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Propositions
accompanying the dissertation

Proactive Collision Risk Quantification in
Multi-directional Traffic Interactions

by

Yiru Jiao

1. A continuous measure of collision risk is required because there is no hard boundary
between traffic conflicts and safe interactions.
This proposition pertains to this dissertation (Chapter 3).

2. Traffic interactions that do not end in collisions provide more information than those
that do for learning collision risk.
This proposition pertains to this dissertation (Chapters 4&5).

3. Learning collision risk from unlabelled data overcomes the curse of rarity to achieve
safe autonomous driving.
This proposition pertains to this dissertation (Chapters 5&6).

4. To proactively avoid potential collisions, estimating their likelihood should be
prioritised over estimating their severity.
This proposition pertains to this dissertation.

5. Observable intelligence can be seen as a product of computation.

6. In research, being true to yourself is more helpful than conforming to the mainstream.

7. Research should be motivated by genuine care for society and the environment rather
than mere curiosity.

8. Limited resources deter researchers from asking high-risk questions, while abundant
resources tempt them to answer the questions less efficiently.

9. Most scientific journals should be replaced by platforms that mandate openly shared
studies for reproducibility and transparent discussion.

10. Diversity in people’s mental models, rather than in demographic identities such as
gender, nationality, or age, brings better performance of a team.

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotors prof. dr. ir. J.W.C. van Lint, dr. ir. S. van Cranenburgh, and
dr. ir. S.C. Calvert.
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Summary

Background
Road traffic accidents lead to over a million fatalities and tens of millions more injuries
each year worldwide. Fewer than 6% of these accidents are on high-speed motorways,
while more than 67% occur in urban environments. Looking at more detailed records, over
half of the collisions between road users take place at intersections, and most involve
lateral interactions. Collisions rarely result from a single sudden mistake, but emerge from
a cascading sequence of increasingly intense interactions that can last seconds or even
minutes. Therefore, a time window exists from the detection of a conflict to the occurrence
of a collision, providing a valuable opportunity to intervene. To secure the precious time
needed for prevention, this thesis is focused on proactively detecting potential collisions
and quantifying their risks in multi-directional urban traffic.

Research questions
The overarching research objective is to systematically provide a context-aware,
generalisable, and scalable methodology to quantify the collision risk in multi-directional
traffic interactions. Beyond car following, these interactions include lane changing,
merging, turning, crossing at intersections, etc., which are typical of city streets and
intersections. To achieve the objective, this thesis answers four interconnected research
questions: How can multi-directional traffic interactions be effectively characterised? How
can traffic conflict detection accommodate varying contextual factors? How can collision
risk in diverse multi-directional traffic interactions be quantified in a unified way? How
can collision risk quantification be scaled up without annotated data of crashes or
near-crashes? In a nutshell, these questions trace a logical progression from foundational
measurement to large-scale deployment.

Methods
The methodology developed in this thesis spans from measuring multi-directional
traffic interactions to self-supervised learning of collision risk. It first introduces a
two-dimensional (2D, longitudinal and lateral) coordinate transformation to normalise the
spacing between road users. This enables microscopic measurement of multi-directional
spacing, as well as macroscopic analyses of the required road space for traffic interactions
through the interaction Fundamental Diagram (iFD). On this foundation, a conditional
formulation and a unified probabilistic framework for conflict detection are proposed. The
formulation conditions collision risk on interaction context, i.e., any information that
is useful to characterise the interaction, such as relative speed, road user behaviour,
and environmental factors. A statistical learning pipeline is then developed to drive

xiii



xiv Summary

the framework with data. This enables the training of risk metrics that are adaptive to
interaction context, thus generalising across traffic scenarios. These data-driven metrics are
continuous and can naturally capture a long-tailed risk spectrum ranging from mild
conflicts to near-crashes. In order to more effectively exploit the interaction patterns in data,
this thesis proposes the Generalised Surrogate Safety Measure (GSSM), an end-to-end
assembly of the previously developed methods. GSSM is a self-supervised approach that
learns exclusively from abundant naturalistic driving to infer risky extremes without the
need for labelled crashes or near-crashes. Further, for more efficient self-supervised
learning as increasing data becomes available, contrastive learning is explored to preserve
fine-grained similarities in latent interaction patterns.

Results and findings
Extensive experiments with real-world data have validated the proposed methods and
revealed important findings. A collection of the data underlying this thesis is prepared 1,
where the open-source code repositories and datasets for each chapter are referenced.

The 2D coordinate transformation enables consistent analyses of multi-directional
interactions in urban traffic, and finds that lateral interactions are more efficient in the use
of road space than longitudinal interactions. There is no hard boundary between safe
and unsafe interactions. As a result, context-conditioned conflict detection provides
more reliable collision warnings with fewer false detections than traditional heuristic
methods. Based on multi-directional spacing and context-conditioned detection, the
unified collision risk metric is adaptive in various interaction scenarios and outperforms
existing methods in both detection accuracy and timeliness. Further results with GSSM
show that environmental information such as weather, lighting, and road surface conditions
enhances detection performance, and adverse conditions such as rain and wet roads are
found to be associated with increased collision risk. Without requiring collision or conflict
annotations, the performance of GSSM improves with increasing training inputs. In
addition, preserving fine-grained similarities facilitates learning useful interaction patterns
that boost performance.

These results demonstrate the systematic methodology developed in this thesis
for proactive collision risk quantification. Each component, including consistent
interaction measurement, context-aware conflict detection, generalised risk from normal
interactions, and scalable self-supervised learning, contributes to a better understanding
and identification of collision risk in multi-directional traffic interactions. Three core
conclusions are drawn from the findings. First, there is no universal boundary that
separates safe and unsafe traffic interactions; collision risk instead exists as a continuum
that must be evaluated dynamically from time to time and location to location. Second, the
collision risk in multi-directional interactions can be quantified with a unified probabilistic
framework if an appropriate proxy and reference system (specifically, 2D spacing in this
thesis) are chosen. Third, extremely conflicting interactions are statistically related to

1At https://doi.org/10.4121/8636d409-2f19-4ba3-8093-dff79843537f

https://doi.org/10.4121/8636d409-2f19-4ba3-8093-dff79843537f
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everyday interactions; therefore, a learning system can extrapolate collision risk from
normal interactions rather than waiting for crashes to occur.

Possible applications and implications
This thesis shows that data-driven proactive collision risk quantification is not only
feasible but can be deployed at scale. The methodological advances can be translated into
practical applications for traffic management and autonomous driving. Traffic management
agencies can utilise the iFD to evaluate urban intersection efficiency and inform design
improvement in signal timing or road layout. Automotive engineers can embed the
unified conflict detection and adaptive thresholds into omnidirectional collision warning
in Advanced Driver Assistance Systems (ADAS), reducing both under-reaction and
over-reaction complaints that currently dominate consumer feedback. Developers of
autonomous driving systems can leverage the GSSM as a safety reward or validation signal,
improving end-to-end training and enabling targeted curation of rare yet safety-critical
interaction scenarios. Finally, powered by intelligent transportation systems equipped with
connected vehicles and roadside infrastructure, city authorities can monitor a rolling map
of road traffic risk in real time and proactively intervene in potential accidents.

Beyond these tangible use cases, this thesis contributes to the ongoing shift from
reactive to proactive management of road safety. The research in this thesis promises fewer
fatalities and injuries, smoother traffic thanks to less incident-induced congestion, and
greater public confidence in automated vehicles. It can also empower policymakers with
rapid feedback on traffic safety policies. By learning collision risk from everyday traffic
interactions rather than waiting for crashes, the feedback loop between safety policies and
their observable effects can be shortened from years to months, accelerating iterative
improvements to the road system. These implications align neatly with the principles of
Vision Zero to eliminate traffic fatalities and severe injuries, as well as the United Nations
Sustainable Development Goal to create inclusive, safe, resilient and sustainable cities.



Samenvatting

Achtergrond
Verkeersongevallen op de weg veroorzaken wereldwijd jaarlijks meer dan een miljoen
dodelijke slachtoffers en tientallen miljoenen gewonden. Minder dan 6% van deze
ongevallen vindt plaats op autosnelwegen, terwijl meer dan 67% zich in stedelijke
omgevingen voordoet. Uit gedetailleerde registraties blijkt dat meer dan de helft van
de botsingen tussen weggebruikers plaatsvindt op kruispunten en dat het merendeel
laterale interacties betreft. Botsingen zijn zelden het gevolg van één plotselinge fout; ze
ontstaan uit een opeenvolging van steeds intensere interacties – een aaneenschakeling van
handelingen die zich over seconden tot minuten kunnen uitstrekken. Er bestaat dus een
tijdsvenster tussen het waarnemen van een conflict en het moment waarop een botsing
daadwerkelijk plaatsvindt, wat ruimte biedt voor preventief ingrijpen. Om de kostbare tijd
die nodig is voor preventie effectief te benutten, richt dit proefschrift zich op het proactief
detecteren van potentiële botsingen en het kwantificeren van de bijbehorende risico’s in
multidirectioneel stedelijk verkeer.

Onderzoeksvragen
Het overkoepelende onderzoeksdoel is om een contextbewuste, generaliseerbare en
schaalbare methodologie te ontwikkelen om het botsingsrisico bij multidirectionele
verkeersinteracties te kwantificeren. Naast het volgen van voorliggers (car following)
omvatten deze interacties rijstrookwisselingen, invoegen, afslaan en oversteken, die
typerend zijn voor stedelijke straten en kruispunten. Om dit doel te bereiken, beantwoordt
dit proefschrift vier onderling verbonden onderzoeksvragen: Hoe kunnen multidirectionele
verkeersinteracties effectief worden gekarakteriseerd? Hoe kan conflictdetectie rekening
houden met wisselende contextuele factoren? Hoe kan het botsingsrisico bij diverse
multidirectionele interacties op een uniforme manier worden gekwantificeerd? Hoe kan de
kwantificatie van botsingsrisico’s worden opgeschaald zonder geannoteerde data van
ongevallen of bijna-ongevallen? In essentie volgen deze vragen een logische progressie
van fundamentele meting tot grootschalige toepassing.

Methoden
De in dit proefschrift ontwikkelde methodologie strekt zich uit van het meten van
multidirectionele verkeersinteracties tot self-supervised leren van botsingsrisico. Allereerst
wordt een tweedimensionale (2D) coördinatentransformatie (longitudinaal en lateraal)
geïntroduceerd om de onderlinge afstand tussen weggebruikers te normaliseren. Dit
maakt microscopische metingen van multidirectionele tussenruimte mogelijk, evenals
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macroscopische analyses van de benodigde wegruimte voor verkeersinteracties via
het interactie-Fundamenteel Diagram (iFD). Op deze basis worden een conditionele
formulering en een uniform probabilistisch raamwerk voor conflictdetectie voorgesteld.
De formulering conditioneert het botsingsrisico op de interactiecontext — d.w.z. alle
informatie die nuttig is om de interactie te karakteriseren, zoals relatieve snelheid, gedrag
van weggebruikers en omgevingsfactoren. Een statistisch leerproces voedt dit raamwerk,
waardoor risicomaten ontstaan die adaptief zijn aan de context en dus generaliseren over
verschillende scenario’s. Om interactiepatronen in data optimaal te benutten, introduceert
dit proefschrift de Generalised Surrogate Safety Measure (GSSM), een end-to-end
generalisatie van de eerder ontwikkelde methoden. GSSM is een self-supervised aanpak
die uitsluitend leert van overvloedige naturalistische rijgegevens om risicovolle extremen
af te leiden zonder de noodzaak van gelabelde ongevallen of bijna-ongevallen. Voor
efficiënter leren naarmate er meer data beschikbaar komt , wordt bovendien contrastive
learning onderzocht om fijnmazige overeenkomsten in latente interactiepatronen te
behouden.

Resultaten en bevindingen
Uitgebreide experimenten met praktijkdata hebben de voorgestelde methoden gevalideerd
en belangrijke bevindingen opgeleverd. De onderliggende data en open-source code zijn
beschikbaar 2.

De 2D-transformatie maakt consistente analyses van multidirectionele interacties
mogelijk en toont aan dat laterale interacties de wegruimte efficiënter benutten dan
longitudinale. Omdat er geen harde grens bestaat tussen veilige en onveilige interacties,
levert context-geconditioneerde conflictdetectie betrouwbaardere botsingswaarschuwingen
met minder valse meldingen dan traditionele heuristische methoden. De uniforme metriek
voor botsingsrisico is adaptief in verschillende scenario’s en presteert beter dan bestaande
methoden wat betreft zowel nauwkeurigheid als tijdigheid. Resultaten met GSSM laten
zien dat omgevingsinformatie (weer, licht, wegdek) de detectieprestaties verbetert en dat
ongunstige omstandigheden, zoals regen en een nat wegdek, geassocieerd zijn met een
verhoogd botsingsrisico. Zonder annotaties van ongevallen of conflicten verbeteren de
prestaties van GSSM met toenemende trainingsinput, en het behouden van fijnmazige
overeenkomsten verbetert de prestaties door het leren van nuttige interactiepatronen te
faciliteren.

Deze resultaten demonstreren de systematische methodologie die in dit proefschrift
is ontwikkeld voor proactieve kwantificering van botsingsrisico’s. Elk onderdeel —
waaronder consistente meting van interacties, contextbewuste conflictdetectie, het
generaliseren van risico op basis van normale interacties, en schaalbaar self-supervised
leren — draagt bij aan een beter begrip en een betere identificatie van het botsingsrisico bij
multidirectionele verkeersinteracties. Deze bevindingen leiden tot drie kernconclusies.
Ten eerste bestaat er geen universele grens die veilige en onveilige verkeersinteracties
scheidt; botsingsrisico bestaat daarentegen als een continuüm dat dynamisch moet worden

2Via https://doi.org/10.4121/8636d409-2f19-4ba3-8093-dff79843537f
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geëvalueerd per tijd en locatie. Ten tweede kan het botsingsrisico bij multidirectionele
interacties worden gekwantificeerd met een uniform probabilistisch raamwerk, mits een
geschikte proxy en referentiesysteem (specifiek, 2D-tussenruimte in dit proefschrift)
worden gekozen. Ten derde zijn extreem conflicterende interacties statistisch gerelateerd
aan alledaagse interacties, waardoor een leersysteem het botsingsrisico kan extrapoleren
uit normaal verkeer zonder te wachten tot er ongevallen plaatsvinden.

Mogelijke toepassingen en implicaties
Dit onderzoek toont aan dat datagedreven, proactieve risicokwantificatie niet alleen haalbaar
is, maar ook schaalbaar kan worden geïmplementeerd. Verkeersmanagementinstanties
kunnen het iFD benutten om de efficiëntie van stedelijke kruispunten te beoordelen en
aanpassingen in verkeerslichtregelingen of weginrichting te onderbouwen. Automotive-
ingenieurs kunnen de uniforme conflictdetectie met adaptieve drempels integreren in
omnidirectionele botsingswaarschuwingen voor Advanced Driver Assistance Systems
(ADAS), waardoor klachten over zowel onder- als overreacties verminderen. Ontwikkelaars
van autonome rijsystemen kunnen GSSM gebruiken als beloningssignaal voor veilig
rijgedrag of als validatietool. Dit verbetert de end-to-end training en maakt het
gericht selecteren van zeldzame, maar veiligheidskritieke scenario’s mogelijk. Met
ondersteuning van intelligente transportsystemen, uitgerust met connected vehicles en
wegkantinfrastructuur, kunnen stadsbesturen bovendien een realtime risicokaart monitoren
en proactief ingrijpen bij potentiële ongevallen.

Deze bijdrage ondersteunt de overgang van reactief naar proactief verkeersveilig-
heidsbeheer. Het onderzoek belooft minder slachtoffers, vlotter verkeer dankzij minder
incidentgerelateerde congestie en een groter publieksvertrouwen in geautomatiseerd rijden.
Omdat botsingsrisico wordt geleerd uit alledaagse interacties in plaats van te wachten op
ongevallen, kan de feedbacklus tussen veiligheidsbeleid en de waarneembare effecten
worden verkort van jaren naar maanden, wat iteratieve verbeteringen aan het wegennet
versnelt. Dit werk sluit naadloos aan bij de principes van Vision Zero om verkeersdoden en
ernstige verwondingen uit te bannen en bij de Duurzame Ontwikkelingsdoelstelling van de
Verenigde Naties voor inclusieve, veilige, veerkrachtige, en duurzame steden.
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【研究背景】
每年，道路交通事故仍在全球范围导致超过一百万人死亡、数千万人受伤。

这些事故仅有不到6%发生在高速公路上，却有超过三分之二在城市环境中。更
详细的数据显示，交通参与者之间的碰撞半数以上发生在交叉口，且大都涉及
横向交互。碰撞很少由某个突发错误直接导致，而是在数秒乃至数分钟内，经
历交互冲突强度的不断升级。因此，从发现冲突到发生碰撞之间存在一段时间
窗口，留出了实施干预的契机。本论文的研究聚焦于预判城区驾驶多向交互中
的潜在碰撞并量化其风险，以赢得宝贵的预防时间。

【研究问题】
本研究的总目标是为预判与量化多向交互的碰撞风险系统性地提供一套可感

知情境、可泛化、并可规模化的方法。除单向（即纵向）跟车行为外，多向交
互还包括变道、并道、转弯、交叉口穿行等城市交通典型场景。为此，本论文
依次回答四个递进的研究问题：如何有效表征多向驾驶交互？交通冲突检测如
何适应多变的情境？如何以统一形式量化不同多向交互中的碰撞风险？如何摆
脱对碰撞或冲突数据标注的依赖、规模化对碰撞风险的量化？这些问题构成了
一条从基础测量到大规模部署的逻辑链。

【研究方法】
本论文开发的方法从多向交互的度量循序渐进至碰撞风险的自监督学习。

首先提出的是一种二维（纵向和横向）坐标变换，以规范化道路使用者之间在
二维空间的间隔。这使得多向间距能够在微观层面上测量，并通过交互基本图
（interaction Fundamental Diagram, iFD）在宏观层面分析多向交互所需的道路空
间。在此基础上，本研究提出了用于冲突检测的条件公式和统一概率框架。该
公式令碰撞风险依赖于交互情境——即任何有助于描述交互特征的信息，例如
相对速度、道路使用者行为、和环境因素。随之开发的统计学习方案利用数据
驱动该框架，使可适应交互情境的风险指标得以训练。这样从数据中习得的指
标是连续的，能够捕捉从轻微冲突到濒临碰撞的长尾风险谱。为了更充分地挖
掘数据中的交互模式，本论文接着提出广义替代安全指标（Generalised Surrogate
Safety Measure, GSSM），利用神经网络对前述方法端到端整合。GSSM是自监督
的，无需碰撞或濒临碰撞的标注数据，从丰富的自然驾驶场景中学习并外推高
风险的极端情况。随着可用数据不断增加，为提升自监督学习效率，本文还探
索了对比学习、以在表征空间中保留交互模式间的细粒度相似性。
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【研究结果】
本论文在真实世界数据上进行了充分的实验来验证所提出的方法、并揭示有

意义的发现。实验数据已公开3，可索引至各章的开源代码与复现指南。

通过二维坐标变换度量间距，城市交通中的多向交互得以类比分析；结果表
明横向交互比纵向交互更能高效利用道路空间。安全与不安全的交互之间没有
绝对界限，因此依赖于情境的冲突检测能提供比传统启发式方法更可靠的碰撞
预警、减少误判。基于多向间距与依赖情境的检测，统一的概率性碰撞风险指
标可适应各种交互场景，在冲突检测的准确性和及时性方面都优于现有方法。
使用GSSM的进一步结果表明，天气、光照、路面状况等环境信息能增强检测
效果，而且降雨及湿滑路面等不利条件相关于碰撞风险的增加。无需碰撞或冲
突的标注数据，GSSM用于风险预判的准确性会随着自然驾驶的训练数据量增
加而提升。同时，保留细粒度相似性有助于神经网络有效学习交互模式，从而
进一步提高模型性能。

这些结果论证了本文所构建的一整套方法用于预判和量化碰撞风险的能力。
一致的交互测量、适应情境的冲突检测、从正常交互中泛化的风险、以及可规
模化的自监督学习，这些共同增进了对多向交互中碰撞风险的理解和识别。从
上述研究结果中可以得出三个核心结论。第一，安全与不安全的交互之间不存
在通用的边界；碰撞风险是需要随时间与地点动态评估的连续体。第二，只要
选取合适的代理量和参照系（本论文使用二维间距），多向交互中的碰撞风险
就可以通过统一概率框架进行量化。第三，极端冲突交互在统计上与常态交互
相关联；因此，数据驱动的学习方法可以从正常交互中外推碰撞风险，而无需
等待碰撞发生。

【研究意义】
本研究表明，数据驱动的碰撞风险预判不仅可行，而且能够大规模训练与部

署。本文在研究方法上的进展可以转化为交通管理和自动驾驶中的实际应用。
交通规划机构可使用iFD评估城市交叉口的运行效率，据此优化信号配时或道
路布局；车辆工程师可将统一冲突检测与自适应阈值嵌入高级驾驶辅助系统
（Advanced Driver Assistance Systems，ADAS）全向碰撞预警，缓解目前用户反馈
中普遍存在的反应不足与反应过度问题；自动驾驶系统开发者可利用GSSM提
供动态、稠密的安全奖励或验证信号，改进端到端算法的训练，并有针对性地
筛选罕见但安全关键的交互场景；最后，借助由车联网与路侧设施支持的智能
交通系统，城市管理部门可实时监控道路交通风险、及时干预潜在事故。

在这些具体用例之外，本论文贡献于推动道路安全管理从被动响应向主动预
防的转变。本文的研究有望直接减少伤亡事故、减少事故引发的拥堵而使交通
更加顺畅、以及增强公众对自动驾驶车辆的信任使之反哺交通安全。通过从日
常交互中学习碰撞风险、而不是等待事故发生，本研究有潜力将交通安全措施
与其可观测效果之间的反馈循环由数年缩短至数月，从而加速道路系统的迭代
改进。这些积极影响与“零伤亡愿景”（Vision Zero）消除交通事故引发的死亡与
重伤的理念相合，同时回应了联合国可持续发展“建设包容、安全、有韧性、可
持续的城市”的目标。

3地址https://doi.org/10.4121/8636d409-2f19-4ba3-8093-dff79843537f

https://doi.org/10.4121/8636d409-2f19-4ba3-8093-dff79843537f


Chapter 1
Introduction

1.1 Motivation
Reducing traffic accidents remains a significant challenge. Every year, approximately 1.2
million people lose their lives in road crashes, along with tens of millions of injuries [1].
Substantial societal and economic costs are incurred by even more non-fatal and non-injury
accidents through, e.g., congestion and emergency response [2–4]. Despite the common
perception that highways pose greater crash risk due to high speeds, as shown in
Figure 1.1(a)1, fewer than 6% of accidents happen there, while more than 67% occur in
urban areas. In particular, over half of all crashes between road users take place at urban
intersections, as shown in Figure 1.1(b) and 1.1(c)2. Of these accidents at intersections, the
majority involve lateral interactions.
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Figure 1.1 Statistics of traffic accidents and road crash types. (a) Number of traffic accidents at
different locations from 2001 to 2021 in 27 countries for which complete data are accessible.
(b) Distribution of road crash types in the Netherlands from 2021 to 2023. (c) Distribution of motor
vehicle crash types in the United States from 2021 to 2023.

1These countries are members of the United Nations Economic Commission for Europe (UNECE). The data are
sourced from [5].

2Only the crashes between road users are included. This means an exclusion of single-vehicle crashes and crashes
with parked vehicles or animals. The use of data in the Netherlands (sourced from [6]) and the United States
(sourced from [7]) is due to easier data accessibility. These two countries might not be representative of the
global situation.
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2 1 Introduction

Traffic accidents seldom stem from a single catastrophic mistake, but often from the
accumulation of multiple events. Prior to a crash, mild and severe conflicts progressively
increase the risk until prevention is impossible or fails [8, 9]. From a systematic perspective,
a collision is the culmination of an escalating series of crash precursors. These precursors
typically unfold for seconds to minutes before a crash, thus leaving a valuable window
during which a human or automated system can intervene to prevent a potential collision.

To secure time and space for prevention, proactively detecting the crash precursors and
quantifying their risk is essential. This has been extensively researched in longitudinal
traffic dynamics (i.e., car-following, see literature reviews, e.g., [10, 11]), but remains
challenging in urban traffic where lateral interactions such as lane-changing, overtaking,
turning, and crossing abound. Particularly at intersections, road users approach from
different traffic directions, negotiate their rights of way, and manoeuvre both longitudinally
and laterally. Such interactions are multi-directional and highly variable, making the
quantification of collision risk in urban traffic complicated.

The research focus of this thesis is on proactively quantifying the risk of collisions
before they occur in multi-directional urban traffic – the very situation in which the
majority of road crashes take place. This can inform the prevention of collisions and
eventually contributes to reducing traffic accidents.

1.2 Background

Table 1.1 Terminology of traffic safety events

Traffic event Definition

Accident Event that involves at least one vehicle in motion and results in injury,
fatality, or property damage.

Crash Interchangeable use with accident, covering all harmful road traffic
events.

Collision Contact that a vehicle has with other road users, including vehicles,
cyclists, pedestrians, etc.

Non-collision crash Accidents/Crashes that involve one single vehicle.

Near-crash Event that requires a rapid evasive manoeuvre to avoid a collision [12].

Conflict Situation where at least two road users approach each other in time and
space to such an extent that there is risk of collision if their movements
remain unchanged [13]. Interchangeable use with potential collision.

Interaction Situation where the behaviour of at least two road users can be
interpreted as being influenced by the possibility that they are both
intending to occupy the same region of space at the same time in the
near future [14].
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To avoid confusion in the use of terminology, Table 1.1 provides definitions of
the traffic safety events discussed throughout this thesis, and Figure 1.2 shows their
relationships. Accidents and crashes are used interchangeably, which include collisions
between road users and non-collision crashes with other obstacles. In this thesis, every
collision is considered to evolve from a conflict. Conflicts are thus also called potential
collisions. Different conflicts vary in intensity, among which near-crashes are those
requiring rapid evasive operations. In a broader view, both collisions and conflicts are
interactions during which the behaviour of road users influences each other.

Interactions

Conflicts

Accidents/Crashes

CollisionsNear-crashes Non-collision crashesEvolve to

Figure 1.2 Relationships between traffic safety events.

In this thesis, proactive collision risk quantification refers to estimating the time-varying
likelihood that a conflict may evolve into a collision in a certain interaction context. The
quantified collision risk is therefore not an absolute probability that a collision will occur.
Instead, it provides a risk score that is useful for ranking and comparing potential collision
situations within and across interaction contexts. For example, two situations with equal
risk scores do not necessarily have identical real-world collision probabilities; differences
in driver behaviour, perception, and vehicle capabilities may lead to different chances
that a conflict is resolved safely. As such, proactively quantifying collision risk first
requires consistent characterisation of multi-directional traffic interactions, and then
adaptive identification and evaluation of traffic conflicts. This stands on the shoulders of
various fields such as traffic dynamics, traffic safety, probability theory, and statistics. The
remainder of this section offers an overview of the three most relevant directions and
underlines the research need in existing studies.

1.2.1 Traffic interaction characterisation
Modelling traffic interactions has traditionally targeted unidirectional (i.e., longitudinal)
vehicle interactions on highways [15, 16]. In this context, interactive behaviours such as
car-following and lane-changing are characterised by one-dimensional (1D) speed,
headway, spacing, etc. However, urban traffic interactions, especially those at intersections,
involve multi-directional dynamics of different road users that existing 1D dynamics
struggle to completely characterise. Road users in urban environments move in a
two-dimensional (2D) plane with varied orientations, as emphasised in many studies
focused on urban intersections (e.g., [17, 18]). In this plane, the notions of safe distance,
relative speed, or time headway become unclear when a road user approaches another
laterally.
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There is not yet an effective measure or consistent quantity to characterise diverse
lateral interactions in urban environments, where road users do not simply follow one
another, but share a 2D road space. The lack of generic measurements of multi-directional
interactions results in a limited ability to model and understand urban traffic. This
limitation has also hindered the development of proactive collision risk quantification in
multi-directional interactions.

1.2.2 Traffic conflict detection
In the field of traffic safety, traffic conflicts have been widely used as a proxy to quantify
collision risk [19, 20]. Different traffic conflicts are detected using separate indicators in
existing studies. For example, Time to Collision (TTC) [8, 21] is designed for rear-end
conflicts, whereas Post-Encroachment Time (PET) [22, 23] is specialised for path-crossing
conflicts. The severity of collision risk quantified by these indicators can vary. Empirical
experiments show that driver perception of critical TTC differs among individuals [24] and
across environments [25, 26]. More specifically, although a TTC of 3 seconds may imply
high risk on highways, it could entail no danger during a cooperative lane-change or
deceleration towards an intersection stop line. Similarly, 2-second PET may indicate
a near-crash between two cars crossing at an intersection, but it is not unusual for
cyclists [27]. These variations necessitate more comprehensive methods for traffic conflict
detection.

In response to the variability, commercial collision warning and prevention systems
typically implement much more complex decision logic than a single TTC threshold. They
fuse multiple sensors, algorithms, heuristics, and often include scenario-specific modules
and safeguards. In academic research, enhanced methods for conflict detection are
explored. To involve lateral interactions, 2D kinematics-informed indicators such as
Anticipated Collision Time [18] and Emergency Index [28] are proposed. To cover a more
comprehensive range of conflicts, multiple indicators are combined into a composite
model [29–31] and machine learning is utilised [32, 33]. An important line of research
focuses on determining more reliable thresholds to distinguish unsafe interactions. When
crash or near-crash records are available, the threshold can be optimised for best detection
accuracy [34]. In the absence of ground truth labels, heuristic rules [35–37] or statistical
hypotheses [38–40] are applied to set thresholds. These enhancements are ultimately
limited by the indicators on which they are based, and of which the specific assumptions
about conflict emergence are not relaxed.

The limitation in dealing with variations highlights that traffic conflict detection needs
to be context-aware, taking into account factors such as road layout, moving speed,
interactive behaviour, and road user type. This becomes increasingly important in light
of emerging technologies. For instance, automated vehicles and Advanced Driving
Assistance Systems (ADAS) require reliable real-time evaluation of collision risk as they
navigate in various traffic environments. Failing to account for interaction context can
cause underreaction (e.g., overlooking critical threats) or overreaction (e.g., unnecessary
emergency braking). According to Ayoub et al. [41], more than 75% of consumer
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complaints about proactive safety failures in ADAS are exactly about underreaction and
overreaction. In a near future of mixed traffic where human drivers and different levels of
automated systems share roads, conflict detection without context-awareness may miss the
window to prevent crashes, and even introduce new risks.

1.2.3 Data-driven collision risk quantification
Collision risk has also been quantified through two other approaches in addition to
detecting traffic conflicts. These two approaches are typically data-driven and struggle less
with context-awareness, but face more challenges in generalisability and scalability. In this
thesis, generalisability refers to the ability of a model to maintain its effectiveness when
applied to road environments, interactive behaviours, or road users that differ from those
present in calibration or training data. Scalability refers to the ability of a model to learn
diverse patterns from massive amounts of data, so that the model can be reliably deployed
at scale.

One approach that quantifies collision risk through motion prediction under uncertainty
is commonly adopted in robotics and vehicle control. In this approach, probabilistic
trajectories or reachable sets of road users are predicted and used to compute the probability
of safety constraint violations [42–46]. It is assumed that the uncertainty in road user
behaviour can be consistently modelled and that the resulting stochastic model remains
valid even when collision risk is high. However, this assumption often fails to generalise to
abnormal, aggressive, or highly interactive motions that precede crashes [47], leading to
increased misjudgment in safety-critical situations.

Another approach is video-based traffic accident anticipation (TAA), which aims to
predict collisions before they occur [48, 49]. TAA trains deep neural networks with
dashcam or surveillance videos of crashes to identify early visual cues. Training reliable
TAA models requires a large amount of labelled video data of crashes. Yet, compared to
daily normal interactions, traffic collisions are rare and variable long-tail events, making
such data both scarce and unrepresentative of all risky situations [50]. This data constraint
not only limits training TAA models at scale, but also impedes their generalisability to
unseen situations that differ from historical collision patterns.

1.3 Knowledge gaps
Despite substantial progress in different directions, existing approaches for proactive
collision risk quantification are limited within their specifically designed range. Methods
built on predefined rules or assumptions consider restricted information and fail to
recognise collision risk in other contexts, while those built on machine learning demand
extensive and diverse crash data that are often unavailable. As a result, the development
becomes increasingly confined within disconnected comfort zones: each method is useful
in specific conditions, but none addresses different traffic interactions in a unified way.

This thesis identifies three progressive knowledge gaps in quantifying collision risk
in multi-directional traffic interactions. The foundational gap lies in characterising
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multi-directional interactions. Based on effective characterisation, the second gap requires
a comprehensive consideration of varying contextual factors of risk. With a context-aware
framework, the third gap seeks generalisability across interaction contexts and scalability
during data-driven learning process.
Gap1. Effective characterisation of the use of shared road space and conflict dynamics in

urban environments, where road users interact across multiple directions.
Gap2. Context-aware framework of traffic conflict detection that accounts for varying

factors such as road layout, road user behaviour, and environmental change.
Gap3. Data-driven approach that adapts to various interaction scenarios in a unified way

and is feasible for large-scale deployment in reality, to learning collision risk.

1.4 Research objective and questions
Addressing these knowledge gaps is vital for improving proactive traffic safety in urban
environments. Accordingly, the research objective of this thesis is to

systematically provide a context-aware, generalisable, and scalable methodology
to quantify the collision risk in multi-directional traffic interactions.

To achieve this objective, the following research questions (RQs) are investigated.
RQ1. How can multi-directional traffic interactions be effectively characterised?

What new metrics or methods can capture the characteristics of multi-directional
traffic interactions (such as merging, turning, crossing) in a 2D plane? The answer
to this question contributes to addressing the first knowledge gap and lays a
foundation for later risk quantification. [Chapter 2]

RQ2. How can traffic conflict detection accommodate varying contextual factors?
Traffic conflicts are at different levels of collision risk, which is influenced by a
variety of contextual factors. What methods can relate interactions, conflicts, and
collisions, taking into account the varying factors? Answering this question aims to
address the second knowledge gap of context-awareness. [Chapters 3 and 4]

RQ3. How can collision risk in diverse multi-directional traffic interactions be quantified
in a unified way?
Building upon the answers to RQ1 and RQ2, what methods can enable unified
quantification of collision risk across different scenarios of multi-directional traffic
interactions? In other words, what methods can consistently detect different types
of traffic conflicts and evaluate their intensity? Answering this question aims to
address the third knowledge gap regarding generalisability. [Chapter 4]

RQ4. How can collision risk quantification be scaled up without annotated data of
crashes or near-crashes?
Finally, how can the increasingly abundant data (e.g., naturalistic driving records)
be exploited to quantify collision risk at scale, without the need for laborious
manual labelling of crashes or near-crashes? Answering this question targets a
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scalable and self-supervised approach that addresses the third knowledge gap
regarding scalability. [Chapters 5 and 6]

Each RQ aligns with one or two of the main chapters 2∼6. Consequently, the research
in this thesis progresses from foundational characterisation of traffic interactions(RQ1),
to context-aware and generalisable detection of traffic conflicts (RQ2 and RQ3), and
eventually to large-scale implementation of collision risk quantification (RQ4).

1.5 Contributions
By answering the research questions, this thesis addresses the knowledge gaps through
providing new theoretical insights, methodological advances, and pathways to practice.
Figure 1.3 depicts the connections between these contributions. The scientific and
methodological contributions will be detailed in this section, while the practical applications
and societal relevance will be summarised in the conclusion chapter. Altogether, these
contributions provide the groundwork for traffic safety analysis and automated driving
systems to account for the multi-directional and context-dependent nature of road user
interactions.
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1.5.1 Scientific contributions
The scientific contributions in this thesis deepen the understanding of how road users
interact in complex urban environments and how these interactions are associated with
potential collisions. They provide the theoretical basis for subsequent methodological
developments.

• Interaction Fundamental Diagram of average road space required for vehicle
interactions.
Chapter 2 introduces the interaction Fundamental Diagram (iFD) that empirically
relates the efficiency of vehicle interactions at urban intersections, the average amount
of road space required for the interactions, and their relative speeds. The iFD reveals
that lateral interactions use road space more efficiently than longitudinal interactions
at urban intersections. In line with classical longitudinal traffic flow theory, for
multi-directional interactions in urban traffic, there also exist optimal states where
interaction efficiency is maximised.

• Unified probabilistic formulation of traffic conflict detection.
Chapter 4 formulates the detection of traffic conflicts as quantifying the conditional risk
of potential collisions. This formulation unifies numerous surrogate metrics of traffic
conflicts under one probabilistic interpretation. It is a conceptual breakthrough that
resolves the inconsistencies among different metrics, and thus allows for comparing
and evaluating collision risk across different interaction contexts.

• Generalisation from normal traffic interactions to potential collisions.
Every collision evolves from a previously safe interaction. Chapters 4 and 5
theoretically and empirically derive that collisions and conflicts are extreme events
deviating from normal interactions to different degrees. Based on this derivation, the
patterns of everyday naturalistic interactions can be generalised to safety-critical
conflicts and collisions. This generalisation justifies the scalable development of
collision risk quantification as increasingly abundant interaction data are collected.

1.5.2 Methodological contributions
Building on the scientific insights, this thesis develops a series of methods and techniques
for empirical analysis and collision risk quantification of multi-directional traffic
interactions.

• A new method to measure multi-directional spacing of urban traffic interactions.
Chapter 2 introduces a relative coordinate system where the transformed coordinates
can represent how two road users approach and leave each other. This provides a
method that enables empirical measurement of multi-directional interactions, and thus
analysis of the safety and efficiency in real urban traffic.

• A new method to minimise false warnings for collision avoidance.
Chapter 3 proposes to optimise the threshold for issuing collision avoidance warnings
by minimising the estimated probabilities of false negatives and false positives. This
provides a statistical procedure for setting adaptive collision warning triggers as
opposed to heuristic thresholds.
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• A new approach to probabilistic traffic conflict detection.
Chapter 4 designs sequential tasks to apply the unified probabilistic formulation of
traffic conflict detection. These tasks are intended to extract interaction patterns from
real-world data and form a pipeline where each module can be continuously improved
for more effective conflict detection.

• A new self-supervised learning approach for collision risk quantification.
As one of the core contributions, Chapter 5 develops a context-aware, generalisable, and
scalable approach for proactive collision risk quantification. It enables self-supervised
learning and extrapolates the patterns of normal interactions to safety-critical situations
without requiring historical crashes or manual annotations of near-crashes.

• A new technique for structure-preserving contrastive learning of spatial time
series.
Chapter 6 looks further into self-supervised learning of traffic interactions. It proposes
a dynamic mechanism to adaptively balance contrastive learning and preserving
fine-grained similarity relations between training samples. This is designed for more
effective learning of the patterns in spatio-temporal data to enhance downstream task
performance.

1.5.3 Contributions to open science
The source code of the methodological contributions in this thesis has been made publicly
available. This is in the spirit of open science and to encourage further innovation.

• Chapter 2, https://github.com/Yiru-Jiao/DriverSpaceInference
• Chapter 3, https://github.com/Yiru-Jiao/Conflict-detection-MFaM
• Chapter 4, https://github.com/Yiru-Jiao/UnifiedConflictDetection
• Chapter 5, https://github.com/Yiru-Jiao/GSSM
• Chapter 6, https://github.com/Yiru-Jiao/SPCLT

In addition, supporting tools and data resources developed during research are
open-sourced for public use. This includes two code repositories for efficient computation
of existing surrogate safety measures (SSMs) in the 2D plane, as well as two datasets of
real-world crashes and near-crashes reconstructed from naturalistic driving studies.

• Efficient computation of 2D SSMs
– https://github.com/Yiru-Jiao/Two-Dimensional-Time-To-Collision

– https://github.com/Yiru-Jiao/SSMsOnPlane

• Datasets of real-world crashes and near-crashes
– https://github.com/Yiru-Jiao/Reconstruct100CarNDSData

– https://doi.org/10.15787/VTT1/EFYEJR

By sharing both code and data, I hope to foster research transparency, enable broader
validation of our findings, and accelerate future research on proactive traffic safety.

https://github.com/Yiru-Jiao/DriverSpaceInference
https://github.com/Yiru-Jiao/Conflict-detection-MFaM
https://github.com/Yiru-Jiao/UnifiedConflictDetection
https://github.com/Yiru-Jiao/GSSM
https://github.com/Yiru-Jiao/SPCLT
https://github.com/Yiru-Jiao/Two-Dimensional-Time-To-Collision
https://github.com/Yiru-Jiao/SSMsOnPlane
https://github.com/Yiru-Jiao/Reconstruct100CarNDSData
https://doi.org/10.15787/VTT1/EFYEJR
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1.6 Thesis outline
The remainder of this thesis is organised into six chapters as outlined in Figure 1.4. These
chapters are based on articles that have been published after peer review or are under
peer review, constituting the scientific and methodological contributions in this thesis.
They progress from fundamental concepts to generalisable and scalable solutions, while
maintaining the focus on quantifying collision risk in multi-directional traffic interactions.

Chapter 1 Introduction

Chapter 7 Conclusion

Chapter 2 

Measurement of 

multi-directional traffic 

interactions

Multi-directional interaction 

measurement

Chapter 3 

Adaptive distinction of 

unsafe traffic 

interactions

Chapter 4 

Unified detection of 

traffic conflicts across 

interaction contexts

Context-aware conflict 

detection

Chapter 5 

Label-free risk 

quantification of traffic 

interactions

Chapter 6 

Spatial-temporal 

information preservation 

of traffic interactions

Generalisable and scalable 

risk quantification

Figure 1.4 Outline of the thesis.

