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Abstract. As the penetration of renewable energy increases in the generation mix,
the problem of power dispatchability becomes more critical. The co-location of storage
systems with wind energy is a promising solution to shift power delivery from periods of
high wind resource availability to periods of high electricity demand. Producing baseload
power from wind farms all or most of the time is an example of such dispatchability. In
this work, we present an optimization-based dispatch strategy to produce baseload power.
At every time step, an optimization problem is solved to decide the storage operation,
maximize revenues on the electricity market and reach a given reliability target. In order
to reduce the impact of forecast uncertainties on the reliability of the power delivery, a
robust formulation of the dispatch optimization is used, based on a pessimistic version
of the forecast. The proposed method is evaluated for 18 offshore sites with a 100 MW
wind farm and storage system, for one year of operation. By using a robust dispatch
strategy, the reliability increases by up to 0.9 points, with a minor impact on revenues
(+2% on average), compared to the reference dispatch strategy using a regular forecast.
Our study demonstrates the feasibility of providing a reliable baseload power from wind
energy in the presence of forecast uncertainty.

1 Introduction
The lack of dispatchability of wind energy is a significant challenge for grid stability and reliability of
supply, in scenarios of high penetration of renewable energy. The co-location of wind farms with energy
storage provides a possible solution. This type of system is effective in mitigating the variability of wind
power [1, 2] and compensating forecast error when aiming to produce scheduled or reference power [3,
4, 5]. A relevant use-case for increasing the dispatchability of wind power is the production of baseload
power where minimum power is produced most or all of the time [6, 7]. A baseload hybrid power plant
pilot, called the Baseload Power Hub, is currently under construction at the Hollandse Kust Noord wind
farm as part of the CrossWind innovation program [8]. This system is designed to provide at least 20%
of the average power production of a wind turbine 99% of the time and will demonstrate the technical
feasibility of this type of power plant.

The relevance of a baseload wind-storage power plant lies in its reliability, i.e. its ability to provide a
minimum load consistently regardless of variations of the wind resource. Forecast uncertainties increase
the risk of not achieving a steady and sufficient power supply. As such, the dispatch schedule of the
storage system is critical. Dispatch methods based on if-then rules can be used to mitigate the variability
of the wind power [4, 9]. More advanced strategies based on optimization have been developed to take

https://creativecommons.org/licenses/by/4.0/
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full advantage of forecast information for bidding in the electricity market [10, 11, 5]. However, these
approaches do not address the question of reliability considering forecast uncertainties.

In this work, we explore the use of a robust approach for the dispatch optimization strategy of the
storage system, inspired from the field of robust optimization. A pessimistic version of the power forecast
is used as an input for the dispatch optimization, underestimating the expected power production. This
approach encourages a conservative operation of the storage system and as such is promising for increasing
the reliability of the power delivery. The present paper presents the robust dispatch optimization, and
addresses the following research question: To what extent does a robust approach improve the reliability
of baseload production for wind-storage systems?

The rest of the paper is divided as follows: The next section reports the models used to represent
the storage system, wind power production and forecast. The rest of the section presents the dispatch
optimization and its robust version. The numerical experiments designed to answer the research question
are reported in Section 3, and the corresponding results shown in Section 4. Finally, Section 5 and 6
provides suggestions for future work and conclusions for the study.

2 Methodology
2.1 Storage system model

The storage system is described with its macro-parameters: power capacity P̄ , energy capacity Ē and
round-trip efficiency η. The operation of the storage system is described with the power Pi and energy
Ei at each time step i. We use the convention that the power is positive in discharge and negative in
charge. The following model is used to link the storage power in charge or discharge to its energy level,
over a given number of time steps n and with a time step ∆t:

Ei+1 − Ei =

 −∆tPi if Pi ≥ 0,

−∆t

η
Pi else,

i = 0, ..., n− 1, (1)

− P̄ ≤ Pi ≤ P̄ i = 0, .., n− 1, , (2)

0 ≤ Ei ≤ Ē i = 0, .., n. (3)

