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Chapter 1

Introduction

Speech is one of the fundamental means of human communication. Beginning with limited
distance fixed-line telephone networks, recent developments have made feasible high quality
mobile communication across the globe. Speech processing devices like cellular phones, hands-
free equipment and every kind of human-to-machine speech processing systems are an integral
part of everyday life.

While the freedom and flexibility provided by mobile technology has made it possible to
communicate outside controlled environments, it has also introduced new challenges. Mobile
users communicate in different environments with varying levels and types of background
noise such as traffic noise, car engine noise, babble noise as in cafeterias, machine noise as
in a factory, etc. Suppression of the background noise is a relevant and challenging problem.
Apart from reducing listener fatigue and improving the quality and intelligibility of the speech,
noise reduction is also crucial to obtain good performance of the speech coding algorithms used
in mobile communications. Moreover, environmental noise has remained a limiting factor in
the widespread deployment of speech enabled services, such as speech recognition and speech
identification systems. Although these technologies have been originally developed to work
in noise free environment, there has been an increasing effort to make them efficient under
noisy conditions as well. Noise reduction is becoming also an increasingly important feature
in digital hearing aids.

For all the above mentioned reasons, much effort has been devoted over the last few decades
towards developing efficient speech enhancement algorithms. The term speech enhancement in
fact refers to a large group of methods that all aim at improving the quality of speech signals.
Some examples are bandwidth extension of narrowband signals, packet loss concealment, noise
reduction, etc. In this thesis we use the term “speech enhancement” to describe additive noise
reduction.

Noise reduction can be viewed as an estimation problem, where an unknown signal
(speech) is to be estimated in the presence of noise, where only the noisy observation is
available. The vast family of speech enhancement algorithms may be broadly classified into
two categories: single and multi-channel enhancement. Single-channel methods operate on
the input obtained from only one microphone. They have been attractive due to low cost and
size factors, especially in mobile communications. Multi-channel enhancement on the other
hand uses two or more microphones to record the noisy signal and can as such exploit also
spatial information.

In this thesis we focus on single-channel speech enhancement. Single-channel enhancement
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systems achieve noise reduction by exploiting the spectral diversity between the speech and
noise signals and the high degree of the nonstationarity of the speech signal. Consequently, it
is natural to perform enhancement in the frequency domain. Since the frequency spectra of
speech and noise often overlap, speech enhancement systems generally achieve noise reduction
at the expense of speech distortion. In the next section we discuss a general frequency domain
based single-channel speech enhancement scheme.

1.1 Single-Channel Speech Enhancement

Processing is done in short segments of the signal (frame-by-frame basis), typically of the order
of 10-30 ms, to ensure that the speech signal satisfies assumptions of wide-sense stationarity
(WSS) 1. The segmentation is done using a sliding window of finite support. The applied
window is called analysis window and is often a Hann or Hamming window. The frames
have a length of K samples and a frame shift of P samples. Typical values at a sampling
frequency of 8 kHz are K = 256 (32ms) and P = 128 (50% overlap between consecutive
frames). The windowed signal is transformed to the frequency domain by applying a discrete
Fourier transform (DFT). We consider the DFT coefficients of a signal as zero-mean complex
random variables.

We now introduce some notation and terminology. We refer to the DFT coefficients
X(k, i) as the complex spectrum of a signal and to |X(k, i)| as the magnitude or amplitude
spectrum. Let k be the frequency-bin index and i the time-frame index. The variance of the
signal’s DFT coefficients is denoted as σ2

XX(k, i) = E{|X(k, i)|2}. The quantity 1
K |X(k, i)|2

denotes the periodogram. The periodogram is an asymptotically unbiased estimate of the
power spectral density (PSD). That is PXX(k, i) = 1

K E{|X(k, i)|2} while the frame length K
approaches infinity. Note that the PSD and the autocorrelation function of a signal form a
Fourier transform pair. We consider an additive noise model

yi(n) = xi(n) + wi(n) (1.1)

where yi(n), xi(n) and wi(n) represent the noisy speech, the clean speech and the noise respec-
tively of the time-frame i. Let n be the discrete-time index and xi = [xi(0)xi(1)...xi(K −1)]T

denotes a segment of length K of the clean speech signal. yi and wi are defined analogously.
Due to the linearity of the Fourier transform the additive model can be expressed in the
frequency domain as

Y (k, i) = X(k, i) + W (k, i) (1.2)

where Y (k, i),X(k, i) and W (k, i) are DFT coefficients obtained at frequency index k and in
time-frame i from the noisy speech, clean speech and noise process, respectively. We assume
that X and W are independent. As a consequence they are also uncorrelated, i.e.,

E{X(k, i)W (k, i)} = 0,∀k, i (1.3)

and the following relations holds between the corresponding PSDs:

PY Y (k, i) = PXX(k, i) + PWW (k, i) (1.4)

1A wide-sense stationarity process X(t) is a week form of stationary process in which the 1st and the 2nd
moments don’t vary with respect to time. In other words the mean function is constant (E{X(t)} = mX(t) =
mX(t + τ ),∀τ, t ∈ R) and the correlation function depends only on the difference between two time instances
(E{X(t1)X(t2)} = RX(t1, t2) = RX(t1 + τ, t2 + τ ) = RX(t1 − t2, 0),∀τ, t1, t2 ∈ R).
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In the noise reduction problem we wish to obtain an estimate x̂(k, i) of the clean speech
from the noisy observation y(k, i) 2. It turns out that, in general, the estimate x̂(k, i) is a
function of the noise PSD, the clean speech PSD and the noisy observation, that is

x̂(k, i) = g(PWW (k, i), PXX (k, i), y(k, i)) (1.5)

An alternative notation that is usually used for the above equation is in terms of the a-priori
signal-to-noise ratio (SNR) ξ(k, i) and the a-posteriori SNR γ(k, i), that is

x̂(k, i) = g(ξ(k, i), γ(k, i), y(k, i)) (1.6)

where

ξ(k, i) =
PXX(k, i)
PWW (k, i)

(1.7)

and

γ(k, i) =
|y(k, i)|2

PWW (k, i)
(1.8)

respectively.
The a-posteriori SNR γ(k, i) is dependent on the noisy magnitude realization and the

noise PSD. The noisy magnitude realization is known while the noise PSD is an expected
value which is unknown and has to be estimated. The estimation of the noise statistics is a
challenging task as the estimates has to be estimated from the noisy complex spectrum real-
ization. A common method is to use voice activity detectors (VAD) to identify time segments
where speech is absent and thus the signal consist only of the background noise [22]. While
this method has the advantage of low computational complexity, its performance degrades in
low SNR values and in environments with nonstationary noise. One of the most popular noise
estimation schemes that adapts also during speech activity is the so called minimum statistics
approach ( [31], Appendix B). The minimum statistic approach tracks the minimum power
level in a particular frequency bin seen across a sufficiently long time interval and compute the
noise PSD from the minimum. Other recent advancements for noise PSD estimation comprise
data-driven noise power estimation [15], DFT domain subspace decompositions [18, 21] and
low complexity noise PSD tracking using high resolution PSDs [20]. The last advancements
show excellent noise tracking capabilities for a variety of non-stationary noise sources.

On the other hand, the a-priori SNR ξ(k, i) is completely defined in terms of expected
values, which means that in practice besides the PSD of the noise, also the PSD of the
speech has to be estimated. According to Eq. 1.4 the PSD of the speech can be estimated by
subtracting an estimate of the noise PSD from the noisy PSD [2]. Since the latter is unknown
as well, it is often estimated by the noisy periodogram. Often, the estimated speech PSD
shows variation due to random fluctuations of the noisy realization. Since these variations
can lead to perceptually annoying artifacts, other methods have been proposed that lead to
smoother speech PSD estimates over time. The decision-directed approach discussed in [10] is
one of the most commonly used techniques for this purpose. It makes use of the clean speech
magnitude of the previous frame in combination with the noise PSD and the periodogram of
the noisy PSD in order to obtain smooth estimates of the PSD (see section 2.3.1 on page 11
for details).

2We use upper case letters to denote random variables and the corresponding lower case letters to denote
their realizations
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To sum up, a block diagram of a generic frequency domain single-channel speech enhance-
ment scheme is shown in Fig.1.1. An estimate of the noise PSD is obtained from the noisy
speech. At this step any available prior knowledge of the noise signal can be exploited. This is
done, for instance, by ascribing a particular form to the probability density function (pdf) of
the noise complex spectrum, e.g. Gaussian priors. A more accurate method, though compu-
tational more demanding, is to use more sophisticated statistical models, e.g. Hidden Markov
Models (HMM) [9] or codebooks [37] which have been trained on representative databases.
Using the noise estimate, an estimate of the complex spectrum of clean speech is obtained.
Again, any prior knowledge about the speech signal and about the human auditory system
can be exploited. In some cases, the speech and the noise PSD are jointly estimated [39]. The
enhanced speech x̂i is reconstructed in the time domain through the inverse discrete Fourier
transform (IDFT). Possibly x̂i is windowed again, using a so called synthesis window and the
estimated clean speech is reconstructed using an overlap-add technique. Often, the analy-
sis and synthesis window are chosen such that when no processing is done in the frequency
domain, a perfect reconstruction of the input signal is given at the output.

Figure 1.1: Block diagram of frequency domain single-channel speech enhancement.

Several different single-channel speech enhancement techniques have been developed over
the last decades. In chapter 2 we provide a brief overview of the most important of them.

1.2 Problem definition

Generally, speech enhancement methods suffer from a number of deficiencies. These are errors
in the estimates of speech and noise parameters (e.g. noise PSD estimation, a priori SNR
estimation etc.), inaccuracies in some assumptions such as stationarity of the signals and
the mismatch of the models to data (e.g. the probability distribution models to the actual
distributions of speech or noise). In fact speech enhancement methods result in some loss of
speech information, the severity of which depends on the SNR and the speech enhancement
scheme. Furthermore, some level of noise remains in the output spectrum (residual noise).

Fig.1.2 presents the spectrograms of a speech signal. Comparing the clean (left) and noisy
(middle) spectrograms, it is evident that parts of the speech spectrum structure have been
totally masked by noise. The right spectrogram shows the enhanced signal. The method
used for noise reduction is the Wiener estimator (section 2.2). As it can be seen this method
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successfully suppresses the background noise. However, comparing the left and right spectro-
grams, it is observed that parts of the spectrum structure of speech are lost.

Figure 1.2: Spectrograms of clean speech, noisy speech (white Gaussian noise at 0db global
SNR) and enhanced (Wiener filter - Section 2.2).

In this thesis we focus on enhancing the performance of a conventional speech enhance-
ment system by applying post-processing restoration modules. In other words, we try to
restore the parts of the speech spectrum that were lost due to noise or removed by the noise
reduction algorithm. We choose to model the speech production process with linear prediction
analysis (LPA - Appendix A), since LPA is widely used in many relevant speech processing
applications, such as speech enhancement, speech coding and bandwidth extension. By doing
so, speech is completely modeled by an excitation signal and a spectral envelope (modeling
the filtering of the excitation signal by the vocal tract). This yields to a two step problem

• enhancement of the spectral envelope obtained after conducting LPA to the output
signal of a conventional speech enhancement method (from now on, we call it “enhanced
envelope”)

• enhancement of the excitation signal obtained after conducting LPA to the output
signal of a conventional speech enhancement method (from now on, we call it “enhanced
excitation”)

For enhancing the speech spectral envelope we use a priori knowledge of speech stored in
an line spectrum frequency (LSF - Appendix A) codebook, pre-trained on clean speech. For
enhancing the speech excitation we consider two different approaches. The first one, based
on [33] (section 3.2), uses nonlinearity to preserve speech excitation harmonics that have been
degraded by the conventional speech enhancement method, while the second one, inspired
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by [44] (section 3.1), uses a priori knowledge of speech stored in codebooks, in order to restore
the lost or suppressed excitation harmonics. The idea behind considering harmonic based
excitation restoration methods is that in most of the spoken languages voiced sounds (where
the harmonic structure is dominant) represent a large amount of the pronounced sounds.
Fig 1.3 shows the block diagram of our post-processing speech enhancement approach.

Figure 1.3: Block diagram of our post-processing speech enhancement system

The remainder of this thesis is organized as follows. In chapter 2 we give a brief overview
of existing speech enhancement methods. Two resent methods that try to enhance the perfor-
mance of a conventional speech enhancement method are discussed in chapter 3. In chapter 4
we present a new post-processing speech spectral envelope restoration approach for enhancing
the speech spectral envelope and in chapter 5 we discuss two different approaches for enhanc-
ing the excitation signal. Experiments and results are described in chapter 6 and the thesis
is concluded in chapter 7.



Chapter 2

Background

In this chapter we give a brief overview of existing speech enhancement methods. We do
not provide here a complete historical overview, but we discuss the methods most relevant to
the work presented in this thesis. For a comprehensive and up-to-date coverage of all major
speech enhancement algorithms proposed in the last few decades see [27].

