurate and
used in this study.

2. The results of the rigid RANS simulations and flexible RANS-FEM simulations correspond to the results
found in literature. The same equilibrium deflection of 0.024 m and a response frequency of 2.73 Hz
are found. The FSI module of ReFRESCO can therefore be considered accurate for this case.

3. In the sensitivity analysis, damping was added to the system. The damping works, i.e. it damps the
response. However, the amount of damping seems incorrect, the influence of added Rayleigh damping
should be further investigated.

4. It is studied whether the response changes or becomes unstable when different time steps are chosen.
A large time step can save time in the propeller study when only the equilibrium response is required.
4t of up to 0.1s are analysed and give equal equilibrium results compared to smaller time steps. When
the total deformation in time is requested, the time step should be chosen sufficiently small. For this
case ensuring at least ten data points in one period, based on the natural frequency, is a suitable rule of
thumb. However, a very small time step can lead to inaccuracies in the pressure signal, which occurred
for 4t = 0.001 s, the cause for these inaccuracies is not clear and should be further investigated.

5. The size of the RBF radius is important ensuring accurate interpolation across the interface. The largest
element size of both grids is present for the FE model of 0.0005 m, with aspect ratio of one. It was
expected that an RBF radius that reaches several elements would suffice. However, an RBF radius larger
than 0.2 m was necessary, this was due to the geometry of the plate that contained right angles at the
top, impossible for the interpolation to solve for low RBF radii.

With the benchmark case the FSI module of ReFRESCO is tested thoroughly, due to the benchmark case
several updates were performed that have improved the FSI module. More insight is gained in CFD and FSI
of ReFRESCO. Next to that, the problems still present in the module are identified, such as the inaccuracies at
small 4t and the exact amount of added Rayleigh damping. The benchmark case has led to the conclusion
that it can be reliably used in the propeller study.





4
Rigid Propeller Case

In this chapter the rigid propeller study is described. In the introduction it was explained that rigid propeller
simulations are carried out to determine the required grid density. The rigid RANS results are compared to
experiments and BEM results. Besides that, it is interesting to compare the flexible propeller results. For
background information on the geometry and the performance parameters of propellers, one is referred to
the introduction, chapter 1. First a description of the rigid propeller case study is given. Then the numerical
set-up of the fluid model is explained together with the test conditions and settings corresponding to these
conditions. In the last part of this chapter the results are discussed and conclusions are drawn.

4.1. Case Description
The propeller of Greenprop used in this study is a 2-bladed, fixed pitch and right handed propeller with a
diameter of 0.34 m. The propeller has considerable skew. The coordinate system is the same as discussed in
figure 1.1. The propeller grid is constructed by A. Lampe of MARIN. This fluid grid is explained in the next
section. This grid is used to perform simulations with different flow conditions. The open water diagram is
constructed and compared to experiments and BEM simulations, both performed by Greenprop.

4.2. Fluid Model
The fluid grid is a multiblock structured grid, created using the program GridPro. The domain and propeller
grid are shown in figures 4.1 and 4.2. The domain is circular with diameter and length three and five times the
propeller diameter, respectively. The propeller is located in the middle of this domain where refinements are
applied in the grid. The inflow and outflow are indicated in figure 4.1. The geometry of the propeller made it
difficult to construct a grid of good quality, due to the thin trailing edge and large skew of the blade.

The solution with this grid did not easily converge. In chapter 2, it was explained that a QUICK scheme
for the convective flux discretisation is the most accurate. However, as the solution did not converge with
the QUICK scheme, a blending scheme was used having a combination between first order upwind- and the
central differencing scheme. Consequence of using a blending scheme is that the discretisation error does
not decrease as fast as the higher order schemes when the grid is refined.

The boundary conditions applied on the domain and propeller are given in table 4.1. At the in- and out-
flow the velocity and pressure are imposed. At the inlet this is velocity VA , which depends on the chosen
flow conditions. The pressure at the outlet is set to zero. The propeller and hub both have a wall boundary
condition with zero velocity at the wall, i.e. a no-slip boundary condition. At the tunnel a free-slip boundary
condition is applied. This means that the velocity normal to the wall will be zero and the velocity tangential
to the wall is free [4]. This ensures that the fluid cannot pass through the tunnel wall.

Four grids are obtained by coarsening the finest grid. The amount of cells are given in table 4.3. These
four grids are used for the numerical uncertainty analysis as part of the simulations.

37
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Figure 4.1: Domain and grid around the propeller

Figure 4.2: Propeller grid and suction side of the upper blade

Boundary Condition

Inflow Inflow velocity defined.
Outlet Pressure is zero at outlet.

Propeller No slip: Velocity is zero at the wall, No wall functions applied (y+ should be <1).
Tunnel Velocity normal to the wall is zero, tangential velocity at wall is free.

Hub No slip: Velocity is zero at the wall, No wall functions applied (y+ should be <1).

Table 4.1: Boundary conditions of fluid grid

4.3. Simulations
The inflow and flow direction are indicated in figures 4.1 and 4.2 with the water flowing in negative x-direction.
In open water experiments the hub and shaft of the propeller are reversed. This ensures that the influence
of the measuring equipment and shaft are excluded when the propeller is towed trough the water[24]. In the
fluid grid, the same configuration is applied. The rotative direction is shown in figure 4.2 as well. Advance
ratios ranging from J=0.2 to J=1.1 are chosen to construct the open water diagram. Next to these conditions,
the exact same conditions as in the flexible Greenprop simulations are performed. These advance ratios are
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J=0.369, J=0.512 and J=0.849. The inflow and rotational velocities are shown in table 4.2. The results that are
compared in the rigid propeller study are the thrust, torque and the pressure distribution on the propeller
blade.

J VA np

0.369 1.88 901
0.512 2.91 1001
0.849 6.74 1400

Table 4.2: Conditions of Greenprop simulations

For the open water diagram, simulations are performed with a constant rotational speed of 1170 rpm and
varying inflow velocity VA to obtain the desired advance ratio J . Advance ratios J = 0.2 to J = 1.1 are used
for comparison with experimental tests and the BEM simulations. By having a constant rotational speed the
Reynolds number is kept constant as much as possible for the different conditions. This is due to the Reynolds
number being more dependent on rotational speed (np ) than on inflow velocity (VA). The Reynolds number
is calculated using the chord length at r/R=0.7 (C0.7R ) and viscosity of the fluid (ν),

Re =
C0.7R

√
V 2

A + (0.7πnp D)2

ν
(4.1)

First, the numerical uncertainty of the calculations is determined. The discretisation error and iterative
error of the fluid grid are obtained by performing the numerical uncertainty analysis of Eça and Hoekstra [14].

4.3.1. Settings
For the rigid propeller steady simulations can be performed. The grid domain is circular as visible in fig-
ure 4.1. This allows using a moving grid method, where for this case, the interior of the fluid grid domain
can rotate around the propeller. The Absolute Formulation Method (AFM) is used with the x-axis as rotating
axis[44]. A convergence tolerance of the residuals of 10−6 is set.

In section 4.2, it was explained that a Blending scheme is used. For the rigid simulations, the simulation
converged if a blending factor of 0.7 was used. However, for the FSI simulations a lower blending factor of 0.5
was required. Therefore, the rigid simulations are also performed with a blending factor of 0.5.

In the open water diagram simulations the k−ω turbulence model was chosen initially. However, later on
during the FSI simulations, the k −p

kL turbulence model was found to be more robust. Therefore, the rigid
RANS simulations are carried out with the k −p

kL turbulence model as well.

4.4. Numerical Uncertainty
The numerical uncertainty of the fluid model is determined using the method of Eça and Hoekstra [14]. This
method is explained in section 2.2.3. The four fluid grids that are used differ only in cell density. The number
of cells of these four grids is given in table 4.3.

Grid Amount of cells

A 917,000
B 2,390,000
C 3,790,000
D 9,460,000

Table 4.3: Amount of cells of finest grid (grid D) and coarsened grids

The numerical uncertainty is determined for the thrust and torque of the open water conditions J=0.4, 0.6
and 0.8 and for the Greenprop conditions of J=0.369, 0.512 and 0.849. The numerical uncertainty results are
shown in figures 4.3 - 4.6. In these figures, U represents the numerical uncertainty of the finest grid and p the
order of accuracy. The numerical uncertainties for thrust and torque are given in figure 4.3 4.4 for J=0.4,0.6
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and 0.8 and in figures 4.5 and 4.6 for the Greenprop test conditions of J=0.369, 0.512 and 0.849, for thrust and
torque respectively. Other numerical uncertainties determined in this study can be found in appendix C.

Figure 4.3: Numerical uncertainty thrust, Open water simulations

Figure 4.4: Numerical uncertainty of torque, Open water simulations

Figure 4.5: Numerical uncertainty of thrust, Greenprop test conditions

Figure 4.6: Numerical uncertainty of torque, Greenprop test conditions

It is clearly visible that the order of accuracy is lower than two. In the benchmark case an order of ac-
curacy of two was found for the outcomes of the uncertainty analysis. The order of accuracies are in the
range of p=0.6 to 1.9. An order of accuracy of p=*1,2 means that a fit was made using first and second order
exponents[33]. The order of accuracy is not equal to two, due to the blending scheme used. The uncertain-
ties are between 0.1% and 7.7 % for thrust and between 0.4% and 11.1% for torque. From Klaij et al.[22], it
becomes clear that for marine propeller applications a discretisation error of up to 5% is acceptable. The
numerical uncertainties of advance ratios J=0.4-0.6 are below 5% and therefore, it is concluded that the finest
grid (grid D) is sufficiently accurate for these simulations. For J=0.8 and 0.849 the numerical uncertainties are
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between 6.2%-11.1% and therefore larger than 5%. Initially, numerical uncertainties below 5% were found for
these advance ratios. However, an error in the use of the method was discovered leading to higher numerical
uncertainties. From these results it is recommended to use a finer grid for advance ratios larger than 0.8.
However, because this error was identified late in the process the simulations are performed with this grid
(grid D) also for advance ratios larger than 0.8. The corrected numerical uncertainties are further used in this
study.
The iterative error found for these simulations are at most two orders of magnitude smaller than the discreti-
sation error. The iterative errors for J = 0.369, 0.512 and 0.849 are reported in appendix B.

4.5. Results Open Water Diagram
First the open water diagram is constructed by performing simulations at constant rotative velocity np and
varying inflow velocity VA to keep the Reynolds number as constant as possible throughout the different con-
ditions, as explained in the simulations section 4.3. The open water diagram is constructed by expressing the
dimensionless thrust (KT ) and torque (KQ ) against the advance ratio.

The results of KT and KQ at advance ratios J = 0.2, 0.4, 0.6, 0.8, 1.0 and 1.1 are shown in figure 4.7, indicated
by the red line. These values are plotted together with the results of the model tests in the Deepwater Tank
(DT) and the BEM simulations with BEM solver Procal, both performed by Greenprop [28]. In this figure,
the blue line represents the experimental model tests and the pink line represents the Procal simulations of
Greenprop. In table 4.4 the KT and KQ corresponding to the red line of the RANS simulations are shown.
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Figure 4.7: KT and KQ Experiments, BEM- and RANS simulations

Kt(RANS) 10Kq(RANS)

J = 0.2 0.260 0.379
J = 0.4 0.213 0.320
J = 0.6 0.159 0.258
J = 0.8 0.103 0.190
J = 1.0 0.043 0.105
J = 1.1 0.012 0.053

Table 4.4: KT and KQ Open water diagram of rigid propeller model RANS

In figure 4.8 the differences found for KT , KQ are shown for RANS compared to experiments and to BEM
results. These differences are discussed in sections 4.7 and 4.8, respectively.
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Figure 4.8: Difference between RANS and model tests in the DT (left) and RANS and BEM (right)

4.6. Results Greenprop Conditions
In this section results of the simulations with the Greenprop test conditions are presented. The three tests
that are performed are shown in table 4.2 and have advance ratios of 0.369, 0.512 and 0.849. The results for
KT and KQ are shown in table 4.5. The streamlines on the suction side of the propeller show a similar pattern
for J=0.369 and J=0.512, which is visible in figure 4.9.