2.2 Wind farm model
A simple wind farm model is used to describe the dependency of the power production on the wind speed
u and wind direction θ, represented by the functions

fWF(u, θ) = nWT ·min(PR, (1− fWL(θ))fWT(u)), (4)

fWT(u) =

{
1

2
ρCPAu3 if uin ≤ u ≤ uout,

0 else.
(5)

where nWT is the number of wind turbines, PR the turbine rated power, ρ the air density, CP the power
coefficient, uin and uout the cut-in and cut-out wind speeds, A the rotor area, and fWL(θ) a wake loss term
with a periodicity of 60o and a maximum of 0.25. The model is illustrated in Figure 1. It was developed
to approximate the IEA Wind 740-10-MW Reference Offshore Wind Plant with a regular layout [12].

2.3 Forecast
The power forecast is generated based on numerical weather prediction forecast data from ECMWF’s
Integrated Forecast System. A wind speed forecast is available every 12 hours. For every forecast issue,
the forecast is retrieved with a varying resolution, between 1 hour (for lead-times up to 12 h), 2 hours
(for lead-time between 12 and 24 h) and 3 hours (for lead-time above 24 h). A cubic interpolation is used
as necessary to provide a one-hour resolution for the entire range of lead times. Observation data are
obtained from ERA5 [13]. From the data of the wind speed and wind direction (forecast and observation),
the corresponding power production from the wind farm is obtained using Equation 4. Let ûWF

i+j|j and

θ̂WF
i+j|j be the wind speed and direction forecast issued at time j for a lead time i. The corresponding

power forecast P̂WF
i+j|j is calculated as

P̂WF
j+i|j = fWF(ûj+i|j , θ̂j+i|j). (6)
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Figure 1: Wind farm power production as a func-
tion of wind speed and wind direction.

Figure 2: Example of perfect information (PI), real
information (RI), and pessimistic (P) forecasts.

2.4 Dispatch optimization
The operation of the storage system is decided using an online optimization, where the results of an
optimization problem solved at each time step give the power when charging or discharging the storage
system. The objective of the optimization is to maximize revenues over a given time window corresponding
to the maximum power forecast lead time. A simple revenue model is used, where a varying electricty
price, noted λ, is associated with the power delivered to the grid. Market bidding mechanisms are not
modelled in this work. Furthermore, the dispatch optimization aims at satisfying a minimum baseload
power production PBL with a given target reliability r̃.

Figure 3: Schematic representation of the dispatch optimization. The time scale related to the forecast
and the optimization problem is shown in blue and indexed by i. Real-time is indexed by j.

Figure 3 illustrates the online optimization for a given time step j. A forecast is issued at this time
step and gives an estimation of the power produced by the wind farm over the next n time steps. The
solution of the optimization problem gives the expected storage operation schedule Pi, i = 0, ..n − 1.
Finally, the storage system is operated for one time step following the optimum. The realized storage
power and energy level are denoted by P̃j and Ẽj . Here, two different indexing are used. The indexing
related to real-time is denoted by j, whereas the index i is used to refer to the forecast lead-time and the
optimization time window.

The reliability of the baseload power production is the proportion of time where the power delivered
to the grid is equal or above the baseload level PBL. The reliability should reach its target value when
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measured over months or years. However, this long time window is difficult to capture within the online
optimization, due to the short time scale of the forecast. As a solution, a short-term reliability measure
is used within the dispatch optimization, calculated over n time steps ahead of the current time and m
time steps before. This time window is illustrated in Figure 3. By considering previous time steps, this
metric can better approximate the reliability calculated over months or years. In order to describe the
metric in mathematical terms, binary variables denoted by z are used to represent if the baseload power
is delivered or not at each time step. Considering h the number of times over the past m time steps where
the baseload power is not achieved, the short-term reliability rj for a given time step j is calculated as

rj(z, h) =
1

m+ n
(h+

n−1∑
i=0

zi), where zi =

{
1 if Pi + P̂WF

j+i|j ≥ PBL,

0 otherwise,
(7)