In broad terms, Chapter 2 establishes a foundational methodology for quantifying
multi-directional traffic interactions (addressing RQ1). Chapters 3 and 4 then investigate
methods for identifying and evaluating traffic conflicts in various interaction contexts
(addressing RQ2 and RQ3), introducing both improved metrics and theoretical frameworks
for probabilistic traffic conflict detection. Building upon them, Chapter 5 develops
a self-supervised framework for context-aware, generalisable, and scalable collision
risk quantification, and Chapter 6 further explores self-supervised learning of traffic
interactions (addressing RQ4). Finally, Chapter 7 gives the conclusions of this thesis. This
concluding chapter synthesises the major findings, evaluates the extent to which the
research objective is met, discusses the limitations of the current work, suggests directions
for future research, and reflects on potential practical and societal implications of adopting
these new approaches to improve traffic safety.



Chapter 2
Measurement of multi-directional traffic

interactions

Highlights
• A method to infer average multi-directional spacing from trajectory data is proposed.

• A perspective on the relative movement between interacting vehicles is taken.

• Empirical relations between multi-directional spacing and relative speeds are identified.

• The empirical relations are termed as interaction Fundamental Diagrams (iFDs).

• iFDs describe the variation in required road space for general traffic interactions.

Keywords

Urban traffic, vehicle interaction, two-dimensional spacing, Fundamental Diagram

This chapter is based on the journal article: Yiru Jiao, Simeon C. Calvert, Sander van Cranenburgh, and Hans van
Lint. (2023). Inferring vehicle spacing in urban traffic from trajectory data. Transportation Research Part C:
Emerging Technologies, 155, 104289. doi: 10.1016/j.trc.2023.104289
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Abstract

This study presents a new method to infer the average two-dimensional (2D) spacing
between interacting vehicles in urban traffic from trajectory data. In this context, 2D
spacing reflects the amount of road space consumed by pairs of interacting vehicles, and is
related to 2D density at the macroscopic level. Due to complex interaction and conflicts
in urban traffic, the inherent assumptions in traditional traffic flow models, such as
unidirectional flow and homogeneity, are often violated. Such violation challenges direct
measurement of urban vehicle spacing. The proposed method addresses this challenge
by focusing on the relative movement between interacting vehicles and aggregating
the accumulated presence of vehicles in similar scenarios. We apply the method to a
large-scale urban trajectory dataset called pNEUMA, and validate the consistency of the
method through bootstrapping. By applying the method we obtain a new empirical relation
between the average 2D spacing and the relative speeds between interacting vehicles.
There are similarities between this empirical relation with the classical Fundamental
Diagram of traffic flow in terms of shape and interpretation, and so we term it the
“interaction Fundamental Diagram” (iFD). However, there are also key differences. The
iFD does not represent steady-state (homogeneous and stationary) longitudinal behaviour;
it describes the average amount of road space needed for vehicle interactions at different
relative speeds. We believe these iFD relations contribute to understanding vehicle
interaction in urban traffic, and can offer new insights for designing safer and more
efficient urban intersections.

Code availability

https://github.com/Yiru-Jiao/DriverSpaceInference

Data availability

Raw data sources:

• pNEUMA https://open-traffic.epfl.ch

• INTERACTION https://interaction-dataset.com

Resulting data: https://doi.org/10.4121/8cadc255-5fd8-46ab-893a-64b76ca7b7f9

https://github.com/Yiru-Jiao/DriverSpaceInference
https://open-traffic.epfl.ch
https://interaction-dataset.com
https://doi.org/10.4121/8cadc255-5fd8-46ab-893a-64b76ca7b7f9
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2.1 Introduction
Whereas on uninterrupted high-speed and high-volume traffic facilities, vehicle interactions
are dominated by one-dimensional (1D, longitudinal) dynamics (e.g., car-following); in
urban traffic, and particularly at intersections, vehicle interactions are both one and
two-dimensional (2D), involving crossing and conflict negotiation aside from car-following
and lane-changing. Vehicle interactions collectively shape traffic flow, and conversely,
traffic flow influences the interactions between vehicles. Therefore, investigating vehicle
interactions in urban traffic and their collective phenomena is essential to manage traffic
and promote efficient, safe, and sustainable use of the shared road space.

Traffic flow modelling has predominantly focused on 1D driving, with microscopic and
macroscopic models respectively examine individual vehicle interaction and aggregated
traffic patterns [15]. At the microscopic level, the characteristics of individual vehicles
are described, such as vehicle speed, time headway, and distance headway. These
characteristics are aggregated into traffic states at the macroscopic level, i.e., mean speed,
flow, and density [51, 52]. The relations between these macroscopic traffic variables are
extensively studied as Fundamental Diagrams (FDs), which describe how steady-state
traffic states evolve [e.g., 53–56]. The aggregation per se and the relations between
aggregated variables rely on assumptions rooted in fluid dynamics. For instance, vehicles
are assumed to move in a single direction and follow one another without disruption. The
assumptions, however, are often violated in urban traffic. Accordingly, traffic flow models
that account for disruptions such as lane-changes [57, 58] and traffic signals [59–61] have
been developed, and their corresponding FDs offer valuable information on complex
real-world traffic patterns.

A gap persists concerning the assumption of unidirectional interaction, given that
vehicle interaction in urban environments is multi-directional. As depicted in Figure
2.1, vehicles can have various orientations on a 2D plane during their interactions in
urban traffic [17]. Although pedestrian traffic is also considered 2D, it has been studied
within corridors or rings where the flows remain unidirectional or bidirectional [62–65].
Consequently, there is a long-standing need to identify governing quantities that can
describe multi-directional vehicle interaction in urban environments and the resulted traffic
phenomena.

(a) Longitudinal (b) Lateral

Figure 2.1 Real-world examples of vehicle interactions in urban environments. ω is the angle
between moving directions of the interacting vehicles. (a) Vehicle interactions only in the
longitudinal direction. (b) Vehicle interactions involving both longitudinal and lateral directions.
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In this study, we take the perspective of relative movement between interacting
vehicles. This enables mapping the state of each specific interaction onto a consistent
system to quantify the 2D spacing between the involved vehicles. By accumulating all
these mapped 2D spacings, we reconstruct a spatial distribution of the vehicle interaction
states, which allows us to estimate the average spacing that vehicles maintain with one
another at various relative speeds. We first present the method to infer average 2D spacing
between vehicles in urban traffic, and then test the method using the large-scale urban
trajectory dataset pNEUMA [66]. Our results reveal the characteristics of 2D vehicle
spacing in different scenarios, with which we derive urban traffic states and discern their
fundamental relations. We refer to the 2D spacing relations as interaction Fundamental
Diagrams (iFDs), which describe how the necessary space for vehicle interactions
change with their relative speeds. We believe these relations contribute towards a deeper
understanding of vehicle interaction and road space use in urban traffic, which may, for
example, serve traffic engineers in better and safer design of intersection layouts.

The remainder of this paper is organised as follows. Section 2.2 presents the methods
to infer 2D vehicle spacing. Section 2.3 explains our experiments on the urban trajectory
dataset. Section 2.4 presents the experiment results and findings, and Section 2.5 discusses
further on the results. Finally, Section 2.6 recaps the study.

2.2 Methods
Spacing in urban traffic is 2D as the distances drivers maintain from one another can vary
depending on the direction. Two-dimensional spacing thus is equivalent to “driver space”1,
which is extended for drivers from the personal space of pedestrians [71, 72]. Here the
driver space of a vehicle is not a determined area. Instead, we consider it as a spectrum of
spacings, on which the critical spacing is where the driver can feel a rapid change in
discomfort caused by proximity. Numerous studies have observed this transition from
comfort to discomfort when drivers are approached by other vehicles [73–76]. Thereby,
the driver space of a vehicle can be characterised by the less frequent presence of other
vehicles in the surrounding, which are expected to be present more frequently if they do
not cause higher levels of discomfort. Based on such violation against the expectation, we
infer average 2D spacing by estimating the density of the accumulated presence of
surrounding vehicles.

Figure 2.2 illustrates the process proposed in this study to infer average 2D vehicle
spacing. The following paragraphs will briefly explain the process. Then the specific
methods will be introduced in the subsections.

In Subsection 2.2.1, we firstly introduce a coordinate transformation for each pair
of interacting vehicles consisting of an ego vehicle and a surrounding vehicle. The
transformation emphasises the multi-directionality of the relative movement between

1Based on the research of Gibson and Crooks [67], Näätänen and Summala [68], Summala [69], and Bärgman
et al. [70] define a similar concept, “comfort zone”. The comfort zone is an area within which a driver feels
comfortable. Other drivers are unwilling to cross the area without extra motives and will arouse discomfort
when they do cross it. For consistency, we uniformly use “driver space” to refer to this area.
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Figure 2.2 Proposed framework to infer average 2D vehicle spacing from trajectory data. (a)
Coordinate transformation of vehicle pairs in Figure 2.1. (b) Accumulated data samples of
transformed vehicle pairs. (c) Data samples that are conditioned by relative speeds, where the
hollows are driver space. (d) Spacing inference from the conditioned data samples.

interacting vehicles and establishes a normalised reference frame for analysing vehicle
interaction. Consequently, this enables the accumulation of vehicle pairs and consistent
analysis across various scenarios.

With the accumulated samples of vehicle pairs in transformed coordinates, Subsection
2.2.2 utilises driver space as a proxy to measure vehicle spacing. The intrusion into driver
space can cause varying levels of discomfort, and a driver’s response to such discomfort is
manifested by maintaining a naturally comfortable distance from other vehicles. We
interpret this discomfort response as resistance to the proximity of other vehicles, and
parameterise such proximity resistance by adapting the density function of the generalised
Gaussian distribution. Proximity resistance describes the comfort-discomfort transition,
based on which we can quantify the spacing between vehicles in a probabilistic manner.

Subsection 2.2.3 presents an algorithm to approximate proximity resistance by
estimating the density of the accumulated presence of vehicles in the surrounding of an
ego vehicle. The change in proximity resistance with spacing is described as a function,
which is not fixed, but varies in different scenarios. For this reason, we design our method
to be scenario-conditioned with respect to variables such as speed, acceleration, or/and
other traffic situations. As an illustration of this method, we use the relative speed between
interacting vehicles as the basic condition in this study. Ultimately, a series of functions
with different parameters in different scenarios depict the average 2D spacing between
interacting vehicles.

2.2.1 Coordinate transformation
To analyse vehicle spacing more consistently, we establish a new coordinate system
referring to the relative movement of interacting vehicles. For an ego vehicle i and another
vehicle j in the surrounding of i, we transform their global coordinates into a local
coordinate system C(Oi,vij). The origin Oi is located at the position of i, and the y-axis
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points in the direction of vij = vi − vj , the relative velocity of i to j. By doing this, all
pairs of interacting vehicles share a common reference point (i.e., the ego vehicle’s
position) and an aligned orientation (i.e., the direction of the relative velocity of the ego
vehicle to the surrounding vehicle).

Figure 2.3 visually illustrates the transformation, wherein we rotate and translate the
original global coordinate system. We use (x(g), y(g)) to denote the global position of a
vehicle and (x(ij), y(ij)) to denote the local coordinates of the vehicle in C(Oi,vij). The
transformation equation is formulated as

[
x(ij)

y(ij)

]
=

[
cos ρ − sin ρ
sin ρ cos ρ

]([
x(g)

y(g)

]
+

[
a
b

])
, (2.1)

where ρ represents the counterclockwise rotation angle and (a, b)⊤ is the translation
vector of the transformation.
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Figure 2.3 Coordinate transformation. (a) An ego vehicle i and another nearby vehicle j in the
global coordinate system denoted by superscript (g), where Oi and Oj represent their positions, vi

and vj for their velocities, and vij for the relative velocity of i to j. (b) Rotate the global coordinate
system by ρ and translate (a, b)⊤ according to the reference point Oi and the reference orientation
vij . (c) Transformed coordinates in the local coordinate system denoted by superscript (ij).

The transformation parameters are solved as follows by substituting the coordinates in
the global and local coordinate systems at the same position into Equation 2.1. We
use two positions here. One is the position of i, which is (x

(g)
Oi
, y

(g)
Oi

) in the global
coordinate system and (0, 0) in C(Oi,vij). The other is the position of the head of
the relative velocity vector of i to j when its tail is located at Oi. This position is
(x

(g)
Oi

+ x
(g)
vij , y

(g)
Oi

+ y
(g)
vij ) in the global coordinate system and (0, y

(ij)
vij ) in C(Oi,vij),

where y(ij)vij =

√
x
(g)2
vij + y

(g)2
vij . As a result, the transformation parameters between the

global coordinate system and C(Oi,vij) are
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a = −x(g)Oi
,

b = −y(g)Oi
,

cos ρ = y(g)vij
/

√
x
(g)2
vij + y

(g)2
vij ,

sin ρ = x(g)vij
/

√
x
(g)2
vij + y

(g)2
vij .

(2.2)

Given that division by zero is undefined, Equations 2.2 require that (x(g)vij , y
(g)
vij ) ̸= (0, 0),

i.e., vi ̸= vj . This implies that if vehicle i and vehicle j are moving at the same velocity
simultaneously, their relative movement cannot be transformed into a local coordinate
system defined here. Then we disregard such cases as i and j are temporarily stationary
relative to each other.

Finally, we transform the global position of j into C(Oi,vij) as (x
(ij)
Oj

, y
(ij)
Oj

).

Denoting x = x
(ij)
Oj

and y = y
(ij)
Oj

, and together with the mode of the relative velocity

|v| = y
(ij)
vij , this coordinate transformation compresses the information about the relative

position and velocity between vehicle i and vehicle j. For easier notation, we will use v in
place of |v| in the rest of this paper. These three variables (x, y, v) encode two pieces
of information. The first is the position of vehicle j relative to vehicle i. The second
is the moving direction of vehicle i and j, where they move along the y-axis either
towards (y > 0) or away from (y < 0) each other. More specifically, vehicles above the
transformed x-axis are approaching the vehicle at the origin rather than being ahead of it;
similarly, vehicles below the transformed x-axis are leaving it rather than being behind.

In the following sections of this paper, we will use (x, y, v) to refer to the transformed
relative position and relative speed of a pair of vehicles i and j. It must be noted that this
transformation makes the study specifically focus on the relative movement between
vehicles. Readers are reminded that, if not specified, v refers to the relative speed between
interacting vehicles rather than their absolute speeds in this study.

2.2.2 Probabilistic spacing
Spacing is considered probabilistic to account for its variation, and we characterise it
utilising the concept of driver space. Intrusion into driver space causes discomfort, which
does not preclude the spatial intrusion of other vehicles, but motivates a driver to maintain
a distance from others at varying levels [77]. For an ego vehicle i, if another vehicle j is
far outside the driver space of i, little discomfort is caused and the movement of i remains
uninfluenced. In contrast, if vehicle j enters the driver space of i and keeps approaching,
the escalating discomfort will compel the driver of i to move away [69, 78, 79]. We
therefore introduce proximity resistance to interpret the discomfort response and specify
the level of intrusion-caused discomfort. With a value p ∈ (0, 1) denoting proximity
resistance, p→ 0 indicates that no discomfort is caused and p→ 1 indicates extreme
discomfort. In this way, any spacing in a specific scenario corresponds to a level of
proximity resistance, which indicates the potential for causing discomfort.
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Proximity resistance in one-dimensional spacing
We first consider proximity resistance in 1D spacing. The level of intrusion-caused
discomfort has a transition from lower to higher across the the critical spacing where
proximity resistance changes the most rapidly. Therefore, the representation of proximity
resistance should encode how far the critical spacing is and how rapid the discomfort
transition is. To this end, we adapt the density function of the generalised Gaussian
distribution (GGD).

The GGD is a family of symmetric probability densities that generalises the Gaussian
density [80]. Its function is given as α exp(−|x−µ

r |
β), where α is the coefficient making

the integral of the function 1, µ is the centre of symmetry, r is the scale parameter, and β
is the shape parameter [81]. The family includes the density of Laplace distribution when
β = 1 and of Gaussian distribution when β = 2. When β →∞, GGD converges to the
density of a uniform distribution on (µ− r, µ+ r). Thereby, with β ≥ 2, GGD covers a
continuum of densities from the Gaussian distribution to the uniform distribution.

We use s to denote 1D spacing, which is the relative positions of surrounding vehicles
to an ego vehicle. Thereby, the ego vehicle is at the origin and µ = 0. We then present
proximity resistance in 1D spacing as Equation (2.3). Proximity resistance is not a
probability density, so we remove the coefficient α to ensure p ∈ (0, 1).

p(s|r, β) = exp

(
−
∣∣∣s
r

∣∣∣β), (2.3)

where r > 0 and β ≥ 2. As shown in Figure 2.4, the scale parameter r suggests how
far the critical spacing is, and the shape parameter β suggests how fast the discomfort
transition is. This parameterisation captures the variation in proximity resistance at
different relative positions, which characterises probabilistic spacing.

𝑟=1, 𝛽=2

𝑟=1, 𝛽=4

𝑟=2, 𝛽=4

𝑟=2, 𝛽=16

How far is critical spacing

How fast is the discomfort transition

Figure 2.4 Parameters r and β determine the change of proximity resistance in 1D spacing.

Vehicles oriented in different directions may cause different levels of discomfort even
being equally distant. We thus further consider two components for r and β, respectively,
to allow Equation (2.3) to be asymmetric.
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
r =

1 + sgn(s)

2
r+ +

1− sgn(s)

2
r−,

β =
1 + sgn(s)

2
β+ +

1− sgn(s)

2
β−.

(2.4)

Equation (2.4) means that r = r+ and β = β+ when s > 0, and r = r− and β = β−

when s < 0.

Proximity resistance in two-dimensional spacing
Coordinate transformation in Subsection 2.2.1 places the ego vehicle at (0, 0) and the
surrounding vehicle at (x, y), where x and y are independent2 in most cases because
vehicles can take any place relative to the ego vehicle. Then the proximity resistance in 2D
spacing, as shown in Equation (2.5), is an extension of Equation (2.3).

p(x, y|θ) = exp

(
−
∣∣∣∣ xrx
∣∣∣∣βx

−
∣∣∣∣ yry
∣∣∣∣βy
)
, (2.5)

where each of θ = (rx, ry, βx, βy)
⊤ has two components:

θ =
1 + sgn(x)

2
θ+ +

1− sgn(x)

2
θ− for θ = rx, βx,

θ =
1 + sgn(y)

2
θ+ +

1− sgn(y)

2
θ− for θ = ry, βy.

(2.6)

Parameters in Equation (2.5) have realistic explanations. r = {r+x , r−x , r+y , r−y }
determine the positions where p = e−1 in different directions, and β = {β+

x , β
−
x , β

+
y , β

−
y }

determine the rate at which p varies with x > 0, x < 0, y > 0, and y < 0. Hereby, r
control the spacing resulting in higher proximity resistance, and β control the increase
rates of proximity resistance when vehicles are moving in different directions. In this way,
r and β together characterise 2D probabilistic spacing.

Vehicle spacing can be influenced by the movement states of the interacting vehicles,
the traffic situation they are in, as well as the driving preference of their drivers. These
influences are diverse and may be interrelated, making it difficult to integrate them into an
equation as independent variables. In this study, we consider such influences as the
conditions for filtering vehicle pair samples. Therefore, θ vary across conditioning
situations.

2.2.3 Parameter inference
We infer the parameters in Equation (2.5) by estimating the density of accumulated
presence of surrounding vehicles. The infrequent presence of surrounding vehicles reflects
2At some special scenarios such as roundabouts, x and y are correlated but can be transformed into the
Frenet-Serret coordinate system to ensure their independence. In order to focus on the main idea, we do not
delve into those special scenarios in this paper.
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how resistant drivers are to approaching one another. Conversely, the frequent presence of
surrounding vehicles reflects how acceptable this approach is. We refer to the former as
proximity resistance and the latter as proximity tolerance, and they complement to
each other. The density of the accumulated vehicle presence around a vehicle directly
corresponds to proximity tolerance, so we can indirectly infer proximity resistance as the
opposite to it.

In the transformed coordinate system, a pair of vehicles consists of an ego vehicle i at
(xi, yi) = (0, 0) and a surrounding vehicle j at (xj , yj). Denote the proximity resistance
between the drivers of i and j as pij , then the corresponding proximity tolerance is
1− pij . 1− pij can be seen as the relative likelihood of a vehicle passing (xj , yj), which
is in proportion to the density of vehicles accumulatively passing (xj , yj). Given n pairs
of vehicles i and j, the likelihood of the presence of the surrounding vehicles is

L =

n∏
j=1

[1− pij(xj , yj |θ)] . (2.7)

We then infer pij by iteratively estimating θ until they all converge, where β are estimated
given r and r given β.

The estimation of β aims to maximise the likelihood L, which allows for the sparsity
of distant vehicles in data and prevents too slow discomfort transition. As the area covered
by available data is fixed, the more distant the vehicles are, the less they are recorded and
the lower their density. In this case, a purely density-based inference would be biased
towards a slower discomfort transition. Maximising L avoids this bias as vehicles farther
away from the ego vehicle are at high proximity tolerance close to 1, which results in little
effect on L.

The estimation of r should distinguish the critical spacing as the boundaries of driver
space, within which other vehicles infrequently access. Denoting the area where p is close
to 1 as Ap→1, the increase of a r (e.g., r+y ) corresponds to the gradual expansion of Ap→1

along the direction indicated by the r (i.e., the relative velocity direction). Holding other
parameters constant, L undergoes three phases as each r increases. In the first phase, L
increases slightly when almost all the surrounding vehicles are outside Ap→1. In the
second phase, L decreases slowly when some surrounding vehicles are present within
Ap→1. In the third phase, L decreases rapidly when more surrounding vehicles are
erroneously covered by Ap→1. As a result, maximising L leads to smaller Ap→1 and
closer critical spacing to the ego vehicle. Alternatively to maximising L, we estimate each
r by the position at which L decreases from slowly to rapidly. This position is where the
second-order derivative of L with respect to r is smallest (negative), signifying the fastest
change in the decreasing rate of L.

Further practical details need to be considered in the estimation. For computational
convenience, we take the logarithm of L, i.e., the sum of the log-likelihood of vehicle
presence. This is equivalent to L for estimating θ since logarithms are strictly increasing
functions. Equation (2.5) assumes no vehicles passing through the central area of
driver space. However, some vehicles indeed do so. These cases make the estimation
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biased towards overly small r and β to keep their relative likelihood not too close to
zero. To mitigate this bias, we add ϵ = 10−4 to the proximity tolerance, which is thus
1 + ϵ− pij = 1− (pij − ϵ). This decreases the proximity resistance between vehicles
that are extremely close to each other, and increases their relative likelihood. The adjusted
log-likelihood of the presence of n surrounding vehicles is then

ln(L) =
n∑

j=1

ln [1 + ϵ− pij(xj , yj |θ)] . (2.8)

Algorithm 1 summarises the iterative inference of probabilistic spacing. Because the
derivative of ln(L) to one parameter depends on the other parameters, the algorithm is
difficult to solve by hand. We thus use numerical methods for the differentiation and
optimisation in the algorithm. This requires initial values for the parameters (i.e., r0 and
β0). We set r0 to the 0.1th percentiles of the surrounding vehicle positions from near to far
from the ego vehicle. This heuristic setting follows the belief that few vehicles will intrude
into others’ driver space. Then we set β0 to 2 to initiate a moderate discomfort transition.

The inference is achieved when the estimates of r and β, i.e., r̂ and β̂, converge
to either a set of values or several recurring sets of values. β̂ are estimated based on
maximising ln(L), by which we can calculate the estimation confidence according to the
numerical Hessian matrix of ln(L). When the inference converges to recurring sets of
values, the set with the highest confidence for β̂ is taken. In addition, a maximum number
of iterations is set to force a stop.

Algorithm 1: Parameter inference of 2D probabilistic spacing.
Data: x and y under particular conditions
Result: r̂ and β̂ under the particular conditions
begin

Initialise r ← r0 for r = r+x , r
−
x , r

+
y , r

−
y and β ← 2 for

β = β+
x , β

−
x , β

+
y , β

−
y

repeat

r̂ ← argmin
r

∂

∂r

(
∂ln(L)

∂r

)
for r = r+x , r

−
x , r

+
y , r

−
y

β̂ ← argmax
β

ln(L) subjected to β ≥ 2 for β = β+
x , β

−
x , β

+
y , β

−
y

until r̂ and β̂ converge or maximum number of iterations reaches

2.3 Experiments
To demonstrate the proposed method, we applied it on pNEUMA [66], a large-scale urban
trajectory dataset. With a swarm of drones, pNEUMA recorded vehicle traces in a central
business district of Athens, covering an area of 1.3 km2 with over 100 km-lanes of road
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network and around 100 busy intersections. This area was divided into 10 subareas and
each was covered by a drone. Due to limited flight time, the drones recorded 9–15 minutes
per half hour between 8:00 and 11:00 a.m. on October 24th, 29th, 30th, and November 1st,
2018. To compare the results consistently, we use data during the latter three consecutive
days where the trajectories were collected from 8:00 to 10:30 a.m. each day.

2.3.1 Preprocessing
This study pays particular attention to 2D vehicle interaction, therefore, we focused
on trajectories at road intersections in the dataset. As shown in Figure 2.5(a), we
extracted major T-junctions and crossing intersections following the methods proposed
in J. Wang et al. [82] and Cao and Krumm [83]. In total 50 signalised intersections and 19
unsignalised intersections were identified. As 2D vehicle interaction is significantly
reduced by signal control at signalised intersections, our experiments were focused on the
unsignalised intersections. Most of these unsignalised intersections are single-lane and
the recorded trajectories are insufficient to infer driver spaces for each of them, so we
combined all the unsignalised intersections as an aggregated study area.

Unsignalised intersection
Signalised intersection

(a) Identified intersections in the pNEUMA dataset
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Figure 2.5 Map of intersections in the dataset and vehicle sample statistics.

The data preprocessing exists of four steps. First, pedestrians, bicycles, and motorcycles
(all are labelled “Mortorcycle” in the dataset) were excluded as they have very different
movement characteristics from motor vehicles regarding speed and occupied space.
Second, vehicles that never moved were also excluded as they did not interact with any
others. Third, vehicles that had overlapping trajectories with another vehicle (position
distance <0.5 m at every moment) were removed as these are assumed to be data errors or
outliers. Such errors could be caused by the vision algorithm used to track the vehicles.
Fourth, vehicle pairs were sampled at a series of moments 0.2 s apart. Seeing one in the
pair as an ego vehicle and the other as a surrounding vehicle, their position coordinates
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were transformed according to Equations (2.1) and (2.2). The histograms in Figure 2.5(b)
show the distributions of absolute speeds and relative speeds of extracted samples. The
number of samples (n) and the correlation coefficients of transformed sample positions
(ρxy) are also annotated.

2.3.2 Experiment setting
In this study, we use two conditions to specify scenarios. The first is whether the ego
vehicle and the surrounding vehicle are interacting in the longitudinal direction (the ego
vehicle’s heading direction) only or also in the lateral direction (perpendicular to the ego
vehicle’s heading direction). We calculate the angle between the moving directions of the
two vehicles and denote it as ω. If ω < 5◦ or ω > 175◦, they are considered to interact
solely in the longitudinal direction (e.g., car-following and head-on conflict); otherwise,
their interaction is considered to also involve the lateral direction (e.g., lane-changing and
turning). We will refer to the two cases respectively as Longitudinal and Lateral in the
following. Figure 2.1 in Section 2.1 is referred to for some specific examples. The second
condition is the relative speed between the ego vehicle and the surrounding vehicle.
Samples separated by the first condition are sorted according to their relative speeds
and further grouped. The grouping ensures at least 50,000 samples per group while
maintaining the difference in average relative speed between groups at least 0.1 m/s apart.

We obtained 80 Longitudinal scenarios and 95 Lateral scenarios, where in each
scenario an average ego vehicle was abstracted from all vehicle pairs. The inference
of average spacing was performed for each scenario, which estimated series of r̂
and β̂. Among the estimated parameters, r̂ = {r̂+x , r̂−x , r̂+y , r̂−y } indicate the critical
spacing where the transition of intrusion-caused discomfort is the most significant;
β̂ = {β̂+

x , β̂
−
x , β̂

+
y , β̂

−
y } depict the transition buffer from comfort to discomfort.

The values of r̂+y and r̂−y represent critical spacing along the direction of relative
velocity when vehicles are approaching and leaving each other in a given scenario. In
contrast, the values of r̂+x and r̂−x represent spacing along the direction perpendicular to
the relative velocity, which is associated with the shape of the road section that is analysed.
In Longitudinal scenarios, r̂+x and r̂−x correspond to the road widths, whereas in Lateral
scenarios, they can be referred to the space within the intersection. r̂+x and r̂−x can also
indicate whether the samples are evenly distributed on both sides of the y-axis. For
example, if r̂−x > r̂+x , the sample density is significantly lower on the left side of the y-axis
than on the right. To prevent this bias influencing the inference of r̂y , we set an upper limit
of 7 m to r̂x in the experiments. In addition, the inference results were rejected when at
least one of the p-values of β̂ is larger than 0.05, as they are statistically unreliable.

2.4 Results and findings
2.4.1 Critical spacing
Figure 2.6 shows several inference results as examples. Scenarios where the average
relative speed is closest to 0, 2, 4, 6, and 8 m/s are shown as five pairs of coloured scatter
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plots. The left side of each pair shows Longitudinal case and the right side shows Lateral
case. Scatters in these plots refer to vehicle positions in the transformed coordinate system.
They are coloured to indicate the inferred proximity resistance between the surrounding
vehicles and the ego vehicles.
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Figure 2.6 Inference results in various scenarios. The averaged ego vehicles are marked with red
circles at (0, 0). Vehicles surrounding their ego vehicles are shown as scatters and coloured to
indicate the inferred proximity resistance. The contours indicate critical spacing where proximity
resistance is e−1.

Driver spaces are the nearly empty areas with significantly fewer vehicles. These
spaces are readily visible in the scatter plots, and our method properly depicts them. Their
boundaries presented as the contours are the inferred critical spacing. As is seen in Figure
2.6, the critical spacing increases with greater relative speeds in both Longitudinal and
Lateral scenarios. However, it appears to be longer in Longitudinal than in Lateral
scenarios at the same relative speed.
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Figure 2.7 Inferred critical spacing in different scenarios. r̂+x and r̂−x are critical spacing
perpendicular to the relative velocity direction between interacting vehicles; r̂+y and r̂−y are that
along the relative velocity direction between approaching and leaving vehicles, respectively. Two
dotted lines where the respective relative speed is 3 m/s and 6.5 m/s divide each subplot into 3 cases
under lower, medium, and higher relative speeds.

To further see how critical spacing changes in different scenarios, Figure 2.7 displays
the inferred critical spacing r̂ in various relative speeds. Overall, critical spacing expands
along the relative velocity between interacting vehicles. This expansion is not limitless and
eventually reaches a plateau after the relative velocity exceeds a certain threshold.
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At relative speeds below around 3 m/s, the critical spacing along the relative velocity
direction is approximately the same in Longitudinal and Lateral scenarios. However, when
the relative speed is larger than 3 m/s, the critical spacing in Longitudinal scenarios exceeds
that in Lateral scenarios. This exceeding is particularly evident between approaching
vehicles, as opposed to vehicles that are leaving away from each other. A possible
explanation is different interaction strategies available in different scenarios. Specifically,
vehicle interaction in Longitudinal scenarios is limited to adjusting spacing along the
moving direction; while in interaction scenarios involving other directions, vehicles can
make turns and thus require less space.

2.4.2 Consistency evaluation
As is seen in Figure 2.7, the inferred critical spacing do not always expand smoothly.
Particularly at higher relative speeds larger than 6.5 m/s, some r+y and r−y diverge from the
general curve and appear to be outliers. This entails the possibility that the proposed
methods may produce inconsistent or unreliable inferences.

As the ground truth of critical spacing between vehicles is unknown, evaluating the
reliability of the inference is not feasible. However, we can assess its consistency through
bootstrapping. In this study, r and β parameterise proximity resistance change in different
spacing and are considered to depend only on the specific scenario where the analysed
samples lie. Therefore, the distributions of r̂ and β̂ should be identical for any sampling in
the same scenario, which means they are pivotal. In this case, according to Davidson and
MacKinnon [84], the minimum number of bootstrapping iterations is 19 when considering
a significance level of 0.05. We select 5 scenarios with relative speeds over 6.5 m/s
respectively for Longitudinal and Lateral scenarios, and perform bootstrapping with 20
iterations on them. In every iteration for each scenario, we randomly select 85% of the
vehicle samples with replacement, and then apply our method to infer the parameters.

Figure 2.8 displays the bootstrapping results, where two sub-figures correspond to
Longitudinal and Lateral scenarios. In this figure, the estimates of parameters are plotted
as dots. The means of the estimates over different iterations in the same scenario are
plotted as lines, and the standard deviations are plotted as shaded regions. In addition, the
tables at the bottom also numerically show the statistics of bootstrapping results. To read
the figure, the consistency of our inference is higher when the dots are more tightly
distributed, when the shaded regions are narrower, and when the standard deviations are
lower.

These plots and tables show that our method delivers consistent inferences overall.
Notably in cases where the estimates appear to be outliers, such as r̂−y in Longitudinal
scenarios, our method still gives consistent results. Referring back to Figure 2.6, one can
see that the lower half of the Longitudinal scatter plot in the relative speed of 8 m/s
does not present a clear boundary between areas of higher and lower sample densities.
This unclear boundary violates the assumption that vehicles appear significantly more
frequently outside of driver space than inside, and thus challenges the inference of r̂−y as
critical leaving spacing. Therefore, in contrast with potential inconsistencies in the
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Figure 2.8 Consistency evaluation of the proposed method through bootstrapping. In the bottom
table of each sub-plot, v indicate the relative speeds of the selected scenarios; µ and σ indicate
the mean values and standard deviations of bootstrapping estimates in the selected scenarios,
respectively.

inference method, the success in inferring driver space may depend more on the quality of
data and sampling that establish clear boundaries as critical spacing.

2.4.3 Interaction Fundamental Diagram
In this study, we quantify average 2D spacing in urban traffic and its relationship with
relative speeds of interacting vehicles. This allows for deriving urban traffic states and
their relationship, which we term as interaction Fundamental Diagram (iFD).
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The accumulated samples of interacting vehicles are transformed to be in the same
reference system and are conditioned at the same relative speed. As a result, we can define
quasi-density k and quasi-flow q for vehicle interaction, as shown in Equations (2.9). We
calculate k as the inverse of D, where D is the amount of necessary space for interaction
under a certain relative speed v. As a function of v, k represents for interaction density. It
describes space occupancy of vehicle interaction at different relative speeds. A higher
interaction density means more interaction can occur within given road space, while a
lower density means fewer. We then calculate q as the product of k and v, which represents
for interaction rate. This multiplication is feasible due to coordinate transformation, after
which the ego vehicles move uniformly along the y-axis. As also a function of v, q
describes time occupancy of vehicle interaction at different relative speeds. A higher
interaction rate means faster interaction and is related to interaction efficiency.k =

1

D
,

q = kv.
(2.9)

The area of necessary space for vehicle interaction can vary given different levels of
proximity resistance. With a proximity resistance of p∗, the dimensions of necessary
space under a certain scenario can be computed by solving the inverse of Equation (2.5).
Equation (2.10) shows the solution from inferred parameters r̂ and β̂. As noted in
Subsection 2.3.2, r̂ quantify the critical spacing and β̂ quantify the buffer across them.

d(p∗) = r̂(− ln(p∗))1/β̂, (2.10)

where d = {d+x , d−x , d+y , d−y } and correspond to {r̂+x , r̂−x , r̂+y , r̂−y } and
{β̂+

x , β̂
−
x , β̂

+
y , β̂

−
y }. Then the area of necessary interaction space where the

proximity resistance is smaller than p∗ is computed as

D(p∗) = d+y (p
∗)[(d−x (p

∗) + d+x (p
∗)]. (2.11)

Here we do not calculate the space area for vehicles leaving each other (i.e., we ignored
d−y (p

∗)) as vehicles moving away are less restricted by one another.
Figure 2.9 presents the relationships between k, q, and v given different levels of

proximity resistance. The relationships resemble FDs and so we refer to them iFDs. The
blue dashed lines are iFDs at critical spacing (where proximity resistance is e−1), which
mark the boundaries of frequent (less transparent) and infrequent (more transparent)
occurrence of interaction states. Compared to Longitudinal iFDs, Lateral iFDs have higher
interaction densities and interaction rates in various relative speeds, which suggests that
lateral interactions use less road space and are more accommodated than longitudinal
interactions at these unsignalised intersections.

Overall, as relative speeds increase, interaction density decreases; meanwhile,
interaction rate first rises and then falls. In the initial phase of increasing interaction
density, the necessary space for vehicle interaction is reduced. As a result, the limited road
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Figure 2.9 Relationships between quasi-density and quasi-flow defined for urban vehicle interaction
(grey scale may confuse speed and probability). These diagrams are probabilistic at different levels
of proximity resistance, where the surface with varying colours and transparencies was created using
smoothed curves to show the transition more clearly. The more transparent the colour, the higher the
proximity resistance and the less probable vehicles are in that state.

space can accommodate more interaction, leading to an increased interaction rate. Then
in the second phase of rising interaction density, the available road space decreases
faster than the reduction in necessary interaction space. Consequently, the interaction
rate declines due to insufficient road space for vehicle interaction. The highest level of
interaction rate represents the optimal point in the relationship, signifying where vehicle
interaction is most often.

We can observe other interesting phenomena in the diagrams. To different extent in
both Longitudinal and Lateral scenarios, there are noticeable drops in interaction rate for
high relative speeds, with very limited increase in interaction density. This is comparable
to capacity drops in longitudinal traffic flow theory, implying higher variation in driving
behaviour at those particular states [85, 86]. Moreover, the diffusion of interaction states at
different levels of proximity resistance suggests that stochastic spacing is a contributing
factor to the scatters in empirical FDs. This is also consistent with previous studies [e.g.,
87–89].

2.5 Discussion
2.5.1 Impact of intersection layout
In Figures 2.6 and 2.8, r̂+x and r̂−x show very limited variation as relative speeds increase,
and approximately correspond to road widths (around 3 m). As stated in Section 2.3.2, the
values of r̂x are correlated with the infrastructure layout where the trajectory data are
collected. Therefore, the seemingly constant r̂x are potentially related to the fact that
almost all of the unsignalised intersections in the pNEUMA dataset are junctions of
single-lane roads.

To investigate this conjecture further, we applied the same inference to a two-lane
unsignalised intersection called GL in the INTERACTION dataset [90], which was
collected in the U.S. Figure 2.10(a) shows a map of this intersection with the entering lane,
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the exiting lane, and the interior section marked. In addition, when sampling vehicle pairs,
we excluded instances where one vehicle in a pair is in an entering lane while the other
vehicle in the pair is in an exiting lane.
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Figure 2.10 Comparison of critical spacing in different scenarios between the intersection GL in
INTERACTION and the unsignalised intersections in pNEUMA.

The inference results are displayed in Figure 2.10(b) and are compared with the results
from the unsignalised intersections in pNEUMA. As expected, in both Longitudinal and
Lateral scenarios, r̂+x and r̂−x are larger at the intersection GL than at the pNEUMA
intersections. This is particularly evident for r̂+x in Lateral scenarios, which could be a
consequence of two factors. One is the existence of yield lines at the entrances of the
intersection legs, and the other is the busy entering lanes on the right side of vehicles
entering the intersection on the main road.

It is necessary to underline that within the context of our methods, r̂x do not equate
to “lateral spacing” in the sense of the original coordinate system. The coordinate
transformation in Section 2.2.1 alters the view to observe the relative movement between
vehicles, by simply rotating and translating the coordinate reference frame. This makes r̂y
carry 2D information and be updated as vehicle interaction evolves. In Figure 2.10(b), r̂+y
and r̂−y exhibit comparable patterns at the intersection GL and the pNEUMA intersections.
This comparability further supports and validates our methods.

2.5.2 Impact of absolute speed
In this study, the importance of velocity differences between vehicles was emphasised
for understanding 2D vehicle interaction. In light of such emphasis, our coordinate
transformation omits the absolute speed, while it is often considered a crucial factor in
determining vehicle spacing and interaction [91, 92].

To investigate the impact of vehicles’ absolute speeds, we examined how the spacing
between vehicles varies across different absolute speeds of the ego vehicle. Figure 2.11
shows the examination for both Longitudinal and Lateral scenarios under four different
intervals of relative speed.
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Figure 2.11 Comparison of critical spacing across varying absolute speeds of the ego vehicle. For
convenience of comparison, each sub-figure has a plot on the left showing the inferred critical
spacing conditioned by relative speeds. The lines and shadows are mean values and standard
deviations of the cases with varying absolute speeds but at similar relative speed in the main plot on
the right.

In Lateral scenarios, the critical spacing under the same interval of relative speed
remains fairly consistent across absolute speeds ranging from 0 m/s to 10 m/s. This
indicates that the impact of absolute speed is limited for Lateral interaction. While in
Longitudinal scenarios there is a slight trend of increasing critical spacing with higher
absolute speeds, it mainly hovers around the spacing determined by the relative speed. This
observation is reasonable as we are measuring critical spacing, which, when conditioned
by relative speed, is closely related to minimum Time-to-Collision (TTC). In Figure 2.12,
we show two plots adapted from other researchers’ empirical statistics of minimum TTC
during 1D longitudinal interaction. As is clearly seen, minimum TTC is hardly influenced
by absolute speeds under 20 m/s. Indeed, in urban trajectory datasets such as pNEUMA
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meters per second. (a) Adapted from Figure 4 in Montgomery et al. [93]. (b) Adapted from Figure 8
in Kusano et al. [24].
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and INTERACTION, the absolute speeds of vehicles at intersections generally do not
exceed 15 m/s.

We hereby suggest that the relative velocity direction between vehicles serves as a
sufficient reference in the context of 2D spacing in urban traffic. The minimal impact of
absolute speed on 2D critical spacing can be potentially explained from two aspects. First,
interaction between vehicles occurs more in congested urban traffic and their absolute
speeds are significantly slower than on highways. During interaction, the relative velocity
between vehicles plays a more critical role [94, 95]. Second, urban disruptions such as
districts and intersections make the traffic discontinuous. Drivers may therefore be less
sensitive to the changes in absolute speed in urban traffic.