2.1 Spectral Subtraction

One of the first methods used for noise reduction of noisy speech signals was spectral sub-
traction [2]. It is based on a direct estimation of the short-time spectral magnitude of clean
speech while maintaining the phase spectrum of the noisy signal [42]. This can be written as

X̂(k, i) = max(|Y (k, i)| − |W (k, i)|, 0) Y (k, i)
|Y (k, i)| (2.1)

where |W (k, i)| is an estimate of the average magnitude spectrum of the noise signal. Since the
magnitude spectrum cannot be negative, the negative values resulting from the subtraction
are set to zero. Assuming |Y (k, i)| ≥ |W (k, i)| the spectral error resulting from the above
estimator is given by

ε(k, i) = X̂(k, i) − X(k, i) = W (k, i) − |W (k, i)| Y (k, i)
|Y (k, i)| (2.2)

Since the above spectral error equals the difference between the noise spectrum and its
average estimate, local average of the spectral magnitudes can be used to reduce the error
variance [2]. Thus replacing |Y (k, i)| in Eq.2.1 with a time-averaged magnitude spectrum
|Y (k, i)| gives

X̂(k, i) = max(|Y (k, i)| − |W (k, i)|, 0) Y (k, i)
|Y (k, i)| (2.3)

The obvious problem with this modification is that the speech is nonstationary and therefore
only limited time averaging is allowed.

The aforementioned spectral subtraction algorithm is called amplitude spectral subtrac-
tion. In another variant of the spectral subtraction scheme, called power spectral subtraction,
an estimate of the periodogram of the clean speech signal is obtained as

|X̂(k, i)|2 = max(|Y (k, i)|2 − PWW (k, i), 0) (2.4)
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which results in the following estimate of the clean speech:

X̂(k, i) =
√

max(|Y (k, i)|2 − PWW (k, i), 0)
Y (k, i)
|Y (k, i)| (2.5)

A rather general formulation of the spectral subtraction estimators is given by

X̂(k, i) = (max(1 − b
PWW (k, i)a

|Y (k, i)|a , 0)
1
a Y (k, i) (2.6)

The parameter b determines the amount of subtraction, i.e. b > 1 leads to an over subtraction
and thus an aggressive noise reduction, while b < 1 leads to an under subtraction of the noise
and will lead to a higher noise floor. Parameter a determines the type of subtraction, e.g.
a = 1 and a = 2 for which we obtain amplitude spectral subtraction and power spectral
subtraction respectively.

One of the main drawbacks of the spectral subtraction scheme is that the enhanced signal
suffers from musical noise, which is especially audible in speech pauses. Random fluctua-
tions in the periodogram result in randomly spaced narrow bands of magnitude spikes in
the enhanced spectrum. In between these peaks, the spectral values are strongly attenuated
since they are close or below the estimated noise spectrum (|W (k, i)|) or the noise PSD,
PWW (k, i). Transformed back in time domain this residual noise sounds like the sum of tone
generators with random fundamental frequencies and is hence referred as musical noise. The
musical noise phenomenon is common to many frequency domain speech enhancement algo-
rithms, e.g., the Wiener filter (section 2.2) also suffers from this problem, especially when the
estimated speech PSD is obtained in a subtractive fashion (Eq. 1.4)

2.2 The Wiener Filter

Another well known estimator that has been applied for noise reduction in noisy speech signals
is the Wiener filter [41]. Taking into account the independence of speech and noise signals
and under the assumption of large frame size K, the Wiener filter can be written in frequency
domain as

H(k, i) =
PXX(k, i)
PY Y (k, i)

=
PXX(k, i)

PXX(k, i) + PWW (k, i)
(2.7)

However, PXX(k, i) is not known, and in practice an estimate P̂XX(k) of PXX(k) is used.
This estimate is sometimes obtained in a subtractive fashion from Eq. 1.4 using an estimate
P̂Y Y (k, i) of PY Y (k, i) and an estimate P̂WW (k, i) of PWW (k, i). The negative values are set
to zero since the PSD cannot be negative:

P̂XX(k, i) = max(P̂Y Y (k, i) − P̂WW (k, i), 0) (2.8)

so that the clean speech spectrum is estimated according to

X̂(k, i) =
max(P̂Y Y (k, i) − P̂WW (k, i), 0)

P̂Y Y (k, i)
Y (k, i) (2.9)

In practice the P̂Y Y (k, i) may be estimated through the periodogram or a smooth version
thereof and P̂WW (k) using noise tracking methods.
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Dividing the numerator and the denominator of Eq. 2.7 by the noise PSD PWW (k, i) it
yields

H(k, i) =
ξ(k, i)

ξ(k, i) + 1
(2.10)

From Eq. 2.10, the following interpretation of the Wiener filter frequency response H(k, i)
in terms of the a priori SNR can be deduced. Consider the two limiting cases of a noise-free
signal ξ(k, i) = ∞ and an extremely noisy signal ξ(k, i) = 0. At very high SNR, H(k, i) ≈ 1,
and the filter applies little or no attenuation to the noise-free frequency bin k. At the other
extreme, when ξ(k, i) = 0, H(k, i) = 0 and the filter completely suppresses these frequency-
bins. Therefore, for additive noise, the Wiener filter attenuates each frequency component
in proportion to an estimate of the a priori SNR. Fig.2.1 shows an example of the Wiener
estimator for a voiced segment of speech degraded by car noise at 15db overall SNR. Since we
are using the modified decision directed approach (Eq. 2.18) to estimate the a priori SNR,
the Wiener gain function is bounded to values between 0.01 and 1. Notice that in the figure
the Wiener gain function is scaled to make it clearer.
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Figure 2.1: Wiener estimator for a voiced segment of speech degraded by car noise at 15db
overall SNR. The noise level was estimated by the minimum statistics approach (Appendix B)
and the a priori SNR by the decision directed approach (section 2.3.1).

Among the linear estimators, the wiener filter is the optimal one in terms of mean-square
error (MSE). When the clean speech and the noise DFT coefficients are both complex Gaussian
distributed the Wiener filter is also the optimal nonlinear estimator.
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2.3 Statistical Model Based Systems

2.3.1 Gaussian models

In [10] an minimum mean-square-error (MMSE) magnitude estimator was proposed under
the same statistical model as for the Wiener filter, i.e. both the speech and the noise DFT
coefficients were assumed Gaussian distributed. This implies that the clean speech magnitude
follows a Rayleigh distribution. The reason to consider a magnitude estimator instead of a
complex was based on the argument that the phase of speech is perceptually less relevant
than the magnitude [2, 42]. The MMSE short-time spectral amplitude (STSA) estimate is
obtained by applying the following gain function to the noisy spectral magnitude:

HSTSA(k, i) =

√
πu(k, i)

2γ(k, i)
exp(−u(k, i)

2
)[(1 + u(k, i))I0(

u(k, i)
2

) + u(k, i)I1(
u(k, i)

2
)] (2.11)

where I0(.) and I1(.) are the modified Bessel functions of order zero and one respectively and
u(k, i) = ξ(k,i)

ξ(k,i)+1γ(k, i).
Motivated by the observation that the MSE of the log-spectral amplitude (LSA) is subjec-

tively a more meaningful distortion measure than the MSE of the spectral amplitude, in [11],
using the same statistical model as in [10], an MMSE LSA is derived:

HLSA(k, i) =
ξ(k, i)

1 + ξ(k, i)
exp(

1
2

∞∫
u(k,i)

e−t

t
dt) (2.12)

This approach was found to result in lower residual noise than when the MSE was minimized
in the spectral domain, which can be explained by the higher suppression provided by the
LSA scheme. In Fig. 2.2 suppression curves for different values of ξ(k, i), are plotted as a
function of the instantaneous SNR |y(k,i)|2−PWW (k,i)

PWW (k,i) = γ(k, i) − 1, for the Wiener filter, the
MMSE STSA and the MMSE LSA. Note that the Wiener gain function does not depend on
the a posteriori SNR.

Figure 2.2: Suppression curves, source [38].
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Estimation of the A priori SNR

Most of the frequency domain speech enhancement schemes are defined in terms of the a
priori SNR. In practice ξ(k, i) is unknown and has to be estimated for each frequency bin
and for each frame index from the noisy observation.

The decision directed approach discussed in [10] is one of the most commonly used tech-
nique for a priori SNR estimation. It is based on the definition of ξ(k, i) and its relationship
with the a posteriori SNR γ(k, i), as given below:

ξ(k, i) =
E{|X(k, i)|2}
PWW (k, i)

(2.13)

and

ξ(k, i) =
E{|Y (k, i)|2} − E{|W (k, i)|2}

PWW (k, i)
= E{γ(k, i) − 1} (2.14)

Combining linearly the above two expression for ξ(k, i) we get:

ξ(k, i) = E{α |X(k, i)|2
PWW (k, i)

+ (1 − α)[γ(k, i) − 1, 0]} (2.15)

with 0 ≤ α ≤ 1. In practice the estimator ξ̂(k, i) is deduced from Eq. 2.15, and is given by

ξ̂(k, i) = α
|x̂(k, i − 1)|2
PWW (k, i)

+ (1 − α)max[γ(k, i) − 1, 0] (2.16)

A typical value for α is 0.98. By comparing Eq. 2.15 and Eq. 2.16 we see that ξ̂(k, i) is
obtained by dropping the expectation operator, using the amplitude estimator of the clean
speech of the previous frame x̂(k, i−1) and using the max operator to ensure the positiveness
in case ξ(k, i) − 1 is negative. The parameter α determines how smooth the estimate will be
and is therefore called smoothing factor. The closer α is to one, the smoother across time
the estimator will be. Since the attenuation of the noisy spectral amplitude, e.g. Eq.2.11 and
Eq.2.12, or of the complex spectrum, e.g. Eq.2.10, depends on the a priori SNR estimation,
its smooth behavior eliminates large variations across successive frames, resulting in reduced
musical noise [6]. In return for this decrease in variance, the price to be payed is a delay in
the estimation. In other words, α controls the trade-off between the degree of smoothing of
ξ(k, i) during speech-absent frames and the level of transient distortion incurred during signal
onsets and offsets. Eq. 2.16 needs initials conditions for the first frame,i.e. i = 0. In [10] they
propose:

ξ̂(k, 0) = α + (1 − α)max[ξ(k, i) − 1, 0] (2.17)

since it minimizes initial transition effects in the enhanced signal.
Following the work presented in [10], several improvements were made in the decision

directed approach in order to reduce the bias and to improve the speed of adaptation which is
controlled by the smoothing parameter α. In this work we use the modified decision directed
approach proposed by Erkelens et. al [12] which corrects a bias at low SNR values

ξ̂(k, i) = max[α
4
π

|x̂(k, i − 1)|2
σ2

W (k, i)
+ (1 − α)(ξ(k, i) − 1), ξmin] (2.18)

where ξmin was set to −19 dB. For an analytical derivation of the above equation see [12].
Fig 2.3 shows an example.
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Figure 2.3: Modified decision directed approach (Eq. 2.18). The noise level was estimated by
the minimum statistics approach (Appendix B).

2.3.2 Super-Gaussian Models

The use of Gaussian density to model speech is debatable. In [32] the density of speech DFT
coefficients has been thoroughly investigated. It was concluded, by measuring histograms
of speech DFT coefficients conditioned on a priori SNR values, that the observed density
of speech DFT coefficients is more super-Gaussian, i.e. Laplace and Gamma distributions.
Super-Gaussian pdfs are more peaky than the Gaussian density and possess heavier tails. It
is important to mention that the preference for these super-Gaussian densities is influenced
by conditioning on the a priori SNR and on the method used to estimate it [18].

Because of the observed super-Gaussian priors for speech DFT coefficients, there has been
an increased interest over the last years to derive estimators for the clean DFT coefficients
under these densities. In [32] MMSE estimators for the clean complex spectrum are derived
under Laplace and Gamma Densities. In [13] it was shown that all known frequency domain
MMSE estimators (for both the clean complex spectrum and the clean magnitude) can be
derived as special cases under the generalized-Gamma speech prior density.

The complex spectrum estimators were derived by assuming that real and imaginary parts
of DFT coefficients are independent and are both distributed as a double-sided generalized-
Gamma density. The magnitude estimators were derived by assuming that the magnitude
has a single-sided generalized-Gamma density and the phase has a uniform density. However,
there do exist inconsistencies between the densities assumed in the cartesian domain and in the
polar domain. The uniform phase distribution seems to be the most realistic assumption, since
measured histograms show that phase is uniform and that real and imaginary parts of speech
DFT coefficients are uncorrelated, but not independent [13, 28]. In [14] a new theoretical
framework is presented that eliminates these inconsistencies by adopting the uniform phase
distribution and dropping the independence assumption of real and imaginary parts. In [19]
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comparison results between the estimators of the [14] and the conventional ones are presented.
For a more detailed discussion of statistical-model based systems see the aforementioned
papers.

