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A B S T R A C T

In a global context of increasing flexibility in the way workplaces and the districts in which they are located
are used, there is a need for occupant-driven approaches to plan urban energy systems. Several authors have
suggested the use of agent-based models (ABM) of building occupants in urban building energy simulations due
to their ability to reproduce emergent behaviors from individual agents’ actions. However, few works in the
literature take full advantage of the ABM paradigm, accounting for both occupant presence and energy-relevant
behaviors at the district scale. In this work, we propose a methodology to develop a data-driven, agent-based
model of building occupants’ activities and thermal comfort in an urban district. Our methodology combines
the use of campus-scale Wi-Fi data to derive feasible occupant activity and location plans, along with thermal
preference profiles derived from a longitudinal field study where off-the-shelf, non-intrusive sensors were used
to capture the right-here-right-now thermal preference of 35 participants in the same case study district.
Our model is then used to explore how different district operation strategies could affect building energy
performance in the context of increased workspace flexibility. Our results show that by providing a diversity
of building operation conditions, with different buildings having different set point temperatures, occupants’
thermal comfort hours could be improved by an average of about 10% with little effect on district energy
performance. Meanwhile, a 6%–15% average decrease in space cooling energy use intensity was observed
when implementing occupant-driven ventilation and setpoint controls, regardless of location choice scenario.
1. Introduction

Planning highly efficient urban energy systems and other decar-
bonization initiatives that are resilient to the changing needs of urban
districts requires a detailed characterization of urban energy use at
high spatial and temporal resolution. This entails an understanding of
not only historical and present demand patterns but also how future
scenarios might affect the future needs of urban districts [1]. In order
to improve our understanding of urban energy use and how it might
change in the future, mathematical modeling or computer simulations
are typically used [2].

Urban Building Energy Modeling (UBEM) seeks to provide quan-
titative insights (e.g., annual or seasonal energy use and potential of
renewable power generation) to inform urban building design and op-
eration, as well as energy policy-making [3]. UBEM are physics-based
computational models that aim to predict the energy consumption con-
tributed by buildings in the urban context [4]. While data acquisition
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is a significant and challenging issue in UBEM [5], in recent years,
open-access data for model calibration and validation has become in-
creasingly available. For example, Roth et al. [6] propose an Augmented
Urban Building Energy Model (A-UBEM) combining data-driven and
physics-based simulation approaches using publicly available data.

Due to their inherently stochastic nature, building occupant be-
havior nevertheless continues to be a major source of uncertainty in
building energy modeling [7]. Occupant behavior can significantly in-
fluence simulation results not only for individual buildings but also for
a group of buildings in an urban district [3]. For example, in the context
of increasing workplace flexibility, the choice to work from home or
from the office affects the energy demands of both the occupants’ place
of residence as well as their workplace.

The idea of remote working has been proposed for over 50 years [8],
although flexible work arrangements have become increasingly com-
mon over the past two decades [9]. In particular, the COVID-19 pan-
demic resulted in the restriction of movement of people worldwide in
vailable online 9 April 2024
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early 2020, leading to remote working becoming the norm for all non-
essential workers. However, the increased reliance on remote working
did not necessarily lead to a proportional decrease in the energy de-
mand for space conditioning in traditional workspaces [10,11], possibly
due to the use of fixed HVAC operation schedules [12].

Given that the push for workspace flexibility precedes the pandemic,
remote working arrangements are expected to continue to be prevalent
moving forward: 25% of workers in high-income countries are expected
to continue remote working either part-time or full-time after the pan-
demic [13]. This means that office occupancy might further decrease
moving forward, but at the same time, as more and more occupants in
offices adopt flexible work hours, the total scheduled operating time of
HVAC systems may increase in duration in order to satisfy occupants
of future commercial buildings [14].

Workplace flexibility implies occupant behaviors and choices (such
as whether to work from home or from the office on any given day),
which affect both building occupancy and the associated energy de-
mands in residential and office buildings. Furthermore, flexible working
styles such as hot-desking allow employees more freedom to choose
their work location, and at the same time, desks may be shared by
different occupants [15]. The touted benefits for occupants include
increasing overall comfort, choice, and control [16]. For example, Sood
et al. [17] propose a platform that improves indoor environmental
satisfaction by allocating occupants to spaces that are the best match
for their needs.

In a global context of increased flexibility in the way workplaces
and the districts in which they are located are used, there is a need
for occupant-driven approaches to planning urban energy systems.
Occupant comfort behaviors could, therefore, affect building occupancy
at the district to urban scale. Thus, it is important for UBEM to account
for not only occupant presence but also comfort and energy-related
behaviors.

With the growing availability of big data and high-performance
computing resources, there has been an increasing interest in the
development of detailed agent-based models (ABM) to model occupant
behavior in buildings [18]. ABM is a bottom-up simulation technique
that allows for the modeling of people (e.g., occupants) as individ-
ual agents, giving them attributes, letting them interact with their
environments, and observing how the macro behavior of the sys-
tem emerges from the micro-interactions of these agents [19]. ABMs
assign each individual in the building personal attributes and behav-
ioral possibilities [20] to simulate not only user behavior but also
how occupants react and adapt to their environment and other oc-
cupants [21]. Thereby, as compared to more conventional occupant
representation methods, agent-based modeling has a richer potential
to capture the dynamic and complex presence and behavior patterns of
building users [22].

In this work, we propose a methodology to develop a data-driven,
agent-based model of building occupants’ activities and thermal com-
fort in an urban district. This methodology is used to explore how
different district operation strategies could affect building energy per-
formance in the context of increased workspace flexibility. Our method-
ology is based on the use of Wi-Fi data at the campus scale to derive
feasible occupant activity and location plans. In order to protect the
privacy of individual users, generic activity plans for synthetic occu-
pants are created using a Bayesian network approach. The occupants
are also given thermal comfort preferences based on a dataset from
a longitudinal field study where off-the-shelf, non-intrusive sensors
are used to capture a wide array of data from 35 participants along-
side their right-here-right-now thermal preference [23,24]. A similar
experimental dataset on 17 participants’ thermal comfort preference
subjective feedback, along with indoor and outdoor sensor networks
and building information modeling (BIM), have been merged into an
‘‘Internet-of-Buildings’’ platform for a case study within the university
2

campus [25]. This work expands the scope of that study to the campus
scale, as well as incorporating building energy simulations along with
occupants’ thermal comfort preferences.

Occupants’ activity and location choices within the urban district
are modeled in the agent-based model, assuming three different lo-
cation choice scenarios: a ‘‘business-as-usual’’ case, where occupants
carry out their primary activities in predefined locations; one where
occupants are allowed to choose their location in order to minimize
the distance traveled between activities; and one in which occupants
are allowed to flexibly change their location in order to maximize
their thermal comfort. The effects of these operation strategies on
building energy demand at the district scale are assessed by using these
occupant schedules in a calibrated model of an urban campus [1] and
simulating demands on the UBEM City Energy Analyst (CEA) [26].
Three building system operation strategies are considered: a status-quo
centralized scenario, in which buildings are controlled based on fixed
operation schedules; a demand-driven ventilation control scenario, in
which buildings’ ventilation rates are adjusted based on occupant sens-
ing; and a demand-driven ventilation and temperature control scenario,
in which buildings’ setpoint temperature is also adjusted according to
occupant presence.