2.6 Conclusion
In this study, we propose a method to infer average 2D spacing between vehicles from
urban trajectory data. Our method is built upon interactions of vehicle pairs. We first
transform the global coordinates of vehicle pairs into local coordinate systems based on
their relative movement during interaction. The coordinate transformation establishes a
normalised reference system for consistent analysis. We then accumulate all vehicle pairs
together, and by estimating their spatial distribution, we infer the average 2D spacing
between interacting vehicles at various relative speeds. Experiments on real-world urban
trajectory data demonstrate that the inference results are consistent and behaviourally
intuitive. Our inference enables the derivation of urban traffic states from the perspective
of relative movement between interacting vehicles. Further, the relations between the
derived traffic states are examined as interaction Fundamental Diagrams (iFDs), which
describe the average amount of necessary road space for vehicle interactions at different
relative speeds. Thereby, this study provides new methods and findings about vehicle
interaction and traffic state estimation in cities.

Measuring 2D vehicle spacing through a driver space lens has two methodological
limitations. First, the effectiveness of spacing inference is restricted by data. Driver space
is delineated from the accumulated presence of vehicles. When the vehicle samples are
inadequate to form an intuitively proper driver space, the spacing between vehicles may
not be inferred. Second, the inferred spacing is a result of response mixture. Particularly in
Lateral scenarios, the inference mixes ego vehicle driver’s response and that of surrounding
vehicle drivers. By setting the condition of static surrounding vehicles, spacing can be
inferred as merely a result of discomfort response by the ego vehicle driver. Nevertheless,
further research is needed to investigate this response mixture.

This study lays a methodological foundation for future research in the field of urban
traffic analysis. Various conditions can be used to specify scenarios of interest in order to
investigate urban traffic variations more thoroughly. For example, traffic states and
iFDs may be compared across interconnected urban intersections to evaluate their
service levels. Additionally, comparisons between different cities and in different time
periods are also valuable for urban traffic management. Given adequate data, it would be
possible to analyse average spacing between vehicles during distinct interactions, such as
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car-following, heading-on encounters, lane-changing, and turning. Such analysis will
enhance our understanding about vehicle interaction in urban environments, and can
contribute to improving traffic efficiency and reducing congestion at intersections.
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Adaptive boundary between safe and

unsafe traffic interactions

Highlights
• Collision warning involves a trade-off between missed and false alarms.

• Probabilities of missed and false alarms are estimated from spacing distributions.

• Critical spacing is optimised to minimise missed and false alarms.

• Validation on synthetic and real-world conflicts confirms superior performance.

• Collision warning can be adaptive in varying traffic contexts and driver preferences.
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Abstract

Safety is the cornerstone of L2+ autonomous driving and one of the fundamental tasks is
forward collision warning that detects potential rear-end collisions. Potential collisions are
also known as conflicts, which have long been indicated using Time-to-Collision (TTC)
with a critical threshold to distinguish safe and unsafe situations. Such indication, however,
focuses on a single scenario and cannot cope with dynamic traffic environments. For
example, TTC-based crash warning frequently misses potential collisions in congested
traffic, and issues false alarms during lane-changing or parking. Aiming to minimise
missed and false alarms in conflict detection, this study proposes a more reliable approach
based on vehicle spacing patterns. To test this approach, we use both synthetic and
real-world conflict data. Our experiments show that the proposed approach outperforms
single-threshold TTC unless conflicts happened in the exact way that TTC is defined,
which is rarely true. When conflicts are heterogeneous and when the information of
conflict situation is incompletely known, as is the case with real-world conflicts, our
approach can achieve less missed and false detection. This study offers a new perspective
for conflict detection, and also a general framework allowing for further elaboration to
minimise missed and false alarms. Less missed alarms will contribute to fewer accidents,
meanwhile, fewer false alarms will promote people’s trust in collision avoidance systems.
We thus expect this study to contribute to safer and more trustworthy autonomous driving.

Code availability

https://github.com/Yiru-Jiao/Conflict-detection-MFaM

Data availability

Raw data sources:

• CitySim https://github.com/UCF-SST-Lab/UCF-SST-CitySim1-Dataset

• 100-Car Data https://doi.org/10.15787/VTT1/CEU6RB

Resulting data: https://doi.org/10.4121/252a79e7-d9ff-4181-a9e4-842ea7845a77

https://github.com/Yiru-Jiao/Conflict-detection-MFaM
https://github.com/UCF-SST-Lab/UCF-SST-CitySim1-Dataset
https://doi.org/10.15787/VTT1/CEU6RB
https://doi.org/10.4121/252a79e7-d9ff-4181-a9e4-842ea7845a77
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3.1 Introduction
The common concern of driving safety is one of the imperative aspects in the development
of Advanced Driving Assistance Systems (ADAS). To prevent accidents and mitigate
crash severity, collision avoidance systems (CAS) play a critical role. In general, CAS
encompasses two proactive components: forward collision warning (FCW) which alerts
drivers to imminent collisions, and automatic emergency braking (AEB) which initiates
corrective actions such as braking or steering when the driver fails to respond timely. The
effectiveness of both FCW and AEB hinges on the accurate detection of conflicting
vehicular interactions, which potentially entail collisions.

Conflict detection leverages data collected from various sensors such as radar, lidar,
and cameras. In the past two decades, real-time road user detection and tracking have been
the predominant challenge in CAS [96], and substantial research efforts have been devoted
to this task [97–99]. Along with the rapidly evolving advances in computer vision,
constant improvements have been made on object detection and tracking [100, 101].
Nowadays, these techniques are extensively employed in current intelligent cars.

With increasingly accurate localisation of other road users, forward conflicts can be
indicated using the surrogate safety measure, Time-to-Collision (TTC). TTC is one of
the most effective and broadly used indicators for rear-end collisions [102–105]. It
estimates how much time remains until a collision between two vehicles following each
other [8, 21]. As an continuous variable, TTC has been used to assess pedestrian-vehicle
interaction risk [106, 107], vehicular collision risk [39, 108, 109], and safe autonomous
driving [110, 111]. When applied to collision warning, TTC needs to be discretised with
critical thresholds in order to distinguish un(safe) situations. More specifically, a TTC
value shorter than the critical threshold indicates high enough risk of a collision. Such a
threshold determines when CAS should issue emergency warnings and intervene if the
driver does not take action [112].

While threshold-based detection is straightforward and computationally efficient, it
often falls short in dealing with dynamic traffic environments and more complex driving
interactions [113]. For example, when vehicles maintain similar speeds in relatively dense
traffic, the TTC between them is very large and suggests a low risk of collision. There then
may be missed alarms, as traffic fluctuations can propagate and pose unexpected hazards.
For another example during lane-changes, vehicles may exhibit short TTC values that
indicate a high risk of crash. However, such alarms can be false as the drivers of the
interacting vehicles often anticipate each others’ actions and would not perceive an
imminent threat. As such, threshold-based conflict detection can yield inconsistent
reliability across different driving conditions.

Reliable conflict detection requires minimising missed and false alarms, which remains
a challenge. According to an analysis of the consumer complaints about safety-relevant
ADAS failures [41], more than 30% of complaints are about AEB and FCW, and over 75%
of these complaints are about missed and false alarms. Missed alarms overlook dangerous
scenarios and can preclude intervention opportunities, while false alarms might trigger
distracting or even disruptive driver responses [114, 115]. In addition, many studies have
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found that false alarms may diminish drivers’ trust and compliance with the assistance
systems [116–118]. Frequent incorrect alarms violate drivers’ expectations about system
warnings, and hence undermine their behavioral adaptation to ADAS.

Therefore, there is an increasing need for a more reliable method to detect conflicts
and prevent collisions. In this paper, we provide a new approach to minimising missed and
false detection of conflicts. With preliminary experiments, we will demonstrate that this
method is characteristic of

• data-driven detection based on vehicle spacing patterns;
• adjustable balance between missed and false alarms;
• adaptive-tuning to varying traffic scenarios and driver preferences.

3.2 Methods
3.2.1 Indication of conflicts
An interaction between two vehicles can be indicated as safe or unsafe based on the
information gathered about this scenario. An unsafe interaction is a conflict1. For a
scenario at time t with a vehicle i and another vehicle j, a set of variables can describe this
scenario and be denoted by Xt

ij = {xt
i,x

t
j ,x

t
E}. Here xt

i and xt
j respectively encapsulate

the motion of vehicles i and j, and xt
E is about the physical environment such as weather

and road conditions. We can process the information Xt
ij as represented in Equation (3.1):

Xt
ij = {stij , θtij}, (3.1)

where stij is the spacing between vehicles i and j, and θtij encodes the conflict situation
where this scenario occur. Generally, a smaller value of stij suggests a higher likelihood
that vehicles i and j are in a conflict and a collision could happen. A critical spacing s∗ is
then required to determine whether vehicles i and j are close enough to be considered as a
conflict. As formulated in Equation (3.2), C(Xt

ij) indicates the scenario Xt
ij as a conflict

(abbreviated as c) or a non-conflict (nc) by comparing stij and s∗, where s∗ depends on the
specific situation captured by θtij .

C(Xt
ij) = C(stij , s

∗|θtij) =

{
c, if stij ≤ s∗(θtij),
nc, otherwise.

(3.2)

Existing conflict indicators (of which most are surrogate safety measures) can all fit in
this expression. For example, TTC is typically calculated by assuming no change in
movement of the interacting vehicles, i.e., the drivers are unable to react in time. This
assumption considers the relative speed between vehicles as the only condition so that
θtij = ∆vtij . In this case, given a threshold TTC∗, the critical spacing s∗ = ∆vtijTTC∗.
Time headway (THW) is another widely used conflict indicator [102]. Let vehicle j follow
vehicle i, THWt

ij = stij/v
t
j thus θtij = vtj . Then the speed of the following vehicle j

1Here we consider car-following and thus one-to-one interaction. Multiple vehicles can be considered in other
interaction scenarios
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becomes the condition considered. Given a threshold THW∗, equivalently, the critical
spacing is vtjTHW∗.

3.2.2 Probability of missed and false alarms
Under a specific interaction situation θ, conflict detection is a binary classification based
on vehicle spacing s and a critical threshold s∗. The probability distributions of spacing s
respectively of conflicts and non-conflicts may overlap, as illustrated in Fig. 3.1. Therefore,
determining the critical spacing s∗ involves a trade-off between missed and false alarms.
Missed alarms misclassify unsafe scenarios as safe (false negatives) and false alarms
misclassify safe scenarios as unsafe (false positives). Generally, smaller s∗ leads to fewer
false alarms and more missed alarms. In contrast, larger s∗ reduces missed alarms but
increases false alarms.

s (m)

s ∗

Conflict spacing Non-conflict spacing

True positives

True negatives

I

I

False positives 
= false alarms

False negatives 
= missed alarms

I

I

Figure 3.1 Illustration of the trade-off between missed and false alarms.

Considering the spacing between two vehicles as a random variable S, we can estimate
the probability of missed alarms and false alarms when considering a spacing s as the
critical threshold. As presented in Equations (3.3), PMA(s) denotes the conditional
probability of missed alarms (false negatives) and PFA(s) denotes the conditional
probability of false alarms (false positives). In this context of conflict indication, a positive
means S ≤ s and a negative means S > s; a true event is a conflict (c) and a false event is
a non-conflict (nc). {

PMA(s) = P (S > s|c)
PFA(s) = P (S ≤ s|nc)

(3.3)

Given p(A|B) = p(AB)/p(B) in Bayes’ theorem and p(AB̄) = p(A)− p(AB) in
set theory, we transform PMA(s) into Equation (3.4) and PFA(s) into Equation (3.5),
where smax is a large enough value of spacing and will be specified in Section 3.2.4.

PMA(s) = P (S ≤ smax|c)− P (S ≤ s|c) (3.4)

PFA(s) =
P (S ≤ s, nc)

P (S ≤ smax, nc)

=
P (S ≤ s)− P (S ≤ s|c)p(c)

P (S ≤ smax)− P (S ≤ smax|c)p(c)

(3.5)
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Equations (3.4) and (3.5) include two cumulative probabilities, which can be estimated
from data. One is of S and we denote its probability density function as f(x) in Equation
3.6. The other is of S in conflict, and we denote its probability density function as g(x) in
Equation 3.6. 

f(x) =
d

dx
P (S ≤ x)

g(x) =
d

dx
P (S ≤ x|c)

(3.6)

Summarising these derivations, when using s as the critical spacing to distinguish safe
and unsafe scenarios, the probability of missed and false alarms are computed according to
Equation (3.7). 

PMA(s) =

∫ smax

s

g(x)dx,

PFA(s) =

∫ s

0
f(x)dx− k

∫ s

0
g(x)dx∫ smax

0
f(x)dx− k

∫ smax

0
g(x)dx

,

(3.7)

where k = p(c) can be counted as the conflict frequency.

3.2.3 Spacing patterns between vehicles
Computing PMA(s) and PFA(s) needs the two spacing distributions f(x) and g(x). In
this study, we use Gaussian kernel density estimation (KDE)2 to give a preliminary
demonstration. For a certain interaction situation θ, let s be the set of stij , of which the
corresponding θtij ∈ θ; we then denote the subset of s in conflict by sc. To estimate f(x),
we apply Gaussian KDE to the samples s1, s2, . . . , sn in s. Similarly, to estimate g(x),
we apply Gaussian KDE to sc.

3.2.4 Minimising missed and false alarms
Based on the estimated probabilities of missed alarms and false alarms, we can optimise a
critical spacing as in Equation (3.8). The parameter α is the weight on minimising missed
alarms and 1− α on false alarms. This makes the optimisation weigh between less missed
alarms or less false alarms. As a result, a reliable critical spacing s∗ should minimise the
balanced probability of false negatives and false positives. We call this method missed and
false alarm minimisation, which can be abbreviated as MFaM.

s∗ = argmin
0≤s≤smax

αPMA(s) + (1− α)PFA(s) (3.8)

Fig. 3.2 gives an example of applying MFaM, where PMA(s) and PFA(s) are
estimated based on real spacing samples. As s increases, the probability of missed
alarms decreases and the probability of false alarms increases. Then various s∗(θ) can be
obtained by minimising the weighted sum of PMA(s) and PFA(s) given different α.
2We applied the function “gaussian_kde” from the python library “scipy” with default arguments.
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Figure 3.2 An example of minimising missed and false alarm probability.

A proper value for smax is necessary in the Equations (3.7) and (3.8). In Equation
(3.7), smax determines the range within which PMA(s) and PFA(s) are normalised to the
interval [0,1]. In Equation (3.8), smax sets the searching range for s∗. Although smax

approaches∞ in theory, a range is important to facilitate computation in practice. In this
study, we take the maximum between two values, as shown in Equation (3.9).

smax = max{max sc, argmax
s

f(s)} (3.9)

The first value in Equation (3.9) is the maximum of conflict spacing sc. This ensures
that all the occurred conflicts are considered. The second value is the most probable
spacing in s. The spacing maintained between vehicles is based on drivers’ perception and
preferences. Therefore, we assume that the most frequently maintained spacing is safe
enough for most drivers.

3.3 Experiments
This study introduces a new approach, MFaM, aiming for more reliable conflict detection.
To demonstrate this approach, we conduct experiments with both synthetic conflicts and
real-world conflicts.

3.3.1 Synthetic conflicts
We used a subset called Freeway-B of the CitySim dataset [119] to generate synthetic
conflicts. Freeway-B comprises trajectories collected on a 725-m segment of a 6-lane road
(three lanes per direction). The movements of 6,555 vehicles in a duration of 0.57 hours
were recorded at a frequency of 30 Hz. The average flow was approximately 1,917
veh/hour/lane. This is indicative of congested traffic that is more likely to yield conflicts
than fee-following traffic. In total 3,082 car-following pairs were extracted from the
dataset.

Existing studies in conflict detection often assume conflicts as when TTC values falling
below a critical threshold, to name a few, see C. Yuan et al. [120], Hu et al. [121] and Ding
et al. [122]. However, relying solely on relative speed (as assumed by TTC) to determine
whether a conflict occurs is inadequate, especially when the absolute speed is slow. In
this paper, we define three types of conflicts for a more comprehensive comparison to
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demonstrate our approach. As outlined in Table 3.1, we let type I and type II conflicts
be conditioned by relative speed only, but additionally consider the absolute speed of
following vehicles for type III conflicts. For type I conflicts, we set a uniform threshold to
distinguish unsafe scenarios homogeneously; while we use various thresholds for defining
type II and type III conflicts heterogeneously.

Table 3.1 Conflict determination for test experiments

Conflict type Conditions (θ) Threshold (m)
Relative speed (m/s) Follower speed (m/s)

I ∆v > 0 s ≤ 3∆v

II
∆v > 5 s ≤ 2.5∆v
2 < ∆v ≤ 5 s ≤ 3∆v
0 < ∆v ≤ 2 s ≤ 3.5∆v

III

∆v > 5 s < 2.5∆v

2 < ∆v ≤ 5
v > 25 s ≤ 3.5∆v
10 < v ≤ 25 s ≤ 3∆v
v ≤ 10 s ≤ 2.5∆v

0 < ∆v ≤ 2
v > 5 s ≤ 0.5v
2 < v ≤ 5 s ≤ 0.3v
1 < v ≤ 2 s ≤ 0.6

3.3.2 Real-world conflicts
For real-world conflict data, we reconstructed trajectories from the 100-Car Naturalistic
Driving Study’s time-series data [123]. The data was collected during an instrumented-
vehicle study conducted in the Northern Virginia / Washington, D.C. area in early
2000s [124]. The instrumentation was designed to be unobtrusive, study participants were
given no special instructions, and experimenters were not present.

From the data collection, an event database was compiled consisting of 68 crashes and
760 near-crashes which were manually reviewed and annotated. With the time-series
profile for each event, containing radar and accelerometer data spanning 30s before
the event and 10s after the event, we reconstructed bird’s eye view trajectories for the
vehicles involved in these events. Not all of the events can be reconstructed due to the
missing values, inaccuracy of sensing, and the lack of a ground truth; matching the
conflicting vehicle among the detected vehicles in each event is neither trivial. Eventually,
we obtained 219 car-following near-crashes of which vehicle trajectories are properly
reconstructed and conflicting vehicles are matched.

With the two conflict datasets, we apply MFaM under varying weights for missed and
false alarms, and then compare the detection results with those obtained using TTC with a
range of critical thresholds. The next section will present and discuss the results.
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3.4 Results and discussion
Our experiments assume that the only known information of conflict situation θ is relative
speed. This aligns with the assumption of TTC-based detection. By doing so, different
synthetic conflict types allows for comparisons under different levels of information
completeness and conflict heterogeneity. The detection of type I conflicts represents the
detection of homogeneous conflicts with complete information of conflict situation; the
detection of type II conflicts then represents that of heterogeneous conflicts with complete
information of conflict situation; and the detection of type III conflicts represents the cases
where incomplete information is known and the conflicts are heterogeneous. From type I
to type III, these synthetic conflicts were designed to simulate more realistic and complex
conflicts. At the end, we will demonstrate the detection of real-world conflicts.

3.4.1 Detection of synthetic conflicts
Fig. 3.3 shows the detection of type I conflicts using TTC and MFaM. A total number of
21,885 type I conflict moments are defined utilising a uniform TTC* (critical threshold of
TTC) of 3 seconds. This criterion makes the conflict situation θ include solely the relative
speed between a vehicle and its preceding vehicle, which is completely considered in
conflict detection. With increasing values of TTC* and the weight assigned for missed
alarms (α), there are fewer missed alarms and more false alarms. Remarkably, both missed
alarms and false alarms reach 0% when TTC* is precisely 3 seconds. In contrast, MFaM
does not have such an optimal point. When the weight for missed alarms is larger than 0.2,
there are very few missed alarms and the rate of false alarms is also low.

The detection of type II conflicts, as shown in Fig. 3.4, shows similar patterns as of
detecting type I conflicts. The 26,912 conflict moments are also conditioned by relative
speed only, however, are defined using varied critical thresholds. For these heterogeneous
conflicts, implementing MFaM leads to a very similar tendency of increasing false alarms
while reducing missed alarms as observed in type I conflict detection. In contrast, when
using TTC, both trends of more false alarms and fewer missed alarms with increasing
TTC* are slower than in type I conflict detection. Furthermore, there is no longer an
optimal TTC* where both missed alarms and false alarms reach 0%.

The challenge of reliable conflict detection is intensified with the 34,203 type III
conflict moments, as displayed in Fig. 3.5. The detection is characterised by conflict
heterogeneity and incomplete information on conflict situation. Regardless of the
magnitude of TTC*, more than 69.36% conflict moments are missed if using TTC.
Conversely, MFaM manages to detect nearly all (99.69%) conflict moments, although this
is at the expense of a heightened rate of false alarms.

3.4.2 Trade-off between missed and false alarms
Observing the detection results of these three types of conflicts, there exists an inherent
trade-off between missed alarms and false alarms. This trade-off is particularly significant
when the conflict situation are incompletely known. Fig. 3.6 illustrates the trade-off curves
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for detecting the three types of synthetic conflicts, where optimal performance is indicated
by the proximity to the origin (0%, 0%). Next, we will first analyse the effectiveness of
MFaM across homogeneous (type I) and heterogeneous (type II) conflicts. Then we will
compare its performance when the information of conflict situation is completely known
(type II) or only partially known (type III).
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Figure 3.6 Trade-off between miss rate and false rate in conflict detection.

Homogeneous vs. heterogeneous conflicts
Both the detection of type I and type II conflicts have complete information on conflict
situation available. Comparing the sub-figures of type I and type II in Fig. 3.6, it is evident
that MFaM demonstrates robust effectiveness across homogeneous and heterogeneous
conflicts, while TTC does not. For homogeneous conflicts (type I), TTC can ascertain the
precise critical threshold, thereby achieving (0, 0) rates of missed and false alarms. In
contrast, heterogeneous conflicts (type II) preclude the identification of a single critical
threshold applicable to TTC. Conflicts, in reality, are heterogeneous due to factors such as
dynamic traffic environments and diverse human driving styles. For this reason, robust
detection of conflicts requires managing the heterogeneity of conflicts.

Complete vs. incomplete information
While both type II and III conflicts are heterogeneous, the detection of type II conflicts
considers complete information and the detection of type III conflicts operates with only
partial information of conflict situation. In the sub-figure of detecting type II conflicts in
Fig. 3.6, MFaM can reach a commendable balance of low missed and false alarms. This
outperforms TTC, which has comparable performance to MFaM only when the miss rate
is around 15%. In the sub-figure of type III conflict detection where the information
is incompletely known, MFaM’s curve consistently outperforms TTC. Nevertheless,
neither TTC nor MFaM attains low rates of missed and false alarms due to information
insufficiency.

3.4.3 Detection of real-world conflicts
As presented in Fig. 3.7, the detection results of the real-world conflicts in 100-Car data
resembles the detection of type III synthetic conflicts. Around 41.28% conflict moments
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cannot be detected if using TTC. In contrast, MFaM can detect around 98.80% of them,
but still, along with a high rate of false alarms. The trade-off curves of this real-world
conflict detection, at the right of Fig. 3.7, also show similar trends as the detection of type
III synthetic conflicts: MFaM consistently outperforms TTC.
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Figure 3.7 Real-world conflict detection using TTC and MFaM.

Real-world conflicts are heterogeneous and the information on conflict situation in
detection is always imperfect, which, however, significantly influences the detection
effectiveness. Despite the lack of information, MFaM can detect the highest possible
number of actual conflicts at the expense of an increased rate of false alarms. To reduce
false alarms while preserving minimised missed alarms, it is important to include
multi-source information for conflict detection in future studies.

3.5 Conclusion
This study presents a new approach to more reliable conflict detection, which minimises
the estimated probabilities of missed and false detection based on vehicle spacing patterns.
We abbreviate this method as MFaM representing Missed and False alarm Minimisation.
Through comparative experiments of applying MFaM and TTC on both synthetic and
real-world conflicts, hereby we summarise the main features:

• MFaM secures a better balance between missed and false alarms compared to TTC
in detecting heterogeneous conflicts, both the synthetic and real-world ones;

• MFaM surpasses TTC in accurately identifying true conflicts, especially when the
information of conflict situation is incomplete;

• MFaM is flexible to be extended given various vehicle spacing patterns. For
example, it can be used to develop user-adaptive collision warning given that drivers
perceive different levels of collision risk and react differently to automatic warnings.
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Beyond the approach itself, the importance of the information considered in conflict
detection is particularly notable. If given limited information of conflict situation, we
argue that there is a trade-off curve between missed and false alarms that constrain any
algorithms for conflict detection. Nevertheless, this requires further exploration. Our
future research will include utilising more effective information of conflict situation and
developing adaptive algorithms that can account for varying response patterns of drivers.
These developments will enhance the reliability of ADAS collision warning, contributing
to safer and more trustworthy autonomous driving.
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Unified detection of potential collisions

across interaction contexts

Highlights
• Conflicts are modelled as context-dependent extreme events in normal interactions.

• Unified framework enables consistent conflict detection across traffic environments.

• Statistical learning enables data-driven and comprehensive analysis of conflicts.

• The unified approach detects conflicts at least as well as any existing metrics.

• This approach supports scalable and reliable traffic safety research in the future.
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precision. The validity of the methods, experimental results, and conclusions remain unaffected.
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Abstract

Traffic conflict detection is essential for proactive road safety by identifying potential
collisions before they occur. Existing methods rely on surrogate safety measures tailored
to specific interactions (e.g., car-following, side-swiping, or path-crossing) and require
varying thresholds in different traffic conditions. This variation leads to inconsistencies and
limited adaptability of conflict detection in evolving traffic environments, particularly as
the integration of autonomous driving systems adds complexity. Consequently, there is an
increasing need for consistent detection of traffic conflicts across interaction contexts. To
address this need, we propose a unified probabilistic approach in this study. The proposed
approach establishes a unified framework of traffic conflict detection, where traffic
conflicts are formulated as context-dependent extreme events of road user interactions.
The detection of conflicts is then decomposed into a series of statistical learning tasks:
representing interaction contexts, inferring proximity distributions, and assessing extreme
collision risk. The unified formulation accommodates diverse hypotheses of traffic
conflicts and the learning tasks enable data-driven analysis of factors such as motion
states of road users, environment conditions, and participant characteristics. Jointly, this
approach supports consistent and comprehensive evaluation of the collision risk emerging
in road user interactions. We demonstrate the proposed approach by experiments using
real-world trajectory data. A unified metric for indicating conflicts is first trained with
lane-change interactions on German highways, and then compared with existing metrics
using near-crash events from the U.S. 100-Car Naturalistic Driving Study. Our results
show that the unified metric provides effective collision warnings, generalises across
distinct datasets and traffic environments, covers a broad range of conflict types, and
captures a long-tailed distribution of conflict intensity. In summary, this study provides an
explainable and generalisable approach that enables traffic conflict detection across varying
interaction contexts. The findings highlight its potential to enhance the safety assessment
of traffic infrastructures and policies, improve collision warning systems for autonomous
driving, and deepen the understanding of road user behaviour in safety-critical interactions.

Code availability

https://github.com/Yiru-Jiao/UnifiedConflictDetection Dynamic visualisations
of 100-Car near-crashes are in ./Data/DynamicFigures/ProbabilityEstimation/gifs/; of
highD lane-changing conflicts are in ./Data/DynamicFigures/IntensityEvaluation/gifs/.

Data availability

Raw data sources:

• highD https://levelxdata.com/highd-dataset

• 100-Car Data https://doi.org/10.15787/VTT1/CEU6RB

Resulting data: https://doi.org/10.4121/06415947-2b9b-4435-833e-e513ae71a6ed

https://github.com/Yiru-Jiao/UnifiedConflictDetection
https://github.com/Yiru-Jiao/UnifiedConflictDetection/tree/main/Data/DynamicFigures/ProbabilityEstimation/gifs
https://github.com/Yiru-Jiao/UnifiedConflictDetection/tree/main/Data/DynamicFigures/IntensityEvaluation/gifs
https://levelxdata.com/highd-dataset
https://doi.org/10.15787/VTT1/CEU6RB
https://doi.org/10.4121/06415947-2b9b-4435-833e-e513ae71a6ed
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4.1 Introduction
Collision avoidance and accident prevention are key elements in efforts to improve traffic
safety [125, 126]. Motivated by proactive prevention of accidents and not waiting for
collisions to happen, Surrogate Measures of Safety were proposed as surrogates of real
collisions for safety evaluation and improvement. Over the past decades, traffic conflicts
have become one of the most comprehensive and prominent surrogates [19, 20]. A traffic
conflict is defined as “an observable situation in which two or more road users approach
each other in space and time to such an extent that there is a risk of collision if their
movements remain unchanged” [13]. Under this definition, every conflict is a potential
collision; and every collision is a conflict until the moment when it becomes unavoidable.
Despite the relative rareness when compared with safe daily interactions, successfully
resolved conflicts that do not end in collisions offer opportunities to explore the emergence
and resolution of collision risk [20]. This has been widely recognised in the traffic safety
community, and is being adopted in emerging technologies such as driving assistance and
autonomous driving.

Conflicts cannot always be directly measured due to the unclear boundary between
safe and unsafe interactions, thus conflict detection often relies on surrogate metrics.
These metrics are called “conflict/safety indicators” in the field of traffic safety [102]
or “criticality metrics” in the field of autonomous driving [127]. This difference in
terminology implies different focuses on the scale of their respective research objective.
Traffic safety studies concentrate more on reasoning about the causes of collisions and
reducing accidents in general; while autonomous driving studies aim to ensure safe
interactions between automated vehicles and other road users [128]. As a result, conflict
indicators are predominantly used for identifying contributing factors of collisions [129,
130] and evaluating the safety of transportation infrastructure, a traffic signal system, or a
specific type of interaction [23, 131, 132]. In contrast, criticality metrics are more used
for predicting trajectories of other road users [133], developing autonomous driving
strategies [34], and assessing individual collision risk [44, 134, 135]. In this paper, we use
surrogate metrics of conflicts to uniformly refer to both conflict/safety indicators and
criticality metrics.

A variety of surrogate metrics of conflicts have been developed for different types of
interactions. For instance, Deceleration Rate to Avoid Collision [DRAC, 136] and its
variants are primarily targeted at rear-end conflicts. Time-To-Collision [TTC, 8, 21] along
with its variants can cover both rear-end and side-swipe conflicts. Time advantage [23],
also known as predicted Post-Encroachment-Time (PET, [22]), is specifically tailored for
path-crossing conflicts. In addition, composite indices are designed by integrating multiple
metrics to deal with more complicated conflicts such as those during lane changes [137,
138]. Many summaries [to name a few, 11, 105, 113, 139, 140] are available for an
overview of these metrics, and new metrics are being actively proposed for interactions in
a two-dimensional plane [18, 141] and in traffic oscillations [29, 142].

The diversity of these metrics entails inconsistency as collision risk is heterogeneous in
different traffic conditions, between different vehicles, and is subject to changes in road
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user behaviour [126, 143]. Some experiments show that the perception of critical TTC
can vary among drivers [24] and in different traffic environments [25, 26, 140]. For
example, a TTC of 3 seconds could be dangerous for vehicles rushing on highways,
but not necessarily for vehicles making a cooperative lane-change, nor for vehicles
decelerating to approach an urban intersection. Similarly, a 2-second PET could be
accident-prone for cars crossing their paths at an intersection, but is not uncommon for
cyclists [27]. In addition, with the increasing prevalence of driving assistance systems and
electric vehicles, behavioural changes in interaction may gradually influence people’s
perception of collision risk [144, 145].

Increasing efforts are devoted to overcoming these inconsistencies. For example, there
is a growing trend towards combining multiple metrics [e.g., 29–31], particularly by
applying deep learning methods [32, 33]. Such a combination builds understanding from
existing metrics, and thus remains constrained by their underlying assumptions of conflicts.
Many studies have also looked at determining robust thresholds to distinguish unsafe
conflicts from safe interactions. If there is ground truth, the threshold should optimise the
accuracy of conflict identification for, e.g., issuing crash warnings [34]. When no label is
available, the threshold selection often follows heuristic rules [35–37], or is guided by the
extreme value theory modelling to satisfy certain hypotheses [38–40].

However, as the development of autonomous driving rapidly advances, the inconsistency
in conflict detection poses new challenges for traffic safety. Automated vehicles require a
unified approach to estimating collision risk as they navigate in various road environments.
Without consistent estimation, these vehicles may struggle to reliably interpret and
respond to traffic conflicts, thereby jeopardising road safety. As different levels of
vehicle automation increasingly share the road, traffic conditions will become more
complex. Road user interactions will no longer be solely between humans, but will also
involve driving algorithms developed by different manufacturers, creating new layers of
complexity. Consequently, in the long run, the assessment and improvement of traffic
safety will become more challenging.

To address the challenges, this study introduces a new approach for consistent and
comprehensive conflict detection. First, we propose a unified framework of traffic conflict
detection by formulating conditional collision risk. Second, we present a series of
statistical learning tasks that apply the theoretical framework to practical conflict detection.
Our approach considers a traffic conflict as an extreme event of normal interactions, and
quantifies its context-dependent and proximity-characterised collision risk. Then the
learning tasks break down conflict detection into interaction context representation,
proximity distribution inference, and extreme event assessment. Theoretically, any existing
surrogate metric of conflicts is a special case under the framework. With this approach,
conflict detection can be consistent across different traffic environments, and traffic safety
evaluation can involve more comprehensive considerations.

The rest of this paper is organised as follows. Section 4.2 first explains the unified
framework of traffic conflict detection. Then Section 4.3 presents the statistical learning
tasks to apply conflict detection, including probability estimation and conflict intensity
evaluation. In Section 4.4, demonstration experiments are designed, performed, and
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analysed to show the performance of the approach. Finally, Section 4.5 concludes this
paper and envisions future research.

4.2 A unified framework of traffic conflict detection
This section introduces our unified framework of traffic conflict detection. We frame
conflict detection as quantifying the risk of a potential collision c between two or more
road users, based on their proximity s and other contextual observables X , i.e., p(c|s,X).
This risk quantification uses conditional probabilities to consider the interaction situation
of an event, the typical proximity behaviour of road users in the interaction context, and
the probability variation with conflict intensity. These considerations are summarised in
Equation (4.1) for a preliminary overview, where the symbols are defined in Table 4.1.

p(c|s,X) =

∫∫
p(c|s, ϕ)p(ϕ|θ)p(θ|X)dϕdθ, where p(c|s, ϕ) := C(n; s, ϕ) (4.1)

Table 4.1 Symbols and their definitions in the unified framework of traffic conflict detection.

Symbol Definition

c A potential collision, i.e., conflict
s Proximity, the spatial-temporal closeness between road users
X Observables that can be measured to describe interaction situations
θ Representation for the interaction context involving key information selected from X
ϕ Parameters used to characterise the proximity distribution of road users in a given θ
n Conflict intensity, a conflict at intensity n occurs once per n times in the same interactions
C Probability of a conflict with intensity n at proximity s in the context characterised by ϕ

The components of the integral in Equation (4.1) represent a probabilistic breakdown
of collision risk. Starting from the outermost component, the first term p(θ|X) denotes the
probability of a specific interaction context θ given observable measurements X , such as
road user motion states and environmental conditions. The second term p(ϕ|θ) describes
the probability of the parameters ϕ that characterise proximity patterns conditioned on the
interaction context θ. Finally, the innermost term p(c|s, ϕ) expresses the probability of
a potential collision occurring at a proximity s, based on the proximity distribution
parameterised by ϕ in the specific context. This probability also accounts for conflict
intensity n, which reflects the extremeness extent of the conflict within a spectrum of
interactions in the same context.

The following subsections provide more detailed explanations and derivations to
establish the framework. We begin with defining the probabilistic collision risk that
depends on proximity and other situational variables. Then we assume a conflict hierarchy
of risk perceptions and reactions in an interaction context, and describe the conflict
hierarchy quantitatively by measuring how road user behaviour varies with proximity.
Lastly, we consider conflicts as extreme events within a spectrum of interactions, and use
extreme value theory to relate conflict probability with conflict intensity.
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4.2.1 Context-dependent collision risk
In this subsection, we first present a general probabilistic description of conflict detection
which depends on the context of interaction. A major branch of surrogate metrics of
conflicts is based on proximity. Proximity means physically less space and time for
reactions to prevent a potential collision; and due to the physical constraints, people
perceive increased risk when the distance to an approaching object is closer [146, 147].
Therefore, a proximity-based conflict metric can cover both the objective aspect of
collision risk and people’s subjective perception of the collision risk.

Proximity-based conflict detection can be generally formulated as p(c|s,X), which
estimates the probability of a potential collision c based on proximity s (s ≥ 0) and other
observables X of the interaction context. The probabilistic formulation enables consistent
evaluation across contexts, as probability has a normalised range between 0 and 1. This
consideration has also been taken by some studies, for example, Saunier and Sayed [148]
and de Gelder et al. [149]. For an interaction involving two or more road users, s is a
measure of the spatial-temporal closeness between the road users; and X can include, but
is not limited to, motion states of the road users, traffic states, road layouts, and weather
conditions.

Not all of the information in X is used, nor might it all be useful. Every existing
surrogate metric of conflicts selects some key information, i.e., variables, and makes
a hypothesis based on the selected information. For example, TTC uses the relative
velocity between two approaching road users and assumes no movement change (constant
acceleration) at the moment of conflict; DRAC also uses the relative speed but assumes an
immediate brake. Here we use θ = {θ1, θ2, . . . , θk} to denote k variables extracted from
X , and θ are assumed to adequately represent the interaction context compressed out of
the situation X . Considering all possible selections of θ, Equation (4.2) holds according to
the chain rule of conditional probability.

p(c|s,X) =

∫
p(c|s, θ)p(θ|X)dθ (4.2)

If the selection of key information is deterministic as θ = R(X), where R refers to
representation learning of the interaction context, p(θ|X) in Equation (4.2) becomes a
Dirac delta function of δ(θ − R(X)). A Dirac delta function δ(x) has a value of 1 when
x = 0 and 0 for any other values of x. Therefore, Equation (4.2) can be approximated to
Equation (4.3).

p(c|s,X) = p(c|s, θ) = p(c|s,R(X)), if p(θ|X) = δ(θ − R(X)) (4.3)

To better explain how a surrogate metric of conflicts fits into our formulation, we
provide two examples. The first is Post-Encroachment Time (PET), where s is the time
interval between one vehicle leaving a conflict area and another vehicle arriving in
the same conflict area. The θ for PET is the existence of a conflict area. As shown in
Figure 4.1(a), p(c|s, θ) can be a step function with probability 1 when PET exceeds
a threshold PET∗ and 0 otherwise; or a continuous function based on a cumulative
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Gaussian probability that increases gradually from 0 to 1 and is 0.5 at the threshold PET∗.
Then another example uses TTC = s/∆v as shown in Figure 4.1(b). For two vehicles
approaching each other, s is the net distance between them; while ∆v is their relative
speed, and serves as a univariate context θ. The probability p(c|s, θ) varies at different
relative speeds. If there is a critical threshold TTC∗ that differentiates safe and unsafe
interactions, the threshold of proximity then follows s∗ = TTC∗∆v.

s = PET * s

p(c|s, )

1

0

Threshold exceedance
Gaussian probability

(a) PET: Post-Encroachment Time.

s *=TTC *
v

0

1

s

v

p(c|s, )
Threshold exceedance
Gaussian probability

(b) TTC: Time-to-Collision.

Figure 4.1 Illustration examples of context-dependent proximity-based conflict probability.

4.2.2 Proximity-characterised conflict hierarchy
Proximity patterns in an interaction context reflect the aggregated behaviour of road
users in this context, which is shaped by people’s perception of collision risk. Within
the same context of interaction, a shorter spatial or temporal gap between road users
consistently implies more risk of collision. This increase in collision risk with decreasing
proximity motivates road users to maintain an acceptable distance from the others at
varying levels [77]. Therefore, the proximity behaviour of road users embodies a conflict
hierarchy perceived by the road users. On the one hand, proximity pushes or prevents the
road users from approaching each other; on the other hand, the road users adjust their
behaviours to maintain comfortable proximity.

We characterise the proximity behaviour of road users with a conditional probability
distribution. Seeing proximity as a random variable S, in a certain interaction context θ,
the conditional probability distribution of S given a context θ is p(s|θ). We use fS(s|θ;ϕ)
to describe the density function of p(s|θ), where ϕ is a set of parameters. To incorporate
context-dependent proximity behaviour into conflict detection, we consider all possible
sets of ϕ in a context θ, thus integrate p(ϕ|θ) in Equation (4.4).

p(c|s, θ) =
∫
p(c|s, ϕ)p(ϕ|θ)dϕ (4.4)

As we parameterise the conditional probability p(s|θ) with fS(s|θ;ϕ), inferring p(s|θ) is
to obtain ϕ, and we denote this inference as ϕ = I(θ). When the inference is deterministic,
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p(ϕ|θ) in Equation (4.4) becomes a Dirac delta function δ(ϕ− I(θ)). In the same way as
explained when deriving Equation (4.3), we can derive Equation (4.5).

p(c|s, θ) = p(c|s, ϕ) = p(c|s, I(θ)), if p(ϕ|θ) = δ(ϕ− I(θ)) (4.5)

Numerous empirical studies have observed the transition from comfort to discomfort
when a road user is approached by other vehicles [73–76]. Therefore, we can generally
assume that p(c|s, ϕ) monotonically increases while s is decreasing. In a conflict hierarchy
characterised by ϕ, the closer the proximity between approaching road users, the less safe
they are and the higher the probability of a potential collision. This monotonicity of
p(c|s, ϕ) implies that Equation (4.6) holds for any ϕ. lim

s→∞
p(c|s, ϕ) = 0

lim
s→0

p(c|s, ϕ) = 1
(4.6)

We use Figure 4.2 to help explain the proximity-characterised conflict hierarchy. On
the left of Figure 4.2, we present an adapted pyramid of conflict hierarchy [8], which
conceptually relates conflict intensity and frequency, and reflects road user behaviour in
balancing safety and efficiency [23]. When the approaching between road users entails a
potential collision, the closer they are, the higher the conflict intensity and the lower the
frequency of such conflicts. When the proximity is too small for safe interaction, a conflict
emerges entailing a potential collision. Furthermore, an accident will happen if there is no
(successful) evasion or the proximity is too small to prevent a collision. This hierarchy of
conflicts is not fixed, but has varying shapes in different interaction contexts. As illustrated
in the right of Figure 4.2, fS(s|θ;ϕ) is designed to capture such context-dependent
proximity patterns. Consequently, the estimated probability p(c|s, ϕ = I(θ)) may vary for
the same proximity in different contexts, and evolve as the interaction context changes over
time.
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Figure 4.2 Proximity-characterised conflict hierarchy varies in different interaction contexts.
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4.2.3 Extreme value theory-based interaction spectrum
Traffic interactions exist on a spectrum varying in conflict intensity and potential
consequences. Within this spectrum, we assume that conflicts are extreme events at
different levels of collision risk and collisions are the most extreme cases. Then we can
establish the relation between conflict intensity and conflict probability utilising extreme
value theory. In traffic safety research, the extreme value modelling has been traditionally
used to treat crashes as the extreme events of conflicts and extrapolate average crash risk
from traffic conflicts [38, 40, 150–153]. Here we zoom out the view and provide a
derivation that collisions and conflicts are both extreme events of ordinary interactions, at
varying levels of intensity.

