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Abstract
The Groningen region, in the Netherlands, experiences earthquakes since 1986. These earthquakes
are new to the region and the structures built there are not designed for it. Therefore, they pose a great
risk for the historical structures and people living in the area. Most of the buildings there are built using
masonry and to analyze such structures on how they will be affected by earthquakes using currently
available tools and methods is rather complicated.

In this report, the author investigates the use of available continuum damage mechanics models
for the purpose of simulating orthotropic masonry behavior during an explicit integration analysis. The
material behavior is described in Fortran programming language and is used as a custom user sub-
routine (VUMAT) in Simulia Abaqus finite element analysis software. The developed material model
exhibits 3D elasticity and 2D plane plasticity. Furthermore, it is assumed that two general failure mech-
anisms are present. One associated with tensile and shear brittle fracture represented by Rankine type
yield surface and other with distributed crushing of a material represented by Hill type yield surface.
The model exhibits uncoupled damage evolution in the tension regime and coupled in compression.
Additionally, the model supports tensile crack closure, while in compression it accumulates the plastic
deformations and if an element is crushed it can be flagged for deletion from the mesh. The model
is formulated in such a way that most of the properties in material directions are independent of one
another.

The developed model was tested by examining its behavior in analyses where numerical models
were composed out of one or few elements. Additionally, for experimental comparison, four shear
walls were modeled, three subjected to monotonic loading and one to cyclic. The analyses closely
agree to experimental results even when using raw test data. The material model is stable due to the
explicit approach and provides qualitative results as it is flexible enough to be used for various types
of analyses, either static or cyclic.

In the final part of the report, further developments are considered, including improvements to the
code base, additional testing, and development of a custom element.
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1
Introduction

In Europe masonry is one of the most used construction materials. Most of the historic heritage is built
using such means of construction. In many places in Europe, these buildings are built in earthquake-
prone locations. This causes a threat to the historic heritage. It is most prevalent in the locations that
just start to experience earth shakes as all of the buildings there were built without taking into account
seismic activities. One of such locations is Groningen region in the Netherlands.

In Groningen, seismic activities started quite recently, in 1986. At that time first heavier earthquakes
were experienced. The second big quake happened in 1997 and had a magnitude of 3.4 in Richter
scale. In 2003 The Royal Netherlands Meteorological Institute (KNMI) admitted the link between the
natural gas extraction and the earthquakes in the region. Since then the earthquakes only increase in
magnitude. The third quake happened in 2006 of a magnitude of 3.5 and the fourth in 2012, and had
a magnitude of 3.6 in Richter scale. Not only that the big earthquakes get stronger but also smaller
rumbles increase in magnitude and frequency.1

Gas extraction produces earthquakes that are relatively near the surface. From such seismic activ-
ity, more damages are observed compared to natural earthquakes that have a deeper point of origin
and the same magnitude.

Figure 1.1: Earthquake depth due to gas extraction (~3 km) and natural causes (~15 km) (Source: [44])

1Data used in this paragraph is obtained from The Royal Netherlands Meteorological Institute [44]
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2 1. Introduction

1.1. Effects and solutions
The earthquakes produced by natural gas extraction do not pose an immediate risk to the structures as
their magnitude is low. To the contrary of earthquake-prone regions that exhibit the seismic activity of
moderate strengths (5.0 or more in Richter scale) [10]. But rather they damage buildings slowly. Cracks
that appeared during one earthquake, can contribute to the collapse of the building during the other
one, even if the next quake is several magnitudes weaker. Particularly considering that the buildings in
the region were not designed to resist such type of load. This poses a great risk to historical heritage
and safety of the people living in the area.

(a) (b)

Figure 1.2: Damage on buildings in Groningen. (a) mortar failure, already filled cracks under the windows and (b)
mortar failure, loose bricks are taken out. Photos by Harm Hoorn.

It can be prevented by taking measures. One of the possible solutions is to reinforce the buildings
in the area. It can be accomplished by renovating load bearing elements or installing dampers at the
foundations of such buildings. So that the seismic loading is taken into account. The solutions to
the problem are yet to be implemented in the area. One of the currently potential wall reinforcement
techniques is milling deep and shallow grooves into the masonry wall, then embedding carbon strips
in the grooves using a special visco-elastic adhesive. The curing is done on only one side of the wall.
After the strips are placed, a carbon net is placed on the surface. Finally, a cement based or a polymer
based layer is applied. [90]

However, the problem arises when it has to be analyzed which buildings will need reinforcing or if
the designed solutions are sufficient.

(a) Visualization of used retrofit system (from [90]) (b) Retrofit system applied to a wall (from [1])

Figure 1.3: Reinforcing masonry building from earthquakes
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1.2. Material properties of masonry
Masonry is a highly orthotropic composite material with strengths and properties dependent on work-
manship, materials, and layouts used. It consists of large units and joints between them. The arrange-
ment of these units and mortar joints determine anisotropy of the composite material. While the type of
units and composition of mortar determines overall strength and elasticity. Mortar joints behave as the
weakest plane, thus their orientation has the governing effect on the load bearing capacity of masonry.

(a) Common bond
(b) English Bond

Common Bond Back
(c) English Cross Bond
Common Bond Back

(d) Single Flemish Bond
Dutch Corner

(e) Double Flemish Bond
English Corner

Figure 1.4: Examples of bond types in brick masonry

The failure behavior is determined by 5 basic failure mechanisms (see Figure 1.5). Two of these
mechanisms are governed by the properties of the bond (a and b) and three by unit strengths. However,
mechanism (c) is only likely [5] to form if tensile strength of masonry unit is weak, it would allow a crack
passing along head mortar joints and through the center of the units (see Figure 1.6a) to form. But if
masonry unit strengths are far greater than the strengths of mortar, a zigzag like pattern (see Figure
1.6b) would form instead.

The difference in elastic properties between a joint and a unit can cause failure [38] as well. This
difference, particularly if the unit is stiffer than the joint, leads to a state of triaxial compression in the
joint and compression or biaxial tension in the unit (see Figure 1.7). The cause is that the joint lateral
extension is confined by the unit, this, in turn, causes a crack in the unit itself. Increased deformation
produces additional vertical cracks until the unit fails.

Figure 1.5: Masonry failure mechanisms (from [58]): (a) joint tensile cracking; (b) joint slipping; (c) unit direct
tensile cracking; (d) unit diagonal tensile cracking; (e) masonry crushing.
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(a) (b)

Figure 1.6: Modes of tension failure of masonry walls under direct tension (from [5]): (a) through type, (b) zigzag
type

Figure 1.7: Stress state in masonry units and joints in uniaxial compression

The strengths and failure mode change when different orientations of bed joints and loadings are
used. In the case of uniaxial tension (see Figure 1.8) the mode of failure always remains the same,
cracking of a joint. Therefore, for the tensile strength of masonry as the whole, it is safe to assume
the strengths of the bond between masonry and the mortar. However, this assumption is only valid
for loading direction perpendicular to bed joint as for other directions friction between units and joints
cause additional strengths.

In the case of masonry with high strengths mortar and low tensile strengths in units e.g. bricks with
a high number of perforations, failure might occur when stresses exceed tensile strengths of a unit.
Then tensile strengths of the masonry can be considered to be the tensile strengths of a unit.
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Figure 1.8: Modes of failure of solid clay unit masonry under uniaxial tension (from [73]).

During uniaxial compression (see Figure 1.9) the failure modes alternate between crushing of ma-
sonry when loading is applied perpendicular to the bed joints and tensile splitting of joints when loading
is applied parallel. While at loading angles in between, combination of failure modes are obtained.

Figure 1.9: Modes of failure of solid clay unit masonry under uniaxial compression (from [72, 73]).

The behavior of masonry under biaxial stress cannot be described only by means of principal
stresses. Masonry is an orthotropic material, thus, the strengths are fixed to the material axes and
cannot rotate together with principle stresses. Therefore, the strength envelope has to be described in
terms of full stress vector in a fixed set of material axes or in terms of principle stresses and the rotation
angle 𝜃 between principal stresses and material axes.

Considering the test results obtained by Page [72, 73] (see Figure 1.10), that were carried out
with half scale solid clay units. It can be seen that the failure strengths are heavily influenced by the
orientation of the principle stresses in respect to the material directions.

Figure 1.10: Failure surface of brickwork loaded in biaxial compression (from [72]).
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A lateral compressive stress decreases the tensile strengths. The lowest strength is reached when
the tension is perpendicular to the bed joints. In biaxial tension-compression tests failure generally
occurs by cracking/sliding of the joints or a combined mechanism involving both – joints and units (see
Figure 1.11). However, there is no available experimental results that determine the influence of lateral
tensile stress to the tensile strengths of the masonry. Consequently, assumptions have to be made and
no exact behavior can be derived.

Figure 1.11: Modes of failure of solid clay unit masonry under biaxial tension–compression (from [73]).

In biaxial compression typically failure occurs by splitting of a specimen in mid-thickness (see Figure
1.12). The orientation of principal stresses does not influence the failure mechanism. However, if
the ratio between principal stresses is not equal to one, the orientation has a significant influence to
the formation of the failure mechanism in the specimen. In that case, failure occurs as a combined
mechanism of both – joint failure and lateral splitting.

Figure 1.12: Mode of failure of solid clay unit masonry under biaxial compression (from [72]).

The strengths envelope obtained by Page [72, 73] is of limited applicability in masonry. Different
types of masonry composed of different materials, unit shapes and bonds will likely produce different
failure modes and envelopes. There are further studies on characterization of biaxial strengths of
masonry [27, 34, 60] that are advised to refer when designing masonry.

The determination of the shear response [4, 39, 92] depends on the ability of the test set-ups to
generate a uniform state of stress in joints. The confinement stress increases the shear strengths
due to frictional behavior of masonry in shear. Furthermore, the behavior of joint is non-associative,
i.e. 𝛿 ≠ 𝛿 tan𝜙, where 𝛿 and 𝛿 are respectively the normal and tangential relative displacements
between sliding surfaces at a masonry joint and 𝜙 is the angle of friction.

Although some dilatation is likely to occur when two rough units pass over each other, experiments
indicate that the real joint behavior is quite complex. The dilation of the masonry subjected to shear
depends on the micro-scale geometrical and mechanical features of the masonry joint [93]. Further-
more its is observed that the angle of dilation tends to reduce by both means of increasing isotropic
pressure and increasing tangential relative displacement (see Figure 1.13 and 1.14 ).

Another feature of masonry is softening behavior. This kind of behavior is prominent for quasi-brittle
materials e.g. clay bricks, ceramics, rock or concrete. Softening is a gradual decrease of mechanical
resistance under a continuous increase of deformation forced upon a material specimen or a structure.
Materials exhibiting softening behavior fail due to a process of progressive internal crack growth. Such
mechanical behavior is commonly attributed to the heterogeneity of the material, due to the presence
of different phases and material imperfections, like defects and voids.
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Figure 1.13: Typical shear bond behavior of the joints for solid clay units (from [92]): (a) tangent of the dilatation
angle as a function of the normal stress level; (b) relation between the normal and the shear displacement

upon loading.

Figure 1.14: Masonry joint behavior (from [29]): relationship between associative & Coulomb friction
(non-associative) idealizations and typical real behavior.

Initially, mortar and units contain micro-cracks and inclusions. The initial stresses and cracks, as
well as variations of internal stiffness and strength, cause progressive crack growth when the material
is subjected to progressive deformation. At the start of the loading, the micro-cracks are stable which
means that they grow only when the load is increased. Around peak load an acceleration of crack
formation takes place and the formation of macro-cracks starts. In a deformation controlled test, the
macro-crack growth results in softening and localization of cracking in a small zone while the rest of
the specimen unloads.

Characteristic stress-displacement diagrams for quasi-brittle materials in uniaxial tension, uniaxial
compression and pure shear can be seen in Figure 1.17. The fracture energy , denoted by 𝐺 and 𝐺 , is
defined as the integral of the 𝜎−𝛿 diagram for tension and compression, respectively. In case of mode
II failure mechanism, i.e. slip of the unit-mortar interface under shear loading, the inelastic behavior
in shear can be described by the mode II fracture energy 𝐺 , , defined by the integral of the 𝜏 − 𝛿
diagram. Figure 1.17c shows brittle behaviors in shear. The value of the fracture energy depends on
the level of the confining stress. Shear failure is a salient feature of masonry behavior which must be
incorporated in a micro-modeling strategy. However, for continuum macro-models, this failure cannot
be directly included because the unit and mortar geometries are not discretized. Shear failure is then
associated with tension and compression modes in a principal stress space.

The consideration of the cyclic behavior of masonry adds another layer of complexity. Furthermore,
the exact behavior is not sufficiently documented. However, there are tests done regarding cyclic shear
loading on masonry walls [4, 28, 84], but cyclic uniaxial and biaxial tests are very rare. In addition, most
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(a) (b)

(c)

Figure 1.15: Typical behavior of quasi-brittle materials under uniaxial and shear loading and definition if fracture
energy (from [57]): (a) tensile loading ( denotes the tensile strength); (b) compressive loading ( denotes the

compressive strength); (c) shear loading ( denotes the cohesion).

of themasonrymaterial models available in themarket do not simulate cyclic behavior and are designed
only for static pushover tests.

Tensile unloading of the material when it is already in the plastic phase causes reduction of initial
stiffness. Such behavior occurs due to separation of the units and cracking of the joints while specimen
is loaded, and units coming back to initial positions while unloading.

El
as

tic

Plastic softening

Unlo
adin

g

Figure 1.16: Tensile cyclic behavior.

On the contrary, when material is loaded in compression, during softening or hardening of masonry
specimens no damage to the stiffness is produced (see Figure 1.17). In such loading situation when
hardening or crushing of the material occurs the specimen deforms and plastic strain will be generated
as a result. When the load is removed, the specimen does not regain its initial form and remains
deformed.
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(a) (b)

(c) (d)

Figure 1.17: Compression tests on masonry specimens (from [21]): (a) Calcium silicate units, vertical
compression (perpendicular to the bed joint); (b) Calcium silicate units, horizontal compression (parallel to the

bed joint); (c) Clay units, vertical compression (perpendicular to the bed joint); (d) Clay units, horizontal
compression (parallel to the bed joint) .

The cyclic shear behavior in the bed joints is quite simple (see Figure 1.18a). After the joint is fully
softened only stress due to friction is remaining and no damage to shear stiffness is present. However,
when a shear wall is subjected to a lateral load (see Figure 1.18b), various second order effects take
place in the definition of cyclic shear response.

(a) (b)

Figure 1.18: Typical cyclic shear response: (a) of the joints for solid clay units (from[4]); (b) of the masonry walls
(from [84])
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1.3. Current methods
As described in the previous section, it can be clearly seen that the masonry is a very complex compos-
ite material. This means that analyzing big masonry structures using empirical methods are highly in-
effective and cost inefficient. Consequently, other methods should be used i.e. Finite Element Method
(FEM). To model masonry successfully with FEM, simplifications are needed. Whereas, how much
to simplify the model is up to the engineer. There are mainly two distinctively different modeling ap-
proaches commonly used in FEM, namely, micro- and macro-modeling (see Figure 1.19). However, a
combination of the two approaches is also possible.

Figure 1.19: Modelling strategies for masonry structures (from [56]): masonry sample (a); detailed (b) and
simplified (c) micro-modelling; macro-modelling (d).

1.3.1. Micro-modeling
Micro-modeling is so far the most accurate method available to simulate the behavior of masonry. Since
the material is separated into units of continuous elements and interfaces (discontinuous elements)
between them (see Figure 1.19b). Accordingly, only well established and accurate isotropic material
models can be used to simulate the anisotropic behavior of masonry. Therefore, the results of such
analyses are the most reliable (see Figure 1.21). On the contrary, the models require an extensive
amount of time to be prepared and the analyses can be computationally taxing when analyzing big and
complex structures.

Nevertheless, this shortcoming could be minimized by removing continuous elements that repre-
sent mortar and replacing them by interfaces with mortar-like properties (see Figure 1.19c). This way
simplified micro-model is obtained [2, 25, 26, 52, 54, 58, 83, 87]. However, the high level of detail
required to represent masonry accurately still makes this approach only suitable for analyses of small
elements and small structural details.

(a) Deformed mesh at peak load (b) Deformed mesh at collapse

Figure 1.20: Micro-modelling of masonry shear walls (from [58])
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Figure 1.21: Force – displacement graph. Comparison experimental shear wall and numerical micro modeling
analysis (from [56]).

Even though micro-modeling is computationally taxing it is not limited to simple masonry walls (Fig-
ure 1.21), but also bigger structures or parts of buildings containing walls, columns and/or arches can
be modeled. The Figure 1.22 shows a finite element representation with interface elements that was
used in [52] to study a pillar-arch stone structure, analyzed under pseudo-dynamic loading.

Figure 1.22: Monastery S. Vicente de For a, in Lisbon. Deformation pattern using interface elements (from [52]).

As the computation power of computers increase, more andmore complex models can be analyzed.
A very good example of such analysis was presented by Alexandris et al. [2]. They investigated the
collapse mechanisms of traditional one- and two-story houses under earthquake loading in 2D and 3D
(see Figure 1.23). The models were used to evaluate alternative intervention options.

Figure 1.23: Collapse of a two-story house under seismic loading (from [2]).
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1.3.2. Macro-modeling
As demonstrated in the previous subsection the power of modern numerical tools to represent the
complex interaction is sufficient in specific cases. However, when the structure becomes larger the
interactions between masonry components (units and joints) start to merge in a homogeneous behavior
(see Figure 1.19c). Therefore for large-scale analyses, a faster material model can be assembled.
However, making further simplifications reduces the accuracy of the simulation. Consequently, this type
of analysis is only relevant when robustness and ease of use (no need to model complex structures
consisting of lots of different elements and interactions) are more important than the slight reduction in
accuracy of the behavior of the structure.

One of the good examples of such approach was presented in [80]. Finite element model for a block
compound in Lisbon (see figure 1.24) was modeled in order to perform a seismic analysis. Themodel of
this scale currently would not be possible to assemble using micro-modeling. Another complex model
used for masonry analysis was assembled by Macchi [61]. There a St. Peter’s Basilica was modeled
and analyzed (see Figure 1.25) in order to aid the studies of its restoration.

(a) (b)

Figure 1.24: Finite element model for a block compound in Lisbon (from[80]): (a) Finite element mesh (b) results
for seismic (shading indicates damage levels).

(a) (b)

Figure 1.25: Studies for the St Peter’s Basilica restoration (from [61]): (a) Model of the entire Facade; (b) tensile
stresses on the central section under the effect of the settlement.
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Masonry macro models started from the usage of isotropic material description, because of its sim-
plicity. Isotropic materials require few material parameters, therefore, it is easier to perform analyses
on historic structures as not all needed material properties can be obtained. Papa [74] derived uni-
lateral damage model for an orthotropic case from a material model originally developed for isotropic
materials. The outcome included a homogenized technique to take into account the texture of brick
and mortar. A year later Lourenco et al. [59], developed an orthotropic material model for masonry
and demonstrated that the homogeneous material model is sufficiently accurate when modeling shear
walls under monotonic loading. It was able to predict cracking patterns, peak and ultimate strengths of
the structures (see Figure 1.26).

(a) (b) (c)

Figure 1.26: Results for an analysis of a masonry shear wall (from [59]): (a) load displacement diagram; (b,c)
predicted cracking pattern at peak and ultimate load.

In all of the above examples, smeared damage models were adopted, even if they only provide
general information about the level of damage expected on the structure. To point out, the damage
simulated this way is unrealistic. It propagates trough significant volumes and spreads over large
regions of the structure. However, Clemente et al. [12] proposed an enhancement to traditional damage
approaches. Their model was based on smeared-crack scalar damaged model and it was modified to
reproduce localized (discrete) cracks. To achieve it a local crack-tracking algorithm was used. This
model enables the simulation of more realistic damage distributions than the original smeared-crack
model.

The localized cracks predicted by the crack tracking model reproduce consistently a set of ex-
pectable plastic hinges developing gradually in the structure and leading to the full collapsing mecha-
nism. The model has been used to analyze the response of the structure of Mallorca Cathedral under
gravity and seismic forces (see Figure 1.27).

(a) (b)

Figure 1.27: Seismic analysis of Mallorca Cathedral (from [12]):(a) smeared damage approach versus (b)
localized damage approach.

An interesting approach was used by Pela et al. [76], where they composed a material model from
isotropic failure envelopes by mapping them from fictitious isotropic stress and strain space to a real
orthotropic space. This allowed them to use well defined isotropic failure criteria for orthotropic material
behavior simulation. Additionally, they used a local crack-tracking algorithm derived by Clemente et al.
[12] in order to localize cracks produced by damage due to tension (see Figure 1.30).
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(a) (b)

(c) (d)

Figure 1.28: Analysis of shear walls with opening (from [76]):(a) smeared tensile damage; (b) localized tensile
damage; (c) smeared compression damage; (d) deformed mesh (x50).

1.3.3. Limit-modeling
Previously mentioned modeling techniques can be combined by modeling the structure subdivided into
homogeneous elastic or rigid blocks that are connected with interfaces simulating most common failure
mechanisms (see Figure 1.29). These modeled collapse mechanisms are then analyzed by applying
kinematic limit analysis. The approach was first proposed by Giuffré [32, 33] where he observed a
pattern in failure modes of historical and traditional buildings in Italy. This approach is particularly
interesting as a tool for seismic analysis of buildings which do not conform to box behavior because of
lack of stiff floor slabs or because of weaker partial collapses affecting the façade or inner walls. For
more upper and lower bound limit analyses and techniques reader is referred to [30–33, 53, 62–66, 87].

Figure 1.29: Failure mechanisms for buildings embedded within urban texture (from [83] according to [16]).
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(a) (b)

(c)

Figure 1.30: 3-D homogenized limit analysis of a masonry building (from[66]).

1.4. Current numerical methods used in the Netherlands
Currently, there are several finite element software packages that are being used in the Netherlands
to analyze masonry structures. Mainly Simulia Abaqus, TNO Diana and LS-DYNA. Simulia Abaqus
and LS-DYNA both support implicit and explicit integration while TNO Diana has only an implicit solver.
The implicit solvers are very difficult to work with when analyzing highly nonlinear problems that involve
large deformations and large amounts of plasticity. Therefore, for masonry analyses under earthquake
loading they are not an ideal solution and explicit solvers are preferred.

Even though LS-DYNA has a masonry material model it is developed and used only by ARUP and
the model is not available for third parties. Because of the fact the thesis is sponsored by Zonneveld
ingenieurs b.v. the use of LS-DYNAmasonry model is not possible as Zonneveld ingenieurs b.v. uses
Simulia Abaqus as their finite element analysis software.

For masonry analyses with Simulia Abaqus an adapted model of Concrete Damaged Plasticity is
being used by Zonneveld ingenieurs b.v.. This model is one of the default materials that comes in-
tegrated in Simulia Abaqus and it is developed to be used as a tool to analyze reinforced concrete.
Concrete Damaged Plasticity is an asymmetric isotropic continuum damage model that supports dif-
ferent behaviors in tension and compression, strengths hardening/softening, and damage to stiffness.

Although, by adapting the model to be used with an orthotropic material such as masonry causes
several issues. E.g. due to the isotropic nature of the material model, engineer using it has to predict
a critical failure mechanism in order to adapt real orthotropic properties of a material to the isotropic
model. Therefore, to simulate masonry behavior more precisely a better material model has to be
developed. Such model should exhibit asymmetric orthotropic plastic behavior.

1.5. Scope of the thesis
The main aim of the thesis is to develop a nonlinear material model based on the Continuum Damage
Mechanics, that can be used in Simulia Abaqus Finite Element Analysis software. The material model
should exhibit asymmetric orthotropic plastic behavior and it should be robust and accurate in small
scale tests as well as large-scale complex analyses.
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The development is focused on three-dimensional structures that are loaded by static as well as
dynamic loading. The model is a macro type and it simplifies masonry as continuous homogeneous
material, on the contrary to the micro modeling where units and mortar are modeled separately.

The objectives of the study are:

• To assemble information on the existing knowledge about Continuum Damage Mechanics mod-
els, through a comprehensive literature review;

• To develop an orthotropic masonry model that is able to accurately predict elastic and plastic
behavior of masonry structures and incorporates the knowledge of nonlinear fracture mechanics
used in crack propagation problems;

• To test the model by comparing the predicted behavior with the behavior observed in experiments
on masonry. The developed model should be able to predict the failure modes and the ultimate
load with a reasonable agreement with the experimental evidence.

• To demonstrate the applicability of the verified model in engineering practice case-studies i.e. in
analysis of shear walls.