2.3.3 Trained Statistical Models - Parametric Models

The methods discussed in the previous sections are optimal only within the framework of the
statistical models that they assume. Rather than describing complex signals such as speech
with models with few parameters, a more accurate method is to use more sophisticated
statistical models such as hidden Markov models [9], Gaussian mixture models (GMM) [4]
and codebooks [37,39] that have been trained using a representative database. The improved
accuracy is at the expense of increased computational complexity and memory usage.

In these methods, the pdfs of the speech and noise processes are estimated from corre-
sponding training sequences. They often apply certain constraints on the estimation process
by using the fact that speech can be very well modeled as an autoregressive (AR) process (see
Appendix A).As such these methods can exploit certain a priori information and can ensure
that the enhanced speech signal satisfies certain spectral-temporal constraints. However, they
need a parametric model of the noise process as well. Clearly modeling the noise process with
HMMs or codebooks restricts the system to work only for certain noise types [18]. Moreover,
not all noise types can be described well with a low order AR model (e.g. siren noise).

For a more detailed discussion of speech enhancement methods based on parametric mod-
els see the aforementioned papers and [27]. In the next section we discuss the codebook based
approach described in [39], since it is relevant to the work presented in this thesis.

Codebook based approach

For speech enhancement Srinivasan et al. [39] assume that both the speech and the noise are
described by independent AR processes. They use a priori information contained in speech
and noise Linear Prediction Coefficients (LPC - Appendix A) codebooks. The problem is then
one of estimating both the speech and the noise models (LPC and the corresponding scaling
factors, i.e., excitation variances), using the observed noisy complex spectrum. The speech
ss∗i and the noise nn∗

i codebook indexes and the excitation variances σ2∗
x,i, σ2∗

w,i corresponding
to the vectors that the indexes represent are obtained in a unified maximum likelihood (ML)
framework according to:

{ss∗i , nn∗
i , σ

2∗
x,i, σ

2∗
w,i} = arg max

ss,nn
max

σ2
x,i,σ

2
w,i

p(yi|ass
x ,ann

w ;σ2
x,i, σ

2
w,i) (2.19)

where σ2
x,i and σ2

w,i are the excitation variances of the clean speech and noise respectively,
ass
x = [1 ass

x1
. . . ass

xp
] is the LPC of the ssth entry of the speech codebook and ann

w =
[1 ann

w1
. . . ann

wq
] is the LPC of the nnth entry of the noise codebook with p and q being the

respective linear prediction (LP) model orders. Note that i denotes the time-frame index,
since the estimation is performed on a frame-by-frame basis. A schematic diagram of this
method is shown in Fig. 2.4.

Under Gaussianity assumptions and using the equivalence between the log-likelihood and
the Ikatura-Saito distortion (IS) [17] the estimation can be performed according to

{ss∗i , nn∗
i } = arg min

ss,nn
{ min

σ2
x,i,σ

2
w,i

dIS(Pyy(ωk, i)), P̂ ss,nn
yy (ωk, i))} (2.20)
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Figure 2.4: Block diagram of the codebook-based approach proposed in [39].

where dIS is the Ikatura-Saito distortion measure given by

dIS(Pyy(ωk, i), P̂ ss,nn
yy (ωk, i)) =

1
2π

2π∫
0

(
Pyy(ωk, i)

P̂ ss,nn
yy (ωk, i)

− ln(
Pyy(ωk, i)

P̂ ss,nn
yy (ωk, i)

) − 1)dωk, (2.21)

and

P̂ ss,nn
yy (ωk, i) =

σ2
x,i

|Ass
x (ωk)|2

+
σ2

w,i

|Ann
w (ωk)|2

(2.22)

the spectral envelope of the noisy speech based on the speech and the noise codebooks where

Ass
x (ωk) =

p∑
l=0

ass
xl

e−jωkl, Ann
w (ωk) =

q∑
l=0

ann
wl

e−jωkl (2.23)

are the complex spectrums of the ssth vector from the speech codebook and the nnth vector
from the noise codebook respectively.

For given Ass
x (ωk) and Ann

w (ωk) and under the assumption of small modeling errors between
P ss,nn

yy (ωk, i) and P̂ ss,nn
yy (ωk, i) 1, the excitation variances that minimize Eq. 2.21 are obtained

according to

C
[

σ2
x,i

σ2
w,i

]
= D (2.24)

where

C =

⎡⎢⎢⎣
∣∣∣∣∣∣∣∣ 1

P 2
yy(ωk,i)|Ass

x (ωk ,i)|4

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ 1
P 2

yy(ωk ,i)|Ass
x (ωk,i)|2|Ann

w (ωk,i)|2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ 1
P 2

yy(ωk,i)|Ass
x (ωk ,i)|2|Ann

w (ωk ,i)|2

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ 1
P 2

yy(ωk ,i)|Ann
w (ωk,i)|4

∣∣∣∣∣∣∣∣
⎤⎥⎥⎦

and

D =

⎡⎢⎣
∣∣∣∣∣∣ 1

Pyy(ωk,i)|Ass
x (ωk ,i)|2

∣∣∣∣∣∣∣∣∣∣∣∣ 1
Pyy(ωk,i)|Ann

w (ωk,i)|2
∣∣∣∣∣∣

⎤⎥⎦
1using a series expansion for ln(x) up to second order terms [39]



2.3 Statistical Model Based Systems 15

where ||f(ωk, i)|| =
∫ |f(ωk, i)| dωk

To get a better spectral fit between the modeled and the observed noisy spectra, such
that the above mentioned approximations can be made valid, it is necessary to use the AR
spectrum of the observed noisy speech rather than the DFT-based periodogram. Thus, Pyy

in the preceding equations is obtained as

Pyy(ωk, i) =
σ2

y,i

|Ay(ωk, i)|2
, Ay(ωk, i) =

p∑
l=0

ai
yl

e−jωkl (2.25)

The estimation process can be summarized as follows. For each pair of speech and noise
spectral shapes from the representative codebooks, the excitation variances are calculated
according to Eq. 2.24 and the distortion(Eq. 2.21) is evaluated. Codebook combinations that
result in a negative value for either the speech or noise excitation variance are discarded since
they are infeasible due to the non-negativity constraints on the variance. The speech and noise
spectra globally minimizing the distortion are determined. These spectra together with the
corresponding variances represent the ML estimate of the speech and noise segment i. Note
that for each frame of noisy speech, the noise codebook is augmented with an estimate of the
noise LP vector obtained from the noisy observation, using the minimum statistics approach
( [31], Appendix B). Thus, one of the trained noise codebook entries is chosen only if it
provides a better representation of the noise than the minimum statistics approach. Fig.2.5
and Fig 2.6 show the speech and noise models obtained from the above described approach
for a voiced speech segment and an unvoiced speech segment, respectively, degraded by white
Gaussian noise at 20 dB overall SNR. Note that in our implementation the noise envelope is
obtained only from the minimum statistics approach.
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Figure 2.5: ML estimation voiced example.

The above estimation scheme can handle both quickly changing noise envelopes and
quickly changing noise energy. The difference entries of the noise codebook deal with changing
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Figure 2.6: ML estimation unvoiced example.

noise envelopes while the instantaneous estimation of the excitation variances handles chang-
ing noise energy. The estimated parameters of speech and noise can be used to construct the
following wiener filter (smoother across frequency bins than the one of Eq. 2.7):

H(ωk, i) =

σ2∗
x,i

|Ass∗
x (ωk,i)|

σ2∗
x,i

|Ass∗
x (ωk,i)| +

σ2∗
w,i

|Ann∗
w (ωk,i)|

(2.26)

which can be used to estimate the clean signal from the noisy observation. In Fig 2.5 and
Fig 2.6 the respective wiener filter estimator of Eq. 2.26 is depicted (scaled).



Chapter 3

Prior Knowledge

Generally, most speech enhancement methods result in some loss of speech information, the
severity of which depends on the SNR and the speech enhancement scheme. In this chapter
we present two resent methods that try to enhance the performance of a conventional speech
enhancement method by applying post-processing restoration modules. The first one, pro-
posed in [44], uses a codebook mapping technique to restore the lost or suppressed speech
information, while the second one, originally proposed in [33], uses nonlinearity to preserve
speech harmonics that have been degraded by the conventional noise reduction schemes. The
aforementioned methods will be used in chapter 5 in order to enhance the excitation signal
obtained from a conventional speech enhancement method.

3.1 Codebook Based Post-Processing Method

Zavarehei et al. [44] proposed a post-processing algorithm for retrieving parts of the speech
spectrum that may be lost to noise or suppressed by the conventional speech enhancement
methods. Fig.3.1 shows the block diagram of the speech enhancement scheme that was pro-
posed. They focused on reviving severely damaged subbands of speech using a harmonic plus
noise model (HNM) [24]. Application of HNM enforces a harmonically structured reconstruc-
tion of speech spectral amplitude. Furthermore, HNM provides a good model for tracking
natural energy contours of the signal across time and frequency. They proposed a weighted
codebook mapping algorithm (WCBM) for estimation and restoration of the HNM param-
eters. Incorporation of a priori knowledge of speech is done through codebooks, trained on
clean speech. The codebooks are accessed using a weighted distance measure of the codebook
entries from the enhanced speech vector. A weight vector is adaptively obtained according to
the subbands’ SNRs. Higher weights are given to less-distorted subbands (high SNR values)
and lower weights to those which suffer from distortion (low SNR values). The enhanced
speech is a weighted interpolation of the output of the conventional speech enhancement
scheme and the codebook output. WCBM exploits the high correlation between the succeed-
ing harmonics of a speech frame i and aims at reviving those that are distorted.

3.1.1 Harmonic Noise Model of speech

The useful effects, of using HNM for modeling the harmonic structure of speech, on the
intelligibility and quality of synthesized speech have made these models popular for various
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Figure 3.1: Block diagram of the speech enhancement system proposed by Zavarehei et al.,
source [44].

applications [34,40,43]. According to HNM the speech segments are analyzed and synthesized
entirely in spectral amplitude domain (|X(fk, i)|). The unprocessed speech phase is used for
resynthesis.

From each harmonic subband three parameters are extracted:

• the harmonic amplitude A(fh, i), which is represented by the square-root energy of the
subband

A(fh, i) =

√√√√√ fh+Δf∫
fh−Δf

X2(fk, i)dfk (3.1)

• the harmonicity V (fh, i), which represents the voicing degree of the subband

V (fh, i) = 1 −

√
fh−Δf∫
fh+Δf

(X(fk, i) − A(fh, i)G(fk − fh))2dfk

A(fh, i)
(3.2)

• the harmonic central frequency fh, which is extracted locally to maximize the harmonic-
ity of the signal around that harmonic

fh = arg max
fh

V (fk, i), hF0 − ΔFH < fk < hF0 + ΔFH (3.3)

where i is the time-frame index, h is the harmonic index, F0 is the fundamental frequency, 2Δf
is the harmonic bandwidth, ΔFH is an empirically search range and G(fk) = αexp(−(βfk

Δf )2)
a Gaussian-shaped function used to model the harmonics. The parameters α and β are
calculated in such a way to preserve unity power of the Gaussian shape spectrum, i.e.
Δf∫

−Δf

G2(fk)dfk = 1.

Given the set of HNM parameters for a speech segment i, the spectral amplitudes are
regenerated according to:

|XHNM (fk, i)| =
NH∑
h=1

A(fh, i)(V (fh, i)G(fk − fh) + (1 − V (fh, i))R(fk − fh)) (3.4)
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where XHNM (fk, i) is the HNM-synthesized amplitude spectrum, R(fk) is the noise compo-
nent of the harmonic subband (Rayleigh distributed random variable satisfying
Δf∫

−Δf

R2(fk)dfk = 1 [10]) and NH the number of harmonics of the segment i depending on the

fundamental frequency F0 and the sampling frequency FS . Note that each harmonic subband
is reconstructed as a combination of voiced and unvoiced parts. The harmonicity specifies
the proportion of voiced and unvoiced energy in each subband. In other words, harmonicity
helps to avoid the hard decision of voiced or unvoiced subbands.

3.2 Harmonic Regeneration

As it has been mentioned before, one major limitation that exists in the classical speech
enhancement schemes is that some harmonics are considered as noise only components (es-
pecially in low SNR values) and consequently are suppressed by the speech enhancement
system. To overcome this problem, Plapous et al. [33,34] proposed a method called harmonic
regeneration noise reduction (HRNR) that takes into account the harmonic structure of the
speech. In this approach, the output signal of a common noise reduction algorithm is further
processed to create an artificial signal where the missing harmonics have been automatically
regenerated. Then this artificial signal is used to compute a suppression gain that tries to
preserve all the harmonics of the clean speech signal.