Our derivation uses a similar logic to lifetime survival analysis, which is a branch of
statistics to model the expected duration of time until one event, such as deaths or failures
of medical treatment, occurs [154]. The essential idea of lifetime survival analysis is to
estimate the probability of events from the records of human lives or running systems,
where the frequency of these events reduces when living time increases. Therefore, the
survival function is S(t) = Pr(T > t), representing the cumulative probability that the
duration of survival T is longer than some specified time t. The longer the t, the closer to
death or failure.

For estimating the probability of conflicts, collisions are system failures, and our
evaluation is based on the records of daily interactions. Contrary to lifetime survival
analysis which measures survival duration and longer duration is closer to deaths, here
conflict analysis measures proximity and shorter proximity is closer to collisions. The
frequency of conflicts increases when proximity reduces. We thus define a “conflict
function” F (s) = Pr(S < s), which represents the cumulative probability that the
interaction proximity S is less than a certain s. Recall that in Section 4.2.2 we use
fS(s|θ;ϕ) to describe the proximity distribution of S in an interaction context θ. Rewriting
the function as fS(s;ϕ) for convenience, given that ϕ = I(θ) and θ = I−1(ϕ), then
Equation (4.7) shows the conflict function in an interaction context θ where the conflict
hierarchy is characterised by ϕ.

F (s;ϕ) = Pr(S < s;ϕ) =

∫ s

0

fS(x;ϕ)dx (4.7)

The shorter the s, the more likely a collision is to occur, but the likelihood varies
with conflict intensity. Aligned with the conflict hierarchy in Figure 4.2, we define
conflict intensity as the inverse of conflict frequency, i.e., a conflict at intensity n occurs
once per n times in the same interaction context. Specifically, assuming an interaction
where the proximity between road users is s; if s is always smaller than the observed
proximities for n times interactions in the same situation, this interaction is a conflict with
a frequency of 1/n, and we consider it an extreme event of intensity n. According to
extreme value theory, we can use (Pr(S ≥ s;ϕ))n to calculate the cumulative probability
that a proximity s is the minima in n times of observations in the same interaction context.
Therefore, for an interaction at proximity s and in the context θ that is characterised by ϕ,
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its probability of conflict is not a value, but a function regarding conflict intensity n. We
denote this function by C as shown in Equation (4.8).

p(c|s, ϕ) : = C(n; s, ϕ) = (1− F (s;ϕ))n =

(∫ ∞

s

fS(x;ϕ)dx

)n

(4.8)

Figure 4.3(a) shows the probability distributions of Equation (4.8) under different
intensity n. As displayed in Figure 4.3(b), this probability fulfils the requirements in
Equations (4.6), monotonically increasing while s decreases. In Figure 4.3(c), we present
an extreme value theory-based interaction spectrum described by Equation (4.8). It
corresponds to the practical understanding of a conflict: the smaller the proximity and
the lower the conflict intensity, the greater the conflict probability. Note that conflict
probability does not equate to collision probability in our derivation. Collision probability
specifically refers to the case when n is very large and approaches infinity, representing the
most intense and least frequent interaction. In that case, Equation (4.8) converges to either
Gumbel, Frechet, or Weibull distribution. Here we do not particularly consider this
convergence at an infinite n, as traffic and driving safety focuses not just on collisions, but
on conflicts at varying levels of intensity.

(a) Extreme value probability distribution (b) Conflict hierarchy characterised by 𝜙 (c) Interaction spectrum
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Figure 4.3 Interaction spectrum described with context-dependent proximity distribution and
extreme value theory.

4.3 Statistical learning tasks for conflict detection
The previous section explains the unified theoretical foundation of conflict detection. Now
we continue by framing a series of statistical learning tasks for application in practice.
Based on the derivation in Section 4.2, conflict detection estimates the probability of
context-dependent and proximity-characterised extreme events, and we can decompose
it into three tasks as shown in Figure 4.4. The first task θ = R(X) maps situational
observables X to a compressed information space as θ, which represents interaction
context. In a certain interaction context θ, the second task ϕ = I(θ) infers the conditional
probability distribution of typical proximity behaviour of road users. Then the third task
uses extreme value theory to determine the relations between proximity, conflict intensity,
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and conflict probability. When θ = R(X) and ϕ = I(θ) are deterministic, we can rewrite
Equation (4.1) into Equation (4.9).

𝑝(𝑐|𝑠,𝑋) = ∫𝑝(𝑠|𝜃)𝑝(𝜃|𝑋)d𝜃 𝑝(𝑐|𝑠,𝑋) = 𝑝(𝑐|𝑠, 𝜃) 𝑝(𝑐|𝑠, 𝜃) = 𝑝(𝑐|𝑠, 𝜙) 𝑝(𝑐|𝑠, 𝜙)≔ 𝐶(𝑛; 𝑠, 𝜙)𝑝(𝑐|𝑠, 𝜃) = ∫𝑝(𝑠|𝜙)𝑝(𝜙|𝜃)d𝜙
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Figure 4.4 The unified framework and statistical learning tasks for conflict detection.

p(c|s,X) =

∫∫
p(c|s, ϕ)p(ϕ|θ)p(θ|X)dϕdθ = p(c|s, ϕ) := C(n; s, ϕ),

if p(θ|X) = δ(θ − R(X)) and p(ϕ|θ) = δ(ϕ− I(θ))
(4.9)

These three tasks can be integrated within a pipeline for end-to-end learning, and can
also be performed separately. In the following subsections, we will explain the tasks
further and present preliminary methods for application. We emphasise here that there are
many useful learning methods, and the ones we use in this study are not necessarily the
best. Future investigation on optimising suitable statistical learning techniques is required.

4.3.1 Representation of interaction context
The first task θ = R(X) is to create an informative representation for interaction contexts
by selecting and transforming relevant observables of interaction situations. Traditionally,
key variables such as absolute speed, relative speed, and deceleration rate have been
widely validated and used in existing surrogate measures of safety. However, there may be
more factors at play than those hypothesised in the existing measures. As mentioned in
Section 4.2.1, X may cover various aspects such as vehicle motion states, environment
factors, and participant characteristics. Incorporating different factors can be particularly
helpful for a comprehensive assessment of collision risk and for user-customised collision
warnings.

If the observables of an interaction situation are numerous or use time-series
and/or image formats, data-driven representation learning can be effectively employed.
Such techniques can compress selected observables into a lower-dimensional space,
where different interaction contexts are adequately encapsulated. One approach can be
auto-encoders, of which the learning objective is to minimise the reconstruction error
between compressed representation and original information. Another approach is
contrastive learning, which aims to minimise the difference between the representations
of similar samples while maximising the difference between dissimilar samples.
Representation learning is an active and evolving field in machine learning, where many
other methods are worth investigating. It is important to note that purely data-driven
methods may not always capture the nuances of complex interaction situations. Therefore,
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integrating domain knowledge in traffic safety is necessary and can improve the robustness
and reliability of context representation.

To efficiently present the theoretical contributions of this research, we do not perform
data-driven representation learning in this study. However, we have some notes for readers
on learning representations from variables relevant to motion states. Firstly, the output in
the next task of inference is about the proximity between interacting road users. To avoid
label leakage, we recommend not including a complete series of position or speed vectors
for all involved road users. Secondly, we suggest transforming the variables into local
coordinate systems. This transformation can be centred on every road user involved in an
interaction situation, as the same situation may be perceived differently by different road
users. Such view transformation can ensure the consistency and enhance the comparability
of interaction context representations. Once transformed, an interaction context can be
represented as instantaneous frames or over a continuous period.

4.3.2 Inference of conflict hierarchy
The second task ϕ = I(θ) needs to learn the conditional probability distribution of
proximity in a certain interaction context, i.e., p(s|θ). Our previous study [155] used
conditional sampling to infer this probability. Such sampling requires a large amount of
data to ensure enough samples for each condition range, while the condition ranges are
finite samples of an infinite space. In this study, we use Gaussian Process Regression
(GPR) to avoid discretising the condition space, and the rest of this subsection will explain
more details. Note that there are other useful methods to learn the conditional probability,
but we choose GPR in order to obtain the equation of p(s|θ) and thus its analytical
cumulative probability.

Many studies have found that lognormal distribution best fits the distribution of
spatial and temporal gaps between road users [156–158]. Therefore, we assume that the
proximity s in a certain interaction context θ follows a lognormal distribution. Recall
that in Section 4.2.2 we use fS(s|θ;ϕ) to describe p(s|θ), and now we have ϕ = {µ, σ}
where µ and σ parameterise a lognormal distribution as shown in Equation (4.10). This
implies that the logarithm of proximity, ln(s), follows a Gaussian distribution that is
parameterised by the same µ and σ.

fS(s|θ;µ, σ) =
1

sσ
√
2π

exp

(
− (ln(s)− µ)2

2σ2

)
(4.10)

The Gaussian distribution of ln(s) can be utilised to learn p(s|θ) with GPR. First, we
consider a mapping g : θ → ln(s) between proximity s and the interaction context θ
that s is in. Assuming a normally distributed noise in this mapping, we denote that
ln(s) = g(θ)+ ϵ, where ϵ ∼ N (0, σ2

ϵ ). Second, given that ln(s) is derived to be normally
distributed, the distribution of function g(θ) is Gaussian. Then we can consider that g(θ)
is drawn from a Gaussian Process, as shown in Equation (4.11). This suggests that a g(θ)
is one sample from the multivariate Gaussian distribution of all possible mappings.



4.3 Statistical learning tasks for conflict detection

4

59

g(θ) ∼ GP (m(θ),K(θ, θ′)) , (4.11)

where µ = m(θ) and σ = K(θ, θ′) are the mean function and covariance function that
specify a Gaussian Process. For two similar interaction contexts θ and θ′, g(θ) is expected
to be close to g(θ′).

With GPR, the mean and covariance functions are learned from data. Considering that
we may include many variables in the representation of interaction context and thus a fairly
large amount of data is needed to serve training, we use the Scalable Variational Gaussian
Process (SVGP) model with the python library GPyTorch [159]. As the cost to increase
scalability, SVGP does not ensure an exact solution and may underestimate variance. To
train this model effectively, we maximise a predictive log-likelihood in Equation (4.12),
which is proposed in [160] and we adapt it here. In addition to the symbols that we
have consistently used, N is the number of samples; u denotes inducing variables that
are introduced to perform sparse training and reduce computational load; q(u) is the
variational distribution of u; p(u) is the prior distribution of u; DKL [q(u)||p(u)] computes
the Kullback–Leibler divergence of q(u) and p(u); and β controls the regularisation effect
of KL divergence.

L = Epdata(ln(s),θ) [ln (p(ln(s)|θ))]− βDKL [q(u)||p(u)]

≈
N∑
i=1

ln

{
Eq(u)

[∫
p(ln(si)|gi)p(gi|u, θi)dgi

]}
− βDKL [q(u)||p(u)]

(4.12)

Theoretically, learning the mean and covariance functions can approximate any
form of mapping g between interaction context θ and proximity s. As explained in
Sections 4.2.1 and 4.2.2, a surrogate metric for traffic conflicts essentially assumes such a
mapping, based on which a threshold is then determined to distinguish safe interactions
and conflicts. Therefore, in theory, any metric based on spatial-temporal proximity is a
particular case under our unified framework. Without assuming a specific format of g, the
mapping embedded in data can be statistically derived. This suggests that, given the same
interaction context, a data-driven metric using the unified probabilistic approach proposed
in this study should be no less conflict-indicative than a pre-assumed metric.

4.3.3 Conflict probability estimation and intensity evaluation
In the third task, we use extreme value theory to estimate conflict probability and
evaluate conflict intensity. This task plays a similar role to the selection of thresholds
when using traditional metrics of conflicts. After the previous two tasks, we can learn
parameters ϕ = {µ, σ} that characterise the conflict hierarchy in different interaction
contexts represented with θ. Based on the derivation in Section 4.2.3, then we can write
conflict function F (s;ϕ) and obtain C(n; s, ϕ) that relates conflict intensity n and conflict
probability.

Given that we infer fS(s|θ;ϕ) as the probability density function of the lognormal
distribution, the conflict function F (s;ϕ) in Equation (4.7) can be further derived as
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Equation (4.13). Here erf(z) = 2
∫ z

0
e−x2

dx/
√
π and is the Gaussian error function.

Then conflict probability function is as shown in Equation (4.14).

F (s;µ, σ) =

∫ s

0

1

xσ
√
2π

exp

(
− (ln(x)− µ)2

2σ2

)
dx

=
1

2
+

1

2
erf

(
ln(s)− µ
σ
√
2

) (4.13)

C(n; s, µ, σ) = (1− F (s;µ, σ))n =

(
1

2
− 1

2
erf

(
ln(s)− µ
σ
√
2

))n

(4.14)

There are two general purposes for conflict detection. The first is conflict probability
estimation. For an interaction, given current proximity s and parameters ϕ that characterise
the conflict hierarchy in the interaction context, we can use Equation (4.15a) to estimate
the probability of a potential collision at different levels of conflict intensity n. The second
purpose is safety/conflict evaluation. Assuming that the probability of a potential collision
is larger than the probability of no collision, i.e., conflict probability is larger than 0.5, we
can use Equation (4.15b) to evaluate the maximum possible conflict intensity.

p̂ = C(n; s, µ, σ) =

(
1

2
− 1

2
erf

(
ln(s)− µ
σ
√
2

))n

, n ≥ 1 (4.15a)

n̂ = C−1(p; s, µ, σ) =
ln p

ln
(

1
2 −

1
2 erf

(
ln(s)−µ

σ
√
2

)) , 0.5 < p < 1 (4.15b)

Equations (4.15a) and (4.15b) are useful in different practices. Conflict probability
estimation can be used to issue collision warnings, which alert human drivers or driving
assistance systems to prevent potential collisions. Conflict intensity evaluation can be
used to identify varying levels of conflict cases in daily traffic. This helps to assess the
impact of an infrastructure or traffic policies on traffic safety, and then make according
improvements.

4.4 Demonstration
This section applies the proposed unified framework and statistical learning tasks on
real-world trajectory data, to demonstrate the characteristics of this new conflict detection
approach. Table 4.2 presents an overview of our experiment design. In Section 4.4.1, we
introduce the datasets used and experiment details. Then respectively in Sections 4.4.2
and 4.4.3, we show the experiment results in conflict probability estimation and conflict
intensity evaluation. For convenience, we use approach to collectively refer to the unified
probabilistic approach proposed in this study; and use the term unified metric and its
abbreviation Unified to refer to the surrogate metric trained with our approach. It is also
important to emphasise that these experiments are designed primarily for demonstration.
Further exploration is expected in future research.



4.4 Demonstration

4

61

Table 4.2 An overview of experiment design for performance demonstration.

Purpose Training data Application data Characteristics: this approach

Conflict
probability
estimation

p̂ = C(n; s, µ, σ)

Trajectories
involving

lane-changes
in highD

Near-crashes
in 100-Car NDS

1) is no less conflict-indicative than
any of PSD, DRAC, and TTC;
2) is generalisable across datasets.

Conflict
intensity

evaluation
n̂ = C−1(p; s, µ, σ)

Trajectories
involving

lane-changes
in highD

Lane-changes
in highD

1) covers more diverse conflicts
during lane-changes than TTC;
2) detects conflicts in a long-tailed
distribution of intensity.

4.4.1 Data and experiment details
We use two naturalistic trajectory datasets in this study. First is the highD dataset that was
collected at 6 different locations on German highways using drones [161]. It includes
detailed information about vehicle types, sizes, and movements, with a positioning error
typically less than 10 cm. Considering that a significant part of driving on highways is
independent without interactions with other vehicles, we select trajectories that involve
lane-changes in highD. In addition to the high-quality drone-collected data for model
training, a dataset of real-world conflicts is necessary for demonstration. The second
dataset we use is from the 100-Car Naturalistic Driving Study (NDS), which is an
instrumented-vehicle study conducted in the U.S. over 2 years in the early 2000s [162]. An
event database [123] resulted from the study compiles information on 68 crashes and
760 near-crashes. From the time-series sensor data of radars and accelerometers, we
reconstruct bird’s eye view trajectories for these events. Due to missing values, inaccuracy
of sensing, and the lack of ground truth, not all of the events can be reconstructed. We end
up matching 180 events based on the constraint of insufficient space (distance less than 4.5
m) for undetected vehicles, including 11 crashes and 169 near-crashes as summarised in
Table 4.3.

Table 4.3 Summary of matched and selected events in 100-Car NDS data.

Event happened with Matched
crashes

Matched
near-crashes

Selected
near-crashes

leading vehicle 5 119 47
following vehicle 6 30 17
vehicle in adjacent lane 0 13 2
vehicle turning across oncoming traffic 0 4 0
vehicle crossing through an intersection 0 2 0
vehicle in oncoming traffic 0 1 0

In total 11 169 66
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The first experiment estimates conflict probability at each time moment for the events
in 100-Car NDS data. We utilise the estimation to issue collision warnings, and compare
warning effectiveness with using 3 other commonly used metrics. Effective collision
warning maximises true positives while minimising false positives. To reserve safe
interactions within an event, we select events with a duration of at least 6 seconds, no hard
braking (acceleration larger than -1.5 m/s2) in the first 3 seconds, and speeds larger than 3
m/s at the first time moment for both vehicles involved. After the selection, 4 crashes and
66 near-crashes remained. Considering the relatively low reliability of data in crashes and
for a consistent comparison, we use only the selected near-crashes, which are also shown
in Table 4.3. The 3 broadly used metrics for comparison are Proportion of Stopping
Distance (PSD), Deceleration Rate to Avoid a Crash (DRAC), and Time-to-Collision
(TTC). Table 4.4 provides an overview of them, where ∆s is the distance between vehicle
bounding boxes and ∆v is relative velocity. For PSD we use a braking rate of 5.5 m/s2, as
emergency braking is typically between 1.6 and 5.5 m/s2 [163, 164].

Table 4.4 Existing surrogate metrics of conflicts that are used for warning comparison.

Metric Calculation Note Reference(s) Proximity s Context θ

PSD
∆s

v2follower/2/dec
dec =5.5 m/s2 [22] ∆s v2follower

DRAC
∥∆v∥2

2∆s
approaching only [136] ∆s ∥∆v∥2

TTC
∆s

∥∆v∥
approaching only [8, 21] ∆s ∥∆v∥

The second experiment evaluates conflict intensity at each time moment for lane-change
interactions in the highD dataset. We use lane-changes to demonstrate the applicability
of our unified metric to two-dimensional conflicts, which remain challenging to be
integratively indicated by traditional metrics. We identify lane changes using the lane
references provided in highD data. Then we determine the start and end moments of a
lane-change based on the time when the vehicle deviates 1/3 of its vehicle width from the
centerline of its current lane. In this way, overtaking is considered as two consecutive
lane-changes. Seeing the vehicle making a lane-change as an ego vehicle, the lane-change
is potentially interactive if there is a vehicle in front or at rear of the ego vehicle in
either the original lane or the target lane. Then we use both the unified metric and
two-dimensional TTC (2D-TTC) to evaluate conflict intensity (if any) at each time
moment. Here 2D-TTC follows the typical definition of TTC (Fig. 2 in [20]), assuming
constant velocities for two approaching vehicles at the moment of evaluation. The smaller
the TTC value, the higher the conflict intensity; when TTC is infinite, no potential collision
is expected to occur.

In both experiments, we use a single unified metric trained with the trajectories
involving lane-changes in highD data. In this way, the first experiment can additionally
demonstrate the generalisability of our approach; and the metric thresholds calibrated with
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real-world near-crashes can be used in the second experiment to distinguish conflicts. For a
fair comparison with existing metrics, we avoid complex representations for interaction
context θ. Firstly, we include the information used in PSD, DRAC, and TTC, i.e., v2follower,
∥∆v∥2, and ∥∆v∥ as analysed in Table 4.4. Since the lead-follow relationship evolves
during lane-changing, we use the squared speeds of both ego vehicles (which change lanes)
and target vehicles (in the surrounding). Further, we consider the accelerations of ego
vehicles 1, heading directions of target vehicles relative to their ego vehicles, and lengths
of both ego and target vehicles. In order to indicate two-dimensional conflicts, we define
proximity s utilising the two-dimensional spacing proposed in [155]. This spacing is
denoted by (x, y) in the real-time transformed relative coordinate systems, and we convert
(x, y) into (ρ, s) into polar coordinate systems, where ρ is the angle between (x, y) and
(1, 0) within a range of [−π, π]. Then we add ρ as one more variable in θ, and use s as the
proximity measure to reflect conflict hierarchy.

We train two sets of SVGP models under different settings of the hyper-parameter
β in Equation (4.12), with β = 5 and β = 10. Our training is on 60% of the selected
interaction trajectories involving lane-changes; and the validation set and test set account
for 20% each. During the training, we reduce the learning rate dynamically to avoid
overfitting of the models, and stop training early when validation loss converges. Figure 4.5
shows the training progress, where there are 271 batches per epoch and 2,048 samples per
batch. Training in both settings converges well, and stops earlier as well as reaches lower
loss values when β = 5. We then evaluate model performance by both loss and negative
log-likelihood (NLL) on validation and test sets, as presented in Figure 4.5. As a result,
we select the model achieving the minimum test loss and the second minimum test
NLL, i.e., the model with β = 5 after 52 epochs of training, to apply in the subsequent
demonstration experiments.
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Figure 4.5 Evaluation of SVGP training and selection of the model to apply.

Since we consider two-dimensional interactions, maintaining a consistent coordinate
system is necessary. The highD dataset uses a coordinate system where the x-axis points
from left to right and the y-axis points downwards. This is a mirrored system from the
traditional engineering coordinate system where the y-axis points upwards. When applying
a model that is trained on highD data to other datasets, such as the 100-Car dataset, it is
essential to adjust for this inconsistency. We make adjustments by exchanging the x

1We do not include target vehicle accelerations because this information is lacking in 100-Car NDS data and
cannot be reliably derived due to speed fluctuations prior to potential collisions. This lack also prevents
comparison with the metric Modified Time to Collision (MTTC).



4

64 4 Unified detection of potential collisions across interaction contexts

and y coordinates of positions, velocities, and heading directions in 100-Car NDS data
before coordinate transformation. We hereby remind the readers to correct potential
inconsistencies in the coordinate systems between training data and application data.

4.4.2 Collision warning compared with existing metrics
The first experiment based on conflict probability estimation is designed to demonstrate
two characteristics of our approach. First, the unified metric performs at least as well as
any among PSD, DRAC, and TTC in collision warning. This is determined in theory, but
experimental results with real-world near-crashes can provide additional evidence. Second,
we trained the unified metric with trajectories in the highD dataset while applying it to the
events in 100-Car NDS data. This cross-validation involves not only the differences
between German and American driving, but also the evolution of driving over more than
15 years. If the highD-trained metric performs well for 100-Car near-crashes, we can argue
for the generalisability of this approach, which implies common principles in human road
use interactions.

Table 4.5 Definitions of the performance indicators for collision warning effectiveness comparison.

Performance indicator Definition

True positive

Seeing the moment when conflicting vehicles reach the
minimum distance as a critical moment, the 3 seconds
prior to the moment are supposed to be dangerous; any
warning in this period marks a true positive.

False positive
The first 3 seconds in each of the selected events are
supposed to be safe, so any warning in this period marks a
false positive.

True positive rate and
false positive rate (%)

The rate of true positives and false positives, respectively,
among all events. True positive rate ideally approximates
100% and false positive rate 0%.

ROC curve Receiver Operating Characteristic curve that plots true
positive rate against false positive rate at various thresholds.

Warning period (%)
For each event with warnings issued under the optimal
threshold, the percentage of warned time moments within
the annotated conflict period.

Warning timeliness (s)
For each event with warnings issued under the optimal
threshold, the time interval from the last safe-unsafe shift
of warning until the critical moment.

In order to systematically compare warning effectiveness, we define performance
indicators as explained in Table 4.5. Collision warning classifies safe and unsafe
interactions based on the values and specific thresholds of metrics. Seeing the metrics as
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different classification models, we can compare their ROC curves, and a metric is better if
the area under its curve is larger. For each metric, we then select an optimal threshold such
that the corresponding point on their ROC curve is closest to the ideal point with zero false
positive and all true positives (0%, 100%). Based on the optimal threshold, we further
calculate warning periods and warning timeliness. The warning period of an event should
ideally be close to 100%, but good warning timeliness does not necessarily mean early
warning. On average, people need 1 to 1.3 seconds in response to an obstacle by braking,
and in emergencies this can be less than 1 second [165, 166]. Therefore, good warning
timeliness should not be too large, as it may distract people earlier than they need to be
warned; neither should it be too small, as the best timing to prevent a potential collision
may be missed.

Figure 4.6 presents the comparison of collision warning effectiveness. In the plot of
ROC curves, we use circles centred at the ideal point (0%, 100%) and crossing the optimal
points of different metrics to facilitate comparing their closeness to the ideal point. The
metrics of DRAC, TTC, and Unified have comparable areas under their ROC curves, while
PSD is less effective. Zooming in to see more details at the top left corner, TTC and
Unified are consistently better than DRAC, and are very close to the ideal point. More
specifically, the optimal threshold of Unified is n∗ =17, reaching a true positive rate of
95.45% and a false positive rate of 4.55%; TTC∗ =4.2 s and achieves 93.94% true positive
rate and 0.00% false positive rate; DRAC∗ =0.45, with a true positive rate of 92.42% and
a false positive rate of 7.58%. Much less comparably, the optimal threshold of PSD is 0.52,
with a true positive rate of 57.58% only but a false positive rate of 25.76%.
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Figure 4.6 Collision warning effectiveness comparison between PSD, DRAC, TTC, and Unified. In
the boxplots of warning period and timeliness, median values are marked below the labels of metrics.

These metrics are further compared at their optimal thresholds by the box plots of
warning period and warning timeliness in Figure 4.6. Given the weak effectiveness of PSD,
its warning period and timeliness are not comparable with other metrics. Both DRAC and
TTC have higher median warning periods than Unified. This suggests that the unified
metric may not issue a warning at the beginning of the annotated conflicts. This is also
verified in the plot of warning timeliness, where DRAC and TTC have similar distributions
and their median timeliness is both earlier than that of Unified. In addition, the warning
timeliness of Unified is less varied. From a positive perspective, this means that using the
unified metric gives consistent warnings and does not distract drivers too much; whereas
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from a negative perspective, this means that the unified metric may miss the chance to
prevent a potential collision.

For a more detailed analysis, Figure 4.7 shows two frames in the trip indexed by 8332.
This event is warned by DRAC only, while TTC is larger than 10.59 s throughout and the
conflict probability estimated by Unified remains lower than 0.5. In this figure, we present
the profiles of speed, acceleration, and metric values, with the annotated conflict period
shaded. We also plot heatmaps of proximity density distribution f(s;ϕ) and conflict
probability function C(s;ϕ, n), where the y-axis points to the heading direction of ego
vehicle and the x-axis points from right to left to align with highD’s coordinate system. For
each location around the ego vehicle, we assume the target vehicle is at that location
and use actual interaction context θ for estimation. Figure 4.7(a) is the frame at 4.4
seconds before the critical moment; and Figure 4.7(b) is 1.4 seconds before. Notably, in
Figure 4.7(b), the proximity density distribution, i.e., probable positions of the target
vehicle given the interaction context, does not point to the ego vehicle’s heading direction.
This is due to the lateral interaction between these two vehicles, which is in line with the
narrative data of this event: “the target vehicle was merging into the right lane ahead of the
ego vehicle, causing the ego vehicle to brake to avoid a collision”. Comparing the two
frames, the unified metric takes into account the ego vehicle’s deceleration as successful
prevention of an immediate conflict, and thus the estimated conflict probability stays low
during the annotated conflict period.

We summarise the success and failure cases of conflict warnings in Table 4.6. PSD is
not included due to its lower effectiveness. For the events where at least one of Unified,
TTC, and DRAC fails, as well as for the false warnings of Unified, we provide dynamic
visualisations along with our open-sourced code. A link can be found in this chapter’s
Abstract page. Impressively, 58 out of the 61 near-crashes are correctly warned by all the
metrics of Unified, TTC, and DRAC. This is because most events in the 100-Car dataset
are rear-end conflicts during car following, for which TTC and DRAC have been proven to
be useful. In the next experiment, TTC and our unified metric are challenged to handle
two-dimensional traffic conflicts.

Table 4.6 Summary of success and failure cases of collision warnings by Unified, TTC, and DRAC.

Unified TTC DRAC Number of events Trip ID

Succeed Succeed Succeed 58
Succeed Succeed Fail 3 8622, 8854, 9101
Succeed Fail Succeed 0
Succeed Fail Fail 2 8463, 8810

Fail Succeed Succeed 1 8761
Fail Succeed Fail 0
Fail Fail Succeed 2 8332, 8702
Fail Fail Fail 0
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(a) Frame 4.4 seconds prior to the critical moment of trip 8332.
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(b) Frame 1.4 seconds prior to the critical moment of trip 8332.

Figure 4.7 Visualisation example for the collision warning of trip 8332.
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4.4.3 Conflict intensity evaluation for lane-changing interactions
The second experiment evaluates the conflict intensity of lane-changing interactions, with
which we want to demonstrate two more characteristics of our approach. First, this
approach can cover a more diverse range of conflicts during lane-changes than TTC. This
stands in theory because TTC assumes constant movements (velocities in this study) of
interacting vehicles, which identifies potential lane-change conflicts only if two vehicles
have crossing velocity directions and could collide without movement change. In contrast,
a unified metric trained with our approach on two-dimensional daily driving data considers
conflicts in all directions and varying interaction situations. Second, the intensity of
conflicts evaluated by this approach is expected to have a long-tailed distribution. More
specifically, the number of detected conflicts should decrease according to a power-law as
conflict intensity increases. A long tail in such a distribution indicates that, although
high-intensity conflicts are extremely rare, they occur with a non-negligible probability.
Not all surrogate metrics of conflicts have this characteristic, but it is crucial to indicate
very rare conflicts.

There are 13,364 lane-changes in the highD dataset, and in total 713 (5.34%) of the
lane-changes involve at least 1 second consecutively identified as a conflict by either TTC
or the unified metric. This identification is under the optimal thresholds found in the first
experiment, i.e., of 4.2 s for TTC and 17 for Unified. Among these lane-changes, in
679 the ego vehicle conflicts with one other vehicle, in 31 the ego vehicle conflicts
with 2 other vehicles, and in 3 the ego vehicle conflicts with 3 other vehicles. These
constitute 750 conflicts, among which 67 are indicated by both TTC and Unified; 18 are
indicated by TTC only; and 665 are indicated by Unified only. In Figure 4.8, we plot the
scattered relative locations of target vehicles to their ego vehicles aggregated at (0, 0).
These locations are where a lane-changing interaction reaches the minimum TTC or the
maximum intensity evaluated by Unified.
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Figure 4.8 Spatial distributions of conflict moments with minimum TTC or maximum intensity in
every lane-change. Target vehicle positions are transformed to a coordinate system centred at the ego
vehicle position and with the longitudinal axis pointing to the ego vehicle heading direction. The
dashed lines mark lanes at the average lane width in highD data.

Figure 4.8 clearly shows that conflict detection by TTC strongly relies on the
assumption of constant movements, while training a unified metric can cover all directions
around the ego vehicle and accounts for the heterogeneity of proximity behaviour in every
different direction. There are significantly more conflicts between the ego vehicles making
lane-changes and the target vehicles in the left lane than those in the right lane. This may
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be due to more lane-changes from right to left or higher speeds of vehicles on the left
lane, but future investigation is needed for more precise reasons. Notably, most of the
lane-changing interactions have intensities lower than 100, which means one such conflict
on average occurs in every 100 or fewer interactions. In comparison, conflicts with
intensities higher than 100 are fewer, and those with intensities higher than 1000 are
significantly fewer. However, despite their seeming rarity, they are far from unlikely to
occur. In fact, foreseeing and preventing these safety-critical events remain key challenges
for safe autonomous driving [50].

We present a closer look at the intensity distribution with Figure 4.9. In the left half of
the figure, we plot the histograms of TTC values and Unified intensities respectively, for
those at each individual moment and for averaged during each lane-change conflict case.
The averaged values consider only lane-changing process, while the individual moments
include car-following periods before and after lane-changes. The histograms show a
decreasing frequency when intensity increases (TTC decreases), which is aligned with the
assumption of conflict hierarchy. To further see if the distributions are long-tailed, in the
right half of Figure 4.9, we make log-log scatter plots of the distributions, as well as
their dashed trend lines and calibrated functions. All of the logarithm relationships are
linear, therefore, all distributions to different extents have the characteristic of power-law.
However, the trend line of TTC values averaged during lane-change conflicts has a higher
slope than the line of TTC values at individual moments. This suggests that TTC detects
fewer lane-changing conflicts than car-following conflicts. In contrast, the unified metric
evaluates conflicts in the same theoretical framework, and thus has more consistent trend
lines between averaging during lane-changes and at individual moments.
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Figure 4.9 Intensity distributions during lane-changing interactions and at individual moments in the
highD dataset.

To provide more intuitive information, we make dynamic visualisations for the
detected conflicts in different ranges of intensity indicated by TTC and Unified. The
readers are referred to this chapter’s Abstract page to find links. Here in Figure 4.10 we
present an example at location 1 (indexed in the highD dataset) with vehicle track indices
of 1860 and 1858. The ego vehicle in red makes two sequential lane-changes, and conflicts
with the target vehicle in the intermediate lane. Similar to the visualisation for near-crashes
in Section 4.4.2, we plot the profiles of speed, acceleration, evaluated conflict intensity,
and TTC values, as well as a real-time heatmap of proximity distribution. In the plots of
profiles, lane-change periods are shaded. In addition, we visualise the interaction spectrum
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described by C(n, s;ϕ), which relates conflict intensity n, current proximity s, and
conflict probability p.

The first frame in Figure 4.10(a) is when the ego vehicle finishes its first lane-change
from the right lane to the middle lane. In this frame, the conflict intensity is evaluated to
reach the highest level in the whole process of sequential lane-change. On the surface of
the interaction spectrum, we plot a line showing the relation between conflict intensity
and probability at real-time proximity. This moment is at a very high probability to be
considered as a minor conflict, and the maximum intensity to be considered as a conflict,
i.e., the maximum intensity if conflict probability is larger than 0.5, reaches 494. This can
be considered a serious conflict that occurs once per 494 times in the same interaction
situations. Then the evaluated intensity decreases when the ego vehicle leaves the middle
lane and continues moving to the left lane. In the frame shown in Figure 4.10(b), at the end
of these two sequential lane changes, the evaluated intensity returns to safe levels.

4.5 Conclusion and discussion
Conflicts do not arise out of nowhere, and every conflict is an extreme continuation of
preceding safe interactions. Based on this assumption, this study presents a unified
probabilistic approach to detecting traffic conflicts. The unified framework of traffic
conflict detection models conflicts as context-dependent extreme events in ordinary
interactions. Under this framework, any existing surrogate safety measure that captures
certain aspects of conflicts is a special case. Then the statistical learning tasks allow for
data-driven hypotheses of traffic conflicts, making the unified detection at least as effective
as using a pre-hypothesised surrogate measure. Preliminary experiments with real-world
trajectory data demonstrate that the proposed approach provides effective collision
warnings, generalises well across datasets, captures various conflicts consistently, and
detects conflicts in a long-tailed distribution of intensity.

These features enable consistent and comprehensive conflict detection, which can
support scalable and reliable road safety research in the future. For example, more
comprehensive surrogate measures of safety can be learned from naturalistic data. In the
same way, an integrated estimation of collision risk becomes feasible for automated
vehicles. Data-driven conflict detection also allows for the analysis of a broader range of
factors underlying unsafe interactions in various situations. When the risk of conflicts
is consistently evaluated across interaction contexts, it becomes possible to compare
cross-modal road user interactions and provide consistent safety assessment of road
infrastructures. Furthermore, safety-critical events that are rarely observed in data may be
effectively identified, reinforced, and generated, contributing to training and testing
automated vehicles. Pressing societal concerns, such as the impact of vehicle automation
on road safety, could also be explored.

The current study has several limitations that should be investigated in future research.
First, the demonstration in this study uses spatial proximity and trajectories in car-following
and lane-changing scenarios; however, verification in more diverse traffic environments is
needed. The framework could also be applied to temporal proximity, and involve other
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(a) Frame 9719 at which the ego vehicle finishes first lane-change from the right lane to the middle lane.
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(b) Frame 9747 at which the ego vehicle changes lane again to the left lane.

Figure 4.10 Example dynamic visualisation of a lane-changing conflict detected by Unified only.
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road users such as pedestrians and cyclists. Future research on cross-modal interaction
safety is thus promising. Second, the proposed approach does not directly predict when a
collision will occur. This could be addressed by incorporating trajectory prediction models
and forming a more complete methodology for safe interaction planning. Third, the
theoretical framework is based on proximity and does not indicate the severity of a
potential collision. Collision severity depends on the energy released by a collision, which
is more physics driven than extreme value theory-based. As severity is a key aspect of
collision avoidance, further exploration is necessary. Lastly, the uncertainty in conflict
probability estimation, which could inform the reliability of detection, is not quantified in
this study. This quantification can be achieved by inferring the distributions of proximity
characteristic parameters, given that the parameters are learned using Gaussian models.

An important consideration regarding data should be noted. Although learning the
representation of interaction context is identified as a key task, this study does not conduct
representation learning. In theory, the use of learning methods can include almost all the
information one can collect to describe the interactions between road users. This can go
beyond movements and include road layouts, weather, individual characteristics of road
users, etc. It is necessary to note, however, that the more information gets involved, the
more diverse data is required to train an effective unified metric. Since the framework is
well-suited for learning from accumulative evidence, future research could expand into
continual learning as more data becomes available, allowing for increasingly robust and
adaptive detection of traffic conflicts over time.
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Self-supervised collision risk

quantification of traffic interactions

Highlights
• Collision risk is learnt from naturalistic interactions without crash or near-crash labels.

• Context-conditioned distributions of multi-directional spacing characterise interactions.

• Deviations from typical safe spacing towards closer extremes are quantified as risk.

• Outperformance over existing methods is validated on 2,591 real-world (near-)crashes.

• Environmental and historical kinematic features provide performance enhancement.

• Spacing direction, road-surface condition, and past kinematics are main risk factors.
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Abstract

Accurately and proactively alerting drivers or automated systems to emerging collisions
is crucial for road safety, particularly in highly interactive and complex urban
environments. However, existing approaches to identifying potential collisions either
require labour-intensive annotation of sparse risk, struggle to consider varying contextual
factors, or are only useful in specific scenarios. To address these limits, this study
introduces the Generalised Surrogate Safety Measure (GSSM), a new data-driven approach
that learns collision risk exclusively from naturalistic driving without the need for crash or
risk labels. GSSM captures the patterns of normal driving and estimates the extent to
which a traffic interaction deviates from the norm towards an unsafe state. Diverse data
from naturalistic driving, including motion kinematics, weather, lighting, etc., are used to
train multiple GSSMs, which are tested with 2,591 reconstructed real-world crashes and
near-crashes. These test events are also released here as the largest dataset of its kind to
date. A basic GSSM using only instantaneous motion kinematics achieves an area under
the precision-recall curve of 0.9 and secures a median time advance of 2.6 seconds to
prevent potential collisions. Additional interaction patterns and contextual factors provide
further performance gains. Across various types of collision risk scenarios (such as
rear-end, merging, and turning interactions), the accuracy and timeliness of GSSM
consistently outperform existing baselines. Furthermore, feature attribution analyses reveal
the dominant impacts on risk increase of spacing direction, road-surface condition, and
historical kinematics in the passed second. These results establish GSSM as a scalable,
context-aware, and generalisable foundation to quantify the risk of potential collisions
before they occur, supporting proactive safety in autonomous driving systems and traffic
incident management.

Code availability

https://github.com/Yiru-Jiao/GSSM

Data availability

Raw data sources:

• highD https://levelxdata.com/highd-dataset

• Argoverse2 https://doi.org/10.4121/8d6ee0b0-8ed5-43f3-b1c9-7665cc163e87

• SHRP2 Naturalistic Driving Study
– https://doi.org/10.15787/VTT1/FQLUWZ

– https://doi.org/10.15787/VTT1/DEDACT

Resulting data: https://doi.org/10.4121/9caa1e6c-9abd-4e36-ae28-c9ea4542d940

https://github.com/Yiru-Jiao/GSSM
https://levelxdata.com/highd-dataset
https://doi.org/10.4121/8d6ee0b0-8ed5-43f3-b1c9-7665cc163e87
https://doi.org/10.15787/VTT1/FQLUWZ
https://doi.org/10.15787/VTT1/DEDACT
https://doi.org/10.4121/9caa1e6c-9abd-4e36-ae28-c9ea4542d940
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5.1 Introduction
Road traffic safety remains a critical global concern. Over one million fatalities were
recorded on roads due to traffic accidents worldwide every year, as well as ten times as
many injuries [1]. With decades of advancements in vehicle safety technologies and policy
improvements, a significant number of fatalities have been reduced since 2010. However,
this reduction has plateaued in recent years, as evidenced by Figure 5.1(a). Notably,
fewer than 6% of all traffic accidents occur on high-speed motorways, as displayed in
Figure 5.1(b). Instead, the majority of crashes occur on urban roads, where the traffic
situation is more complex due to various types of road users and their multi-directional
interactions. Given that 60% of the global population is expected to reside in urban areas
by 2030 [167], improving traffic safety in highly interactive urban environments has
become both urgent and globally relevant.
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Figure 5.1 Statistics of traffic accidents. (a) Estimated numbers of fatalities due to road traffic
accidents per year by the Institute for Health Metrics and Evaluation [168]. (b) Distribution of traffic
accidents that occurred in different locations from 2001 to 2021 in 27 countries where complete
data are accessible. The data is sourced from United Nations Economic Commission for Europe
(UNECE) Statistical Database [5].