The optimization problem is formulated as a mixed-integer linear program. The corresponding math-
ematical formulation is reported in Equations (8)-(14), for a given time step j. The design variables are
the storage energy level and power over the forecasting time window E,P , as well as binary variables z
and a penalty term p ∈ R+ associated with the reliability constraint. Equation (9) enforces upper and
lower bounds on the power delivered to the grid. The binary variable zi dictates if the lower bound is
zero or the baseload power PBL for lead-time i. Equation (10) constrains the reliability rj to be above
the target reliability r̃. Here, the penalty term p serves as a slack variable to ensure that the feasible set
for the problem is not empty. Equation (11) ensures that the initial energy level within the optimiza-
tion problem corresponds to the realized energy level at the considered time step j. Equations (12)-(13)
represent the storage system model, in a relaxed form. This choice of formulation reduces the number
of binary design variables and in turn the computational burden of solving the problem. Finally, the
bounds on P and E are enforced through the last constraint.

maximize
p∈R+,z∈{0,1}n,E∈Rn+1,P∈Rn

n∑
i=0

λi+jPi − µp+ βEn (8)

subject to PBLzi ≤ Pi + P̂WF
j+i|j ≤ Pmax i = 0, .., n− 1 (9)

rj(z, h) ≥ (r̃ − p) (10)

E0 = Ẽj (11)

Ei+1 − Ei ≤ −∆tPi i = 0, .., n− 1 (12)

Ei+1 − Ei ≤ −
∆t

η
Pi i = 0, .., n− 1 (13)

Eq. (2-3) (14)

The objective function is made up of three terms. The first term represents storage revenues, which
include loss of revenues when charging, and added revenues when discharging. The second term is
associated with the penalty on the reliability and drives the algorithm to choose a solution where the
target reliability is reached and p = 0. The last term is added due to the relaxation of the storage model,
to ensure the storage system equation holds even if P̂WF

j+i|j = Pmax, i = 0, ..., n − 1. The relaxation also

requires that the electricity price is positive for all time steps, λi+j > 0, ∀i. The factors µ and β are
tuning parameters. Algorithm 1 reports how the storage dispatch is decided based on the solution of the
optimization problem.

2.5 Robust formulation using pessimistic forecast
The optimization problem represented by Equations (8)-(14) is written using a deterministic approach

with a point forecast P̂WF
j+i|j , i = 0, ..., n − 1. However, due to forecast uncertainties, the actual power

can be lower than the forecasted value. In this situation, the constraint related to the baseload power
represented by Equation (9) does not consider such uncertainties, and may lead to a lower reliability.

In order to take into account such uncertainties in the dispatch optimization problem, it is reformulated
as a robust optimization using a chance-constrained approach [14], with probability 1 − ϵ. Considering
all possible power scenarios P ξ, ξ ∈ Ξ, the chance-constrained version of Equation (9) is

IPξ∈Ξ

(
PBLzi ≤ Pi + P ξ

j+i ≤ Pmax

)
≥ 1− ϵ, i = 0, .., n− 1. (15)
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Algorithm 1 Dispatch strategy based on an online optimization

Require: λ, r̃, PBL, P̄ , Ē, n, m, N
Initialize Ẽ0

for 0 ≤ j ≤ N do
Generate forecast P̂WF

j+i|j for i = 0, ..., n− 1
h← 0
if j ≤ m then

h←
j−1∑
k=0

z̃k

else if j ≥ m then

h←
j−1∑

k=j−m

z̃k

end if
Solve optimization problem represented by Eqs. (8-14) and obtain the solution E,P , z
Operate the storage for one time step: P̃j ← P0, Ẽj+1 ← E1, z̃j ← z0

end for

Instead of generating a representative ensemble of the set Ξ for the evaluation of the constraint, a
pessimistic version of the forecast, noted P̂WF-, is generated under the assumption that it constitute a
lower bound for the power scenarios with a probability 1− ϵ, i.e

IPξ∈Ξ

(
P̂WF–
j+i|j ≤ P ξ

j+i

)
≥ 1− ϵ, i = 0, .., n− 1. (16)

Using this pessimistic version of the forecast, Equation (17) is rewritten as

PBLzi ≤ Pi + P̂WF–
j+i|j ≤ Pmax, ı = 0, .., n− 1. (17)

We note that the two equations are not equivalent when it comes to the upper bound. However, we
assume that this aspect has a limited impact on the performance of the system. The robust dispatch
optimization problem has the same formulation as the regular dispatch optimization problem presented
before, but using a pessimistic version of the power forecast instead. In other words, solving the robust
dispatch optimization problem is equivalent to solving the regular dispatch optimization problem with a
pessimistic power forecast signal.