The rest of the paper is organized as follows. Section 2 summa-
rizes the literature on occupant modeling in UBEM and discusses data
sources for occupant modeling at this scale. Section 3 presents our
methodology for our district-scale agent-based model of building oc-
cupants. Section 4 presents our results and the impact of different
location choice models on building occupancy, occupant comfort, and
energy performance. The implications of these results for the operation
of districts with flexible work arrangements are discussed in Section 5,
while Section 6 summarizes our conclusions.

2. Background

2.1. Occupant modeling in UBEM

Urban energy forecasts require an understanding of urban dwellers,
as it is their activities that create the demands for energy in buildings.
However, a review of occupant modeling approaches in UBEM [27]
found that a majority of the works in the literature relied on determinis-
tic space-based occupant modeling approaches, i.e., the use of standard
schedules that associate building occupancy to the building use type,
with some stochastic approaches being used to add diversity to daily
profiles. Such standard-based assumptions provide a simple input for
simulations in the absence of data.

Standard schedules have, however, often been demonstrated to
overpredict actual occupancy in buildings. For example, in one study
[28], the actual occupancy of an office building (obtained through
passive infrared motion sensors) was found to peak at 50% as compared
to 95% as indicated by standards. Similarly, previous studies have
found significantly lower peak occupancy in buildings when comparing
standard-based assumptions to student and employee registers in a
university campus [29], and commercial buildings were found to have
five times lower occupancy when using mobile phone data to estimate
building occupancy [30]. Such discrepancies can have an impact on
the sizing and performance of district energy systems. In a case study
in China, oversimplified assumptions were found to lead to an overes-
timation of the peak cooling loads, which would result in oversized,
inefficient district cooling systems [31].

In addition to the observed discrepancy in assumed and observed
occupant density, the lack of diversity in occupancy profiles is another
issue with standard-based occupant schedule assumptions [32]. Dif-
ferent buildings of the same use type may have different occupancy
profiles over a given day or on different days of the year. Some
of these variations could furthermore be traced back to differences
between individual occupants’ schedules, energy-related behaviors, and
comfort preferences. However, there is limited study regarding occu-

pant behavior modeling for urban building design and operation [33].
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Current occupant behavior studies are often isolated and only research
individual behavior, such as presence or interactions in a single space
or building [34].

Several authors have suggested the use of agent-based models
(ABM) of building occupants in urban energy systems [5,27,29,35]. The
main benefit of ABM over other modeling techniques is their ability
to deal with emergent phenomena [36]. This is particularly useful at
the urban scale, where the decisions of individuals can lead to large-
scale effects. Thus, use cases concerning energy and environmental
performance of buildings at higher spatial extents can take particular
advantage of the ABM approach [37]. For example, ABMs have been
a staple in land use and transportation for years [35]. A review of
data sources for UBEM [5] found agent-based occupancy modeling
approaches to be ‘‘recommendable’’ due to the fact that these methods
have been proven in the field of transportation and their use of real
data.

Existing applications of ABMs at the building scale include mod-
eling occupants’ movement within buildings, their thermally adaptive
behavior, their interaction with lighting and shading devices, as well
as the change in occupants’ energy characteristics through their peers’
influence [29]. Applications in UBEM, however, remain limited. The
aforementioned review, for example, found only two papers using
ABM-inspired approaches. In both cases, researchers used agents gener-
ated by transportation models as inputs to building energy simulations.
Barbour et al. [30] used call detail records and the TimeGeo framework
to estimate urban-scale building occupancy in Boston, U.S. Mosteiro-
Romero et al. [29], on the other hand, used agents generated from
student and employee register data for the agent-based transportation
simulation MATSim to model a district in Zurich, Switzerland. Both of
these cases, however, were limited to studying the effects of building
occupancy on urban building energy demand, but neither looked at the
behaviors of individual occupants.

Azar et al. [19], on the other hand, propose a district-scale ABM
framework to model the movements and actions of people within
buildings in a university, calculate key performance metrics such as
thermal comfort and energy consumption levels, and test strategies
to optimize building operation. The model assumed daily schedules
for students and employees, and estimated occupants’ outdoor and
indoor thermal comfort through the predicted percentage of dissatisfied
index. However, occupant behaviors were limited to random changes in
occupant schedules; that is, the study again focused solely on occupant
presence, not behavior.

Yu et al. [38] created a ‘‘community occupant agent model’’ and
used it as part of a community-scale building energy model. Occu-
pant activity chains and energy use habits were collected through an
online questionnaire distributed to the community’s occupants, with
2528 valid questionnaires collected. Based on this data, three types of
occupants (students, commuters, and home-based occupants) and ten
types of agents with their corresponding characteristics and behaviors
were defined. Using this model, they analyzed different heating modes
and their effects on the 19-building community’s energy performance.

Zhu et al. [39] modeled occupant inter-building movement at a
university campus scale through a Bayesian network approach. Occu-
pant location data was collected through an application installed in the
smartphones of 193 volunteers. This data source was combined with
data from building automation systems and field counting of occupants
in seven buildings on campus. The smartphone dataset was used for
model development, while the field data was used for model validation.
The effects of agent-based modeling on the simulated building energy
performance compared to the use of standard-based schedules were
then analyzed by modeling the demand of a library building on the
winter and summer design days, and a difference of −15% to 20% was
observed.

A systematic and coherent representation of occupants’ presence
3

and actions via the deployment of ABM techniques can provide a
powerful virtual test bed for the examination and evaluation of multi-
domain occupant comfort and behavior models [40]. Such techniques
can allow testing of the effects of different building and district opera-
tion strategies to maximize occupant comfort while improving the over-
all efficiency of urban districts. However, few works in the literature
take full advantage of the ABM paradigm, accounting for both occupant
presence and energy-relevant behaviors. In particular, no works incor-
porating comfort-related behaviors are observed. Few works (e.g., [39])
seek to model inter-building displacement, and few [19] include ther-
mal comfort preferences as part of their agent definition. One reason
for this might be the huge amount of data required about individual
occupants in order to create an ABM [41], making data collection at
scales larger than single rooms cumbersome [42].

2.2. Data sources for occupant modeling in UBEM

The increasingly widespread availability of open datasets in urban
areas is transforming the way urban areas are planned, simulated, and
visualized. In particular, digital twin platforms enable informed deci-
sions and avoid costly ad-hoc problem-solving by facilitating the inclu-
sion of stakeholders because everyone can be updated to have the same
and the latest information [43]. Such platforms have been used for a va-
riety of applications, including energy forecasting, emergency planning,
operational optimization, participatory planning, policy development,
and scenario modeling [44].

In the energy field, urban-scale data on building geometries, con-
struction years, energy demands, and building systems is facilitating
the development of urban information models that can provide reliable
estimates of demands for planning applications. However, building
occupant data is typically not openly available for a myriad of reasons,
including the difficulty of tracking individuals at the urban scale, as
well as privacy and safety concerns. As a result, authors frequently rely
on either fairly general (e.g., code-based) information on assumed oc-
cupants’ preferences and requirements or limited surveys or interviews
with a limited number of occupants [45].

In the past, occupants’ daily patterns of presence and activities
have been collected using questionnaires such as Time Use Surveys
(TUS) [33]. Wilke et al. [46] used French TUS data from 1998/99
to calibrate a model of occupants’ time-dependent activities for use in
dynamic building simulations based on three types of time-dependent
quantities: the probability to be at home, the conditional probability to
start an activity whilst being at home, and the probability distribution
function for the duration of that activity. Similarly, Aerts et al. [47]
used data from a 2005 Belgian TUS to develop a probabilistic model
to generate realistic occupancy sequences that include three possible
states: at home and awake, sleeping, or absent. One of the limitations
of these approaches is that they typically require access to large TUS
and behavior questionnaire survey data in the relevant context [27].
Another key limitation of the survey methodology is the inconsistency
between actual and self-reported behaviors [48].