It must be mentioned, however, that results of masonry tests that are large and complex or small
and simple, typically shows a wide scatter. Thus, the main concern is not too sharply reproduce the
experimental results in the form of load-displacement curve but to demonstrate the ability of models to
capture the behavior observed in the experiments.

It is to be noted that the model developed in this study can be used in a broader field than just
masonry. It is applicable to any other anisotropic material like plastics, wood, and fiber-reinforced
composites.

1.6. Outline of the Thesis
This thesis consists of six Chapters.

Chapter 1 contains a brief introduction of the seismic situation in the Netherlands and effects of it on
the masonry structures. This chapter also describes masonry and it’s properties as well as the
overview of current approaches to masonry analysis. The scope of the thesis and its outlines are
also included.

Chapter 2 presents the review of several Continuum Damage Mechanics models and aspects corre-
sponding to their numerical implementation.

Chapter 3 describes the formulation of a damage model for masonry. Such a model accounts for
different orthotropic behaviors in tension and compression. Individual damage criteria are con-
sidered for tension and compression, according to different failure mechanisms. The former is
associated with cracking phenomenon, while the latter is associated with the crushing of the ma-
terial. Entirely different elastic and inelastic behaviors can be predicted along the material axes,
both in tension and compression. For compression, the model can predict residual plastic strain
and it can simulate the cyclic behavior. The resulting formulation is implemented in a nonlinear
finite element code for Simulia Abaqus Explicit software package.

Chapter 4 validates the damage model developed in Chapter 3 by means of the FE analysis of cube
tests in order to portray the pure theoretical characteristics of the model.

Chapter 5 furthermore validates the damage model by means of the FE analysis of engineering prac-
tice case studies, e.g. shear walls with monotonic or cyclic loading. A smeared crack approach
is considered.

Chapter 6 presents an extended summary and the final conclusions together with suggestions for
future work which can be derived from this study.



2
Basic concepts and theoretical

formulations
This Chapter presents various approaches to material modeling using Continuum Mechanics, the pos-
sible descriptions of failure envelope and their comparability with available tests. Basic concepts are
defined, together with the theoretical formulation. Then, a comparative discussion concerning different
failure envelopes and damage models is carried out, in order to emphasize the implications arising
from the different backgrounds. Furthermore, the chapter will also describe the relation between dif-
ferent analysis techniques and explanations where does the custom material models belong in Simulia
Abaqus analysis procedure.

2.1. Implicit and Explicit algorithms
The Finite element method (FEM) is one of the most popular methods in both research and industrial
numerical simulations. In the FEM codes, several different algorithms are implemented, these algo-
rithms can have varying computational costs, accuracy or ease of use. Understanding the nature,
advantages and disadvantages of these algorithms are very helpful for choosing the right algorithm for
the particular problem.

Finite element algorithms can be classified into two categories: implicit and explicit algorithms. In
implicit algorithms, a matrix system has to be solved one or more times per step through an iterative
procedure in order to obtain a force equilibrium and advance the analysis. This type of technique
generally has an advantage regarding numerical stability. In many cases, an “Unconditional Stability”
may be obtained, resulting in no time step restrictions caused by stability considerations [40].

However, in explicit algorithms, the solution can be advanced without solving a system of equations.
It generally requires that small time steps need to be taken to ensure numerical stability. Although, there
are cases when step-size restrictions are more stringent than accuracy considerations might require.
Though, on the other hand, due to the lack of equation solving the computational cost per step is
generally much less for explicit algorithms than for implicit. None of the algorithms are perfect for all
analysis situations, therefore an optimal one has to be chosen for a specific case.

Implicit algorithms are mostly used for linear and non-linear static or quasi-static analyses where
slow loading conditions are applied. For non-linear analyses where a model is subjected to large
amounts of plasticity or a complicated model with a high number of interactions is used, the uncondi-
tionally stable implicit method will encounter some difficulties [86]. In such cases, in order for the system
to converge time increment has to be reduced and as the reduction of the time increment continues,
the computational cost in the tangent stiffness matrix is dramatically increased and can even cause
divergence. Furthermore, local instabilities cause force equilibrium difficult to be achieve. Therefore,
the implicit algorithm loses its advantages and as the time increment for convergence approaches the
stable time of an explicit analysis, the explicit method becomes more viable to use.

Explicit algorithms are mostly used for large, fine mesh, high phased and short analyses. For an
explicit solution, the CPU cost per increment is approximately proportional to the size of the model.
There is no drastic increase in memory or processing time as the problem size or complexity increases

17
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such as that associated with an implicit method [78]. However, the time increment in the explicit analysis
depends only on the dimension of the elements and the properties of the materials used (see eq. 2.2).
Therefore long static or quasi-static analyses even if not complex, become less feasible as it would
take an extensive amount of computational time to complete them.

The stable time increment for explicit algorithm is defined as:

Δ𝑡 ≤ 2
𝜔 (2.1)

where 𝜔 is the element maximum eigenvalue. A conservative estimate of the stable time increment
is given by the minimum taken over all the elements. The above stability limit can be rewritten as

Δ𝑡 =min(𝐿𝑐 ) (2.2)

where 𝐿 is the characteristic element dimension and 𝑐 is the current effective, dilatational wave speed
of the material.

Regarding modeling and analyzing masonry, the most widely used method is implicit, mostly due
to a large number of FEM software that supports such method. Despite this, masonry FEM analysis
would greatly benefit from an explicit algorithm as big models, earthquake loading, extensive amounts
of damage and cracking heavily slow down implicit analyses as well as produces extensive amounts of
convergence problems. However, in quasi-static analyses due to infeasibility to simulate long periods
of time, the simulated time period has to be shortened, this induces undesirable kinematic effects onto
the structure. On the other hand, these effects can be neglected if kinetic energy is less than 5% of
total strain energy [40].

For further reading about implicit and explicit algorithms reader is referred to [7, 40, 41, 78, 82, 86].

2.2. Theory of plasticity
A fundamental difference between elastic and inelastic behavior is that in the elastic analysis the total
stress can be evaluated from total strain alone, however, in inelastic solutions the total stress at time 𝑡
also depends on stress and strain history (see Figure 2.1). There are a very large number of developed
material models that simulate the distinctive phenomena of plasticity i.e. elastoplasticity, creep, and
viscoplasticity [6].

(a) (b)

Figure 2.1: Material nonlinearity (from[45]): (a) non-linear elasticity (b) elasto-plasticity.

Generally, for metals the theory required to describe plastic flow is simplistic since metals are in-
sensitive to isotropic pressure, are generally incompressible and with approximation follow associated
flow rules. For other materials such as concrete, rocks, masonry, fiber reinforced composites etc. the
conditions are more complicated, but regardless, falling within the frame work of plasticity theory.

The theory of plasticity employs some of the fundamental concepts such as the yield criterion, the
flow rule, and the consistency conditions. The yield criterion describes the limit at which material be-
comes plastic and the consistency conditions prevent stresses from exceeding that prescribed limit,
while the flow rule describes the relationship between strains and stresses once material enters plas-
ticity.
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2.2.1. Yield criteria
One of the first proposals for criteria of yielding of plastic solids, mainly soils, was made by Coulomb
[13] in 1776, and had been applied by Poncelet [77] in 1840 and Rankine [81] in 1853 to problems such
as the calculation of earth-pressure on retaining walls. At the end of 19th century, Mohr generalized
the criterion and it became widely used, and known as Mohr-Coulomb yield criterion [95].

The criterion is pressure sensitive and is best used in describing the materials whose behavior is
strongly depending on yield limit and hydrostatic pressure i.e. materials like soils, rocks or concrete.
The Mohr–Coulomb criterion is based on the assumption that the phenomenon of macroscopic plastic
yielding is, essentially, the result of frictional sliding between material particles [17]. The general for-
mulation of Coulomb’s friction law states that critical combination (see eq. 2.3) of normal stress 𝜎 and
shear stress 𝜏 triggers a plastic yielding.

𝜏 = 𝑐 − 𝜎 tan𝜑 (2.3)

where 𝜎 is tensile positive normal stress, 𝑐 is the cohesion and 𝜑 is the angle of internal friction
(see Figure 2.2).

Figure 2.2: The Mohr–Coulomb criterion. Mohr plane representation.

The Mohr-Coulomb multi-surface representation (see Figure 2.9) can be derived from a yield func-
tion expressed in terms of the principle stresses (see eq. 2.4). Such representation consists of 6
yield surfaces described by every combination of 𝜎 and 𝜎 in the yield function, whose roots are
Φ (𝝈) = 0.

Φ(𝝈) = (𝜎 − 𝜎 ) + (𝜎 + 𝜎 ) sin𝜑 − 2𝑐 cos𝜑 (2.4)

Figure 2.3: The Mohr–Coulomb criterion. Multi-surface representation in principal stress space (from [17]).
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The first scientific study of the plasticity started from a study of plastic behavior in metals in 1884. At
that time Tresca [89] published a preliminary account of experiments on punching and extrusion, which
led him to state that a metal yielded plastically when the maximum shear stress attained a critical value.
Unlike in the Mohr-Coulomb model in Tresca’s findings metals were not hydrostatic pressure sensitive,
therefore a new yield criterion in principal stress space was assembled (see eq. 2.5) .

Φ(𝝈) = 𝜎 − 𝜎 − 𝜎 (2.5)

Nevertheless, like Mohr-Culoumb, Tresca criterion can be represented as 6 surfaces in principle
stress space (see Figure 2.4) composed from all possible combinations of 𝜎 and 𝜎 in the yield
function (eq. 2.5) whose roots are Φ (𝝈) = 0.

Figure 2.4: The Tresca criterion. Multi-surface representation in principal stress space (from [17]).

After the findings of Tresca, there were numerous suggestions of the yield criteria for metals, how-
ever, more accurate works were yet to be presented. In 1913 von Mises [67] made an advancement
in the definition of yield criterion for metals purely from a mathematical point of view. He described the
failure in terms of second stress invariant 𝐽 reaching a critical value.

𝐽 = 𝑘(𝛼) (2.6)

where 𝑘 is critical value assumed to be a function of internal hardening variable 𝛼 and mostly used
with a relation 𝜏 = √𝑘, where 𝜏 is the shear yield stress. Therefore, a yield function (see Figure 2.5)
for the von Mises criterion can be defined as

Φ(𝝈) = √𝐽 (𝐬(𝝈)) − 𝜏 (2.7)

In 1952 a smooth approximation to Mohr-Coulomb law (see Figure 2.6) was proposed by Drucker
and Prager [20]. The new criterion was derived from von Mises criterion by adding an extra term
to introduce pressure sensitivity. The Drucker–Prager criterion states that the critical combination of
hydrostatic pressure 𝑝 and second deviatoric stress invariant 𝐽 triggers the yielding of a material.
Therefore, the yielding is initiated when the following equation is satisfied

√𝐽 (𝐬) + 𝜂𝑝 = �̄� (2.8)

where 𝜂 and �̄� are material parameters. However, in order to approximate the Mohr-Coulomb yield
surface, Drucker-Prager’s yield function can be defined as follows

Φ(𝝈) = √𝐽 (𝐬(𝝈)) + 𝜂𝑝(𝝈) − 𝜉𝑐, (2.9)
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(a) (b)

Figure 2.5: The Tresca and von Mises yield surfaces in principal stress space (adapted from [17]): (a) 3d view
and (b) view along hydrostatic axis.

Figure 2.6: The Drucker–Prager yield surface in principal stress space (from [17]).

(a) (b)

Figure 2.7: Drucker–Prager approximations (adapted from [17]): (a) approximations in principle stress plane (b)
approximations matching the Mohr–Coulomb surface in uniaxial tension and uniaxial compression.
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where 𝑐 is the cohesion and the parameters 𝜂 and 𝜉 define the required approximation to the Mohr-
Coulomb criterion.

The stated yield criteria form the basis of yield descriptions in material mechanics. From these, other
criteria are derived and described. It must be pointed out that all of the criteria previously mentioned
are of isotropic nature. Hill [37] in 1948 described an anisotropic version of von Mises criterion, a
modification of it will be used in this thesis as a part of the description of the failure envelope. For
further information on various other yield criteria reader is referenced to [8, 9, 11, 18, 23, 35]

2.2.2. The plastic flow and stress return
The plastic flow is classified according to the relation of plastic strain increment and deviatoric stress
directions. If direction of plastic strain increment is equivalent to the direction of the deviatoric stress
it is called associated flow rule. However, if they are not equivalent it is called non-associated flow
rule. The former is usually observed in metals, while the latter is valid for other materials such as rock,
concrete and masonry. From here the yield function 𝑓(𝝈), and the flow function 𝑔(𝝈) can be defined.
For associated flow rule 𝑓(𝝈) = 𝑔(𝝈) and for non-associated flow rule 𝑓(𝝈) ≠ 𝑔(𝝈).

The direction of the plastic strain is perpendicular to the flow surface and is equal to the direction of
the flow vector for the isosurface Ψ(𝐀) (see Figure 2.8), where Ψ(𝐀) is 𝑓(𝝈) or 𝑔(𝝈) depending on the
type of the flow:

𝑁 = 𝜕Ψ(𝝈)
𝜕𝝈 (2.10)

(a) (b)

Figure 2.8: Smooth potential (from [17]). (a) The flow vector and (b) stress return represented in a plane
perpendicular to the hydrostatic pressure line in principal stress space

For finite element calculation, not only the direction of the flow is important but also the magnitude
𝑑𝜆 of the stress return. Let 𝝈 be a current stress, 𝝈 be trial stress for the current calculation
increment and 𝝈 be the final stress. The trial stress increment can then be defined as follows:

𝑑𝝈 = 𝝈 − 𝝈 = 𝐃𝑑𝜺 (2.11)

The “real” stress increment is equal to

𝑑𝝈 = 𝑑𝝈 − 𝐃𝑑𝜺 = 𝐃(𝑑𝜺 − 𝑑𝜺 ) (2.12)

In order to return back to the yield surface, the plastic strain increment (𝑑𝜺 ) has to be found. Which
can be expressed as:

𝑑𝜺 = 𝑑𝜆𝜕𝑔𝜕𝝈 (2.13)



2.2. Theory of plasticity 23

The plastic strain is determined by two quantities the scalar 𝑑𝜆 and the gradient of the loading surface
(𝜕𝑔/𝜕𝝈) giving the direction. To determine the magnitude 𝑑𝜆, the following condition must be satisfied:

𝑓(𝝈 − 𝑑𝝈 ) = 0 (2.14)

Where plastic corrector 𝑑𝝈 can be expressed as:

𝑑𝝈 = 𝑑𝜆𝐃𝜕𝑔𝜕𝝈 (2.15)

Considering Taylor expansion of the yield surface around the point B we have:

𝑓(𝝈 − 𝑑𝝈 ) ≃ 𝑓(𝝈 ) − (𝜕𝑓𝜕𝝈) 𝑑𝝈 = 0 (2.16)

Inserting eq. 2.15 to eq. 2.16 we obtain the following:

𝑑𝜆 = 𝑓(𝝈 )

( 𝝈) 𝐃 ( 𝝈)
(2.17)

One should note that this solution is only valid if flow direction at point B and the flow direction at point
C is the same. Otherwise, iterations are necessary. However, if the flow function has discontinuities
or flow is described by several functions, the trial stress that falls in the sub-differential set of Ψ (see
Figure 2.9) should always return to the point of discontinuity 𝝈. The sub-differential set of Ψ is bounded
by a set of normals as follows:

𝑁 = 𝜕Ψ
𝜕𝝈 (2.18)

Figure 2.9: The flow vector (from [17]). Non-smooth potential.

2.2.3. Stress and strain hardening
Most materials exhibit some degree of hardening as an addition to plastic straining. The hardening
of the material manifests as the change of the size and the shape of the yield surface during plastic
loading. This change is complex and an accurate description of it is rather difficult to obtain. Therefore,
hardening is often described as a combination of two different types of hardening, namely isotropic
hardening and kinematic hardening (see Figure 2.10).

A material is said to experience isotropic hardening when the evolution of the yield surface is such
that, at any state of hardening, it can be described as an isotropic (uniform) expansion, without trans-
lation, of the initial yield surface. In the case of von Mises yield criterion the elastic domain expands
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(a) (b)

Figure 2.10: Types of hardening. (a) Isotropic and (b) Kinematic hardening

equally in tension and compression during plastic flow, i.e. isotropic hardening corresponds to the in-
crease in the radius of the von Mises cylinder in principal stress space. Therefore, the hardening can
be described by the following:

𝑓(𝝈) − 𝜎 (𝛼) = 0 (2.19)

where 𝜎 (𝛼) is the material strengths depending on dynamic hardening parameter 𝛼 when the following
is always true �̇� ≥ 0. On the other hand, for orthotropic materials, isotropic hardening is controlled by
changing each strength parameters in yield criteria 𝝈 (𝛼).

Kinematic hardening takes place when the shape and size of a yield surface is preserved but it
can translate in the stress space. Lemaitre and Chaboche [50] showed that many materials when
being loaded and hardened in one direction, exhibit a decreased resistance to plastic yielding in the
opposite direction. The phenomenon is called Bauschinger-effect and it can be simulated by introducing
kinematic hardening.

In the case of von Misses yield criterion kinematic hardening is introduced by replacing stress vector
in the criterion by the relative stress tensor (see eq. 2.21) that depends on stress deviator 𝐬(𝝈) and the
symmetric deviatoric stress-like tensor, 𝜷, also known as backstress tensor.

𝑓(𝝈, 𝜷) = √3𝐽 (𝜼(𝝈, 𝜷)) − 𝜎 (2.20)

where
𝜼(𝝈, 𝜷) = 𝐬(𝝈) − 𝜷 (2.21)

There are a number of studies that propose a constitutive model for the definition of the elasto-
plastic behavior under cyclic loading conditions [50, 69, 85]. However, only the isotropic hardening
behavior will be implemented in this thesis as kinematic hardening behavior for composite material
such as masonry is poorly documented and any effort to implement it would be purely phenomenologi-
cal. Furthermore, considering explicit integration analysis, it is likely that kinematic hardening behavior
in the simulations of structures would appear naturally to some extent, without extra considerations in
the material model.

2.3. Continuum Damage Mechanics
In 1958 Kachanov [43] introduced a theory of continuum damage mechanics that provided a powerful
and general framework for the derivation of consistent material models suitable for many engineering
fields and the term itself was defined by Janson and Hult [42]. The advantage of continuum damage
mechanics is that it can be used to simulate a wide range of materials such as ceramics, plastics, met-
als, rock, concrete, and masonry. It is due to the simplistic approach in modeling damaged materials.
Such materials are assumed to remain continuous and the effect of cracks is modeled by changing the
mechanical properties, such as strength and stiffness.

Kachanov [43] defined the collective effect of deterioration by means of a field variable named
continuity and denoted 𝜓. Completely deterioration free material was given the condition 𝜓 = 1 and
completely damaged continuous material with no remaining load caring capacity was defined as 𝜓 = 0.
As continuity 𝜓 defines absence of defects, the variable 𝐷 = 1 − 𝜓 defines state of deterioration or
damage [70, 79].
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Continuum damage mechanics is a counterpart of fracture mechanics, where the fracture is sim-
ulated by embedding a fixed crack in a usually non-degradable material. However, both of these ap-
proaches can be combined to simulate crack growth and degradation of load carrying capacity [42, 47].

The damage itself in solids is considered as discontinuities in the medium that on a macro scale is
continuous. These discontinuities are generally caused by micro-cracks and micro-voids. The biggest
volume over which such material can be treated as homogeneous is called representative elementary
volume (REV) or unit cell (see 2.11). The size of this unit cell can vary from about 0.1 𝑚𝑚 for metals
and ceramics to about 100 𝑚𝑚 for concrete (see Figure 2.12).

Figure 2.11: Representative elementary volume in a composite body (from [55])

Figure 2.12: Examples of damage (from [51]) in a metal (micro-cavities in copper), in a composite (micro-cracks
in carbon-fiber/epoxy resin laminate), and in concrete (crack pattern).

The damage of the material is always related to the plastic strain (permanent strain) and more gen-
erally to a strain dissipation in the scale of REV (mesolevel) or the scale of discontinuities (microlevel).
In mesolevel three types of damage can occur: the nucleation and growth of voids in mesofield of plas-
tic strains under static loading causes ductile damage; low cycle fatigue damage occurs under repeated
high-level loadings and elevated temperatures causes creep damage by intergranular decohesion in
metals.

Regarding microlevel, two different kinds of damage can be classified: quasi-brittle and high cycle
fatigue damage. The former is when brittle failure is caused during monotonic loading. The latter is
when a material is subjected to a loading of a large number of repeated cycles. Materials like ceramics,
concrete, and metals exhibit this type of damage.
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Figure 2.13: Damaged element and interpretation of the damage variable (from [75]).

Considering an isolated unit cell (REV) in a damaged solid and letting 𝑑𝑆 be the area of the section
of the unit cell identified by it’s normal �⃗�. On the section, cracks and voids leave traces and reduce the
effective area of resistance 𝑑�̄� where (𝑑�̄� < 𝑑𝑆). Let 𝑑𝑆 be the difference between the area and the
effective area:

𝑑𝑆 = 𝑑𝑆 − 𝑑�̄� (2.22)

The Damage variable 𝐷 can be defined as the surface density of micro-cracks [51] therefore it can be
written as a ratio between the area of the voids and cracks, and the area of the section:

𝐷(�⃗�) = 𝑑𝑆
𝑑𝑆 (2.23)

The above expression provides the measure of local damage relative to the direction �⃗�. 0 ≤ 𝐷(�⃗�) ≤ 1
characterizes the damaged state, where𝐷(�⃗�) = 0 is equivalent to initial undamaged state and𝐷(�⃗�) = 1
– to fully damaged material.

However, if the damage is isotropic, the crack and cavities are distributed evenly in all directions.
Therefore, the damage variable 𝐷(�⃗�) can be completely described by the scalar intrinsic variable 𝑑:

𝐷(�⃗�) = 𝑑 ∀�⃗� (2.24)

On the other hand, in the general case of anisotropic damage the variable 𝐷(�⃗�) depends on the ori-
entation of the normal. It was shown that during loading history, the micro cracks undergo irreversible
growth in the direction perpendicular to the maximal tensile strain [24, 46]. The concept of the damage
variable can further be advanced to the formulation of effective stress.

If 𝐹 is the applied force onto the cross section of the unit cell, the uniaxial case is considered due to
simplicity. The stress in the cross section is 𝜎 = 𝐹/𝑆 satisfying the equilibrium conditions. Therefore, if
the isotropic damage 𝑑 is present, the effective area of resistance is

�̄� = 𝑆 − 𝑆 = 𝑆(1 − 𝑑) (2.25)

hence effective stress is defined by

�̄� = 𝜎𝑆�̄� =
𝜎

1 − 𝑑 (2.26)

In case of multi-axial isotropic damage, the damage does not depend on the orientation of the normal
and the operator (1 − 𝑑) can be applied to all of the components. Therefore, we can consider the
tensorial form

�̄� = 𝝈
1 − 𝑑 (2.27)

or the inverse expression
�̄� = 𝝈(1 − 𝑑) (2.28)
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Figure 2.14: Effective stress and equivalence in strain (from [75]): virgin material (a), damaged material (b) and
equivalent virgin material (c).

The hypothesis of the strain equivalence states that the strain associated with a damaged state
under applied stress 𝝈 is equivalent to the strain associated with its undamaged state under effective
stress �̄� [49] (see Figure 2.14). Therefore, by using simple relation �̄� = 𝐸𝜀 we obtain:

𝜎 = (1 − 𝑑)�̄� = (1 − 𝑑)𝐸𝜀 (2.29)

Where 𝐸 is Young’s modulus. From which can be derived that actual tension stress 𝜎 is related to
strain by means of a damaged stiffness:

𝐸 = (1 − 𝑑)𝐸 (2.30)

The damage is irreversible, therefore

�̇� ≥ 0, �̇� ≥ 0 → �̇� ≤ 0 (2.31)

The damage is only initiated if when the stress or strain exceeds initial failure threshold 𝜎 (or 𝜀 ):

𝑑 = 0 𝑖𝑓 {𝜎 < 𝜎𝜀 < 𝜀 (2.32)

Figure 2.15: Damaged Young’s modulus during increasing uniaxial load (from [75]).