A core challenge lies in accurately quantifying collision risk in real time to allow for
prevention before crashes happen. Traffic safety research is traditionally grouped into two
categories, reactive and proactive, based on whether the focus is on ex post analysis or ex
ante prevention. Reactive research identifies risk factors from real-world crashes to derive
improvements in road topology design and infrastructure safety monitoring (see [169,
170] for relevant literature reviews). Relying on historical crash data, such improvements
are inevitably delayed after injuries and damage have occurred. In contrast, proactive
research anticipates potential crashes to enable timely interventions [171, 172]. This means
being alert to the precursors to collisions, such as near misses, hazardous interactions, and
evolving traffic conflicts, which potentially lead to crashes if not mitigated.

To address this challenge of proactive collision risk quantification, several
methodologies have been explored in different fields. The earliest established methodology
is surrogate safety measures (SSM), also referred to as surrogate measures of safety (SMoS)
or criticality metrics within autonomous driving research [11, 139, 140]. Developed over
decades since the 1970s [13, 21, 136], SSMs estimate the likelihood or severity of potential
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collisions through physics-based indicators designed for specific road user behaviour
such as car-following and lane-changing. The underlying assumption is that crash risk
arises when the current situation will result in a collision unless immediate evasive
actions are taken. Well-known examples include Time-to-Collision (TTC), deceleration
rate to avoid collision (DRAC), artificial potential fields (e.g., safety field [173] and
risk field [174, 175]), and other varying spatiotemporal measures. Although these
indicators are intuitive, traffic collisions are not the result of a certain type of road
user behaviour, but involve various types of interactions in diverse and dynamic traffic
environments [176, 177]. Therefore, the specifically designed SSMs lack adequate
context-awareness [178] to consider heterogeneous interactions, different types of road
users, and broader environment factors. This lack also limits the generalisability of SSMs
beyond their designed conditions.

A methodology widely used in robotics and the control field quantifies collision risk
based on motion prediction under uncertainty [179, 180]. It predicts the future positions or
reachable sets of road users, propagates uncertainty through these predictions, and assesses
probabilistic violations of safety constraints (e.g., [42, 44, 46]). Risk quantification in
this methodology implicitly assumes that the uncertainties of road user behaviour can
be sufficiently captured by a stochastic model, which remains valid in safety-critical
situations. In practice, this assumption is often violated by aggressive, inattentive, or
other anomalous behaviour that typically precedes crashes. To accommodate such more
complex uncertainties, recent studies have increasingly integrated data-driven prediction
models [43, 181]. While these models enhance context-awareness as traffic environments
are incorporated, the challenge of model generalisability persists in intensely interactive
and safety-critical scenarios that are under-represented in normal training data. When
encountering such scenarios, the accuracy and reliability of risk quantification may
degrade significantly.

Facilitated by the rapid development of computer vision, a video-data-driven
methodology has emerged since 2018. It is known as Traffic Accident Anticipation (TAA,
see dedicated literature reviews such as [48, 49]), with the objective to provide early
predictions of impending collisions by modelling the visual patterns across sequential
video frames. This is commonly achieved through supervised learning with real-world
accidents serving as labels. The fundamental assumption is the existence of representative
visual cues before accidents happen, so that deep neural networks can identify these cues.
For example, vehicles deviating from their lanes may signal loss of control or evasive
manoeuvres [182], while motorcycles at high speed can indicate risk in urban areas [183].
Heavily driven by annotated crash data, TAA faces a practical challenge of scalability. The
infrequency and variety of traffic accidents, of which the videos are inherently difficult to
acquire, impede effective and reliable training [50]. Similar to the previous methodologies,
TAA models also struggle with generalisability to new contexts that differ, even slightly,
from training patterns.

In summary, to proactively quantify collision risk, existing methodologies share 3
limitations in

• scalability, leveraging large-scale observations instead of relying on factual crashes;
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• context-awareness, accounting for any information that can be used to characterise
interaction [178] in addition to road user behaviour, such as weather, lighting, and
road conditions; and

• generalisability, covering a wide variety of traffic interactions from on motorways
to at urban intersections, and handling new contexts not seen in training data.

In this paper, we propose the generalised surrogate safety measure (GSSM), a novel
approach to proactive risk quantification of potential traffic collisions. GSSM evaluates
how extreme a given traffic interaction deviates from typical safe behaviour towards
an unsafe state in the interaction context, outputting a continuous risk level and the
corresponding likelihood of a potential collision. This consideration of extreme interaction
makes it possible to naturally generalise from normal interactions to safety-critical
situations. GSSM utilises neural networks to enable context-awareness, incorporating
various relevant contextual information (e.g., motion states of road users, weather, and
road conditions) and thus adapting to diverse scenarios from vehicle-vehicle encounters on
highways to pedestrian-vehicle interactions in urban streets. Furthermore, GSSM learns
interaction patterns from naturalistic data, i.e., real-world and unconstrained driving
behaviour collected under everyday conditions with minimal interference, and does
not require any crash records or manually labelled risk. This makes the training of
GSSM scalable. In summary, GSSM offers a new paradigm for proactive collision risk
quantification. It promises a contribution to advancing proactive safety research, to
improve, e.g., autonomous driving systems, infrastructure design and operations, as well as
traffic management policies.

In the rest of this paper, Section 5.2 first defines the problem of proactive collision risk
quantification and then introduces GSSM. Its learning is explained in Section 5.3. In
Section 5.4, we present a real-world dataset of crashes and near-crashes for validating
GSSM. Our experiment design is described in Section 5.5, followed by Section 5.6 where
the characteristics of GSSM are demonstrated. Finally, Section 5.7 concludes this paper
and envisions future research. To improve readability, we place details that do not hinder
understanding in appendices.

5.2 Generalised surrogate safety measure
In this section, we introduce the generalised surrogate safety measure (GSSM). We
first formulate the general problem of proactive collision risk quantification, and then
outline the theoretical basis for GSSM. Our design of GSSM inherits the fundamental
knowledge developed over decades of research on surrogate safety measures (SSMs),
where potential collisions are also called traffic conflicts. This distinguishes GSSM from
existing self-supervised (and unsupervised) approaches that are tailored for computer
vision and primarily based on anomaly detection. Despite that, GSSM is adequately
flexible to incorporate vision data.
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5.2.1 Problem formulation
Although the consequences of traffic accidents vary, this paper considers that every
collision should be avoided and thus focuses on the likelihood of potential collisions.
Within this scope, we define the proactive risk quantification of potential collisions as
a function Q : S 7→ L, where S represents a scenario of traffic interaction and Q(S)
estimates the likelihood L of an impending collision in this scenario. L is typically
expressed as a probability p ∈ (0, 1), or as a numerical or categorical level M that can be
monotonically mapped to p.

The primary objective of Q is to accurately and timely foresee a potential collision.
Inaccurate and ill-timed anticipation, e.g., road users acting too quickly or, on the contrary,
failing to act, are the most common factors of road crashes (as surveyed in [184], 51% of
car drivers, 42% of motorcyclists, 68% of pedestrians, and 46% of cyclists). To alert to a
potential collision, L is usually converted into a binary outcome using a threshold. When
annotated data of crashes and near-crashes are available, assessing the accuracy of Q then
compares these binary classification results with ground truth annotations, while timeliness
is assessed by the time between the threshold-based alerts and the occurrence of a crash or
near-crash event. In the absence of annotations, surrogates such as close distance and hard
braking are used to create near-crash labels (e.g., [173, 185, 186]).

As reviewed in Section 5.1, Q can be predefined in closed-form expressions or based
on uncertainty-aware prediction, and can also be learnt in a supervised manner with
annotated crash videos. A particular challenge in collision risk quantification is that crash
and near-crash data are expensive to collect and inherently rare, despite causing numerous
fatalities and injuries. Consequently, there is a growing interest in unsupervised and
self-supervised learning approaches that do not rely on annotated crash data, to name a few,
see [45, 187–189].

5.2.2 Operational definition
Every collision evolves, often rapidly, from a previously safe interaction. This evolution
was first articulated in [8] as the safety pyramid. In Figure 5.2 we depict the conceptual
relations in the safety pyramid, which also reflects the interaction behaviours of road
users [23]. For two or more approaching road users, a potential collision emerges when
they are too close to interact safely. The perceived risk of a potential collision then triggers
the road users to take evasive actions. In case of successful evasion, the potential collision
will end in a near-crash; otherwise, a crash will occur.

Building on the safety pyramid, GSSM considers the spatial-temporal gap between
road users as a proxy that can reflect collision risk across varying interaction contexts.
Intuitively, a smaller gap implies less physical space and time available to react and
prevent a potential collision. Empirical evidence also shows that people perceive increased
risk when other moving objects approach [146, 147]; and motivated by the perceived risk,
maintain acceptable separation from each other [77]. In this paper, we let GSSM use the
spatial gap, hereafter referred to as spacing. GSSM quantifies collision risk by the extent to
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Figure 5.2 The safety pyramid conceptualises the evolution from safe interactions to unsafe
interactions up to crashes.

which a spacing is too close for safe interaction in its interaction context. To enable
cross-context risk quantification, we establish two key assumptions:
Assumption 1. Potential collisions are precursors to collisions as well as continuation of

previously safe interactions.
Assumption 2. In the same interaction context, reduced spacing monotonically indicates

increased risk of collision.
Formally, we consider repeated observations in the same interaction context and define

the extent of proximity as the number of times a given spacing is the minimum among all
observed spacings. Following the problem formulation in Section 5.2.1, we factorise an
interaction scenario S into (s,X), where s ≥ 0 is the spacing between two or more road
users and X denotes all other contextual observables, e.g., motion states, weather, lighting,
and road surface conditions. Accordingly, GSSM : (s,X) 7→M , where M is a risk level.
For n ∈ N>0 observations with varying spacings in context X , the extreme value theory
calculates p(s, n|X) = (Pr(S > s|X))

n as the probability that s is the minimal spacing
in n repeated observations. The smaller s is, over the more observations s remains
minimal, and the larger n is.

We interpret the extent of spacing proximity n as conflict intensity. Accordingly,
p(s, n|X) can be understood as the probability that an interaction scenario (s,X) is a
conflict at intensity n. Then we define the critical intensity of an interaction as the smallest
n for which the probability of conflict exceeds the probability of no conflict, i.e., n satisfies
p(s, n|X) > 1− p(s, n|X). Solving the inequality yields n > ln 0.5/ ln(Pr(S > s|X)),
and we use this critical point to define GSSM.

To summarise, GSSM is operationally defined as the critical conflict intensity n̂ of an
interaction scenario (s,X). From the view of extreme value theory, the spacing s has a
probability of 0.5 to be the minimum in n̂ observations in the same interaction context X;
from a more intuitive view, if the interaction involves a conflict, its intensity is at least n̂.
The value of n̂ may be very large, e.g., 1, 000 or 10, 000, in high-risk interactions. For
convenience, we take the base-10 logarithm of n̂, yielding representative scores of 3 and 4,
respectively. Equation (5.1) presents the complete definition of GSSM with the following
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properties. Let M be the risk level given by GSSM, M ∈ R. When s is larger than the
median spacing in context X , Pr(S > s|X) < 0.5 and M ≤ 0, which implies safety.
In contrast, smaller s corresponds to larger M and a higher risk of potential collision.
Particularly, when s = 0, M can be infinite and indicate a factual collision. In addition, M
can be naturally mapped to a probability p ∈ (0, 1) by p(s,X,M) = Pr(S > s|X)10

M

.

GSSM(s,X) = log10

[
ln 0.5

ln(Pr(S > s|X))

]
(5.1)

In theory, GSSM can be reduced to any SSM that is based on the spatial-temporal gap
by specifying appropriate contextual observables. For example, Time-to-Collision (TTC)
and deceleration rate to avoid collision (DRAC) account for the relative speed between two
vehicles following one another; Proportion of Stopping Distance (PSD) considers the
squared speed of a vehicle following another. For more details on such reduction and
additional theoretical derivation, please refer to our previous work [190].

5.2.3 Multi-directional spacing
Spacing serves as a risk proxy in GSSM and reflects the physical and psychological reaction
margin to prevent a potential collision. As mentioned in Section 5.1 and displayed in
Figure 5.1(b), traffic collisions in urban traffic significantly outnumber those on highways.
Urban traffic involves multi-directional movements beyond longitudinal dynamics.
These include not only car-following and lane-changing but also two-dimensional (2D)
interactions such as path crossing and conflict negotiation, especially at intersections.

We adapt the method developed in [155] to quantify multi-directional spacing in
2D interactions. Consider two road users, i and j. A relative coordinate system is
introduced with its origin at the position of i and y-axis oriented along the direction
of the relative velocity vij = vi − vj . If i and j have identical velocities, the y-axis
is instead aligned with the heading direction of i, denoted by hi. We transform the
position of j, given by (xj , yj), into the relative coordinate system and get (xij , yij).
Then the multi-directional spacing between i and j at each time step is represented by
(xij , yij , |vij |). This coordinate transformation is explicitly defined in Equation (5.2).[

xij
yij

]
=

1√
x2axis + y2axis

[
yaxis −xaxis
xaxis yaxis

]
+

([
xj
yj

]
−
[
xi
yi

])
;

(xaxis, yaxis) =

{
(xvi

− xvj
, yvi
− yvj

), if vi ̸= vj ,

(xhi
, yhi

), otherwise.

(5.2)

To facilitate subsequent model training, we convert the positional components (xij , yij)
in multi-directional spacing into polar coordinates. We define the polar coordinate system
with its pole at the origin of the relative coordinate system and its polar axis aligned with
the x-axis of the relative coordinate system. This conversion yields (ρij , sij , |vij |) as the
polar representation of multi-directional spacing, where ρij is the angular coordinate and
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sij is the radial coordinate. Respectively, ρij represents the direction of spacing and sij
represents the distance of spacing. We then incorporate ρij and relative speed |vij | in the
context X , and use sij as the spacing variable s.

5.2.4 Parameterised GSSM
We now introduce a parametric form of GSSM. Notice that Pr(S > s|X) in Equation (5.1)
equals to 1 − Pr(S ≤ s|X). Consider the conditional distribution of spacing s in
context X, Pr(S ≤ s|X) is the cumulative probability distribution of p(s|X). We
thus parameterise Pr(S ≤ s|X) by FS(s;ϕ(X)), where ϕ(X) denotes the conditional
parameters depending on X . To specify FS(s;ϕ(X)), we can learn ϕ(X) using standard
statistical and machine-learning techniques, thereby making GSSM more tractable for
training.

Many studies demonstrate that the spatial gaps between road users are effectively
characterised by the lognormal distribution [156–158]. We thus assume the
context-conditioned spacing distribution p(s|X) follows a lognormal distribution
with two parameters µ and σ. For numerical stability in training, we learn (µ, log(σ2))
instead of (µ, σ). But considering the convenience of notation, we write the estimated
parameters ϕ̂(X) = (µ̂(X), σ̂2(X)) in this paper. Then Equation (5.3) presents the
corresponding probability density function, and a parameterised GSSM is defined in
Equation (5.4), where erf(z) = 2

∫ z

0
e−x2

dx/
√
π is the Gaussian error function within

domain (−1, 1).

fS(s;ϕ(X)) =
1

s
√
2πσ̂2(X)

exp

[
− (ln s− µ̂(X))2

2σ̂2(X)

]
(5.3)

GSSM(s,X) = log10

[
ln 0.5

ln(1− FS(s;ϕ(X))

]

= log10

 ln 0.5

ln 1
2

(
1− erf

(
ln s−µ̂(X)√

2σ̂2(X)

))
 (5.4)

5.3 GSSM learning
For self-supervised risk quantification using GSSM, the primary learning task aims to
estimate the conditional parameters of context-conditioned spacing distributions. Notably,
learning a GSSM does not require crash or near-crash data; it leverages normal interactions,
of which the available data is far more abundant. In addition to this primary task, we
introduce two auxiliary tasks. One is context representation learning to incorporate a wider
range of data for training; the other is feature attribution to identify contributing factors to
potential collision risk.
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5.3.1 Inference of conditional parameters
We use a neural network gW to estimate the conditional parameters ϕ(X), where W
denotes the network’s learnable weights. Therefore, gW (X) outputs parameter estimates
ϕ̂(X) and it needs to make fS(s; ϕ̂(X)) approximate the spacing distribution p(s|X) as
closely as possible. A closer approximation can be indicated by a smaller Kullback–Leibler
divergence DKL [p(s|X)||fS(s; gW (X))]. Minimising this divergence is equivalent
to maximising expected log-likelihood Es∼p(s|X) [ln fS(s; gW (X))] given real-world
observations of road user interaction. More conveniently, we minimise the negative
log-likelihood (NLL) loss defined in Equation (5.5), where (si, Xi) represents a sample of
interaction scenario described by spacing si and contextual observables Xi. This guides
gW (X) to accurately fit the spacing distributions conditioned on various interaction
contexts.

LNLL = − ln

N∏
i=1

f(si; gW (Xi)) =
1

N

N∑
i=1

ℓNLL(si, Xi),

ℓNLL(si, Xi) =
1

2

[
ln 2π + ln σ̂2(Xi) +

(ln si − µ̂(Xi))
2

σ̂2(Xi)

]
+ ln si

(5.5)

To avoid abrupt changes in risk quantification for continuous interactions, we introduce
a smoothness regularisation term that penalises sharp differences in the distribution
approximations for similar interaction contexts. Specifically, for each Xi, we generate a
perturbed X ′

i by adding a small Gaussian noise to each continuous variable in the original
Xi. As shown in Equation (5.6), then a Jensen-Shannon divergence (DJS) between the
estimated distributions in context X and a similar context X ′ is weighted by β and added
to LNLL. Thereby, W = argminW LSmoothNLL.

LSmoothNLL =
1

N

N∑
i=1

ℓSmoothNLL(si, Xi, X
′
i, β),

ℓSmoothNLL(si, Xi, X
′
i, β) = ℓNLL(si, Xi) + βDJS[fS(s; gW (Xi))||fS(s; gW (X ′

i))]

(5.6)

5.3.2 Context representation learning
In this paper, we categorise the contextual observables X describing an interaction
scenario into three feature groups. Current features (denoted by XC) represent the
instantaneous states of interacting road users, including, e.g., their individual speeds and
relative velocity. Environment features (XE) describe external conditions during the
interaction, such as weather, lighting, and road surface quality. Historical kinematic
features (XT ) include time-series data of the interacting road users’ speeds and yaw rates
within the past 2.5 seconds. To avoid leakage of spacing information as suggested in [190],
random values in XT are dropped out (set as zero). A comprehensive list of the features
used in this paper is provided in Appendix Table A1.

Each feature group is processed by a dedicated encoder, yielding encoded representation
groups θC = gCWC

(XC), θE = gEWE
(XE), and θT = gTWT

(XT ). These groups are then
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concatenated and passed to a decoder gDWD
, which estimates conditional parameters as

illustrated in Equation (5.7). Details of these modules’ architecture are provided in
Appendix Section A.3.

ϕ(X) = gDWD
([θC ; θE ; θT ]) (5.7)

The learning of encoded representation is implicitly achieved when training a gW (X)
as a whole. In practice, the encoders can also be pretrained by separate representation
learning. For instance, contrastive learning is well aligned with GSSM training, which
essentially aims to capture spacing patterns in similar conditions and distinguish those
in dissimilar conditions. To focus on presenting GSSM, we do not perform separate
representation learning in the experiments in this paper, but future research is expected for
more practical applications.

5.3.3 Attribution of feature importance
In order to improve traffic safety, the features that strongly influence the estimated risk
of potential collisions are worth identifying. GSSM learns interaction patterns from
real-world data and varies its estimates of collision risk in different contexts. To analyse
these learnt patterns and attribute each feature’s effect on the estimated risk, we use an
explainable artificial intelligence (XAI) method known as Expected Gradients (EG, [191]).

EG extends Integrated Gradients [192] by taking the expectation of gradients over
integration path steps α ∼ U(0, 1) and a set of reference points. For clearer interpretation,
we compute attributions with respect to various pieces of latent representation θ (rather than
raw inputs). The reference points are typically sampled from a uniform distribution over
the entire training set [191]. Here, we apply k-means clustering to Θ, the representations
encoded from all samples in the training set, and use cluster centres as representative
references θ′. Equation (5.8) summarises our computation of EG. The computed
attributions sum to the difference in estimated risk given θ relative to the averaged risk
given the references. The positive attribution of a feature means it contributes to increasing
the estimated risk, whereas the negative attribution implies a contribution to decreasing the
risk. More details about the encoder design to ensure correct dependence of contextual
features are referred to Appendix Section A.3.

EG(θ) = E
θ′∼Θ,α∼U(0,1)

{
(θ − θ′)

∂

∂θ
log10

[
ln 0.5

ln(1− FS(s; gDWD
(θ′ + α(θ − θ′)))

]}
(5.8)

Note that these attributions do not establish causality. For example, a positive
attribution of relative speed does not imply that a lower relative speed would have reduced
the risk. In a posteriori manner, EG explains the features’ computational influence on the
inference of a trained neural network. We recommend two strategies for interpretation.
First, compare the attributions of all features at a specific time moment to assess their
relative importance. Second, track how the attributions evolve over time. For instance, if
the estimated collision risk rises along with an increasing attribution for a particular feature,
that feature may have a relatively strong correlation with collision risk. Nonetheless, such
an explanation alone cannot serve as evidence to justify an intervention, where future
research is needed.



5

84 5 Self-supervised collision risk quantification of traffic interactions

5.4 Data of potential collisions
Despite that GSSM does not use real-world traffic accidents for training purposes, a
relatively small-scale dataset of crashes and near-crashes is necessary for effectiveness
assessment. Such a dataset needs to contain both safe and safety-critical road user
interactions in various situations. In Table 5.1, we summarise existing datasets that each
have over 500 crashes and/or near-crashes recorded. Among these, we use the database
derived from the Second Strategic Highway Research Program’s (SHRP2) Naturalistic
Driving Study (NDS), where we reconstruct bird’s eye view trajectories for easier use. The
major shortcoming of the other datasets is the lack of safe baselines to test false positives,
except for DAD, which provides 1,130 clips sampled from source videos. Another issue is
that most of the datasets were originally designed for accident detection rather than risk
quantification, thus the time periods before crashes are not well preserved for assessing
risk evolution. In the rest of this section, we first introduce SHRP2 NDS, then describe
the trajectory reconstruction, and finally summarise the data we use in the following
experiments.

Table 5.1 Existing datasets of crashes (and near-crashes).

Dataset a Year b Annotation c Crashes (and near-crashes)

Number Time range Period before impact d

DAD [193] 2016 T 620 5 s Designed to be 4.5 s
CADP [194] 2018 T, S 1,416 e Varying On average 3.7 s
A3D [187] 2019 T, P 1,500 Varying Unrevealed
CCD [195] 2020 T, P, W 1,500 5 s At least 3.0 s
DADA [196, 197] 2019, 2022 T, S, C, P, W, L, A 2,000 Varying On average 5.2 s
DoTA [189] 2022 T, S, C, P 4,677 Varying On average around 4.0 s

SHRP2 NDS [198, 199] 2010-2013 T, S, C, P, W, L, etc. 8,895 f Varying At least 20.0 s
Reconstructed SHRP2 This paper T, S, C, P, W, L, etc. 6,664 g Varying On average 22.8 s

aData sources: DAD, A3D, CCD, and DoTA were compiled from dashcam recordings posted on YouTube.
DADA was compiled from dashcam recordings posted on YouTube, Youku, Bilibili, iQiyi, Tencent, etc. CADP
was compiled from surveillance camera recordings posted on YouTube.

bFor SHRP2 NDS, the listed years are actual data collection time. For the other datasets, the years are publication
time, since these sets were sourced from the Internet and have no determinate collection time.

cAnnotated information includes: event time (T), bounding box positions (S), crash type (C), participants (P),
weather (W), lighting (L), driver’s attention map (A). The datasets derived from SHRP2 NDS include additional
information such as traffic density and road surface quality.

dImpact means physical contact in crashes; for near-crashes, the moment of closest proximity.
eAmong these videos, 205 are annotated while the others are not.
fThese include 1,942 crashes and 6,953 near-crashes.
gThese include 1,402 crashes and 5,262 near-crashes.

5.4.1 SHRP2 Naturalistic Driving Study
The SHRP2 NDS is a large-scale research initiative aimed at understanding driver
behaviour and performance [200]. Between 2010 to 2013, it collected extensive data using
instrumented vehicles in six states in the United States. More than 3,300 participant
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vehicles were equipped with data acquisition systems that recorded video footage, vehicle
network data (e.g., speed, brake, and accelerator positions), and signals from additional
sensors such as forward radar and accelerometers. A significant strength of SHRP2 NDS is
its comprehensive set of manually annotated traffic safety events, including crashes
and near-crashes that are collectively termed “safety-critical events”, along with “safe
baselines” selected through stratified random sampling. Table 5.2 outlines the operational
definitions of these events as described in [12], where further details of the SHRP2 NDS
are also referred to.

Table 5.2 Operational definitions of traffic safety events in the SHRP2 NDS.

Event Operational definition

Crash

“Any contact that the subject vehicle has with an object, either moving or fixed,
at any speed in which kinetic energy is measurably transferred or dissipated is
considered a crash. This also includes non-premeditated departures of the
roadway where at least one tyre leaves the paved or intended travel surface of
the road, as well as instances where the subject vehicle strikes another vehicle,
roadside barrier, pedestrian, cyclist, animal, or object on or off the roadway.”

Near-crash

“Any circumstance that requires a rapid evasive manoeuvrer by the subject
vehicle, or any other vehicle, pedestrian, cyclist, or animal, to avoid a crash is
considered a near-crash. A rapid evasive manoeuvrer is defined as steering,
braking, accelerating, or any combination of control inputs.”

Safe baseline
(Non-conflict)

“Normal driving behaviours and scenarios where the driver may react to
situational conditions and events, but the reaction is not evasive and the
situation does not place the subject or others at elevated risk.”

5.4.2 Trajectory reconstruction
The accessible motion data from the SHRP2 NDS do not contain positional information of
the subject (participant) vehicles to protect driver privacy. In addition, the other road
users are detected by forward radars as surrounding objects in a subject-centric moving
coordinate system. To align these data with the mainstream bird’s eye view datasets,
we reconstruct the trajectories for both subject vehicles and surrounding objects using
extended Kalman filters (EKFs). First, we linearly interpolate all time-series signals to a
uniform frequency of 0.1 seconds. Next, we reassign the indices of surrounding objects
when necessary. Due to detection limitations, an object may be temporarily lost and
re-detected later with a new index. If a newly detected object is within a specified distance
threshold of a previously tracked object, the new object is assigned the previous index. We
define the distance threshold as the object’s position displacement relative to the subject
over 0.3 seconds, constrained to a minimum of 0.5 m and a maximum of 2.5 m. Then we
reconstruct trajectories for each event in two steps.

Step 1: subject vehicle’s trajectory reconstruction. We apply an EKF assuming
constant yaw rate and acceleration. The motion dynamics are updated according to
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Equations (5.9), (5.10a) and (5.10b), where (xi, yi) denotes the vehicle’s position, ψi the
heading angle relative to the x-axis, vi the longitudinal speed, ωi the yaw rate, ai the
longitudinal acceleration, and ϵ = 0.001 is a threshold to use longitudinal updates when
near-zero yaw rates induce numerical instability. The update interval ∆t = 0.1 seconds.
We place the subject vehicle initially at (xi, yi) = (0, 0) with its heading ψi = 0 along
the x-axis, and set the initial states of speed, yaw rate, and acceleration from original data.
The data of yaw rates and accelerations are stably recorded, but speed measurements are
not always consistent. We thus consider two orders of time sequence depending on
whether the earliest or the latest 0.5-second speed states are missing. If the latest states are
missing, we let the EKF propagate forward from the earliest available measurement; if the
earliest states are missing, we let the EKF propagate backwards. When both earliest and
latest speed states exist, we run two EKFs from both ends and then select the reconstructed
trajectory that deviates less in speed and yaw rate from the original sensor data.

xi
yi
ψi

vi
ωi

ai


t+∆t

=


xi
yi
ψi

vi
ωi

ai


t

+


∆xi
∆yi
ωi∆t
ai∆t
0
0

 , where (5.9)

∆xi =



cos(ψi)

(
vi∆t+

1

2
ai∆t

2

)
, if |ωi| ≤ ϵ,

viωi [sin(ψi + ωi∆t)− sin(ψi)]

ω2
i

+
ai [cos(ψi + ωi∆t)− cos(ψi)]

ω2
i

+
aiωi sin(ψi + ωi∆t)∆t

ω2
i

, otherwise;

and (5.10a)

∆yi =



sin(ψi)

(
vi∆t+

1

2
ai∆t

2

)
, if |ωi| ≤ ϵ,

viωi [cos(ψi)− cos(ψi + ωi∆t)]

ω2
i

+
ai [sin(ψi + ωi∆t)− sin(ψi)]

ω2
i

− aiωi cos(ψi + ωi∆t)∆t

ω2
i

, otherwise.

(5.10b)

Step 2: surrounding objects’ trajectory reconstruction. We then reconstruct the
trajectories of the surrounding objects. This reconstruction has the forward field of view
only, as only forward radar data are available. During an event, the subject vehicle may
detect multiple objects (e.g., vehicles, cyclists, pedestrians, or animals), of which the edge
nearest to the subject vehicle is detected. For each object, we first convert its local radar
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coordinates into the subject vehicle’s reconstructed global coordinate system. Then
we determine the object’s centroid based on its dimensions and whether the detected
edge corresponds to its front or rear, inferred from its heading direction. Since only
relative positions and speeds are available for these detected objects, we use an EKF
under the assumption of constant heading and speed. The update equations are given in
Equation (5.11). 

xj
yj
ψj

vj


t+∆t

=


xj
yj
ψj

vj


t

+


cos(ψj)vj∆t
sin(ψj)vj∆t

ψj

vj

 (5.11)

Due to limited access to the raw data of cameras and radars, from which the provided
data in the SHRP2 NDS were extracted, our reconstruction intends to preserve the
first-hand information (i.e., the provided data) as much as possible. Therefore, this study
defines reconstruction errors as the deviations of reconstructed trajectories from the
provided signals in the SHRP2 NDS. We optimise the EKF parameters of uncertainties and
motion ranges by minimising the root mean squared reconstruction error in subject speed,
subject yaw rate, subject acceleration, and object speed, as well as the mean displacement
error of objects. The distributions of eventual reconstruction errors are presented in
Appendix Figure A1. Note that due to the absence of ground truth, the very small errors
we achieved do not indicate an accurate capture of reality. Instead, the errors quantify
reconstruction deviations from the sensor measurements. On average, the standard
deviation is smallest for safe baselines and larger for near-crashes and crashes. But the
difference is rather small, with 0.03-0.04 m/s of subject speed, 0.08-0.13 m/s2 of subject
acceleration, and 0.02-0.06 m/s of object speed.

5.4.3 Data used in this paper
We use crashes and near-crashes derived from the SHRP2 NDS as our test set for GSSM
demonstration. The safe baselines are used as part of our training data. Therefore, this
paper utilises all reconstructed event trajectories, alongside additional information relevant
to the safety-critical events.

Not all 8,895 events in the original dataset could be reconstructed due to missing
values, sensor inaccuracies, and the absence of ground-truth data. There are 6,664 events
where the trajectories of both the subject vehicle and at least one surrounding object are
reconstructed. From these, we extract a useful test set by excluding invalid events that
meet any of the following criteria:

• no object is detected for more than 5 seconds (too short to observe risk evolution),
• the crash or near-crash is with an object behind the subject vehicle (given the lack of

rearward radar data),
• the crash or near-crash involves a “shapeless” obstacle (e.g., roadside pavement).

Eventually, we obtain 4,875 safety-critical events in the test set. Figure 5.3(a) presents the
numbers of originally recorded events in the SHRP2 NDS, the subset with both subject and
object trajectories reconstructed, and the final filtered subset.
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Figure 5.3 Statistics of original and processed events in the SHRP2 NDS. (a) Numbers of crashes, near-crashes, and safe baselines that are recorded,
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5.5 Experiments

5

89

The distributions of event types are further displayed in Figure 5.3(b), where the
difference is primarily a result of the fact that rear-end events are more likely to be
continuously detected by the forward radar. In Figures 5.3(c-e), we also show the numbers
and percentages of events in different environmental conditions. More than 80% of the
events occurred without adverse conditions, i.e., dry roads, not precipitation, and in
daylight. However, considering that adverse conditions are less common by nature, they
still play a role in causing traffic accidents.

In addition to the reconstructed trajectories, we attach other information about the
safety-critical events. To consider a broader range of factors leading to potential collisions,
the environmental conditions, including weather, lighting, road surface, and traffic density,
are incorporated. To evaluate whether and when a potential collision is successfully
detected, the annotations of time when an event starts and ends, when the driver reacts (if
applicable), and when the impact occurs (a physical contact for crashes or the closest
proximity in near-crashes) are also included. Further, the specific type (e.g., with a leading
object, during crossing or turning) of an event is included to evaluate the detection of
potential collisions in different scenarios. Lastly, when necessary, each event’s narrative is
referred to for further verification. These result in the largest to date trajectory dataset of
traffic crashes and near-crashes. This dataset has been made accessible in [201].

5.5 Experiments
We run all experiments with an NVIDIA A100 GPU (80GB RAM) as well as 5 to 50
Intel Xeon CPUs, depending on whether parallel computation is helpful. To ensure fair
comparison across settings and methods, we control the following conditions: random
seed, maximum training epochs, early stopping criteria, and evaluation sample sets.
Hyperparameter choices are listed in Appendix Table A2. We do not conduct an ablation
experiment for neural network design, as our core focus by experiments is on validating
the proposed generalised surrogate safety measure (GSSM).

5.5.1 Training datasets and experiment design
Our training data consist of 3 datasets collected in different countries, involving different
interaction scenarios, and with different equipment. The first dataset is composed of the
safe baselines derived from SHRP2 NDS as described in Section 5.4. We term this set as
SafeBaseline, where the interactions were recorded both on highways and in urban traffic.
Considering the detection limitation of forward radar, the majority of SafeBaseline may
be on straight roads. To compensate for that, we introduce two more datasets. One is
specifically focused on urban intersections. This dataset was collected in the U.S. in 2019
by a fleet of automated vehicles [202]. We use the set of interactions between human road
users extracted by [203], and term this set as ArgoverseHV. From the other dataset known
as highD, we extract lane-change interactions using the same methods in our previous
work [190]. This dataset was collected by drones on German highways in 2018, with a
position error typically less than 10 cm [161]. To make fair use, we draw approximately
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equal sample sizes for each dataset, where 80% are used for training and 20% for model
validation to monitor training progress.

The experiments are designed as follows to demonstrate the effectiveness of GSSM
and its useful characteristics targeted in this research.

• Effectiveness. Effective risk quantification accurately identifies dangers and
provides timely alerts to prevent potential collisions. Therefore, we compare GSSM
with other existing methods on the accuracy in alerting crashes and near-crashes as
well as the timeliness of alerts. For comparability, the GSSM compared in this
experiment is trained using only current features (XC).

• Scalability. The training of GSSM and its effectiveness are expected to be scaled
with increased interaction patterns. We combine SafeBaseline with varying
proportions (random sampling 10%–100%) of ArgoverseHV or highD, train a
series of GSSMs on the combined datasets, and then observe the variation in their
effectiveness.

• Context-awareness. GSSM can consider varying contextual information,
and additional contextual features are expected to enhance risk quantification
effectiveness. We train multiple GSSMs on SafeBaseline, which uniquely provides
environment data. In addition to current features (XC ), these GSSMs progressively
incorporate more contextual information of subject acceleration (ai), environment
features (XE), and historical kinematic features (XT ).

• Generalisability. Our training of GSSM does not use any crashes or near-crashes as
in the test set. Essentially, the effectiveness of all the GSSMs trained in this study is
generalised from normal interactions, which vary in location and equipment during
data collection. In addition to that, GSSM is designed to be generally applicable
across interaction scenarios. We compare the effectiveness of GSSM against other
methods for different types of safety-critical events, including rear-end scenarios,
lateral interactions with other road users in adjacent lanes, crossing and turning
conflicts, merging situations, and a small number of incidents involving vulnerable
road users (e.g., pedestrians, cyclists).

• Risk attribution. Lastly, we evaluate the dominant contributing factors to the
change in collision risk based on feature attribution.

Table 5.3 summarises the 29 GSSMs that are trained across these experiments.
These variations depend on the training datasets (or their combinations) and the selected
contextual observables.

Since we do not include video data yet as contextual information, the comparison in
this paper’s experiments excludes the self-supervised methods based on computer vision or
anomaly detection. Instead, we compare with surrogate safety measures (SSMs) tailored
for two-dimensional (longitudinal and lateral) interactions as listed in Table 5.4. Their
estimations are all based on the instantaneous states of interacting road users, i.e., the
current features XC . For efficient large-scale evaluation, we implement TAdv, ACT, and
TTC2D in a vectorised form, enabling parallel computation over thousands of interaction
pairs.



5.5 Experiments

5

91

Table 5.3 Overview of GSSMs to train in the experiments.

Acronym a Training dataset(s) b Contextual
observables

Experiment(s)
involved in

c

S-C SafeBaseline

[XC ]

S, C
h-C highD E, G
A-C ArgoverseHV G
SA-C SafeBaseline ∪ ArgoverseHV{10%,20%,··· ,100%} d S
Sh-C SafeBaseline ∪ highD{10%,20%,··· ,100%} S
SAh-C SafeBaseline ∪ 10%ArgoverseHV ∪ 100%highD S
S-Ca

SafeBaseline

[XC , ai] C
S-CE [XC , XE ] C
S-CaE [XC , ai, XE ] C
S-CET [XC , XE , XT ] C, R, G
S-CaET [XC , ai, XE , XT ] C

aAcronyms follow the format <Datasets>-<Contextual observables>. For example, “S-C” is trained on
SafeBaseline and uses current features XC

bThe dataset names are abbreviated as “S” = SafeBaseline, “A” = ArgoverseHV, “h” = highD. If multiple datasets
are used (e.g., “SAh”), the GSSM is trained on their union.

cThe experiments are abbreviated as “E”=Effectiveness, “S”=Scalability, “C”=Context-awareness,
“G”=Generalisability, “R”=Risk attribution. A GSSM may be involved in multiple experiments.

dThe data combined in addition to SafeBaseline are randomly sampled for 10%-100% from the whole dataset.

Table 5.4 Two-dimensional Surrogate Safety Measures (2D SSMs) used as baseline methods.

Two-dimensional SSM Year Brief summary

Time Advantage (TAdv) [23] 2010

Expected time gap between two
road users passing a common spa-
tial zone, assuming no behaviour
change in the short future. This
is also known as predicted Post-
Encroachment-Time (PET).

Anticipated Collision Time (ACT) [18] 2022

The shortest distance between two
road users divided by their closing-
in rate, assuming a constant closing-
in rate in the short future.

Two-dimensional Time-to-Collision
(TTC2D) [204]

2023

Minimum of the longitudinal and
lateral Time-to-Collision values,
assuming no behaviour change in
the short future.

Emergency Index (EI) [28] 2025

Intensity of evasive action required
to prevent a potential collision,
based on the change rate in overlap-
ping path.
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There also exist extensions that incorporate stochastic behaviour and/or extreme value
theory (e.g., survival analysis), such as [149, 205, 206]. We do not compare with these
methods because their implementations require specific modelling assumptions about
uncertainty (for example, how to represent trajectory noise and behavioural variability),
which makes a fair and consistent comparison difficult within our current framework.
Nevertheless, we refer interested readers to this line of work as a complementary direction
that combines SSMs and probabilistic modelling.

5.5.2 Ground truth of safety-critical events
The original SHRP2 NDS annotates the time moments of the start, impact, and end of
a crash or near-crash. For crashes, the impact time means physical contact time; for
near-crashes, impact time is when the road users were at the closest proximity. The
safety-critical events in the test set have at least 20 seconds before the impact time, which
allows for separating the danger period and safe period in each event. Then we can create
positive ground truth (i.e., potential collision) between the subject vehicle and a conflicting
object in the danger period; and negative ground truth (i.e., safe interactions) between
the subject vehicle and other surrounding objects in the safe period. As illustrated in
Figure 5.4, we consider the danger period of an event from the start time, or 4.5 seconds
before impact time if the annotated start time is less than 4.5 seconds until impact. This
danger period is considered to finish at the end time, or in 0.5 seconds after impact time if
the annotated end time is delayed. Meanwhile, we consider the safe period for each
surrounding object as 2 to 5 seconds after the object is detected for 1.5 seconds and 3
seconds before the event start time. To be considered as in a safe period, the object should
not have a hard braking (deceleration greater than 1.5 m/s2).

Start time Impact time End time

An unselected
surrounding object

Another
surrounding object

A surrounding object

Subject vehicle At least 4.5 s

1.5 s 3 s

1.5 s 5 s

Pre-danger period In-danger period

Danger period
Safe period

Figure 5.4 Separation of safe and danger periods for each safety-critical event in the test set.

The specific “conflicting object” in an event is not explicitly annotated in the SHRP2
data, and it’s possible the conflicting object was not detected or recorded. We design a
three-stage evaluation procedure to filter out those invalid cases, create useful ground truth,
and then perform a reliable evaluation.