KT (RANS) 10KQ (RANS)

J = 0.369 0.221 0.331
J = 0.512 0.184 0.287
J = 0.849 0.089 0.172

Table 4.5: KT and KQ of rigid propeller RANS simulations

Figure 4.9: Streamlines on the suction side for J=0.369, J=0.512 and J=0.849
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4.7. Discussion RANS versus Experiments
The results of KT and KQ found with RANS are compared to the results of the experiments. In figure 4.8 the
deviations of RANS compared to the experiments is shown in percentage. These values are given in table 4.6
as well.

Kt(DT) Kt(RANS) 10Kq(DT) 10Kq(RANS)

J = 0.2 0.269 0.260 -3.3 % 0.385 0.379 -1.6 %
J = 0.4 0.223 0.213 -4.5 % 0.327 0.320 -2.1 %
J = 0.6 0.169 0.159 -5.9 % 0.265 0.258 -2.6 %
J = 0.8 0.117 0.103 -12 % 0.202 0.190 -5.9 %
J = 1.0 0.071 0.043 -39 % 0.137 0.105 -23 %
J = 1.1 0.047 0.012 -74 % 0.099 0.053 -46 %

Table 4.6: KT and KQ Open water diagram of rigid propeller model tests compared to RANS

It is assumed that the experiments in the Deepwater Tank (DT) at MARIN performed with the bronze
propeller are accurate. MARIN has a lot of experience in performing open water tests for research and com-
mercial purposes. Three tests were performed in the DT, the method of testing is described in the report of
Lafeber et al. [24]. The largest difference in the measured KT was 1.7% and 1.1% for KQ . It is therefore as-
sumed that the results of the model tests are within 2% accurate. Next to this error present in the repeated
tests, there is an error in the measuring equipment and sensors. It is assumed that this error is approximately
1%. Therefore, a total uncertainty of the DT tests of 3% is assumed. The bandwidth of 3% around the DT
results of KT and KQ is shown in figure 4.10. The bandwidth around the RANS results are the numerical un-
certainty results of section 4.4. If these uncertainty bandwidths overlap, the results of RANS and experiments
are considered to be equal.
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Figure 4.10: Openwater diagram with uncertainty bandwidths

For advance ratios up to 0.8, the KQ bandwidths overlap and are therefore considered equal. KT only
shows overlap for J=0.2, for advance ratios 0.4, 0.6 and 0.8 lower values for KT are found by RANS of 0.4%, 2%
and 4%, respectively. For the results of advance ratios 1.0 and 1.1, larger deviations are found both in KQ and
KT . For RANS KQ is 12% and 36% lower compared to the KQ results of the experiments. For KT lower values
of 29% and 68% compared to the experiments are found. These lower results for KT and KQ can have several
causes,
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1. Influence of tunnel walls: The simulations are performed in a circular fluid domain. The experiments
are performed in a normal towing tank without influences of the tunnel the so-called blockage.

2. Modelling errors: Wrong modelling of transition from laminar to turbulent flow by the turbulence model
in ReFRESCO.

3. Experimental errors: The tests in the DT are chosen for comparison. Despite the experience of MARIN,
experimental errors are made in these tests, which can lead to deviations in the results.

These three possible causes for differences between RANS simulations and model tests are now further
analysed. First, the influence of tunnel walls or so-called blockage is discussed.

4.7.1. Blockage
The experiments with the bronze propeller are performed in the Deepwater Tank (DT) which is an open
basin compared to the circular fluid domain used in the RANS simulations. To analyse whether the influence
of blockage leads to the lower KT and KQ for higher advance ratios, the results are compared to the open
water diagram obtained in the Cavitation Tunnel (CT). The experiments performed with the epoxy propeller
are performed in the CT. Beforehand, reference tests were carried out with the bronze propeller to verify the
open water diagram with the DT. Therefore the open water diagram tested in the CT is available as well. It
should be noted that the CT is not used on a daily basis. The actual flow velocity Va can deviate from the
measured flow velocity. The reason that the open water diagram of the DT is analysed first, is that at MARIN
open water tests are usually performed in the DT and measurement equipment is more up-to-date.

The difference with the cavitation tunnel in real life and the circular grid domain is that the tunnel is
not cylindrical. Reason for this difference is that for the use of the moving grid method in ReFRESCO, as ex-
plained in the settings section 4.3, a circular domain is needed to be able to use the moving grid method.
Another parameter that is different in the CT compared to the simulations in ReFRESCO, is the arrangement
of flow velocity VA and rotation speed np . In the CT it is easier to adjust np compared to VA . For VA the entire
flow velocity of the tunnel has to be adjusted, whereas the rotational velocity of the propeller can be adjusted
easily. In ReFRESCO, np is kept constant while VA is varied. The Reynolds number is more sensitive for rota-
tional velocity compared to the VA , which becomes clear from equation 4.1. For J = 0.8 the RANS simulations
are performed with constant np of 19.83 rps and VA of 5.4 m/s, leading to a Reynolds number of 1.78E6. The
CT tests are either performed with constant VTunnel of 2 m/s and 6 m/s, and corresponding Reynolds num-
bers of 6.6E5 and 1.98E6 respectively. This can have a considerable effect on the results. The results from the
cavitation tunnel are highly velocity dependent, as for same advance ratios J, different results are found. It
is assumed that the flow is uniform throughout the tunnel, however, vortices/swirls were visible during the
tests. These differences and inaccuracies of the CT have to be taken into account in further analysis.

The results of the tests in the CT are shown in figure 4.11, indicated with the green lines. The different signs
on the green lines correspond to the water velocity in the tank. The results of the DT tests and ReFRESCO
simulations are shown as well. The test results of the CT are closer to the simulation results for J>0.8. For
J=1.1, the deviation of the RANS results are -26% for KQ and -35% for KT . This is lower compared to the
deviations in the DT results i.e. -46% and -74% for KQ and KT , respectively. It can be concluded that blockage
is a plausible reason for the deviation at advance ratios larger than 0.8. A recommendation for future work is
to study the influence of blockage when a larger diameter is chosen for the fluid grid domain, it is expected
that the simulation results with a larger domain are closer to the DT results, excluding the effect of blockage.

4.7.2. Modelling Errors
Transition from laminar to turbulent flow plays an important role in properties of the flow and loads on the
propeller blade [15]. Turbulence models were not designed to accurately model the transition from laminar to
turbulent. Rijpkema et al [38], investigated the application of surface roughness at the leading edge, resulting
in earlier transition to turbulent flow. This gave better comparable results between ReFRESCO simulations
and experiments looking at limiting streamlines and paint tests.

To analyse the influence of the turbulence model on the flow and prediction of the thrust and torque,
simulations are performed with varying Reynolds numbers. Simulations at J = 0.8 and J = 1.0 are performed
with Reynolds numbers ranging from 1E4 - 1E7 obtained by varying the dynamic viscosity from µ = 0.1807 -
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Figure 4.11: KT and KQ compared to experimental results in the DT and in the CT

1.807E-4, for J=0.8. For J =1.0 a simulation with Reynolds 1E7 is performed obtained with µ= 8.65E-4.

Note that when the Reynolds number is a factor 10 higher, the y-plus value will also be a factor 10 higher.
The maximum y-plus value for the Re=1E7 becomes 1.8, and is assumed to be close to one. Therefore, the
grid is not refined for this purpose. It is expected that more turbulent flow is present on the blade for this
higher Reynolds number. The turbulence model will be able to better predict the loads on the blade, leading
to results that are closer to the experimental results.

The results limiting streamlines for Re=1E6 and 1E7 are shown in figure 4.12 for J=0.8. The limiting stream-
lines on the blade show a higher extent of laminar separation at the trailing edge for the lower Reynolds num-
ber. The flow for the higher Reynolds number is less radially directed at the trailing edge, indicating more
turbulent flow. For higher Reynolds number at J=0.8 there is an increase of 4.8 % and 2.4 % for KT and KQ re-
spectively. For J = 1.0 this is 6.4 % and 2.2 %. Especially for KT the results found with higher Reynolds number
are closer to the experiments. The transitional flow from laminar to turbulent is therefore a plausible reason
for the large difference between RANS simulations and experiments for this propeller.

Figure 4.12: Limiting streamlines on suction side for J=0.8 with µ= 1.807E-3 (left) µ= 1.807E-4 (right)
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4.7.3. Experimental Errors
During the RANS simulations the propeller is not allowed to deform. It is assumed that the deformation of
the bronze propeller in the model tests can be neglected as well. However, in reality this propeller will slightly
deform in response to the hydrodynamic loading. To get an idea of this deformation the pressure on the
blade obtained from the RANS simulations is applied to the FEM model, but now with material properties of
bronze, i.e. ρ = 7590 kg/m3, E = 125 GPa and ν = 0.32. The ANSYS model showed a maximum deformation
of 0.17 mm of the bronze propeller. This deformation is small but can give slight changes in measured thrust
and torque. However, it is expected that this deformation will lead to lower thrust and torque, and is therefore
not a cause of the higher thrust and torque measured in the experiments.

In the paper of Lafeber it is also mentioned that other errors in the experimental tests can be present,
such as sensor calibration, sensor drift and polynomial fitting of the results[24]. These errors are accounted
for through the uncertainty bandwidth. It is assumed that these errors do not influence the thrust and torque
more than this bandwidth and are not the cause for the differences at advance ratios larger than 0.8.

From the comparison of the RANS simulations with the experiments in the DT, it can be concluded that
for advance ratios up to 0.8 a good resemblance is found for KQ and KT . The uncertainty bandwidths overlap
for KQ and for KT a maximum deviation of 4% is found. For larger advance ratios, deviations in the range
of 12-68% are found. These differences are attributed to blockage and the wrong modelling of the transition
from laminar to turbulent by the turbulence model in ReFRESCO. In the next section, the RANS results are
compared to BEM.

4.8. Discussion RANS versus BEM
In this section, the results obtained with RANS for the open water- and Greenprop conditions are compared
to the BEM results obtained by Greenprop. The results of thrust and torque and the pressure distributions of
RANS and BEM are compared.

4.8.1. Thrust and Torque
From the open water diagram of figure 4.7 it becomes clear that KT and KQ of RANS are close to the exper-
imental results for advance ratios up to 0.8. At J=0.2 the largest difference is visible of RANS compared to
experiments is visible of -1.5% for KQ and -3.6% for KT . This is -14% for KQ and 8.9% for KT . In figure 4.8
the difference of RANS compared to BEM results is shown as a percentage. These values are given in table
4.7. It should be noted that the numerical uncertainty bandwidth is not taken into account in this analysis,
the mean values are used for comparison. Especially at low advance ratio the results of BEM deviate from the
model tests and RANS results. This can be attributed to the flow separation being present at high angles of
attack (low advance ratio J), that is not captured by BEM.

Kt(BEM) Kt(RANS) 10Kq(BEM) 10Kq(RANS)

J = 0.2 0.293 0.260 -11 % 0.332 0.379 +14 %
J = 0.4 0.243 0.213 -12 % 0.322 0.320 -0.6 %
J = 0.6 0.187 0.159 -14 % 0.287 0.258 -10 %
J = 0.8 0.129 0.103 -20 % 0.227 0.190 -16 %
J = 1.0 0.068 0.043 -36 % 0.141 0.105 -25 %
J = 1.1 0.036 0.012 -66 % 0.087 0.053 -39 %

Table 4.7: Kt and Kq Open water diagram of rigid propeller BEM compared to RANS

For the Greenprop test conditions the RANS results are compared to BEM as well. These results are shown
in table 4.8. Deviations in the same range of table 4.7 are found.