The pessimistic version of the power forecast is generated from a downgraded version of the wind
speed forecast. This signal, noted û–, is obtained by reducing the original forecast value by a factor
proportional to the standard deviation of the wind speed forecast error, σi, as

û–
j+i|j = (1− α

σi

umean
)ûj+i|j , ∀i, j, (18)

where umean is the average wind speed over one year of observation data. The pessimistic power forecast
is then calculated as

P̂WF–
j+i|j = fWF(û

–
j+i|j , θ̂j+i|j). (19)

The term α allows to adjust the level of pessimism of the forecast, and in turns the level of robustness of
the optimization problem, represented by ϵ. A higher value of α means that the baseload power constraint
is satisfied with a higher probability. It is however outside the scope of this work to determine the exact
relationship between α and ϵ. Figure 2 illustrates two pessimistic forecasts with varying values of α.

3 Test cases
The regular dispatch optimization strategy is compared to the proposed robust approach. In practice, the
dispatch optimization problem is solved using four different forecast signals: a perfect information forecast
with zero forecast error, a real information forecast, and two pessimistic versions of the real information
forecast with different pessimism levels (α = 1 and α = 2), illustrated in Figure 2. The results obtained
with a perfect information forecast serve as a reference. Furthermore, the methodology is compared to a
more simple approach, using a rule-based strategy illustrated in Figure 4. In this strategy the decision
to charge or discharge the storage is based on the instantaneous wind power PWF

j and price λj , only.
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It is tuned by choosing the two threshold parameters for power and price, Pth and λth respectively, to
maximize the storage revenues and satisfy the target reliability. In all cases, price forecast is not modeled
and the information on price is assumed to be perfect.

Figure 4: Logic of the rule-based operation strategy.
Figure 5: Site locations and associated elec-
tricity markets

Two performance metrics are used to compare the different cases: storage revenues and reliability of
the baseload power production. Considering the price signal λ and the realized storage power P̃ , the
storage revenues are calculated over nT time steps as

∑nT−1
j=0 λjP̃j .

The reliability r of the baseload power production is calculated in a similar fashion as in Equation
(20). The difference is that the calculation is applied to the realized storage power P̃ , realized wind farm
power PWF and corresponding binary variables z̃:

r =
1

nT

nT−1∑
j=0

z̃j , where z̃j =

{
1 if P̃j + PWF

j ≥ PBL,
0 otherwise,

(20)

To assess the performance of the proposed robust approach, we consider a 100 MW offshore wind farm
in Europe, required to satisfy a baseload level PBL = 10 MW, with a reliability target of 99%. We use
nWT = 10, CP = 0.45 and a rotor radius of 90 m. Figure 5 shows the different locations considered, and
the reference site. The price signal λ corresponds to the day-ahead electricity price from ENTSO-E [15].
All data are extracted for the year 2019, and the storage operation is simulated for approximately one
year, with a time-step of one hour and n = 8600. A 48-hour forecast window is considered for the dispatch
optimization strategy. Since the dimension of the storage required to satisfy the baseload constraint may
vary between sites, different storage sizes are used, decided using the sizing method described in [6].
We assume a round-trip efficiency of 85%, corresponding to the efficiency of battery systems. Finally,
the reliability window includes one week of operation before the current time step with m = 168. The
optimization problem is solved using MOSEK [16], with µ = (n+m)PBLmax

i
(λj+i) and β = 10−6.