• In the first stage, for each event, we use every method among the 2D SSMs and
GSSMs (except for the ones used to test scalability only) to evaluate the collision
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risk between the subject vehicle and each of all detected surrounding objects, then
determine a temporary conflicting object based on the evaluation. An event may
have zero or a few candidate objects evaluated by different methods.

• In the second stage, we let the methods vote for the most probable conflicting
object. Considering that each method votes for a candidate object, and an abstention
is when a method determines that no temporary conflicting object exists. We select
the object earning the most votes to be the eventual conflicting object. This voted
object should earn over 1/3 of the total votes, and have less than 1/3 of the total
votes against.

• In the third stage, we apply the 2D SSMs and GSSMs to each event that has a
voted conflicting object. True and false positives are assessed based on the potential
collision between the subject vehicle and the voted conflicting object in the danger
period. True and false negatives are assessed based on the safe interactions between
the subject vehicle and other surrounding objects in their safe periods.

To determine a temporary conflicting object in the first stage, we assume that the
conflicting object in an event is the most risky object in the danger period, and its collision
risk is less in the pre-danger period than in-danger period. More specifically, the object
with the highest average collision risk during in-danger period is first selected. If the
selected object has no data before the danger period, further confirmation is not possible,
so we skip the event to be conservative than misleading. If any data of this selected object
is recorded before danger, the 25th, 50th, and 75th percentiles of the risk quantification in
the pre-danger period should be less than those in the danger period; otherwise, this object
is not the real conflicting object. Here we use the percentiles (rather than, e.g., minimum,
mean, maximum) for a more robust comparison and to avoid the potential influence of
outliers.

5.5.3 Evaluation metrics
As mentioned in Section 5.2.1, the evaluation of proactive risk quantification includes two
aspects of detection accuracy and alert timeliness. The following subsections detail the
metrics used in this paper.

Detection accuracy
Using a threshold, we convert the risk quantification of a potential collision into binary
outcomes of “safe” or “unsafe”, then use the unsafe outcomes to issue alerts. Depending
on whether the alerts correctly warn of a crash or near-crash and stay silent during safe
interactions, each event has 4 possible counts. Targeting the conflicting object in the
danger period, a True Positive (TP) issues alerts for at least 0.5 seconds; a False Negative
(FN) issues no alerts. For all qualified objects other than the conflicting object in their safe
periods, True negatives (TNs) issue no alerts; False positives (FPs) incorrectly issue alerts.
Then counting for all test events, Equation (5.12) defines false negative rate RFN and false
positive rate RFP; Equation (5.13) defines Precision, Recall, and a combined accuracy
score F1.

RFN =
FN

TP+ FN
, RFP =

FPs

FPs + TNs
. (5.12)
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Precision =
TP

TP + FPs
, Recall =

TP

TP + FN
, F1 =

2Precision · Recall

Precision + Recall
. (5.13)

Alert timeliness
We define Time to Impact (TTI) to measure how early a potential collision is recognised
relative to impact time (timpact), the moment of physical contact in crashes or the moment
of minimum proximity in near-crashes. As a posteriori quantity, TTI counts from the last
time moment when risk quantification shifts from safe to unsafe until a (near-)crash in
reality. This is formally defined in Equation (5.14), where Mt is the estimated risk level of
a potential collision at time t, M∗ is a threshold to distinguish safety. We let M−1 ≤M∗

in case all recorded time moments are estimated as unsafe. Without loss of generality, we
assume that a larger M indicates a higher risk; the inequalities can be reversed if a smaller
M indicates higher risk.

TTI = timpact −max{t |Mt > M∗,Mt−1 ≤M∗, t ≤ timpact} (5.14)

For a collective evaluation over test events, we first use PTTI≥1.5, which indicates the
percentage of events with TTI ≥ 1.5 s among correctly detected (near-)crashes. The
threshold of 1.5 s is motivated by empirical findings that human drivers typically require 1
to 1.3 s to respond to an obstacle [165, 166]. As a second measure of alert timeliness, we
use median time-to-impact across all correctly detected (near-)crashes, denoted by mTTI.
Based on the definition in Equation (5.14), TTI ≥ 0 and its maximal value depends on
the time period recorded before impact. We thus restrain TTI < 10 s when calculating
mTTI. To reflect the variation of TTI, we report mTTI [Q1, Q3]; 99%CI , where Q1
and Q3 are the first and third quartiles, respectively, and 99%CI is the 99% confidence
interval calculated using the sign test method for mTTI. Similar to the accuracy metrics,
mTTI and PTTI≥1.5 vary at different alerting thresholds.

Performance curves
Risk quantification must balance the trade-off between desired yet conflicting characteristics
at different thresholds. For example, a threshold resulting in smaller RFP necessarily
increasesRFN. Such a threshold also entails higher Precision, but lower Recall. Likewise,
earlier alerts (i.e., larger TTI) tend to be accompanied by more false positives and less
accurate detection. Therefore, our evaluation uses three key performance curves to
compare different methods on a common set of events in the test dataset. Each curve is
obtained by varying the threshold that distinguishes risk from safety. As summarised in
Table 5.5: Receiver operating characteristic curve (ROC) intuitively presents the trade-off
between false detection rates; Precision-recall curve (PRC) comprehensively evaluates
accuracy performance; and Accuracy-timeliness curve (ATC) evaluates timeliness
performance under different accuracy levels.

If a perfect model exists, ROC and PRC have their theoretical optimal points of
zero false and all correct detection. ATC does not have a theoretical optimum, but we
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Table 5.5 Performance curves of risk quantification at varying thresholds.

Performance curve Horizontal axis Vertical axis Optimal point

ROC RFP ∈ [0, 1] 1−RFN = RTP ∈ [0, 1] In theory, (0, 1)
PRC Recall ∈ [0, 1] Precision ∈ [0, 1] In theory, (1, 1)
ATC mTTI ∈ [0, 10] F1 ∈ [0, 1] (maxF1,mTTI∗)

consider a practical optimal point to be the mTTI when F1 is the highest, defined as
mTTI∗ = argmaxTTI F1. Accordingly, we denote the PTTI≥1.5 at this point P ∗

TTI≥1.5.

Safety-focused evaluation metrics
Based on the performance curves, we first use AUPRC, the area under the PRC, as a
comprehensive metric to assess detection accuracy. Here we do not consider the area under
ROC, as a method that has a better-performed PRC (i.e., of larger AUPRC) necessarily has
a larger area under ROC [207]. For timeliness evaluation, we use P ∗

TTI≥1.5 and mTTI∗

when F1 is at the highest point on ATC. The larger the values, the earlier the alerts under
the optimal detection accuracy.

Risk alerting of potential collisions is different from normal binary classification
problems, as false negatives can cause significantly severe consequences than false
positives. To emphasise the high cost of false negatives, we define two safety-focused
metrics based on the ROC and PRC, respectively. The first is AROC

R as defined in
Equation (5.15), the area under the ROC curve when 1− RFN is larger than R (i.e.,
false negative rate is smaller than 1−R). For easier comparison, we normalise the area
relative to its maximum possible value 1−R. The second is PrecisionPRC

R defined in
Equation (5.16), the highest Precision on the PRC when Recall is larger than R. For
both metrics, the larger the value, the more accurate a model is, given a necessarily small
false negative rate.

AROC
R =

1

1−R

∫ 1

R

(1−RFP(r)) dr, with r = 1−RFN (5.15)

PrecisionPRC
R = max(Precision | Recall ≥ R) (5.16)

To offer a complete list, we use AUPRC, AROC
80% , AROC

90% , PrecisionPRC
80% ,

PrecisionPRC
90% , P ∗

TTI≥1.5, and mTTI∗ as evaluation metrics in this paper. We select the
restriction rate R to be 80% and 90% to reinforce a focus on safety. Some methods,
if they are not safe enough, can have zero area measured by AROC

80% or AROC
90% , or are

not applicable (N/A) when measured by PrecisionPRC
80% or PrecisionPRC

90% . For all of the
metrics, higher values indicate better performance in collision risk quantification.

5.6 Results
The risk quantification of safety-critical interactions by GSSM is generalised from normal
traffic interactions. The training of GSSM is on normal interaction data, of which the
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collection varies in locations and equipment. Then the test set contains thousands of
crashes and near-crashes where at least 20 seconds are recorded before a safety-critical
event happens, offering both positive and negative ground truth. In the experiment on
Scalability, we use the first-stage evaluation results of the 4,875 safety-critical events in the
test set, and determine a proportion of 10% to add ArgoverseHV data and 100% for highD
(see Section 5.6.2 for the results), as already noted in Table 5.3. Then the settlement
of ground truth excludes GSSMs trained on other proportions of data combinations.
Out of the 4,875 test events, 110 crashes and 2,481 near-crashes eventually had their
voted conflicting objects. These 2,591 events form a reliable evaluation basis for the
other experiments on Effectiveness (Section 5.6.1), Context-awareness (Section 5.6.3),
Generalisability (Section 5.6.4), and Risk attribution (Section 5.6.5), where the third-stage
evaluation results are presented.

5.6.1 Effective risk quantification
We use Figure 5.5 and Table 5.6 to show the effectiveness of GSSM in detection accuracy
and alert timeliness. Compared with other existing two dimensional surrogate safety
measures (2D SSMs), GSSM achieves superior accuracy in detecting crashes and
near-crashes, while maintaining relatively stable timeliness of alerts. As is shown by the
ROC and PRC in Figure 5.5, the curves of GSSM enclose the curves of all the other 2D
SSMs. This means an absolutely higher accuracy, with fewer false positives and false
negatives. Regarding alert timeliness, as is seen in Table 5.6, the percentage of early alerts
issued 1.5 s in advance and the median time to impact at optimal accuracy (i.e., P ∗

TTI≥1.5

and mTTI∗) of GSSM are slightly lower than those of ACT and TTC2D. But GSSM
exhibits a narrower interquartile range and 99% confidence interval, indicating more stable
performance across events. The accuracy-timeliness curves in Figure 5.5 also shows that
GSSM consistently secures a longer time for collision prevention than the other methods at
the same accuracy, as indicated by the F1 score, higher than 0.8.

Table 5.6 Numeric performance evaluation of GSSM and existing methods. The metric
PrecisionPRC

R is abbreviated to PPRC
R for a more compact table. For all of the metrics, higher

values indicate better performance. The best value in each column is underlined and marked bold;
the second best value is marked bold.

Method AUPRC AROC
80% AROC

90% PPRC
80% PPRC

90% P ∗
TTI≥1.5 mTTI∗ [Q1, Q3]; 99%CI

GSSM 0.900 0.817 0.729 0.887 0.814 0.819 2.60 [1.80, 3.51]; 2.53–2.65
ACT 0.824 0.721 0.561 0.850 0.795 0.769 2.78 [1.63, 3.91]; 2.70–2.88
TTC2D 0.818 0.493 0.139 0.865 0.674 0.860 2.83 [1.97, 3.83]; 2.75–2.90
TAdv 0.700 0.584 0.414 0.738 0.640 0.606 1.73 [0.99, 2.50]; 1.68–1.78
EI 0.842 0.426 0.251 0.706 0.539 0.747 2.26 [1.47, 3.20]; 2.20–2.34

5.6.2 Scalable GSSM training
Without requiring crashes or manual labels of near-crashes for training, GSSM leverages a
large amount of normal interaction data. This not only means GSSM learns interaction
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Figure 5.5 Performance curves comparing GSSM and existing methods. In the ATC plot, the
shaded bands represent 99% confidence intervals for median time to impact. The GSSM under
comparison is trained on the lane changes extracted from the highD dataset and uses instantaneous
motion kinematics. For the other methods, TAdv is abbreviated for Time Advantage [23]; ACT for
Anticipated Collision Time [18]; TTC2D for Two-dimensional Time-to-Collision [204]; EI for
Emergency Index [28].

patterns, but also implies effectiveness improvement by feeding more diverse data of
traffic interactions. Figure 5.6 illustrates such scalability of GSSM in accurately alerting
potential collisions. The GSSMs being compared are all trained with current features, i.e.,
instantaneous states of road user movement. We use the GSSM trained on SafeBaseline as
a benchmark, and increasingly include more data from ArgoverseHV and highD.
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Figure 5.6 Variation in risk alert accuracy of GSSMs trained on different combinations of interaction
patterns. (a) Accuracy changes when the training data of SafeBaseline are combined with different
proportions of ArgoverseHV data, which majorly cover crossing and turning interactions at urban
intersections. The accuracy evaluations are performed for event types of Crossing/turning and
Pedestrian/cyclist. (b) Accuracy changes when the training data of SafeBaseline are combined with
different proportions of highD data, which majorly cover lane-change interactions. The accuracy
evaluations are performed for event types of Adjacent lane and Merging. (c) Accuracy evaluations
with events involving lateral interactions. All the GSSMs being compared use current features. The
compared models include S-C that is trained on SafeBaseline only, SA-C that combines SafeBaseline
and 10% ArgoverseHV, Sh-C that combines SafeBaseline and 100% highD, and SAh-C that
combines SafeBaseline, 10% ArgoverseHV, and 100% highD.
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Figure 5.6(a) shows the variation in detection accuracy as increasing interactions
of crossing and turning in ArgoverseHV are included; while Figure 5.6(b) shows a
counterpart for gradually including lane-change interactions in highD. A clear and
consistent improvement is seen when more lane changes in highD serve training. As
the proportion of ArgoverseHV data increases, however, the accuracy metrics are first
enhanced and then drop. This is reasonable because crossing and turning interactions
account for around 13.6% in the test set (see Figure 5.3). While these interactions are
increasingly included, the training of GSSM gradually shifts its optimisation direction,
which may undermine the patterns learnt from the SafeBaseline data.

Based on Figure 5.6(a) and 5.6(b), we consider 10% as the best proportion to include
additional data from ArgoverseHV and 100% from highD. Then Figure 5.6(c) compares
the enhancement of risk alert accuracy by including more training data in addition to
SafeBaseline. It is clearly seen that, to different degrees, incorporating additional lateral
interaction data improves the detection accuracy of crashes and near-crashes involving
lateral interactions. This implies exciting future work to obtain more powerful GSSMs by
training on larger-scale interaction data.

5.6.3 Context-aware GSSM
Collision risk is conditioned on interaction context. For example, a usually safe interaction
may become unsafe if it is raining. As another example, the same speed could be safe on
highways while unsafe in urban traffic. Therefore, being aware of the context where an
interaction happens is important, and GSSM allows for that. Figure 5.7 compares all the
evaluation metrics of detection accuracy and alert timeliness across GSSMs that consider
different contextual information. In each plot specific to a metric, we separate two groups
of GSSMs. One group does not consider the acceleration of the subject vehicle as a
current feature, while the other group does. Within each group, we progressively include
additional features of environmental conditions and historical kinematics.
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Figure 5.7 Accuracy and timeliness comparison of GSSMs that consider varying contextual
information. These GSSMs are all trained on SafeBaseline. S-C uses current features only; S-CE
uses current and environment features; S-CET uses current, environment, and historical kinematic
features. The other three, i.e., S-Ca, S-CaE, and S-CaET, additionally consider the instantaneous
acceleration of the subject vehicle.

The GSSMs using only instantaneous motion kinematics serve as baselines for
comparisons within each group. Additionally using environmental conditions in general
achieves better performance in terms of both detection accuracy and alert timeliness.
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This improvement is further enhanced when historical kinematic features are also used.
Interestingly, including historical kinematics improves alert timeliness more significantly
than detection accuracy. This suggests that historical kinematics are important to be
considered for earlier risk alerts.

Across groups, the GSSMs that exclude and include the subject vehicle’s instantaneous
acceleration are contrasted. As is seen in Figure 5.7, including acceleration does not make
improvements, except for AUPRC when historical kinematics are considered. This
implies that the acceleration provides little additional benefit, probably because it is
redundant with the historical kinematics, and is also affected by measurement noise and
smoothing during trajectory processing.

5.6.4 One GSSM for all interactions
Driven by naturalistic data, GSSM learns interaction patterns across scenarios and
effectively alerts to potential collisions in different types of interactions. The crashes and
near-crashes in the test set are distributed in various types of events, as shown in Figure 5.3.
Accordingly, we compare the performance of GSSM and other existing methods in these
different safety-critical events. For better readability, we provide Table 5.7 showing
evaluation metrics, while Appendix Figure A2 presents the performance curves. Table 5.7
clearly shows that GSSM is significantly more effective in safety-focused detection
accuracy across all interaction scenarios. This is particularly prominent for the conflicts
beyond rear-end. Although the timeliness of GSSM is not always the best, it secures at
least 1.88 seconds to prevent potential collisions in more than 75% cases.

An interesting observation from Table 5.7 is the superior performance of GSSM
in rear-end and merging interactions. These two types of scenarios seem to be less
challenging than the other lateral interactions such as crossing and turning. Based on the
performance, the most challenging scenarios are interactions with pedestrians, cyclists, and
animals. This could be because of the less predictable behaviour of these active and
flexible road users, but also could be because the interaction patterns with them are very
limitedly covered in the training data used in this paper.

5.6.5 Attribution of collision risk
Figure 5.8 presents the top ranked factors in different situations when GSSM evaluates an
interaction to be safe or not, which are respectively considered in safe periods and danger
periods as defined in Figure 5.4. At each time moment in a considered period, we calculate
the attributions of all features, compare the positive attributions if the considered period is
safe or negative attributions otherwise, and record the 3 factors with the largest attributions.
Then the ranking of the most contributing factors is obtained after comparing the features
at all time moments. Note that because our feature attribution is performed based on the
encoded representation rather than raw numbers of variables, the summarised attributions
indicate relative importance without implying whether an increasing or decreasing value is
associated with the quantified risk.
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Table 5.7 Comparison of collision alert performance in different types of safety-critical events. The metric PrecisionPRC
R is abbreviated to PPRC

R for a
more compact table. The GSSM under comparison is S-CET, which is trained on SafeBaseline and uses contextual information of current features,
environment features, and historical kinematic features. For each type of event, the best value in each column is underlined and marked bold; the
second-best value is marked bold.

Event Number
of events Method AUPRC AROC

80%
AROC

90%
PPRC
80%

PPRC
90%

P ∗
TTI≥1.5 mTTI∗ [Q1, Q3]; 99%CI

Rear-end 1787

GSSM 0.858 0.926 0.887 0.952 0.930 0.877 2.53 [1.92, 3.45]; 2.45–2.58
ACT 0.869 0.852 0.786 0.881 0.877 0.719 2.28 [1.30, 3.09]; 2.19–2.34
TTC2D 0.869 0.702 0.452 0.932 0.906 0.856 2.49 [1.85, 3.26]; 2.43–2.56
TAdv 0.726 0.734 0.636 0.798 0.749 0.486 1.44 [0.76, 2.04]; 1.39–1.50
EI 0.911 0.745 0.562 0.930 0.812 0.730 2.10 [1.45, 2.88]; 2.02–2.16

Adjacent lane 611

GSSM 0.771 0.693 0.608 0.702 0.658 0.826 3.38 [1.88, 5.15]; 3.19–3.61
ACT 0.685 0.532 0.334 0.683 0.608 0.896 4.67 [2.88, 6.14]; 4.40–4.94
TTC2D 0.698 0.317 0.000 0.632 N/A 0.848 3.68 [2.06, 5.38]; 3.36–3.85
TAdv 0.588 0.381 0.271 0.512 0.475 0.751 2.38 [1.45, 3.34]; 2.19–2.51
EI 0.636 0.220 0.042 0.451 0.451 0.851 3.48 [1.93, 5.50]; 3.33–3.74

Crossing/turning 93

GSSM 0.747 0.599 0.530 0.755 0.729 0.967 4.85 [3.63, 6.38]; 4.21–5.46
ACT 0.735 0.350 0.017 0.792 0.677 0.933 5.16 [3.48, 6.46]; 4.62–5.40
TTC2D 0.678 0.000 0.000 N/A N/A 0.950 4.77 [3.21, 6.33]; 4.32–5.31
TAdv 0.714 0.366 0.182 0.731 0.649 0.820 2.90 [2.04, 4.07]; 2.39–3.29
EI 0.694 0.000 0.000 N/A N/A 0.934 4.13 [2.66, 5.71]; 3.30–4.70

Merging 29

GSSM 0.865 0.795 0.719 0.828 0.771 0.889 5.11 [3.23, 7.30]; 3.58–5.60
ACT 0.705 0.520 0.225 0.758 0.659 1.000 5.17 [3.75, 6.80]; 4.52–6.49
TTC2D 0.786 0.000 0.000 N/A N/A 0.857 3.83 [2.17, 4.85]; 2.66–4.23
TAdv 0.678 0.251 0.000 0.522 N/A 0.727 2.71 [1.32, 3.87]; 1.52–3.39
EI 0.777 0.286 0.000 0.553 N/A 0.897 3.21 [2.12, 4.85]; 2.52–4.43

With pedestrian/
cyclist/animal 31

GSSM 0.851 0.379 0.313 0.800 0.800 1.000 5.94 [4.89, 7.16]; 4.89–7.16
ACT 0.706 0.066 0.000 0.758 N/A 0.966 5.38 [3.90, 6.54]; 4.20–6.09
TTC2D 0.697 0.000 0.000 N/A N/A 0.897 4.51 [2.31, 5.57]; 2.82–5.14
TAdv 0.705 0.090 0.005 0.714 0.700 0.806 3.19 [1.76, 5.34]; 2.39–4.62
EI 0.733 0.000 0.000 N/A N/A 0.867 3.78 [2.48, 5.55]; 2.55–5.36



5.6
R

esults

5

101

(a) Top factors in leading to and avoiding lateral conflicts
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(b) Top factors in conflicts in adverse environments
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Figure 5.8 Top ranked factors in risk quantification by GSSM. The GSSM used for feature attribution is S-CET, which is trained on SafeBaseline and
uses current, environment, and historical kinematic features. The threshold used to distinguish danger and safety is 2.52, which is optimised to achieve
the highest Precision for Recall ≥ 0.85. This threshold means an interaction is considered unsafe if its spacing remains minimal for at least
102.52 ≈ 331 times of observations in the same interaction context. (a) Top ranked factors in leading to and avoiding lateral crashes and near-crashes.
(b) Top ranked factors in crashes and near-crashes happened in adverse environments.
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Focusing on what leads to potential collisions in lateral interactions, the left half of
Figure 5.8(a) shows that spacing direction contributes the most to dangers in the adjacent
lane, while the historical kinematics in the past 1.5 seconds contribute the most to dangers
during crossing and turning. Spacing direction is related to relative heading and the
surrounding object’s lateral speed, which are also ranked high. With not much surprise,
relative speed also contributes considerably to potential collision. In contrast, the right half
of Figure 5.8(a) shows factors contributing to safe interactions. Relative speed and the
surrounding object’s lateral speed are the most contributing ones. In addition to them,
relatively longer historical kinematics are important. These results suggest that relative
direction and speed are the main factors for accurate risk quantification. Notably, a short
movement history of approximately 1.5 seconds is more influential in detecting danger,
whereas a longer history of around 2.5 seconds provides greater context for perceiving
safety in lateral interactions.

Adverse environments such as precipitation, wet road surfaces, driving at night, or
unstable traffic flow are relatively infrequent conditions, but may significantly increase the
risk of collisions. In Figure 5.8(b), we present the factors contributing to dangers in
different adverse environments. The top factors harming safety overlap with rain and when
the road surface is wet. In both conditions, spacing direction and road surface are ranked
as the most important. This implies that the collision risk in such situations is highly
influenced by the directional control of the involved road users. Spacing direction remains
highly ranked when considering interactions in the dark as well as in unstable traffic flow.
The other factors in these two adverse environments resemble those in general interactions
in Figure 5.8(a). Interestingly, the widths of interacting road users, i.e., half of the sum of
the vehicle widths, play a role in collision risk when the traffic flow is unstable. This could
be due to relatively restrained road space for safe interactions.

5.7 Conclusion and discussion
We present the generalised surrogate safety measure (GSSM) to proactively quantify the
risk of potential traffic collisions before they happen. GSSM intends to address the
challenges of scalability, context-awareness, and generalisability, faced by existing
approaches to proactive collision risk quantification. Below, we discuss the main findings.

• Instead of relying on historical records of crashes or near-crashes, GSSM stably
learns from the patterns of normal interactions and extrapolates them to safety-critical
situations. This allows for scalable improvement with increasing amounts of data,
as are being collected by automated vehicles, and our results show enhanced
accuracy in risk quantification by additional lateral interaction patterns.

• The fundamental assumption made by GSSM is that collision risk emerges if
interactions become extreme, which is measured by the spacing between road
users involved in a specific interaction context. GSSM utilises neural networks to
approximate such context-conditioned distributions of multi-directional spacing and
is data-driven. Its risk quantification is thus context-aware by incorporating any
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potentially helpful information as inputs, e.g., instantaneous motion states, weather,
road surface condition, lighting, and historical kinematics, as we have illustrated.

• Our results also demonstrate that GSSM is highly generalisable. It achieves
superior accuracy and timeliness in alerting potential collisions across various
interaction scenarios such as rear-end, merging, crossing, turning, etc. Impressively
but reasonably, GSSM also generalises well from training data to unseen test data,
even when the training data are collected in different countries and by different
equipment. This implies that the interaction patterns in urgent conditions, such as
crashes and near-crashes, are shared in human behaviour.

• The attribution of collision risk shows that GSSM correctly utilises the information
of weather and road surface conditions when it is rainy or the road is not dry.
Importantly, spacing direction has a dominant influence in lateral interactions,
where short motion histories of around 1.5 seconds help to recognise risk and longer
motion histories of 2.5 seconds are more useful to confirm safety. These findings
emphasise the necessity for context-aware collision risk quantification to consider
diverse factors.

GSSM is limited by our modelling choices and requires further development and
targeted validation in the future. First of all, this study focuses on the probability of
potential collisions while omitting to consider collision severity or time of occurrence,
which are important aspects of collision risk. Driven by real-world data, GSSM’s
robustness to sensor noise, missing values, and small perturbations in the input is not
guaranteed, yet our training does not provide formal guarantees or certified bounds. The
datasets used in this research are carefully processed. To verify GSSM’s stability and
transferability, especially when extrapolating to extreme behaviours, a larger variety of
interaction data with multi-source noise and from more different driving cultures will be
essential. In addition, richer modalities such as vision and language can be incorporated
to characterise more informative contexts. This motivates representation learning to
encode complex context and enable large-scale training in industrial applications. To
truly improve traffic safety, it is also important to investigate not only correlations but
also causal mechanisms between contextual features and the estimated risk. We regard
GSSM as a starting point toward foundation models for proactive risk quantification of
potential collisions. Before achieving that goal, more real-world training and verification
are required to confirm its stable effectiveness, quantifiable scalability, explainable
context-awareness, and controllable generalisability.

The implications of such a methodology are broad for both ex ante prevention and ex
post analysis of traffic collision risk. The most direct benefit is for autonomous driving
systems (ADS), given that GSSM can compute for a thousand interactions per query
within 25 milliseconds (see Section 2.4 in Supplementary Material). Online, GSSM can
provide a time-varying risk signal that serves as a safety cost or constraint in motion
planning, or as a safety “shield” that warns of potentially unsafe behaviours before they are
executed. Offline, it can be used to train and validate ADS in safety-critical situations, e.g.,
by filtering valuable training materials, generating or ranking validation scenarios at
varying levels of collision risk, and supporting closed-loop testing in which high-risk
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interactions are selectively evaluated. Beyond ADS, GSSM enables civil engineering and
traffic management use cases: it allows for proactive evaluation and thus data-driven
improvement in the safety of road designs, operations, and policies. For example, GSSM
can help traffic engineers and policy makers detect emerging hazards in road networks and
mitigate potential accidents before they occur. Altogether, these applications contribute to
a significant step toward the long-term vision of zero traffic fatalities, via a tool that
quantifies and manages risk proactively, in any context, at any time.
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Appendix A
A.1 SHRP2 trajectory reconstruction error
Appendix Figure A1 shows the error distributions of bird’s eye view reconstruction of the
trajectories derived in the Second Strategic Highway Research Program’s (SHRP2)
Naturalistic Driving Study (NDS). These include the root mean squared error (RMSE) in
subject speed, subject yaw rate, subject acceleration, and object speed, as well as the mean
absolute error (MAE) of object displacement. The errors are evaluated for each event in
the categories of crashes, near-crashes, and safe baselines.
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Figure A1 Reconstruction error distributions of crashes, near crashes, and safe baselines in the
SHRP2 NDS. The mean values (µ) and standard deviations (σ) are marked in each plot.

A.2 Contextual information details
As explained in Section 5.3.2, this study considers 3 categories of contextual information:
current features (XC) including the instantaneous states of interacting road users,
categorical environment features (XE) of external conditions during the interaction, and
historical kinematic features (XT ) composed of time-series speeds and yaw rates within
the past 2.5 seconds. Appendix Table A1 provides a detailed list of these contextual
features used in this study, as well as their encoding unit.

A.3 Neural network architecture
Out of the aim of validating the generalised surrogate safety measure (GSSM) rather than
looking for the most powerful architecture, our neural networks are relatively simple for
computational convenience. As mentioned in Section 5.3.2, we have 3 encoders and 1
decoder. The encoders for current features (XC) and environment features (XE) are
multi-layer perceptrons (MLPs, [208]), while the encoder for historical kinematic features
(XT ) uses a single-layer long short-term memory (LSTM, [209]) recurrent neural network.
The encoded representation groups are then concatenated and passed to the decoder, which
uses the attention mechanism [210] to capture inter-feature relations and convolutional
neural networks (CNN, [211]) for intra-feature relations. Throughout the model, we use the
activation function of Gaussian error linear units (GELU, [212]). More descriptive details
are as follows, while implementation details are referred to in our open-sourced repository.
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Table A1 Contextual information considered in this study. Definitions of all variable symbols are
given in the table footnote.

Category Attribution unit Feature(s)

XC Per each feature {li, lj , wi+wj

2 , |vi|, xvj , yvj , |vi|2, |vj |2, |vij |2, |vij |sgn(∆v), Ahj , ρij}t=0,
optional ai,t=0

XE

Lighting condition

Darkeness (lighted),
darkness (not lighted),
dawn,
daylight,
dusk,
unknown.

Weather condition

No adverse conditions,
fog,
mist/light rain,
rain and fog,
raining, sleeting,
snow/sleet and fog,
snowing,
unknown.

Road surface

Dry,
gravel over asphalt,
gravel/dirt road,
icy,
muddy,
snowy,
wet,
unknown.

Traffic density

LOS A1: free flow, no lead traffic,
LOS A2: free flow, leading traffic present,
LOS B: flow with some restrictions,
LOS C: stable flow, maneuverability and speed are more restricted,
LOS D: unstable flow - temporary restrictions substantially slow driver,
LOS E: flow is unstable, vehicles are unable to pass, temporary stoppages, etc.,
LOS F: forced traffic flow with low speeds and traffic volumes that are below capacity,
unknown.

XT

In the passed 0.5 s {ωi, |vi|, xvj , yvj}t∈{−0.5,−0.4,...,−0.1}
In the passed 1 s {ωi, |vi|, xvj

, yvj
}t∈{−1.0,−0.9,...,−0.1}

In the passed 1.5 s {ωi, |vi|, xvj
, yvj
}t∈{−1.5,−1.4,...,−0.1}

In the passed 2 s {ωi, |vi|, xvj
, yvj
}t∈{−2.0,−1.9,...,−0.1}

In the passed 2.5 s {ωi, |vi|, xvj , yvj}t∈{−2.5,−2.4,...,−0.1}

Note: for two interacting road users i and j, their yaw rates, velocities, lengths, widths, and headings are denoted by
ω ∈ [−π, π], v, l, w, and h; the motion states are in a local coordinate system with the origin at the position of i and y-axis
oriented along the velocity direction of i; sgn(∆v) = sgn(|vi| − |vj |); Ah ∈ [−π, π] denotes the angle between the heading
direction and the y-axis; ρij ∈ [−π, π] is the angle in the polar coordinates of multi-directional spacing.
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To ensure that feature attributions are meaningful, we design the encoders to let
each attribution unit (a representation vector) carry independent information from the
others. As shown in Appendix Table A1, each scalar feature in XC is mapped to its own
representation vector. The categorical features in XE are first one-hot encoded and
grouped into four chunks (weather, lighting, road surface, and traffic density), and each
chunk is then mapped to a separate representation vector. For XC and XE , we use MLP
encoders with 5 and 4 linear layers, respectively. The temporal features XT are encoded
into five representation vectors corresponding to the past 0.5, 1, 1.5, 2, and 2.5 seconds.
Concretely, we reverse the time steps in the 2.5-second history and feed the reversed
sequence into a single-layer unidirectional LSTM. From the resulting output sequence, we
take five representations at 0.5-second intervals, so that each one encodes the kinematic
features within 0.5, 1, 1.5, 2, and 2.5 seconds closest to the current moment.

To enrich and regularise the latent representation, we append a set of orthogonal
Gaussian random features [213] which are deterministic and unique for a sequence of
representation pieces. Seeing the encoded and enriched pieces as tokens of different
contextual information, we design the decoder to capture both global and local relations of
the tokens. We first use batch normalisation to align the ranges of all feature dimensions,
and then stack 6 self-attention blocks, in each of which the feed-forward network has 2
linear layers. Next, we apply a CNN with 2 layers of convolution and a kernel size of 3.
Lastly, we use two separate 3-layer MLPs to output the targeted parameters µ and log(σ2).

A.4 Hyperparameter settings
The performance of GSSM depends on a number of implementation choices such as
learning-rate schedules, batch sizes, and regularisation strengths. To ensure transparency
and reproducibility, we report a full set of hyperparameters used in the experiments in
Appendix Table A2.

Table A2 Hyperparameters set in this paper’s experiments.

Hyperparameter Definition Value

Random seed Number that controls generation of pseudo-random values 131
Small value threshold Threshold to consider a value smaller than it to be near zero 1e-6
Representation dimension Number of variables in a piece of encoded representation 64
Perturbation noise Standard deviation of the added Gaussian noise in Section 5.3.1 1% of variable range
β Weight of JS-divergence in Equation (5.6) 5
Max. epochs Maximum epochs of training 150
Batch size Number of samples used per update during model training 512
Initial learning rate Learning rate at the beginning of model training 1e-4
Dropout Probability for each value in a tensor to be set 0 0.2

A.5 Computation efficiency
As reported in Appendix Table A3, the GSSMs have 773,286 parameters if the input
context hasXC only; when bothXC andXE are considered, there are 857,486 parameters;
if XT is also included, the number of parameters becomes 885,664. The dominant part of
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the parameters is of the decoder, correspondingly accounting for 95.92%, 87.46%, and
85.83% of all parameters in a model. Such a model with fewer than 0.9 million parameters
is fairly small for modern deep learning.

To quantify the computational cost, we further report the training time and inference
time for the different GSSM variants alongside other existing methods for comparison.
Note that we implement TTC2D, ACT and TAdv in a vectorised form for efficient
large-scale evaluation. In contrast, EI is used as provided by its authors, as its formulation
does not readily admit the same level of vectorisation. Altogether, these results show that
the proposed GSSM achieves competitive computational efficiency while providing
substantially richer, context-aware risk estimates.

Table A3 Computation efficiency comparison of GSSMs and existing methods.

Acronym ab Contextual
observables

Number of
parameters

Training time
per sample (s)

Inference time
per sample (s)

TTC2D

[XC ]

N/A N/A

6.21E-7
ACT 3.93E-6
TAdv 4.78E-6
EI 5.05E-4
S-C 773,286 4.43E-5 1.37E-5
h-C 773,286 4.39E-5 1.07E-5
A-C 773,286 4.40E-5 1.34E-5
SAh-C 773,286 4.53E-5 1.19E-5
S-Ca [XC , ai] 775,336 5.04E-5 1.33E-5
S-CE [XC , XE ] 857,486 6.42E-5 1.78E-5
S-CaE [XC , ai, XE ] 859,536 6.62E-5 1.88E-5
S-CET [XC , XE , XT ] 885,664 7.48E-5 2.21E-5
S-CaET [XC , ai, XE , XT ] 887,714 7.50E-5 2.35E-5

aThe two-dimensional surrogate safety measures have abbreviations TTC2D for Two-dimensional
Time-to-Collision [204], TAdv for Time Advantage [23], ACT for Anticipated Collision Time [18],
and EI for Emergency Index [28].

bAcronyms for GSSMs follow the format <Datasets>-<Contextual observables>. For example, “S-C”
is trained on SafeBaseline and uses current features XC

A.6 Performance curves in different interactions
Corresponding to Appendix Table 5.7, Appendix Figure A2 shows the performance curves
to compare GSSM and other two-dimensional surrogate safety measures (2D SSMs) in
different types of interactions. The curves are less smooth for interactions of merging and
with pedestrian/cyclist/animal because of the small number of test events.
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Figure A2 Performance comparison of GSSM and other existing methods in alerting different types of safety-critical events. (a) Types of the crashes and
near-crashes with determined ground truth. (b) Receiver operating characteristic curves for different types of events. (c) Precision-recall curves for
different types of events. (d) Accuracy-timeliness curves for different types of events, where the shaded bands represent 99% confidence intervals for
median time to impact. The GSSM under comparison is trained on the SafeBaseline data and uses contextual information of instantaneous motion
kinematics, environmental conditions, and historical kinematics in the past 2.5 seconds.
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Highlights
• Regularisers at two scales are introduced for contrastive learning of spatial time series.

• The regularisers preserve fine-grained similarity structures across time or instances.

• A dynamic mechanism balances contrastive learning and structure preservation.

• State-of-the-arts in spatial time series classification and multi-scale traffic prediction.

• Better preservation of similarity structures implies more informative representations.
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Abstract

Neural network models are increasingly applied in transportation research to tasks such as
prediction. The effectiveness of these models largely relies on learning meaningful latent
patterns from data, where self-supervised learning of informative representations can
enhance model performance and generalisability. However, self-supervised representation
learning for spatially characterised time series, which are ubiquitous in transportation
domain, poses unique challenges due to the necessity of maintaining fine-grained
spatio-temporal similarities in the latent space. In this study, we introduce two
structure-preserving regularisers for the contrastive learning of spatial time series: one
regulariser preserves the topology of similarities between instances, and the other preserves
the graph geometry of similarities across spatial and temporal dimensions. To balance the
contrastive learning objective and the need for structure preservation, we propose a
dynamic weighting mechanism that adaptively manages this trade-off and stabilises
training. We validate the proposed method through extensive experiments, including
multivariate time series classification to demonstrate its general applicability, as well as
macroscopic and microscopic traffic prediction to highlight its particular usefulness
in encoding traffic interactions. Across all tasks, our method preserves the similarity
structures more effectively and improves state-of-the-art task performances. This method
can be integrated with an arbitrary neural network model and is particularly beneficial for
time series data with spatial or geographical features. Furthermore, our findings suggest
that well-preserved similarity structures in the latent space indicate more informative and
useful representations. This provides insights to design and optimise more effective neural
networks for data-driven transportation research.

Code availability

https://github.com/Yiru-Jiao/SPCLT

Data availability

Raw data source:

• UEA archive https://www.timeseriesclassification.com/dataset.php

• Macroscopic traffic https://github.com/RomainLITUD/uncertainty-aware-
traffic-speed-flow-demand-prediction

• Microscopic traffic https://interaction-dataset.com

Resulting data: https://doi.org/10.4121/3b8cf098-c2ce-49b1-8e36-74b37872aaa6

https://github.com/Yiru-Jiao/SPCLT
https://www.timeseriesclassification.com/dataset.php
https://github.com/RomainLITUD/uncertainty-aware-traffic-speed-flow-demand-prediction
https://github.com/RomainLITUD/uncertainty-aware-traffic-speed-flow-demand-prediction
https://interaction-dataset.com
https://doi.org/10.4121/3b8cf098-c2ce-49b1-8e36-74b37872aaa6
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6.1 Introduction
Modern transportation systems create massive streams of spatially distributed time series
data, such as traffic speeds across road networks and transit ridership through various
locations over time. Extracting useful patterns from these data is crucial, especially as
neural network models are increasingly used for a range of downstream tasks such as
traffic forecasting [214, 215], congestion detection [216, 217], and mobility analysis [218,
219]. In recent years, self-supervised representation learning (SSRL) has emerged as a
promising approach to leverage such large-scale datasets [220]. By learning informative
latent representations, SSRL can effectively facilitate model performance [221–223] and
generalisability [224, 225] in downstream tasks. This advantage is especially valuable in
transportation research, where real-world sensor measurements and labels are often noisy
or sparse.

In SSRL of time series, contrastive learning is becoming the mainstay technique.
This adoption is supported by empirical investigation. In 2022, Lafabregue et al. [226]
conducted an extensive experimental comparison over 300 combinations of network
architectures and loss functions to evaluate the performance of time series representation
learning. One of their key findings is that the reconstruction loss used by traditional
autoencoders does not sufficiently fit temporal patterns. Instead, contrastive learning has
emerged as a more effective approach, which explicitly pulls similar instances closer and
pushes dissimilar instances farther apart in the latent space of representations [227, 228].
This mechanism encourages neural networks to organise the latent space according to the
inherent similarities in data, yielding representations that capture meaningful patterns.

Unique challenges arise when learning contrastive representations for spatially
characterised time series data. A foremost difficulty is the need to preserve fine-grained
similarity structures among data instances in the latent space. The notion of similarity for
spatial time series can be subtle and highly domain-specific. For example, financial time
series may be considered similar even if some variables show significant divergence, while
movement traces with very different spatial features can be anything but similar. Beyond
preserving fine-grained similarities, spatially characterised time series such as traffic
interactions can involve multiple scales of spatio-temporal patterns. At the macroscopic
scale, traffic flow measures collective road usage evolving over the road network; at the
microscopic scale, trajectories describe the motion dynamics of individual road users such
as car drivers, cyclists, and pedestrians, in local road space. SSRL for spatial time series
must accommodate such heterogeneity, capturing patterns at the appropriate level of
granularity for the targeted task.