To analyse the cause for these differences the pressure distributions of RANS and BEM are compared in
the next section. The Greenprop conditions of J=0.369, 0.512 and 0.849, are chosen for comparison.
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KT (BEM) KT (RANS) % 10KQ (BEM) 10KQ (RANS) %

J = 0.369 0.250 0.221 -12 % 0.342 0.331 -3 %
J = 0.512 0.209 0.184 -12 % 0.307 0.287 -7 %
J = 0.849 0.113 0.089 -21 % 0.204 0.172 -16 %

Table 4.8: KT and KQ of rigid propeller RANS compared to BEM

4.8.2. Pressure Distribution
The pressure distributions of advance ratio J=0.369 for RANS and BEM are shown in figures 4.13 and 4.14 for
the suction- and pressure side, respectively. The dimensionless pressure coefficient (Cpn) is used as parame-
ter,

Cpn = p −pr e f

1
2ρ(np D)2

(4.2)

in which p is the pressure on the blade and pr e f the reference pressure in the farfield, which is assumed to be
zero. The pressure distribution Cpn is also expressed at certain radii against the chord length (x/c), for RANS
(ReFRESCO) and BEM (Procal) in figure 4.15. Radii (r/R) of 0.605, 0.809 and 0.960 are chosen to display.

Figure 4.13: Pressure distribution (Cpn) on the suction side for J = 0.369 RANS (left) and BEM (right)
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Figure 4.15: Pressure distribution r/R = 0.605, 0.809, 0.960 for J = 0.369

From the pressure distribution at the suction side (figure 4.13), it becomes clear that the suction peak of
BEM reaches the tip, which is not the case for RANS. The reason for this is that in BEM there is no tip vortex.
Therefore the pressure at the tip is different compared to RANS. This pressure difference at the outer radius
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Figure 4.14: Pressure distribution (Cpn) on the pressure side for J = 0.369 RANS (left) and BEM (right)

can be the reason for the deviation in torque. It is expected that this will have a large impact on the tip defor-
mation in the flexible propeller case for RANS-FEM compared to BEM-FEM.

If the suction sides are compared to the pressure sides of figure 4.14, it becomes clear that the overall
pressure of RANS is lower. This is the cause for the lower thrust of RANS compared to BEM. Next to that, the
pressure distribution is more concentrated at the leading edge for RANS, compared to the more dispersed
distribution of BEM. Another difference from these distributions is that the flow around the propeller at the
tip is different for the two solvers.

For advance ratios J= 0.512 (figure 4.16 and 4.17) comparable pressure distributions are found for the
suction- and pressure side. For advance ratio J = 0.849, a different pressure distribution is found compared to
J=0.369 and 0.512. The high advance ratio corresponds to a small angle of attack, leading to a lower loading on
the blade. When the BEM and RANS pressure distributions are compared for J=0.849, a similar distribution is
found. However RANS shows a lower overall pressure. This corresponds to the lower thrust and torque results
found for RANS compared to BEM.

Figure 4.16: Pressure distribution (Cpn ) on the suction side for J = 0.512 RANS (left) and BEM (right)
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Figure 4.17: Pressure distribution (Cpn ) on the pressure side for J = 0.512 RANS (left) and BEM (right)
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Figure 4.18: Pressure distribution r/R = 0.605, 0.809, 0.960 for J = 0.512

Figure 4.19: Pressure distribution (Cpn ) on the suction side for J = 0.849 RANS (left) and BEM (right)
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Figure 4.20: Pressure distribution (Cpn ) on the pressure side for J = 0.849 RANS (left) and BEM (right)
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Figure 4.21: Pressure distribution r/R = 0.605, 0.809, 0.960 for J = 0.849
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4.9. Summary and Conclusions
In this chapter RANS simulations are performed with the rigid propeller of Greenprop. The open water dia-
gram is constructed with advance ratios ranging from J=0.2 to J=1.1. The results are compared to experiments
and BEM simulations, both performed by Greenprop. Next to that, simulations with conditions of the Green-
prop tests are performed to compare to BEM and to the flexible results later on. These simulations consisted
of advance ratios J=0.369, 0.512 and 0.849. The conclusions from this chapter are divided in numerical un-
certainties, RANS compared to experimental results and RANS compared to BEM results.

1. The numerical uncertainties are between 0.1% and 7.7 % for thrust and between 0.4% and 11.1% for
torque. From Klaij et al.[22], it becomes clear that for marine propeller applications a discretisation er-
ror of up to 5% is acceptable. The numerical uncertainties of advance ratios J=0.4-0.6 are below 5% and
therefore, it is concluded that the grid is sufficiently accurate for these simulations. For J=0.8 and 0.849
the numerical uncertainties are between 6.2%-11.1% and therefore larger than 5%. Initially, numerical
uncertainties below 5% were found for these advance ratios. However, an error in the use of the method
was discovered leading to higher numerical uncertainties. From these results it is recommended to use
a finer grid for advance ratios larger than 0.8. However, because this error was identified late in the
process the simulations are performed with this grid also for advance ratios larger than 0.8.

2. The results of the RANS simulations and the measured open water diagram in the DT tank show for
an advance ratio of J>0.2 larger differences in KT than expected from the numerical and experimental
uncertainties. For advance ratios 0.4, 0.6 and 0.8 lower values for KT are found by RANS of -0.4%, -
2% and -4%, respectively. For advance ratios of 1.0 and 1.1 larger deviations both in KQ and KT are
observed. For RANS, KQ is -12% and -36% compared to the experiments. For KT deviations of -29%
and -68% are found. These lower results for KT and KQ can have several causes. The influence of
blockage is discussed by comparing to tests in the cavitation tunnel with the bronze propeller and the
modelling and experimental errors are discussed. The most likely reasons for the lower KT and KQ are
blockage of the fluid domain and the turbulence model in ReFRESCO. It is recommended to further
study the deviations compared to experiments for advance ratios larger than 0.8.

3. The comparison of RANS with BEM results shows that for advance ratios up to J = 0.8, RANS better
predicts the load on the blade compared to BEM. The largest difference is visible for J=0.2, the results
of RANS are -1.5% and -3.6% compared to the experiments for KQ and KT respectively. For BEM this
is -14% and +8.9%. This difference is assigned to the flow separation at large angles of attack, i.e. low
advance ratios. This flow separation is a viscous effect that is not captured by BEM. When the pressure
distributions of RANS and BEM are compared, it becomes clear that the suction peak of BEM reaches
the tip, whereas this is not the case for RANS. The reason is that in BEM there is no tip vortex leading
to a different pressure at the tip compared to RANS. This pressure difference at the outer radius can be
the reason for the deviation in torque, which is -3% to -16% lower for RANS. The pressure distributions
for RANS and BEM showed a lower pressure overall leading to a lower thrust of -12% to -21% for RANS.

From the simulations performed in this chapter, knowledge is gained in propeller simulations with RANS.
The accuracy of the RANS results is determined by evaluating the numerical uncertainty and comparing to
experimental results. Next to that, a comparison is made between the results of BEM. The numerical uncer-
tainties and performance parameters found for the rigid propeller are used in the flexible propeller study.





5
Flexible Propeller Case

In this chapter the flexible propeller case is discussed. RANS-FEM simulations are performed with the epoxy
propeller of Greenprop. First a short case description is given, then the grid study of the FEM model is ex-
plained and the conditions and settings of the RANS-FEM simulations are outlined. The results of the simu-
lations are compared to the experiments and BEM-FEM simulations, both performed by Greenprop with the
epoxy propeller.

5.1. Case Description
The propeller geometry is described in chapter 4. The propeller material is epoxy, with elastic modulus of
E = 3.6 GPa and a density of ρ = 1140 kg/m3. The fluid grid that is used in the RANS-FEM simulations is
described in section 4.2. For the flexible simulations, taking into account Fluid-structure interaction, the
FEM model is included. For this structural model Finite Element solver ANSYS is used, which is described in
the next section.

5.2. Structural Model
ANSYS Workbench is used for the FE modelling of the propeller. Eigenfrequencies of a structure are depen-
dent on the mass- and stiffness matrix, which was pointed out in section 2.3. The matrices are part of the
equations of motion. If the eigenfrequencies of the ANSYS model are equal to those of Greenprop it can be
concluded that the response corresponds as well. Therefore, the eigenfrequencies are chosen as parameters
for comparison between the FE and physical model of Greenprop.

The first 5 eigenfrequencies of Greenprop are shown in table 5.1. The eigenfrequencies found for the
Greenprop model are obtained by modal analysis in the FE solver. The natural frequencies of the physical
model are obtained through experimental tests. From these experimental tests, only the first two eigenfre-
quencies are measured. These tests were only performed as check and it is expected that the uncertainty is
5%, this leads to a bandwidth around the natural frequency of 295 to 352 Hz for the first mode. However, the
natural frequencies of the Greenprop FE model are aimed for in the FE modelling of this study. Before the
structural model is constructed several requirements of the model are set. The model should,

• be sufficiently accurate, especially at the tip, leading edge and trailing edge;

• have eigenfrequencies that are within 5% compared to the Greenprop FE model.

In chapter 2 it was explained that in the FSI module of ReFRESCO, solid elements should be used for the
FE model. Quadratic solid elements (SOLID186) are chosen for the modelling of the propeller structural grid.
In the Benchmark case of chapter 3, it was shown that the use of these elements resulted in a more accu-
rate solution than linear solid elements. The material of the propeller is assumed to be isotropic with elastic
modulus, density and poisson ratio of epoxy. The hub is excluded from the structural model and clamped
boundary conditions are applied on the root of the blade at its connection to the hub. Meshes obtained with
three different mesh methods are considered, these methods are explained first.

53



54 5. Flexible Propeller Case

Meshes obtained with the Sweep-, Multizone- and Hex dominant method of ANSYS Workbench are con-
sidered. The sweep method is used if the geometry is recognised as a sweepable body. Two opposite faces
(source- and target face) are chosen. On the source face a quadrilateral or triangular mesh is generated that is
copied to the target face generating the mesh between the source- and target face [40]. The multizone method
divides the geometry in sweepable bodies if it does not consist of one sweepable body. The hex dominant
method will create a hexahedral mesh for bodies that cannot be swept. This method is suitable for bodies
with a large interior volume. For thin structures and bodies that are easily swept, the hex dominant method
is less suitable [40]. It is expected that the propeller geometry is a sweepable body with the pressure- and
suction side as source- and target face. Therefore, the sweep mesh method will be most suitable. However,
all three methods are considered to study the effect on element distribution and response.

Mode Greenprop [Hz] Exp. [Hz]

1 318 310
2 460 454
3 799
4 1085
5 1331

Table 5.1: Eigenfrequencies found in experiments and modal analysis of Greenprop FE model

In ANSYS a linear elastic analysis is performed. Greenprop investigated whether this is a valid assumption
for the epoxy propeller by comparing results of linear elastic analysis and geometric non-linear analysis. It
was concluded that linear elastic propeller analysis is a valid assumption [28].

5.2.1. Grid Study

From the grid study of the benchmark case of section 3.2 it was concluded that an aspect ratio of 1 gives the
best result. For the structural model of the propeller, element sizes are chosen such that the aspect ratios of
the elements are close to one. The best fit of multizone-, hex dominant- and three sweep meshes are shown
in table 5.2. The eigenfrequencies are compared to those of the Greenprop FE model and the deviation is
indicated as a percentage. It is assumed that the response of the FE model corresponds to the Greenprop FE
model if the eigenfrequencies are within 5% from the Greenprop FE model.