3.2.1 Principle of harmonic regeneration

A simple and efficient way to restore speech harmonics consists of applying a nonlinear func-
tion NL (absolute value, minimum or maximum relative to a threshold, etc.) to the time
speech segment obtained from a common noise reduction method. Then the artificially re-
stored segment is obtained by

xharmo,i(n) = NL(x̂i(n)) (3.5)

Note that the restored harmonics of xharmo,i(n) are created at the same positions as
the clean speech ones. This very interesting and important characteristic of the method is
ensured because of nonlinearity in the time domain (see next section for more details). For
illustration, Fig. 3.2 shows the typical behavior of the nonlinearity. Fig. 3.2(a) represents
a clean speech segment and Fig. 3.2(b) the enhanced speech segment obtained with wiener
filter (Eq. 2.10). It appears that some harmonics have been completely suppressed or severely
degraded. Fig 3.2(c) shows the artificially restored segment obtained using Eq. 3.5 where
the nonlinearity (half wave rectification, i.e., the maximum relative to 0) has restored the
harmonics. However, the harmonic amplitudes of the artificial signal are biased compared to
clean speech. As a consequence this signal cannot be used directly as clean speech estimation.
Nevertheless, it possesses very useful information that can be exploited to refine the a priori
SNR. This is

ξ(k, i)HRNR =
ρ(k, i) |x̂(k, i)|2 + (1 − ρ(k, i)) |xharmo(k, i)|2

P̂WW (k, i)
(3.6)

The ρ(k, i) parameter controls the mixing level of |x̂(k, i)|2 and |xharmo(k, i)|2 (0 ≤ ρ(k, i) ≤
1). The value of which should be close to 1 when the estimation provided by the speech
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Figure 3.2: Effect of the nonlinearity, source [33].

enhancement system is reliable and close to 0 when it is unreliable. In [34], in order to match
this behavior, they proposed ρ(k, i) to be equal to the Wiener filter gain function while in [33]
the parameter ρ was chosen to be a constant value.

The refined a priori SNR ξ(k, i)HRNR is then used to compute an estimate of the clean
speech, in which all the harmonics will be presence. Following Eq. 1.6, this is

x̂(k, i) = g(ξHRNR(k, i), γ(k, i), y(k, i)) (3.7)

3.2.2 Theoretical Analysis of Harmonic Regeneration

To analyze the harmonic regeneration step we focus on a particular nonlinear function, the
half wave rectification

xharmo,i(n) = max(x̂i(n), 0) = x̂i(n)u(x̂i(n)) (3.8)

where u is the step function. Fig. 3.3 shows a segment of an enhanced voiced speech signal
x̂i(n) (dotted line) and the corresponding u(x̂i(n)) (dashed line). It can be observed that
the signal u(x̂i(n)) amounts to a repetition of an elementary waveform (solid line) with peri-
odicity T0, corresponding to the segments fundamental frequency. By definition, the Fourier
Transform (FT) of u(x̂i(n)) comes down to a sampled version of the elementary waveform’s
FT

FT{u(x̂i(n))} =
1
T

+∞∑
m=−∞

Ri(
m

T0
)δ(f − m

T0
) (3.9)

where δ denotes the Dirac function, f the continuous frequency and Ri( m
T0

) is the FT of
the elementary waveform taken at discrete frequencies m

T0
. Note that the sampling frequency

coincides with the harmonic positions of the elementary waveform ( 1
T0

, 2
T0

, . . .).
Thus the spectrum of the xharmo,i(n) is the convolution between the spectrum of x̂i(n)

(Fig. 3.2(b)) and the harmonic comb FT{u(x̂i(n))}. The fact that these two spectrums have
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Figure 3.3: Voiced speech segment, source [33].

the same fundamental frequency F0 = 1
T0

explains the harmonic regeneration phenomenon.
The harmonics are created at the same position as the clean speech ones. Furthermore, the
envelope of FT{u(x̂i(n))}, rapidly decreases when |m| increases, thus a missing harmonic is
generated only using the information of the few neighboring harmonics.

It is also important to investigate the behavior of the harmonic regeneration process for
unvoiced speech. Let us consider an hybrid signal where the lower part of the spectrum is
voiced and the upper unvoiced. The FT of u(x̂i(n)) will still be a harmonic comb, with
fundamental frequency imposed by the voiced part. Then the voiced part of the spectrum of
the xharmo,i(n) will be exactly the same as in voiced only case. However since each frequency
bin is obtained using only its corresponding neighboring area in the spectrum of x̂i(n), the
unvoiced spectrum part will lead to an unvoiced restored spectrum. In the case of an unvoiced
speech segment, the FT{u(x̂i(n))} will be an undetermined spectrum and the convolution
will lead to an unvoiced spectrum. Thus, the unvoiced segment will not be degraded.
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Chapter 4

Estimation of Speech Spectral
Envelope

In this chapter we present a post-processing speech spectral envelope restoration approach
for enhancing the speech spectral envelope obtained after applying LPA to the output signal
of a conventional speech enhancement method (“enhanced envelope”). A schematic diagram
of this approach is shown in Fig. 4.1. The restoration is achieved through incorporation of a
priori knowledge of speech spectral envelopes stored in an LSF codebook, pretrained on clean
speech. The restoration is accomplished using a weighted codebook mapping algorithm.

Figure 4.1: Block diagram of the post-processing speech spectral envelope restoration ap-
proach.

4.1 LSF Codebook

Codebook mapping is a simple technique of incorporating prior knowledge in the signal esti-
mation and extrapolation process. This technique has been widely used in different aspects of
speech processing, including speech enhancement [37, 39, 44], bandwidth extension [25], etc.
In our approach a 10 bit (1024 codewords) speech codebook of LSFs was constructed. This
size was chosen since on average it provides a good trade off between quantization errors and
memory usage. The dimension of the codebook, i.e. the order p of the LPA, was 10 [23]. For
training the codebook we used the entire TIMIT-TRAIN database [16], which consist of 4620
clean speech sentences. The sampling frequency was Fs = 8000Hz and the speech signals
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were limited to telephone bandwidth (300 − 3400Hz). We used 50% overlapping frames of
32ms and a cosine-squared window, which has the perfect recunstruction property. Beginning
and trailing silences and frames of a sentence with energy lower than 40 dB of the maximum
frame energy of the sentence were excluded from the training phase. This resulted in around
750000 training vectors. The Linde, Buzo, Gray (LBG) vector quantization algorithm was
used for training the codebook [5]. The basic principles of the LBG algorithm are presented
in Appendix C. Fig 4.2 and Fig 4.3 show the original and the quantized envelopes of a voiced
clean segment and an unvoiced clean segment, respectively.
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Figure 4.2: Quantization effect on the envelope of a voiced segment.
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Figure 4.3: Quantization effect on the envelope of a unvoiced segment.

4.2 Codebook Mapping

In order to apply our algorithm, first the LPC of the output of the speech enhancement
algorithm are extracted. The order of LPA of the enhanced frame is chosen to be the same with
the dimension of the codebook, i.e. p = 10. The “distance” between the “enhanced envelope”
and the envelopes represented by the codewords (“codebook envelopes”) are estimated in
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terms of log-spectral distortion (SD)1

SDi
m =

√√√√√ 1
2π

2π∫
0

(10 log10(
1

|Ax̂(ωk, i)|2
) − 10 log10(

1
|Am(ωk)|2

))2dωk (4.1)

where i the time-frame index, since our method is applied on a frame-by-frame basis, and

Ax̂(ωk, i) =
p∑

l=0

ai
x̂l

e−jωkl, Am(ωk) =
p∑

l=0

aml
e−jωkl (4.2)

are the complex spectrums of the “enhanced envelope” and the mth vector from the speech
codebook, respectively, with ax̂

i = [1 ai
x̂1

. . . , ai
x̂p

] and am = [1 am1 . . . , amp ] being the re-
spective LPC. An estimate of the codebook mapped LSF vector is obtained from the L entries
of the codebook with the smallest SD, as

λCB
i =

L∑
j=1

qi
jλj (4.3)

where qj is the weight of the codeword λj (LSF representation of aj) and is proportional to
the reciprocal of the SDi

j between aj and ax̂
i:

qi
j =

1
SDi

j

∑
L

1
SDi

j

(4.4)

Note that the interpolation is performed in the LSF domain to assure stable spectral envelope
(see section A.5).

In this work and for a codebook size of 10 bits, L was experimentally set equal to 6. For
optimizing the parameter L, we quantized all the 192 clean speech utterances of the TIMIT
core test set [16]. Table 4.2 shows the average performance, in terms of mean SD (Eq. 4.1 -
computed explicitly from the telephone bandwidth frequency bins) of the 10 bits codebook
for different values of the parameter L. Note that the SD for an utterance is computed as the
average of the instantaneous SD for the individual frames.

L 1 2 3 4 5 6 7 8 9 10
SD(dB) 2.56 2.14 2.02 1.97 1.96 1.96 1.97 1.98 1.99 2.01

Table 4.1: Optimizing parameter L

An alternative approach would be to introduce in Eq. 4.1 a frequency dependent weighting
factor which will be used as a measure of the reliability of the speech enhancement system. In
other words, for frequency bins with high SNR value the weight has to be close to 1 while for
frequency bins where the noise is dominant the weight has to be close to 0. For obtaining that
weight two different factors, representing the reliability of the speech enhancement system,
were considered

1SD is an objective quality measure of speech quality that has been reported to have a high correlation
with subjective quality
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• the a priori SNR ξ(ωk, i)

• the speech enhancement system’s gain function H(ωk, i)

In practice, the modified decision directed a priori SNR estimator (Eq. 2.18) was used for
computing the a priori SNR and the Wiener filter (Eq. 2.10) was used as the gain function.
Fig. 4.4 shows a voiced speech segment and the aforementioned frequency dependent weighting
factors, where a priori SNR is normalized according to Eq 4.6. Notice that those factors are
scaled to make the figure clearer.
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Figure 4.4: Possible weights for the weighted codebook mapping envelope estimation ap-
proach.

Since a priori SNR and Wiener filter are evolved sharply across frequency a third weighting
factor was considered. This is the smooth Wiener filter (Eq. 2.26), previously discussed in
section 2.3.3. To derive the smooth Wiener filter gain function we use the same speech
codebook as the one described in section 4.1 and a single entry noise codebook consisted only
of the LSF obtained from the minimum statistics noise tracking approach (Appendix B). In
Fig.4.4 the smooth version of the Wiener filter (ML Wiener) is depicted, as well. Notice that
its peaks occur close to the formants regions.

In the weighted codebook mapping approach it might happen that for the reliable regions,
i.e. frequency bins where the weight is close to 1, the “enhanced envelope” and the “codebook
envelope” have quite the same shape but different power levels. Therefore, a compensation
factor ci

m is introduced in the SD measure

SDi
m =

√√√√√ 1
2π

2π∫
0

w(ωk, i)(10 log10(
1

|Ax̂(ωk, i)|2
) − 10 log10(

ci
m

|Am(ωk)|2
))2dωk (4.5)
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where w(ωk, i) is the weighting factor given by

w(ωk, i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

log10(ξ̂(ωk,i))−min(log10(ξ̂(ωk,i)))|i=const

max(log10(ξ̂(ωk,i)))|i=const−min(log10(ξ̂(ωk ,i)))|i=const

ξ̂(ωk,i)

ξ̂(ωk,i)+1

σ2∗
x,i

|Ass∗
x (ωk,i)|

σ2∗
x,i

|Ass∗
x (ωk,i)|+

σ2∗
w,i

|Aw(ωk,i)|

(4.6)

Note that Eq. 4.6 rescales the a priori SNR (in dB scale) to values between 0 and 1. Further-
more, since in this thesis we are using the modified decision directed approach (Eq. 2.18) to
estimate the a priori SNR, the Wiener gain function is bounded to values between 0.01 and
1.

Given Ax̂(ωk, i) and Am(ωk) the optimal compensation factor ci
m can be determined by

differentiating Eq. 4.5 with respect to ci
m and setting the result equal to O. By leaving out

the square root for simplicity we get

ci
m = 10

2π∫
0

w(ωk,i) log10(
|Am(ωk)|
|Ax̂(ωk,i)| )dωk

20
2π∫
0

w(ωk,i)dωk (4.7)

As before, an estimate of the weighted codebook mapped LSF vector is obtained from the L
entries of the codebook with the smallest SD. Fig. 4.5 and Fig. 4.6 show the typical behavior
of the codebook mapping method for a voiced and an unvoiced envelope, respectively. It
appears that many formants are regenerated using the codebook mapping technique, whereas
they are suppressed in the conventional speech enhancement scheme. Note that we use the
Wiener filter as a weighting factor and highpass filtered stationary white Gaussian noise at
5dB global SNR to make the restoration effect clearer.

In order to evaluate the performance of the four weighting factors (no weight, Wiener
estimator, normalized a priori SNR, ML Wiener) we apply the above described codebook
mapping algorithm to all the 192 speech utterances of the TIMIT core test set [16], to which
computer generated stationary white Gaussian noise, limited to telephone bandwidth, has
been added at four different input SNR levels, i.e. 0dB, 5dB, 10dB and 15dB. Table 4.2
shows the mean SD scores (computed explicitly from the telephone bandwidth frequency bins)
for the “noisy envelope”2, the “enhanced envelope” and the “post envelope”3. It can been
seen that at most SNR values (except at 15 dB) the gain function weighted post-processed
method results in slightly better performance (in terms of SD) than all the other methods.
The normalized a priori SNR performs worst of all the other methods suggesting that weights
with many zero values across frequency do not comprise a good choice. For further evaluation
of the post-processing speech spectral envelope restoration approach see section 6.2.