Hence, there has been a tendency in recent years towards the use
of alternative data sources. The proliferation of occupant-centric big
data such as internet-of-things (IoT), sensor-based, and mobility data
has paved the way to model occupant behavior at a neighborhood,
district, or city scale [33]. Such data sources are already being used
at the building scale for opportunistic occupant detection to develop
more energy-efficient lighting and HVAC controls (e.g., [49,50]).

Aggregated, anonymized telecommunications data is increasingly
being used to analyze urban inhabitants’ activity and location patterns
for the development of agent-based transportation models [51] as well
as planning renewable energy systems and electric vehicle charging
infrastructure [52]. Happle et al. [53] used location-based service data
from Google Maps to create context-specific, data-driven occupancy
schedules for commercial buildings in 13 different U.S. cities. While
their methodology relied on openly available data, allowing replicabil-
ity in other case studies, only publicly accessible buildings such as retail

and restaurants were included.
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Fig. 1. Workflow for the creation of the agent-based model (including the activity choice and distance traveled model, location choice model, and thermal comfort assessment
module) and its use to generate building occupancy schedules for building energy simulations (including different building system operation strategies).
Other location-based service data can similarly provide valuable
occupancy information in public buildings. Kang et al. [54] used data
on active positioning requests of social network software from Tencent
on mobile devices. They used clustering methods to extract building
occupancy patterns for three different building typologies (railway
station, commercial building, and hospital) in China. Similarly, Gu
et al. [55] used location services data from the same mobile social net-
work company to develop typical occupancy schedules for seven differ-
ent building typologies (office, shopping area, transportation, hospital,
hotel, education, and restaurant).

Mobile positioning data from telecommunications companies has
been used to extract urban-scale building occupancy profiles for three
different building use types at the urban scale [30]. Wu et al. [56] used
mobility data collected from over 100 smartphone apps that provide
location-based services to derive occupancy profiles for 998 buildings
in San Antonio, Texas, USA. Both of these studies compared the derived
occupancy profiles to Department of Energy (DOE) reference models
for each of these building use types and compared the energy demands
under each occupancy assumption, showing significant reductions in
simulated demand for the data-driven profiles.

In the absence of geolocation data, other authors have proposed
deriving occupancy schedules from building meter data. For example,
Miller and Meggers [57] presented a framework to infer information
such as building use type, performance class and operational behavior
of buildings based on electric meter data, and tested it on a dataset
of 507 buildings with five different use types (office, university lab-
oratory, university classroom, university dormitory, and school). In
the UBEM field, Bianchi et al. [58] developed parametric schedules
for occupancy modeling in large and diverse building stocks based on
electric meter data collected for 24 982 buildings in Los Angeles com-
prising 22 different building use types. Their methodology consisted of
extracting probability distributions for the daily start and stop time for
each building use type based on the meter data and then parametrizing
Database of Energy Efficiency Resources (DEER) schedules for each use
type by shifting their hours of operation and occupancy fraction. Their
methodology improved the performance of their calibrated UBEM by
1%.

Another popular avenue for implicit occupant detection is the use of
Wi-Fi device counts to estimate building occupancy. Wang et al. [59]
proposed a Markov-based feedback recurrent neural network algorithm
to model and predict the occupancy profiles based on Wi-Fi connection
requests and responses between access points and network devices in
a graduate student office in Hong Kong. They validated their model by
collecting ground truth using camera-based video analysis and found
their methods reached accuracies of 81%–94% over a 9-day period.
However, their limited scale demonstrates the difficulty of validating
the number of occupants detected based on Wi-Fi signals.

Given the difficulty of discerning the number of occupants present
based solely on the number of Wi-Fi-connected devices, a number of
authors have pursued methods to estimate building occupancy without
collecting ground-truth occupancy counts. Hou et al. [60] tracked
occupant location within a four-story administrative building in the
4

United Kingdom, considering the building’s urban context. They pro-
posed a framework for occupancy modeling relying on a competing
hazard risk formulation and compared it to a conventional discrete-time
Markov chain model, using the number of Wi-Fi-connected devices to
benchmark both models’ performance.

Park et al. [61] developed a methodology to estimate the number
of occupants in buildings based on the number of Wi-Fi-connected
mobile devices using a capture and recapture methodology inspired
by ecology. Their methodology was found to estimate the number of
mobile devices in a building with reasonable accuracy, though the
margin of error varied by building scale, thus affecting the applicability
of the results to different use cases. For small buildings with small
estimation errors, the methodology could be used for demand-driven
controls, whereas for larger buildings, the authors propose the use
of the methodology to understand the dynamic of occupants’ traffic
and/or crowd density in a space.

Other authors use clustering approaches to define occupancy pro-
files based on Wi-Fi connection profiles without considering the number
of devices detected. Zhan and Chong [62] used this approach to analyze
occupancy and energy demand profiles for four building use types in
a university campus in Singapore. Mosteiro-Romero et al. [1] created
occupancy profiles for 35 buildings using the same methodology and
used them to assess the effects of different occupant scenarios on
district energy performance. Nweye and Nagy [63] used clustering
techniques to derive typical building occupancy schedules based on
Wi-Fi device counts for five buildings in Texas, USA, over a period of
seven months. They used these schedules to estimate potential energy
savings by shifting the ramp-up and setback times observed in typical
load profiles obtained by clustering smart meter data.

3. Methodology

The methodology presented in this paper consists of three main
steps (Fig. 1): data collection and preprocessing, agent-based modeling
of occupant activities and locations, and building energy simulation.
At the same time, the agent-based model consists of three main com-
ponents: an activity and distance traveled module, a location choice
module, and a thermal comfort assessment module.

The agent-based model is based on two main data sources: campus-
scale Wi-Fi logs, which are used to infer occupant activity and location
patterns on a typical week during the semester, and subjective thermal
comfort feedback data collected through a smartwatch application,
which is used to identify typical thermal comfort profiles for the
occupants of the campus. At the start of each simulation run, each
occupant is assigned a thermal comfort profile along with a randomly
chosen initial activity, duration, and location. Subsequently, at each
time step, occupants who have finished an activity are assigned a new
activity, duration, and maximum distance traveled based on the activity
choice model. Occupants who finish an activity furthermore evaluate
their thermal comfort in their previous location. Depending on the
location choice model used, they might use this assessment for future
location choices. Occupants’ personal thermal comfort throughout the
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Fig. 2. Wi-Fi data preprocessing to generate distributions.
Table 1
Occupant types and their different home locations and exclusive activities.

Occupant type Number Home locations Exclusive activities

Undergraduate 27 604 Student dorms ‘‘class’’
Student Off-campus ‘‘homework’’

Graduate 8 304 Student dorms ‘‘work: office’’
Student Off-campus ‘‘work: lab’’

University 2 094 Faculty apartments ‘‘work: office’’
Employee Off-campus ‘‘work: lab’’

simulation is evaluated by their exceedance, which is the percentage of
ime spent outside of the expected occupant comfort range [64].

The agent-based model produces individual activity and location
lans over a week for each occupant in a case study district. These
re then aggregated into building occupancy schedules, which are used
n a campus-scale building energy simulation. The building energy
emand model is developed using the National University of Singa-
ore (NUS) campus as a district-scale case study. The campus-scale
odel comprises 169 buildings with a variety of building use types:

esidential, office, lab, classroom, library, restaurant, gym, museum,
upermarket, and hospital. Although Wi-Fi data was only available for
04 of those buildings, in the simulation phase, the entire building
tock was assumed to be available for occupants to choose from.