From the eigenfrequencies it becomes clear that all meshes are within 0.4% from the first natural fre-
quency of the Greenprop model. The quality of the elements at the tip, leading- and trailing edge are com-
pared. In figure 5.1 the tip elements of the multizone method are shown. With this method not enough
resolution at the tip is obtained. This made the multizone method not suitable. The hex dominant method
created more elements through thickness, leading to three elements in thickness. However, the mesh ob-
tained with this method showed not enough resolution at the tip, which is visible in figure 5.2. The sweep
mesh method showed the best element distribution. These meshes are shown in figures 5.3, 5.4 and 5.5. The
differences between these meshes are the total number of elements and the number of elements through
thickness. This is visible in figure 5.5.

When sweep 1, 3 and 3 are compared, it becomes clear that the amount of cells of the first two methods
(Sweep 1 and 2) is lower. This is due to the third mesh having two elements through thickness. The element
quality which is obtained in ANSYS is the best for Sweep 3. However, the other meshes show better quality at
the tip, which is shown in figures 5.6 and 5.7.

The first eigenfrequencies of the three sweep meshes are 0 - 0.4 % higher than the Greenprop frequencies.
For the other eigenfrequencies, sweep 1 and 2 are closer compared to sweep 3. When the Sweep 3 mesh was
used in ReFRESCO, the RBF method was not capable of solving the interpolation for two elements through
thickness at the tip. Therefore, the sweep 2 mesh which shows slightly better element quality compared to
sweep 1, is chosen for the RANS-FEM simulations. This final mesh together with its properties are shown in
table 5.3 and figure 5.8. The results are discussed in the next section.
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Mesh method MultiZone Hex. Dom. Sweep 1 Sweep 2 Sweep 3
Element size 0.005 m 0.005 m 0.008 m 0.006 m 0.006 m

Sweep size 0.0005 m 0.005 m 0.0005 m
# elements 473 2577 309 479 962
# elem. in t 1 3 1 1 2
Quality [-] 0.691 0.588 0.653 0.659 0.710

Tip? – – ++ ++ +

Freq. [Hz] % % % % %
Mode 1 318.8 +0.3 317.7 -0.1 319.3 +0.4 318.9 +0.3 317.9 0.0
Mode 2 455.5 -1.0 453.0 -1.5 457.3 -0.6 456.3 -0.8 453.3 -1.5
Mode 3 775.5 -2.9 772.2 -3.4 775.5 -2.9 773.7 -3.2 771.9 -3.4
Mode 4 1042.7 -3.9 1039.6 -4.2 1042.3 -3.9 1040.3 -4.1 1039.5 -4.2
Mode 5 1296.2 -2.6 1292.9 -2.9 1295.9 -2.6 1292.8 -2.9 1293.1 -2.8

Table 5.2: Grid study different mesh methods, deviation of frequencies compared to GreenProp frequencies

Figure 5.1: Tip elements multizone method Figure 5.2: Hex. dominant method

Figure 5.3: Sweep 1 Figure 5.4: Sweep 2 Figure 5.5: Sweep 3

Mesh method Sweep

Element size 0.006 m
Sweep size 0.005 m

# of elements 479
# of elements in t 1

Frequencies
Mode 1 318.9 Hz
Mode 2 456.3 Hz
Mode 3 773.7 Hz
Mode 4 1040.3 Hz
Mode 5 1292.8 Hz

Table 5.3: Characteristics and results of ANSYS model Figure 5.8: ANSYS model
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Figure 5.6: Tip elements Sweep mesh 2 Figure 5.7: Tip elements Sweep mesh 3

5.2.2. Discussion FE Results
The chosen mesh of figure 5.8 is compared to the Greenprop FE model. The model of Greenprop is con-
structed using FE solver MARC. Both models use quadratic solid elements. Within solid elements, shape
functions describe the variation of displacement in the element. These shape functions can be different for
the two FE packages. The mesh distribution is another source for dissimilarities. The Greenprop model uses
a mesh distribution of 29 (along chord) x 30 (in radial direction) x 4 (through thickness), thus 3480 elements,
whereas the ANSYS model has 479 elements. The structural model of Greenprop is made identical to the fluid
model, allowing for direct integration of the loads and deformations across the fluid- and structure interface.
This leads to another mesh distribution of the FE model.

The deviation in eigenfrequency of the first mode is only 0.3 %. For the second mode this is 0.8% and for
mode 3 to 5 the deviation has a maximum of 4%. These deviations are within 5% and it is therefore assumed
that the same response is found for both FE models. The deviation from the physical model is 2.8 % and 0.5
% for mode one and two, respectively. However, when the uncertainty bandwidth of 295-352 Hz is taken into
account, the eigenfrequency of the sweep 2 mesh falls within this bandwidth and can therefore be considered
equal. It can be concluded that the differences in outcomes are small, the ANSYS model can be considered
sufficiently accurate and the response is considered to be equal to the Greenprop FE model.

5.3. Simulations
The flexible (RANS-FEM) simulations are carried out by coupling the structure grid to the fluid grid of section
4.2. For these simulations a similar approach is used as in the FSI simulations of the benchmark case. Be-
fore the simulations are carried out, it is verified whether the interface nodes of the FEM model are correctly
located in the fluid model. This check is performed to ensure that loads and deformations can be correctly
transferred across the interface by the RBF interpolation method.

The test conditions of the simulations are equal to the Greenprop simulations with the rigid propeller of
table 4.2. Parameters that are used in the analysis are thrust, torque, pressure and deformation. The numer-
ical uncertainty analysis of Eça and Hoekstra [14] is performed for the flexible results. First the results are
presented together with the results of the RANS simulations with the rigid propeller. This gives insight in the
influence of the flexibility on the analysed parameters. The results are discussed and compared to the results
of the BEM-FEM simulations and experiments.

5.3.1. Settings
The additional simulation settings for the RANS-FEM simulations compared to the RANS simulations are de-
scribed in this subsection. With the flexible propeller unsteady simulations are performed. In the sensitivity
analysis of the benchmark case it was concluded that the time step 4t should be chosen carefully. However,
for the flexible propeller, only the equilibrium displacement is requested. Therefore, the size of the time step
can be large compared to the period of the initial motion of the structure. For the time discretisation the
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three-time level method is used. The time step is chosen such that the grid rotates 30 degrees in every time
step. The three test conditions have a rotational speed np of 901, 1001 and 1400 rpm for J = 0.369, 0.512 and
0.849, respectively. This leads to time steps of 4t = 0.006,0.005 and 0.004 seconds, respectively.

Another conclusion that was drawn in the sensitivity analysis of the benchmark case concerned the RBF
radius. For the RBF radius it should be checked whether the forces are transferred correctly across the inter-
face. The RBF radius of the interface coupling is set to 0.1 m, with a convergence tolerance of 10−12.

The AFM moving grid method is used for the rotation of the grid equal to the RANS simulations. For
RANS-FEM simulations the fluid grid also deforms due to the deformation of the propeller blade. Therefore a
deforming grid method should be applied. The RBF method is used for the deformation of the internal grid,
with an RBF radius of 0.1 m. The convergence tolerance of the coupling is set to 10−5.

The blending scheme for the convective flux discretisation of the momentum equation is used with a
blending factor of 0.5 and the k −p

kL turbulence model, equal to the rigid Greenprop simulations. For the
coupled mass-momentum problem a segregated type is used, similar to the benchmark case FSI simulations.

5.4. Results Numerical Uncertainty
The numerical uncertainty method of Eça and Hoekstra [14] is used for the determination of the numerical
uncertainty. The method is used for the thrust, torque en tip displacement that are important parameters in
this study. The grids that are used for this analysis are described in section 4.2 with the amount of cells of
table 4.3.

The results of the numerical uncertainty analysis are shown in figures 5.9-5.11. In these figures, U rep-
resents the numerical uncertainty of the finest grid and p the order of accuracy. All numerical uncertainties
derived in this study are also found in appendix C. The results for the different advance ratios are now dis-
cussed and compared to the numerical uncertainties found for the rigid propeller.

The numerical uncertainties of the rigid propeller for thrust were 0.7%, 0.1%, and 7.7% for J = 0.369, 0.512
and 0.849, respectively. For the flexible propeller, comparable results for thrust are found of 0.7%, 1.1% and
7.0%, shown in figure 5.9.

Figure 5.9: Discretisation error (Thrust) for J= 0.369, J= 0.512 and J= 0.849 - FSI simulations

For the torque, uncertainties of 2.2, 2.2 and 9.9 % are found for J = 0.369, 0.512 and 0.849, respectively.
This is visible in figure 5.10. For the rigid propeller values of 1.0, 3.4 and 11.2 % were found. In the rigid
propeller chapter it was mentioned that a numerical uncertainty up to 5% is acceptable for marine propeller
applications [22]. The numerical uncertainties for advance ratios 0.369 and 0.512 are below 5% for both thrust
and torque. For J=0.849 this is not the case, initially lower values were found, however due to an error late in
the process higher values are found. For J=0.849 it is recommended to use a finer grid.

The tip displacement in x-direction is monitored by writing the location of the propeller blade tip to a file
at every time step t . The location in x at the last time step is used for the uncertainty analysis of figure 5.11.
Values of 5.4%, 5.4% and 3.9% are found for J = 0.369, 0.512 and 0.849. The numerical uncertainties found for
thrust, torque and tip displacement should be kept in mind for further analysis.
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Figure 5.10: Discretisation error (Torque) for J= 0.369, J= 0.512 and J= 0.849 - FSI simulations

Figure 5.11: Discretisation error (Tip X Coordinate) for J= 0.369, J= 0.512 and J= 0.849 - FSI simulations

5.5. Thrust and Torque Results
The thrust KT and torque KQ results of the RANS-FEM simulations are compared to the rigid results, to anal-
yse the influence of the flexibility. In tables 5.4 and 5.5, the results are shown together with the results of KT

and KQ for the rigid propeller, found in section 4.6. The difference between the rigid and flexible thrust and
torque is indicated with 4KT and 4KQ in these tables.

The numerical uncertainties obtained in sections 4.4 and 5.4 are indicated with U(RANS) and U(RANS-
FEM). 4KT and 4KQ can be described as range, by taking into account the numerical uncertainties of both
simulations. The bandwidths for 4KT and 4KQ are presented in the last columns and in figures 5.12 and
5.13. The results are discussed in the next section.

KT (RANS) U(RANS) KT (RANS-FEM) U(RANS-FEM) 4KT Bandwidth

J = 0.369 0.220 0.7% 0.218 0.7% -0.9% +0.4% -2.3%
J = 0.512 0.183 0.1% 0.182 1.1% -0.6% +0.6% -1.8%
J = 0.849 0.089 7.7% 0.087 7.0% -2.3% +11.8% -15.6%

Table 5.4: KT RANS-FEM compared to RANS, taking into account numerical uncertainty

10KQ (RANS) U(RANS) 10KQ (RANS-FEM) U(RANS-FEM) 4KQ Bandwidth

J = 0.369 0.333 1.0% 0.326 2.2% -2.1% +1.1% -5.2%
J = 0.512 0.289 3.4% 0.284 2.2% -1.7% +3.9% -7.0%
J = 0.849 0.177 11.2% 0.169 9.9% -4.5% +18.1% -22.6%

Table 5.5: KQ of RANS-FEM compared to RANS, taking into account numerical uncertainty

5.6. Discussion Thrust and Torque Results
The mean deviations of the three advance ratios are -0.9%, -0.6%, -2.3% for 4KT and -2.1%, -1.7%, -4.5% for
4KQ , for J=0.369, 0.512 and 0.849, respectively. These values are indicated with ’∗’ in figures 5.12 and 5.13.
The advance ratio of J=0.849 has a larger uncertainty for thrust and torque in both rigid and flexible simula-
tions. This leads to a larger bandwidth around the result of 4KT and 4KQ . For simplicity, the mean values
are used in the following analysis, however, this bandwidth of J=0.849 should be kept in mind. The mean
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Figure 5.12: Influence of flexibility on the thrust (4KT )
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Figure 5.13: Influence of flexibility on the torque (4KQ )

values of 4KT and 4KQ are all negative. This means that the thrust and torque most probably decrease for
RANS-FEM compared to RANS. The flexibility of the blades causes the thrust and torque to be lower. This is
as expected, due to the blade adapting to the hydrodynamic loading. This was also seen in the benchmark
case, where total pressure on the plate slightly decreased when it adapted to the flow.