In case of unloading we have:

̇𝜀 < 0 → �̇� = 0 𝑎𝑛𝑑 �̇� = 0 (2.33)

and, therefore,
�̇� = (1 − 𝑑)𝐸 ̇𝜀 − 𝑑𝐸 ̇𝜀 = 𝐸 ̇𝜀 (2.34)
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Unloading does not increase the damage, it will, however, follow the unloading branch according to
the damaged stiffness until the point of origin. A further reloading follows the same loading paths until
a failure criterion is reached once more. The damage constitutive law does not allow any occurrence
of irreversible plastic deformation as after unloading all the deformations are recovered. However, the
actual behavior of materials, especially masonry, do not fully comply with this law. As described in
section 1.2 plasticity occurs in actual physical tests and the behavior of such mediums as masonry is
not isotropic. Therefore, some additional considerations are necessary.

2.4. Damage models and failure envelopes for masonry
There were only a few attempts to describe the general failure criteria for masonry, due to the difficulties
involved in developing a representative biaxial test and the fact that a large number of such tests is
required. This problem was discussed by Yokel and Fattal [94] with reference to the failure of shear
walls. Further efforts were made by Dhanasekar et al. [19] where they interpolated the test data of
Page [72, 73] by means of three elliptic cones (see Figure 2.16). However, as it is described in the
paper, the cones do not correspond with the observed distinct modes of failure. The elliptic cones have
been expressed by a second-order tensor polynomial. A significant review of the subject can be found
in [3, 36, 68].

Figure 2.16: Failure surface idealized by Dhanasekar et al. [19].

There were several proposals to use existing yield criteria of available composite materials for the
expression of analytical failure models of masonry. For example, Syrmakesis and Asteris [88], used a
Tsai and Wu [91] cubic tensor polynomial. Nevertheless, the adaptation did not return a satisfactory
approximation of Page’s [72] experimental data (see Figure 2.17)

The further advancements in masonry behavior modeling were made by Lourenco [56]. He pro-
posed a multi-surface plane-stress softening plasticity model for a masonry failure simulation. The
model consists of two yield criteria: one Rankine-like for failure prediction of joints and one Hill-like
for failure prediction of units (see Figure 2.18). He described different stress-strain behavior laws in
tension and compression. In tension exponential softening law was adopted along material axes and
in compression, he applied an isotropic parabolic hardening law followed by a parabolic/exponential
softening law with different compressive fracture energies along each material axes. Therefore, the
principal directions of damage are fixed and aligned with the initial orthotropy axes. However, although
the model adopted two different fracture energies, a single internal scalar variable controlled the plas-
ticity algorithm in order to determine the softening in two material axes. Furthermore, the damage was
only described in terms of softening of the material strengths and the degradation of stiffness was not
present.
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Figure 2.17: Comparison between experimental results from Page [72, 73] and a Hoffman type yield surface
(from [56]).

Figure 2.18: Multi-surface failure envelope in Cauchy stress space (from [56]).

(a) (b)

Figure 2.19: Behavior of the model (from [57]) for (a) tension and (b) compression, along two orthogonal
directions.
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Figure 2.20: Comparison between Lourenco model and experimental results from Page [72, 73] (from [56]).

Since the works of Lourenco there was no further significant development of masonry constitutive
material models until Pela [75] proposed the use of isotropic yield surfaces mapped on to orthotropic
space as viable analysis approach for masonry structures. His model consisted of isotropic Faria [23]
and isotropic Rankine-type failure envelopes (see Figure 2.21a). Furthermore, he used a modified
method proposed by Oller et al.[71] where authors multiplied the transformation tensor by a “shape
adjustment tensor”, whose purpose is to adjust the isotropic criterion to the desired orthotropic one.
But, the shape adjustment tensor must be derived by means of an iterative procedure. Thus, the non-
linear solution of a quadratic system by the Newton-Rapson method is required which is not an easy
task and is quite costly, since the shape adjustment tensor depends on the stress state at the point at
each instant of the mechanical process. To circumvent this, Pela [75] simplified Oller’s et al. method
to a standard form of a stress transformation tensor and obtained similar results to Lourenco [56] (see
Figure 2.22).

(a) (b)

Figure 2.21: Yield surfaces used by Pela [75]: (a) Composite yield surfaces in Cauchy stress space and (b)
mapping each surface from fictitious isotropic stress space to real stress space.



2.4. Damage models and failure envelopes for masonry 31

Figure 2.22: Comparison between Pela, Lourenco, Symakezis models and experimental results from Page
[72, 73] (from [75]).

Like in Lourenco’s [56] model in Pela’s [75] work, the damage was modeled by softening of the ma-
terial strengths, but additionally, Pela used stiffness damage model proposed by Papa [74]. The model
allows stiffness recovery when loading changes from tension to compression which is in agreement
with experimental results. On the other hand, it does not allow any permanent plastic strains to occur,
while it can be true for tensile behavior, it is not in agreement with the cyclic compression test results
[21].

Figure 2.23: Behavior of the model (from [75]) for (a) tension and (b) compression, along two orthogonal
directions. (c) represents cyclic behavior

Figure 2.24: Damage model proposed by Papa [74] (from [75]).
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2.5. Simulia Abaqus user material interface
Before writing a material model it is important to understand how custom user material (VUMAT) inter-
faces with Simulia Abaqus. This section will discuss the capabilities of user subroutines for Abaqus /
Explicit package.

Figure 2.25 portrays the location of execution of VUMAT. The scheme is composed out of the expe-
rience gathered when working with various Abaqus subroutines and can differ from the actual execution
procedure to some extent. The Abaqus manual does not discuss the actual global flow of explicit anal-
ysis.

Start of analysis

Define initial
conditions

Start of the step

Start of the
increment

Calculate
integration point

field variables from
nodal values

Iteration
through blocks

Calculate Δ𝜺

Calculate 𝝈,
VUMAT

End inc?

End
step?

Define loads Output? Write output

No

Yes

Yes

NoNo

Yes

Figure 2.25: Global flow of Abaqus/Explicit

When the whole model is prepared for the analysis it’s integration points are subdivided into blocks
containing the maximum number of 136 points. For each of the blocks, the user subroutine is called.
Each block only contains the integration points of the same material, and inside the subroutine, these
points have to be iterated to provide the output for all of them. Furthermore it is important to note, that
there is only one integration point per element in the explicit analysis. The exact procedure of user
subroutine used for the thesis is described in Figure 3.1.

The User subroutine must output new stress vector and can output optional vectors such as state
variables, stretch tensors, deformation gradients, temperature values, total internal energies, inelastic
energies and field variables. The material properties for the calculation are passed to the subroutine
through the props array, this array should be defined in the input file of the analysis. The strain is
passed to the subroutine as strain increment and together with stresses have a direction correspond-
ing to the local material orientation. The orientation can be defined in the input file and by default, it
corresponds to the global axes of the analysis.

The state variables internally denoted as SDVs, act as information storage for a specific element
and at the same time they can be used as output for the end user. Element deletion can be controlled
by one of the variables and the SDV number for deletion control should be specified in the input file.

The energy output is beneficial as large sudden energy gain or loss in the system can signify a
problem with the analysis. Most often such problem is caused by mesh distortion, interface elements,
damping or drift of the solution and in order to let Abaqus calculate energies correctly, total internal
energy and inelastic internal energy values have to be outputted from the VUMAT.

The other output possibilities such as temperature values, stretch tensors, deformation gradients
and field variables fall outside the scope of this thesis and will not be used in the definition of the material
model. For a full description of the input and output of the VUMAT subroutines the reader is advised to
refer Abaqus Manual [15] Chapter 1.2.22.
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As for the control of the time incrementation, there is no possibility to do it directly in VUMAT, how-
ever, Abaqus uses the subroutine indirectly to determine the stable time. It is done by dividing the
analysis into two phases: phase one when the step time is zero and phase two when 𝑡 > 0. During
the time zero dummy values for strain (Δ𝜀 , , = −0.001 and Δ𝜀 , , = 0.001) are passed into the
subroutine. The subroutine is expected to output stresses as if the material would be perfectly elastic.
Abaqus uses these stresses to assemble internal stiffness matrix for calculation of stable time, inter-
nal wave speed, eigenmodes etc. During the phase two user subroutine is expected to simulate the
material as it was programmed for.

On the other hand, when using VUMAT for a material, some of the analysis functions stop work-
ing, one of these is the 𝛽 component of Rayleigh damping. It is not applied and if such damping is
wanted during analysis, it has to be calculated manually inside the subroutine. But this poses a prob-
lem, 𝛽 damping heavily effects stable time increment, therefore special measures have to be taken to
counteract and correct the stable time. These measures will be described in subsection 3.5.2 Stable
Time.

Although Abaqus provides extensive flexibility and freedom to model custom material as the user
wants, there are still shortcomings and behaviors that are not possible to model within VUMAT interface.
E.g. in user material subroutine environment it is impossible to know adjacent elements or integration
points, thus such algorithms as the one described by Clemente et al. [12], the local crack-tracking
algorithm, are impossible to implement without developing a custom element.

2.6. Summary
In this Chapter, basic theoretical considerations were discussed. It was determined that the explicit
algorithm is superior to implicit when the complex, highly plastic and rapidly loaded models have to
be analyzed, yet, the opposite is true when static or quasi-static analysis are required. Furthermore,
a brief overview of Plasticity was presented including the most common yield criteria such as Tresca,
Mohr-Coulomb, von Mises and Drucker-Prager. The relation between the deviatoric stress tensor and
plastic strain increment were defined together with the types of material hardening.

Followed by an overview of Continuum damage mechanics. Where, the basic concepts of damage
variable, effective stress and strain-equivalence have been discussed. Further, available material mod-
els for masonry were reviewed. Two main distinctive works were identified, namely the work Lourenco
[56] and the work of Pela [75]. Even though Pela used an interesting approach in modeling orthotropic
behavior the results were not far from what was obtained by Lourenco. However, the damage model
used by Pela is beneficial for the accuracy of cyclic analysis, although some improvements to the dam-
age model could be made. These additional considerations will be further discussed in section 3.4.

And last but not least, the Abaqus user subroutine interface was analyzed and the structure of the
analysis procedure was presented. It was determined that the user subroutine must output only new
stress vectors each increment in order for the analysis to run. Ofcourse, for better inetgartion and
clearer output more considerations are required.





3
Description of the material model

This model uses a simplified approach for 3d space. It means that material strengths in out of plane
direction are ignored. The model exhibits plastic behavior in plane and elastic out of the plane. Such
way of describing the material allows a fast and easy preparation of structural model for Finite Element
Analysis, while in turn providing an easier calibration of the material properties and a faster calculation
comparing it to full 3d orthotropic plasticity.

This chapter will present formulations used in describing the material model. The formulation in-
cludes orthotropic stiffness matrix, yield and flow surfaces, damage in elasticity and strengths and
additional considerations for better integration with Abaqus software. For the simplified scheme of the
material subroutine procedure see Figure 3.1.
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Figure 3.1: Scheme of material subroutine procedure.
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3.1. Stiffness matrix
The stiffness matrix (𝐊) is an inverse of compliance tensor (𝐃) which is derived for an element from an
elastic stress–strain relationship (𝜺 = 𝐃𝝈). For a purely anisotropic material, such compliance matrix
consists of 36 elastic constants. Because of the symmetry of constitutive tensor, only 21 of 36 constants
are independent.

𝐃 =

⎡
⎢
⎢
⎢
⎢
⎣

𝐷 𝐷 𝐷 𝐷 𝐷 𝐷
𝐷 𝐷 𝐷 𝐷 𝐷

𝐷 𝐷 𝐷 𝐷
𝐷 𝐷 𝐷

Symmetry 𝐷 𝐷
𝐷

⎤
⎥
⎥
⎥
⎥
⎦

(3.1)

However, the material would require 21 independent tests for all of its parameters to be determined,
which is impractical. Nevertheless, the amount of independent constant can be reduced if the material
in question has planes of symmetry. The plane of symmetry is defined as a plane through a material
that divides the material into two parts in which the elastic constants are a mirror image of each other.
A material is called orthotropic if at every point it has 3 planes of symmetry. The intersections of these
planes are called principle axes of orthotropy.

In case a material is orthotropic the amount of independent elasticity constants is reduced to 9 (see
eq. 3.2). These constants can be expressed in 12 engineering therms, i.e. 3 Young moduli 𝐸 , 𝐸 , 𝐸 ,
6 Poisson’s ratios 𝜈 , 𝜈 , 𝜈 , 𝜈 , 𝜈 , 𝜈 and 3 shear moduli 𝐺 , 𝐺 , 𝐺 (see eq. 3.3)

𝐃 =

⎡
⎢
⎢
⎢
⎢
⎣

𝐷 𝐷 𝐷 0 0 0
𝐷 𝐷 0 0 0

𝐷 0 0 0
𝐷 0 0

Symmetry 𝐷 0
𝐷

⎤
⎥
⎥
⎥
⎥
⎦

(3.2)

𝐃 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
𝐸

−𝜈
𝐸

−𝜈
𝐸 0 0 0

−𝜈
𝐸

1
𝐸

−𝜈
𝐸 0 0 0

−𝜈
𝐸

−𝜈
𝐸

1
𝐸 0 0 0

0 0 0 1
𝐺 0 0

0 0 0 0 1
𝐺 0

0 0 0 0 0 1
𝐺

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.3)

where due to the symmetry of the matrix, the following holds true −𝜈 /𝐸 = −𝜈 /𝐸 , −𝜈 /𝐸 =
−𝜈 /𝐸 and −𝜈 /𝐸 = −𝜈 /𝐸 . This way number of engineering constants is reduced to the number
of elasticity constants.

Due to the fact the three–dimensional behavior is poorly documented and additionally that the ma-
sonry in practice is usually appears as walls, out of plane characteristic of such material can be ignored.
Therefore, a 2d case of compliance matrix can be assembled by setting 𝜎 = 𝜎 = 𝜎 = 0:

𝐃 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
𝐸

−𝜈
𝐸 0

−𝜈
𝐸

1
𝐸 0

0 0 1
𝐺

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.4)
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if 𝝈 = ( ) and 𝜺 = ( ) the compliance relationship takes form:

(
𝜀
𝜀
𝛾
) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
𝐸

−𝜈
𝐸 0

−𝜈
𝐸

1
𝐸 0

0 0 1
𝐺

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(
𝜎
𝜎
𝜏
) (3.5)

by inverting the stress – strain equation a stiffness relationship (𝝈 = 𝐊𝜺) can be obtained, where
𝐊 = 𝐃 :

(
𝜎
𝜎
𝜏
) =

⎡
⎢
⎢
⎢
⎣

𝐸 Δ 𝐸 𝜈 Δ 0

𝐸 𝜈 Δ 𝐸 Δ 0

0 0 𝐺

⎤
⎥
⎥
⎥
⎦

(
𝜀
𝜀
𝛾
) (3.6)

where Δ = 1/(1 − 𝜈 𝜈 ).
The determined relationship is only valid for 2D elements, e.g. shell elements. However, for practical

purposes it is useful to model the structure in 3D. Therefore, an out of plane stiffness should be added,
for 3D case stress and strain tensors respectively are equal to 𝝈 = ( ) and 𝜺 =
( ) , so the matrix form of stress strain relationship can be written as:

⎛
⎜
⎜

⎝

𝜎
𝜎
𝜎
𝜏
𝜏
𝜏

⎞
⎟
⎟

⎠

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐸 Δ 𝐸 𝜈 Δ 0 0 0 0
𝐸 𝜈 Δ 𝐸 Δ 0 0 0 0
0 0 𝐸 0 0 0
0 0 0 𝐺 0 0
0 0 0 0 𝐺 0
0 0 0 0 0 𝐺

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎛
⎜
⎜

⎝

𝜀
𝜀
𝜀
𝛾
𝛾
𝛾

⎞
⎟
⎟

⎠

(3.7)

Note, that off-diagonal terms were removed from the third row and column in stiffness matrix, this
is done to simulate the behavior of plane stress elements using solid elements, as any deformations
appearing in out of plane direction should not influence the deformation in the plane of material sim-
ulation. This simplification is not realistic, however, because the out of plane direction is elastic small
displacements would introduce large forces in the damaged in-plane behavior.

Furthermore, even though the shear moduli is independent of other stiffness constants, Lekhnitskii
[48] proposed an approximation for practical purposes, that was obtained by analyzing tests results
from 45 rocks:

𝐺 ≃
𝐸 𝐸

𝐸 (1 + 𝜈 ) + 𝐸 (3.8)

3.2. Failure envelope
A failure envelope describes a surface in a stress space. When stresses in the material reach this
surface plastic yielding occurs. For masonry deriving such yield surface is a complex task. However,
as described in section 2.4 there already are failure surfaces that were composed with masonry in
mind. For this model the yield surface that was proposed by Lorenço et al. [59] was chosen. The
chosen surface is comparatively well documented and has good agreement with experimental results.
Furthermore, the author of the surface, proposed various methods to calibrate the surface with the
experimental test results.

The surface is described by two yield criteria. These criteria simulate failure of a brick and mortar
separately. For the description of a mortar failure, Rankine-like surface is used:

𝑓 (𝜎) =
𝜎 − 𝑓 + 𝜎 − 𝑓

2 + √(
(𝜎 − 𝑓 ) − (𝜎 − 𝑓 )

2 ) + 𝛼𝜏 (3.9)
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and for a brick – Hill-like:

𝑓(𝜎) = √𝜎 ⋅ (
𝛽 ⋅ 𝜎
2 +

𝑓
𝑓 ⋅ 𝜎 ) + 𝜎 ⋅ (𝛽 ⋅ 𝜎2 + 𝑓𝑓 ⋅ 𝜎 ) + 𝛾 ⋅ 𝜏 − √𝑓 ⋅ 𝑓 (3.10)

Where parameters 𝛼, 𝛽, 𝛾 describe the shape of the composite yield surface. These parameters
could be obtained by performing least squares fit method for the yield surfaces on to experimental data
or calculating them from following tests:

Figure 3.2: Natural tests to calibrate the composite model (from [59]): uniaxial tension (a) parallel to the bed joints
and (b) normal to the bed joints; uniaxial compression (c) parallel to the bed joints and (d) normal to the bed joints

Figure 3.3: Possible non-standard tests to calibrate the composite model and calculate (a) parameter , (b)
parameter and (c) parameter (from [59]).

Figure 3.4: Typical position of the natural tests and proposed non-standard tests with respect to composite model
(from [59]).
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With these tests, the model parameter 𝛼, 𝛽 and 𝛾, read:

𝛼 = 1
9 (1 + 4 ⋅

𝑓
𝑓 )(1 + 4 ⋅

𝑓
𝑓 ) (3.11)

𝛽 = ( 1𝑓 − 1
𝑓 − 1

𝑓 )𝑓 𝑓 (3.12)

𝛾 = (16𝑓 − 9( 1
𝑓 − 𝛽

𝑓 𝑓 − 1
𝑓 ))𝑓 𝑓 . (3.13)

Furthermore, if the specific tests are unavailable an approximation could be made by defining them
from the constituents of the masonry. Parameter 𝛼 is defined by the shear strengths and tensile
strengths of a joint:

𝛼 =
𝑓 𝑓
𝜏 ; (3.14)

parameter 𝛾 can be defined by the shear and compression strengths of a unit, the same way as 𝛼 was
defined:

𝛾 =
𝑓 𝑓
𝜏 ; (3.15)

while for parameter 𝛽 a biaxial compression test must be performed in order to determine the strengths
of the units of masonry (where 𝜎 = 𝜎 = −𝑓 ∘ ):

𝛽 = ( 1
𝑓 ∘

− 1
𝑓 − 1

𝑓 )𝑓 𝑓 . (3.16)

Alternatively, the factor 𝛼 is also related to the friction angle (𝜑) (see eq. 3.17). The friction angle
is linear and true to its formulation in an isotropic pressure situation, however, the behavior is different
in case the stresses are not isotropic, e.g. vertical load is applied onto the specimen while no hori-
zontal pressure is present. In such cases, the friction angle starts at infinity when stress is zero and
approaches zero when stress approaches infinity.

𝛼 = 1
𝜇 (3.17)

where, 𝜇 is the tangent of the firction angle (𝜇 = tan𝜑).
By fitting the surfaces to the experimental data from Lurati et al. [60], the following shape can be

obtained:

Figure 3.5: Composite surface render in Wolfram Mathematica. It is presented in Cauchy stress space. Where
the horizontal plane represents and , while vertical – . The fit was made according to test results from

Lurati et al. [60]
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3.3. Stress-Strain relation
In FEM analyses the yielding is initiated when the trial stress (𝝈 ) overpasses the yield surface
(𝑓(𝝈) = 0). Theoretically, the stresses cannot exceed the yield surfaces therefore a corrector stress
(𝝈 ) has to be determined in order to return the trial stress back to the surface. The plastic corrector
(𝝈 = 𝑑𝜆𝐃 𝝈 ) was derived in section 2.2.2. The magnitude (𝑑𝜆) of the plastic corrector is determined
by the yield function 𝑓(𝝈), the direction – by flow function 𝑔(𝝈). When the flow function is equal to the
yield function (𝑓(𝝈) = 𝑔(𝝈)), the stress–strain relation is called associated, otherwise – non associated.
The Hill-type part of the yield surface will be treated as associated flow and Rankine-type – as non-
associated.

The flow function for Rankine-like criterion can be written as follows:

𝑔 (𝜎) =
𝜎 − 𝑓 + 𝜎 − 𝑓

2 + √(
(𝜎 − 𝑓 ) − (𝜎 − 𝑓 )

2 ) + 𝜉𝜏 ; (3.18)

where 𝜉 represents parameter inversely related to the square of the tangent of the dilation angle (𝜓),
therefore:

𝜉 = 1
tan 𝜓

. (3.19)

The dilation angle is defined as the angle between isotropic pressure line and the flow function.
This angle determines the volume change of an element during yielding. If dilation angle is positive, at
yielding element will expand, if negative – it will contract, but if the dilation angle is zero the element
will retain its volume. The change of volume can be described as follows:

Δ𝑉
𝑉 = (1 + 𝜀 )(1 + 𝜀 )(1 + 𝜀 ) − 1 ≃ 𝜀 + 𝜀 + 𝜀 ; (3.20)

and the dilation angle relation to the change of volume can be expressed as:

𝑑𝑉
𝑉 = 𝑑(𝜀 + 𝜀 + 𝜀 ) = 𝑑𝜆 tan𝜓; (3.21)

therefore,
𝑑𝑉
𝑉𝑑𝜆 = tan𝜓. (3.22)

However, as in the case with the angle of friction, the angle of dilation in uniaxial loading situation
changes from infinity to zero. As it can be observed in the figure 3.6 that in the case of yielding from
point B, the dilation angle is much greater than when yielding occurs from point A.

Figure 3.6: Yield and flow functions together with dilation angles at .

This poses a problem in cyclic analyses where only shear load and uniaxial compression is present.
In such case, the analyzed structure would extensively dilate introducing unrealistic lift and in case of
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confinment – acessive internal pressure in the structure. To circumvent this it is possible to set the
dilation angle to zero by making the flow surface flat in 𝜎 –𝜎 plane at the start of the analysis or at a
later point when some volumetric increase is accumulated. There is also a possibility to decrease the
dilation angle gradually with the acumulated equivalent plastic strain. In the later case, it would be best
to relate the dilation of an element to the maximal possible volumetric change in terms of equivalent
plastic strain. Such relation can be expressed as:

Δ𝑉
𝑉 (𝜀 ) =

2arctan(
max
)

𝜋𝑑max
(3.23)

where 𝑑max represents maximal possible volume increase and 𝜀 equivalent plastic strain in the ele-
ment.

Figure 3.7: Non-linear dilation vs. constant linear dilation at ∘

By differentiating eq. 3.23 in respect to 𝜀 , the relation between tangent of the dilation angle and
equivalent plastic strain can be derived:

tan𝜓 = 4𝑑max

𝜋 𝜀 , + 4𝑑max
(3.24)

by substituting the obtained relationship into eq. 3.19 and then into eq. 3.18 the plastic strain depen-
dent flow function is obtained. However, it has to be noted that this relation is purely phenomenological
as exact dilatory behavior of masonry is poorly documented and furthermore due to the shape of the
flow function the dilation angle in orthotropic stress situation will always be different than the set value,
and that the imposed maximal volume change constraint will only be valid in isotropic loading condi-
tions.

As discussed in the Section 2.2.2, if the flow surfaces have discontinuities a subdifferential zone of
flow directions have to be defined. The most simplistic approach would be is to iterate the return stress
until the wanted solution is obtained. However, such iteration would heavily slow down the explicit
analysis which is not a wanted side effect. Therefore a faster, but potentially less accurate method has
to be derived.