Three different types of occupants were considered and were differ-
ntiated by their available home locations and primary activities. The
umber of occupants of each type and their differences are summarized
n Table 1. Students and employees are differentiated by their available
ome locations, as faculty apartments are only available to staff and
orms are only available to students. Undergraduate and graduate
tudents are differentiated by their main activities, as undergraduates
re assumed to mostly focus on coursework, while graduate students
ocus mostly on research. The number of each type of occupant was
btained from university records [65].

In order to assess the effects of flexible work arrangements on
ampus operation and performance, three different location assignment
ases are considered. In the fixed location assignment case, which

represents a status quo district operation strategy, each occupant has
an assigned location for each of the primary activities (‘‘work: office’’,
‘‘work: lab’’ and ‘‘class’’). For the other two cases, an elastic space
allocation strategy [11] is assumed, meaning that occupants are given
the freedom to select the location for both their primary and secondary
activities. We subsequently defined two scenarios focused on different
driving factors behind an occupant choosing one location over another.
The first factor we considered was the distance between locations.
In the distance-driven case, occupants choose an adequate location
for their next activity within a maximum distance they are willing
to travel, which is based on the dataset defined from the Wi-Fi logs
5

(Section 3.1). The second factor we considered was thermal comfort,
which has been proposed as one of the potential advantages of flexible
work arrangements [16,17]. In the third, comfort -driven case, each
time an occupant finishes an activity, they assess their comfort in their
current location and keep track of their assessment for future location
choices. Other factors that might affect occupant choices (e.g., social
network, aesthetics, indoor air quality, etc.) are beyond the scope of
this study (see in Section 5).

Given that different occupants will have different thermal prefer-
ences, a variety of spaces for the same activity needed to be avail-
able such that occupants in flexible work arrangements could seek
workspaces that maximize their personal thermal comfort. Therefore,
different indoor temperature setpoints were assigned to buildings with
the same building use types. The temperature assignment for different
runs of the model is discussed in Section 3.3.

3.1. Data collection and preprocessing

Campus-scale Wi-Fi logs from the National University of Singapore
campus during a typical week during the semester (1 October to 7
October 2018) were collected. Due to data access limitations, one
week was selected as the minimum time period required to capture
variations in occupancy during a normal workweek and weekend. The
period chosen was selected as a typical full-occupancy week during the
university semester based on the work of Zhan and Chong [62].

The collected Wi-Fi data include a timestamp, a device identifier
(MAC address), and the access point to which it is connected (which in-
dicates the building name and floor number). The dataset contains data
from 104 buildings and 192,000 individual MAC addresses. In order
to protect the privacy of individual users, each record is anonymized,
and generic activity plans for synthetic occupants are created. This step
involves synthesizing the data into a number of distributions, which
are then used to create generic activity plans for each occupant in the
district using a Bayesian network approach in the agent-based model.

The data needed to be preprocessed, as shown in Fig. 2, in order to
generate feasible daily activity profiles. Since the intention was to track
occupant movements at the campus scale, we were only interested in
portable electronic devices such as smartphones. We first filtered Wi-Fi
records by their organizationally unique identifiers (OUI) [67], which
correspond to the first six characters in a device’s MAC address. Records
that did not correspond to one of the top 70 mobile vendors by market
share [68] were dropped from the dataset. However, manufacturers
can produce other Wi-Fi-connected devices apart from mobile devices,
which need to be filtered as well. A number of devices that only
appeared in one location were assumed to be stationary devices, such as
printers, IoT sensors, etc., and were therefore dropped from the dataset.

After this initial cleanup, each record was assigned an activity type
based on the location on campus and the duration of stay within
a building. Occasionally, Wi-Fi-connected devices would frequently

change access points, as a device might be connected to an access point
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Table 2
Occupant-related internal gains and electricity demands by building use type as defined in the CEA database [66] and associated activity type
defined for this study.
Building Activity Occupant density Sensible gains Latent gains Electricity for appliances Ventilation rate

use type m2 W/p g/h/p W/m2 W/p l/p/h

Residential ‘‘home’’ 35 70 80 2 70 10
Office ‘‘work: office’’ 10 70 80 11 110 10
Lab ‘‘work: lab’’ 20 70 80 30 600 31
School ‘‘class’’ 4 70 80 16 64 8
University ‘‘class’’ 19 70 80 16 304 10
Library ‘‘homework’’ 9 70 80 2 18 10
Restaurant ‘‘meal’’ 2.7 73 85 31.7 85.59 25.2
Hospital ‘‘patient’’ 19 70 80 8 152 10
Gym ‘‘leisure’’ 9 110 255 2 18 10
Museum ‘‘leisure’’ 10 70 80 7 70 10
a
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on a different floor of the same building or even to an access point
within a different building. Assigning activities based on all records
would lead to occupants changing activities and locations impossibly
frequently. Therefore, in the first step shown in Fig. 2, in order for
a Wi-Fi record to be considered an activity, at least two consecutive
records in the same building were required, otherwise the record would
be dropped from the dataset. Similarly, in order to avoid implausibly
short activities, Wi-Fi records that would imply a stay of less than 5 min
in a given location were also dropped from the dataset. All records that
met those two conditions were assumed to correspond to an occupant
carrying out an activity, which then needed to be assigned.

The following activities were assigned to each record: ‘‘home’’,
‘‘class’’, ‘‘work: office’’ and ‘‘work: lab’’ (primary activities); and ‘‘home-
work’’, ‘‘meal’’, ‘‘leisure’’, and ‘‘patient’’ (secondary activities). These
were assigned based on the building use types available in each build-
ing and the duration of the stay. For buildings with a single use type,
any records located in that building were assumed to correspond to the
activity associated with that main use type, as shown in Table 2. For
mixed-use buildings, simple rules were defined in order to differentiate
a primary activity (such as ‘‘class’’, ‘‘work: office’’ or ‘‘work: lab’’) from
a secondary activity (e.g., ‘‘meal’’ or ‘‘leisure’’). For example, if an office
building included a food court, continuous records of less than 2 h were
assumed to correspond to a ‘‘meal’’, while longer records were assumed
to correspond to ‘‘work: office’’. By the end of this step, every remaining
record had an assigned activity and duration.

A number of records remaining in the dataset had incomplete daily
profiles, either due to their short duration (four hours or shorter) or
due to long gaps in the records (more than two hours with no access to
the Wi-Fi network). Given the information available, it was impossible
to differentiate a short record caused by a short-term visitor on campus
from a short record occurring due to a rarely used device being oper-
ated for a short period of time. Likewise, it was impossible to know
whether long gaps occurred due to occupants leaving the campus for
a secondary activity or due to devices being turned off or running out
of battery for an extended period of time. These records were assumed
not to be representative of a typical occupant’s daily activities and were
also dropped. Our model therefore focuses primarily on occupants who
spend most of their workday on campus, who would be in any case the
occupant types most affected by flexible work arrangements.