The results of KT and KQ can be used to determine the open water efficiency, ηO , for RANS and RANS-
FEM. For J=0.369, ηO is 38.8% for rigid and 39.3% for flexible. Advance ratio 0.512 also shows an increase in
open water efficiency. ηO is 51.6% for rigid and 52.2% for flexible. For J=0.849 the largest difference is found
of 67.9% and 69.6%. This means that the open water efficiency slightly increases for RANS-FEM compared
to RANS of 0.5%, 0.6% and 1.7% for J=0.369, 0.512 and 0.849, respectively. It should be kept in mind that the
numerical uncertainty is not taken here.

The influence of flexibility seems to have the most influence on the torque compared to the thrust. For
instance for J=0.369, 4KT has a mean value of -0.9% where 4KQ has a mean value of -2.1%. This can be
explained by the pressure distribution on the blade. For the determination of thrust the total pressure on the
blade is integrated over the blade area. Where torque is more dependent on the location of the pressure peaks
on the blade. If pressure changes are present at the outer radius, this will have more effect on the torque com-
pared to a pressure changes at the root of the blade. To analyse whether the pressure distribution complies
with this thrust and torque trend, the pressure distribution between rigid and flexible is analysed in section
5.7.

From tables 5.4 and 5.5, another phenomenon can be observed. The influence of flexibility of the pro-
peller appears to be the largest for the higher advance ratios, i.e. for small angles of attack. The mean 4KT

is -2.3% for J=0.849, where this is -0.9% for J=0.369. For 4KQ this is -4.5% compared to -2.1%. This can be
explained by the geometry change due to its flexibility. For small angles of attack a slight change in pitch will
have a larger effect on the flow around the blade. For large angles of attack this influence will be smaller as
the flow around the blade will not drastically change.

A difference between RANS and RANS-FEM simulations is that an interpolation scheme is used to transfer
the loads and deformation of the structure across the fluid-structure interface. RBF interpolation is used for
this purposes which is explained in the simulations section 4.3. To check whether the interpolation of loads
is correct when using this RBF interpolation, two checks can be performed. These checks are discussed in the
next subsection. Then, comparison is made between BEM-FEM and experimental results, to check whether
similar behaviour in loading on the blades is found.
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5.6.1. RBF Interpolation
In the theory chapter, it was explained that when RBF interpolation is used it is important that the energy is
conserved across the fluid-structure interface. In the FSI module of ReFRESCO the energy is monitored. At
the end of every time step the total work, energy loss and change in energy are monitored. These are shown
in figure 5.14. Here the unit of Work is expressed in Joule (J ). The total amount of work across the interface
reaches an equilibrium after approximately seven seconds, this is equal to the time at which equilibrium
force and displacement are found for the flexible propeller. The change in energy becomes constant at the
same time. The energy loss is around 0.0035 J, which is approximately 1.3 % of the total amount of work on
the interface. From this energy check it can be concluded that the energy is correctly conserved across the
fluid-structure interface.

Figure 5.14: The total amount of work, energy loss and change of energy at the interface for J = 0.512

To verify the interpolation of the loads, two checks are performed. First, a rigid simulation is carried out
with the deformed solution as grid. If the interpolation of the loads is correct, the same equilibrium pressure
should be obtained from this rigid simulation compared to the FSI result. Secondly, the pressure obtained
from the RANS simulation is applied to the FEM model. The reaction force at the root is compared to the
total force of the RANS-FEM simulation.

For the RANS-FEM simulation of J=0.849 a total force of 633.67 N at one blade was found. For the rigid
simulation with the deformed grid a force of 633.85 is found. This is a difference of 0.03 %. For the torque
the difference is 0.02 %. For the advance ratio of J=0.512, even smaller differences of 0.0004 % and 0.001% for
thrust and torque were found, respectively.

For the second verification, the pressure of the rigid RANS simulations is imported on the ANSYS model.
It must be noted that by importing the pressure in ANSYS, the pressure is defined pointwise on the structure
corner nodes or elements. Therefore here an interpolation to structural nodes is made as well. However,
another interpolation compared to the RBF. The pressure from ReFRESCO and imported pressure on the
elements and corner nodes are shown in figures 5.15 and 5.16 for the suction- and pressure side, respectively.

Pressure ReFRESCO Imported pressure on Elements Imported pressure on nodes

Figure 5.15: Imported pressure from ReFRESCO to ANSYS, suction side

From these checks on the RBF interpolation and the monitored energy loss, it can be concluded that
the loads are interpolated correctly across the interface and that the error made by the RBF interpolation is
negligible compared to the total work on the interface.
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Pressure ReFRESCO Imported pressure on Elements Imported pressure on nodes

Figure 5.16: Imported pressure from ReFRESCO to ANSYS, pressure side

5.6.2. Comparison BEM-FEM

Before the flexible results of RANS-FEM are compared to BEM-FEM, a short recap of the results between the
rigid simulations of RANS and BEM is given. The rigid results showed a difference in KT of 12%, 12% and 21%
for J=0.369, 0.512 and 0.849. For KQ this was 3%, 7% and 16%. Therefore, it is expected that a deviation in the
same range for RANS-FEM is found in comparison with BEM-FEM. The KT and KQ found for the RANS-FEM
simulations are shown in table 5.6. It must be noted that here the bandwidth of numerical uncertainty for
RANS-FEM is not shown, only the mean values of KT and KQ are shown in the table.

For the low advance ratios a deviation in KT of approximately 10% is observed, for J=0.849 this is 18%. This
is in the same range as the differences found between BEM and RANS in the rigid simulations. The highest
deviation is observed for the advance ratio of J=0.849. This difference is probably due to the same causes as
for the rigid simulations. The flow around the propeller and therefore the loading on the propeller is different
between RANS and BEM. This was shown in the pressure distributions on the blades.

KT (BEM-FEM) KT (RANS-FEM) 10KQ (BEM-FEM) 10KQ (RANS-FEM)

J = 0.369 0.244 0.218 -11% 0.326 0.326 0%
J = 0.512 0.203 0.183 -10% 0.292 0.284 -3%
J = 0.849 0.106 0.087 -18% 0.190 0.169 -11%

Table 5.6: KT ,KQ RANS-FEM compared to BEM-FEM

In table 5.7, 4KT and 4KQ for BEM compared to BEM-FEM are shown. A reduction in thrust and torque
is visible for BEM-FEM compared to the rigid results. For the thrust a reduction of -0.35% is visible for J=0.369
and J=0.512, for J=0.849 this is -4.8%. For the torque values of 2.4%, 1.4% and 5.1% are found for J=0.369, 0.512
and 0.849, respectively.

The 4KT and 4KQ results of BEM-FEM are compared to those of RANS-FEM. These percentages are plot-
ted together in figures 5.17 and 5.18. The same trend can be distinguished. Namely, for high advance ratios
the effect is larger. 4KT is -5% for J=0.849, compared to -0.4% for J=0.369. For the RANS-FEM results this was
-2.3% compared to -0.9%.

Next to the effect on higher advance ratios, the torque shows more influence of flexibility compared to the
thrust. This influence is best visible for the low advance ratios, 4KQ =-2.35 % and 4KT = -0.36%, for J=0.369.
The same trend was visible in the RANS versus RANS-FEM results as discussed in section 5.6.

From the comparison of influence of flexibility on KT and KQ for RANS and BEM, it can be concluded that
the same trend is found for the different advance ratios and thrust and torque. It should be mentioned that
the numerical uncertainties are not taken into account in this comparison. Therefore, no firm conclusion can
be drawn for the small deviations found in 4KT and 4KQ between RANS and BEM.
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4KT 4KQ

BEM vs BEM-FEM RANS vs RANS-FEM BEM vs BEM-FEM RANS vs RANS-FEM

J = 0.369 -0.36% -0.9% -2.35% -2.1%
J = 0.512 -0.34% -0.6% -1.37% -1.7%
J = 0.849 -4.8% -2.3% -5.11% -4.5%

Table 5.7: 4KT and 4KQ of flexible and rigid simulations
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Figure 5.17: KT influence flexibility
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Figure 5.18: KQ influence flexibility

5.6.3. Comparison Experiments
In the report of Maljaars [28], it was observed that 4KT and 4KQ did not show the same influence compared
to BEM and BEM-FEM. This is probably due to the rigid tests in the CT. These were not carried out in the
exact same conditions of the Greenprop tests, but were obtained from the open water tests in the CT. This
made the comparison between thrust and torque for rigid and flexible not valid. Next to that, the KT and
KQ results showed a lot of scatter. However, for the comparison of the deformation between RANS-FEM and
experiments later on, it is interesting to know the measured total thrust. The total thrust will influence the
deformation of the blade. The measured thrust in the experiments was 680, 687 and 726 N for J=0.369, 0.512
and 0.849 respectively. For RANS-FEM this is 666,680,623 N. Deviations of -2%, -1% and -16.5% are found for
RANS-FEM compared to the experiments.

5.7. Pressure Results
Next to the influence of flexibility on the calculated thrust and torque, the pressure difference between the
deformed and undeformed solution can be compared. For J = 0.369 this difference in Cpn is shown in figure
5.19. Here, the Cpn of the rigid result is subtracted from the flexible result. For the suction side a pressure
increase is observed at the location of the leading edge vortex. At the pressure side a pressure decrease is
found on outer radius and the leading edge. Similar distributions are noticed for J=0.512 and J=0.849 in figures
5.21 and 5.22. For J=0.369 the Cpn of flexible and rigid are plotted for three different radii in figure 5.20. The
results are discussed in the next section.

5.8. Discussion Pressure Results
The 4Cpn distributions of the previous section show that a lower overall pressure is found for the flexible
blade. This lower pressure for the flexible blade is also noticed in the Cpn at radii r/R=0.8, 0.9 and 0.95 of
figure 5.20. Here the red line represents the flexible and the blue line the rigid Cpn . The red line shows a lower
pressure compared to the blue line. This phenomenon is attributed to the fact that the blade adapts to the
hydrodynamic loading by deformation of the blade. This leads to a pressure decrease.
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Figure 5.19: Cpn of rigid subtracted with Cpn of deformed, for J = 0.369, suction side (left) and pressure side (right)
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Figure 5.20: Cpn at r/R=0.8, 0.9 and 0.95 for J=0.369

Figure 5.21: Cpn of rigid subtracted with Cpn of deformed, for J = 0.512, suction side (left) and pressure side (right)

The largest pressure change is found at the outer radii of the blade. This is because the most flexible
part of the blade is located there, leading to the most deformation. The difference between flexible and rigid
also declares the fact that the torque is mostly influenced by the flexibility of the blade. In section 5.6 it was
discussed that a pressure peak located at the outer radius will have more effect on the torque compared to a
pressure peak at the root of the blade.
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Figure 5.22: Cpn of rigid subtracted with Cpn of deformed, for J = 0.849, suction side (left) and pressure side (right)

5.9. Results Deformation
Due to the loading on the flexible propeller blades, the blades will deform. A uniform flow is applied that will
lead to an equilibrium displacement after some time. To analyse the deformation, the undeformed and de-
formed geometries are compared. In figure 5.23 both grids are shown in one figure. The deformed geometry
shows less pitch of the blade and the largest deformation is found at the tip. The deformation depends mostly
on the loading of the blade,i.e. the thrust. The total thrust for the three test cases is T=666 N (J=0.369), T=680
N (J=0.512) and T=623 N (J=0.849). A difference of 6.5% is present when the thrust of J=0.849 is compared to
J=0.369. It is expected that the bending difference is in the same order because a linear elastic approach is
used.