2We use the term “noisy envelope” to denote the envelope obtained from the noisy signal after LPA
3We use the term “post envelope” to denote the envelope obtained from the post-processed speech spectral

envelope restoration method presented in this chapter
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Figure 4.5: Codebook mapping for a voiced segment
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Figure 4.6: Codebook mapping for an unvoiced segment
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SD (dB)
“Noisy “Enhanced “Post Envelopes”

SNR Envelope” Envelope” No Weight Wiener ML Wiener A Priori SNR
0 8.10 7.04 6.97 6.87 6.96 7.55
5 7.24 6.03 5.93 5.88 5.96 6.55
10 6.18 5.21 5.05 5.04 5.09 5.62
15 5 4.57 4.76 4.81 4.82 5.43

Table 4.2: Evaluating the weighting factors
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Chapter 5

Estimation of Speech Excitation

In this chapter we present two different approaches for enhancing the excitation signal ob-
tained after conducting LPA to the output signal of a conventional speech enhancement
method (“enhanced excitation”). The first one, based on [33] (section 3.2), uses nonlinear-
ity to preserve speech excitation harmonics that have been degraded by the conventional
noise reduction schemes, while the second one, inspired by [44] (section 3.1), uses a codebook
mapping technique to restore the lost or suppressed excitation harmonics.

5.1 Harmonic Regeneration of the Excitation

As it has been discussed in section 3.2 a simple and efficient way to restore speech harmonics
consists of applying a nonlinear function NL (absolute value, minimum or maximum relative
to a threshold, etc.) to the time speech segment obtained from a common noise reduction
method.

Figure 5.1: Block diagram of the HR excitation approach.

We apply that method directly to the “enhanced excitation” (Fig 5.1). Then the artificially
restored excitation is obtained by

eharmo,i(n) = NL(êi(n)) (5.1)

where êi(n) the “enhanced excitation”, i the time frame index since the algorithm is applied
on a frame-by-frame basis and n the discrete-time index. However, the amplitudes of the
artificially restored excitation are biased compared to the “enhanced excitation”. In order
to compensate for this bias we propose to multiply the complex spectrum of the artificially
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restored excitation Eharmo(ωk, i) with a factor c(i), given by

c(i) =

√√√√√√√√
2π∫
0

∣∣∣Ê(ωk, i)
∣∣∣2 dωk

2π∫
0

|Eharmo(ωk, i)|2 dωk

(5.2)

where Ê(ωk, i) is the complex spectrum of the “enhanced excitation”. In this way we conserve
the energy on a frame-by-frame basis.

The above artificially restored excitation eharmo,i(n) contains useful information that can
be exploited to refine the estimated speech excitation’s amplitude

|Ẽ(ωk, i)| = ρ(ωk, i)|Ê(ωk, i)| + (1 − ρ(ωk, i))|c(i)Eharmo(ωk, i)| (5.3)

The unprocessed phase of the “enhanced excitation” is used for estimating the “HR exci-
tation’s”1 complex spectrum. The parameter ρ(ωk, i) is used to control the mixing level of
|Ê(ωk, i)| and |Eharmo(ωk, i)|, with 0 ≤ ρ(ωk, i) ≤ 1. The value of which should be close to
1 when the estimation provided by the speech enhancement system is reliable and close to
0 when it is unreliable. To match this behavior any of the factors of Eq. 4.6 can be used.
Fig 5.1 shows the typical behavior of the harmonic regeneration method. Notice that the
stationary white Gaussian noise is bandlimited to make the regeneration effect clearer. It
is clear that the most of the missing harmonics are regenerated. For the evaluation of the
harmonic regeneration model of the excitation see section 6.3.

500 1000 1500 2000 2500
−50

−40

−30

−20

−10

0

10

Frequency (Hz)

A
m

p
lit

u
d

e 
(d

B
)

 

 

Clean Excitation
Enhanced Excitation
Harmonic Regenerated Excitation
Gain Function

Figure 5.2: Effect of the harmonic regeneration method on the excitation of a voiced frame.

1We use the term “HR excitation” to denote the excitation obtained from the post-processing excitation
restoration method presented in this section
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5.2 Codebook Based Estimation of the Excitation

Zavarehei et al. [44] proposed a post-processing algorithm for retrieving parts of the speech
spectrum that may be lost to noise or suppressed by the conventional speech enhancement
methods. They focused on reviving severely damaged subbands of speech using a HNM. For
a detailed presentation of Zavarehei’s post-processing speech enhancement method see sec-
tion 3.1. We apply that method for enhancing the excitation signal obtained after conducting
LPA to the signal on the output of a conventional speech enhancement method.

Figure 5.3: Block diagram of the HNM excitation estimation approach.

5.2.1 Harmonic Noise Model of Excitation

A variant of the HNM is used to model the excitation amplitude |E(fk, i)|. Three parameters
are extracted from each subband:

• the harmonic amplitude A(fh, i),

• the harmonicity V (fh, i) and

• the harmonic frequency f i
h

The harmonic amplitudes represent the square root energy of the corresponding subband.
The harmonicity of each harmonic is a real-valued measure between 0 and 1 that represents
the voicing degree of each subband. Given a set of HNM parameters for a segment i the
excitation amplitude can be modeled as a mixture of NH harmonics and noise as

|EHNM (fk, i)| =
NH∑
h=1

A(f i
h, i)(V (f i

h, i)G(fk − f i
h) + (1 − V (f i

h, i))R(fk − f i
h)) (5.4)

where G(fk) is a Gaussian-shaped function which models the shape of each harmonic and
R(fk) is the Rayleigh distributed noise component of the excitation. The number of harmonics
NH of the segment i depends on the fundamental frequency F0 and the sampling frequency

FS , i.e NH =
⌊

FS
2

−F0
2

F0

⌋
. Note that the unprocessed excitation phase is used for resynthesis

of the excitation’s complex spectrum.
For each segment i the fundamental frequency (pitch frequency) F0 is extracted using an

autocorrelation based method [7]. Due to possible inaccuracies of pitch frequency estimate,
multiples of pitch frequency estimate might not exactly coincide with the “true” harmonic
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frequencies. Thus the exact frequency of each harmonic is obtained locally to maximize the
harmonicity around that harmonic

f i
h = arg max

fk

V (fk, i), |fk − hF0| < 30 (5.5)

where the search range is limited to 30Hz around the nominal value of each harmonic, i.e.
hF0 with h = 1, . . . , NH . V (fk, i) is the harmonicity at frequency fk defined as

V (fk, i) = 1 −

√√√√√fk+
F0
2∫

fk−F0
2

|E(ν, i) − A(fk, i)G(ν − fk)|2dν

A(fk, i)
(5.6)

and A(fk, i) is the harmonic amplitude at frequency fk

A(fk, i) =

√√√√√√√
fk+

F0
2∫

fk−F0
2

|E(ν, i)|2dν (5.7)
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Figure 5.4: Gaussian window used to model excitation harmonics for F0 = 200Hz.

The Gaussian-shaped function (Fig .5.4) is given by

G(fk, i) =
{

αe−βf2
k , |fk| ≤ F0

2
0, elsewhere

(5.8)

where β = 0.00134̄ and α = 1√√√√ F0/2∫
−F0/2

e
−2βf2

k dfk

which results in a unity power Gaussian shaped

spectrum, i.e.
F0/2∫

−F0/2

|G(fk)|2dfk = 1. Furthermore the Rayleigh distributed spectral magni-

tude of the noise component of the excitation is zero outside [−F0
2 , F0

2 ] and has unity power,
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i.e.
F0/2∫

−F0/2

|R(fk)|2dfk = 1. Fig. 5.5 shows the excitation amplitude of a clean voiced speech

segment, the reconstructed excitation amplitude using HNM and the extracted harmonicity
values. The synthesized amplitude spectrum of the clean segment using the HNM recon-
structed excitation is shown in Fig. 5.6.
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Figure 5.5: Excitation amplitude of a voiced speech frame, the reconstructed excitation am-
plitude using HNM and the extracted harmonicity values.

5.2.2 Codebook Mapping Estimation

In order to reconstruct the excitation spectrum, a weighted codebook mapping method is
implemented similar with the one proposed in [44].

Training of Codebooks

Two different codebooks were trained. One on energy-normalized harmonic amplitude values
of excitation of clean speech and the other one on the harmonicity degree vectors of the
harmonic subbands. The harmonic amplitudes are normalized as

B =
1√

N∑
h=1

A(fh)2
A (5.9)

where A = [A(f1), . . . , A(fN )] and B = [B(f1), . . . , B(fN )] are the harmonic amplitudes and
the normalized harmonic amplitudes, respectively of an excitation of a speech segment. The
rationale behind the normalization of the harmonic amplitudes is that the codebook becomes
energy independent while preserving the spectrum’s shape. The number of harmonics in each
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Figure 5.6: The synthesized amplitude spectrum using for synthesis the reconstructed HNM
excitation amplitude of Fig. 5.5.

frame depends on the fundamental frequency F0 and on the sampling frequency FS and hence
is variable. A fixed number of N harmonics were used for training the codebooks. If a segment

has more than N harmonics, i.e.
⌊

FS
2

−F0
2

F0

⌋
> N , the harmonic amplitude and harmonicity

training vectors are truncated to N . On the other hand, if a frame has less than N harmonics
the respective training vectors are padded with zeros. This is justified by the fact that during
the codebook mapping process, only the existing harmonics are taken into account.

In our approach two 10 bits (1024 codewords) were constructed. One on energy-normalized
harmonic amplitude values of excitation of clean speech segments and the other one on the
harmonicity degree vectors of the harmonic subbands. This size was chosen since on average
it provides a good trade off between quantization errors and memory usage. The dimension
of the codebook, i.e. the maximum number of harmonic frequencies, was N = 40 [44]. For
training the codebooks we used the entire TIMIT-TRAIN database [16], which consist of 4620
clean speech sentences. The sampling frequency was Fs = 8000Hz and the speech signals was
limited to telephone bandwidth (300− 3400Hz). We used rectangular windowed overlapping
frames of 32ms. Beginning and trailing silences and frames of a sentence with energy lower
than 40 dB of the maximum frame energy of the sentence were excluded from the training
phase. These resulted in around 750000 training vectors. The Linde, Buzo, Gray (LBG)
vector quantization algorithm was used for training the codebook [5].

Codebook Mapping Algorithm

In applying the codebook mapping algorithm, first the HNM parameters of the “ enhanced
excitation” of enhanced frame i are extracted. The weighted distance between the harmonic
amplitudes of the “enhanced excitation” and the codewords from the harmonic amplitude
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codebook are estimated as

Di
m =

Ni∑
h=1

(W i
h(BNR(fh, i) − C(fh,m)))2 (5.10)

where BNR
i = [BNR(f1, i), . . . , BNR(fNi , i)] is the energy normalized amplitude vector ob-

tained from the “enhanced excitation”, Cm = [C(f1,m), . . . , C(fN ,m)] is the mth entry of
the amplitude codebook and W i

h is the weight of the hth harmonic. The number of harmonic
frequencies Ni that are taken into account at this stage is the minimum of the dimension of the
codebook N and the number of existing harmonics in the frame NH , i.e. Ni = min(NH , N).
Note that if NH > N the harmonics above the limit will not be processed by the codebook
mapping algorithm and will be replaced only by the ones of the “enhanced excitation”.

The value W i
h is between 0 and 1 and is used as a measure of the reliability of the “enhanced

excitation”. Any of the factors of Eq.4.6 can be used for obtaining these weights, according
to the following formula

W i
h =

wh(i) − min
h

{wh(i)}|i=const

max
h

{wh(i)}|i=const − min
h

{wh(i)}|i=const
(5.11)

where wh(i) =
fh+F0/2∑

fk=fh−F0/2

w(fk, i) is the weighting factor of hth subband and w(fk, i) is the

weighting factor given by Eq. 4.6. Note that Eq. 5.11 rescales the weights to range [0, 1] on
a frame-by-frame basis.