To address these challenges, this study explores contrastive learning regularised
by structure preservation to better capture the subtle similarities in spatial time series
data. We introduce two regularisers at different scales to preserve the original similarity
structure in the latent space. One is a topology-preserving regulariser for the global
scale, and the other is a graph-geometry-preserving regulariser for the local scale. This
incorporation can be simplified as a weighted loss L = ηCLT · ℓCLT + ηSP · ℓSP + rη , where
we propose a mechanism to dynamically balance the weights ηCLT of contrastive learning
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for time series (CLT) and ηSP of structure preservation (SP). Within this mechanism, the
adaptive trade-off between contrastive learning and structure preservation is based on the
uncertainties of their corresponding terms ℓCLT and ℓSP; meanwhile, the term rη adds
regularisation against overfitting of the dynamic weights.

The proposed method is applicable to spatial time series in general, while we highlight
its particular usage for traffic interactions in this paper. To thoroughly validate the method,
we conduct experiments on tasks of 1) multivariate time series classification, where we
benchmark against the current state-of-the-art (SOTA) models, i.e., [229] and [230]; and
2) traffic prediction, where we use [231] for macroscopic benchmark and [232] for
microscopic. Along with these experiments, the efficiency of this method is evaluated
with multiple network architectures. In addition to performance improvement, we also
investigate the impacts of preserving similarity structure during training. Below is a
summary of the contributions in this study.

• We introduce a method that incorporates structure-preserving regularisation in
contrastive learning of multivariate time series, to maintain finer-grained similarity
structures in the latent space of sample representations. We propose a dynamic
weighting mechanism to adaptively balance contrastive learning and structure
preservation during training. This method can be applied to an arbitrary neural
network model for more effective representation learning.

• Preserving similarity structure can enhance SOTA performance on various
downstream tasks. The relative improvement on spatial datasets in the UEA archive
is 2.96% in average classification accuracy; on macroscopic traffic prediction task is
0.57% in flow speed MAE and 0.55% in the standard deviation of prediction errors;
on microscopic trajectory prediction task is 1.87% and 3.40% in missing rates under
radii of 0.5 m and 1 m, respectively.

• Considering neural network modelling as learning the conditional probability
distribution of outputs over inputs, the similarity structure hidden in the input data
implies the distribution of conditions. Our method is therefore important to preserve
the original distribution in the latent space for more effective model training. This is
particularly beneficial when dealing with spatial time series data in transportation
domain, where fine-grained and hierarchical information is required in modelling.

The rest of this paper is organised as follows. In Section 6.2, we briefly review related
work in the literature. We use Section 6.3 to systematically introduce the methods. Then
we explain the demonstration experiments in Section 6.4 and present according results in
Section 6.5. With Section 6.6, we discuss the importance of preserving similarity structure
for representation learning. Finally, Section 6.7 concludes this study.

6.2 Related work
6.2.1 Time series contrastive learning
Contrastive learning for time series data is a relatively young niche and is rapidly
developing. The development has been dominantly focused on defining positive and
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negative samples. Early approaches construct positive and negative samples with subseries
within time series [233] and temporal neighbourhoods [234]; and later methods create
augmentations by transforming original series [235, 236]. More recently, [229] generates
random masks to enable both instance-wise and time-wise contextual representations at
flexible hierarchical levels, which exceeds previous state-of-the-art performances (SOTAs).
Given that not all negatives may be useful [237, 238], [239] makes hard negatives to boost
performance, while [230] utilises soft contrastive learning to weigh sample pairs of
varying similarities, both of which reach new SOTAs.

The preceding paragraph outlines a brief summary, and we refer the readers to Section
2 in [230] and Section 5.3 in [240] for a detailed overview of the methods proposed in the
past 6 years. These advances have led to increasingly sophisticated methods that mine the
contextual information embedded in time series by contrasting similarities. However, the
structural details of similarity relations between samples remain to be explored.

6.2.2 Structure-preserving SSRL
Preserving the original structure of data when mapping into a latent space has been widely
and actively researched in manifold learning (for a literature review, see [241]) and graph
representation learning [242, 243]. In manifold learning, which is also known as nonlinear
dimension reduction, the focus is on revealing the geometric shape of data point clouds for
visualisation, denoising, and interpretation. In graph representation learning, the focus is
on maintaining the connectivity of nodes in the graph while compressing the data space
required for large-scale graphs [244]. Structure-preserving has not yet attracted much
dedication to time series data. [245] provides a literature review on time series data
dimensionality reduction, where none of the methods are specifically tailored for time
series. Existing studies that are the most relevant include [246–248], which construct
hierarchies of samples or features, while similarity preservation remains under-explored.

Zooming in within structure-preserving SSRL, there are two major branches
respectively focusing on topology and geometry. Topology-preserving SSRL aims
to maintain global properties such as clusters, loops, and voids in the latent space;
representative models include [249] and [250] using autoencoders, as well as [251]
and [252] with contrastive learning. The other branch is geometry-preserving and focuses
more on local shapes such as relative distances, angles, and areas. Geometry-preserving
autoencoders include [253] and [254], while [255] and [256] use contrastive learning.
The aforementioned topology and geometry preserving autoencoders are all developed
for dimensionality reduction; whereas the combination of contrastive learning and
structure-preserving has been explored majorly with graphs.

6.2.3 Traffic interaction SSRL
In line with the literature summary in previous sub-sections, existing exploration of
SSRL in the context of traffic interaction data and tasks have been predominantly
relied on autoencoders and graph-based contrastive learning. For instance, using a
transformer-based multivariate time series autoencoder [257], [258] clusters traffic
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scenarios with trajectories of pairwise vehicles. Then a series of studies investigate
masking strategies with autoencoders for individual trajectories and road networks,
including [259–261]. Combining graph (convolutional) neural networks and contrastive
learning, a variety of studies have shown accuracy and stability improvements in traffic
flow prediction [262–265].

There are some other use cases. Leveraging data augmentation, [266] utilises graphs
and contrastive learning to jointly learn representations for vehicle trajectories and road
networks. The authors design road segment positive samples as neighbours in the graph,
and trajectory positive samples by replacing a random part with another path having the
same origin and destination. In a similar way, [267] learns traffic scene similarity. The
authors randomly modify the position and velocity of individual traffic participants in a
scene to construct positive samples, with negative samples drawn uniformly from the rest
of a training batch. By designing augmentation based on domain-knowledge, [268] focuses
on capturing seasonal and holiday information for traffic prediction, while [269] targets
abnormal traffic patterns caused by incidents or reduced capacities.

6.3 Methods
6.3.1 Problem definition
We define the problem for general spatial time series, with traffic interaction as a specific
case. Learning the representations of a set of samples {x1,x2, · · · ,xN} aims to obtain a
nonlinear function fθ : x→ z that encodes each x into z in a latent space. Let T denote
the sequence length of a time series and D the feature dimension at each timestamp t. The
original space of x can have the form RT×D, where spatial features are among the D
dimensions; or RT×S×D, where S represents spatially distributed objects (e.g., sensors or
road users). The latent space of z can also be structured in different forms, such as RP ,
RT×P , or RT×S×P , where P is the dimension of encoded features.

By contrastive learning, (dis)similar samples in the original space should remain close
(far) in the latent space. Meanwhile, by structure preservation, the distance/similarity
relations between samples should maintain certain features after mapping into the latent
space. We use d(xi,xj) to denote the distance between two samples i and j, and this also
applies to their encoded representations zi and zj . Various distance measures can be used
to define d, such as cosine distance (COS), Euclidean distance (EUC), and dynamic time
warping (DTW). The smaller the distance between two samples, the more similar they are.
Considering the limitation of storage efficiency, similarity comparison is performed in each
mini-batch, where B samples are randomly selected.

6.3.2 SPCLT loss
Equation (6.1) presents an overview of the structure-preserving contrastive learning loss for
time series, abbreviated as SPCLT loss, to optimise fθ for self-supervised representation
learning.
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L =
1

2σ2
CLT

LCLT (1− exp(−LCLT)) +
1

2σ2
SP
LSP (1− exp(−LSP)) + log σCLTσSP (6.1)

Referring to the simplified loss in Section 6.1, i.e., L = ηCLT · ℓCLT + ηSP · ℓSP + rη ,
the contrastive learning loss for time series (LCLT) and structure-preserving loss (LSP)
are modified using the function y = x(1− exp(−x)) and correspond to ℓCLT and ℓSP.
This modification is designed to stabilise LCLT and LSP when they are close to 0. The
terms ηCLT, ηSP, and rη controls the trade-off between contrastive learning and structure
preservation, depending on two deviations σCLT and σSP that dynamically change during
training.

In the following sub-sections, we will first introduce the component losses for time
series contrastive learning and structure preservation, and then provide more detailed
explanations on their stabilisation and dynamic trade-offs.

6.3.3 Contrastive learning for time series
In this study, we use the time series contrastive learning loss introduced in TS2Vec [229]
and its succeeder SoftCLT [230] that utilises soft weights for similarity comparison1. For
each sample xi, two augmentations are created by timestamp masking and random
cropping, and then encoded as two representations z′

i and z′′
i . TS2Vec and SoftCLT

losses consider the same sum of similarities for a sample i at a timestamp t, as shown in
Equations (6.2) and (6.3). Equation (6.2) is used for instance-wise contrasting, which we
denote by the subscript inst; Equation (6.3) is used for time-wise contrasting, denoted by
the subscript temp.

Sinst(i, t) =

B∑
j=1

(
exp(z′

i,t · z′′
j,t) + exp(z′′

i,t · z′
j,t)

)
+

B∑
j=1
j ̸=i

(
exp(z′

i,t · z′
j,t) + exp(z′′

i,t · z′′
j,t)

)
(6.2)

Stemp(i, t) =

T∑
s=1

(
exp(z′

i,t · z′′
i,s) + exp(z′′

i,t · z′
i,s)

)
+

T∑
s=1
s ̸=t

(
exp(z′

i,t · z′
i,s) + exp(z′′

i,t · z′′
i,s)

)
(6.3)

1We unify the loss function equations in a consistent format following the open-source code provided with the
original papers; as such, they are slightly adjusted from the equations in the original papers.



6

118 6 Spatial-temporal information preservation of traffic interactions

Equation (6.4) then shows the TS2Vec loss. We refer the readers to [229] for more
details about the hierarchical contrasting method.

LTS2Vec =
1

NT

∑
i

∑
t

(
ℓ
(i,t)

inst
TS2Vec

+ ℓ
(i,t)

temp
TS2Vec

)
,

where


ℓ
(i,t)

inst
TS2Vec

= − log
exp(z′

i,t · z′′
i,t) + exp(z′′

i,t · z′
i,t)

Sinst(i, t)

ℓ
(i,t)

temp
TS2Vec

= − log
exp(z′

i,t · z′′
i,t) + exp(z′′

i,t · z′
i,t)

Stemp(i, t)

(6.4)

Similarity comparison in TS2Vec is between two different augmentations for the same
sample. This is expanded by SoftCLT to also involve other samples in the same mini-batch.
Varying instance-wise and time-wise weights are assigned to different comparison pairs as
soft assignments, with Equations (6.5) and (6.6). This introduces four hyperparameters,
i.e., τinst, τtemp, α, and m. We use EUC to compute d(xi,xj) throughout this paper and
set α = 0.5, both as recommended in the original paper; the other parameters need to be
tuned for different datasets. Specifically, m controls the sharpness of time hierarchical
contrasting. TS2Vec uses m = 1 (constant) and SoftCLT uses m(k) = 2k (exponential),
where k is the depth of pooling layers when computing temporal loss. In this study, we add
one more option m(k) = k + 1 (linear), and will tune the best way for different datasets.

winst(i, j) =
2α

1 + exp(τinst · d(xi,xj)))
+

{
1− α, if i = j

0, if i ̸= j
(6.5)

wtemp(t, s) =
2

1 + exp(τtemp ·m · |t− s|)
(6.6)

Then Equation (6.7) shows the SoftCLT loss, where we let λ be 0.5 as recommended
in the original paper. For a more detailed explanation and analysis, we refer the readers
to [230].

LSoftCLT =
1

NT

∑
i

∑
t

(
λℓ

(i,t)
inst

SoftCLT
+ (1− λ)ℓ(i,t)temp

SoftCLT

)
,

where



ℓ
(i,t)

inst
SoftCLT

= −
B∑

j=1

winst(i, j) log
exp(z′

i,t · z′′
j,t) + exp(z′′

i,t · z′
j,t)

Sinst(i, t)

−
B∑

j=1
j ̸=i

winst(i, j) log
exp(z′

i,t · z′
j,t) + exp(z′′

i,t · z′′
j,t)

Sinst(i, t)

ℓ
(i,t)

temp
SoftCLT

= −
T∑

s=1

wtemp(t, s) log
exp(z′

i,t · z′′
i,s) + exp(z′′

i,t · z′
i,s)

Stemp(i, t)

−
T∑

s=1
s̸=t

wtemp(t, s) log
exp(z′

i,t · z′
i,s) + exp(z′′

i,t · z′′
i,s)

Stemp(i, t)

(6.7)
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6.3.4 Structure-preserving regularisers
We use the topology-preserving loss proposed in [249] and the graph-geometry-preserving
loss proposed in [254] as two structure-preserving regularisers, respectively focusing on
the global and local structure of similarity relations. The global structure is preserved for
instance-wise comparison, and the local structure is preserved for comparison across
temporal or spatial features. In the following, we briefly describe the two losses, and the
readers are referred to the original papers for more details.

Equation (6.8) presents the topology-preserving loss computed in each mini-batch.
Here A is a B ×B EUC distance matrix between the samples in a batch, and is used to
construct the Vietoris-Rips complex; π represents the persistence pairing indices of
simplices that are considered topologically significant. The superscripts X and Z indicate
original data space and latent space, respectively.

LTopo =
1

2

∥∥AX
[
πX
]
−AZ

[
πX
]∥∥2 + 1

2

∥∥AZ
[
πZ
]
−AX

[
πZ
]∥∥2 (6.8)

The graph-geometry-preserving loss is also computed per mini-batch, as is shown in
Equation (6.9). LGGeo measures geometry distortion, i.e., how much fθ deviates from
being an isometry that preserves distances and angles. The geometry to be preserved of the
original data manifold is implied by a similarity graph. To represent temporal and spatial
characteristics, instead of using an instance as a node in the graph, we consider the nodes
as timestamps or in a spatial dimension such as sensors or road users. Then the edges in
the graph are defined by pairwise geodesic distances between nodes.

LGGeo =
1

B

B∑
i=1

Tr
[
H̃i

(
L, f̃θ(xi)

)2
− 2H̃i

(
L, f̃θ(xi)

)]
, (6.9)

where H̃i represents an approximation of the Jacobian matrix of fθ . Note that f̃θ(xi) as
the latent representation of xi needs to maintain the node dimension. For example, if the
nodes are considered as timestamps, f̃θ(xi) ∈ RT×P ; if the nodes are spatial objects,
f̃θ(xi) ∈ RS×P . With a similarity graph defined, then L is the graph Laplacian that is
approximated using a kernel matrix with a width hyperparameter h, which requires tuning
for different datasets.

6.3.5 Stabilisation around the theoretical optimal values
This study considers LTS2Vec and LSoftCLT as LCLT, and LSP can be LTopo or LGGeo. Under
this consideration, the optimal values for both LCLT and LSP are 0. For LTS2Vec, a value of
0 is reached when z′

i,t and z′′
i,t are identical. Similarly, the optimal case of LSoftCLT is

when the samples with soft assignments close to 1 are identical, while dissimilar samples
have soft assignments close to 0. The topology-preserving loss LTopo is 0 when the
topologically relevant distances remain the same in the latent space as in the original space,
i.e., AX

[
πX
]
= AZ

[
πX
]

and AX
[
πZ
]
= AZ

[
πZ
]
. Finally, LGGeo approximates

the distortion measure of isometry and is ideally 0, although it may be negative as the
approximation of H̃i is kernel-based depending on the hyperparameter h.
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Figure 6.1 Illustration of the modification function.

Section 6.3.2 has briefly described the modification of LCLT and LSP by y =
x(1− exp(−x)) in Equation (6.1). Now we explain the effect of this function more with
Figure 6.1. The first objective of this modification is to penalise negative values of LCLT
and LSP. While x > 0, y decreases as x decreases; but when x < 0, y rapidly increases as
x decreases. Once L < 0, the modified term ℓ increases and the direction of gradient
descent reverses.

Another objective is to avoid large-step updates when L is close to 0, so as not to
miss its optimum. The modified y approximates x while x is large, but has a slower
decreasing rate when x < 1. More specifically, the derivative of x(1 − exp(−x))
is x′(1 − exp(−x)(1 − x)), where x′ denotes the derivative of x. While x > 1, the
multiplier in the parentheses is around 1 and x′ is less interfered with. While x decreases
from 1 to 0, the multiplier decreases from 1 to 0, so the derivative also decreases. As a
result, this modification can stabilise training when either LCLT or LSP approaches its
optimal value 0.

6.3.6 Dynamic weighting mechanism to balance contrastive learning
and structure preservation

The training needs to balance between contrastive learning and structure preservation to
avoid the neural network parameters being biased by either of the two objectives. However,
the magnitudes of LCLT and LSP vary with different datasets and hyperparameter settings.
This variation precludes fixed weights for the two modified losses.
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Inspired by [270], we weigh ℓCLT and ℓSP by considering their uncertainties. We
consider the loss values as deviations from their optimal values, and learn adaptive
weights according to the deviations. Given the optimal value of 0, we assume a Gaussian
distribution of ℓ with standard deviation σ, i.e., p(ℓ) = N (0, σ2). Then we can maximise
the log likelihood

∑
log p(ℓ) =

∑
(− log 2π − log σ2 − ℓ2/σ2)/2 to learn σ. This is

equivalent to minimising
∑(

ℓ2/2/σ2 + log σ
)
. When balancing between two losses ℓCLT

and ℓSP that have deviations σCLT and σSP, respectively, we need to use Equation (6.10).

argmax−
∑

log p(ℓCLT)p(ℓSP) ⇔ argmin
∑(

1

2σ2
CLT

ℓCLT +
1

2σ2
SP
ℓSP + log σCLTσSP

)
(6.10)

Replacing ℓCLT in Equation (6.10) with LCLT (1− exp(−LCLT)) and ℓSP with
LSP (1− exp(−LSP)), Equation (6.1) is eventually derived to be the complete loss.
The training process trades-off between LCLT and LSP, as well as between the weight
regulariser rη = log σCLTσSP and the rest of Equation (6.1). When LCLT is small and LSP
is large, σCLT becomes small and σSP becomes large, which then increases the weight for
LCLT while reduces the weight for LSP. The reverse occurs when LCLT is large and LSP is
small. As the weighted sum of LCLT and LSP increases by larger weights, log σCLTσSP
decreases and discourages the increase from being too much. Similarly, if the weighted
sum decreases by smaller weights, log σCLTσSP also regularises the decrease.

6.4 Experiments
We compare 6 losses for self-supervised representation learning (SSRL) of time series:
TS2Vec, SoftCLT, Topo-TS2Vec, GGeo-TS2Vec, Topo-SoftCLT, and GGeo-SoftCLT.
Among the losses, TS2Vec [229] and SoftCLT [230] are baselines, and the others extend
these two with a topology-preserving or a graph-geometry-preserving regulariser. The
comparison is then evaluated by downstream task performances using these differently
encoded representations. Consequently, the comparison and evaluation serve as an
extensive ablation study focusing on the effects of structure-preserving regularisers. Our
experiments are conducted with an NVIDIA A100 GPU with 80GB RAM and 5 Intel
Xeon CPUs. For fair comparisons, we control the following conditions during experiments:
random seed, the space and strategy for hyperparameter search, maximum training epochs,
early stopping criteria, and samples used for evaluating local structure preservation.

6.4.1 Baselines and datasets
The evaluation of performance improvement is on 3 downstream tasks: multivariate time
series classification, macroscopic traffic prediction, and microscopic traffic prediction. For
every downstream task, we split training/(validation)/test sets following the baseline study
and make sure the same data are used across models. Each experiment for a task has two
stages, of which the first is SSRL and the second uses the encoded representations to
perform classification/prediction. Only the split training set is used in the first stage, with
25% separated as an internal validation set to schedule the learning rate for SSRL.
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The classification task is on 28 datasets2 retrieved from the UEA archive [271].
For each dataset, we set the representation dimension to 320 as used in the TS2Vec
and SoftCLT studies, train 6 encoders with the 6 losses, and then classify the encoded
representations with an RBF-kernel SVM. For traffic prediction, we use the dataset and
model in [231] for the macroscopic baseline, and those in [232] for the microscopic
baseline. The macroscopic traffic prediction uses 40 minutes (2-minute intervals) of
historical data in 193 consecutive road segments to predict for all segments in the next 30
minutes. The microscopic traffic prediction forecasts the trajectory of an ego vehicle in 3
seconds, based on the history of up to 26 surrounding road users in the past 1 second
(0.1-second intervals). Both traffic prediction baselines use encoder-decoder structures. We
first pretrain the encoder with the 6 different losses for SSRL, and then fine-tune the
complete model for prediction. The baseline trained from scratch is also compared.

To facilitate clearer analyses when presenting results, we divide the datasets included
in the UEA archive into those with spatial features and those without. According to data
descriptions in [271], the UEA datasets are grouped into 6 categories: human activity
recognition, motion classification, ECG classification, EEG/MEG classification, audio
spectra classification, and other problems. The human activity and motion categories,
along with the PEMS-SF and LSST datasets that are categorised as other problems,
contain spatial features. We thus consider these as spatial, and the remaining datasets as
non-spatial. As a result, each division includes 14 datasets.

6.4.2 Hyperparameters
For each dataset, we perform a grid search to find the parameters that minimise LCLT after
a certain number of iterations, where we set a constant learning rate of 0.001. Table
6.1 shows the search spaces of various hyperparameters, where bs is abbreviated for
batch size and lrη is a separate learning rate for dynamic weights. When searching for
best-suited parameters, we first set them as default values, and then follow the search
strategy presented in Table 6.2.

The search spaces and strategy can result in up to 63 runs for one dataset. To save
searching time, we adjust the number of iterations to be adequate to reflect the progress
of loss reduction but limited to prevent overfitting, as our goal is to identify suitable
parameters rather than fully train the models. The number of iterations is scaled according
to the number of training samples, with larger datasets receiving more iterations.

6.4.3 Evaluation metrics
Our performance evaluation uses both task-specific metrics and structure-preserving
metrics. The former serves to validate performance improvements, while the latter serves
to verify the effectiveness of preserving similarity structures. These metrics differ in
whether a higher or lower value signifies better performance. To consistently indicate the

2The UEA archive collects 30 datasets in total. We omitted the two largest, InsectWingbeat and PenDigits, due to
limited computation resources.
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Table 6.1 Hyperparameter search space.

Default Search space

bs 8 [8, 16, 32] a

lrη 0.05 [0.01, 0.05]
h 1 [0.25, 1, 9, 25, 49]
τtemp 0 [0.5, 1, 1.5, 2, 2.5]
m constant [constant, linear, exponential]
τinst 0 [1, 3, 5, 10, 20]
bs: batch size; lrη: learning rate for dynamic weights.

aMaximum bs does not exceed train size.

Table 6.2 Hyperparameter search strategy.

Stage bs lrη h τtemp m τinst

TS2Vec △
Topo-TS2Vec □ △
GGeo-TS2Vec □ △ △
SoftCLT Phase 1 ⃝ △ △ ⃝
SofrCLT Phase 2 △ □ □ △
Topo-SoftCLT □ △ □ □ □
GGeo-SoftCLT □ △ △ □ □ □

⃝: default; □: inherited;△: tuned.

best method, in the tables presented in the following sub-sections, the best values are both
bold and underlined; the second-best values are bold.

For evaluating the classification task, we use accuracy (Acc.) and the area under the
precision-recall curve (AUPRC). To evaluate macroscopic traffic prediction, we use
mean absolute error (MAE), root mean squared error (RMSE), the standard deviation of
prediction errors (SDEP), and the explained variance by prediction (EVar). Dealing
with microscopic traffic, we predict vehicle trajectories and assess the minimum final
displacement error (min. FDE) as well as missing rates under radius thresholds of 0.5 m, 1
m, and 2 m (MR0.5, MR1, and MR2).

As for metrics to evaluate structure preservation, we adopt a combination of those
used in [249] and [254]. More specifically, we consider 1) kNN, the proportion of
shared k-nearest neighbours according to distance matrices in the latent space and in
the original space; 2) continuity (Cont.), one minus the proportion of neighbours in
the original space that are no longer neighbours in the latent space; 3) trustworthiness
(Trust.), the counterpart of continuity, measuring the proportion of neighbours in the latent
space but not in the original space; 4) MRRE, the averaged error in the relative ranks of
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sample distances between in the latent and original space; and 5) distance matrix RMSE
(dRMSE), the root mean squared difference between sample distance matrices in the
latent and original space. We calculate these metrics at two scales to evaluate global and
local structure preservation. For global evaluation, our calculation is based on the EUC
distances between samples; for local evaluation, it is based on the EUC distances between
timestamps in a sample for at most 500 samples in the test set.

6.5 Results
6.5.1 Multivariate time series classification
Table 6.3 displays the classification performance on spatial and non-spatial UEA datasets.
Next to the averaged accuracy, we also include the loss values on test sets to offer more
information. More detailed results can be found in Tables B1 and B2 in B.1, where we
present the classification accuracy with different representation learning losses for each
dataset. Then we use Table 6.4 to more specifically compare the relative improvements
induced by adding a topology or graph-geometry preserving regulariser. The improvement
is measured by the percentage of accuracy difference from the corresponding baseline
performance.

Table 6.3 UEA classification evaluation.

Datasets Method Acc. (↑) AUPRC (↑) LCLT LSP

With spatial
features (14)

TS2Vec 0.848 0.872 2.943
Topo-TS2Vec 0.851 0.876 2.264 0.085
GGeo-TS2Vec 0.856 0.881 2.200 186.9
SoftCLT 0.852 0.876 7.943
Topo-SoftCLT 0.862 0.882 4.900 0.087
GGeo-SoftCLT 0.864 0.883 2.316 221.1

Without spatial
features (14)

TS2Vec 0.523 0.555 8.417
Topo-TS2Vec 0.553 0.561 11.12 0.122
GGeo-TS2Vec 0.536 0.564 15.58 957.0
SoftCLT 0.508 0.532 4.714
Topo-SoftCLT 0.496 0.534 7.328 0.124
GGeo-SoftCLT 0.537 0.549 10.09 144.7

Note: the best values are both bold and underlined; the second-best values are bold.

Tables 6.3 and 6.4 clearly show that structure preservation improves classification
accuracy, not only when time series data involve spatial features, but also when they do not.
The relative improvements in Table 6.4 are higher for non-spatial datasets than for spatial
datasets, which is because the datasets without spatial features are more difficult to learn in
the UEA archive. As is shown in Table 6.3, the loss of contrastive learning decreases
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Table 6.4 Classification accuracy improved by Topo/GGeo regulariser. The comparisons are made
with corresponding baseline performances.

Datasets Improvement by method Persentage in Acc. (%)

min. mean max.

With spatial
features (14)

Topo-TS2Vec -4.403 0.800 16.54
GGeo-TS2Vec -3.783 1.143 10.44
Topo-SoftCLT -4.375 2.121 25.94
GGeo-SoftCLT -5.674 2.959 28.55

Without spatial
features (14)

Topo-TS2Vec -5.263 8.852 50.00
GGeo-TS2Vec -33.33 2.083 44.44
Topo-SoftCLT -33.33 -0.815 50.00
GGeo-SoftCLT -20.83 18.49 166.7

when a structure-preserving regulariser is added for spatial datasets, while increases for
non-spatial datasets. This implies that preserving similarity structure is well aligned with
contrastive learning for spatial datasets, and can even enhance contrastive learning.

The assessment of similarity preservation is presented in Table 6.5 at both local
and global scales. Consistent with the task-specific evaluation, Table 6.5 shows that
structure-preserving regularisation preserves more complete information on similarity
relations. The improvements are generally more significant on datasets with spatial
features, which makes it more evident that our proposed preservation suits spatial time
series data better. Although the comparisons in Tables 6.3∼6.5 indicate more notable
improvements by preserving graph geometry than preserving topology, we have to note
that this does not demonstrate the universal superiority of one over the others. Different
datasets have different characteristics that benefit from preserving global or local structure,
and domain knowledge is necessary to determine which could be more effective. We will
discuss this more in Section 6.6.

6.5.2 Macroscopic and microscopic traffic prediction
In Table 6.6, we present the performance evaluation for both macroscopic and microscopic
traffic prediction. This table shows consistent improvements by pretraining encoders with
our methods. Notably, single contrastive learning (i.e., TS2Vec and SoftCLT) does not
necessarily improve downstream prediction, whereas it does when used together with
preserving certain similarity structures. Given that our comparisons are conducted through
controlling random conditions, this result effectively shows the necessity of preserving
structure when learning traffic interaction representations. In addition, we plot polar
heatmaps in Figure 6.2 to visualise the encoded latent representations for the sensors
in macroscopic traffic prediction. These sensors are deployed along a ring road, thus
adjacent sensors are expected to have similar states and representation patterns. The figure
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Table 6.5 Structure preservation evaluation over datasets with and without spatial features in the UEA archive. The standard deviations are computed
across datasets.

Datasets Method Local mean between timestamps Global mean between all samples

kNN (↑) Trust. (↑) Cont. (↑) MRRE (↓) dRMSE (↓) kNN (↑) Trust. (↑) Cont. (↑) MRRE (↓) dRMSE (↓)

With
spatial

features
(14)

TS2Vec 0.563 ± 0.149 0.875 ± 0.082 0.868 ± 0.073 0.117 ± 0.08 0.346 ± 0.099 0.419 ± 0.149 0.765 ± 0.110 0.784 ± 0.126 0.189 ± 0.124 0.150 ± 0.065
Topo-TS2Vec 0.569 ± 0.151 0.878 ± 0.082 0.873 ± 0.075 0.114 ± 0.081 0.344 ± 0.100 0.418 ± 0.150 0.764 ± 0.110 0.783 ± 0.125 0.190 ± 0.126 0.154 ± 0.069
GGeo-TS2Vec 0.569 ± 0.154 0.881 ± 0.08 0.873 ± 0.076 0.114 ± 0.079 0.341 ± 0.096 0.418 ± 0.153 0.762 ± 0.113 0.781 ± 0.129 0.190 ± 0.127 0.157 ± 0.075
SoftCLT 0.562 ± 0.156 0.875 ± 0.078 0.866 ± 0.074 0.117 ± 0.079 0.348 ± 0.096 0.420 ± 0.153 0.765 ± 0.112 0.788 ± 0.123 0.187 ± 0.125 0.171 ± 0.103
Topo-SoftCLT 0.564 ± 0.156 0.877 ± 0.077 0.869 ± 0.074 0.115 ± 0.077 0.344 ± 0.097 0.421 ± 0.157 0.767 ± 0.114 0.784 ± 0.126 0.188 ± 0.128 0.153 ± 0.068
GGeo-SoftCLT 0.571 ± 0.150 0.883 ± 0.073 0.875 ± 0.067 0.111 ± 0.076 0.337 ± 0.091 0.425 ± 0.149 0.768 ± 0.110 0.790 ± 0.121 0.185 ± 0.125 0.149 ± 0.065

Without
spatial

features
(14)

TS2Vec 0.423 ± 0.125 0.835 ± 0.095 0.820 ± 0.105 0.150 ± 0.105 0.304 ± 0.162 0.362 ± 0.175 0.767 ± 0.132 0.767 ± 0.136 0.252 ± 0.151 0.197 ± 0.136
Topo-TS2Vec 0.424 ± 0.125 0.831 ± 0.100 0.820 ± 0.106 0.151 ± 0.105 0.308 ± 0.164 0.356 ± 0.176 0.767 ± 0.134 0.763 ± 0.139 0.254 ± 0.154 0.191 ± 0.120
GGeo-TS2Vec 0.420 ± 0.126 0.832 ± 0.094 0.820 ± 0.108 0.151 ± 0.105 0.310 ± 0.145 0.365 ± 0.176 0.771 ± 0.137 0.769 ± 0.136 0.253 ± 0.157 0.189 ± 0.125
SoftCLT 0.432 ± 0.127 0.835 ± 0.099 0.820 ± 0.106 0.148 ± 0.105 0.312 ± 0.162 0.354 ± 0.177 0.764 ± 0.134 0.763 ± 0.136 0.252 ± 0.151 0.197 ± 0.131
Topo-SoftCLT 0.426 ± 0.119 0.834 ± 0.095 0.818 ± 0.104 0.148 ± 0.102 0.312 ± 0.163 0.361 ± 0.181 0.768 ± 0.131 0.768 ± 0.132 0.254 ± 0.152 0.205 ± 0.123
GGeo-SoftCLT 0.430 ± 0.122 0.835 ± 0.095 0.822 ± 0.101 0.147 ± 0.101 0.315 ± 0.151 0.355 ± 0.174 0.762 ± 0.134 0.761 ± 0.136 0.257 ± 0.153 0.203 ± 0.132

Note: the best values are both bold and underlined; the second-best values are bold.
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Table 6.6 Macroscopic and microscopic traffic prediction performance evaluation. Metrics are reported as mean ± standard deviation over 10 stratified
folds of the test set.

Method
Macroscopic Traffic Microscopic Traffic

MAE (↓)
(km/h)

RMSE (↓)
(km/h)

SDEP (↓)
(km/h)

EVar (↑)
(%)

min. FDE (↓)
(m)

MR0.5 (↓)
(%)

MR1 (↓)
(%)

MR2 (↓)
(%)

No pretraining 2.850 ± 0.044 5.911 ± 0.100 5.909 ± 0.100 84.784 ± 0.314 0.640 ± 0.013 59.253 ± 1.099 12.161 ± 0.929 0.744 ± 0.256
TS2Vec 2.878 ± 0.046 5.981 ± 0.111 5.981 ± 0.111 84.412 ± 0.337 0.636 ± 0.008 59.453 ± 0.866 11.899 ± 0.721 0.558 ± 0.17
Topo-TS2Vec 2.862 ± 0.043 5.914 ± 0.099 5.907 ± 0.099 84.793 ± 0.306 0.634 ± 0.008 58.144 ± 1.014 11.761 ± 0.809 0.737 ± 0.252
GGeo-TS2Vec 2.887 ± 0.045 5.980 ± 0.107 5.977 ± 0.107 84.433 ± 0.326 0.636 ± 0.010 58.289 ± 1.007 11.747 ± 0.797 0.737 ± 0.239
SoftCLT 2.856 ± 0.043 5.937 ± 0.105 5.931 ± 0.104 84.670 ± 0.348 0.641 ± 0.018 59.501 ± 1.742 11.940 ± 0.998 0.785 ± 0.278
Topo-SoftCLT 2.850 ± 0.045 5.881 ± 0.111 5.880 ± 0.111 84.934 ± 0.327 0.640 ± 0.012 58.626 ± 0.995 12.043 ± 0.735 0.820 ± 0.249
GGeo-SoftCLT 2.834 ± 0.046 5.878 ± 0.116 5.877 ± 0.116 84.952 ± 0.344 0.652 ± 0.013 60.638 ± 0.596 13.249 ± 0.681 0.723 ± 0.231
Best improvement 0.568 0.563 0.552 0.198 0.929 1.872 3.401 24.998

Note: the best values are both bold and underlined; the second-best values are bold.
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Figure 6.2 Encoded representations after training with different losses on the test set of the Macroscopic traffic prediction task.
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intuitively shows better preserved spatial-temporal relations by contrastive learning and
structure preservation.

Table 6.7 then displays the corresponding evaluation on similarity structure preservation,
which is obtained by assessing the encoders after fine-tuning for traffic prediction.
The results show that the better-performing methods in macro-traffic prediction
(i.e., GGeo-SoftCLT, Topo-SoftCLT) and micro-traffic prediction (i.e., Topo-TS2Vec,
GGeo-TS2Vec) preserve more similarity structures at both global and local scales. In
general, the metric values are close for the same task across methods; however, when a
method has a significant advantage over the others, it indicates superior performance.
Examples for macroscopic traffic prediction are Topo-SoftCLT in local Cont. and
GGeo-SoftCLT in global dRMSE; for microscopic traffic prediction are Topo-TS2Vec in
local Trust. and GGeo-TS2Vec in global Cont.

Table 6.7 Structure preservation evaluation of encoders after the fine-tuning in traffic prediction
tasks.

Method Macroscopic Traffic Microscopic Traffic

kNN (↑) Trust. (↑) Cont. (↑) MRRE (↓) dRMSE (↓) kNN (↑) Trust. (↑) Cont. (↑) MRRE (↓) dRMSE (↓)

Local mean between timestamps for at most 500 samples

No pretraining 0.125 0.524 0.526 0.496 0.224 0.373 0.742 0.552 0.426 0.478
TS2Vec 0.125 0.523 0.522 0.501 0.251 0.398 0.761 0.592 0.393 0.496
Topo-TS2Vec 0.128 0.533 0.522 0.491 0.242 0.397 0.754 0.590 0.399 0.506
GGeo-TS2Vec 0.126 0.529 0.524 0.496 0.249 0.397 0.756 0.589 0.396 0.508
SoftCLT 0.127 0.526 0.523 0.500 0.246 0.378 0.746 0.552 0.427 0.478
Topo-SoftCLT 0.129 0.536 0.524 0.492 0.250 0.398 0.755 0.588 0.405 0.480
GGeo-SoftCLT 0.127 0.527 0.523 0.498 0.261 0.397 0.751 0.589 0.405 0.485

Global mean between all samples

No pretraining 0.316 0.949 0.969 0.031 0.364 0.218 0.937 0.920 0.049 0.141
TS2Vec 0.264 0.940 0.957 0.039 0.377 0.232 0.953 0.920 0.044 0.139
Topo-TS2Vec 0.276 0.942 0.963 0.036 0.379 0.233 0.958 0.917 0.045 0.138
GGeo-TS2Vec 0.263 0.940 0.959 0.039 0.400 0.231 0.959 0.923 0.041 0.140
SoftCLT 0.299 0.943 0.966 0.035 0.391 0.224 0.924 0.916 0.055 0.148
Topo-SoftCLT 0.288 0.940 0.965 0.036 0.371 0.215 0.909 0.901 0.065 0.150
GGeo-SoftCLT 0.287 0.939 0.964 0.037 0.359 0.240 0.935 0.926 0.046 0.146

Note: the best values are both bold and underlined; the second-best values are bold.

Notably, in macroscopic traffic prediction, fine-tuning from scratch maintains the
greatest global similarities. This implies that the specific model architecture might allow
for learning similarity structure without pretraining. This is not crystal clear with the final
evaluation only. In the next sub-section, we will add different model architectures for the
macro-traffic prediction task, and visualise the fine-tuning progress to further understand
the contribution of structure preservation to downstream task performance.

6.5.3 Training efficiency
Incorporating structure-preserving regularisation increases computational complexity, and
consequently, training time. The magnitude of this increase depends on the data and
model that are applied on. With Table 6.8, we quantify the additional time required for
structure preservation and evaluate its impact across diverse model architectures. In prior
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experiments, we used Convolutional Neural Network (CNN) encoders for the classification
task on UEA datasets, Dynamic Graph Convolution Network (DGCN, [214]) encoder for
macroscopic traffic prediction, and Hierarchical Graph Neural Network (HGNN, based on
VectorNet [272, 273]) encoder for microscopic traffic prediction. To obtain a more
comprehensive evaluation, we include two more Recurrent Neural Network (RNN)
models for macroscopic traffic prediction: Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) encoders, paired with simple linear decoders.

Table 6.8 Training time per epoch in the stage of self-supervised representation learning.

Task/data Encoder Base (sec/epoch) TS2Vec Topo-TS2Vec GGeo-TS2Vec SoftCLT Topo-SoftCLT GGeo-SoftCLT

Avg. UEAa CNN 11.94 1.00× 1.46× 2.35× 1.00× 1.46× 2.36×
MicroTraffic HGNN 122.93 1.00× 1.45× 1.16× 1.23× 1.69× 1.42×

MacroTraffic
DGCN 74.78 1.00× 1.29× 1.09× 1.02× 1.40× 1.37×
LSTM 18.04 1.00× 1.49× 1.12× 1.09× 1.57× 1.22×
GRU 16.49 1.00× 1.54× 1.14× 1.10× 1.61× 1.24×

a Detailed results are referred to Tables B3 and B4 in B.1.

Table 6.8 shows that preserving structure increases training time by less than 50% in
most cases, and suits DGCN particularly well with the least additional time. However,
when time sequences are very long, the computation of graph-geometry preserving loss
becomes intense. For example, the time series length is 1,197 in the Cricket dataset and
results in a pretraining time of 2.86 times the base; likewise, the EthanolConcentration
dataset has a length of 1,751 and a pretraining time of 4.09 times the base, and the
EigenWorms dataset uses 7.59 times of the base pretraining time with a time series length
of 17,984.

In more detail, we evaluate the fine-tuning efficiency in macroscopic traffic prediction
to further investigate the contribution of structure preservation. Figure 6.3 shows the
convergence process of different models with and without pretraining, where RMSE is
used to evaluate prediction performance and the other metrics indicate the preservation of
global similarity relations.

For all models of DGCN, LSTM, and GRU, structure preservation consistently
enhances prediction performance compared to training from scratch (No pretraining). The
enhancement is significant when using LSTM and GRU, achieving 6.68% and 10.14%
improvement in RMSE, respectively. Meanwhile, the progress of structure preservation is
stable when the encoder is pretrained, and maintains the advantage over no pretraining
throughout the fine-tuning process. In contrast, for DGCN, which is a more sophisticated
model tailored for the task, training from scratch is already very effective and pretraining
brings relatively minor improvement. This implies that certain model architectures are
better suited to a specific task than others, and the preservation of similarity structure in the
latent representations may be a good indicator for model selection.
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Figure 6.3 Fine-tuning progress of models trained from scratch and pretrained with different losses
in macroscopic traffic prediction. Values of the final performance are referred to Table 6.6 for
DGCN, to Tables B5 and B6 in B.2 for LSTM and GRU.



6

132 6 Spatial-temporal information preservation of traffic interactions

6.6 Discussion
The theoretical foundation and experimental results presented in this paper not only
demonstrate evident improvements in downstream task performance but also reveal a
critical bridge between contrastive learning and similarity structure preservation. In this
section, we discuss these findings to guide method selection, interpret the observed
performance improvements, and remind of potential failure modes.