Figure 5.23: Undeformed and deformed grid Figure 5.24: Deformed (red) and undeformed (blue) slices

Greenprop analysed the deformation of the blades found with BEM-FEM and experiments, by dividing
the behaviour in pitching and bending. The blade is divided in radial slices of which the pitch angle is com-
pared between rigid and flexible. For the bending deformation the difference in x-location of the midchord
point is compared between rigid and flexible. To be able to compare to the Greenprop results, the bending
and pitch behaviour are analysed for the RANS-FEM results as well. The deformed and undeformed geome-
tries are converted to PPG files, using the MARIN propeller plug-in of Rhino. Deformed and undeformed
radial slices as in figure 5.24 are found.

Due to the deformation of the propeller the geometry of the blade changes. This leads to a different ra-
dius, which makes it difficult to compare the two geometries of the deformed and undeformed propeller in
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Rhino. In Rhino the diameter of the undeformed geometry is 0.34 m, the deformed geometry has a diam-
eter of 0.344 m. This difference in diameter leads to another radial distribution of the slices. The slices are
defined on different height, this makes it impossible to compare the deformed and undeformed geometries.
Two assumptions can be made that are checked and used throughout the analysis, namely, the displacement
of the root of the blade is zero and the displacement of the tip is used as check by comparing the most upper
radii of both geometries. This deformation should be independent of different post-processing methods and
is therefore used as validation. For undeformed and deformed the x positions of the midchord points are
shown in figure 5.25, when the deformed midchord points are subtracted from the undeformed midchord
points the bending behaviour is captured.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

0

0.01

0.02

0.03

0.04

0.05

Radial distance r/R

x 
po

si
tio

n 
[m

]

X position of midchord points

 

 
Undeformed
Deformed

Figure 5.25: X displacement midchord points, J = 0.512 for deformed and undeformed
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Figure 5.26: Pitch radial slices, J = 0.512 for deformed and undeformed

During the post-processing of the deformation results, it became clear that the location on the blade at
which the bending and pitch results are determined is very important. Therefore, to be able to compare to
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the results of Greenprop, it is ensured that the same location of radii and midchord points is chosen. In the
Greenprop results the chord at 38% from the leading edge is chosen as midchord. Next to that, the midchord
points on the suction side of the blade with offset from the chord line are chosen. These points are shown in
figure 5.27. These points also correspond to the radii at which the pitch is determined.

Figure 5.27: Chord points used for bending by Greenprop
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Figure 5.28: Bending deformation of deformed blade compared to rigid blade

To obtain results at the same location at Greenprop the coordinates are plotted in the fluid grid of the
RANS simulations. The closest node of the fluid grid is searched for. The coordinates of this node are com-
pared to the same node in the deformed fluid grid. By taking the change in x-direction, the bending behaviour
is found. For pitch the same analysis is applied. However, two points are needed per radii to analyse the pitch
angle and the change in pitch angle. In figure 5.26 the pitch angle of the different radii for undeformed and
deformed are shown. When the undeformed pitch is subtracted from the deformed pitch, the distributions
of figure 5.29 are found

5.10. Discussion Bend Deformation Results
From the bending of the three advance ratios in figure 5.28, it becomes clear that the bending behaviour is
very similar. The low advance ratios 0.369 and 0.512 have a maximum (tip) displacement of 4.29 and 4.21
mm, respectively. The higher advance ratio, J=0.849, shows a tip displacement of 3.99 mm. However, before
any conclusion can be drawn, the numerical uncertainties should be taken into account. In figure 5.31 the
tip displacement is shown with corresponding bandwidth based on the numerical uncertainty of section 5.4.
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Figure 5.29: Pitch deformation of deformed blade compared to rigid blade, xyz LE,TE van GreenProp

The bending deformation is mostly governed by the thrust on the blade. Therefore this thrust with corre-
sponding numerical uncertainty is shown in figure 5.30. The lower tip displacement of J=0.849 compared to
the other advance ratios can be explained by the difference in thrust. If the mean thrust values of figure 5.30
are compared for J=0.369 and J=0.849, a difference of -6.5% is found for J=0.849. The bending of the tip is 7%
lower for J=0.849. The lower thrust is probably the cause for this difference in tip displacement. Due to the
large bandwidth of thrust for J=0.849, no firm conclusion can be drawn.

The thrust of advance ratio J=0.512 is higher compared to J=0.369, but the tip displacement is lower. This
difference is approximately 2%, the uncertainty bandwidth overlaps with the bandwidth of J=0.369, therefore,
no firm conclusion is drawn from these differences.
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Figure 5.30: Total thrust with bandwidth

J=0.369 J=0.512 J=0.849
3.5

4

4.5

5

D
is

pl
ac

em
en

t i
n 

x 
[m

m
]

Tip displacement with uncertainty bandwidth

Figure 5.31: Tip displacement with bandwidth

5.10.1. Comparison Experiments and BEM-FEM
The total thrust of the simulations and experiments is shown in figure 5.32 including the numerical uncer-
tainty bandwidth of the RANS-FEM simulations. First the thrust and bending or RANS-FEM are compared to
the experiments, then the comparison with BEM-FEM is made.

The thrust of J =0.369 of RANS-FEM, is 666N with a numerical uncertainty of 0.7%. The measured thrust
from the experiments is 679.9 N. This leads to a difference of -2% for RANS-FEM compared to experiments
if only the mean thrust values are compared. If the numerical uncertainty bandwidth is taken into account
the thrust of RANS-FEM is between -1.4% and -2.7% from the experiments. It is expected that approximately
the same percentage is found for the difference in bending deformation. For J=0.512 no bending was mea-
sured during experimental tests. Therefore, it is not possible to compare the bending behaviour of J=0.512 to
experimental results.

For J=0.849, a difference of 14% in the mean thrust values is observed, which is in line with the differences
found in the rigid simulations. When the uncertainties are taken into account a bandwidth of -8.2% to -20.2%
is found for RANS-FEM. Due to this lower thrust, it is expected that the bending deformation of RANS-FEM
will be lower as well.
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Figure 5.32: Total thrust of Experiments, RANS-FEM and BEM-FEM

The bending is plotted together with the measured results of the experiments in figures 5.33 and 5.34.
For J=0.369 a good resemblance is found. The results of the RANS-FEM simulations show a lower tip dis-
placement of -5.5 % compared to the experiments. For the rest of the blade a similar difference is found, this
deviation along the radius is shown in figure 5.35. The numerical uncertainty of the tip displacement, found
in section 5.4, was 5.4% for J=0.369. When this numerical uncertainty is taken into account a tip displacement
in the range of -0.4% to -10.6% compared to experimental tip displacement is found. It can be concluded that
this deviation in bending can be attributed to the lower thrust compared to the experiments that had a mean
value of -2%.

For J=0.849, it was expected that the bending of RANS-FEM would be lower compared to the experiments
due to the overall thrust being 14% lower for mean thrust values. However, from the results of figure 5.34,
it follows that the bending of RANS-FEM for the last ten percent of the blade (r/R>0.90) is higher compared
to the experiments. The deviation in percentage is shown in figure 5.36, for r/R between 0.6 and 0.9 a lower
bending of -5% to -10% is found for RANS-FEM. After r/R=0.9 a higher bending of up to 7% is found. This is
not as expected from the thrust. It is recommended to first obtain reliable results for the rigid high advance
ratios before FSI simulations for these conditions are carried out.
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Figure 5.33: Bending results J=0.369
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Figure 5.34: Bending results J=0.849

From the comparison of thrust and torque of RANS compared to BEM, it is expected that the deformation
will be less due to the lower overall thrust predicted by RANS, shown in subsection 5.6.2. The results of BEM-
FEM are plotted in figures 5.37, 5.38 and 5.39, together with the results of RANS-FEM and experiments. In
these figures, the pink and green line represent the bending found with BEM-FEM for a pressure correction
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Figure 5.35: Bending of RANS-FEM compared to experi-
ments, J=0.369
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Figure 5.36: Bending of RANS-FEM compared to experi-
ments, J=0.849

radius of r=0.90 and 0.95. This radius represents the fraction of the propeller radius at which the pressure is
stretched to zero towards the tip. This explains why the bending of r=0.90 shows a lower bending deformation
compared to the r=0.95 results, since for r=0.95 more pressure is left on the blade tip.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Radial position [−]

x−
di

sp
la

ce
m

en
t [

m
m

]

Bending mid−chord points, J=0.369

 

 
Experiments
Procal r=0,90
Procal r=0,95
ReFRESCO

Figure 5.37: Bending J=0.369
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Figure 5.38: Bending J=0.512
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Figure 5.39: Bending J=0.849
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From the thrust of BEM-FEM compared to RANS-FEM of figure 5.32, it becomes clear that RANS-FEM has
a lower thrust of 9% compared to BEM-FEM for J=0.369. It is therefore expected that the bending behaviour
of RANS-FEM will be around 9% lower as well. In figure 5.37 the results of Procal with a radius of 0.90 are
lower than RANS-FEM and experimental results. This is due to the large area where the pressure is smoothed
to zero. For r=0.95 a difference of 5% is found for the tip displacements. However, it was expected that the dif-
ference would be larger than 9% compared to RANS-FEM. For J=0.512 the same distribution is found. There,
a lower tip displacement of 6.5% is observed for RANS-FEM compared to r=0.95, while the thrust is 10% lower
for RANS-FEM. In the bending distribution of J=0.849, the tip displacements of the two BEM-FEM simula-
tions are higher compared to RANS-FEM. This is as expected, because the thrust of BEM-FEM is 19% higher
compared to RANS-FEM. The tip displacement of r=0.95 is 13% higher than RANS-FEM. Due to the higher
thrust, a higher tip displacement was expected as well.

It can be concluded that the bending distribution of BEM-FEM with r=0.95 are higher compared to RANS-
FEM. This is as expected because the thrust calculated with BEM-FEM is higher as well. Therefore, the setting
of r=0.90 seems to be not suitable for this purpose, calculating a too low bending deformation compared to
the thrust. It is recommended to analyse higher values for radius r to find bending that is in line with the
thrust difference.

5.11. Discussion Pitch Deformation Results
The pitch deformations of J=0.369, J=0.512 and J=0.849 are shown in figure 5.29. A similar distribution for
the three advance ratios is found. The flexible blade deforms under the hydrodynamic loading. The pitch
decreases which is called de-pitching. The pitch deformation of the tip, i.e. r/R=0.99, is shown in figure 5.40.
The bandwidth shown in this figure is determined using the numerical uncertainty of the tip displacement.
For pitch two points on each radius are used for the determination of pitch. The numerical uncertainty is
therefore multiplied by two. The mean values are -2.4°, -2.2° and -2.6° for J=0.369, 0.512 and 0.849, respec-
tively.
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Figure 5.40: Pitch of the tip with uncertainty bandwidth

The high advance ratio shows more pitch deformation compared to the lower advance ratios. This can be
explained by the lower suction peak present at the leading edge of the blade, which leads to pressure closer
to the trailing edge and therefore a larger twisting moment compared to the lower advance ratios. In the next
sections the pitching deformation is compared to experiments and BEM-FEM results.