An estimate of the codebook amplitude vector is obtained from the L = 3 (according to
[44]) entries of the codebook with the lowest distances from BNR

i, as

BCB
i =

L∑
j=1

qjCj (5.12)

where qj is the weight of the codeword Cj and is proportional to the reciprocal of the distance
Di

j of the codeword Cj from the “enhanced excitation” amplitude vector BNR
i:

qi
j =

1
SDi

j

∑
L

1
SDi

j

(5.13)

The resulting energy-normalized amplitude codebook vector BCB
i needs to be denormal-

ized before combining it with the noise reduced vector. This is

ACB
i = αdnBCB

i (5.14)

where

αdn = arg min
α

{
Ni∑

h=1

(W i
h(ANR(fh, i) − αBCB(fh, i)))2}

=

Ni∑
h=1

(W i
h)2ANR(fh, i)BCB(fh, i)

Ni∑
h=1

(W i
hBCB(fh, i))2

(5.15)
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The denormalized ACB
i vector is then weighted-averaged with the noise reduced vector

ANR
i in a way that elements with higher weights W i

h are less affected than those with lower
weights:

Ã(fh, i) = W i
hANR(fh, i) + (1 − W i

h)ACB(fh, i) (5.16)

The harmonicities of the harmonics Ṽ (fh, i) are obtained from the harmonicity codebook
in the same fashion but without the normalization step. The reconstructed HNM excitation
amplitude

∣∣∣ẼHNM (fk, i)
∣∣∣ is computed by substituting Ã(fh, i) and Ṽ (fh, i) to Eq. 5.4. Note

that the unprocessed “enhanced” excitation phase is used for synthesizing the “HNM exci-
tation’s”2 complex spectrum. Fig. 5.7 illustrates the amplitude excitation of a voiced speech
segment (red solid line). The clean speech was contaminated by computer generated ban-
dlimited (1000 Hz - 2000 Hz) stationary white Gaussian noise to make the restoration process
clearer. From the “enhanced excitation” (green solid line) it is evident that the harmonic
structure of the spectrum is distorted and suppressed in the frequency bins where the noise is
dominant. The effect of applying the above described codebook mapping restoration method
is shown with the blue solid line. The harmonic structure is restored in terms of amplitude
and shape at most of the harmonics. For the evaluation of the HNM restoration scheme of
the excitation see section 6.3.
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Figure 5.7: Illustration of the performance of the HNM codebook mapping restoration ap-
proach for the excitation.

2We use the term “HNM excitation” to denote the excitation obtained from the post-processing excitation
restoration method presented in this section



Chapter 6

Results and Discussion

In this chapter we evaluate the performance of the post-processing speech enhancement
method described in the previous chapters. First we describe the objective and subjective
measures of speech quality that we use and the experimental setup. This is followed by a
description of a number of experiments to evaluate the performance of different aspects of
the post-processing system. Experiments were conducted to evaluate the performance of the
spectral envelope estimation approach, the excitation estimation approaches and the overall
post-processing speech enhancement system.

6.1 Quality Measures & Experimental Setup

The objective measures of speech quality used in this thesis were the segmental signal-to-noise
ratio (SSNR), computed as the average of the SNR for each segment in the utterance:

SNRi = 10 log10(

K−1∑
n=0

xi(n)2

K−1∑
n=0

(xi(n) − x̂i(n))2
) (6.1)

and the Perceptual Evaluation of Speech Quality (PESQ) [35], an ITU recommendation that
has been reported to have a high correlation to subjective quality. The test set for computing
the objectives measures consisted of ten speech utterances (5 male and 5 female) randomly
chosen from the TIMIT core test set. Experiments were conducted for noisy speech at 0, 5,
10 and 15 dB global SNR for car noise and white Gaussian noise.

Since subjective listening tests are recognized as being the most reliable way of measuring
the quality of speech, we evaluate the performance of the post-processing speech enhancement
method by contacting a series of subjective listening tests using the method called “multi
stimulus test with hidden reference and anchor” (MUSHRA) [3]. The subjects were asked to
score the stimuli according to the scale shown in Fig 6.1. We used the clean speech signal as
a reference signal (which was also used as a hidden stimuli) and a noisy speech as a hidden
anchor 1. The subject could switch between the reference signal and any of the stimuli. A total
of 18 listeners (10 males and 8 females) participated in the test. The subjects were between
the age of 20 and 50 years old. The listening test material was rendered to them through

1The anchor is specified analogously for each of the experiment
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high-quality headphones (Sennheizer HD 600). The test set for computing the subjective
measures consisted of four speech utterances (2 male and 2 female) randomly chosen from
the TIMIT core test set. Experiments were conducted for noisy speech at 0 and 10 dB global
SNR for car noise and white Gaussian noise.

Figure 6.1: Mean opinion scores (MOS) scale used in the MUSHRA test

For the experiments we used a frame length of 256 samples with an overlap of 50%. The
size of the fast fourier transform (FFT) was 2048. The modified decision directed approach
(Eq. 2.18) with a smoothing factor α = 0.98 was used to estimate the a priori SNR. The
Wiener estimator (Eq. 2.10) was used as the conventional speech enhancement method. The
gain function, i.e. Wiener estimator, was chosen as the weighting factor (Eq. 4.6).

6.2 Evaluation of the spectral envelope estimation approach

In this section we compare the envelope obtained from the post-processing speech spectral
envelope restoration method presented in chapter 4 (“post envelope”) with the “enhanced
envelope”. In other words, we investigate if the codebook mapping approach enhances the
spectral envelope obtained from a conventional speech enhancement method (see the prob-
lem definition on page 4). To do so the “clean excitation”2 is used for resynthesis (see
Appendix A). The noisy signal is synthesized by passing the “clean excitation” through
the “noisy envelope”, the enhanced signal is synthesized by passing the “clean excitation”
through the “enhanced envelope” and the post-processed signal is synthesized by passing the
“clean excitation” through the “post envelope”. This allows us to leave out the influence
of the excitation on the quality of the signals and to focus only on the performance of the
post-processed spectral envelope restoration scheme.

Table 6.1 shows the objective quality measures for the “noisy envelope”, the “enhanced
envelope” and the “post envelope”. It can be seen that for all SNR values and for both
noise types the post-processing speech spectral envelope restoration approach only slightly
improves the performance of the conventional speech enhancement scheme. In terms of SSNR
the improvement seems to depend on the SNR (the higher the SNR the “greater” the improve-
ment). Note that for higher than 10dB SNR values the performance of both the “enhanced
envelope” and the “post envelope” degrades (in terms of SSNR) comparing to the “noisy en-
velope”. Since the respective PESQ scores are counter to that, we interpret the higher SSNR

2We use the term “clean excitation” to denote the excitation obtained from the clean speech signal after
LPA
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values for relatively high SNRs as an indication that the quality of the “noisy envelope” is
very close to the quality of the “enhanced envelope”.

SSNR PESQ
SNR Noise N.Env. E.Env. P.Env. N.Env. E.Env. P.Env.

White 1.06 2.27 2.36 1.50 1.96 1.96
0 Car 0.71 1.87 1.93 2.13 2.54 2.59

White 2.5 3.07 3.19 1.77 2.68 2.75
5 Car 2.93 3.09 3.21 2.53 2.9 2.96

White 4.3 3.83 3.98 2.19 3.14 3.24
10 Car 5.48 4.33 4.63 2.96 3.35 3.38

White 6.62 4.7 4.89 2.72 3.55 3.62
15 Car 9.27 6.49 6.76 3.33 3.72 3.75

Table 6.1: SSNR and PESQ values averaged over 10 utterances at 0, 5, 10 and 15dB global
SNR for the “noisy envelope” (N.Env), “enhanced envelope” (E.Env.) and “post envelope”
(P.Env).

The aforementioned claims are also confirmed from the results obtained from the subjec-
tive listening tests shown in Fig 6.2 and 6.3. Note the relatively high MOS (Fig 6.2) that
the “noisy envelope” gets at 10dB SNR for both noise types (especially for the low pass car
noise). Furthermore, in almost all cases (except from the white Gaussian noise at 0dB SNR
- extremely noisy condition extended across the whole frequency band) 75% of the “post
envelope” samples overperform the respective “enhanced envelope” samples. Despite of that
percentage, the box plots in Fig 6.2 show no significant improvement, since the notches always
overlap. We deduce the same in case we substract the MOS of the “noisy envelope” from the
MOS of the “enhanced envelope” and from the MOS of the “post envelope’.’

By comparing the quality (subjective & objective) measures with the Fig 4.5 and 4.6
it can be seen that the post-processing method for estimating the spectral envelope has a
“significant” advantage only for noise types that are bandlimited (e.g. filtered Gaussian,
siren noise, etc.), since then there is enough information in the weighting factor (Eq. 4.6) to
get a good match (in SD terms - Eq. 4.5) from the LSF codebook. Furthermore, it worth
to mention that we conducted informal listening tests with bigger codebook sizes (11 and 15
bits), different LPA orders (p = 6, 8 and 12), smaller segment size (20ms) and 75% overlap
between succeding segments, but still no significant improvement in perception was noticed.

6.3 Evaluation of the excitation estimation approaches

In this section we compare the excitation signals obtained from the two post-processing ex-
citation restoration methods (chapter 5) with the “enhanced excitation”. In other words,
we investigate if those two approaches enhance the excitation obtained from a conventional
speech enhancement method (see the problem definition on page 4). To do so the “clean en-
velope”3 is used for resynthesis (see Appendix A). The noisy signal is synthesized by passing
the “noisy excitation”4 through the “clean envelope”, the enhanced signal is synthesized by

3We use the term “clean envelope” to denote the envelope obtained from the clean speech signal after LPA
4We use the term “noisy excitation” to denote the excitation obtained from the noisy signal after LPA
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Figure 6.2: Subjectives measures for evaluating the performance of the spectral envelope
estimation approach. Each box has horizontal lines at the lower quartile (25% of the samples),
median (50% of the samples) and upper (75% of the samples) quartile values. Notches display
the variability of the median between samples. The width of the notch is computed so that
box plots whose notches do not overlap have different medians at the 5% significance level.
The red typed values denote the respective mean values.
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Figure 6.3: Differences between the MOS of the “post envelope” and the “enhanced envelope”.
Each box has horizontal lines at the lower quartile (25% of the samples), median (50% of the
samples) and upper (75% of the samples) quartile values. The red typed values denote the
respective mean values.

passing the “enhanced excitation” through the “clean envelope”, the HR signal is synthesized
by passing the “HR excitation” (Eq. 5.3) through the “clean envelope” and the HNM signal
is synthesized by passing the “HNM excitation” (Eq. 5.4) through the “clean envelope”. This
allows us to focus only on the performance of the excitation estimation approaches.

Table 6.2 shows the objective quality measures for the “noisy excitation”, the “enhanced
excitation”, the “HNM excitation” and the “HR excitation”. It can be seen that in general
both the post-processing methods perform as well as the conventional speech enhancement
method.

From the results obtained from the subjective listening tests (Fig 6.4 and 6.5) several
conclusions can be drawn:

• The excitation signal influences the quality of a signal much more than the spectral
envelope does. This is deduced from the MOS that the “noisy envelope” (Fig 6.2) and
the “noisy excitation” (Fig 6.4) get.

• In extremely noisy conditions (white Gaussian noise at 0dB SNR) both the post-
processing methods perform as well as the conventional speech enhancement scheme
(Fig. 6.5).

• In medium noise conditions (10dB SNR) both the post-processing methods improve the
quality of the speech signals (Fig. 6.5). It can be seen from the box plots in Fig 6.4
that this improvement is not statistically significant since the notches always overlap.

• For lowpass noise types (car noise) and at low SNR values (0 dB) both the post-
processing methods have a significant advantage over the conventional speech enhance-
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SSNR PESQ
N. E. HNM HR N. E. HNM HR

SNR Noise Exc. Exc. Exc. Exc. Exc. Exc. Exc. Exc.
White -4.02 -2.4 -1.88 -2.38 1.07 1.96 2 1.95

0 Car -4.05 -0.38 -0.65 -0.31 1.14 1.93 1.97 1.96
White -1.74 -0.88 -0.55 -0.83 1.2 2.2 2.24 2.2

5 Car -1.61 1.41 1.11 1.44 1.4 2.35 2.37 2.4
White 0.90 0.53 0.65 0.53 1.47 2.42 2.45 2.4

10 Car 1.01 3.28 3.01 3.26 1.74 2.75 2.8 2.77
White 3.47 2.79 2.71 2.76 1.8 2.72 2.76 2.72

15 Car 3.52 5.64 5.27 5.55 2.13 3.18 3.18 3.16

Table 6.2: SSNR and PESQ values averaged over 10 utterances at 0, 5, 10 and 15dB global
SNR for the “noisy excitation” (N. Exc.), “enhanced excitation” (E. Exc.), “HNM excitation”
(HNM Exc.) and “HR excitation” (HR Exc.).

ment scheme.

• In all cases the HNM method performs better than the HR.

• There is no objective measure that can predict 100% accurate the subjective listening
tests.