The final dataset contained 10,300 individual anonymized MAC
addresses. High shares of discarded records are not uncommon when
dealing with telecommunications data (e.g., [52,69]) in spite of the
fact that users typically only carry one network-connected device and
devices generally stay connected as long as they remain within the
mobile network. This is, however, not the case when dealing with Wi-
Fi data for a number of reasons. Unlike mobile phones, users typically
have multiple Wi-Fi-connected devices that they may use at different
times of the day. Laptops, for example, may be used at different times
of the day and in different locations on campus, but will typically have
large gaps in their daily usage, and would therefore be discarded from
6

the dataset. Additionally, a large number of stationary devices, such as
printers, IoT sensors, etc., are known to be placed within the campus,
and therefore, their records are not relevant to occupant modeling.
Therefore, a high discard rate is actually desirable, as the number
of Wi-Fi-connected devices present in the Wi-Fi logs would not be
representative of occupants’ location and activity patterns. Given that
the goal of this paper is not to track the individual occupants of the
case study area, but to generate typical aggregated activity and location
patterns in order to generate a synthetic population of agents, the
number of individual MAC addresses in the final dataset was deemed
sufficient.

This dataset was then used to generate a number of distributions:
the probability of an occupant choosing an activity as a function of
the time of day 𝑃𝑖(𝑡); the probability of an activity being chosen as
an occupant’s next as a function of the current activity and time of
day 𝑃𝑖,𝑗 (𝑡); the duration of each activity as a function of the current
ctivity and time of day 𝐷𝑖(𝑡); and the distance an occupant is willing
o travel to go from the current activity to the next activity 𝑋𝑖,𝑗 (𝑡). The
istribution for the current activity as a function of the time of day 𝑃𝑖(𝑡)

is given by the share of all devices with an assigned activity 𝑖 at time 𝑡.
The distribution for activity duration 𝐷𝑖(𝑡) is given by the duration of
ach new instance of activity 𝑖 at time 𝑡 for all devices at each time step.
he distribution for the next activity 𝑃𝑖,𝑗 (𝑡) is obtained from the share
f all devices whose assigned activity at time 𝑡−1 was 𝑖 and 𝑗 at time 𝑡.

The distribution for the distance traveled 𝑋𝑖,𝑗 (𝑡) is similarly generated
by calculating the distance between the location where activities 𝑖 and
𝑗 were carried out at times 𝑡 − 1 and 𝑡, respectively. Since there are
some buildings in the case study area for which no data were available,
the activity distributions were then normalized by floor area in order
to estimate the distributions for a case study with a slightly different
functional mix.

In addition to occupant activity and location choices, public ther-
mal comfort datasets were used to model occupants’ comfort indoors.
The smartwatch application Cozie [70] was used to collect micro-
survey data in the form of ‘‘right-here-right-now’’ responses from 20
people over a 6-month period [23] and 17 people over a 4-week
period [24] in Singapore. Alongside the self-reported thermal comfort
labels, air temperature and location (e.g., indoor/outdoor) were also
collected via environmental sensors and self-report labels, respectively.
Following the methodology in Quintana et al. [71] and Jung and Jaz-
izadeh [72], thermal preference profiles of occupants were generated
based on the empirical density distributions of all combined occupants’
‘‘right-here-right-now’’ responses. A total of 13 511 unique thermal
preference responses across different air temperatures in indoor en-
vironments comprise three distributions for each thermal preference
class: ‘‘Cooler’’, ‘‘No change’’, and ‘‘Warmer’’. In order to account for
the diversity of actual occupants’ thermal comfort preferences, four
occupant comfort profiles were defined based on their tolerance [71]:
low tolerance (occupants with 0 to 50% ‘‘no change’’ votes), medium
olerance (50% to 75%), high tolerance (75% to 100%), and neutral
olerance (all occupants considered). Each tolerance profile’s empirical
ensity distribution is shown in Fig. 3.
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Fig. 3. Empirical density distribution for each of the tolerance profiles defined for the occupants in the district.
Fig. 4. Graphic representation of the Bayesian network for the assignment of activities,
durations, and locations for all occupants.

3.2. Agent-based modeling of occupants’ activity and location choices

The distributions obtained by processing the Wi-Fi data were used
to model occupant activities, duration, and location choices using a
Bayesian network approach similar to Anda et al.’s [51], shown graph-
ically in Fig. 4. The complete workflow for each run of the agent-based
model for all location choice scenarios is presented in Fig. 5.

3.2.1. Activity choice and duration
Before each run of the simulation, each occupant was assigned a sin-

gle ‘‘home’’ location. For each occupant 𝑜, at an initial time 𝑡, an activity
𝑎𝑡 and duration 𝑑𝑡 are drawn from the corresponding distributions. A
location for the initial activity 𝑎𝑡 is assigned by randomly selecting a
suitable location on campus unless the activity is ‘‘home’’, in which
case the current occupant’s home location is assigned. Subsequently,
at 𝑡 = 𝑡+𝑑𝑡, a new activity 𝑎𝑡 and duration 𝑑𝑡 are drawn, and a distance
the occupant is willing to travel to go from activity 𝑎𝑡−1 to activity
𝑎𝑡, 𝑥𝑎𝑡−1 ,𝑎𝑡 , is randomly selected from the corresponding distribution.
Given that there are not enough records to generate a distribution for
every possible transition probability from activity 𝑖 to activity 𝑗 at every
time of day 𝑡, on occasion, an occupant might arrive at an activity and
time of day combination for which there is no distribution for the next
activity at the current time. In such cases, a new activity would be
drawn from the complete distribution for all activities at that time of
day 𝑃𝑖(𝑡).

In order to make the resulting schedules feasible, some simple
sampling rules were also implemented. As a simplifying assumption,
whenever an occupant needed to be assigned a new activity between
0:00 and 6:00, the activity was immediately assumed to be ‘‘home’’.
This does not mean that all occupants were home between these times,
just that no new activities were started at this time. This restriction
was implemented in order to ensure occupants would eventually return
home after their daily activity plan.
7

Certain other building use types’ opening hours were also used
to restrict the availability of their corresponding activities. Therefore,
the activities associated with classrooms, gyms, and the university
health center (shown in Table 2) were only available during their
corresponding opening hours. Finally, since ‘‘class’’ activities are re-
curring activities with a fixed time and weekday, any time a student
encountered a ‘‘class’’ activity, this activity was assigned for all future
instances of that weekday and time of day.

3.2.2. Location choice
Each time an occupant selects an activity, an adequate location

needs to be selected as well. The building use types available for each
activity are shown in Table 2. For all buildings, the maximum capacity
for each activity was defined by dividing the floor area per use type by
the assumed occupant density for each use type. If a given building is
at full capacity at the time an occupant is looking for a new location,
it will not be considered a suitable location for the occupant’s next
activity.

In the fixed location assignment case, the first time an employee
or graduate student encounters a ‘‘work’’ activity, this location is per-
manently recorded as their assigned workspace and will subsequently
always be assigned as their workspace for all future ‘‘work’’ activities.
Likewise, any time a student encountered a ‘‘class’’ activity, the as-
signed location was fixed as the future location for that student on that
weekday at that time of day. For secondary activities, a location 𝐿𝑛+1
for the current activity 𝑎𝑛+1 is selected within a distance of 𝑥𝑎𝑛 ,𝑎𝑛+1 of
the current location.

In the distance-driven case, every time an occupant needs to find
a new location, the same procedure as for secondary activities in the
fixed case is followed. That is, a maximum distance that the occupant
is willing to travel to their next activity 𝑥𝑎𝑛 ,𝑎𝑛+1 is drawn from the
corresponding dataset, and subsequently a new location 𝐿𝑛+1 within
this distance, if available, is selected. If no suitable location within
𝑥𝑎𝑛 ,𝑎𝑛+1 is found, the occupant will need to expand the distance they are
willing to travel to the next activity. Thus, the closest available location
for activity 𝑎𝑛+1 is selected.