First, yield condition is checked for both surfaces (Figure 3.8). If both of these surfaces are yielding it
means that the predictor stress is in a stress space where advanced return algorithm has to be initiated.
The algorithm determines if the predictor stress is in the subdifferential zone by checking the yield
conditions once more, but this time using the returned stresses of both yielding surfaces determined
in first conditional check. In such case, only the other yield surface has to be checked for the obtained
values of the returned stresses (e.g. if Rankine-like surface returned to stress point A then only Hill-like
surface has to be checked at that point A and vice versa). If after this check both surfaces are yielding,
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then the initial predictor stress lies in the subdifferential stress zone. Otherwise, a returned stress is
assumed to the one returned by a yield surface which the second check resulted in a not yielding state
(see Figure 3.9).

In case the initial predictor stress falls into the subdifferential stress zone, then the stresses have to
be returned to the intersection curve of both yield surfaces so that the return direction is perpendicular
to the curve in strain space. However, finding a return to the intersection of two implicit surfaces is
an extremely computationally taxing procedure, therefore an approximation of the intersection point is
used. Such approximation involves defining a plane that is tangent to the Hill-like surface at a point
of first stress return (point B) and a line passing trough points A and B*. The intersection of the plane
and the line would estimate the intersection of the yield surfaces. This approach is only accurate if the
strain and stress increments are infinitesimal. In that case, both Hill-like and Rankine-like surfaces act
as flat planes and the error from the approach is minimal.

In figures 3.8 and 3.9 the stresses are presented in 𝜁 − 𝜒 plane. It is a fictitious plane that goes
trough the points AOB. The rest of the vectors and the points presented in the schemes are only the
projections to the plane. The scale of the plane is adjusted so that the stress return would appear to
be perpendicular to the yield or flow surfaces. This is done in order to simplify the description and
presentation of the return algorithm.

Figure 3.8: The stress return if the predictor stress originates in a subdifferential stress zone. Plotted in
stress plane, vectors and represents the projections of the subdifferential zone boundaries on to the plane.

Figure 3.9: The stress return if the predictor stress does not originate in a subdifferential stress zone. Plotted in
stress plane, vectors and represents the projections of the subdifferential zone boundaries on to the

plane.
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Another region when flow is not defined by the general algorithm is at the apex of Rankine-like
surface cone when the shear stress is zero. There, two issues have to be taken into account: stress at
the subdifferential zone and stresses when the numerator of the partial derivative of the flow function in
respect to stress tensor is zero (see Figure 3.10). Let’s call the latter case “Line of undefined flow”. If the
trial stress point does not fall on to the line but when returned has at least one of its stress components
higher than the corresponding yield limit the returned stress has to be corrected to be on the appex
of the cone. Alternatively, if the trial stress point does fall on the line of undefined flow it has to be
immediately returned to the apex of the cone as otherwise there are no solutions. Therefore, it can be
concluded that in this situation the subdifferential zone can be defined by the outcome of the first return
and the line of undefined flow by the numerator of the flow function.

Figure 3.10: The stress return if the predictor stress does (Point O) and does not (point O’) originate in a
subdifferential stress zone. Plotted in stress plane, when . Vectors and represents the
projections of the subdifferential zone boundaries on to the plane and point B is the apex of Rankine-like

yield/flow surface cone.

3.4. Damage
The damage in the model is described by means of reduction in stiffness and strengths of the material.
The strengths reduction (softening) is subdivided into two regions: tension and compression. For for-
mer fracture energy based linear softening (Figure 3.11a) is adopted. Because the behavior is fracture
energy based it is mesh-insensitive. The evolution of softening curve can be expressed as:

𝑓 (𝜀) = 𝑓 −
𝑓 ℎ(𝜀 − 𝜀 )

2𝐺 (3.25)

where 𝑓 is initial tensile strengths of the material, 𝜀 is the maximal total strain in the analysis, 𝐺
is the fracture energy, ℎ is the element height and 𝜀 is strain at initial yield expressed as 𝜀 = 𝑓 /𝐸
with 𝐸 the stiffness of the material.

Material tensile strengths together with softening behavior are uncoupled in both material directions.
This means that when the material is subjected to tension along one of its axes the strengths do not
get reduced along the other one. Furthermore, it is important to note that the lowest possible strengths
are set to 1% of the initial material strengths in that direction. This is done to ensure numerical stability
during the analysis.

For compression (see Figure 3.11b) a mesh sensitive softening/hardening curve is used, the curve
does not have a predefined shape and it is specified in terms of equivalent plastic strain and compres-
sive strengths as a tabular input by the end user. Such approach was chosen in order to not restrict
the definition of different compressive behaviors as strain and compressive strengths relationship vary
extensively from one masonry type to another. Unlike tension softening, compression hardening is cou-
pled in material axes through equivalent plastic strain (𝑓 (𝜀 , )), where compressive equivalent plastic
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strain is equal to the sum of scalar plastic multipliers (𝑑𝜆 ) of corrector stress increments calculated
due to the yielding in Hill-like surface:

𝜀 , =∑𝑑𝜀 , =∑𝑑𝜆 (3.26)

(a) (b)

Figure 3.11: Tension (a) and compression (b) softening/hardening curves.

Due to homogenized approach, the shear softening behavior is directly related to the tensile strengths
of the material. Therefore, yielding due to shear on Rankine-like yield surface will reduce the tensile
strengths of the material. However, the tensile softening is controlled by total strain, therefore, it be-
comes difficult to introduce shear effects into the softening behavior. Two regions need to be declared
in the Cauchy stress space, namely when the material is in compression and a region when at least
one of the material axes are in tension. If yielding occurs in the first region the tensile strengths are
controlled by equivalent plastic strain (see eq. 3.27), if in the second – by the combination of plastic
shear and total axial strain.

𝑓 (𝜀 , ) = 𝑓
𝑓 ℎ + 2𝐸𝐺 − 𝐸𝑓 ℎ𝜀 ,

𝑓 ℎ + 2𝐸𝐺 (3.27)

Furthermore, the softening accumulated in compression causes additional softening in tension.
E.g. during compression loading, compressive strengths got softened by 10%, the tensile strengths
will get reduced by the same amount of percent as well. Additionally, because the softening behavior
in compression is coupled in material axes, the reduction in tensile strengths is also coupled. The full
tensile strengths relationship for a given material direction can be expressed as:

𝑓 (𝜀 , , 𝜀 , , 𝑟, 𝜀) = 𝑟 ⋅ (𝑓 (𝜀) − (2𝑓 − 𝑓 (𝜀 , ) − 𝑓 (𝜀 , ))) (3.28)

where 𝑟 is the ratio between current compressive strengths in the softening regime and initial ultimate
compressive strengths (𝑟 = 𝑓 /𝑓 ); 𝜀 , is plastic shear strain accumulated when stresses at least in
one of the material axes are in tension.

As for the stiffness damage, the model exhibits a reduction of stiffness only when it is subjected to
tension. Variable 𝑑 controls the reduction in elasticity (𝐸 = (1 − 𝑑)𝐸 ). The damage serves purely a
crack closure function, therefore it is based on total strain, it is uncoupled in material directions and is
calculated with a rather simple expression:

𝑑 = 1 −
𝑓

𝐸 𝜀 ,
(3.29)
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where 𝜀 , is maximal total tensile strain during the analysis and 𝑓 is current yield strengths in the
element.

The damage parameters are applied to the diagonal and off-diagonal terms of the stiffness matrix.
The only exceptions are the stiffness parameters representing out of plane elasticity. The off-diagonal
terms get full damage as soon at least one of the material directions get damaged. The damage
recovers fully if the material becomes compressed. The damaged stiffness matrix can be represented
as follows:

𝐊 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1 − 𝑑 )𝐸 Δ ⌊𝜅⌋𝐸 𝜈 Δ 0 0 0 0
⌊𝜅⌋𝐸 𝜈 Δ (1 − 𝑑 )𝐸 Δ 0 0 0 0

0 0 𝐸 0 0 0
0 0 0 √𝜅2𝐺 0 0
0 0 0 0 2𝐺 0
0 0 0 0 0 2𝐺

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.30)

where 𝜅 = (1 − 𝑑 )(1 − 𝑑 ). The brackets ⌊⋅⌋ represent the floor function.

During the cyclic loading, the damaged stiffness does not transfer from compression to tension (Full
recovery). During the compression, there is no damage to the elasticity of the material. Though the
softening that occurs during compression get proportionally transferred to all tensile components.

Figure 3.12: Stress – Strain curve. Damage to stiffness.

This model uses incremental return approach when the stresses are returned to the yield surface
of yield initiation and only then the surface is softened (contracted) or hardened (expanded). This type
of approach creates stress delay in terms of strain increment. The resultant stress is delayed behind
actual stress by the magnitude of one strain increment. If time step is infinitesimal, the strain increment
is infinitesimal as well, thus the deviation becomes negligible.
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Figure 3.13: Incremental stepping algorithm, represented for tension softening case.

3.5. Additional considerations
3.5.1. Damping
If the damping of the material is desired it has to be explicitly implemented into the user subroutine. In
Abaqus, generally, mass and stiffness proportional damping is used. Such damping is also known as
Rayleigh damping and it consists of a mass proportional term 𝛼 and a tangent stiffness proportional
term 𝛽 (see eq. 3.31). The mass proportional term can be specified in Abaqus and it will be applied to
user subroutine. However, even though stiffness proportional therm can be specified it is not applied
for user defined materials. Therefore, 𝛽 damping factor has to be implemented in user subroutine.

𝐂 = 𝛼𝐌+ 𝛽𝐊 (3.31)

Figure 3.14: Representation of Rayleigh damping therms.

Numerically, 𝛽 part of Rayleigh damping is implemented by multiplying stiffness proportional damp-
ing factor 𝛽 by a stress rate and adding the result to the stress increment. Furthermore, this additional
stress has to be removed at the beginning of next increment.

𝝈 = 𝝈 + 𝛽𝑑𝝈𝑑𝑡 (3.32)
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3.5.2. Stable time estimation
During the analysis at 𝑡 = 0 Abaqus determines the stable time increment. The calculations of it are
based on the stress output from the subroutine. However, the stress output and calculated stable
time increment relationship is quadratic, this means that added Beta damping to an element does
not produce sufficient increment reduction. Therefore, the stresses have to be altered by a factor to
represent the true influence of beta damping to the stable time.

The stable time increment condition is as follows:

Δ𝑡 ≤ 2
𝜔 (√1 + 𝜉 − 𝜉) (3.33)

Where,
𝜔 – Highest eigen-frequency of the element

𝜉 – Fraction of critical damping, can be also expressed as 𝜉 = 𝛽𝜔/2
Highest eigenfrequency of the element can be calculated by determining eigenmodes of an element,

or it can be determined by the fallowing relationship:

𝜔 = 2𝑐
𝐿 ,

(3.34)

where 𝐿 , is the smallest characteristic length in the element and 𝑐 is dilation wave speed in the
material. The 𝑐 can be expressed trough the relation of Lamé’s constants (𝜆 and 𝜇) and material
density 𝜌 as follows:

𝑐 = √𝜆 + 2𝜇𝜌 (3.35)

The Lamé’s constants can be found:

𝜇 = 1
2
Δ𝐒 ∶ Δ𝐞
Δ𝐞 ∶ Δ𝐞 (3.36)

𝜆 = �̄� − 23𝜇 (3.37)

where Δ𝐒 is the deviatoric stress increment, Δ𝐞 is the deviatoric strain increment and �̄� is the effec-
tive bulk modulus expressed as:

�̄� = −Δ𝑝
Δ𝜀 (3.38)

where Δ𝑝 is increment of equivalent pressure stress defined as 𝑝 = − (𝜎 + 𝜎 + 𝜎 ), Δ𝜀 is the
increment of the volumetric strain.

If we assume that the strain increments Δ𝜺 is:

Δ𝜺 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.001
−0.001
−0.001
0.001
0.001
0.001

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.39)

Then the stable time increment can be obtained:

𝑡 =
1.5 𝐿 (√1 + 𝜉 − 𝜉)

√ . ( ) .
(3.40)

where Δ = 1/(1 − 𝜈 𝜈 ).
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3.5.3. Element deletion
Element deletion is implemented my flagging the element for deletion when the tabular input of com-
pression hardening/softening curve runs out of values. Abaqus deletes the element by setting the
stress and strain increments in the element equal to zero. By default when an element is deleted mesh
does not contact with itself, however, it is possible to reinitialize a contact after the deletion using spe-
cific modeling strategies. For further reading on contact re-initiation after the deletion, the reader is
referenced to Abaqus Analysis User’s Guide, Section 36.4.1 [14].

3.6. Summary
The model consists of three-dimensional stiffness matrix that is compatible with two-dimensional plas-
ticity model. The failure is initiated through one of the two yield surfaces, namely Rankine like and Hill
like. The plastic flow is non-associated for the former and associated for the latter. For the Rankine like
non-associated flow, three types of dilatory behavior were considered: always constant; constant until
prescribed volume increase is reached and then dilation is disabled; dilation angle decreases gradually
with plastic strain. The intersections of the yield surfaces and the apex of the Rankine-like surface cone
cause a problematic stress return in the sub-differential zone. In this chapter, the underlying algorithms
used to mitigate this issue were discussed.

Furthermore, the model exhibits tensile strengths softening based on total strain when the material
is subjected to tension and on plastic strain when it is subjected to compression and shear. Com-
pressive behavior supports both hardening and softening of the material strengths and the softening
percentage is transferred to the tensile strengths. Additionally, in tension, crack closure is present
while in compression plastic deformations are accumulated. The softening and hardening is applied in
increments where the material strengths in current increment depend on the plastic strains and total
strains generated in the previous one.

Finally, additional measures were taken to ensure stable and smooth analysis, stiffness proportional
therm of Rayleigh damping was incorporated together with stable time estimation based on the effects
of the added damping. To even further increase the stability of an explicit analysis an option to remove
crushed element was considered.



4
Material model verification

For the model, verification tests several different kinds of cube setups were used. The tests were
subdivided into two categories tension-compression and shear. Each category contains tests subjected
to monotonic loading and cyclic loading. It is so to show that the model functions as expected in all
loading situations.

4.1. Cube Setups
For tension–compression tests the size of the cube is 1𝑥1𝑥1𝑚 and it is composed of 64 single inte-
gration elements is used. It results in the 0.25𝑥0.25𝑥0.25𝑚 size of each element. The second order
accuracy is enabled in the settings of Abaqus. The cube is fixed at the bottom plane in the vertical di-
rection. Above the cube, there is a reference point tied with an equation to the top surface of the cube.
On the reference point, depending on the nature of the test, either upwards or downwards displacement
is applied. The analyses themselves were performed with the double precision setting.

Figure 4.1: Cube set-up for tension-compression tests.

The cube for the shear test has the same dimensions as the cube for compression/tension tests,
but it is only composed of one element. It was done like this due to the difficulty to obtain pure shear
without over-constraining the cube.

There is a reference point tied with an equation to the top right edge of the cube. On the reference
point, horizontal displacement is applied. The cube is restrained in the vertical direction at the bottom
and in horizontal – on bottom right edge. Out of plane displacements were restricted in order to obtain
a more stable output. The whole cube was exposed to isotropic pressure. The analyses themselves
were performed with the double precision setting.

49
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Note that this way of modeling induces extensive hourglass effect on the element. However, be-
cause the element has only one integration point, hourglassing does not have a significant effect on
the results of analyses.

Figure 4.2: Cube set-up for shear tests.

In the tests material properties described in the table 4.1 are used. In some tests, some of these
properties will be alternated in order to better verify the model, but in that case changing values will be
explicitly stated. Note that the properties used are not usually found in real masonry specimens, such
properties were chosen in order to easier check and display the results.

Table 4.1: Material properties used trough out the tests.

Elastic properties
𝐸 [𝑃𝑎] 𝐸 [𝑃𝑎] 𝐸 [𝑃𝑎] 𝑣 𝐺 [𝑃𝑎]

10000 ⋅ 10 5000 ⋅ 10 10000 ⋅ 10 0.2 3000 ⋅ 10
Inelastic properties

𝑓 [𝑀𝑃𝑎] 𝑓 [𝑀𝑃𝑎] 𝐺 [𝑁𝑚/𝑚] 𝐺 [𝑁𝑚/𝑚] 𝛼
1 ⋅ 10 0.5 ⋅ 10 15 15 1.56
𝑓 [𝑀𝑃𝑎] 𝑓 [𝑀𝑃𝑎] 𝛽 𝛾 𝑆𝑜𝑓𝑡. 𝑇𝑦𝑝𝑒.
10 ⋅ 10 5 ⋅ 10 -1 3 ℎ𝑦𝑝. 𝑓 = 30

4.2. Uniaxial tension
In this test, the tensile behavior of the model will be examined. Initiation and softening of yield surface
will be tested with various different fracture energies. The results will be verified by comparing them to
hand calculations. Furthermore, plasticity localization will be examined as well as high strain situations
and problems that can occur.

The analysis was performed with four different fracture energies (in the direction of loading), namely:
𝐺 = 1.5𝑁𝑚 , 𝐺 = 5.0𝑁𝑚 , 𝐺 = 10.0𝑁𝑚 and 𝐺 = 15.0𝑁𝑚 .

The observed behavior was as expected and it can be verified by calculating the ultimate tensile
strain 𝜀 and comparing it to obtained results:

𝜀 =
𝐹
𝐸 + 2

𝐺
ℎ𝐹 . (4.1)

This yields strains 𝜀 = 0.124‰, 𝜀 = 0.18‰, 𝜀 = 0.26‰ and 𝜀 = 0.34‰ respectively. It can be
observed from figure 4.3 that the values match the results.
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Figure 4.3: Stress – Strain curve. Tensile softening behavior.

Even though the smeared crack approach is used, the cracks localize (Figure 4.4). This behavior is
present because unlike in static implicit analysis in dynamic explicit analysis displacements and forces
propagate through the material at a specific speed. Because of this propagation in each increment,
the stresses do not increase uniformly trough out the mesh, therefore there will be places in the model
where stresses reach the yield values first. As soon as that happens, at that location, tensile softening
of the material starts. Because of the softening, the affected elements will act as the weakest link in
the model and all of the stresses will redistribute to them, therefore a localized crack will appear.

Figure 4.4: Damage localization. Blue color represents damaged elements, red – non-damaged.

Sometimes in analyses, a big crack openings can be observed. It is important for a material model to
allow the separation of these cracks without additional excessive forces. When analyzing such situation
with default Abaqus settings large ever increasing resistance forces can be observed with high strains
(see Figure 4.5). It is due to the Linear viscosity setting that tries to suppress such deformations. It
works by applying additional forces to the element when the volumetric strain rate is high. It is most
apparent when the element is damaged and it’s volume increases quite rapidly. Nevertheless, it can
be avoided by setting linear viscosity to 0 (see [14], Section 27.1.4) but in that case stiffness damping
should be applied as after appearance of each crack the structure will have high-frequency vibrations
(Figure 4.6).
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Figure 4.5: Force – Displacement curve. Tensile softening behavior in high strains.
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Figure 4.6: Oscillations of elastic element.
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In the Figures above 𝛽 represents stiffness proportional Rayleigh damping coefficient and 𝑏 –
Linear viscosity coefficient.

4.3. Uniaxial compression
In this test, the compressive behavior of the model will be examined. Initiation and softening of yield
surface will be tested. The results will be verified by comparing them to hand calculations. Furthermore,
damage localization will be examined as well as high strain situations.

As an input for the compression hardening/softening behavior, Thornfeldt softening curve for con-
crete was used.

𝑓(𝜀) = 𝑓 𝜀
𝜀
⎛
⎜

⎝

𝑛

𝑛 − (1 − ( )
⋅
)

⎞
⎟

⎠

; (4.2)

𝜀 = 𝑓 𝑛
𝐸 ⋅ (𝑛 − 1) ; (4.3)

𝑘 = {
1, if 𝜀 < 𝜀 < 0
0.67 + , if 𝜀 ≤ 𝜀 (4.4)

𝑛 = 0.8 + 𝑓17 . (4.5)

Where,
𝑓 – Ultimate compressive strength of the material
𝜀 – Strain at ultimate strengths
𝐸 – Elasticity modulus of the material

𝑛, 𝑘 – Shape parameters
𝑓 – Factor defining softening shape

This curve was generated for yield strength of 𝐹 = 5 ⋅ 10 𝑃𝑎 and a varied 𝑓 factor, namely –
15, 20, 30 (See Table 4.2).

Table 4.2: Properties used in different analyzes

No. 𝐸 𝐸 𝑓 , 𝑓 , 𝑓
1 10 ⋅ 10 𝑃𝑎 5 ⋅ 10 𝑃𝑎 10 ⋅ 10 𝑃𝑎 5 ⋅ 10 𝑃𝑎 15
2 10 ⋅ 10 𝑃𝑎 5 ⋅ 10 𝑃𝑎 10 ⋅ 10 𝑃𝑎 5 ⋅ 10 𝑃𝑎 20
3 10 ⋅ 10 𝑃𝑎 5 ⋅ 10 𝑃𝑎 10 ⋅ 10 𝑃𝑎 5 ⋅ 10 𝑃𝑎 30

During the tests, downwards displacement of 17.5mm was applied to the cube. The harden-
ing/softening behavior was as expected, but it must be noted that the plastic strain localization only
happens when the transition from hardening to softening is sudden (𝑓 = 30).

By comparing the output to the input provided, it can be seen that curves do not match (see Fig-
ure 4.9). There is ever increasing drift of stresses from the expected result. This is because during
analysis, the hardening/softening behavior for compression is being tracked using equivalent plastic
strain and that the yield value of Rankine-like yield surface is not equal to the material strengths along
each of the material directions. This means that a perfect equivalence in the stress–strain diagram is
not achieved. It can be solved by formulating ̇𝜀 ≠ �̇� , but due to the usual lack of the experimental
results current used simplification is sufficiently accurate.

By plotting the difference ratio between equivalent plastic strain and the strain obtained from the

analysis (see Figure 4.10) it can be seen that the equivalent plastic strain is always √ of the ac-
tual plastic strain. Therefore, one could adjust stress-strain curve depending on the type of analysis
expected in order to minimize the deviation.
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Figure 4.7: Stress – Strain curve. Compression hardening/softening behavior.
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Figure 4.8: Force – Displacement curve. Compression hardening/softening behavior.
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Figure 4.9: Stress – Strain curve. Comparison of compression softening to expected results.
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Figure 4.10: Equivalent plastic strain versus plastic strain in loading direction
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4.4. Shear
In this test, the shear behavior of the material model will be tested. Shear and tension relation together
with dilation angle will be examined. For material properties, the Tensile fracture energy, and the dilation
angle will be alternated between the analyses. The fracture energies are set to be the same both for 𝑥
and 𝑦 directions. The properties used are presented in table 4.4.

Table 4.3: Properties used in different analyzes

No. 𝑝 𝐺 tan𝜓
1 1 000 𝑃𝑎 20.0 0.0
2 100 000 𝑃𝑎 20.0 0.0
3 200 000 𝑃𝑎 20.0 0.0
4 400 000 𝑃𝑎 20.0 0.0
5 1 000 𝑃𝑎 15.0 0.0
6 1 000 𝑃𝑎 10.0 0.0
7 1 000 𝑃𝑎 20.0 0.5
8 1 000 𝑃𝑎 20.0 1.0

From the Figure 4.11 it can be seen that increased pressure results in increased shear. The differ-
ence from shear at low pressure can be described by:

𝜏 = 𝜇𝑝 (4.6)

Friction coefficient 𝜇 in this case is 0.8 (from Eq. 3.17)
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Figure 4.11: Stress – Strain curve. Influence of different isotropic pressures

This is only valid in isotropic loading situation. If the loading is orthotropic the shear strain – shear
stress relation is parabolic meaning that with the lower uniaxial compressive force the friction would
approach infinity and with a higher – zero.

From above figure it can be seen that the softening of tension influences the softening of shear, the
retaliation comes through plastic strain. The fracture energy in tension defines ultimate plastic strain
and that, in turn, defines the Mode-II fracture energy.

Next, the dilation angle will be examined. The results of the analysis can be checked by:

𝑑𝑉
𝑉 = 𝜀 + 𝜀 + 𝜀 = 𝑑𝜆 tanΦ (4.7)
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Figure 4.12: Stress – Strain curve. Influence of tensile fracture energy

tanΦ = 𝜀 + 𝜀 + 𝜀
𝑑𝜆 (4.8)

From Figure 4.13 it can be seen that the volume change is mostly uniform, although there is some
fluctuation due to the shock-waves in the analysis. By differentiating the curves with respect to equiv-
alent plastic strain we get rate of change of volumetric strain that further shows existence of two shock
waves: one at the beginning of analysis when displacement gets to be applied and the second one
during the softening of the material (see Figure 4.12, 𝐺 = 20 𝑁/𝑚). These disturbances happen be-
cause during the softening the stress distribution fluctuates and because the flow surface is not linear,
the direction of the flow changes with changing stress. It does not induce huge effects on the volumetric
strain, though the derivative of it is effected substantially (see Figure 4.14).