N. Exc. E. Exc. HNM Exc. HR Exc.

0

0.5

1

1.5

2

2.5

3

3.5

M
O

S

Subjective Measures for White Gaussian Noise at 0 dB

N. Exc. E. Exc. HNM Exc. HR Exc.

0

1

2

3

4

M
O

S

Subjective Measures for White Gaussian Noise at 10 dB

N. Exc. E. Exc. HNM Exc. HR Exc.

0

0.5

1

1.5

2

2.5

3

3.5

M
O

S

Subjective Measures for Car Noise at 0 dB

N. Exc. E. Exc. HNM Exc. HR Exc.

0

1

2

3

4

5

M
O

S

Subjective Measures for Car Noise at 10 dB

0.88                    2.78                    3.07                    2.97

  0.29                   1.78                     1.8                     1.68   0.60                   2.25                    2.57                    2.37

0.35                    1.43                    1.98                    1.81

Figure 6.4: Subjectives measures for evaluating the performance of the excitation estimation
approaches. Each box has horizontal lines at the lower quartile (25% of the samples), median
(50% of the samples) and upper (75% of the samples) quartile values. The width of the notch
is computed so that box plots whose notches do not overlap have different medians at the 5%
significance level. The red typed values denote the respective mean values.
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HR method is a simple way to restore speech excitation harmonics using nonlinearity (see
section 3.2.1). It is easier to restore harmonics when only a few are degraded or missing
which explains the better behavior for high SNRs, lowpass noise types (Fig 6.5) and bandlim-
ited noise cases (Fig 5.1). HNM method is a quite complicated method to revive severely
damaged subbands of speech excitation using a priori knowledge stored in codebooks and a
weighted codebook mapping algorithm. Thereafter is natural to perform better than the HR
method. Note that white Gaussian noise at 0dB global SNR results in such loss of speech
information that even the HNM fails to reveal the degraded harmonics. Errors in extracting
the fundamental frequency play also a roll.
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Figure 6.5: Differences between the MOS of the “HNM excitation” and the “enhanced ex-
citation” and between the “HR excitation” and the “enhanced excitation”. Each box has
horizontal lines at the lower quartile (25% of the samples), median (50% of the samples) and
upper(75% of the samples) quartile values. The red typed values denote the respective mean
values.

6.4 Evaluation of the overall post processing speech enhance-

ment scheme

In this section we compare the overall performance of the post-processing speech enhance-
ment method presented in this thesis with a conventional speech enhancement method. The
post-processing speech spectral envelope restoration method (chapter 4) and the two post-
processing excitation restoration methods (chapter 5) yield to two add-on post-processing
systems. The HR signal, synthesized by passing the “HR excitation” (Eq. 5.3) through the
“post envelope” and the HNM signal, synthesized by passing the “HNM excitation” (Eq. 5.4)
through the “post envelope”. The enhanced signal is the output of a conventional speech
enhancement method (Wiener filter).
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Table 6.3 shows the objective quality measures for the noisy, the enhanced, the HNM and
the HR signals. It can be seen that in general the post-processing methods perform as well as
the conventional speech enhancement method. This is also expected based on the objective
measures of the individual parts of the post-processing speech enhancement system (Table 6.1
and 6.2).

SSNR PESQ
SNR Noise Noisy Wiener HNM HR Noisy Wiener HNM HR

White -4.26 0.61 0.27 0.45 1.07 1.39 1.4 1.38
0 Car -4.42 0.16 -0.33 0.1 1.15 1.54 1.59 1.6

White -1.63 3.16 2.73 2.93 1.24 1.83 1.88 1.85
5 Car -1.52 2.68 1.95 2.51 1.44 2.02 2.02 2.06

White 1.91 5.76 5.2 5.44 1.54 2.2 2.23 2.26
10 Car 1.91 5.49 4.72 5.25 1.82 2.45 2.49 2.5

White 5.80 8.38 7.61 7.97 1.91 2.61 2.65 2.64
15 Car 5.85 8.57 7.55 8.24 2.26 2.92 2.93 2.94

Table 6.3: SSNR and PESQ values averaged over 10 utterances at 0, 5, 10 and 15dB global
SNR for the noisy, the enhanced, the HNM and the HR signals

From the results obtained from the subjective listening tests (Fig 6.7 and 6.5) several
conclusions can be drawn:

• In white noise conditions both the post-processing methods perform as well as the wiener
filter (Fig. 6.7).

• For lowpass noise types (car noise) the HR method improves the quality of the speech
signals (Fig. 6.7). It can be seen from the box plots in Fig 6.6 that this improvement is
not statistically significant.

• For lowpass noise types (car noise) the HNM method improves the quality of the speech
signals. It can be seen from the box plots in Fig 6.6 that this improvement is statistically
significant only for 0db SNR.

• In all cases the HNM method performs slightly better than the HR.

• There are some inconsistencies between the subjective measures of the overall system
and those of the individual parts, e.g. HR method at 0dB. Further evaluation of the
processed speech signals is needed with a method specifically designed for speech en-
hancement algorithms evaluation (ITU-T standard (P.835) [1]).
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Figure 6.6: Subjectives measures for evaluating the overall performance of the speech post-
processing speech enhancement system. Each box has horizontal lines at the lower quartile
(25% of the samples), median (50% of the samples) and upper (75% of the samples) quartile
values. The width of the notch is computed so that box plots whose notches do not overlap
have different medians at the 5% significance level. The red typed values denote the respective
mean values.
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Chapter 7

Conclusions and Future Work

The goal of this thesis was to investigate the possibility of enhancing the performance of a
conventional speech enhancement system by applying post-processing restoration modules.
Conventional speech enhancement systems result in some loss of speech information, the
severity of which depends on the SNR and on the system. We addressed the important issue
of restoration of those speech parts that are lost due to noise or suppressed by the speech
enhancement scheme. In order to do so we model the speech production process with LPA.
This yielded to a two step problem: estimation of the spectral envelope and estimation of the
excitation signal.

A scheme based on a weighted codebook mapping technique was proposed for enhancing
the speech spectral envelope. While codebook mapping works well in relevant to speech
enhancement applications, such as bandwidth extension, it fails to improve significantly the
performance of a conventional speech enhancement scheme for real life noise types.

Two different methods were considered for enhancing the excitation signal. The first
one (HR) uses nonlinearity to preserve speech excitation harmonics that have been degraded
by the conventional noise reduction scheme, while the second one (HNM) uses a weighted
codebook mapping technique to restore the lost or suppressed excitation harmonics. For
lowpass noise types, such as car noise, at low SNR values both the post-processing methods
have a significant advantage over the conventional speech enhancement scheme. In white
noise conditions, though, both the post-processing methods fail to improve significantly the
performance of a conventional speech enhancement scheme.

The proposed system when used as an add-on post-processing module with an existing
noise reduction scheme improves the quality of the speech signal only for lowpass noise types
at low SNR values.

Since the excitation signal influences the quality of a processed signal much more than the
spectral envelope does, future work should focus on deriving accurate methods for enhancing
the excitation signal. The recently proposed harmonicity measurements [43] for assessing
the speech quality could be incorporated into the HR post-processing system. In case of the
HNM model, accurate pitch tracking should be guaranteed. Optimization of the parameter
L could probably results in some improvement in terms of speech quality. Different sizes and
dimensions of the harmonic amplitude and the harmonicity codebooks should also be tried.
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Appendix A

Linear Prediction Analysis of
Speech

Linear prediction Analysis (LPA) is widely used in many speech applications (noise reduction,
speech compression, speech coding, speech recognition etc.). This Appendix provides the most
relevant aspects of LPA for the purposes of this thesis.

A.1 Autoregressive (AR) model of speech

Speech production process is well modeled with LPA. Indeed, it is well recognized that a
speech signal can be written in the following form [30]

x(n) =
p∑

l=1

alx(n − l) + Ge(n) (A.1)

where n is the discrete-time index, p represents the number of coefficients in the model,
al, l = 1, . . . , p, are defined as the linear prediction coefficients (LPC), G is the gain (also
referred to as variance) of the excitation, and e(n) is the excitation signal, which can be
either a quasi-periodic train of impulses or a random noise source (also a combination of both
signals for voiced fricatives such as /z/). The periodic source produces voiced sounds such as
vowels and nasals (e.g. /I/,/m/), and the noise source produces unvoiced sounds such as the
unvoiced fricatives(e.g /s/).

Due to non-stationarity of the vocal track and the excitation [8] the LPA is performed
on a frame-by-frame basis, i.e. model parameters are estimated based on a short segment of
speech xi. Note that we dropped the frame index i for notational convenience. Eq. A.1 can
be rewritten in the frequency domain, by applying the z-transform. If H(z) is the transfer
function of the model of human vocal track (spectral envelope), we have:

H(z) =
X(z)
E(z)

=
G

1 −
p∑

l=1

alz−l

=
G

A(z)
(A.2)

which is an all-pole transfer function. For each frame the model parameters are the vector
of LPC a = [1 a1 . . . ap] and the variance of the excitation signal G. In Fig. A.1 the block
diagram of the model is depicted.
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Figure A.1: Simplified source-filter model of speech.

A.2 Forward Linear Prediction

The basic idea behind LPA is that each speech sample x(n) is approximated as a linear
combination of past samples. A linear predictor of order p is defined by

x̂(n) =
p∑

l=1

αlx(n − l) (A.3)

The sequence of x̂(n) is the prediction of x(n) by the sum of p past samples. The system
function associated with pth order predictor is a finite-length impulse response (FIR) filter of
length p, given by

P (z) =
p∑

l=1

αlz
−l (A.4)

The prediction error sequence is given by

ε(n) = x(n) − x̂(n)

= x(n) −
p∑

l=1

αlx(n − l) (A.5)

and the associated prediction error filter is defined as:

A(z) = 1 −
p∑

l=1

αlz
−l = 1 − P (z) (A.6)

which is illustrated in Fig. A.2(a)
Suppose that x(n) is the output of an all-pole system as in Eq. A.1. Then if the predictor

coefficients equal the model coefficients, i.e. αk = ak we write the prediction error as

ε(n) = x(n) −
p∑

l=1

αlx(n − l)

=
p∑

l=1

alx(n − l) + Ge(n) −
p∑

l=1

αlx(n − l)

= Ge(n) (A.7)
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Figure A.2: Filtering view of linear prediction: (a) prediction error filter A(z); (b) AR model
of speech.

and thus the Ge(n) can be recovered by passing x(n) through A(z). For this reason the A(z)
is sometimes called inverse filter. Correspondingly, when we pass Ge(n) through 1

A(z) , we
obtain x(n) as shown in Fig. A.2(b)

A.3 Error minimization

We would like to find the optimal linear predictor in terms of MSE. For that we define the
error criterion:

J = E{ε(n)2} = E{(x(n) − x̂(n))2} (A.8)

where E{.} is the statistical expectation operator. The goal is to minimize the above criterion

min
αl

J(αl) (A.9)

This is done by calculating the derivatives of J(αl) with respect to αl

∂J(αl)
∂αl

, l = 1, . . . , p (A.10)

From Eq.A.8 and Eq.A.10 we obtain the following set of normal equations⎡⎢⎢⎢⎣
r(0) r(1) . . . r(p − 1)
r(1) r(0) . . . r(p − 2)

...
...

...
...

r(p − 1) r(p − 2) · · · r(0)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

α1

α2
...

αp

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
r(1)
r(2)

...
r(p)

⎤⎥⎥⎥⎦ (A.11)

where r(τ) = E{x(n)x(n + τ)}.
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The above normal equations involve expected values of random variables r(τ). In practice,
we have a short segment of speech xi from which r(τ) must be estimated. Depending on how
the estimator of r(τ) is formed, we end up with either the covariance or autocorrelation
method [30]. The autocorrelation method is preferred because it guarantees stable synthesis
filters H(z) and there is a computational efficient way to calculate the optimal αl.

We still need to compute gain G in the model (Eq. A.2) It can be shown that if the gain
G is chosen as the square root of the minimum square error, i.e. G =

√
εmin, then the signal

energy is not altered on the average (energy conservation) [30]. Finally, the order p of the LPA
is estimated from knowledge of speech production. In this thesis and for sampling frequency
Fs = 8 kHz we used p = 10 [23]. Fig A.3 and Fig A.4 show a voiced and an unvoiced example
of LPA, respectively.

Figure A.3: LPA voiced segment example, where (a) shows a voiced speech segment, (b)
shows the excitation of (a), (c) shows the amplitude spectrum and the envelope of (a) and
(d) shows the frequency representation of (b).

A.4 Bandwidth widening

LPA has problems in estimating accurately the spectral envelope H(z) for high pitch voiced
sounds. The spectral information about a periodic signal is contained only at harmonics. For
high pitched voices (i.e. female speaker), the harmonic spacing is too wide to provide an
adequate sampling of the spectral envelope. For this reason, LPA does not provide accurate
estimation of spectral envelope for female speakers. Such inaccurate estimation occurs mainly
in formant bandwidth. This might result in unnatural (metallic) synthesized speech.

The most common procedure to overcome this problem is bandwidth widening [23]. In
this procedure, each LPC coefficient αl is multiplied by a factor γl, i.e. all αl are replaced
by γlαl. Such multiplication moves all the poles of H(z) inwards by a factor γ and cause
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Figure A.4: LPA unvoiced example, where (a) shows an unvoiced speech segment, (b) shows
the excitation of (a), (c) shows the amplitude spectrum and the envelope of (a) and (d) shows
the frequency representation of (b).

bandwidth expansion for all the poles. In this thesis we used γ = 0.996 which corresponds to
30 Hz widening.