5.11.1. Comparison Experiments and BEM-FEM
In figure 5.41 the results of RANS are plotted together with the experimental results for J=0.369 and J=0.849,
the difference in percentage is shown in figure 5.42. For J=0.369 a lower pitch deformation is observed com-
pared to the experiments. For the last 20 percent of the blade, i.e. r/R=0.8 to 1, the deviation is around 20%.
For J=0.849 a higher pitch deformation is found in the range of 20-50% compared to the experiments. These
differences are large compared to the uncertainty bandwidth and therefore too large to draw a conclusion.
The difference in pitching behaviour between RANS and experiments are attributed to two causes. The first
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is due to the post processing of the results. Two points are chosen either in experiments and RANS, different
locations can lead to a different pitch distribution along the radius. In the experiments it was more difficult to
post process the results of two points compared to the midchord point used for the determination of bend-
ing. Secondly, a modelling error of RANS for the flow at the last 10-20% of the blade can be present, due to the
flow behaviour being too complex. The postprocessing and modelling error should be further investigated.
Next to that, the pitch deformation of an advance ratio between 0.369 and 0.849 should be analysed.
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Figure 5.41: Pitch deformation results RANS compared to experiments for J=0.369(left) and J=0.849(right)
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Figure 5.42: Pitch of RANS-FEM compared to experiments, J=0.849

In figure 5.43 the RANS-FEM results are plotted together with the BEM-FEM results. When the rigid pres-
sure distributions of RANS are compared to BEM of section 4.8.2, it becomes clear that the pressure distribu-
tion of BEM is more deviated over the blade. For RANS concentrated peak pressures are found at the leading
edge, this leads to a higher twisting moment of the blade. It is therefore expected that for RANS-FEM larger
pitch deformations are found compared to BEM-FEM.

For J=0.369 the same distribution up to the last 5% of the blade is found compared to BEM-FEM with
r=0.95. For J=0.512 the best is resemblance is found with r=0.95 as well. Here the tip pitch deformations are
equal. For the pitch deformation the location of pressure- and suction peaks on the blade is important. A
conclusion drawn by Maljaars (2016) [28] is that the hydro-elastic response of flexible propellers is very sen-
sitive to small variations in pressure distribution at the tip region. This is visible in the results of BEM-FEM,
where a change in radius of the pressure correction has a significant effect on the pitch deformation.

For J=0.849 the difference between r=0.90 and r=0.95 is smaller. This is due to the pressure at the tip
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Figure 5.43: Pitch deformation for J=0.369, J=0,512 and J=0.849 compared to Procal (BEM) and measured results

for higher advance ratio. At the high advance ratio there is no clear leading edge vortex. The location from
where the pressure is smoothed to zero to the tip has less influence compared to the low advance ratios. At
J=0.849, RANS-FEM is closer to BEM-FEM with r=0.90. The distribution is equal up to the last 5% of the blade.

More settings for the radii in Procal can be considered to analyse the pitching behaviour. The exact pres-
sure differences of RANS compared to BEM should be analysed to draw a firm conclusion on the deviation
between the pitch deformations between RANS-FEM and BEM-FEM. A possible cause for different pitch de-
formation between RANS-FEM and BEM-FEM can be the arrangement of the tip elements of the FE models.
The element distribution at the tip is different which can lead to a different response. The differences in pitch
deformation are mostly found at the last 10% of the blade. Next to that, the postprocessing of the points at
which the pitch is determined can be a cause for different distributions.
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5.12. Summary and Conclusions
In this chapter, RANS-FEM simulations with the epoxy propeller are performed. For the RANS-FEM simula-
tions, the conditions of the Greenprop tests are used, with advance ratios of 0.369, 0.512 and 0.849. A verifi-
cation is performed on the RBF interpolation, to check whether the energy conservation at the fluid structure
interface worked correctly. The RANS-FEM results are discussed and compared to the rigid simulations and
to the Greenprop results. Conclusions drawn from the numerical uncertainty analysis, thrust, torque and
deformation are outlined here.

1. The numerical uncertainty found for the RANS-FEM results showed a similar distribution as in the
rigid propeller case. For advance ratios 0.369 and 0.512 uncertainties below 5% are found for thrust
and torque, 0.7% to 2.2%. From Klaij et al.[22], it becomes clear that for marine propeller applications a
numerical uncertainty of up to 5% is acceptable. Therefore, the grid is sufficiently accurate for advance
ratios 0.369 and 0.512. For J=0.849 larger uncertainties were found, comparable to the rigid propeller
study, of 7% for thrust and 9.0% for torque. In the conclusion of the rigid propeller study it was men-
tioned that it is recommended to use a finer grid for advance ratios larger than 0.8. However, because
this error was identified late in the process the simulations are performed with this grid also for advance
ratios larger than 0.8. The numerical uncertainty is also determined on the tip displacement, which is
used for the deformation study, uncertainties between 3.9% and 5.4% were found, the grid is assumed
to be sufficiently accurate for the deformation purpose.

2. The FEM model is constructed in ANSYS Workbench, by using a sweep mesh method and ensuring high
element quality close to the leading-, trailing edge and tip. The eigenfrequencies are compared to the
Greenprop FE model. The eigenfrequencies of the FE model deviate 0.3% and 0.8% from the GreenProp
FE model for the first two modes. For the other three modes a maximum deviation of 4% was found.
It was assumed that a deviation below 5% would suffice. Therefore, it is concluded that the FE models
have a similar response.

3. The thrust and torque obtained with RANS-FEM are compared to the rigid RANS simulations. The dif-
ference in thrust and torque are described as 4KT and 4KQ . The numerical uncertainties of RANS
and RANS-FEM lead to bandwidths with mean 4KT values of -0.9%,-0.6%,-2.3% and mean 4KQ val-
ues of -2.1%,-1.7%,-4.5%, for advance ratios 0.369, 0.512 and 0.849, respectively. This means that it is
most probable that a decrease in thrust and torque is obtained for the flexible RANS-FEM compared to
rigid RANS simulations. This is explained by the blade adapting to the hydrodynamic loading. If the
open water efficiency ηO is determined with the KT and KQ obtained from the RANS-FEM results an in-
crease in ηO of 0.5%, 0.6% and 1.7% compared to rigid is found for J=0.369, 0.512 and 0.849, respectively.

The first trend that is noticed in the mean values of 4KT and 4KQ is that the flexibility has the most in-
fluence on torque compared to thrust. This can be explained by the pressure distribution on the blade.
The pressure difference between rigid and flexible 4Cpn showed that the largest pressure changes are
found at the outer radius of the blade, this has more effect on torque than a pressure change at the root
of the blade.

Another trend that is visible in the 4KT and 4KQ results, is the higher influence of flexibility on large
advance ratios. This is explained by the fact that large advance ratios correspond to small angles of
attack. A slight change in pitch will have more effect on the loading of the blade. For large angles of
attack a geometry change will not drastically change the flow around the blade. If the results of thrust
and torque are compared to BEM-FEM it becomes clear that thrust and torque of RANS-FEM are 0-17%
lower compared to BEM-FEM. Both trends in 4KT and 4KQ are also visible for BEM-FEM compared
to BEM. However, before any firm conclusion can be drawn, it must be noted that the mean values are
used for comparison, the uncertainty bandwidth should be kept in mind.

The comparison with experiments was not possible, the results showed too much scatter to draw a
conclusion. This is attributed to the conditions of the experiments with the bronze propeller not being
equal to the conditions of the flexible propeller experiments. Next to that, the results of flexible thrust
and torque obtained from the experiments contained a lot of scatter.
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4. It is expected that the bending is mostly influenced by the total thrust on the blade. The bend defor-
mations of the tip obtained with RANS-FEM are 4.29, 4.21 and 3.99 mm, for J=0.369, 0.512 and 0.849
respectively. These differences are attributed to the in total thrust on the blade that has the same devi-
ation.

Compared to the experimental results, it can be concluded that for low advance ratios a good resem-
blance is found. The bending up to r/R=0.7 is identical. If the numerical uncertainty of the tip dis-
placement is taken into account a lower bending than the experiments is found in the range of -0.4%
to -10.6%. This is attributed to the lower thrust found in RANS-FEM with a mean value of -2%. For high
advance ratios, where lower thrust and torque up to -20% are found for RANS-FEM, higher bending
deformation is found which was not expected. It is recommended to further investigate the response
at higher advance ratios before a conclusion can be drawn on the bending results.

For the comparison with BEM-FEM, results with r=0.90 and 0.95 are used. These values represent the
fraction of the radius at which the pressure is smoothed to zero towards the tip. The comparison shows
better resemblance with the r=0.95 setting compared to r=0.90. It is concluded that r=0.90 is not suitable
for this purpose, the pressure is too low due to the large area of pressure smoothed to zero. For r=0.95
a higher bending deformation is found than RANS-FEM of 5%, 6.5% and 13%, for J=0.369, 0.512 and
0.849, respectively. The total thrust calculated with BEM-FEM is 9%, 10% and 19% higher than RANS-
FEM, it is expected that higher bending deformation would be observed. It is recommended to analyse
higher values for radius r than 0.95 to find bending that is in line with the thrust difference.

5. The pitch deformation of the tip for J=0.369, 0.512 and 0.849 are -2.4°, -2.2° and -2.6°. The higher pitch
of J=0.849 is explained by the lower suction peak present at the leading edge, which moves pressure
closer to the trailing edge and therefore causes a larger twisting moment on the blade. For the compar-
ison with the experiments it can be concluded that the RANS-FEM results do not have the same pitch
distribution as the experiments. Even with the uncertainty bandwidth taken into account, the differ-
ences are too large. These deviations are attributed to the post processing and to a possible modelling
error of RANS at the last 10-20% of the blade. This should be further analysed. Next to that, the pitch
deformation of an advance ratio between 0.369 and 0.849 should be analysed.

For the comparison with BEM-FEM it was expected that the pitch of RANS-FEM would be larger due
to the more concentrated pressure distribution of RANS compared to BEM that causes a larger twisting
moment. For J=0.369 and J=0.512 the best resemblance is found for BEM-FEM with r=0.95. At J=0.849,
RANS-FEM is closer to BEM-FEM with r=0.90. More settings for the radii in Procal can be considered
to analyse the pitching behaviour. The exact pressure differences of RANS compared to BEM should
be investigated to draw a firm conclusion on the deviation. However, the exact pressure distribution
between RANS and BEM should be analysed before a firm conclusion can be drawn from the pitch
deviations. Next to that, the influence of the arrangement of the tip elements of both FE models on the
response should be analysed.

From this flexible propeller study it can be concluded that more insight is gained in the response of the
epoxy propeller in uniform flow obtained with RANS-FEM. The results are compared with BEM-FEM and
experiments for thrust, torque and deformation. Next to that, knowledge is gained in the numerical uncer-
tainties of FSI simulations with this propeller. During this study the FSI module is updated several times,
which improved the module for the purpose of flexible propellers.



6
Conclusions

In this chapter the conclusions drawn in this study are summarised. The study presented in this report is part
of the Greenprop project, which has the aim to calculate the hydro elastic response of flexible propellers by
developing a coupling between a Boundary Element Method (BEM) and Finite Element Method (FEM), i.e.
BEM-FEM simulations. In these BEM-FEM simulations a pressure correction is applied for the tip vortex, a
viscous effect that is not captured by BEM. The settings of this correction showed a large influence on the hy-
dro elastic response of the propeller blades. The study presented in this report is aimed towards the validation
of BEM-FEM with Reynolds Averaged Navier Stokes (RANS) coupled to FEM. By using RANS, viscous effects
are taken into account. Within the scope of this study simulations are performed with the epoxy propeller of
Greenprop in a uniform wakefield, using RANS solver ReFRESCO and FE package ANSYS.

The objectives of this study are, to test the performance of the FSI module in ReFRESCO, to validate the
results of the open water diagram of the rigid propeller in RANS, to verify the response of the propeller FE
model and to analyse the response of the epoxy Greenprop propeller using RANS-FEM. The study is divided in
three parts, the benchmark case, the rigid propeller case and the flexible propeller case. For a full description
of the conclusions one is referred to the different chapters of the benchmark case (chapter 3), rigid propeller
case (chapter 4) and flexible propeller case (chapter 5).