In the comfort -driven case, each time an occupant finishes an ac-
tivity, they assess their comfort in their current location and keep
track of their assessment for future location choices. In subsequent time
steps, when a new location needs to be selected, a maximum distance
they are willing to travel 𝑥𝑎𝑛 ,𝑎𝑛+1 is again selected. If a location that
they have previously assessed as comfortable is available within this
distance, they will select it. Conversely, if an uncomfortable location is
available, they will avoid it. If no known comfortable location within
𝑥𝑎𝑛 ,𝑎𝑛+1 is available, but an unknown location suitable for activity 𝑎𝑛+1
is, this location will be selected. If no locations suitable for this activity
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Fig. 5. Workflow used to generate schedules based on distributions.
a
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are available, or all available locations have previously been assessed
to be uncomfortable, the occupant will again seek locations beyond
their preferred maximum distance. Thus, they will select the closest
location suitable for activity 𝑎𝑛+1 that has not been previously assessed
s uncomfortable.

.2.3. Thermal comfort assessment
At the end of each activity, occupants assess their thermal com-

ort in their current locations. For each timestep within the current
ctivity, the current location’s indoor air temperature is assumed to
e equal to the building’s scheduled setpoint/setback temperature. If
he current building’s cooling systems are scheduled to be off at the
urrent timestep, the indoor air temperature is assumed to be equal to
he outdoor air temperature. The probability of each thermal comfort
abel (‘‘prefer cooler’’, ‘‘prefer no change’’, or ‘‘prefer warmer’’) at each
emperature is then extracted from the empirical distribution based on
he current occupant’s tolerance profile (Fig. 3). The occupant’s thermal
reference at each timestep is then assigned randomly based on the
robability for each thermal comfort label. Thus, each occupant has an
ssigned thermal preference label at each timestep in the simulation,
egardless of whether they changed location or not, meaning that an
8
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occupant’s thermal preference in a given location might change over
time. The exceedance cumulative index is then used to quantitatively
assess discomfort [73]. This metric counts all the occurrences when
the occupant’s thermal preference is either ‘‘prefer cooler’’ or ‘‘prefer
warmer’’. This value is then normalized by the cumulative timesteps
that the occupant utilizes the space, resulting in a value ranging from
0 to 1, where the ideal value for occupant comfort should be close to
0.

For the fixed and distance-driven cases, occupants’ thermal comfort
assessments of each location are used to calculate occupants’ over-
all satisfaction with their environments. This is done by calculating
each occupant’s exceedance throughout the simulation, which gives
an indication of each occupant’s comfort throughout the simulated
time period. In a real-world application, occupants’ thermal comfort
feedback could also be aggregated into a building’s average occupant
rating. Such scores could then be used to select which buildings are
more suited for intervention to improve occupants’ comfort.

In the comfort -driven case, each occupant decides at the end of the
ctivity whether they were mostly satisfied with the current location.
his is done by taking the mode of the occupant’s thermal preference

abels throughout the duration of the previous activity. If the occupant
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Fig. 6. Distribution of setpoint temperatures in the case study district for each of the runs of the model.
mostly rated their thermal preference during the previous activity as
‘‘prefer no change’’, the building will be assumed to be stored in a
list of occupant-specific preferred locations. Likewise, if the occupant’s
thermal preference labels were mostly ‘‘prefer cooler’’ or mostly ‘‘prefer
warmer’’, the building will be stored in a list of locations to be avoided.
In subsequent timesteps, occupants will choose comfortable locations
when available and avoid choosing uncomfortable ones even if it
implies a longer walk to their next location. Since occupants’ thermal
comfort assessments of any given location can change through time, a
building that was previously rated as comfortable may be removed from
the preferred list if the occupant assesses it as too cold or too warm at
the end of a subsequent activity, and vice versa.

The activity and location choice and thermal comfort assessment
process is repeated for each occupant for the entire period until a
set of occupant schedules 𝑂 is created. Each schedule contains an
activity, a location for each of the location choice cases selected, and
a thermal preference label for each location at each time step in the
simulation. These individual occupant schedules can then be translated
into occupancy profiles for individual buildings, including the activity
being carried out by each occupant in a building. These building-level
schedules are then used as an input in the building energy simulation.

3.3. Building energy modeling

Building energy simulation is carried out using a campus-scale
building energy demand model for the National University of Singapore
campus built on City Energy Analyst (CEA) [11]. During model con-
struction, no information was available on the construction properties
of the buildings or the operating parameters of the building systems.
Therefore, the building envelope properties and cooling system set
points were calibrated based on hourly electricity and cooling demand
9

data. However, this information was only available for 50 buildings on
campus, so standard-based assumptions were used for the remaining
buildings.

Since standard-based assumptions were used for more than half of
the buildings on campus, building setpoints in our model ended up
being very consistent, as the CEA database assumes a 24 ◦C setpoint
for non-residential buildings and 28◦ for residential buildings. There-
fore, the building stock ended up having very consistent operating
parameters, leading to minimal opportunities for occupants to improve
their personal comfort [74]. In order to add diversity to the building
stock’s operating parameters, before each simulation each building with
a standard-based setpoint temperature was assigned a number between
−4 and 4, and their setpoint temperature was adjusted by that number.
Thus, different buildings with the same use type were assigned different
setpoint temperatures. This process was repeated five times to generate
five different setpoint combinations for the university’s building stock
(Fig. 6). Each campus-scale model was then used for one run of the
workflow in Fig. 1.

The building-aggregated activity schedules generated by the agent-
based model were used as input into the building energy simulation.
The sensible and latent gains per occupant for individual activities
were obtained from the CEA database [66], which is largely based on
ASHRAE [75] and SIA [76] standards. However, the power density for
appliances in the CEA database is defined per m2 (as typically done
in building standards) and had to be converted to electrical loads per
occupant. As a simplifying assumption, the electrical loads per occupant
were obtained by multiplying the values per m2 from the CEA databases
by the occupant density (m2/p) to obtain a power density per occupant
(W/p) for each activity and building use type. The occupant-driven
internal loads and electricity demands are shown in Table 2.

In addition to the five different setpoint temperature combinations
and the three location choice models considered, three building system
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Fig. 7. Sample activity profiles for one day for one building (mean profiles and range
of values for all runs on that day).

Fig. 8. Comparison of the difference between schedules produced by different runs of
the model compared to the difference between schedules produced by different models.

operation strategies were simulated. The selected building system op-
eration strategies are meant to compare status quo building operation
strategies with the implementation of occupant-driven building system
controls to better support the needs of occupants in flexible work
arrangements. In the centralized building system operation strategy,
buildings have a set operation schedule, such that the ventilation rate
and setpoint temperature follow a predefined hourly schedule. This rep-
resents a typical status quo building system operation strategy for large
academic buildings, as presented in this case study. In the occupant-
driven ventilation case, buildings are assumed to have demand-driven
controls such that the ventilation rate is proportional to the number
of occupants in the building per the minimum ventilation rate per oc-
cupant specified in Table 2. In the occupant-driven temperature control
case, in addition to demand-driven ventilation controls, buildings’ oper-
ating temperatures are also assumed to be controlled by the number of
occupants in the building. Thus, when occupants are present, buildings
are maintained at their setpoint temperature, while whenever buildings
are unoccupied, they are automatically set to their setback temperature.
The resulting space cooling demands for each of these strategies under
each location choice scenario can then be compared.