A.5 Line Spectrum Frequency (LSF)

The LSF representation is an alternative representation of the LPC coefficients with one-to-
one correspondence. The LSF representation transforms A(z) (Eq. A.6) to:

P (z) = A(z) + z−(p+1)A(z−1)

Q(z) = A(z) − z−(p+1)A(z−1) (A.12)

The inverse mapping from LSF to LPC is given by

A(z) =
1
2
(P (z) + Q(z)) (A.13)

LSFs are defined as the angles ωi of the roots of P (z) and Q(z) in the upper half of the
complex plane. While A(z) has complex roots anywhere within the unit circle, P (z) and Q(z)
have the very useful property of only having roots that lie on the unit circle [36]. Further, it
can be shown [36] that the roots of P (z) and Q(z) occur in complex conjugated pairs (except
for roots at z = −1 and z = 1) and that the LSFs are interlaced if and only if zeros of A(z)
are inside unit-circle. This is called the interlacing or ordering property, which means that if
LSFs are ordered then H(z) is stable. For all the above mentioned reasons, in this thesis the
LSFs were chosen as the features that will represent the spectral envelope H(z).
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Appendix B

Minimum Statistics Noise Tracking

Estimation of the statistics of the background noise is an essential feature of all the single
channel speech enhancement methods. If the noise estimate is too low, unnatural residual
noise will be perceived in the enhanced signal. On the other hand, if the estimate is too
high, the enhanced signal will be muffled. In this appendix we briefly present one of the most
frequently used noise estimation schemes based on minimum statistics [31]. Because of its
popularity and it’s good performance, we chose to use this method for the estimation of the
noise PSD.

B.1 Minimum Statistics’ Principles

The minimum statistics noise tracking method is based on the observation that even during
speech activity the PSD estimate of the noisy speech often decays to that of the noise process.
The method rests on the fundamental assumption that during speech pauses or within brief
periods in between words the speech energy is close to zero. Thus, by tracking the minimum
power per frequency bin k within a finite window, large enough to bridge high power speech
segments, the noise floor can be adequate estimated.

In practice we consider a recursively smoothed periodogram to estimate the noisy PSD.
This is

P̂Y Y (k, i) = αP̂Y Y (k, i − 1) + (1 − α)|Y (k, i)|2 (B.1)

Parameter α is set to 0.85 which value represents a good compromise between smoothing
the noise and tracking the speech signal. The noise PSD estimate P̂WW (k, i) is obtained by
picking the minimum value per frequency bin within a sliding window of D (empirically often
set to 96) consecutive values of P̂Y Y (k, i).

The above mentioned simplified minimum tracking algorithm provides a rough estimate
of the noise power. In order to improve the method the following issues have to be addressed:

• The smoothing with the fixed smoothing parameter widens the peaks of the speech
activity of the P̂Y Y (k, i). This will lead to overestimation of the noise level as the
sliding window for the minimum search might slip into broad peaks.

• Since the minimum of a set of noisy PSD values is generally smaller than the mean, the
noise estimate is biased towards lower values.

• In case of rapidly increasing noise PSD the, minimum tracking lags behind.
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In the next sections the above mentioned shortcomings of the simplified minimum tracking
algorithm are discussed.

B.2 Optimal Time Varying Smoothing

The smoothed noisy PSD estimate has to satisfy conflicting requirements. On one hand the
variance should be as small as possible requiring α to be closed to 1. On the other hand,
P̂Y Y (k, i) has to track possibly nonstationary noise and to follow the highly nonstationary
peaks of the speech. These problems can be addressed only with a time-varying and frequency-
depended smoothing parameter α(k, i). By minimizing an appropriate error criterion, we get

αopt(k, i) =
1

1 + ( P̂Y Y (k,i−1)
PWW (k,i) − 1)2

(B.2)

For analytical derivation of Eq. B.2 see [31]. In practice, we replace the true noise PSD
PWW (k, i) by its latest estimate P̂WW (k, i − 1) and we limit the smoothing parameter to a
maximum value αmax = 0.96.

In general, the estimated noise PSD P̂WW (k, i) lags behind the true one. As a consequence,
the estimated smoothing parameter α̂(k, i) (Eq. B.2) might be too small or too large. Given
this uncertainty in the noise PSD, the tracking errors in the P̂Y Y (k, i) must be monitored.
In [31] they propose to monitor these errors by comparing the average, across frequency,

noisy PSD estimate of the previous frame 1
K

K−1∑
k=0

P̂Y Y (k, i − 1) to the average periodogram

1
K

K−1∑
k=0

|Y (k, i)|2. The comparison is implemented according to

α̃c(i) =
1

1 + (
1
K

K−1∑
k=0

P̂Y Y (k,i−1)

1
K

K−1∑
k=0

|Y (k,i)|2
− 1)2

(B.3)

and the result is limited to values larger than 0.7 and smoothed over time. This is

αc(i) = 0.7αc(i − 1) + 0.3max(α̃c(i), 0.7) (B.4)

The multiplication of the correction factor αc(i) with the Eq. B.2 (bounded to values smaller
than αmax) yield to

α̂(k, i) =
αmaxαc(i)

1 + ( P̂Y Y (k,i−1)

P̂WW (k,i−1)
− 1)2

(B.5)

Finally to improve the performance of the noise PSD estimator in high levels of nonstationary
noise, a lower limit αmin = 0.3 is applied to α̂(k, i).

B.3 Bias Compensation

The minimum statistics noise tracking method determines the minimum of the noisy PSD
estimate within a finite window of length D. Since often the minimum value is smaller than
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the mean value, the minimum noise estimate is biased. In this section we present the formulas
for the compensation of that bias. For the analytical derivation of those formulas see [31].

An unbiased estimator of the noise PSD is given by

P̂WW (k, i) = Bmin(D,Qeq(k, i))P̂min
Y Y (k, i) (B.6)

where P̂min
Y Y (k, i) is the minimum of D successive noisy PSD estimates P̂Y Y (k, i),

i ∈ {icur, . . . , icur − D + 1}, Bmin(D,Qeq(k, i)) is the inverse mean of that minimum, i.e
Bmin(D,Qeq(k, i)) = 1

E{P̂ min
Y Y (k,i)} and Qeq(k, i) the inversed normalized variance of the smoothed

noisy PSD estimate, i.e. Qeq(k, i) = 2P 2
WW (k,i)

var{P̂Y Y (k,i)} .
In practice, the inverse mean is approximated by

Bmin(k, i) ≈ 1 + (D − 1)
2

Q̃eq(k, i)
Γ(1 +

2
Qeq(k, i)

)H(D) (B.7)

where Q̃eq(k, i) is given by

Q̃eq(k, i) =
Qeq(k, i) − 2M(D)

1 − M(D)
(B.8)

M(D) and H(D) are functions of D obtained by linear interpolation from Table. B.1 and Γ(.)
the Gamma function.

D M(D) H(D) D M(D) H(D)
1 0 0 60 0.841 3.1
2 0.26 0.15 80 0.865 3.38
5 0.48 0.48 120 0.89 4.15
8 0.58 0.78 140 0.9 4.35
10 0.61 0.98 160 0.91 4.25
15 0.668 1.55 180 0.92 3.9
20 0.705 2.0 220 0.93 4.1
30 0.762 2.3 260 0.935 4.7
40 0.8 2.52 300 0.94 5

Table B.1: Parameters for the approximation of the mean of the minimum Eq. B.7 and
Eq. B.8. Source [29]

In order to compute the inversed normalized variance of the smoothed noisy PSD estimate,
first the variance has to be estimated. In [31] they propose to use a first order smoothing
recursion for the approximation of the first moment (E{P̂Y Y (k, i)}) and the second moment
(E{P̂ 2

Y Y (k, i)}) of P̂Y Y (k, i). This is

P̂ Y Y (k, i) = β(k, i)P̂ Y Y (k, i − 1) + (1 − β(k, i))P̂Y Y (k, i)

P̂ 2
Y Y (k, i) = β(k, i)P̂ 2

Y Y (k, i − 1) + (1 − β(k, i))P̂ 2
Y Y (k, i) (B.9)

v̂ar{P̂Y Y (k, i)} = P̂ 2
Y Y (k, i) − P̂

2

Y Y (k, i)
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where β(k, i) is experimentally set to β(k, i) = min(α̂2(k, i), 0.8). Finally Qeq(k, i) is esti-
mated by

Qeq(k, i) ≈ 2P̂ 2
WW (k, i − 1)

v̂ar{P̂Y Y (k, i)} (B.10)

and is limited to a maximum of 0.5.
Fig. B.1 shows the clean amplitude spectrum, the noisy amplitude spectrum, the noise

amplitude spectrum, the minimum statistics noise PSD estimation, the amplitude spectrum
of the enhanced signal and the Wiener estimator (Eq. 2.10) for the frequency fk = 492 Hz of
a female speech utterance that is degraded with white Gaussian noise at 10 dB overall SNR.
Note that the a priori SNR was estimated by the decision directed approach 2.18 and that
the Wiener filter is scaled to make the figure clearer.
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Figure B.1: Minimum statistics noise tracking example



Appendix C

Linde-Buzo-Gray (LBG) Algorithm

Vector Quantization (VQ) is a classical quantization technique that is used in many appli-
cations of speech processing, such as speech compression, speech enhancement, speech band-
width extension, voice recognition and more. In this appendix we describe one of the most
popular method of designing codebooks, known as the LBG VQ algorithm [26].

C.1 Vector Quantization

An N level k dimensional quantizer is a mapping q, that assigns to each input vector x =
(x0, . . . , xk−1) a reproduction vector, x̂ = q(x) drawn from a finite reproduction alphabet
(codebook), Â = {yi, i = 1, . . . , N}. The quantizer is completely described by the codebook
together with the partition, S = {Si, i = 1, . . . , N}, of the input vector space into the sets
Si = {x|q(x) = yi} of input vectors mapping into the ith codeword. The goal of a quantizer
is to minimize the expected distortion introduced by the quantization, i.e.

D(q) = E{d(X, q(X))} (C.1)

where X = (X0, . . . ,Xk−1) is the real random vector corresponding to the realization x, E{.}
the expectation operator and d(x, x̂) the distortion caused by reproducing an input vector x
by a codeword x̂. Many such distortion measures have been proposed in the literature. Most
of them, such as the squared error, i.e.

d(x, x̂) =
k−1∑
i=0

|xi − x̂i|2 (C.2)

have the property that they depend on the vectors x and x̂ only through the error vector
x − x̂. Such distortion measures are having the general form d(x, x̂) = L(x − x̂). Distortion
measures not having this form but depending on x and x̂ in a more complicated fashion have
also been proposed, such as

d(x, x̂) = (x− x̂)R(x)(x − x̂)T (C.3)

where R(x) is a positive definite k×k symmetric matrix. In this thesis two different distortion
measures were used. Specifically, for training the codebook of LSF (section 4.1) the log
spectral distortion were used (Eq. 4.1), which results in a distortion measure of the form of
Eq. C.3. On the other hand, for training the harmonic amplitude and harmonicity codebooks
(section 5.2.2) the square error distortion measure (Eq. C.2) was used.
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C.2 LBG Algorithm

The LBG Algorithm for the design of a vector quantizer based on a long training sequence is
summarized below

(Input) N: the number of levels (codewords), ε ≥ 0: the distortion threshold, {xj , j =
1, . . . , n − 1}: a training sequence and Â0: an initial codebook

(0) Set m = 0 and D−1 = ∞
(1) Given Âm = {yi, i = 1, . . . , N} find the minimum distortion partition P (Am) = {Si, i =

1, . . . , N} of the training sequence according to

xj ∈ Si if d(xj ,yi) < d(xj ,yl),∀l 	= i (C.4)

(2) Compute the average distortion

Dm =
1
n

n−1∑
j=0

min
y∈Âm

d(xj ,y) (C.5)

(3) If Dm−1−Dm

Dm
≤ ε, halt with Âm the final codebook. Otherwise continue

(4) Find the optimal codebook x̂(P (Âm)) = {x̂(Si), i = 1, . . . , N}. Set Âm+1 ≡ x̂(P (Âm)),
m = m + 1 and go to (1).

There are several ways to choose the initial codebook Â0 required by the above algo-
rithm. A technique which yields to good codebooks is the one called “splitting” technique.
Considering a M level quantizer with M = 2R, R = 0, 1, . . . the method is summarized below

(0) Set M = 1 and define Â0(1) = x̂(A) the centroid of the whole training sequence

(1) Given the codebook Â0(M) containing M codewords {yi, i = 1, . . . ,M} “split” each
vector yi into two close vectors yi + ε and yi − ε, where ε is a fixed perturbation vector.
The collection Ã of {yi + ε,yi − ε, i = 1, . . . ,M} has 2M vectors. Replace M with 2M .

(2) Is M = N?. If so, set Â0 = Ã(M) and halt. Â0 is then the initial codebook for the
above described N level quantization algorithm. If not, run the algorithm for an M
level quantizer on Ã(M) to produce a good codebook Â0(M) and then go to (1).
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