It is also important to note that decreasing dilation angle increases the shear sensitivity to minor
fluctuations. This is due to shear multiplier factor 𝛼 used for the flow function. The lower the friction
angle the higher is the 𝜉 factor and therefore, the shear stress has more influence on the direction of
the flow. This coupled with the nonlinear flow field will result in high instabilities around tension with
low dilation angles.

4.5. Cyclic: Tension – Compression
In this test, cyclic behavior of the material will be analyzed. The effects of the change of the state
(Tension/Compression) will be tested. The default material properties was used for the text, except for
tensile fracture energy which is 𝐺 = 30 𝑁/𝑚.

Cyclic vertical displacement (Figure 4.15) was applied to the test cube. The displacement was
prescribed in such a way that specimen does not fully soften in the first cycle, but only in the second.

During tension, all of the plastic strain is converted to the damage of the stiffness. Thus, after
unloading no plastic deformations are present. To the contrary, in compression, the plastic strain is
accumulated and stiffness does not experience any damage (see Figure 4.16). When a specimen is
compressed it’s stiffness fully recovers and when put back to tension the damage is resumed.

4.6. Cyclic: Shear
In this test, a cyclic shear behavior of the material model will be examined. For this analysis, the same
element as in the previous shear analysis is used. However, the boundary conditions were changed.
The horizontal displacement is applied on the top face of the element instead of the rightmost edge,
as wells as the bottom support was expanded from the edge of the element to the whole face. It
was done so to prevent hourglassing in the element. Even though the hourglassing did not have a
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Figure 4.13: Volume change in respect to plastic strain
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Figure 4.14: Dilation angle in respect to plastic strain
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Figure 4.15: Dilation angle in respect to plastic strain
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Figure 4.16: Stress – Strain curve. Tension – Compression cycles.
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Figure 4.17: Stress – Strain curve. Zoomed region of tensile part.

negative effect on analysis results during the monotonic loading, during cyclic loading it had significant
influence. These new boundary conditions over-constrain the element, therefore pure shear behavior
is not obtained.

Table 4.4: Properties used in different analyzes

No. 𝑑 tan𝜓
1 0 1.0
2 0.001 0.0
3 0 0.0

Harmonic cyclic shear loading was applied to the test elements (see Figure 4.18). The duration of
the analyses was 10s in order to minimize the dynamic effects. During this period 10 full shear cycles
were applied.

First, constant dilation was examined. From Figure 4.19 it can be seen that the dilation is much
higher than the set dilatory angle of tan𝜓 = 1.0. This is due to several reasons. First of all the element
is over-constrained, therefore, stresses in the constrained material axes get accumulated over the time
of the analysis (see Figure 4.20), furthermore, because of the shape of the flow function, the lower the
uniaxial stress, the greater is the dilation angle. Such high dilation is unrealistic and it is never seen in
experimental results.

From Figure 4.20 it can be also observed that even tough the dilation is ever increasing, the stress
after reaching certain point starts softening. It is due to the fact that the confining stress grows so high
that the material starts yielding and softening due to the stresses reaching the compression surface.

When examining the dynamic dilation behavior it can be seen that the volumetric strain change
is significantly lower than in the previous analysis. This type of behavior would be expected from
experimental results. However, in the material properties it was that the maximal possible volumetric
change is 0.001 of total volume, but in the analysis 3 times the higher value was achieved (see Figure
4.21). This is, again, due to the shape of the flow function, does not matter how low the dilation angle
will be set, at low values of uniaxial pressure, the dilation angle will still be high.

As in the previous analysis, the stress appears to be growing (see Figure 4.22) due to the confine-
ment of the element. However, this time softening in compressive strengths was not present.

The final shear test is a control for the confining stresses. The dilation in this test was set to zero.
Not only that but the flow surface wasmade to be completely flat. In this case, no dilation is experienced
by the element (see Figure 4.23), though a sudden volume decrease can be observed at the start of
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Figure 4.18: Input signal for the analyses.
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Figure 4.19: Volume change per shear strain, for an element with constant dilation angle.
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Figure 4.20: Force – Displacement curve. Shear force resistance in an element with a constant dilation.
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Figure 4.21: Volume change per shear strain, for an element with decreasing dilation angle.
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Figure 4.22: Force – Displacement curve. Shear force resistance in an element with a decreasing dilation.

the analysis. This decrease is due to elastic volume change due to the instantaneous application of
vertical pressure.
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Figure 4.23: Stress – Strain curve. Zoomed region of tensile part.

Because there is no dilation, there are no confining stresses. From Figure 4.24 it can be observed
a continuous cycle of the shear force after first tensile strength softening, during the analysis.

From the cyclic shear test, it was determined that the model behaves as expected.

4.7. Element deletion
In this test, the element deletion is analyzed. For the test, a masonry wall is placed between two
platforms. The platforms are disconnected from the wall and a general contact is defined in the whole
model with “Hard” normal behavior and a tangential behavior with the friction of 0.7. The top platform
is loaded with imposed downward displacement. The bottom – clamped.

The input used for compressive behavior is depicted in Figure 4.26. The failure of an element is
initiated by the last equivalent plastic strain entry in the input table. In such case output variable 𝑆𝐷𝑉29
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Figure 4.24: Stress – Strain curve. Zoomed region of tensile part.

(a) 3D view (b) Side view

Figure 4.25: Model used for element deletion testing

is set to 0 and the failed (crushed) element is deactivated. For such element strain increments and
stress increments are always equal to zero.

During the analysis localization of crushing can be observed (See Figure 4.27b). Such localization
introduces stress redistribution and propagation of crushed elements (See Figure 4.27c). After the
whole line of elements is removed the top part of the wall drops onto the bottom part and closing the
gap.

It must be noted that after element deletion Abaqus recalculates the contact surfaces and wall does
not fall through. But for this to happen special measures has to be taken (Consult Abaqus User Guide
36.4.1 Modeling surface erosion).

By further examining the stress-strain relationship of a failed element, it can be seen that indeed
the stress is set to zero as soon as the input is exceeded (Figure 4.28)
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Figure 4.26: Stress – Strain relationship of input.

(a) Before crushing (b) Crushing localized

(c) Crushing propagated (d) Closure of crack

Figure 4.27: Equivalent compressive plastic strain throughout the analysis
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Figure 4.28: Stress – Strain relationship of a failed element.

4.8. Summary
In this chapter, tensile, compressive and shear behaviors subjected to both monotonic and cyclic load-
ings were tested. All of the obtained results were true to formulations described in Chapter 3. It has to
be noted, that although the dynamic dilation angle worked as expected, it introduced some instabilities
into the system. These instabilities can cause substantial problems in larger scale analyses, there-
fore it is recommended to only use this feature if confining pressure is always present in the affected
elements or to avoid it at all. Alternatively, dilation can be set to zero immediately or after wanted
volumetric change is reached as these settings provided much more stable results.

In the end, the capabilities of element deletion were presented. The contact between the elements
can be re-initiated after elements are deleted and the appeared openings can be closed.



5
Comparison to experiments

In this chapter, developed material model will be compared to the results of experimental tests and
its ability to simulate the behavior of different masonry tests will be assessed. It is important to note
that the masonry macro-models will always include some degree of approximation as all of the failure
mechanisms of masonry cannot be simulated with the smeared out approach.

The goal of this chapter is to verify the material model in different loading situations. Namely, shear
behavior with low pressure so the failure mechanisms prescribed by the Rankine-like yield surface can
be tested; shear behavior with high pressure so the failure mechanisms prescribed by Hill-like surface
can be tested and shear behavior under cyclic loading so the cyclic capabilities of the model can be
examined. Therefore, walls from experiments carried out by Ganz and Thürlimann [27, 28] will be
analyzed. The tests will be referenced as ETH Zurich tests trough out the chapter.

ETH Zurich wall tests were chosen mainly because of two reasons. First of all the researchers that
carried out the tests had provided sufficient amount of material data with which an accurate failure en-
velope can be mapped in Cauchy stress space. Second, the underlying failure surface was compared
by Lourenço [56] to specifically these test results, therefore, the tests act as a good control for the
developed material model.

5.1. Determination of the material properties
To determine the material properties 12 wall panels reported by Ganz and Thürlimann [27] of dimen-
sions 1200×1200×150 [𝑚𝑚 ] and denoted 𝐾 were considered. The panels were loaded proportionally
in principle stress directions 𝜎 and 𝜎 along different rotations 𝜃 of the bed joint. To determine the in-
elastic properties of the masonry the test results of these wall panels were mapped in Cauchy stress
space. For the mapping panels, 𝐾5 and 𝐾9 were disregarded. The reason is that the boundary condi-
tions affected the failure of the panel 𝐾5 and panel 𝐾9 included reinforcement.

Themapping of the results was done using a least square fit method. To determine the ratio between

experimental and predicted failure was calculated by determining the stress vector √𝜎 + 𝜎 + 𝜏 and
predicted failure envelope intersection point. The comparisons between the fit and experimental results
can be seen in table 5.1.

The fit resulted in the following material properties: 𝑓 = 0.246 [𝑀𝑃𝑎]; 𝑓 = 0.0 [𝑀𝑃𝑎]; 𝛼 =
1.716; 𝑓 = 1.730 [𝑀𝑃𝑎]; 𝑓 = 7.505 [𝑀𝑃𝑎]; 𝛽 = −1.171; 𝛾 = 1.0, however for numeric analysis it
is more stable to have some amount of strengths in the material. Therefore, for further calculations
tensile strength in y direction will be used as follows: 𝑓 = 0.05 [𝑀𝑃𝑎].

The elastic properties were determined directly from test data and they are as follows: 𝐸 =
2460 [𝑀𝑃𝑎]; 𝐸 = 5460 [𝑀𝑃𝑎]; 𝜈 = 0.18; 𝐺 = 1130 [𝑀𝑃𝑎]. However, data to determine some of
the inelastic parameters was missing, therefore, these parameters: tensile fracture energy, compres-
sion softening curve and ultimate equivalent plastic strain for compression had to be assumed.

For the tensile softening behavior, the fracture energies of 20 / are used. For the compression
regime, parabolic hardening/softening law are used (see Figure 5.1) in order to obtain a softening
behavior that is not sensitive to the element size. However, as examined in the previous chapter the

67
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Table 5.1: Comparison between plasticity model and the experimental results.

Panel Regime 𝜃
[∘]

Plasticity model Experimental results
Ratio𝜎

[𝑀𝑃𝑎]
𝜎

[𝑀𝑃𝑎]
𝜏
[𝑀𝑃𝑎]

𝜎
[𝑀𝑃𝑎]

𝜎
[𝑀𝑃𝑎]

𝜏
[𝑀𝑃𝑎]

K1 Tens. −0.092 22.5 −0.069 −0.825 0.389 −0.071 −0.850 0.401 1.030
K2 Tens. −0.050 22.5 −0.142 −1.145 0.509 −0.138 −1.111 0.494 0.970
K3 Comp. 0.000 0.0 0.000 −7.505 0.000 0.000 −7.635 0.000 1.017
K4 Comp. 0.000 90.0 −1.730 0.000 0.000 −1.601 0.000 0.000 0.926
K6 Tens. 0.000 45.0 −0.344 −0.344 0.344 −0.317 −0.317 0.317 0.922
K7 Tens. 0.000 22.5 −0.344 −2.005 0.830 −0.351 −2.048 0.848 1.021
K8 Tens. 0.000 67.5 −0.337 −0.057 0.140 −0.217 −0.037 0.090 0.644
K10 Comp. 0.313 0.0 −2.097 −6.711 0.000 −2.015 −6.449 0.000 0.961
K11 Comp. 0.323 22.5 −2.019 −4.675 1.146 −2.063 −4.778 1.171 1.022
K12 Comp. 0.313 45.0 −1.897 −2.085 0.994 −2.038 −2.239 1.068 1.074

compression localization heavily depends on the softening rate of the material and the speed of stress
propagation in the analyzed structure. Therefore the compressive fracture energy: 𝐺 = 3280 /
and 𝐺 = 10000 / , and the ultimate plastic strain 𝜅 = 8 ⋅ 10 is chosen. For the effective
compressive region ℎ = 375 [𝑚𝑚] was selected to cover the height of 5 elements.

Figure 5.1: Parabolic hardening/softening law for compression (from [56])

5.2. Decription of the tests and analysis setup
The shear walls analyzed consist of hollow clay brick masonry. The tests were reported by Ganz and
Thürlimann [28] and denoted 𝑊. There were in total seven walls tested. However, only four of them
will be used for the comparison, namely walls 𝑊1, 𝑊2, 𝑊4 and 𝑊6. The walls 𝑊3 and 𝑊5 had
reinforcement in them, therefore they fall outside of the scope of this thesis. The wall𝑊7 was removed
due to the indecisive crack patterns, while simulation could be performed it would be difficult to compare
the results.

The geometry of the walls consist of a masonry panel of 3600 × 2000 × 150 [𝑚𝑚 ] and flanges
of 150 × 2000 × 600 [𝑚𝑚 ] (see Figure 5.2). The wall is subjected to the boundary conditions by
two reinforced concrete slabs at top and bottom of the wall. Additionally, the wall is given prescribed
uniformly distributed load 𝑝 over the length of the wall with a resultant 𝑃. Furthermore, a horizontal
displacement 𝑑 is applied at the top concrete slab. The magnitudes of 𝑃 and 𝑑 alternate between the
walls tested. The walls 𝑊1, 𝑊2 and 𝑊4 are subjected to monotonic displacement increment, while
wall𝑊6 is loaded with a dynamic signal.

All of the numerical analyses are performed using dynamic explicit integration method. The contin-
uum elements used are 3D brick elements consisting of 8 nodes and 1 integration point. The size of
these elements is 75×75×75 [𝑚𝑚 ], the mesh is regular throughout the whole model (see Figure 5.3).
Aside from the loads mentioned before, self-weight of the wall and concrete slabs are also included in
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the analysis. The monotonic analyses are performed in a period of 1 second while quasi-static in a 12s
period.

Figure 5.2: Geometry and loads for ETH Zurich shear walls (from [56])

Figure 5.3: Mesh and boundary conditions of walls used in the numerical analyses (different colors denote
different material properties applied to the elements)
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(a)

(b)

Figure 5.4: Wall . Experiment failure patterns: (a) at peak load; (b) at end stage
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5.3. Results of the analyses
First, the wall 𝑊1 is analyzed. The wall has an applied distributed load 𝑃 = 416 [𝑘𝑁]. The numerical
results show good agreement to the experimental tests both in horizontal force – displacement curve
and in crack patterns of the wall. Furthermore, the developed material model combined with an explicit
integration analysis provides exceptional stability. The test was completed successfully without an
extra effort or special modeling techniques, by contrast, where numerical analysis (implicit integration)
reported by Lourenco diverged without reaching 15mm horizontal displacement point.

By analyzing the force – displacement diagrams (see Figure 5.5) it can be observed that the cracking
of the wall starts at around 1mm of displacement. There are some fluctuations in the magnitude of the
horizontal force, due to a sudden tensile failure of the elements. Furthermore, because the analysis is
executed with 1s of simulation time, the dynamic effects further increase the fluctuations in the force-
displacement curve.

It further has to be noted that up until 8mm of displacement the dilation throughout the whole wall is
constant. After that, first elements surpass the set limit of 0.03 volumetric strain and the dilation angle
for those elements is set to zero. It forces shear localization and strength degradation.
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Figure 5.5: Wall . Horizontal force – displacement diagrams.

The behavior is the wall is shown in figures 5.6 and 5.7 in terms of deformed meshes and principal
strain directions. For the plots of principle strain, the lowest 5% of the values are discarded in order to
obtain more legible results. A reasonable agreement can be seen between numerical and experimental
results. At the beginning, (see Figure 5.6b) of the analysis the right part of the wall starts to crack in a
diagonal direction. This cracking is accompanied by the flexural cracks at the left toe of the wall. As
seen later the later crack will close and will be replaced by flexural cracks at the upper part of the left
flange.

Upon increasing of the loading (see Figure 5.7b), cracking starts to concentrate around the initially
cracked diagonal strip. The cracking band angle and position coincides with the experimental results.
Furthermore, after a point of 8mm of displacement shear localization starts appearing at top left and
bottom right parts of the wall. This is due to the dilation angle being set to zero at the elements in those
locations. However, the localization appears to propagate horizontally instead of diagonally due to it
being sensitive to the element orientation. In this case, it does not alter the accuracy of the results
significantly as in the experiment, flange flexural failure was observed at the approximate position. But
it means that in cyclic shear analysis dilation angle cannot be set to zero as that would induce localized
shear in a horizontal strip that might significantly alter the analysis results. On the other hand, non-zero
dilation angle produces shear failure mode that seems to be determined by the loading conditions and
the geometry of the wall rather than the orientation of the elements.
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(a) (b)

Figure 5.6: Wall W1. Results of the analysis at the displacement of 2mm: (a) deformed mesh (scale 100); (b)
max. principle strain directions

(a) (b)

Figure 5.7: Wall W1. Results of the analysis at the displacement of 20mm: (a) deformed mesh (scale 5); (b) max.
principle strain directions

Figure 5.8 shows the contour of minimum principal stresses at the same stages of analysis. Upon
the increasing of the loading, it can be observed that the stresses concentrate in the narrower band
with peak stresses at the bottom right corner especially the flange. However even at the displacement
of 20mm, it can be seen that the stresses do not exceed maximal compressive strengths, therefore it
can be concluded that the failure is completely governed by the tension regime.

(a) (b)

Figure 5.8: Wall W1. Minimal principal stresses at the displacement of (a) 2 mm and (b) 20 mm.

Next wall𝑊2 is analyzed. The wall is subjected to the vertical load 𝑃 of 1287 [𝑘𝑁]. At the beginning
of the analysis (see Figure 5.10) the behavior of the wall is ductile followed by a later brittle failure due
to compression in the bottom right toe of the wall. As in analysis executed by Lourenço, the force
displacement curve is around 10-20% higher than obtained in the experiments. The slight difference in
peak strengths comes from slightly different fit obtained for thematerial properties. However, in general,
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(a)

(b)

Figure 5.9: Wall W2. Experiment failure patterns: (a) at peak load; (b) at end stage
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the good agreement is found between the analysis and the experiment. Even though the strengths of
the wall are higher, the force-displacement curve follows parallel path after 3mm of displacement. At
around 8mm of displacement, a sudden failure of the wall is observed.
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Numerical, current model

Figure 5.10: Wall . Horizontal force – displacement diagrams.

By examining the principal strains (see Figure 5.11) it can be seen that reduction in tangential
stiffness around 3mm of displacement is caused by the formation of two crack bands. One at the
left side of the wall propagating from the top part of the left flange and another on the right side of
the wall propagating from the bottom of the right flange. This behavior can also be observed in the
experimental test (see Figure 5.9a) as well.

(a) (b)

Figure 5.11: Wall W2. Results of the analysis at the displacement of 3mm: (a) deformed mesh (scale 5; (b) max.
principle strain directions

Just before the failure of the wall (see Figure 5.12) tensile crack concentration around the initial
left crack band can be seen. Furthermore, at the top left flange shear failure between the wall and
the flange forms. At the collapse stage (see Figure 5.13) the crushing of the bottom right row of the
elements is evident. The crushing forced the stable time increment to reduce and the analysis stopped.
One way to avoid such behavior is to enable element deletion. Therefore, the crushed elements would
be deleted and the analysis could continue. In this specific test this measure was not required but in
other cases e.g. in an analysis of full buildings, element deletion might be required as the analysis
should continue even though some elements are crushed in the structure.
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(a) (b)

Figure 5.12: Wall W2. Results of the analysis at the displacement of 8mm just befor the colapse: (a) deformed
mesh (scale 5); (b) max. principle stress directions

(a) (b)

Figure 5.13: Wall W2. Results of the analysis at the displacement of 8mm at the moment of colapse: (a)
deformed mesh (scale 5); (b) min. principle stress directions

(a) (b)

(c)

Figure 5.14: Wall W2. (a-b) Minimal principal stresses at the displacement of 3 mm and 8 mm (before failure); (c)
equivalent plastic strain at 8 mm (after failure).
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(a)

(b)

Figure 5.15: Wall . Experiment failure patterns: (a) at peak load; (b) at end stage
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Further, wall𝑊4 is analyzed, the wall has a concentrated force 𝑃 = 423 [𝑘𝑃𝑎] applied at the distance
of 𝑒 = 840 [𝑚𝑚] from the center of the wall and distributed through a width of 500 [𝑚𝑚]. Moreover,
this wall had wider flanges 900 [𝑚𝑚] instead of 600 [𝑚𝑚] like in previous walls. The results from the
analysis are again closely related to the experiment (see Figure 5.16). The force-displacement curve
follows the experimental results closely, with some minors fluctuations around 3 mm of displacement.
The fluctuations are caused due to cracking at the top of the left flange.
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Figure 5.16: Wall . Horizontal force – displacement diagrams.

Initially, three cracking bands can be identified (see Figure 5.17). The most major one is at the top
left, flange and the concrete pad separation, then bottom left toe and bottom pad separation and almost
vertical cracking originating from the bottom right corner of the wall and following upwards along the
right flange. The crack band right of the wall and the crack and top left of the wall can be also identified
in the experiment (see Figure 5.15a). However, none of the cracks at the bottom right toe of the wall
are visible.

At later stages of the analysis (see Figure 5.18) the cracking at the top left part of the wall expands
further and merges with the cracking on the right side of the wall, while the crack at the bottom left toe
of the wall closes. These patterns can be also observed in the experiment (see Figure 5.15b). There
it appears as the horizontal and vertical cracks between the bricks.

By analyzingminimum principle stresses in the wall at later stages of the analysis (see Figure 5.19b).
It can be observed that the crushing starts to appear at the bottom right part of the wall, just nearby

(a) (b)

Figure 5.17: Wall . Results of the analysis at the displacement of 3mm: (a) deformed mesh (scale 10); (b)
max. principal strain directions
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(a) (b)

Figure 5.18: Wall . Results of the analysis at the displacement of 17mm: (a) deformed mesh (scale 5); (b)
max. principal strain directions

the right flange. Additionally, some crushing appears at the bottom right part of the right flange. In the
experiment, the crushing crack patterns are also observed at the right side of the wall and at the bottom
of the right flange.

(a) (b)

Figure 5.19: Wall . Minimal principal stresses at the displacement of (a) 3 mm and (b) 17 mm.

Finally, the cyclic analysis of wall𝑊6 is executed. The wall has an applied distributed load resulting
in 𝑃 = 418 [𝑘𝑁]. Using the previous analysis settings resulted in a horizontal shear localization at the
top part of the wall. The localization has high effects on crack patterns and reaction forces, therefore, for
this analysis, the dilation angle was not set to zero and was kept constant. Furthermore, the experiment
was carried out trough a long period of time and it had 9 phases (denoted 𝐿𝑆1 to 𝐿𝑆9) where each
phase consisted of 10 cycles. Such analysis is infeasible with explicit integration method as it would
take indefinitely long to complete the simulation. Therefore, a simplified signal was constructed. The
new signal consists of 6 phases (see Figure 5.21) starting from a phase 𝐿𝑆4 as the lower phases act
only in the elastic domain of the wall. Each of the phases contains 3 full cycles and lasts 2s.

Each of the phase used in numerical and experimental analysis had an imposed maximal horizontal
displacement at the top of the wall of 0.4, 0.8, 1.5, 3, 6, 9 [𝑚𝑚] respectively starting from phase 𝐿𝑆4. It
is import to note that this analysis is heavily simplified, not only by the shorter duration of the test but
also by fewer cycles. Furthermore, in the experiment each cycle in a phase had a longer period than
in a previous phase, wherein the numerical analysis all of the periods are the same. Therefore, it is
extremely difficult to compare the results of the experimental test and the numerical analysis.
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(a)

(b)

Figure 5.20: Wall W6. Experiment failure patterns: (a) at peak load; (b) at end stage
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Figure 5.21: Wall . Input horizontal displacement over time.