6.6.1 Method selection
A key consideration when applying our method lies in selecting an appropriate loss function.
This involves two layers of choices: TS2Vec versus SoftCLT, and topology-preserving
(Topo-) versus graph-geometry-preserving (GGeo-) regularisation. For the first choice,
TS2Vec is generally more suitable for classification tasks with fewer classes as TS2Vec
only compares the similarity between two different augmentations of the same sample. In
contrast, SoftCLT incorporates all samples in a mini-batch by assigning soft labels
based on similarity. This performs a more detailed similarity comparison and thus is
advantageous for tasks with a larger number of classes or for regression. As shown in
Figure 6.4, in the UEA archive, datasets for which (Topo/GGeo-)TS2Vec achieves the best
accuracy tend to have fewer classes than those with the best performance achieved by
(Topo/GGeo-)SoftCLT. In essence, SoftCLT implicitly embeds the similarity structure
through soft labels.

10 20 30 40
Number of classes

(Topo/GGeo-)SoftCLT
 best performed

(Topo/GGeo-)TS2Vec and
 (Topo/GGeo-)SoftCLT

 both best performed

(Topo/GGeo-)TS2Vec
 best performed

Figure 6.4 Box plots of the number of classes in the UEA datasets for which the best classification
accuracy is achieved after contrastive learning based on TS2Vec or SoftCLT.

Then the second layer of choice hinges on the scale of structural relevance to the
downstream task. The topology-preserving regulariser is designed to maintain the global
similarity structure between data samples, and the graph-geometry-preserving regulariser
focuses on locally preserving temporal or spatial similarity structures within samples.
Therefore, Topo-regularisation is especially beneficial when the downstream task relies on
inter-sample relations; whereas GGeo-regularisation is particularly useful in tasks where
subtle intra-sample variations are critical, such as traffic prediction.
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Our hypothesis for the performance improvements observed across tasks is that
explicit structure-preserving regularisation enforces the encoded latent space to reflect the
original distribution of data. This aligns with the theoretical view of neural networks as
models that approximate the conditional distributions of outputs on inputs. Contrastive
learning typically relies on predefined positive and negative augmentations, which may
disrupt the original patterns underlying data and introduce biases. By anchoring the latent
space to the original data manifold, structure preservation can effectively mitigate the
potential biases by reducing the dependency on augmentations.

6.6.2 Failure modes
While the proposed method demonstrates consistent improvements across a range of tasks,
several limitations and potential failure modes need to be acknowledged. These limitations
are instructive in identifying the contexts where the method is most effective and where
caution is warranted.

One source of difficulty arises from the sensitivity to data scale and complexity. The
additional cost by structure-preserving regularisation is acceptable in many cases, but the
overhead becomes prohibitive when time series are extremely long. For example, datasets
with thousands of time steps result in a large similarity graph that inflates the computation
memory and time of the GGeo-loss. Meanwhile, for models that are already well aligned
with data, such as the DGCN baseline in macroscopic traffic prediction, pretraining with
our method may provide only marginal benefits. This suggests that the utility of structure
preservation is most pronounced when the data involve complex similarity relations that
base models cannot easily capture.

Another important consideration concerns the benefits of dynamic weighting compared
to fixed weights. The dynamic weighting mechanism is introduced to adaptively balance
the loss magnitudes of contrastive learning and structure preservation. This works
particularly well when the loss components have a large magnitude gap, which biases
parameter updates. However, dynamic weighting may not outperform fixed weighting
when the magnitudes of loss components are balanced in nature. In such circumstances,
the adaptive mechanism can oscillate excessively, delaying convergence or amplifying
noise in the latent space. Table 6.9 compares model performance on 5 datasets in the UEA
archive. The datasets are selected because of relatively large magnitude gaps between
contrastive learning loss and structure preservation loss. Dynamic and fixed weighting
yield comparable classification accuracies, but the dynamic mechanism consistently
improves structure preservation metrics and achieves lower loss.

Finally, dependency on hyperparameter tuning presents a limitation. The approach
proposed in this paper requires careful selection of kernel width for Laplacian
approximation, temperature parameters in the contrastive loss, and the learning rate for
dynamic weights. Although we provide a scheme for hyperparameter tuning, improper
parameters can lead to ineffective training.
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Table 6.9 Comparison of dynamic and fixed weighting performance with the UEA archive. By fixed weighting, we let σCLT = 1 and σSP = 1, so that
the weights for both contrastive learning and structure preservation are 0.5.

Dataset Method Acc. (↑) kNN (↑) Trust. (↑) Cont. (↑) MRRE (↓) dRMSE (↓) LCLT LSP

ERing GGeo-SoftCLT (dynamic weighting) 0.871 ± 0.011 0.776 ± 0.004 0.954 ± 0.002 0.940 ± 0.003 0.047 ± 0.001 0.209 ± 0.007 0.652 ± 0.023 106.972 ± 15.521
GGeo-SoftCLT (fixed weighting) 0.876 ± 0.013 0.767 ± 0.003 0.947 ± 0.002 0.933 ± 0.002 0.05 ± 0.001 0.226 ± 0.004 0.602 ± 0.015 149.115 ± 15.738

Libras GGeo-TS2Vec (dynamic weighting) 0.863 ± 0.010 0.757 ± 0.002 0.945 ± 0.001 0.915 ± 0.001 0.091 ± 0.001 0.281 ± 0.004 4.724 ± 0.038 387.867 ± 47.765
GGeo-TS2Vec (fixed weighting) 0.864 ± 0.016 0.754 ± 0.002 0.943 ± 0.001 0.915 ± 0.001 0.091 ± 0.001 0.275 ± 0.004 4.818 ± 0.021 519.156 ± 33.440

NATOPS GGeo-SoftCLT (dynamic weighting) 0.921 ± 0.009 0.640 ± 0.004 0.903 ± 0.004 0.859 ± 0.004 0.108 ± 0.002 0.296 ± 0.004 0.450 ± 0.007 712.646 ± 39.097
GGeo-SoftCLT (fixed weighting) 0.920 ± 0.011 0.639 ± 0.003 0.902 ± 0.003 0.855 ± 0.003 0.109 ± 0.002 0.295 ± 0.004 0.447 ± 0.006 811.255 ± 55.068

StandWalkJump GGeo-TS2Vec (dynamic weighting) 0.273 ± 0.049 0.389 ± 0.007 0.947 ± 0.003 0.905 ± 0.004 0.058 ± 0.002 0.226 ± 0.032 12.592 ± 2.747 3826.480 ± 2231.619
GGeo-TS2Vec (fixed weighting) 0.300 ± 0.057 0.386 ± 0.006 0.945 ± 0.003 0.904 ± 0.004 0.059 ± 0.002 0.239 ± 0.034 12.821 ± 2.847 4173.859 ± 2471.534

UWaveGestureLibrary GGeo-TS2Vec (dynamic weighting) 0.855 ± 0.011 0.759 ± 0.009 0.950 ± 0.005 0.956 ± 0.006 0.03 ± 0.002 0.308 ± 0.007 1.098 ± 0.170 501.284 ± 47.744
GGeo-TS2Vec (fixed weighting) 0.853 ± 0.018 0.755 ± 0.009 0.948 ± 0.006 0.954 ± 0.006 0.031 ± 0.002 0.306 ± 0.007 1.102 ± 0.174 604.046 ± 67.679
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6.7 Conclusion
This paper presents a method for structure-preserving contrastive learning for spatial
time series, where we propose a dynamic mechanism to adaptively balance contrastive
learning and structure preservation. The method is generally applicable to time series data
with spatial or geographical features, which are particularly abundant in transportation
systems. Extensive experiments demonstrate that our methods improve the state of the arts,
including for multivariate time series classification in various contexts and for traffic
prediction at both macroscopic and microscopic scales.

An important advantage of this method is its ability to enforce the preservation of
similarity structures in the latent space, thereby aligning representation learning with the
original data manifold. At the same time, the efficiency costs of structure-preserving
regularisation are moderate, making the approach practical for many applications.
Nonetheless, several limitations deserve mention. The benefits of the method become
expensive when time series are extremely long, where computational costs can be
prohibitive. Dynamic weighting does not always outperform fixed weighting, but is
particularly helpful when the training dynamics are dominated by one loss component.
Moreover, the method depends on careful hyperparameter tuning, especially for
the graph-geometry-preserving regulariser. These limitations do not undermine the
contributions of the work but rather highlight opportunities for future research, including
the design of lightweight approximations for long sequences, more stable dynamic
weighting schemes, and principled strategies for automatic hyperparameter selection.

Notably, preserving the original similarity structure in the latent space is shown to
be well aligned with and beneficial to contrastive learning for spatio-temporal data.
This is crucial for informative representational learning from large-scale data, as it
impacts a neural network’s ability to model the underlying conditional distribution. Our
experiments suggest that higher similarity structure preservation is a good indicator of
more informative representations, highlighting that the structural information of similarities
in spatio-temporal data remains yet to be exploited. In the context of increasingly large
neural network models that involve diverse data modalities, we hope this study sheds light
on more effective training of large models in transportation systems.
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Appendix B
B.1 Detailed results on UEA datasets
This section provides detailed comparisons of evaluation results for the used 28 datasets in
the UEA archive. Tables B1 and B2 present the results of classification accuracy. Tables
B3 and B4 present the training time for self-supervised representation learning.

Table B1 Detailed evaluation of classification accuracy on spatial datasets in the UEA archive.

Dataset TS2Vec Topo-TS2Vec GGeo-TS2Vec SoftCLT Topo-SoftCLT GGeo-SoftCLT

ArticularyWordRecognition 0.980 0.987 0.983 0.987 0.977 0.987
BasicMotions 1.000 1.000 1.000 1.000 1.000 1.000
CharacterTrajectories 0.971 0.985 0.972 0.980 0.977 0.986
Cricket 0.944 0.944 0.972 0.972 0.972 0.986
ERing 0.867 0.874 0.881 0.893 0.878 0.863
EigenWorms 0.809 0.817 0.863 0.817 0.901 0.840
Epilepsy 0.957 0.957 0.949 0.964 0.957 0.949
Handwriting 0.498 0.499 0.479 0.487 0.478 0.580
LSST 0.485 0.566 0.536 0.452 0.569 0.581
Libras 0.883 0.844 0.850 0.889 0.850 0.867
NATOPS 0.917 0.917 0.933 0.922 0.917 0.944
PEMS-SF 0.792 0.775 0.815 0.751 0.803 0.740
RacketSports 0.908 0.914 0.914 0.928 0.908 0.875
UWaveGestureLibrary 0.862 0.831 0.834 0.888 0.881 0.897

Avg. over spatial datasets 0.848 0.851 0.856 0.852 0.862 0.864

Table B2 Detailed evaluation of classification accuracy on non-spatial datasets in the UEA archive.

Dataset TS2Vec Topo-TS2Vec GGeo-TS2Vec SoftCLT Topo-SoftCLT GGeo-SoftCLT

AtrialFibrillation 0.200 0.267 0.133 0.133 0.200 0.267
DuckDuckGeese 0.360 0.540 0.520 0.400 0.420 0.400
EthanolConcentration 0.289 0.274 0.297 0.243 0.308 0.308
FaceDetection 0.510 0.508 0.505 0.516 0.497 0.505
FingerMovements 0.480 0.480 0.480 0.530 0.470 0.540
HandMovementDirection 0.324 0.405 0.257 0.324 0.230 0.257
Heartbeat 0.751 0.761 0.717 0.756 0.737 0.732
JapaneseVowels 0.978 0.986 0.978 0.970 0.978 0.978
MotorImagery 0.480 0.500 0.500 0.520 0.500 0.500
PhonemeSpectra 0.263 0.258 0.269 0.269 0.260 0.257
SelfRegulationSCP1 0.778 0.768 0.788 0.761 0.730 0.771
SelfRegulationSCP2 0.467 0.550 0.561 0.528 0.511 0.511
SpokenArabicDigits 0.973 0.976 0.966 0.964 0.968 0.957
StandWalkJump 0.467 0.467 0.533 0.200 0.133 0.533

Avg. over non-spatial datasets 0.523 0.553 0.536 0.508 0.496 0.537

In addition, to visually show the effect of differently regularised contrastive learning
losses on representation, we apply t-SNE to compress the encoded representations
into 3 dimensions, as plotted in Figure B1 for the dataset Epilepsy, and Figure B2 for
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Table B3 Detailed representation training time per epoch (unit: s) on spatial datasets in the UEA
archive.

Dataset TS2Vec Topo-TS2Vec GGeo-TS2Vec SoftCLT Topo-SoftCLT GGeo-SoftCLT

ArticularyWordRecognition 3.799 (1.00×) 5.61 (1.48×) 5.863 (1.54×) 3.772 (0.99×) 5.77 (1.52×) 5.983 (1.57×)
BasicMotions 0.475 (1.00×) 0.685 (1.44×) 0.709 (1.49×) 0.457 (0.96×) 0.687 (1.45×) 0.711 (1.50×)
CharacterTrajectories 20.640 (1.00×) 30.863 (1.50×) 33.32 (1.61×) 20.652 (1.00×) 30.948 (1.50×) 33.18 (1.61×)
Cricket 1.903 (1.00×) 2.653 (1.39×) 5.437 (2.86×) 1.904 (1.00×) 2.655 (1.40×) 5.436 (2.86×)
ERing 0.319 (1.00×) 0.482 (1.51×) 0.487 (1.53×) 0.316 (0.99×) 0.483 (1.51×) 0.49 (1.54×)
EigenWorms 19.862 (1.00×) 23.823 (1.20×) 149.05 (7.50×) 20.224 (1.02×) 24.856 (1.25×) 150.7 (7.59×)
Epilepsy 1.737 (1.00×) 2.49 (1.43×) 2.753 (1.58×) 1.686 (0.97×) 2.506 (1.44×) 2.755 (1.59×)
Handwriting 1.875 (1.00×) 2.771 (1.48×) 2.959 (1.58×) 1.88 (1.00×) 2.775 (1.48×) 2.987 (1.59×)
LSST 29.786 (1.00×) 45.273 (1.52×) 45.162 (1.52×) 29.859 (1.00×) 45.216 (1.52×) 45.154 (1.52×)
Libras 2.081 (1.00×) 3.142 (1.51×) 3.142 (1.51×) 2.085 (1.00×) 3.135 (1.51×) 3.141 (1.51×)
NATOPS 1.953 (1.00×) 2.989 (1.53×) 2.949 (1.51×) 2.085 (1.07×) 3.147 (1.61×) 3.159 (1.62×)
PEMS-SF 3.413 (1.00×) 5.069 (1.49×) 5.38 (1.58×) 3.415 (1.00×) 5.064 (1.48×) 5.399 (1.58×)
RacketSports 1.781 (1.00×) 2.685 (1.51×) 2.664 (1.50×) 1.771 (0.99×) 2.711 (1.52×) 2.665 (1.50×)
UWaveGestureLibrary 1.699 (1.00×) 2.395 (1.41×) 2.788 (1.64×) 1.776 (1.05×) 2.595 (1.53×) 2.99 (1.76×)

Avg. over spatial datasets 6.523 sec/epoch 1.46× 2.12× 1.00× 1.48× 2.15×

Table B4 Detailed representation training time per epoch (unit: s) on non-spatial datasets in the UEA
archive.

Dataset TS2Vec Topo-TS2Vec GGeo-TS2Vec SoftCLT Topo-SoftCLT GGeo-SoftCLT

AtrialFibrillation 0.182 (1.00×) 0.258 (1.42×) 0.369 (2.03×) 0.177 (0.97×) 0.259 (1.42×) 0.366 (2.01×)
DuckDuckGeese 0.617 (1.00×) 0.973 (1.58×) 1.059 (1.72×) 0.621 (1.01×) 0.968 (1.57×) 1.104 (1.79×)
EthanolConcentration 4.939 (1.00×) 6.655 (1.35×) 20.128 (4.08×) 4.89 (0.99×) 6.664 (1.35×) 20.182 (4.09×)
FaceDetection 70.709 (1.00×) 109.6 (1.55×) 108.83 (1.54×) 71.104 (1.01×) 107.523 (1.52×) 107.092 (1.51×)
FingerMovements 3.826 (1.00×) 5.67 (1.48×) 5.706 (1.49×) 3.779 (0.99×) 5.671 (1.48×) 5.716 (1.49×)
HandMovementDirection 2.221 (1.00×) 3.353 (1.51×) 4.151 (1.87×) 2.226 (1.00×) 3.334 (1.50×) 4.142 (1.86×)
Heartbeat 2.811 (1.00×) 4.218 (1.50×) 5.22 (1.86×) 2.818 (1.00×) 4.216 (1.50×) 5.221 (1.86×)
JapaneseVowels 3.211 (1.00×) 4.871 (1.52×) 4.821 (1.50×) 3.199 (1.00×) 4.846 (1.51×) 4.83 (1.50×)
MotorImagery 7.450 (1.00×) 9.637 (1.29×) 51.0 (6.85×) 7.475 (1.00×) 9.659 (1.30×) 50.881 (6.83×)
PhonemeSpectra 42.956 (1.00×) 63.801 (1.49×) 70.578 (1.64×) 43.015 (1.00×) 63.807 (1.49×) 70.806 (1.65×)
SelfRegulationSCP1 4.178 (1.00×) 6.042 (1.45×) 10.446 (2.50×) 4.237 (1.01×) 6.094 (1.46×) 10.415 (2.49×)
SelfRegulationSCP2 3.295 (1.00×) 4.67 (1.42×) 9.391 (2.85×) 3.269 (0.99×) 4.629 (1.40×) 9.376 (2.85×)
SpokenArabicDigits 96.299 (1.00×) 143.411 (1.49×) 131.577 (1.37×) 86.495 (0.90×) 125.916 (1.31×) 129.073 (1.34×)
StandWalkJump 0.304 (1.00×) 0.404 (1.33×) 1.68 (5.53×) 0.31 (1.02×) 0.400 (1.32×) 1.7 (5.59×)

Avg. over non-spatial datasets 17.357 sec/epoch 1.46× 2.57× 0.99× 1.44× 2.57×

RacketSports. The classes are indicated by colours. We use these two datasets because
they are visualisation-friendly, with 4 classes and around 150 test samples.

B.2 Detailed results of macroscopic prediction with LSTM and GRU
This section provides additional tables and figures presenting the evaluation of the final
results using LSTM and GRU in macroscopic traffic prediction. Table B5 shows the
task-specific metrics and Table B6 shows the metrics for global structure preservation.
Figures B3 and B4 show the latent representations encoded by LSTM and GRU models,
respectively.
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TS2Vec Topo-TS2Vec GGeo-TS2Vec SoftCLT Topo-SoftCLT GGeo-SoftCLT

Figure B1 Encoded representations after training with different losses on the test set of Epilepsy.

TS2Vec Topo-TS2Vec GGeo-TS2Vec SoftCLT Topo-SoftCLT GGeo-SoftCLT

Figure B2 Encoded representations after training with different losses on the test set of RacketSports.

Table B5 Macroscopic traffic prediction evaluation with LSTM and GRU encoders. Metrics are
reported as mean ± standard deviation over 10 stratified folds of the test set.

Method LSTM GRU

MAE (↓)
(km/h)

RMSE (↓)
(km/h)

SDEP (↓)
(km/h)

EVar (↑)
(%)

MAE (↓)
(km/h)

RMSE (↓)
(km/h)

SDEP (↓)
(km/h)

EVar (↑)
(%)

No pretraining 3.244 ± 0.046 6.401 ± 0.102 6.399 ± 0.102 82.151 ± 0.512 3.552 ± 0.063 7.227 ± 0.119 7.227 ± 0.119 77.241 ± 0.457
TS2Vec 3.158 ± 0.045 6.187 ± 0.089 6.186 ± 0.089 83.322 ± 0.413 3.601 ± 0.062 7.296 ± 0.113 7.296 ± 0.113 76.805 ± 0.427
Topo-TS2Vec 3.139 ± 0.048 6.154 ± 0.107 6.153 ± 0.107 83.499 ± 0.423 3.491 ± 0.057 7.005 ± 0.108 7.005 ± 0.108 78.617 ± 0.442
GGeo-TS2Vec 3.101 ± 0.046 5.974 ± 0.089 5.973 ± 0.089 84.454 ± 0.354 3.466 ± 0.055 6.947 ± 0.105 6.946 ± 0.105 78.975 ± 0.417
SoftCLT 3.191 ± 0.049 6.319 ± 0.100 6.318 ± 0.100 82.604 ± 0.412 3.349 ± 0.051 6.649 ± 0.101 6.648 ± 0.101 80.741 ± 0.388
Topo-SoftCLT 3.192 ± 0.049 6.270 ± 0.101 6.270 ± 0.101 82.872 ± 0.317 3.367 ± 0.049 6.660 ± 0.098 6.659 ± 0.098 80.674 ± 0.398
GGeo-SoftCLT 3.128 ± 0.044 6.121 ± 0.094 6.120 ± 0.094 83.675 ± 0.400 3.302 ± 0.049 6.494 ± 0.097 6.494 ± 0.097 81.621 ± 0.430

Best improvement 4.415 6.675 6.667 2.803 7.026 10.139 10.143 5.671
Note: the best values are both bold and underlined; the second-best values are bold.

Table B6 Global structure preservation of LSTM and GRU encoders in macroscopic traffic
prediction task.

Method LSTM GRU

kNN (↑) Trust. (↑) Cont. (↑) MRRE (↓) dRMSE (↓) kNN (↑) Trust. (↑) Cont. (↑) MRRE (↓) dRMSE (↓)

No pretraining 0.215 0.929 0.942 0.046 0.319 0.207 0.946 0.951 0.037 0.299
TS2Vec 0.173 0.959 0.955 0.035 0.318 0.197 0.963 0.957 0.031 0.269
Topo-TS2Vec 0.179 0.947 0.945 0.042 0.332 0.193 0.963 0.962 0.030 0.304
GGeo-TS2Vec 0.198 0.968 0.961 0.029 0.299 0.203 0.962 0.962 0.029 0.306
SoftCLT 0.186 0.954 0.948 0.038 0.334 0.214 0.958 0.957 0.031 0.319
Topo-SoftCLT 0.193 0.947 0.950 0.039 0.326 0.239 0.966 0.964 0.026 0.354
GGeo-SoftCLT 0.176 0.945 0.942 0.042 0.365 0.228 0.963 0.957 0.029 0.339

Note: the best values are both bold and underlined; the second-best values are bold.
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Figure B3 LSTM encoded representations after training with different losses on the test set of the
Macroscopic traffic prediction task.
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Figure B4 GRU encoded representations after training with different losses on the test set of the
Macroscopic traffic prediction task.



Chapter 7
Conclusion

A context-aware, generalisable, and scalable methodology to quantify the collision risk in
multi-directional traffic interactions is developed in this thesis, and is demonstrated with
state-of-the-art accuracy and all-scenario applicability. This concluding chapter first
summarises the main findings by answering the research questions (RQs) that address the
identified knowledge gaps. Limitations of the current work are then discussed, shedding
light on future research. Finally, this chapter outlines the potential practical implications
and societal relevance of this thesis for the proactive improvement of traffic safety.

7.1 Main findings
RQ1. How can multi-directional traffic interactions be effectively characterised?
This question is answered in Chapter 2 by introducing a coordinate transformation
technique from the perspective of relative movement and proposing a method to infer the
conditionally averaged multi-directional spacing in urban traffic from trajectory data.

The coordinate transformation technique establishes a normalised reference system to
consistently measure the multi-directional spacing between road users in a two-dimensional
plane. By accumulating the spacings of numerous road users with varied orientations at
different relative speeds, an empirical relation is identified and termed as the interaction
Fundamental Diagram (iFD). This relation describes the average road space required
for interactions, exhibiting consistency when tested with real-world urban trajectories
in different locations. Lateral interactions, such as merging, turning, and crossing at
urban intersections, are demonstrated to make more efficient use of road space than
longitudinally following interactions. When collectively examining the iFD at a specific
intersection, an optimal traffic state exists where the interaction efficiency is maximised.
Therefore, the multi-directional spacing and iFD, respectively at the microscopic and
macroscopic level, characterise multi-directional traffic interactions.

RQ2. How can traffic conflict detection accommodate varying contextual factors?
This question is answered in Chapters 3 and 4 by developing a unified framework to
quantify collision risk based on conditional spacing, in which the posterior probability of a
traffic conflict is designed to be conditioned on its interaction context.

This thesis uses a conditional formulation of traffic conflict detection based on the
spacing between road users dependent on their interaction context. This is first proposed
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in Chapter 3, where the only contextual factor is relative speed, and the conditional
probabilities are used to adaptively optimise the triggering thresholds for forward collision
warning. The adaptive method achieves a better balance between missed and false
warnings than traditional heuristic threshold selection, for both synthetic and real-world
traffic conflicts. The conditional formulation is then further developed in Chapter 4 as
quantifying the probabilistic risk of potential collisions conditioned on their interaction
contexts, which can be described by various contextual factors that are measured or
encoded as quantifiable variables. In the same interaction context, a smaller spacing
monotonically indicates a higher collision risk. Built upon the formulation, a unified
probabilistic framework for traffic conflict detection is established. This unified framework
enables any contextual factors, such as road user behaviour and environmental change, to
be incorporated as conditioning variables.

RQ3. How can collision risk in diverse multi-directional interaction scenarios be quantified
in a unified way?
This question is answered in Chapter 4 by proposing and demonstrating a statistical
learning pipeline to apply the unified probabilistic framework, which integrates
the multi-directional spacing measurement in answering RQ1 and the conditional
spacing-based formulation of traffic conflict detection in answering RQ2.

The unified probabilistic framework for traffic conflict detection considers potential
collisions as unsafe events that deviate from normal interactions to different extents,
with contexts varying by interaction scenario. To apply this framework, collision risk
quantification is decomposed into a sequence of data-driven statistical learning tasks to
represent interaction contexts, infer typical spacing distributions in different contexts, and
assess the extent to which a given interaction is in an unsafe state within its typical
distribution. A unified metric of collision risk is trained following these tasks. It is
adaptive to diverse situations without specifying separate metrics for each case, and is at
least as effective as any predefined scenario-specific metrics. In addition, the quantification
results present a long-tailed distribution of conflict intensity, suggesting the ability of this
approach to comprehensively reflect a continuum of risk levels from minor conflicts to
near-crashes. Consequently, such a unified and data-driven approach achieves generalisable
collision risk quantification, which remains consistent across interaction scenarios and
environments.

RQ4. How can collision risk quantification be scaled up without annotated data of crashes
or near-crashes?
This question is answered in Chapters 5 and 6 by extrapolating potential collisions from
normal interactions and exploring a self-supervised learning approach to leverage
abundant data of everyday road traffic interactions.

Extrapolating from normal interactions to potential collisions in safety-critical
situations, the generalised surrogate safety measure (GSSM) is proposed in Chapter 5.
This is theoretically based on the unified probabilistic framework that answers RQ3.
GSSM provides a self-supervised approach to quantifying collision risk without requiring
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crashes or manual labels of near-crashes for training. It can be trained on large amounts of
naturalistic driving data, learn the underlying patterns of traffic interactions, and infer
collision risk based on the learnt patterns. Its scalability is demonstrated by the increasing
accuracy of collision risk quantification as a larger variety of normal interaction patterns
are incorporated. The self-supervised learning of traffic interaction patterns is further
explored in Chapter 6. Encoding spatial time series using neural networks is improved by a
contrastive learning method to enforce that the latent representations preserve fine-grained
structural similarities (e.g., trajectories with similar dynamics remain close in feature
space). This structure preservation facilitates learning more effective patterns and thus
better performance in downstream tasks. Altogether, by self-supervised learning from
normal interactions, GSSM enables scalable collision risk quantification that can be
continuously improved based on abundant data without the need for manual annotations.

In summary, this thesis has established a consistent measure for multi-directional
traffic interactions, developed a theoretical framework for identifying traffic conflicts
across varying contexts, and delivered a self-supervised learning approach for proactive
collision risk quantification. The findings note that there is no hard boundary between safe
and unsafe interactions. Instead, dynamic and context-aware methods are required to
reliably identify potential collisions across varying interaction contexts. By learning
multi-directional interaction patterns from large-scale naturalistic data, rather than crash
records, traffic safety can be sustainably improved without waiting for accidents.

7.2 Limitations and future research
A thesis inevitably has its limitations due to insufficiently available data, assumptions
in model development, or the specific focus of research, etc. Acknowledging these
limitations is important to chart a way forward. Each limitation discussed in the following
sheds light on a question or challenge that remains to be addressed. Addressing them in
future research will advance the contribution of proactive collision risk quantification to
real-world traffic safety.

Empirical data availability
• Limited ground-truth of crash and near-crash data.

This thesis uses two reconstructed datasets of crashes and near-crashes for validation.
The data collection and reconstruction of these long-tailed safety-critical events could
have unknown bias. This results in a limited coverage of risky situations, and the
validation of collision risk quantification may be undermined. Future research should
use datasets with a more comprehensive coverage of crashes and near-crashes for
method validation.

• Limited interactions with non-vehicle road users.
The datasets used for model calibration and training mainly cover the interactions
between motor vehicles. As a result, the interactions involving non-vehicle road users,
such as pedestrians and cyclists, are not sufficiently modelled or evaluated. This
insufficiency is also recognised in [274]. Future research is recommended to use



7

144 7 Conclusion

interaction data between various types of road users, and accordingly adapt model
development to account for their distinct behaviours and safety implications.

• Limited contextual information.
The collision risk quantification in this thesis incorporates a limited range of contextual
factors, focusing on the movement of road users, with only one dataset containing
weather, road surface, and lighting. Not considering important contextual information,
such as road layout, may lead to inaccurate evaluation and risk attribution can
be misleading [275, 276]. For future research, more comprehensive data such as
temperature, humidity, road surface friction, traffic signal timing, etc., should be
collected and used. This would provide more information for assessing collision risk in
varied real-world conditions.

Modelling assumptions and simplifications
• Driver space as an observable result of interaction.

The driver space and multi-directional spacing in this thesis are visualised as a space
around the ego (subject) vehicle. This space is neither maintained by the ego vehicle
alone nor by other surrounding road users. Instead, it is a result of their mutual
responses during road use interactions. To know more about how individual road
users preserve a safe distance from others, future research will require subjective
experiments like [277] to distinguish intended behaviour from observed phenomena.

• Spacing proximity as a proxy for collision risk.
The collision risk quantification framework in this thesis uses spacing as a proxy for
interaction intensity and assumes that spatial proximity indicates collision risk. This
proxy settles a consistent reference across interaction contexts, but omits to consider
collision severity or time of occurrence, which are important aspects of collision
risk [278, 279]. In future model development, the time gap or speed could serve as a
proxy, or a combination of proxies can be considered. These considerations are
expected to capture more aspects of collision risk beyond what spacing alone can
reveal.

• Parametric distribution for spacing.
This thesis parameterises the conditional spacing distributions by assuming a particular
mathematical form, such as the lognormal distribution. However, this assumption
is based on empirical experience in the literature, while its validity has not been
rigorously verified. Future investigation is needed for a better spacing distribution
assumption. Meanwhile, parametric distribution may not capture the true complexity
of traffic interaction patterns, especially when real-world spacing data deviates from
the assumption. Therefore, future research may also explore non-parametric techniques
to learn the conditional spacing patterns.

Underexplored aspects of collision risk
• Optimisation of neural network models and their training.

This thesis uses neural network models to learn conditional spacing patterns. Since the
research focus is on proposing a new methodology for data-driven collision risk
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quantification and demonstrating its effectiveness, the optimal architecture and training
of the neural networks were not pursued. More efficient neural network architectures
and training procedures remain to be investigated in future research for performance
improvement.

• Collision severity and occurrence time.
This thesis considers collision risk only from a perspective of probability. However,
the severity of a potential collision and the time of its occurrence are equally important.
In future research, collision risk quantification is expected to incorporate multiple
dimensions, including probability, severity, and occurrence time. This direction of
future research is also touched on when discussing the limitation of using spacing
proximity as a proxy for collision risk.

• Causal influence of risk factors.
The data-driven methodology developed in this thesis correlates collision risk with
contextual factors such as spacing direction, speed, weather, etc. Correlation alone
does not reveal the causes of traffic collisions [280, 281]. Future research needs
to further investigate the causal chain of traffic conflicts and explore how traffic
interactions gradually escalate into near-crashes or crashes. This will help not only to
estimate the risk of potential collisions, but also to suggest effective interventions to
break the chain of events leading to collisions [282].

• Uncertainty in quantification.
The methods presented in this thesis do not indicate the uncertainty or confidence
in the collision risk score or probability. This limits insight into the reliability of
risk quantification in different conditions, which is important for safety-critical
applications such as collision avoidance. Future research needs to incorporate
uncertainty quantification in collision risk quantification. This can provide more
transparent evaluation of model performance and allow for further improvements,
ultimately delivering more reliable and trustworthy applications in reality [283].

Integration into autonomous driving
• Systematic collision risk in modular autonomous driving.

The classical autonomous driving pipeline is composed of three sequential modules:
perception, prediction&planning, and control. Although collision risk is not explicitly
quantified in this pipeline, the research in this thesis is mainly concerned with
the module of prediction and planning. However, collision risk is a system-wide
challenge [284]. An error in perception, e.g., failing to detect a child darting into the
road, can instantly increase the risk of a collision [285]. Mistakes in the control
module, such as misjudging tire grip on wet roads, also lead to increased collision
risk [286]. In a complex system like autonomous driving, the failure of any single
component can cascade into serious collision risk.

• Explicit collision risk quantification for end-to-end autonomous driving.
The industry is shifting from modular pipelines to end-to-end (e2e) learning that
directly maps raw sensor data to motion planning or vehicle control [287]. In this
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paradigm, the need for collision risk quantification becomes explicit, and this requires
extensive future research.
◦ Safety validation. The most direct e2e approach, imitation learning, encodes all

the input information within neural networks [288]. This trades information
preservation for reduced transparency and difficulty in monitoring or correcting
faults. Therefore, intermediate signals are still vital for interpretation [289]. In
addition to common signals such as Bird’s-Eye-View (BEV) maps, standards like
ISO 21448 on safety of the intended functionality (SOTIF) [290] mandate explicit
risk quantification for safety validation.

◦ Risk mitigation. As another rapidly advancing approach, reinforcement learning
(RL) uses reward models to define its objectives. Using collisions as a sparse
penalty (large negative reward) can lead to unstable training [291]. Collision
risk, instead, can serve as a continuous and dense penalty for risk mitigation.
This also allows for defining safety-constrained objectives and personalised
risk preferences in future development. The article by Wayve [292] similarly
emphasises continuous risk assessment and proactive mitigation as part of the core
objective function for e2e autonomous driving.

◦ Data curation. World models serve sophisticated training environments for
RL [293–295]. Leaving aside the immense challenge in generating realistic and
dynamic world representations, a core question is: what kind of virtual world
fosters efficient and safe autonomous driving? The consensus is that it must
include a significant number of safety-critical scenarios [287, 296]. The generation
or identification of these scenarios requires explicit collision risk quantification. In
essence, quantifying collision risk is equivalent to quantifying the intensity of
driving interactions, enabling better curation of diverse real and synthetic training
data and fine-tuning autonomous driving performance.

• Open benchmark.
Collision risk quantification has been an overlooked challenge in autonomous driving.
It does not directly contribute to the classical pipelines, suffers from a vague definition
with no ground truth, and has been plagued by the scarcity of relevant data. This has
prevented the creation of a widely used, systematically maintained open benchmark.
In contrast, tasks like perception, prediction, and e2e driving have seen landmark
models emerged (e.g., BEVFormer [297], VectorNet [298], UniAD [299]) on open
benchmarks such as nuScenes [300], Waymo Open Dataset [301], and nuPlan [302].
As the shift toward e2e autonomous driving continues, explicit, consistent, and unified
risk quantification becomes necessary for its training, validation, and regulatory
compliance. Therefore, future research needs to clearly define the task, standardise
datasets, and establish evaluation metrics, to create open benchmarks and build a
sustainable research ecosystem. This is a necessary path to reach a truly safer, more
reliable, and more intelligent future for autonomous driving.
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7.3 Practical and societal implications
7.3.1 Practical applications
This thesis contributes to addressing the particular challenges in proactively quantifying
collision risk in multi-directional urban traffic. The methodological advances and findings
can be translated into practical applications. An overview of the translation from theory
to practice is referred to Figure 1.3 on Page 7. More specifically, use cases in traffic
management, Advanced Driver Assistance System (ADAS), and Autonomous Driving
System (ADS) are discussed below.

• Empirical evaluation of urban intersection efficiency.
Many research projects have been invested in to collect and analyse trajectory
data for intelligent management of urban traffic, such as the Smart Intersections
project [303] (https://sip.umtri.umich.edu) in the US and the SOTERIA project [304]
(https://soteriaproject.eu) in the EU, both since 2022. Effectively characterising
multi-directional traffic interactions supports trajectory-based evaluation of urban
intersection performance. Traffic management agencies can use collected or simulated
trajectory data to derive interaction fundamental diagrams (iFDs) and compare them
across locations and time. For example, an iFD showing high road space required for
the interactions at a specific intersection suggests its suboptimal efficiency. This can
inform design improvements such as adjusting signal control, changing traffic rules, or
redesigning road layout.

• Reliable collision warning in ADAS.
Context-aware methods improve the accuracy and reliability of traffic conflict detection.
In combination with multi-directional spacing, the collision risk in a wide range of
driving scenarios can be quantified. These methods are useful for collision warning
in ADAS, to alert not only to rear-end conflicts but also to potential collisions in
any direction. Such omnidirectional collision avoidance is gaining attention in the
industry, and is under development by, e.g., Nissan’s Intersection ADAS [305], Ford’s
Co-Pilot360 [306], and Mobileye’s Surround ADAS [307]. The methods proposed in
this thesis can reduce false and missed warnings as guaranteed in theory and validated
by real-world data. In the long run, more reliable collision warning can increase the
trust of human drivers in the system, which in turn more effectively assists driving and
contributes to everyday traffic safety.

• Safety-focused training and validation of autonomous driving.
ADS need to cope with safety-critical events. These events are relatively rare in
naturalistic road tests [50], making it difficult to accumulate a sufficiently large
amount of data for training or validation. The unified conflict detection framework
and self-supervised learning of collision risk can help address this difficulty. One
way is to build an evolving cycle of data collection and curation, such as Tesla’s
Data Engine [308]. With collision risk evaluation, various levels of safety-critical
interactions can be filtered from continuously collected driving data. Further, the
evaluation score can be used to guide the generation of virtual interactions at different
collision risks, which is being actively studied [296, 309]. Learning collision risk from

https://sip.umtri.umich.edu/
https://soteriaproject.eu/
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data also enables a context-adaptive objective to reinforce the focus on safety in
training autonomous driving algorithms. All these facilitate training and validating
safety-focused autonomous driving.

• Real-time all-scenario traffic safety monitoring.
A variety of traffic data are increasingly collected through connected vehicles and
sensors in cities. Based on these data, traffic management centres can utilise the
scalable and generalisable collision risk quantification to identify potential hazards in a
broad range of interaction scenarios. A preliminary example is the Smart Roadways
system provided by Drivewyze [310] for truck drivers in multiple states in the US. The
quantification methods developed in this thesis do not require historical crash records
or manual annotations of collision risk, but learning from everyday interactions
in various contexts. It allows real-time estimation of collision risk and provides
opportunities for early responses. For instance, if high risks are flagged for multiple
interactions at a location, measures such as temporary traffic speed control can be
taken to prevent potential accidents. Such proactive monitoring and intervention can
help to eliminate traffic fatalities by addressing risks early.

7.3.2 Societal relevance
Road safety remains a pressing societal challenge, and there is a growing consensus on the
need to anticipate and mitigate traffic accidents before they occur, rather than reacting
afterwards. Leading initiatives such as Vision Zero [311] have been adopted in many
countries, underscoring proactive safety and ambitiously aiming at zero road fatalities.
Meanwhile, investments in intelligent transportation systems have also been growing [312],
such as the 5G C-V2X (Cellular Vehicle-to-Everything) technology in China [313].
Automated vehicles and smart infrastructure can now collect high-quality data on traffic
interactions, providing unprecedented opportunities to understand and improve traffic
safety.

Responding to the global ambition and trend, this thesis provides data-driven tools to
quantify the risk of potential collisions in multi-directional traffic interactions, enabling
self-supervised learning of collision risk from extensive naturalistic traffic interactions
rather than waiting for crashes to occur. This is particularly relevant to ADAS and
autonomous driving by equipping vehicles to anticipate and thus avoid potential collisions
in complex and highly interactive urban environments. Preventing collisions directly
reduces fatalities, injuries, and associated economic costs. Fewer collisions also mean less
congestion due to disruption, contributing to more efficient transport of people and goods.
Improved safety assurance will facilitate public acceptance of autonomous driving, which
in turn could bring broad societal benefits. In addition to vehicles, this thesis has broader
implications for traffic management and policy evaluation in pursuit of safer roads.
Policy makers can use proactive risk indicators as performance measures for road safety
interventions. For example, the impact of a new policy, such as lowering speed limits or
installing a new roundabout, can be evaluated without waiting to see if accidents are
reduced, but by learning from everyday observations to see if collision risk declines. This
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shorter feedback loop allows the effectiveness of a policy to be assessed more quickly and
at lower cost.

Overall, these implications align with the ambitious road safety initiatives by providing
practical ways to move toward their goals. The societal relevance of this thesis thus lies in
demonstrating how proactive, data-driven, and self-supervised collision risk quantification
can be embedded in daily traffic operations, allowing interventions before, rather than
after, accidents occur. Certainly, risk quantification is not a stand-alone solution, but an
integral component of the ecosystem of intelligent transportation technologies. Parallel
developments in, e.g., autonomous driving, V2X communication, and high-fidelity
digital twins, are expected to synergistically enhance road safety. Taken together,
the developments will accelerate responsible progress that increases public trust in
transportation innovations, reduces road traffic injuries and fatalities, and improves the
collective efficiency of urban traffic. More broadly, these expected outcomes are in line
with the long-term evolution of urban mobility systems to realise the United Nations
Sustainable Development Goal of inclusive, safe, resilient, and sustainable cities.
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