Benchmark Case
The reason for this benchmark case was to get familiar with RANS solver ReFRESCO and to check the relia-
bility of the FSI module in ReFRESCO. The benchmark case is carried out on a 2D flexible thin plate clamped
perpendicular to the bottom. With a uniform air flow applied that is parallel to the bottom plate. Simulations
are carried out with the rigid plate and flexible plate, either by performing RANS or RANS-FEM simulations.

The fluid grid is constructed using the program HEXPRESS. For the structure grid linear solid elements
are used. Grid studies are performed on the fluid and structural grid. The results of the rigid RANS simula-
tions and flexible RANS-FEM simulations correspond to the results found in literature. The same equilibrium
deflection of 0.024 m and a response frequency of 2.73 Hz are found. Therefore the FSI module of ReFRESCO
can be considered accurate for this case. A sensitivity analysis was conducted on added Rayleigh damping,
the size of the time step 4t and the RBF radius. It was concluded that the influence of Rayleigh damping
should be further analysed, next to the inaccuracies in the pressure signal that occur for very small 4t .

With the benchmark case, the FSI module of ReFRESCO is tested thoroughly, several updates were per-
formed that have improved the FSI module. More insight is gained in both RANS and FSI in ReFRESCO. Next
to that, the problems still present in the module are identified. The benchmark case has led to the conclusion
that it can be reliably used in the propeller study.
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Rigid Propeller
The rigid propeller study is carried out to verify the required fluid grid density and for comparison with rigid
results of Greenprop. Next to that, it is interesting to compare the rigid propeller results to the flexible pro-
peller results for analysis of the influence of flexibility. The open water diagram is constructed and simula-
tions with conditions of the Greenprop tests are performed. The Greenprop tests have advance ratios J=0.369,
0.512 and 0.849.

The numerical uncertainties found for thrust and torque are below 5% for advance ratios below 0.8. For
these conditions the grid is sufficiently accurate. For advance ratios larger than 0.8 the numerical uncertain-
ties are larger than 5%. From these results it is recommended to use a finer grid for advance ratios larger than
0.8. The results of the RANS simulations and the measured open water diagram in the Deep Water (DT) tank
show for an advance ratio above 0.2 larger differences in KT than expected from the numerical and experi-
mental uncertainties. These lower results for KT and KQ can have several causes. The effect of blockage of the
fluid domain, modelling- and experimental errors are discussed. The most likely reasons are blockage and
the turbulence model in ReFRESCO. This should be further analysed. The comparison of RANS with BEM
results showed that for advance ratios up to J = 0.8, RANS better predicts the load on the blade compared to
BEM. This is attributed to the flow separation at large angles of attack.

From the simulations performed in this chapter, knowledge is gained in propeller simulations with RANS.
The accuracy of the RANS results is determined by evaluating the numerical uncertainty and comparing to
experimental results. Next to that, a comparison is made between the results of BEM, which led to insight in
differences and the reasons for these differences. The numerical uncertainties and performance parameters
found for the rigid propeller are used in the flexible propeller study.

Flexible Propeller
In the flexible propeller study, RANS-FEM simulations are performed with the epoxy propeller of Greenprop.
The FEM model is constructed in ANSYS Workbench, by ensuring high element quality close to the leading-,
trailing edge and tip. The eigenfrequencies of the FE model deviate 0.3% and 0.8% from the Greenprop FE
model for the first two modes. For the other three modes a maximum deviation of 4% was found. It was as-
sumed that a deviation below 5% would suffice. Therefore, it is concluded that the FE models have a similar
response. For the RANS-FEM simulations, the conditions of the Greenprop tests are used of J=0.369, 0.512
and 0.849. The numerical uncertainty analysis showed similar results as found in the rigid propeller study.

The thrust and torque obtained with RANS-FEM are compared to the rigid RANS results. A decrease in
thrust and torque is obtained for the flexible RANS-FEM compared to rigid RANS simulations. This is at-
tributed to the blade adapting to the hydrodynamic loading. The open water efficiency of the flexible pro-
peller increases 0.5%, 0.6% and 1.7% compared to the open water efficiency of the rigid propeller. The first
trend that is noticed in the thrust and torque is that the flexibility has the most influence on torque compared
to thrust. This can be explained by the largest pressure changes at the outer radius of the blade, this has more
effect on torque than a pressure change at the root of the blade. Another trend that is visible is the higher
influence of flexibility the large advance ratio (J=0.849) i.e. small angle of attack. A change in pitch will have
more effect on the flow around the blade and therefore on the loading of the blade. For large angles of attack
a geometry change will not drastically change the flow around the blade. Both trends are also visible for BEM-
FEM compared to BEM. It should be kept in mind that for this analysis the mean values of the uncertainty
bandwidth are used. This bandwidth should be kept in mind before any firm conclusions are drawn. The
comparison with experiments was not possible, the results showed too much scatter to draw a conclusion.
Accuracy of the measured thrust and torque should be analysed.

The deformation of the blade is divided in bend and pitch deformation. It is expected that the bending
deformation is mostly influenced by the total thrust on the blade. The differences in bend deformations of the
tip, correspond to the differences in thrust. Compared to the experimental results, it can be concluded that
for low advance ratios a good resemblance is found. For the high advance ratio, where lower thrust and torque
were found for RANS-FEM, a higher bending deformation is found which was not expected. For RANS-FEM,
it is recommended to further investigate the response at higher advance ratios before a conclusion can be
drawn. For the comparison with BEM-FEM, two different radii are used which represent the fraction of the
radius at which the pressure is smoothed to zero towards the tip. It was expected that higher bending defor-
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mation would be observed for BEM-FEM due to higher thrust. It is recommended to analyse higher values
for radius r to find bending that is in line with the thrust difference.

The pitch deformation showed higher pitch deformation for J=0.849 than J=0.369 and 0.512. This is ex-
plained by the lower suction peak present at the leading edge, which moves pressure closer to the trailing
edge and causes a larger twisting moment on the blade. The RANS-FEM results do not have the same pitch
distribution as the experiments. These deviations are attributed to the post processing and to a possible mod-
elling error of RANS at the last 10-20% of the blade, which should be further investigated. Only J=0.369 and
J=0.849 are analysed, an advance ratio between 0.369 and 0.849 should be analysed.

For the comparison with BEM-FEM it was expected that the pitch of RANS-FEM would be larger due to
the more concentrated pressure distribution of RANS that causes a larger twisting moment. The exact pres-
sure distribution between RANS and BEM should be analysed before a firm conclusion can be drawn from
the pitch deviations. More settings for the radii in Procal can be considered. Next to that, the influence of the
arrangement of the tip elements of both FE models on the response should be analysed.

From the flexible propeller study it can be concluded that more insight is gained in the response of the
epoxy propeller in uniform flow obtained with RANS-FEM. The results are compared with BEM-FEM and
experiments for thrust, torque and deformation. Next to that, knowledge is gained in the numerical uncer-
tainties of FSI simulations with this propeller. Several recommendations for future work are outlined in the
next section.





7
Recommendations

During this study several recommendations for future work were addressed that are outlined in this chapter.
First, the recommendations from the benchmark case are presented. Then, the recommendations addressed
in the rigid and flexible propeller studies are outlined.

From the benchmark case it became clear that the added Rayleigh damping worked, however the exact
amount of damping seemed incorrect. The influence of this damping should be further analysed. Next to
that instabilities in the pressure signal occurred for very small 4t . The cause for these instabilities should be
further investigated.

The rigid propeller study showed that the numerical uncertainty for advance ratios larger than 0.8 were
too high. It is recommended to use a finer grid for these advance ratios. Next to that, the open water results
showed larger deviations from the experimental results for advance ratios larger than 0.8. It is recommended
to further study the large deviations found for higher advance ratios.

From the flexible propeller study, it became clear that the thrust and torque obtained with experiments
should be analysed. A lot of scatter was present in the measured results. Next to that, the comparison of
flexible and rigid thrust and torque was not possible due to the different conditions in which the results were
obtained. Both tests should be performed under the same inflow- and rotational velocity conditions to ob-
tain results that can be compared.

The bending deformation at J=0.849 for RANS-FEM compared to the experiments was not in line with the
thrust found both in RANS-FEM and experiments. It is recommended to obtain reliable rigid results first for
this advance ratio, before the flexible results compared. For the bending of RANS-FEM compared to BEM-
FEM it is recommended to analyse higher values for radius r to find bending that is in line with the thrust
difference.

From the pitch deformation it was concluded that the RANS-FEM results and experiments did not corre-
spond. The postprocessing of the pitch obtained from the experiments and simulations should be improved.
Next to that, the modelling error of RANS-FEM at the tip of the propeller blade should be investigated. The
analysis of an advance ratio between 0.369 and 0.849 can give more insight in the differences in pitch be-
tween RANS-FEM and experimental results. For the pitch comparison between RANS-FEM and BEM-FEM,
the exact pressure differences and locations should be analysed to be able to draw a conclusion on the pitch
differences that are found. Next to that, it is recommended to analyse the influence of the different arrange-
ments of the tip elements in both FE models.
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Appendix A

A.1. Interface Coupling
The coupling of fluid and structure is usually governed by kinematic and dynamic boundary conditions at
the interface[10], these conditions on the continuous interface Γ are defined by,

u f = us on Γ (A.1a)

ps ns = p f n f on Γ (A.1b)

with u f and us the displacements, ps and p f the stress tensors and ns and n f the outward normal of the
structure and fluid interface. These boundary conditions state that either the displacement fields of fluid
and structure interface are equal. The other states that the pressure on the fluid side of the interface is in
equilibrium with the structural side. The discrete representation of equations A.1a and A.1b is,

U f = Hs f Us (A.2a)

Ps = H f s P f (A.2b)

with transformation matrices Hs f and H f s between the fluid and structure interface[10].
A conservative coupling approach is obtained if the energy is conserved across the fluid-structure interface[10].

This is the case when, ∫
Γ f

u f ·p f n f d s =
∫
Γs

us ·ps ns d s (A.3)

and using the discrete representation leads to,

[M f f U f ]T P f = [Mss Us ]T Ps (A.4)

with M f f and Mss defined by functions depending on the discretisation methods for displacement and
pressure[10]. By substituting equation A.2a in equation A.4 and dividing by UT

s gives,

H T
s f M T

f f P f = M T
ss Ps (A.5a)

Ps = [M f f Hs f M−1
ss ]T P f (A.5b)

From equation A.5b it becomes clear that when H f s is defined as [M f f Hs f M−1
ss ]T , the energy is conserved

across the interface.
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Appendix B

B.1. Iterative Error, Rigid J = 0.369

Figure B.1: Iterative error on results of force in x-direction, J=0.369
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B.2. Iterative Error, Rigid J = 0.512

Figure B.2: Iterative error on results of force in x-direction, J=0.512



B.3. Iterative Error, Rigid J = 0.849 85

B.3. Iterative Error, Rigid J = 0.849

Figure B.3: Iterative error on results of force in x-direction, J=0.849
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Appendix C

C.1. Numerical Uncertainties Propeller Studies

FSI RIGID
Thrust U [%] p U [%] p

J=0.849 3.6 *1,2 7.7 *1,2
J=0.512 1.1 0.7 0.1 *1,2
J=0.369 1 2 0.7 1.7

Friction Force U [%] p U [%] p
J=0.849 5.57 0.74 5.2 *1,2
J=0.512 6.33 *1,2 6.6 *1,2
J=0.369 7.4 *1,2 7.7 *1,2

Torque U [%] p U [%] p
J=0.849 4.34 *1,2 11.2 *1,2
J=0.512 2 0.69 3.4 0.6
J=0.369 1.16 *1,2 1 0.7

Tip displacement U [%] p
J=0.849 1.75 *1,2
J=0.512 2.51 *1,2
J=0.369 2.59 *1,2

Table C.1: Numerical Uncertainties
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