Despite the carried out simplifications, by analyzing force-displacement graph (see Figure 5.22),
good agreement with the strengths envelope is found. At the last phase, in the experiment, some
strength degradation is observed, while in the numerical analysis, this strength degradation is not seen.
The main reason might be that the phases in the analysis only had 3 cycles instead of 10. Although at
the end of the last cycle, there is a peak of lower strengths, this suggests that if the analysis were to
continue, strength degradation would be present.

However, the dissipated energy in the numerical simulation is much higher than in experimental
analysis. This issue could be explained by incorrectly modeled boundary conditions of the wall, as it
is seen in the experimental results, the wall experiences rocking behavior, however, in the analysis,
some degree of rocking was only observed at later cycles. Further examining the pictures provided in
the experiment it can be seen that the wall has cracked at the connection of the wall and concrete slab,
both, at the bottom and at the top.
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Figure 5.22: Wall . Horizontal force – displacement diagrams.
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To compare the cracking patterns is a difficult task as both in the experiment and in the numerical
analysis, the whole wall was cracked. However, in an experiment, a prominent “X” pattern on the wall
is seen. By analyzing the results of the analysis it can be observed that the “X” crack pattern can be
first seen to form at the analysis time of 7.25 [𝑠] (see Figure 5.23a). Unfortunately, at the later stages of
the analysis, the crack pattern is lost in the noise of cracks as the whole wall is cracked. Nevertheless,
the crack concentrations can be examined by looking at the equivalent plastic strain generated by the
yielding on the Rankine type surface (see Figure 5.23b). There, a higher concentration of equivalent
plastic strain can be seen at the mid-wall, flanges, and diagonals spanning from the wall center to the
top corners of the wall. Even though, in the experiment a clear Mode-II crack can be seen at the center
of the wall, it had more prominent cracks spanning from the center to the bottom corners of the wall.

(a) (b)

Figure 5.23: Wall . Results of the numerical analysis: (a) Tensile strengths degradation at the time of . [ ]
(blue – fully degraded, 1% remaining strength, red – not degraded, 100% remaining strengths); (b) equivalent
plastic strain generated by Rankine like yield surface at time of [ ] (red – more strain, green – less strain); in

both figures, deformations are to scale.

The extra noise added to the late stage crack patterns can be attributed to the fact that the plastic
strain is recorded every time the Rankine type surface is yielding, however, the model also exhibits
crack closure in tension. Therefore, in some regions, the generated and displayed plastic strain is
fictitious and does not affect the behavior of the wall. As an example, such regions are the flanges of
the wall. While on tension, if they are cracked, the cracks would open up and generate fictitious plastic
strain, however later when tension is removed and compression is applied, the cracks would close
due to the damage in stiffness but the generated plastic strain would remain recorded. Additionally,
it should be noted that due to the fact the dilation angle was kept constant throughout the analysis,
the wall dilated substantially, furthermore, because of the flanges providing the horizontal constraint,
higher stresses was to be expected than in the experiment.

Despite that, a strain increment output could be generated, it would show regions where the strain
rate is highest at any given increment. These regions would approximately (the main crack path can
change throughout analysis) show the crack pattern in the structure. This kid of output is not available
by default in Abaqus. Therefore, a Python script has to be written in order to obtain it (See Appendix
B). By examining such output (see 5.24) a reasonable agreement with experimental results is found.
Diagonal cracks can be observed starting from the top left and top right parts of the wall. Also, a wall
and a concrete slab separation at the top can be observed in both peaks of the displacement. In the
experiment, more prominent cracking can be seen in the lower left bottom area of the wall while in the
analysis – upper right. But, then again, these differences can be influenced due to the imperfections in
the experimental specimens or due to the numerical model simplification for the analysis (i.e. the way
the displacement is applied).
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(a) (b)

Figure 5.24: Wall . Results of the numerical analysis: (a) strain increment at peak displacement to the left
. [ ]; (b) strain increment at peak displacement to the right . [ ]; in both figures, deformations are to scale.

5.4. Summary
Four shear walls were analyzed, three subjected to monotonic in-plane horizontal displacement and
one to dynamic cyclic horizontal displacement. By examining the obtained results, good agreement with
the experimental data was found. The crack patterns and F-U curves go hand in hand with the results of
the experiments. As for cyclic analysis, similar behavior in therms of strength envelope was observed,
however, the analysis yielded higher energy dissipation than it was present in the experiments. It was
concluded that in the experiment rocking behavior was observed and in the analysis it was lacking due
to strict boundary conditions that did not allow the separation of the wall base and the bottom concrete
pad. Furthermore, it was difficult to define the compression softening curve as the experiment was
lacking such data. A curve was assumed, but it did not yield the most favorable results (𝑊2 and 𝑊6)
as wanted strength degradation was not observed. Better fitting the compression curve would have
yielded better results.



6
Conclusions and recommendations

6.1. Conclusions
In this thesis the following objectives were achieved:

• Through a discussion of basic theoretical considerations it was found that the explicit algorithm
is more favorable than the implicit.

• Through a comprehensive literature review the information on the existing knowledge about Con-
tinuum Damage Mechanics models were assembled. Two main distinctive works were identified,
namely the work Lourenco [56] and the work of Pela [75]. After investigation of strengths and
drawbacks of both models, it was decided to use Lourenco [56] model as the basis of the thesis.

• A stable, accurate and robust orthotropic composite masonry model for explicit solver has been
developed. The model exhibits 3D elasticity and 2D plane plasticity. Therefore, the modeling and
application of boundary conditions are simplistic. Furthermore, it is assumed that two general fail-
ure mechanisms are present. One associated with tensile and shear brittle fracture represented
by Rankine type yield surface and another with distributed crushing of a material represented by
Hill type yield surface. The model exhibits uncoupled damage evolution in tension regime and
coupled in compression. The shear brittle fracture and distributed crushing are controlled by 𝜀 ,
and 𝜀 , respectively. Additionally, the model supports tensile crack closure, while in compres-
sion it accumulates the plastic deformations. The model is formulated in such a way that most of
the properties in material directions are independent of one another.

• The intersections of the yield surfaces and the apex of the Rankine-like surface cone cause a
problematic stress return in the subdifferential zone. The underlying robust algorithms used to
mitigate these issues were derived that yielded stable and accurate results.

• Additional measures were taken to ensure stable and smooth analysis, stiffness proportional term
of Rayleigh damping was incorporated together with stable time estimation based on the effects
of the added damping. To even further increase the stability of an explicit analysis an option to
remove crushed element is considered.

• The developed model was tested by examining its behavior in one or few element tests and
by comparing it with experimental results. For experimental comparison, four shear walls were
modeled, three subjected to monotonic loading and one to cyclic. The analyses closely agree to
experimental results even when using raw test data. The model is stable due to explicit approach
and it is flexible enough to be used and provide qualitative results in various types of analyses,
static or cyclic.

However, during the testing of the model, several flaws emerged:

• The developed nonlinearly decreasing dilation angle appeared to be unstable when elements are
subjected to tension regime, by setting of the dilation to zero did not help much as it forced the
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shear to localize in horizontal bands and just by having constant dilation influenced the deforma-
tions of the cyclic tests as too extensive lift of the wall was observed.

• The way that equivalent plastic strain is being tract appears to be flowed as it does not take in
to account the closure of the cracks. So the plastic strain output is not what one would expect.
However, this issue could be eliminated with the future iterations of the code. Or temporary
mitigated by analyzing strain increment output data.

In addition to the main objectives, two other programs were developed to aid the analysis of ma-
sonry:

• A test data fitter in order to obtain the material properties from raw experimental results. It can
also be used to check the quality of the fit (see Appendix A).

• An output database formatter, that can be used to rename and vectorize custom output variables
and also create a strain increment output (see Appendix B).

6.2. Recommendations for analyses and future development
6.2.1. Further development on non-associated flow
Current model incorporates a smooth flow function for Rankine yield surface. However, this function
has drawbacks. It is highly recommended to describe a more stable flow algorithm that does not loose
stability when the dilation angle is reduced. Such algorithmwould be especially useful in cyclic analyses
in which the dilation of the structure could be controlled and excessive lift could possibly be avoided.

6.2.2. Localized damage
Shear damage appears to be localizing in horizontal bands (mesh orientation dependent) when the
dilation angle is set to zero and partially localizing (wide bands of cracks) if the dilation angle is kept
constant. To this, there could be several reasons. First, the single integration elements are subjected to
hour-glassing. Elements affected by hour-glassing will have lower strengths than they are supposed to,
therefore, when the dilation angle is set to zero the path of the least resistance for shear propagation are
in the orthogonal directions. However applying some means of hour-glassing control exerts unrealistic
forces on to the structure (see chapter 27.1.4 Section controls in [14]) and that may influence the results
of the analysis in a negative way. Second, the brick elements may be unsuitable for analyses where
diagonal localizations are expected as the localization tends to propagate in orthogonal directions.
Third, the time step even in explicit analyzes is too big to obtain expected localization. The stress
increment per one time increment encompasses several elements, therefore, damaging bigger bands
of a mesh.

If the first issue is governing the solution would be to develop a custom element that would have at
least four integration points. This way the hour-glassing would be avoided and elements would have
appropriate stiffness and strengths when subjected to hour-glassing modes. If the second issue is
governing, it is possible to use different type of element already provided by Abaqus such as solid
tetrahedral elements. However, they should be used with caution as many types of them are either
overly stiff and extremely fine mesh is required for accurate analysis or they exhibit “volumetric locking”
at large plastic deformations (see Section 28.1.1 Solid (Continuum) elements in [14]). And finally, if
the last case is governing, the solutions would be either to lower the stable time increment,which could
lead to a drastic increase of the analysis time until the desired result is obtained or to develop a custom
element that would only let the damage propagate in the directions perpendicular to the direction of
principal strain. Such algorithm was proposed and discussed by Clemente [12].

6.2.3. Improve compression behavior
The compression behavior in this material model was developed using a rather simplistic approach. No
stiffness damage was applied during the crushing of the material, while in experimental tests [22], such
damage can be observed to some extent. Even though, the masonry analysis relevant for Groningen
region the compressive crushing is not governing, it would increase the field of application and make
the model more universal. Additionally, the localization for the compression crushing appears to be
mesh and stress rate dependent, therefore often the failure due to compression may be unpredictable
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and volatile. This issue could be minimized using higher values for distortion control or for quadratic
bulk viscosity (see chapter 27.1.4 Section controls and chapter 6.3.3 Explicit dynamic analysis in [14]).

6.2.4. Further testing
Even though the material model is tested and the results are compared to 4 experimental tests. Fur-
ther testing still has to be done. Such additional tests could include shear walls with openings, walls
subjected to out of plane two-way bending, and full-scale buildings in order to fully verify the material
model.
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A
Determining the material properties for

wall tests

In order to obtain the material properties for wall tests one of the ways to do it is to apply a least square
fit method on the experimental data. This can be easily achieved with mathematical packages like
Maple or Wolfram Mathematica. However, these software packages are proprietary and expensive.
Therefore, it is more convenient to develop a fitting solution whose usage would not require buying
expensive software that would not be used for any other purpose.

To this, a program composed of MS Excel spreadsheet and python, a high-level general-purpose
programming language, was developed. The program functions so that the user has to input principle
stress data obtained from biaxial tension/compression tests made on square wall specimens. Then
the program rotates the stresses to Cauchy stresses. These stresses then are sorted depending on
the regime (specified by user) and the data is transfered to python code where the fit is executed.
After obtaining the fit parameters, the data is transfered back to the excel spreadsheet where the the
accuracy of the fit is estimated and the results are displayed for the end user.

A.1. Input
For the input of the program a material data points are requested. They are provided by entering the
data point name, the principle stresses 𝜎 and 𝜎 specified in MPa, and the rotation of the bed-joint 𝜃
specified in degrees. Each data point should be attributed either to be fit on Hill-like yield surface or
Rankine-like. The Data points can be enabled or disabled on demand specifying either yes or no in the
column titled “Included”. The example of the input is provided in figure A.1.

When the input is entered, the principle stresses are rotated to the material directions so that the
new stresses are either perpendicular or parallel to the bed-joint. For the rotation the following formulas
are used:

𝜎 = 𝜎 ⋅ cos ( 𝜃
180∘𝜋) + 𝜎 ⋅ sin ( 𝜃

180∘𝜋) (A.1)

𝜎 = 𝜎 ⋅ sin ( 𝜃
180∘𝜋) + 𝜎 ⋅ cos ( 𝜃

180∘𝜋) (A.2)

𝜏 = (𝜎 − 𝜎 ) ⋅ cos ( 𝜃
180∘𝜋) ⋅ sin ( 𝜃

180∘𝜋) (A.3)

When the input is all entered, “Execute Fit Procedure” should be clicked. Then the excel will sort
all of the input in two tables, for Rankine-like and Hill-like surfaces and pass the data to Python code
for fitting.
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Figure A.1: Interface for user input.

A.2. Fitting
The fitting process is semi-automatic. Even though the fit itself is automatic, the outliers are not ex-
cluded automatically. After the fit is performed the results have to be inspected and if a larger error is
present the outliers have to be disabled in the spreadsheet and the fit has to be run again.

The data fit itself is accomplished using least_squares function from scipy.optimize pack-
age.

A.3. Results
The display of the results is provided in two mediums. First the data points are plotted against the yield
surfaces as depicted in figure A.2 using mayavi visualization package, then the fit data is exported
back to excel where the material parameters and the quality of the fit is then displayed (see Figure
A.3).

Figure A.2: Visualization of a fit.
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Figure A.3: Output after running the fit procedure.

The results should be taken with caution as the fit can be easily be usable due to the wide scatter of
the experimental results. in that case the parameters can be forced in to the logical boundaries using
settings of the program (see Figure A.4).

Figure A.4: Settings for better fit and visualization control.

A.4. Code
A.4.1. Visual Basic for excel

1 Sub Fit()
2 Dim rng As Range, cell As Range, i As Integer, j As Integer
3 Dim ActSheet As Worksheet
4 Dim SelRange As Range
5 On Error GoTo errHandler
6 Set ActSheet = ActiveSheet
7 Set SelRange = Selection
8 If Range(”A3”).Value = ”#” Then
9 Range(”J2”).Value = ”Running...”

10 Application.Wait (Now + TimeValue(”0:00:01”))
11 Application.ScreenUpdating = False
12 Call SortSurf(Range(”B4:B100”), i, j)
13 Call ExportCsv(Range(”M4:S” & 3 + i), ”temp_Hill”)
14 Call ExportCsv(Range(”U4:AA” & 3 + j), ”temp_Rankine”)
15 Call ExportCsv(ThisWorkbook.Sheets(”Settings”).Range(”B3:D9”),

”temp_Bounds”)↪

16 Call ExportCsv(ThisWorkbook.Sheets(”Settings”).Range(”G3:H5”),
”temp_Plot_Bounds”)↪
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17 Call ExportCsv(ThisWorkbook.Sheets(”Settings”).Range(”H7:H9”),
”temp_Plot_density”)↪

18 If ThisWorkbook.Sheets(”Settings”).Range(”B15”) = ”Yes” Then
19 python_loc = ThisWorkbook.Sheets(”Settings”).Range(”B11”)
20 Else
21 python_loc =

Replace(ThisWorkbook.Sheets(”Settings”).Range(”B11”),
”python.exe”, ”pythonw.exe”)

↪

↪

22 End If
23

24 script_loc = ThisWorkbook.Sheets(”Settings”).Range(”B12”)
25 Location = Application.ActiveWorkbook.Path
26

27 RetVal = Shell(python_loc & ” ” & ”””” & script_loc & ”””” & ” ” &
”””” & Location & ””””, vbNormalFocus)↪

28 Range(”J20”) = RetVal
29

30 If IsItDone() Then
31 Call ReadOutput
32 End If
33 Call DeleteFile
34 Columns(”M”).AutoFit
35 Columns(”U”).AutoFit
36 Application.CutCopyMode = False
37 Range(”J2”).Value = ”Done!”
38 Else
39 MsgBox ”Code is being executed on the wrong sheet!”
40 Exit Sub
41 End If
42 Application.ScreenUpdating = True
43 ActSheet.Select
44 SelRange.Select
45 errHandler:
46 Application.ScreenUpdating = True
47 End Sub
48 Sub ExportCsv(mycels As Range, name As String)
49 filename = name & ”.csv”
50

51 Open Application.ActiveWorkbook.Path & ”\” & filename For Output As #1
52

53 Set myrng = mycels
54

55 For i = 1 To myrng.Rows.Count
56 For j = 1 To myrng.Columns.Count
57 lineText = IIf(j = 1, ””, lineText & ”,”) & myrng.Cells(i, j)
58 Next j
59 Print #1, lineText
60 Next i
61 Close #1
62 End Sub
63

64 Sub SortSurf(rng As Range, i As Integer, j As Integer)
65 i = 0
66 j = 0
67 Range(”M4:S999”).ClearContents
68 Range(”U4:AB999”).ClearContents



A.4. Code 97

69 For Each cell In rng
70 If cell.Value = ”” Then
71 Exit For
72 ElseIf cell.Value = ”Hill” Then
73 If Range(”I” & cell.Row).Value = ”Yes” Then
74 Range(”C” & cell.Row & ”:H” & cell.Row).Copy
75 Range(”N” & i + 4).PasteSpecial xlPasteValues
76 Range(”M” & i + 4) = Range(”A” & cell.Row)
77 i = i + 1
78 End If
79 Else
80 If Range(”I” & cell.Row).Value = ”Yes” Then
81 Range(”C” & cell.Row & ”:H” & cell.Row).Copy
82 Range(”V” & j + 4).PasteSpecial xlPasteValues
83 Range(”U” & j + 4) = Range(”A” & cell.Row)
84 j = j + 1
85 End If
86 End If
87 Next cell
88 End Sub
89 Sub ReadOutput()
90 PathF = Application.ActiveWorkbook.Path & ”\temp_output.csv”
91 Open PathF For Input As #1
92 r_no = 0
93 l_no = 0
94 inc = 0
95 Do Until EOF(1)
96 Line Input #1, LineFromFile
97 LineItems = Split(LineFromFile, ”,”)
98 Range(”J20”) = inc
99 inc = inc + 1

100 If LineFromFile = ”” Then
101 r_no = r_no + 1
102 l_no = 0
103 Else
104 If r_no = 0 Then
105 Range(”K8”) = LineItems(0)
106 Range(”K9”) = LineItems(1)
107 Range(”K10”) = LineItems(2)
108 Range(”K12”) = LineItems(3)
109 Range(”K13”) = LineItems(4)
110 Range(”K14”) = LineItems(5)
111 Range(”K15”) = LineItems(6)
112 ElseIf r_no = 2 Then
113 Range(”N” & 4 + l_no) = LineItems(0)
114 Range(”O” & 4 + l_no) = LineItems(1)
115 Range(”P” & 4 + l_no) = LineItems(2)
116 Range(”T” & 4 + l_no) = 1 / LineItems(3)
117 l_no = l_no + 1
118 ElseIf r_no = 1 Then
119 Range(”V” & 4 + l_no) = LineItems(0)
120 Range(”W” & 4 + l_no) = LineItems(1)
121 Range(”X” & 4 + l_no) = LineItems(2)
122 Range(”AB” & 4 + l_no) = 1 / LineItems(3)
123 l_no = l_no + 1
124 Else
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125 Exit Do
126 End If
127 End If
128 Loop
129 Close #1
130 End Sub
131

132 Function IsItDone() As Boolean
133 Count = 0
134 Do While True
135 If Application.Wait(Now + TimeValue(”0:00:02”)) Then
136 If Not Dir(Application.ActiveWorkbook.Path & ”\” & ”done”,

vbDirectory) = vbNullString Then↪

137 IsItDone = True
138 Exit Do
139 Else
140 IsItDone = False
141 End If
142 End If
143

144 Count = Count + 1
145 If Count > 5 Then
146 MsgBox ”Did not receive an ansfer from python! Did the Python

script got stuck?”↪

147 Exit Do
148 End If
149 Loop
150 End Function
151

152 Sub DeleteFile()
153 Dim LRandomNumber As String
154 Dim Loc As String
155 Loc = Application.ActiveWorkbook.Path & ”\”
156

157 If ThisWorkbook.Sheets(”Settings”).Range(”B14”) = ”Yes” Then
158 LRandomNumber = Format(Now(), ”yyyyMMdd_hhmmss”)
159 FileCopy Loc & ”temp_rankine.csv”, Loc & LRandomNumber &

”_rankine.csv”↪

160 FileCopy Loc & ”temp_hill.csv”, Loc & LRandomNumber & ”_hill.csv”
161 FileCopy Loc & ”temp_output.csv”, Loc & LRandomNumber &

”_output.csv”↪

162 FileCopy Loc & ”temp_Bounds.csv”, Loc & LRandomNumber &
”_bounds.csv”↪

163 FileCopy Loc & ”temp_Plot_Bounds.csv”, Loc & LRandomNumber &
”_Plot_Bounds.csv”↪

164 FileCopy Loc & ”temp_Plot_density.csv”, Loc & LRandomNumber &
”_Plot_density.csv”↪

165 End If
166 Kill Loc & ”temp_rankine.csv”
167 Kill Loc & ”temp_hill.csv”
168 Kill Loc & ”temp_output.csv”
169 Kill Loc & ”temp_Bounds.csv”
170 Kill Loc & ”temp_Plot_Bounds.csv”
171 Kill Loc & ”temp_Plot_density.csv”
172 Kill Loc & ”Done”
173 End Sub
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A.4.2. Python code

1 from scipy import optimize
2 import numpy as np
3 from mayavi import mlab
4 import sys
5 import csv
6 import time
7

8 def process_csv(file_loc):
9 try:

10 with open(file_loc + ’\\temp_rankine.csv’, ’rb’) as fl:
11 reader = csv.reader(fl)
12 data1 = list(reader)
13 with open(file_loc + ’\\temp_hill.csv’, ’rb’) as fl:
14 reader = csv.reader(fl)
15 data2 = list(reader)
16 with open(file_loc + ’\\temp_Bounds.csv’, ’rb’) as fl:
17 reader = csv.reader(fl)
18 data3 = list(reader)
19 with open(file_loc + ’\\temp_Plot_Bounds.csv’, ’rb’) as fl:
20 reader = csv.reader(fl)
21 data4 = list(reader)
22 with open(file_loc + ’\\temp_Plot_density.csv’, ’rb’) as fl:
23 reader = csv.reader(fl)
24 data5 = list(reader)
25 except:
26 print ”ERROR! Could not find the files in:”
27 print file_loc
28 names1 = []
29 names2 = []
30

31 for row in data1:
32 names1.append(row[0])
33 del row[0:4]
34 for row in data2:
35 names2.append(row[0])
36 del row[0:4]
37 data1 = np.array(data1,dtype=float)
38 data2 = np.array(data2,dtype=float)
39 data3 = np.array(data3,dtype=float)
40 data4 = np.array(data4, dtype=float)
41 data5 = np.array(data5, dtype=float)
42 return [names1,names2,data1,data2,data3,data4,data5]
43

44 def rankine_func(A, B, C, x, y, z):
45 return (x - A + y - B) / 2 + np.sqrt(((x - A - y + B) / 2) ** 2 + C * z

** 2)↪

46

47 def hill_func(D, E, F, G, x, y, z):
48 return np.sqrt(x*((F*y)/2 + (E*x)/D) + y*((F*x)/2 + (D*y)/E) + G*z**2)

- np.sqrt(D*E)↪

49

50 def residuals_r(coeff, data):
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51 # Function that returns the squared loss.
52 # We want the function to choose A, B, C such that all values are close

to zero↪

53 A, B, C = coeff
54 x, y, z = data.T
55 # The function we care about
56 objective = rankine_func(A, B, C, x, y, z)
57 losses = (objective - 0)
58 return losses
59

60 def residuals_h(coeff, data):
61 # Function that returns the squared loss.
62 # We want the function to choose A, B, C such that all values are close

to zero↪

63 A, B, C, D = coeff
64 x, y, z = data.T
65 # The function we care about
66 objective = hill_func(A, B, C, D,x, y, z)
67 losses = (objective - 0)
68 return losses
69

70 def Surf1 (x,y,z):
71 F1 = rankine_func(A, B, C,x,y,z)
72 F2 = hill_func(D, E, F, G, x, y, z)
73 F1[F2>0] = None
74 return F1
75

76 def Surf2 (x,y,z):
77 F1 = rankine_func(A, B, C,x,y,z)
78 F2 = hill_func(D, E, F, G, x, y, z)
79 F2[F1>0] = None
80 return F2
81

82 def write_csv (file_loc, data):
83 with open(file_loc + ’\\temp_output.csv’, ’ab’) as fp:
84 a = csv.writer(fp, delimiter=’,’)
85 try:
86 a.writerows(data)
87 except:
88 a.writerow(data)
89 a.writerow(’’)
90