3.4. Stochastic behavior and number of model runs

Due to the stochastic nature of the model presented in this paper,
each run of the simulation will give different activity plans for each oc-
cupant and, thus, different thermal comfort and energy demand results.
In a preliminary version of this study [74], we ran the simulation ten
times in order to account for the deviations in the results for each run
of the model. However, as shown for an example building in Fig. 7,
the deviation in the results for individual runs of the model is small
compared to the deviation between the results of different location
choice models. This is due to the fact that while individual occupants’
schedules might diverge widely, at building scale, they will tend to
aggregate to a fairly consistent profile.

The deviation between building schedules was explored further
using the Earth Mover’s Distance (EMD) as a comparison metric. The
EMD quantifies the difference between any two schedules, i.e., their
general similarity or dissimilarity [53]. Fig. 8 shows the comparison of
10
Fig. 9. Distribution of the mean and maximum occupancy for each building for all
runs of the model for each of the location choice models.

the mean EMD between schedules generated by different runs of the
model for all buildings and the mean EMD between the schedules for
all buildings for different location choice models. For the comparison of
different runs of the model, the EMD between the schedule generated
for each building in each run and the schedule generated in the first
run was calculated for each model. For the comparison of the schedules
generated by different models, the EMD between each location choice
model and the fixed case was calculated for one run of the model. The
results show that the biggest deviation in schedules occurs between
the comfort -driven and the fixed location choice models, with a smaller
deviation between the distance- and comfort -driven cases.

The deviation between each run of the same model is comparatively
very small, meaning that the deviation caused by the choice of location
choice model is small compared to the effects of the stochastic nature of
the model. Therefore, in this paper, each version of the campus-scale
model was run only once, and the results presented correspond to a
single run of each of the five different setpoint combinations.

4. Results

As discussed in Sections 3.3 and 3.4, five different temperature
scenarios were defined, and the simulations were run once for each sce-
nario. In the following sections, in order to avoid overrepresenting any
single randomly assigned setpoint combination, the results presented
correspond to all five simulations combined.

4.1. Building occupancy

As a result of the different location choice strategies considered,
building occupancy varies from one scenario to another. Fig. 9 shows
the distributions for the mean and peak occupancy for all buildings
in the case study area for each location choice model for all setpoint
temperature scenarios. The buildings in the case study area all have
very low occupancy on average regardless of location choice model,
though the distance- and comfort -driven scenarios show an increase in
the number of buildings with an average occupancy of 25% or higher.

These results point to certain buildings being preferable to others
either because of their proximity to other amenities or due to their
desirable indoor environment. This difference is even clearer when
observing the distribution of the peak occupancy for all buildings
in the case study area. In the fixed location choice scenario, since
workspaces are assigned at random and maintained throughout the
whole simulation, peak occupancy is fairly consistent for all buildings
at around 50%. When occupants are allowed to choose workspaces that
minimize the distance traveled between activities, two clear clusters
form, with some buildings achieving maximum occupancy and others
consistently below 50% peak occupancy. This shows that when occu-
pants are allowed to choose their workspaces and minimize the distance
between their activities, some buildings will be strongly preferred over
others. When accounting for comfort in the decision-making process,
on the other hand, the low occupancy cluster is much more spread
out. This would appear to indicate that buildings that are further away
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Fig. 10. Average peak occupancy for each building for all runs of the model for each of the location choice models.
Fig. 11. Distribution of the exceedance for each occupant (the lower, the better) for all runs of the model for each of the location choice models by occupant tolerance profile.
from occupants’ activities may still be preferred due to their indoor
environment.

The spatial distribution of occupants in each of the scenarios is
shown in Fig. 10. In the fixed case, only a few buildings achieve peak
occupancy, and they mainly correspond to residential buildings. As
seen in the violin plot, most buildings’ peak occupancy remains low
at about 50%. In the distance case, a strong preference for buildings in
the middle of the campus is preferred, as these minimize the distance
traveled between activities. This same trend is observed for the comfort
case, although, as discussed, some buildings that are further away from
the center are observed to have increased occupancy, likely as a result
of their desirable indoor environment. Furthermore, some buildings
with even lower peak occupancy are also observed, again likely due
to their less comfortable indoor environment.

4.2. Thermal comfort

In order to assess whether this elastic space allocation of workspaces
improves occupants’ thermal comfort, the exceedance was calculated
for all occupants for each of the location choice models and setpoint
combinations. The distribution of the results is shown in Fig. 11.

The violin plot for the exceedance for all occupants shows three dis-
tinct clusters, roughly corresponding to the thermal comfort tolerance
profiles assigned to each occupant at the beginning of the simulation.
As a result, low tolerance occupants consistently report very high
exceedance values (0.74–0.75 for all location choice models), meaning
11
they spent most of their time in uncomfortable environments regardless
of the location choice model used. This is consistent with the empirical
density distribution function shown in Fig. 3, as study participants in
this group generally reported preferring cooler environments regardless
of the indoor temperature to which they were exposed. Therefore, even
when they are allowed to seek more comfortable indoor environments,
occupants in this group only decrease the number of uncomfortable
hours spent by less than 0.2%.

Occupants with high tolerance, on the other hand, generally have
low exceedance scores regardless of the location choice model used.
Again, this is consistent with the empirical density distribution function
obtained from the smartwatch data, where occupants in this category
generally indicated a preference for ‘‘no change’’ in their surround-
ing environment. Nevertheless, by allowing occupants to maximize
their thermal comfort on campus, the average exceedance score for
occupants in this category improves from 0.23 to 0.19.

The remaining two occupant tolerance profiles, medium and neu-
tral, strongly overlap. This is due to the ‘‘neutral’’ tolerance profile
being a combination of all other three profiles, leading to a somewhat
average thermal preference distribution. In both cases, a middle ex-
ceedance value is observed for the fixed case (0.43 for the medium
tolerance profile and 0.39 for the neutral tolerance profile), with an
improvement of roughly three percentage points for the comfort-driven
case. Likewise, the average exceedance for all occupants improves from
0.4 in the fixed case to 0.37 in the comfort-driven case.
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Fig. 12. Change in cooling energy use intensity over one week by building for each location choice model and building system control strategy.
4.3. Space cooling demand

Changes in the distribution of building occupants in the area con-
sequently lead to changes in each building’s space cooling demand.
Fig. 12 shows the average change in space cooling energy use intensity
(EUI) for each building compared to the status quo scenario (centralized
building operation and fixed space allocation). The changes in the space
cooling demand tend to correlate strongly with the changes in occupant
distribution seen in Fig. 10.

For the centralized operation case, as occupants are increasingly
concentrated in the buildings in the middle of the campus for the dis-
tance- and comfort -driven space allocation scenarios, the space cooling
demand for those buildings increases, while the demand in buildings
further away decreases. Fig. 13 shows the space cooling demand per
m2 for each building for each of the location assignment cases and
system operation scenarios. The results shown correspond to all runs
of the model. There is a slight net increase in space cooling demand
when spaces are allocated flexibly, with a 0.4% increase in space
cooling demand for the comfort -driven scenario with centralized system
operation compared to the fixed case baseline. This is due to the
increased internal gains caused by higher occupancy in buildings that
12
would have otherwise operated at relatively low occupancy (as seen
in Fig. 9). Allowing occupants to choose the location of their activities
can therefore pose a challenge to system operation at building scale.
However, it also illustrates the opportunity presented by occupant-
driven building system operation to make buildings more responsive
to occupant choices while reducing space cooling demand.