91

92

93

94 def intersection_r (A,B,C,x0,y0,z0):
95 t = (-A * y0 - B * x0 + np.sqrt(A ** 2 * y0 ** 2 + (4 * C * z0 ** 2 - 2

* x0 * y0) * B * A + B ** 2 * x0 ** 2)) / (↪

96 2 * C * z0 ** 2 - 2 * x0 * y0)
97 return [x0*t,y0*t,z0*t]
98

99 def intersection_h (D, E, F, G, x0,y0,z0):
100 t = D*E/np.sqrt(D*E*F*x0*y0+D*E*G*z0**2+D**2*y0**2+E**2*x0**2)
101 return [x0*t,y0*t,z0*t]
102

103 if sys.argv[-1]==sys.argv[0]:
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104 location = r”C:\Users\aukselis\Desktop\Test
worksheat”.replace(”\\”,”//”)↪

105 else:
106 location = sys.argv[-1]
107

108 data = process_csv(location)
109

110

111 names_r = data[0]
112 names_h = data[1]
113 print ”------------INPUT------------”
114 print ”Defined names”
115 print ”Rankine:”,
116 print names_r
117 print ”Hill:”,
118 print names_h
119

120 print ””
121 data_r = data[2]
122 data_h = data[3]
123 print ”Defined data:”
124 print ”Rankine:”,
125 print data_r
126 print ”Hill:”,
127 print data_h
128 print ””
129 bounds = data[4]
130 print ”Defined bounds:”
131 print bounds
132

133 plot_i = [data[5],data[6]]
134

135 coeff_r0 = bounds.T[2][0:3]
136 coeff_r = coeff_r0
137 coeff_h0 = bounds.T[2][3:]
138 coeff_h = coeff_h0
139

140

141

142

143 print ”\n\n------------OUTPUT------------”
144 rankine = optimize.least_squares(residuals_r, coeff_r0, args=(data_r,),
145 bounds=([bounds[0][0],

bounds[1][0],
bounds[2][0]],

↪

↪

146 [bounds[0][1],
bounds[1][1],
bounds[2][1]]))

↪

↪

147 ftx,fty,alpha = rankine.x
148 print(’Rankine Surface\n -- ftx = {0} \n -- fty = {1} \n -- alpha = {2}

’.format(ftx,fty,alpha))↪

149

150 hill = optimize.least_squares(residuals_h, coeff_h0, args=(data_h,),
151 bounds=([bounds[3][0], bounds[4][0],

bounds[5][0],bounds[6][0]],↪
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152 [bounds[3][1], bounds[4][1],
bounds[5][1],bounds[6][1]]))↪

153 fcx,fcy,beta,gamma = hill.x
154 print(’Hill Surface\n -- fcx = {0} \n -- fcy = {1} \n -- beta = {2}\n --

gamma = {3} ’.format(fcx,fcy,beta,gamma))↪

155

156

157 A, B, C = rankine.x
158 D, E, F, G = hill.x
159

160 write_csv(location,[A,B,C,D,E,F,G])
161

162 x0,y0,z0 = data_r.T
163 xyz1 = np.array(intersection_r(A,B,C,x0,y0,z0))
164 ratio =

np.array([np.sqrt(xyz1[0]**2+xyz1[1]**2+xyz1[2]**2)/np.sqrt(x0**2+y0**2+z0**2)])↪

165 write_csv(location,np.append(xyz1,ratio,axis=0).T)
166

167 x0,y0,z0 = data_h.T
168 xyz1 = np.array(intersection_h(D, E, F, G, x0,y0,z0))
169 ratio =

np.array([np.sqrt(xyz1[0]**2+xyz1[1]**2+xyz1[2]**2)/np.sqrt(x0**2+y0**2+z0**2)])↪

170 write_csv(location,np.append(xyz1,ratio,axis=0).T)
171

172 open(file_loc + ’done’, ’a’).close()
173

174 minx = -D * plot_i[0][0][0]
175 maxx = A * plot_i[0][0][1]
176 spacex = int(plot_i[1][0][0])*1j
177

178 miny = -E * plot_i[0][1][0]
179 maxy = B * plot_i[0][1][1]
180 spacey =int(plot_i[1][1][0])*1j
181

182 minz = max(D,E) * plot_i[0][2][0]
183 maxz = max(D,E) * plot_i[0][2][1]
184 spacez =int(plot_i[1][2][0])*1j
185

186

187 x, y, z = np.mgrid[minx:maxx:spacex, miny:maxy:spacey, minz:maxz:spacez]
188

189 app = np.append(data_r,data_h,axis=0)
190

191 x1,y1,z1 = app.T
192

193 names = names_r+names_h
194

195

196 f= mlab.figure(fgcolor=(0., 0., 0.), bgcolor=(1, 1, 1))
197

198 mlab.contour3d(x,y,z,Surf1, contours = [0],transparent=True)
199 mlab.contour3d(x,y,z,Surf2, contours = [0], transparent=True)
200 mlab.axes(xlabel=r’sigma_x’, ylabel=r’sigma_{y}’, zlabel=r’tau_xy’)
201

202 mlab.points3d(x1,y1,z1,mode=’axes’,scale_factor=0.1)
203
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204 text=[]
205 for i in range(len(x1)):
206 text.append(mlab.text(x1[i],y1[i],names[i],z=z1[i]))
207 text[i].actor.text_scale_mode = ’none’
208

209 mlab.show()





B
Formating the output database

In order to obtain more readable output and compute variables that are not available as output request
in Abaqus, The output database has to be formated using Python scripting interface. For this specific
case a Python script was written in order to replace the SDV# to a more legible output to custom named
variables and vectors that can be later be plotted as a vector plots. Furthermore, the strain increment
variable was also added, as it was necessary for the dynamic cyclic test to see the crack patterns.

1 from abaqusConstants import *
2 from odbAccess import *
3

4 # *******************************************************************
5 odbPath = ”C:\\Some\\Path\\to\\an\\Output_database.odb” # path to output

database↪

6 # *******************************************************************
7 # Do you want to copy non-SDV variables to the new step?
8 copy = False
9 # List of sdv’s (name, tuple(no),description,type,tuple(validInvariants)):

10 l_sdv = [[”Yt”,(1,2),”Tensile yield strengths in material
directions”,VECTOR,(MAGNITUDE,)],↪

11 [”Yc”,(4,5),”Compressive yield strengths in material
directions”,VECTOR,(MAGNITUDE,)],↪

12 [”rYt”,(10,11),”Ratio of remaining tensile yield strengths in
material directions”,VECTOR,(MAGNITUDE,)],↪

13 [”rYc”,(12,),”Ratio of remaining compressive yield
strengths”,SCALAR,()],↪

14 [”dVol”,(17,),”Volume change”,SCALAR,()],
15 [”rEeq”,(18,),”Equivalent Rankine plastic strain”,SCALAR,()],
16 [”hEeq”,(19,),”Equivalent Hill plastic strain”,SCALAR,()],
17 [”tE”,(20,21,22),”Total strain in material

directions”,VECTOR,(MAGNITUDE,)],↪

18 [”tEm”,(23,24,25),”Total maximum strain in material
directions”,VECTOR,(MAGNITUDE,)],↪

19 [”dam”,(27,28),”Tension continiuoty parameters in material
directions”,VECTOR,(MAGNITUDE,)],↪

20 [”ElDel”,(29,),”Element deletion paramerer”,SCALAR,()],
21 [”Sdamp”,(30,31,32,33,34,35),”Damping stress incre-

ment”,TENSOR_3D_FULL,(PRESS,MAX_PRINCIPAL,MID_PRINCIPAL,MIN_PRINCIPAL)]]↪

22 # *******************************************************************
23 # Open Odb
24 odb = session.openOdb(name=odbPath,readOnly=FALSE)

105
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25 # Create an object with all steps
26 stepRepository = odb.steps
27 # Get the names of all steps
28 allSteps = stepRepository.keys()
29

30

31 # Iterate all steps
32 for i in range(len(allSteps)):
33 pr.enable()
34 # Assign a step
35 step = stepRepository[allSteps[i]]
36 # Crate a list containing all frame numbers
37 allFrames = range(len(step.frames))
38 # Get the total time of the step
39 StepTime=step.frames[-1].frameValue
40 # Create a new step to store all of the custom field entries
41 newStep = odb.Step(name=allSteps[i]+’_c_out’, description=’Step for new

fields’, domain=TIME, timePeriod=StepTime)↪

42 # Create an object with all frames (This is recommended by abaqus
manual to improve the speed of the script)↪

43 frameRepository = step.frames
44 # Get a list of all of the field variables available in the step
45 fields = frameRepository[1].fieldOutputs.keys()
46

47 #Iterate all frames in the step
48 for j in allFrames:
49 # Try assigning previous frame if it does not work. Previous frame

is a new frame. This is used for the calculation of strain
increment.

↪

↪

50 try:
51 pframe = frame
52 except:
53 pframe = frameRepository[j]
54 # Assign a frame to a new frame
55 frame = frameRepository[j]
56 # Create a frame for the custom field variables in the new step

created before this loop↪

57 newFrame = newStep.Frame(frameId=j, frameValue=frame.frameValue,
description=’Increment: ’+str(j) + ’ Time: ’ +
str(frame.frameValue) )

↪

↪

58 # Define or clean sdv list
59 SDV=[]
60

61 # Iterate trough the available field variables
62 for field in fields:
63 # Assign field output to an object
64 current = frame.fieldOutputs[field]
65 # If field output is not an SDV
66 if ’SDV’ not in field:
67 # If copying existing variables is allowed
68 if copy:
69 # Copy existing variables to a new step
70 newField = newFrame.FieldOutput(name=current.name,

description=current.description, field=current)↪

71 # If the field output variable is strain calculate strain
increment↪
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72 if ’LE’ in field:
73 previous = pframe.fieldOutputs[field]
74 comp = current - previous
75 newField = newFrame.FieldOutput(name=’dLE’,

description=’Logarithmic strain increment’,
field=comp)

↪

↪

76 # Otherwise collect the SDV objects in to a list
77 else:
78 SDV.append(frame.fieldOutputs[field])
79 # Define or clean field variable list
80 l_field = []
81 # Define the structure of the field variable list
82 for output in l_sdv:
83 l_field.append([output[0],newFrame.FieldOutput(name=output[0],

descrip-
tion=output[2],type=output[3],validInvariants=output[4]),output[1],[[[]]]])

↪

↪

84 # Iterate trough values of sdv to separate different instances and
construct a list of elements↪

85 for k in range(len(SDV[0].values)):
86 # Element numbers
87 labl = SDV[0].values[k].elementLabel
88 # Element belongs to an instance
89 inst = SDV[0].values[k].instance
90 # For each field output in list of fields construct proper tuples
91 for field in l_field:
92 if len(field[3][0]) == 1:
93 field[3][0]=[inst,[],[]]
94 elif inst != field[3][-1][0]:
95 field[3].append([inst,[],[]])
96

97 field[3][-1][1].append(labl)
98 temp = []
99 for tup in field[2]:

100 temp.append(SDV[tup-1].values[k].data)
101 if len(temp) == 2:
102 temp.append(0)
103 field[3][-1][2].append(tuple(temp))
104

105 # For each field output in list of fields
106 for field in l_field:
107 # Iterate trough all instances in each SDV
108 for inst in field[3]:
109 # Add data of an instance to a field
110 field[1].addData(position=INTEGRATION_POINT,

instance=inst[0], labels=tuple(inst[1]),
data=tuple(inst[2]))

↪

↪

111 # Print progress to screen
112 print >> sys.__stdout__, ’’, allSteps[i], ’ ’, allFrames[j]
113 pr.disable()
114

115 # Save the odb
116 odb.save()
117 # Close the odb
118 odb.close()





C
Definition of input

*Depvar
28,

*User Material, constants=YY
state, Ex, Ey, Ez, Nuxy, bdamp, tpsi, Gxy
Gyz, Gzx, Ftx, Fty, alpha, Fcx, Fcy, beta

gamma, tss, dmax, Gfxt, Gfyt, Fucx, Fucy, ecplu
XX, ncomp, {comp_epl}, {comp_stress_r}

State – Definition of analysis state:
1 – Orthotropic elastic
2 – Orthotropic damaged plasticity

Ex – Stiffness modulus in material direction X
Ey – Stiffness modulus in material direction Y
Ez – Stiffness modulus in material direction Z

Nuxy – Poisson’s ratio 𝜈
bdamp – stiffness proportional Rayleigh damping coefficient

tpsi – Tangent of the dilation angle
Gxy – Shear stiffness modulus in material plane xy
Gyz – Shear stiffness modulus in material plane yz
Gzx – Shear stiffness modulus in material plane zx
Ftx – Tensile yield strengths in direction X
Fty – Tensile yield strengths in direction Y

Alpha – Yield shape parameter [common from 1.0 to 2.0]
Fcx – Compressive yield strengths in direction X
Fcy – Compressive yield strengths in direction Y
Beta – Yield shape parameter [common from -1.1 to -0.9]

Gamma – Yield shape parameter [common from 1.0 to 10.0]
tss – Type of shear softening:

0 – weakest direction,
1 – isotropic

dmax – Maximal volume change for the element in the analysis
Gfxt – Fracture energy in X direction
Gfyt – Fracture energy in Y direction
Fuc – Ultimate yield strengths for compression, must be consistent with

{comp_stress_r}
ecplu – Plastic strain at 𝑓 , , must be consistent with {comp_epl}

Ncomp – Size of input softening table describing compressive behavior
{comp_epl} – Plastic strain part of compression table

109
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{comp_stress_r} – Yield strength part of compression table
XX – Unused material property position. Just set 0.0
YY – Number of material properties (26+ncomp*2)



D
Definition of output

SDV01 – Tensile yield strengths X direction
SDV02 – Tensile yield strengths Y direction
SDV03 – Compressive yield strengths X direction
SDV04 – Compressive yield strengths Y direction
SDV05 – Ratio of remaining tensile material strengths in x direction
SDV06 – Ratio of remaining tensile material strengths in y direction
SDV07 – Ratio of remaining compressive strengths in the material
SDV08 – Compressive plastic strain in X direction
SDV09 – Compressive plastic strain in X direction
SDV10 – Volumetric change in an element
SDV11 – Equivalent Rankine plastic strain
SDV12 – Equivalent Hills plastic strain
SDV13 – Total strain in X direction
SDV14 – Total strain in Y direction
SDV15 – Total strain in Z direction
SDV16 – Max strain in tension in X direction
SDV17 – Max strain in tension in Y direction
SDV18 – Max strain in tension in Z direction

SDV19 – Damage parameter [√𝑑 + 𝑑 ]
SDV20 – Damage parameter for X direction
SDV21 – Damage parameter for Y direction
SDV22 – Element deletion parameter

0 – Not deleted
1 – Deleted

SDV23 – Storage for damping stress – xx
SDV24 – Storage for damping stress – yy
SDV25 – Storage for damping stress – zz
SDV26 – Storage for damping stress – xy
SDV27 – Storage for damping stress – yz
SDV28 – Storage for damping stress – zx
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E
Fortran code

The modules def_par_math, def_par_state, def_par_dir containing parameters that define
memory positions of variables in arrays and mathematical constants were removed due to request
from Zonneveld Ingenieurs B.V.

1 module utility_routines
2 public :: ut_elastic, ut_int_energy, ut_asgn_fstate,
3 n ut_asgn_props, ut_assem_K_mtx, ut_asgn_tstate,
4 n ut_vuhard
5 contains
6

7 pure subroutine ut_elastic(Sn, So, de, D)
8 use def_par_dir
9 include ’vaba_param.inc’

10 Real(8), intent(out)::Sn(:)
11 Real(8), intent(in)::So(:), de(:), D(:)
12

13 Sn(xx)= So(xx) + D(K11)*de(xx) + D(K12)*de(yy) + D(K13)*de(zz)
14 Sn(yy)= So(yy) + D(K21)*de(xx) + D(K22)*de(yy) + D(K23)*de(zz)
15 Sn(zz)= So(zz) + D(K31)*de(xx) + D(K32)*de(yy) + D(K33)*de(zz)
16 Sn(xy)= So(xy) + D(K44)*de(xy)
17 Sn(yz)= So(yz) + D(K55)*de(yz)
18 Sn(zx)= So(zx) + D(K66)*de(zx)
19

20 return
21 end
22

23 pure subroutine ut_int_energy(eIntNew, eIntOld, Sn, So, de, rho)
24 use def_par_dir
25 use def_par_math
26 include ’vaba_param.inc’
27

28 Real(8), intent(out):: eIntNew
29 Real(8), intent(in):: rho, eIntOld
30 Real(8), intent(in):: Sn(:), So(:), de(:)
31

32 STRESS_POWER = HALF * (
33 n(So(xx) + Sn(xx))*de(xx) + (So(yy) + Sn(yy))*de(yy)
34 n + (So(zz) + Sn(zz))*de(zz))+ (So(xy) + Sn(xy))*de(xy)
35 n + (So(yz) + Sn(yz))*de(yz) + (So(zx) + Sn(zx))*de(zx)

113
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36 eIntNew = eIntOld + STRESS_POWER/rho
37

38 return
39 end
40

41 subroutine ut_ine_energy(eIneNew, eIneOld, Sn, So, depl,depl1,rho)
42 use def_par_dir
43 use def_par_math
44 include ’vaba_param.inc’
45

46 dimension Sn(:), So(:), depl(:),plastic_work(size(So))
47 real*8 rho, eIntNew, eIntOld,depl1(:)
48

49 plastic_work = (Sn+So)*half*(depl+depl1)
50 eIneNew = eIneOld + sum(plastic_work)/rho
51

52 return
53 end
54

55 pure subroutine ut_asgn_fstate(yield, epl, te, tem, props, state,
56 n dmg,eeqpl,ryield,dV)
57 use def_par_dir
58 use def_par_props
59 use def_par_state
60 use def_par_math
61 include ’vaba_param.inc’
62

63 real(8), intent(out):: yield(:), epl(:), te(:), tem(:), dmg(:),
64 n eeqpl, ryield, dV
65 real(8), intent(in):: props(:), state(:)
66

67

68 if (state(sYxt).eq.zero) then
69 yield(xxt:yyt) = props(pYxt:pYyt)
70 yield(xxc:yyc) = props(pYxc:pYyc)
71 dmg(xxt:yyt) = one
72 dV = zero
73 else
74 yield(xxt:yyt) = State(sYxt:sYyt)
75 yield(xxc:yyc) = State(sYxc:sYyc)
76

77 ryield = State(sPc)
78

79 epl(xxt:yyt) = State(sepxt:sepyt)
80 epl(xxc:yyc) = State(sepxc:sepyc)
81

82 te(xx:zz) = State(stex:stez)
83 dV = State(dvol)
84 tem(xxt:zzt) = State(semxt:semzt)
85 dmg(xxt:yyt) = State(dmgxt:dmgyt)
86 eeqpl = State(seeqp)
87 end if
88 return
89 end
90

91
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92 subroutine ut_asgn_props(E, xNu, G, Gf, props,ctable)
93 use def_par_dir
94 use def_par_props
95 include ’vaba_param.inc’
96

97 dimension E(:), xNu(xy:), G(xy:), Gf(:), props(:), ctable(:,:)
98

99 E(xx:zz) = props(Ex:Ez)
100 xNu(xy:zx) = props(Nuxy:Nuzx)
101 G(xy:zx) = props(Gxy:Gzx)
102

103 Gf(xxt:yyt) = Props(Gfxt:Gfyt)
104

105 ctable(1,:) = Props(ncomp+1:Props(ncomp)+ncomp)
106 ctable(2,:) = Props(Props(ncomp)+ncomp+1:Props(ncomp)+ncomp*2)
107

108 return
109 end
110

111

112 subroutine ut_assem_K_mtx(D, E, xNu, G)
113 use def_par_dir
114 use def_par_math
115 include ’vaba_param.inc’
116

117 dimension D(:), E(:), xNu(xy:), G(xy:)
118

119 xNu(yx) = xNu(xy)*E(yy)/E(xx)
120 Delta = one/(1-xNu(yx)*xNu(xy))
121

122 D(K11) = E(xx)*Delta
123 D(K22) = E(yy)*Delta
124 D(K33) = E(zz)
125

126 D(K12) = E(xx)*Delta*xNu(yx)
127 D(K13) = zero
128 D(K32) = zero
129

130 D(K44:K66) = two * G(xy:zx)
131

132 return
133 end
134

135

136 subroutine ut_asgn_tstate(state, yield, epl, te, tem, dmg, eeqpl,
137 n ryield,reeqpl,props,dV)
138 use def_par_dir
139 use def_par_props
140 use def_par_state
141 include ’vaba_param.inc’
142

143 dimension yield(:), epl(:), te(:), tem(:), state(:), dmg(:),
144 n props(:)
145

146 State(sYxt:sYyt) = yield(xxt:yyt)
147 State(sYxc:sYyc) = yield(xxc:yyc)
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148 State(sYxy) = yield(xy)
149

150 State(sepxt:sepyt) = epl(xxt:yyt)
151 State(sepxc:sepyc) = epl(xxc:yyc)
152 State(seeqp) = eeqpl
153 State(stex:stey) = te(xxt:yyt)
154

155 State(seqr) = reeqpl
156

157 State(sPtx:sPty) = yield(xxt:yyt)/props(pYxt:pYyt)
158 State(sPc) = ryield
159 State(dvol) = dV
160 State(semxt:semzt) = tem(xxt:zzt)
161 State(sdmg) = (dmg(xx)*dmg(yy))**(1.0/2.0)
162 State(dmgxt:dmgyt) = dmg(xxt:yyt)
163 return
164 END
165

166

167 subroutine sumepl(So, yield, epl, depl, eeqpl,reeqpl, syield_r,
168 n syield_h,props)
169 use def_par_dir
170 use def_par_math
171 use def_par_props
172 include ’vaba_param.inc’
173 dimension epl(:), depl(:),tdepl(3),So(:),yield(:),props(:)
174

175 if (syield_r.ge.zero) then
176 if (So(xx).lt.zero.and.So(yy).lt.zero) then
177 if (props(pSsc).eq.one) then
178 epl(xxt) = epl(xxt) + reeqpl
179 epl(yyt) = epl(yyt) + reeqpl
180 else
181 if (yield(xxt).lt.yield(yyt)) then
182 epl(xxt) = epl(xxt) + reeqpl
183 else
184 epl(yyt) = epl(yyt) + reeqpl
185 end if
186 end if
187 else
188 if (props(pSsc).eq.one) then
189 epl(xxt) = epl(xxt) + abs(depl(xy))
190 epl(yyt) = epl(yyt) + abs(depl(xy))
191 else
192 if (yield(xxt).lt.yield(yyt)) then
193 epl(xxt) = epl(xxt) + abs(depl(xy))
194 else
195 epl(yyt) = epl(yyt) + abs(depl(xy))
196 end if
197 end if
198 end if
199 end if
200 return
201 end
202

203 subroutine generate_dump(array)
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204 include ’vaba_param.inc’
205 dimension array(:)
206 Logical OK
207 INQUIRE( UNIT=1, OPENED=OK )
208 IF ( OK ) Then
209 write(1,”(9999(G12.5,:,’,’))”) array
210 else
211 open(unit = 1, file = ”D:\\Temp\\Dump1.txt”)
212 end if
213 return
214 end
215 subroutine sume(te,tem,de,So,syield_h,depl)
216 use def_par_dir
217 use def_par_math
218 include ’vaba_param.inc’
219 dimension te(:), de(:), tem(:),So(:),depl(:)
220

221 where (So(xx:yy)>zero)
222 te(xx:yy)= te(xx:yy) + de(xx:yy)
223 endwhere
224

225 if (syield_h .ge. zero) then
226 where (So(xx:yy)>zero)
227 te(xx:yy) = te(xx:yy) - de(xx:yy)
228 endwhere
229 end if
230 tem = max(te,tem)
231 return
232 end
233

234 subroutine ut_dev_stress(So, Sp, dS)
235 use def_par_dir
236 use def_par_math
237 include ’vaba_param.inc’
238 dimension So(:), Sp(:), dS(:)
239 dS = Sp - So
240 return
241 end
242

243 subroutine ut_vuhard(syield, hard, eqplas, table, nvalue)
244 include ’vaba_param.inc’
245 dimension table(2, nvalue)
246 parameter(zero=0.d0)
247

248 syield=table(2, nvalue)
249 hard=zero
250

251 if(nvalue.gt.1) then
252 do k1=1, nvalue-1
253 eqpl1=table(1,k1+1)
254 if(eqplas.lt.eqpl1) then
255 eqpl0=table(1, k1)
256 deqpl=eqpl1-eqpl0
257 syiel0=table(2, k1)
258 syiel1=table(2, k1+1)
259 dsyiel=syiel1-syiel0
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260 hard=dsyiel/deqpl
261 syield=syiel0+(eqplas-eqpl0)*hard
262 goto 10
263 end if
264 end do
265 10 continue
266 end if
267 return
268 end
269

270

271 pure subroutine stable_time(D, beta, factor, cL, rho)
272 use def_par_dir
273 use def_par_math
274 include ’vaba_param.inc’
275 Real(8), intent(out):: factor
276 Real(8), intent(in) :: beta, cL, rho
277 Real(8), intent(in) :: D(:)
278

279 dimension omega(3)
280

281 omega(1) = Sqrt((D(K11)+D(K22)+sqrt(D(K11)**2-2*D(K11)*D(K22)
282 n + D(K12)**2*4+D(K22)**2))/(rho*cL**2))
283 omega(2) = Sqrt((D(K11)+D(K22)-sqrt(D(K11)**2-2*D(K11)*D(K22)
284 n + D(K12)**2*4+D(K22)**2))/(rho*cL**2))
285 omega(3) = Sqrt(2*D(K33)/(rho*cL**2))
286

287 omega_max = max(omega(1),omega(2),omega(3))
288

289 factor = sqrt(one+((half)*beta*omega_max)**2)-(half)*beta
290 n * omega_max
291 factor = (one/factor)**2
292 return
293 end
294 endmodule
295

296 module sb_other
297 public damage,assem_dmg_K,damping
298 contains
299

300 subroutine assem_dmg_K(dmg, Dd, D, So, tem, E,yield,epl,props)
301 use def_par_dir
302 use def_par_math
303 include ’vaba_param.inc’
304

305 integer*2 status
306 dimension dmg(:), Dd(:), D(:), So(:), tem(:), E(:), yield(:)
307 dimension status(size(dmg)), epl(:), props(:)
308 status(xx:zz) = zero
309 if (So(xx) .gt. zero) status(xx) = 1
310 if (So(yy) .gt. zero) status(yy) = 1
311

312 Dd(K11:K22) = dmg(xx:yy)**status(xx:yy)*D(K11:K22)
313 Dd(K33) = D(K33)
314

315 Dd(K12) =floor(dmg(yy)**status(yy)*dmg(xx)**status(xx))*D(K12)
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316 Dd(K13) =D(K13)
317 Dd(K32) =D(K32)
318

319 Dd(K44) = sqrt(dmg(yy)**status(yy)*dmg(xx)**status(xx))*D(K44)
320 Dd(K55) = D(K55)
321 Dd(K66) = D(K66)
322

323 E(xx:yy) = dmg(xx:yy)**status(xx:yy) * E(xx:yy)
324 return
325 end
326

327 subroutine damping(So, Sn, dt, Sdamo, beta)
328 use def_par_dir
329 use def_par_props
330 use def_par_math
331 include ’vaba_param.inc’
332 dimension So(:), Sn(:), Sdamo(:), Sdamn(size(Sdamo))
333

334 b = beta/dt
335

336 Sdamn = b * (Sn-So)
337 Sn = Sn + Sdamn
338 Sdamo = Sdamn
339

340 return
341 end
342

343 subroutine damage(dmg, Dd, D, Gf, E,yield,depl,props,cL,
344 nte,tem)
345 use def_par_dir
346 use def_par_math
347 use def_par_props
348 include ’vaba_param.inc’
349

350 parameter (ratio_t=1.d0/100.d0, ratio_c=1.d0/100.d0)
351 integer*2 status
352 dimension dmg(:), Dd(:), D(:), Gf(:), E(:), yield(:),te(:),tem(:)
353 dimension status(size(dmg)), depl(:), props(:)
354 status = 0
355 protect = zero
356

357 dmg(xxt:yyt) = (yield(xxt:yyt)/max(tiny(zero),tem(xxt:yyt)))
358 n / D(K11:K22)
359

360 dmg(xxt:yyt) = min(one,max(tiny(one),dmg(xxt:yyt)))
361

362 return
363 end
364 endmodule
365

366 module sb_yield_surfaces
367 public Yield_Rankine, Yield_Hills, hardening
368 contains
369

370 subroutine Yield_Rankine(syield, depl, dSpl, Sp,yield, Dd,
371 n cL, props, Gf, E, de, dirc,D,reeqpl,
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372 n sepr,Stn,dV)
373 use def_par_math
374 use def_par_dir
375 use def_par_props
376 use utility_routines
377 include ’vaba_param.inc’
378 integer dirc
379 logical stat
380 dimension depl(:), Sp(:), yield(:), Dd(:), props(:), Gf(:),
381 nE(:), dSpl(:), de(:), D(:),Stn(:)
382 dimension a(size(Sp)),hard(size(Gf)),b(size(Sp))
383 parameter (power = 10)
384

385 alpha = props(pYat)
386

387 phi = props(pYpt)
388 zmax = props(mdil)
389

390 temp = Sp(xy)
391 if (phi.le.zero) then
392 factor = zero
393 alpha1 = one
394 else
395

396 if (zmax.eq.0) then
397 factor = one
398 alpha1 = one/(phi**2)
399 elseif (dV.ge.zmax) then
400 factor = zero
401 alpha1 = one
402 else
403 factor = one
404 alpha1 = one/(phi**2)
405 end if
406 end if
407

408 Stn(3) = alpha1
409 Stn(6) = factor
410

411 if ((Sp(xx).ge.yield(xxt).OR.Sp(yy).ge.yield(yyt))
412 n .AND.factor.eq.zero) then
413 Sp(xy) = zero
414 stat = .true.
415 end if
416

417 syield1=sqrt((half*(Sp(xx)-yield(xxt)-Sp(yy)+yield(yyt)))**2
418 n+alpha*Sp(xy)**2 )
419 syield = half*(Sp(xx)-yield(xxt)+Sp(yy)-yield(yyt))+syield1
420

421 if (syield.gt.zero) then
422

423 if (syield1.ne.zero) then
424 a(xx) = half+half**2*(Sp(xx)-yield(xxt)-Sp(yy)+yield(yyt))
425 n / syield1
426 a(yy) = half+half**2*(-Sp(xx)+yield(xxt)+Sp(yy)-yield(yyt))
427 n / syield1
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428 a(xy) = two * alpha*Sp(xy)/(two*syield1)
429

430 syield2=sqrt((half*(factor*(Sp(xx)-Sp(yy))-yield(xxt)
431 n +yield(yyt)))**2+alpha1*Sp(xy)**2)
432

433 if (stat) then
434 b = a
435

436 else
437

438 b(xx) = half*factor+(half**2*(factor*(Sp(xx)-Sp(yy))-yield(xxt)
439 n + yield(yyt))/ syield2)*factor
440 b(yy) = half*factor+(half**2*(factor*(-Sp(xx)+Sp(yy))+yield(xxt)
441 n - yield(yyt))/ syield2)*factor
442 b(xy) = two * alpha1*Sp(xy)/(two*syield2)
443 end if
444

445 dlambda1 = (Dd(K11)*a(xx)+Dd(K21)*a(yy))*b(xx)
446 n + (Dd(K12)*a(xx)+Dd(K22)*a(yy))*b(yy)
447 n + a(xy)*Dd(K44)*b(xy) /two
448

449 dlambda = syield/dlambda1
450 depl = zero
451 depl(xx:yy) = dlambda * b(xx:yy)
452 depl(xy) = dlambda*b(xy)
453

454 reeqpl = dlambda
455 call ut_elastic(dSpl, (/(0.0d0,I=1,6)/), depl, Dd)
456 dSpl(xy)=dSpl(xy)/two
457

458 else
459 dSpl(xx:yy) = Sp(xx:yy) - yield(xxt:yyt)
460 depl(xx) = -(Dd(K12) * dSpl(yy) - Dd(K22) * dSpl(xx))
461 n / (Dd(K11) * Dd(K22) - Dd(K12) ** 2)
462 depl(yy) = (Dd(K11) * dSpl(yy) - Dd(K12) * dSpl(xx))
463 n / (Dd(K11) * Dd(K22) - Dd(K12) ** 2)
464 reeqpl = sqrt(depl(xx)**2+depl(yy)**2)
465 end if
466

467 if (stat) then
468 dSpl(xy) = temp
469 depl(xy) = two*temp/Dd(K44)
470 reeqpl = reeqpl + abs(depl(xy))
471 else
472 dSpl(xy)=dSpl(xy)/two
473 end if
474 Sp(xy) = temp
475 end if
476

477 return
478 end
479

480

481

482 subroutine return_to_inter(Sint,dSpl,a,Sr1,Sr2,Sh1,Sp)
483 use def_par_math
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484 use def_par_dir
485 include ’vaba_param.inc’
486 dimension a(:),Sr1(:), Sr2(:), Sh1(:), Sp(:), dSpl(:), Sint(:)
487 t1 = (Sh1(xx) - Sr1(xx)) * a(xx) + (Sh1(yy) - Sr1(yy))
488 n* a(yy) + a(xy) * (Sh1(xy) - Sr1(xy))
489 t2 = Sr2(xx) - Sr1(xx)
490 t3 = Sr2(yy) - Sr1(yy)
491 t4 = Sr2(xy) - Sr1(xy)
492 t5 = one / (a(xx) * t2 + a(yy) * t3 + a(xy) * t4)
493 Sint = Sp
494 Sint(xx) = t1 * t2 * t5 + Sr1(xx)
495 Sint(yy) = t1 * t3 * t5 + Sr1(yy)
496 Sint(xy) = t4 * t1 * t5 + Sr1(xy)
497 dSpl = Sp-Sint
498 return
499 end
500

501

502

503 subroutine Yield_Hill (syield, depl, dSpl, Sp, yield, Dd,
504 n cL, props, Gf, E, de, D, eeqpl, u)
505 use def_par_math
506 use def_par_dir
507 use def_par_props
508 use utility_routines
509 include ’vaba_param.inc’
510 dimension depl(:), Sp(:), yield(:), Dd(:), props(:), Gf(:),
511 n E(:), dSpl(:), de(:), D(:)
512 dimension a(size(Sp)),hard(size(Gf)),
513 n fs(size(yield)), dummy(2)
514 real(8), optional :: u(size(Sp))
515 dimension array1(Size(Sp)+Size(yield)+Size(a) +4)
516

517 beta = props(pYbc)
518 gamma = props(pYgc)
519

520

521 syield1 = sqrt((Sp(xx) * Yield(yyc) / yield(xxc) + half
522 n * Sp(yy) * beta)* Sp(xx) + (half*Sp(xx) * beta +Sp(yy)
523 n * yield(xxc) / yield(yyc)) * Sp(yy) + Sp(xy)**2
524 n * gamma)
525 syield = syield1 - sqrt(yield(xxc)*yield(yyc))
526

527

528 if (syield.gt.zero) then
529

530 a(xx) = (Sp(xx) * yield(yyc) / yield(xxc) + half * Sp(yy)
531 n * beta) / syield1
532 a(yy) = (Sp(yy) * yield(xxc) / yield(yyc) + half * Sp(xx)
533 n * beta) / syield1
534

535 a(xy)=Sp(xy)*gamma/syield1
536

537 dlambda1 = (Dd(K11)*a(xx)+Dd(K21)*a(yy))*a(xx)
538 n + (Dd(K12)*a(xx)+Dd(K22)*a(yy))*a(yy)
539 n + a(xy)*Dd(K44)*a(xy) /two
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540

541 if (dlambda1 .ge. 0) then
542 dlambda1 = max(tiny(dlambda1),dlambda1)
543 end if
544

545 dlambda = syield/dlambda1
546 depl = zero
547 depl(xx:yy) = dlambda * a(xx:yy)
548 depl(xy) = dlambda* a(xy)
549 eeqpl = dlambda
550 call ut_elastic(dSpl, (/(0.0d0,I=1,6)/), depl, Dd)
551 dSpl(xy)=dSpl(xy)/two
552 if(present(u))then
553 u = a
554 end if
555

556 return
557 end if
558

559 return
560 end
561

562

563 subroutine hardening(yield,bhard,epl,props,cL,Gf,E,D,tem,
564 n nstate,dmg,eeqpl,ctable,ryield)
565 use def_par_math
566 use def_par_dir
567 use def_par_props
568 use utility_routines
569

570 include ’vaba_param.inc’
571 dimension yield(:),Gf(:),epl(:),props(:),bhard(:),tem(:),E(:)
572 dimension ein(size(E)),ctable(:,:), tyield(size(yield))
573 dimension dmg(:), D(:)
574 parameter (ratio_t=1.d0/100.d0, ratio_c=1.d0/100.d0)
575

576

577 call ut_vuhard(ryield, hard, eeqpl, ctable,
578 n int(props(ncomp)))
579 yield(xxc:yyc) = max(props(pYxc:pYyc)*ratio_c,props(Fucx:Fucy)
580 n * ryield)
581 if (eeqpl.gt.props(ecpl)) then
582 ryield= yield(yyc)/(props(Fucy))
583 else
584 ryield = one
585 end if
586

587 tyield(xxt) = min(props(pYxt),max(props(pYxt) * ratio_t,
588 n (-props(pYxt)
589 n * (D(K11) * props(pYxt) * cL * epl(xxt)
590 n - props(pYxt)**two * cL - two * D(K11)
591 n * Gf(xxt)) / (props(pYxt)**two * cL + two
592 n * D(K11) * Gf(xxt)))))
593

594 yield(xxt) = min(props(pYxt),max(props(pYxt)*ratio_t,
595 n props(pYxt) - props(pYxt)**2 * cL
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596 n * (tem(xxt)-props(pYxt)/D(K11))
597 n / (two*Gf(xxt))))
598 yield(xxt) = min(props(pYxt),max(props(pYxt)*ratio_t,ryield
599 n * (yield(xxt)-(props(pYxt)-tyield(xxt)))))
600

601 tyield(yyt) = min(props(pYyt),max(props(pYyt) * ratio_t,
602 n (-props(pYyt)
603 n * (D(K22) * props(pYyt) * cL * epl(yyt)
604 n - props(pYyt)**two * cL - two * D(K22)
605 n * Gf(yyt)) / (props(pYyt)**two * cL + two
606 n * D(K22) * Gf(yyt)))))
607

608 yield(yyt) = min(props(pYyt),max(props(pYyt)*ratio_t,
609 n props(pYyt) - props(pYyt)**2 * cL
610 n * (tem(yyt)-props(pYyt)/D(K22))
611 n / (two*Gf(yyt))))
612 yield(yyt) = min(props(pYyt),max(props(pYyt)*ratio_t,ryield
613 n * (yield(yyt) - (props(pYyt)-tyield(yyt)))))
614

615 return
616 end
617 endmodule
618

619

620

621 subroutine vumat(
622 1 nblock, ndir, nshr, nstatev, nfieldv, nprops, lanneal,
623 2 stepTime, totalTime, dt, cmname, coordMp, charLength,
624 3 props, density, strainInc, relSpinInc,
625 4 tempOld, stretchOld, defgradOld, fieldOld,
626 5 stressOld, stateOld, enerInternOld, enerInelasOld,
627 6 tempNew, stretchNew, defgradNew, fieldNew,
628 7 stressNew, stateNew, enerInternNew, enerInelasNew )
629

630 use def_par_dir
631 use def_par_props
632 use def_par_math
633 use def_par_state
634

635 use utility_routines
636 use sb_yield_surfaces
637 use sb_other
638

639 include ’vaba_param.inc’
640

641 dimension props(nprops), density(nblock),
642 1 coordMp(nblock,*), charLength(nblock),
643 2 strainInc(nblock,ndir+nshr), relSpinInc(nblock,nshr),
644 3 tempOld(nblock), stretchOld(nblock,ndir+nshr),
645 4 defgradOld(nblock,ndir+nshr+nshr),
646 5 fieldOld(nblock,nfieldv), stressOld(nblock,ndir+nshr),
647 6 stateOld(nblock,nstatev), enerInternOld(nblock),
648 7 enerInelasOld(nblock), tempNew(nblock),
649 8 stretchNew(nblock,ndir+nshr),
650 9 defgradNew(nblock,ndir+nshr+nshr),
651 1 fieldNew(nblock,nfieldv),
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652 2 stressNew(nblock,ndir+nshr), stateNew(nblock,nstatev),
653 3 enerInternNew(nblock), enerInelasNew(nblock)
654

655 character*80 cmname
656 logical idam
657 parameter (idam = .TRUE.)
658 integer dirc
659 LOGICAL OK
660

661 dimension Sp(ndir+nshr), yield(2*ndir+nshr),
662 nepl(ndir*2+nshr), Gf(ndir*2+nshr), dmg(ndir), tote(ndir),
663 ntotemax(ndir), E(ndir), xNu(xy:xy+ndir*2-1), G(xy:xy+nshr-1),
664 ndepl(ndir+nshr),t_depl(4,ndir+nshr), t_dSpl(4,ndir+nshr),
665 nD(ndir*2+nshr), Dd(ndir*2+nshr), dummy(2), dS(ndir+nshr),
666 ndSpl(ndir+nshr),ctable(2,props(ncomp)), syield(4),
667 na(size(Sp)),eeq(4), depl1(ndir+nshr),Sr1(ndir+nshr),
668 nSr2(ndir+nshr),Sh1(ndir+nshr),Sint(ndir+nshr)
669

670 Sp = zero
671 yield = zero
672 epl = zero
673 Gf = zero
674 dmg = zero
675 tote = zero
676 totemax = zero
677 E = zero
678 xNu = zero
679 G = zero
680 depl = zero
681 t_depl = zero
682 t_dSpl = zero
683 D = zero
684 Dd = zero
685 dummy = zero
686 dS = zero
687 dSpl = zero
688 ctable = zero
689 syield = zero
690 a = zero
691 eeq = zero
692 depl1 = zero
693 Sr1 = zero
694 Sr2 = zero
695 Sh1 = zero
696 Sint = zero
697 t_dS = zero
698

699 eeqpl = zero
700 factor = zero
701

702 dV = zero
703 ryield = zero
704 syield = zero
705

706 call ut_asgn_props(E, xNu, G, Gf, props, ctable)
707
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708 call ut_assem_K_mtx(D, E, xNu, G)
709

710 if(steptime.eq.zero) then
711 do CONCURRENT (n = 1:nblock)
712 call ut_elastic(StressNew(n,:),StressOld(n,:),
713 n StrainInc(n,:),D)
714 call stable_time(D, props(bdamp), factor,
715 n charLength(n), density(n))
716 StressNew(n,:) = StressNew(n,:)*factor
717 call ut_int_energy(enerInternNew(n),enerInternOld(n),
718 n StressNew(n,:),StressOld(n,:),
719 n StrainInc(n,:),density(n))
720 end do
721 else
722 do CONCURRENT (n = 1:nblock)
723 syield_h= -one
724 syield_r= -one
725

726 STRESSOLD(n,:)=STRESSOLD(n,:)-stateOld(n,dampx:dampzx)
727

728 call ut_asgn_fstate(yield, epl, tote, totemax, props,
729 n stateOld(n,:),dmg,eeqpl,ryield,dV)
730

731 dV = dV + Sum(StrainINC(n,1:2))
732

733 if (eeqpl.ge.props(ncomp+props(ncomp))) then
734 if (SUM(StrainInc(n,: )).ne.zero) then
735 stateNew(n,delp) = zero
736 else
737 StressNew(n,:)=StressOld(n,:)
738 goto 1212
739 end if
740 else
741 stateNew(n,delp) = one
742 end if
743

744

745 if (idam) then
746 call assem_dmg_K(dmg, Dd, D, STRESSOLD(n,:),
747 n totemax, E, yield, epl, props)
748 else
749 Dd = D
750 end if
751

752 call ut_elastic (Sp, STRESSOLD(n,:), StrainINC(n,:), Dd)
753

754 call ut_dev_stress (StressOld(n,:), Sp, dS)
755

756

757 call Yield_Rankine (syield(1),t_depl(1,:),t_dSpl(1,:),
758 n Sp, yield,Dd, charLength(n), props, Gf, E,
759 n StrainInc(n,:), dirc,D,eeq(1), Stateold(n,seqr),
760 n stateNew(n,:),dV)
761

762

763
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764 call Yield_Hill (syield(2), t_depl(2,:), t_dSpl(2,:),
765 n Sp, yield, Dd, charLength(n), props, Gf,
766 n E, StrainInc(n,:), D, eeq(2), a)
767

768

769 if (syield(1).ge.0.AND.syield(2).ge.0.) then
770

771 call Yield_Rankine (syield(3),t_depl(3,:),
772 n t_dSpl(3,:), Sp-t_dSpl(2,:), yield,Dd, charLength(n),
773 n props, Gf, E, StrainInc(n,:), dirc, D, eeq(3),
774 n Stateold(n,seqr), stateNew(n,:),dV)
775 call Yield_Hill (syield(4), t_depl(4,:),
776 n t_dSpl(4,:), Sp-t_dSpl(1,:), yield, Dd, charLength(n),
777 n props, Gf, E, StrainInc(n,:), D, eeq(4))
778

779 if (syield(3).ge.0.AND.syield(4).ge.0.) then
780 Sr1 = Sp - t_dSpl(1,:)
781 Sh1 = Sp - t_dSpl(2,:)
782 Sr2 = Sh1 - t_dSpl(3,:)
783 call return_to_inter(Sint,dSpl,a,Sr1,Sr2,Sh1,Sp)
784 syield_h = syield(2)
785 syield_r = syield(1)
786 reeqpl = eeq(1)
787 eeqpl = eeqpl + eeq(2)
788 depl1 = t_depl(2,:)
789 depl = t_depl(1,:)
790 elseif(syield(3).lt.0.AND.syield(4).ge.0.)then
791 dSpl = t_dSpl(2,:)
792 depl = t_depl(2,:)
793 syield_h = syield(2)
794 syield_r = -1.0d0
795 reeqpl = zero
796 eeqpl = eeqpl+eeq(2)
797 depl1 = zero
798 else
799 dSpl = t_dSpl(1,:)
800 depl = t_depl(1,:)
801 syield_h = -1.0d0
802 syield_r = syield(1)
803 reeqpl = eeq(1)
804 eeqpl = eeqpl
805 depl1 = zero
806 end if
807 elseif (syield(1).lt.0.AND.syield(2).ge.0.) then
808 dSpl = t_dSpl(2,:)
809 depl = t_depl(2,:)
810 syield_h = syield(2)
811 syield_r = -1.d0
812 reeqpl = zero
813 eeqpl = eeqpl+eeq(2)
814 depl1 = zero
815 else
816 dSpl = t_dSpl(1,:)
817 depl = t_depl(1,:)
818 syield_h = -1.d0
819 syield_r = syield(1)
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820 reeqpl = eeq(1)
821 eeqpl = eeqpl
822 depl1 = zero
823 end if
824 7745 continue
825

826 call sume(tote,totemax,STRAININC(n,:),StressOld(n,:),
827 n syield_h,depl)
828

829 if (syield_r .ge. zero .or. syield_h .ge. zero) then
830

831 call sumepl(StressOld(n,:), yield, epl, depl,
832 n eeqpl, reeqpl, syield_r, syield_h,
833 n props)
834

835 call hardening(yield,dummy,epl,props,charLength(n),
836 n Gf, E, D, totemax, 1, dmg, eeqpl,
837 n ctable,ryield)
838

839 call damage(dmg, Dd, D, Gf, E, yield, depl, props,
840 n charLength(n),tote,totemax)
841

842 STRESSNEW(n,:) = Sp - dSpl
843 else
844

845 STRESSNEW(n,:) = Sp
846 end if
847

848 call damping(STRESSOLD(n,:), STRESSNEW(n,:),dt,
849 n statenew(n,dampx:dampzx), props(bdamp))
850

851 call ut_asgn_tstate(stateNew(n,:),yield,epl, tote,
852 n totemax, dmg, eeqpl, ryield,
853 n Stateold(n,seqr)+reeqpl,props,dV)
854

855 E = props(Ex:Ez)
856

857 call ut_int_energy(enerInternNew(n),enerInternOld(n),
858 n StressNew(n,:),StressOld(n,:),
859 n StrainInc(n,:),density(n))
860

861 call ut_ine_energy(enerInelasNew(n),enerInelasOld(n),
862 n StressNew(n,:),StressOld(n,:),
863 n depl,depl1,density(n))
864 1212 continue
865 end do
866 end if
867 return
868 end
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