Implementing occupant-driven ventilation controls leads to a de-
crease in space cooling demand for most buildings, although for build-
ings with very high occupancy, the space cooling demand actually
increases when ventilation is controlled to match building occupancy.
This would indicate the standard-based ventilation rates for the base-
line case might have been insufficient for buildings with very high
occupancy. This effect is mitigated when occupant-driven temperature
controls are implemented. At the same time, the space cooling demand
for buildings with low occupancy decreases significantly for all cases.
This is especially notable for the distance- and comfort -driven cases,
in which occupancy is much lower for a number of buildings in the
area. For all space allocation strategies, there is an average 6.1%–6.5%
decrease in space cooling demand when implementing demand-driven
ventilation controls. Likewise, the use of occupant-driven temperature
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Fig. 13. Distribution of the space cooling demand per m2 for each building over one week for all runs of the model. Each scenario corresponds to a combination of one location
hoice model (fixed location assignment, distance-driven and comfort -driven location choice) and one building system operation strategy (centralized building system operation,

demand-driven ventilation, and demand-driven ventilation and temperature controls). For each scenario, the mean space cooling demand per m2 (𝜇) is also shown.
and ventilation controls leads to an average decrease in space cool-
ing demand of 15% for all location choice models. Therefore, the
implementation of such demand-driven controls appears to be a promis-
ing strategy regardless of whether a fixed or elastic space allocation
approach is assumed.

5. Discussion

The results of this implementation outline an alternative structure
for the planning and operation of non-residential spaces in an age of in-
creasing occupant flexibility. Dynamic space allocation and utilization
are becoming more common compared to the conventional Monday to
Friday, 9 am to 5 pm office worker schedule. This paradigm shift has
an impact on the design of both building form and orientation, as well
as the space use planning, interior design, and amenity distributions.
There is also an impact on both the building system controls for lighting
and climate control as well as desk and space utilization policies.

5.1. Impacts on system operation policies and building design

The methods presented here provide a foundation for space use poli-
cies that allow occupants to use a diversity of space types throughout
their work week. By providing different spaces with different opera-
tional characteristics, buildings might be able to better match different
building occupants’ comfort preferences as well as their specific needs
when carrying out different activities. By providing a simulated test
bed for different space allocation policies, planners can assess how their
interventions might affect the decisions of occupants and consequently
energy performance in a district.

However, one limitation of the work in this paper is that our agents’
assessment of the built environment focused solely on thermal comfort,
which is only one of the many factors that affect indoor environmental
quality. This is also the trend in building-scale agent-based modeling,
where several studies focus on occupants’ behavioral adaptations to
achieve thermal comfort, but only a smaller number of ABM studies
concern occupants’ requirements regarding visual comfort, acoustic
comfort, and air quality [45]. Again, incorporating each of these aspects
was out of scope for our intended purposes and scale and would have
added enormous complexity to the model. Furthermore, the simplified
nature of the CEA building energy demand model makes it impossible
to assess aspects of visual and acoustic comfort within the case study
buildings.

A limitation of this approach is that real occupants make their
location choices based not only on their personal comfort but on
any number of other aspects, such as the need for interactions with
colleagues and socialization [77]. A survey of co-working spaces in
the Netherlands [78] found that while some of the most important
characteristics relate directly to the focus of our paper (accessibility,
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indoor environment), other characteristics such as interior design and
access to an inspiring work environment were equally important to
occupants. Likewise, activity-based working (ABW) arrangements such
as hot desking were found to present numerous challenges and short-
comings due to lack of control over the work environment and lack of
opportunity to modify the workspace [79].

As a simplifying assumption, we assumed any workspace to be
equivalent to any other workspace in our case study area, which is,
of course, not the case in a real-world application. However, methods
such as the ones presented here could be expanded to incorporate
further occupant preferences. Thus, architects and urban planners could
test different space allocations and floor plan arrangements through
scenarios that optimize energy and space utilization.

5.2. Occupant adaptation

This work aimed to demonstrate a methodology to build a data-
driven, district-scale agent-based model of building occupants with
personalized activity plans and thermal comfort preferences. The range
of thermal comfort adaptations considered in this work was limited,
however, as agents were only allowed to change their location to
improve their thermal comfort. While large academic buildings with
centralized controls somewhat restrict occupants’ abilities to change
their indoor environment (e.g., no availability of operable windows, no
temperature controls, etc.), in a real case study, occupants may still
undertake minor adjustments to improve their thermal comfort (e.g.,
changing their clothing level). Given the lack of information on these
adaptations in our dataset, however, we decided to restrict the available
options to the one most relevant to the scope of our study, which was
specifically focused on flexible work arrangements.

Despite these limitations, our model provides insight into the
macroscale behaviors that might emerge when occupants in flexi-
ble work arrangements are allowed to choose their workspaces. The
methodology we presented furthermore helps to assess, in a simulated
way, how district operation strategies might affect thermal comfort
and building energy performance. Based on these findings, facilities
management professionals can assess occupants’ satisfaction with the
thermal environment in different buildings on campus and the potential
for different system operation strategies to improve energy performance
and occupant satisfaction.

6. Conclusions

This work presents a methodology to develop a data-driven agent-
based model of occupants’ thermal comfort-related decisions in the
context of flexible work arrangements. By using campus-scale Wi-Fi
logs, we were able to develop feasible activity plans for synthetic
campus occupants and assign them realistic thermal preference profiles



Building and Environment 257 (2024) 111479M. Mosteiro-Romero et al.

S
c
e
r

based on comfort feedback data collected through field studies on cam-
pus. We then used a Bayesian network approach to model occupants’
activity and location choices at the campus scale and test the comfort
and energy performance of buildings on campus under different space
allocation and system operation scenarios.

Our results show that by providing a diversity of building operation
conditions, with different buildings having different set point temper-
atures, occupants’ thermal comfort hours could be improved by an
average of about 10%. This improvement in overall thermal comfort
came at an energy penalty of less than 0.5%. Thus, a campus operation
strategy aimed at providing a diversity of indoor spaces to match
occupants’ different and changing comfort preferences might be worth
pursuing. This is especially important in the context of the increasing
reliance on flexible work arrangements, where building occupants may
be able to choose activity-based workspaces rather than having a
constantly-assigned desk.

Different energy system operation strategies were also considered,
focusing on the implementation of demand-driven ventilation and tem-
perature controls. The results showed that flexible campus operation
had little effect on the performance of different demand-driven opera-
tion strategies. A 6%–15% average decrease in space cooling energy use
intensity at the campus scale was observed when implementing these
occupant-driven controls, regardless of the location choice scenario
used. Therefore, our results point to the advantages of implementing
a diversity of indoor environments to maximize occupant comfort and
occupant building system controls to maximize energy performance.

Our model provides insight into the macroscale behaviors that
might emerge when occupants in flexible work arrangements are al-
lowed to choose their workspaces. The methodology presented here
could be further implemented by facilities management profession-
als to assess different space allocation strategies and building set-
points to support this transition to flexible work arrangements. Our
study’s results point to the potential implications of flexible space
allocation strategies for district energy and comfort performance. With
relatively minor interventions (implementing buildings with different
indoor characteristics and installing demand-driven system controls),
occupants’ thermal comfort and building energy performance could
be improved. In a real-world case, occupants’ feedback information
(collected here via a smartwatch application and simulated by our
model in the thermal preference calculation) could also be incorpo-
rated into the decision-making process to assess different buildings’
performance and correspondingly take proactive measures to improve
occupants’ perception of the building. Future work on this approach
could incorporate other occupant behaviors, such as thermal comfort
adaptations and social relationships, in order to further refine the
model’s ability to mimic real occupants’ location choice decisions.
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