4 Results
4.1 Reference site
A comparison is first run for the reference site, represented in Figure 5. For this site, the storage has a
power capacity of 10 MW and an energy capacity of 538 MWh. Figure 6 and 7 reports the performance
of the rule-based strategy and the regular and robust dispatch optimization strategy. Figure 6 shows that
the state-of-charge for the rule-based strategy and robust dispatch optimization strategy are higher than
that of the dispatch optimization strategy using a real or perfect information forecast, showing a more
conservative or risk-averse behaviour. When the pessimism level of the robust approach, represented by
α, increases, the operation obtained with the dispatch optimization tends towards that of the rule-based
strategy. Notably, results show that during day 144 the baseload power production is satisfied only when
using the rule-based strategy and the robust dispatch optimization strategy with α = 2. This results
confirms that the use of a pessimistic forecast encourages a conservative storage operation.
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Figure 6: Power sent to the grid and energy level of the storage system for the rule-based strategy and
dispatch optimization strategy using different forecast signals for the reference site.

Figure 7: Reliability (dots) and storage revenues (bars) over one year for the reference site for the rule-
based and optimization strategies using perfect (PI), real information (RI), and pessimistic (P) forecasts.

The storage revenues and reliability of the baseload power production calculated over the year are
shown in Figure 7. The rule-based strategy shows the lowest revenues, due to its tendency to keep
the storage full without taking advantage of the forecast information. Instead, the optimization-based
strategies all present positive revenues. Interestingly, the storage revenues are not impacted significantly
by the type of forecast. This suggest that the baseload constraint is driving the optimal operation of the
storage.

In addition, the reliability decrease between the perfect and real information cases due to the impact
of errors in the forecast. However, the use of a robust approach with a pessimistic forecast results in an
increase in reliability, with a slight change in revenues, showing the effectiveness of the proposed method.
We note that the reliability is lower than the target for the cases based on dispatch optimization. This
is because the reliability constraint is enforced on a limited time window, and not on the entire year.
Furthermore, the reliability is below target even for the perfect information case, showing the negative
impact of a limited forecast window.

4.2 All sites
Figure 8 generalizes these results for 18 offshore sites in Europe. For each site, the relative difference in
storage revenues and difference in reliability compared to the perfect information case are plotted. Results
show that the forecast uncertainties associated with the real information forecast lower the reliability for
all sites, between -0.4 and -1.5 points. Similarly to Figure 7, we see an increase in reliability when using
a pessimistic version of the forecast. In the more conservative case (α = 2) the reliability is higher
than for the perfect information forecast for half of the sites. On average, the reliability is increased by
0.7 points for α = 1 and by 0.9 points for α = 2 compared to the real information case. Instead, the
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Figure 8: Reliability and revenues of the dispatch optimization based on real information and pessimistic
forecasts for 18 offshore sites in Europe, relative to the dispatch optimization using perfect information
forecast

impact on revenues does not show a specific trend. On average, the revenues increase by around 2%
for the pessimistic cases, but with a large spread in the data. Notably, there is an outlier where the
storage revenues with the pessimistic forecast for α = 2 are 33% higher than with the perfect information
forecast. Overall, these results show that a robust dispatch strategy using a pessimistic forecast can
effectively mitigate the impact of forecast error on the reliability of the baseload power production.

The results for the rule-based strategy are not reported in the figure: it is the worst approach for all
sites, with a decrease in revenues between -100% and -250% compared to the perfect information case.
However, this strategy achieves the target reliability for all sites.

As can be seen on Figure 8, the target reliability of 99% is reached for only one site using the pessimistic
forecasts. These results suggest that the storage system is not able to both deliver baseload power with
a given reliability and generate positive revenues. In the dispatch optimization problem, the balance
between reliability and revenues can be calibrated with the parameter µ. For the results presented here,
µ = (n + m)PBLmax

i
(λj+i). This value means that if the reliability is below target, this penalty leads

to an apparent loss of revenue equal to selling power to the highest price in the period. As such, our
results suggest that satisfying the reliability target would lead to a much larger revenue loss and possibly
negative revenues as with the rule-based strategy.

5 Discussion
Future work is needed to understand why the revenues increase for some sites and decrease for others.
Furthermore, further development on the formulation of a reliability constraint for dispatch optimization
would be beneficial to ensure that the target reliability is reached. Finally, this work uses a simple model
for wind farm power production. Using a higher-fidelity model would make our analysis more precise and
realistic.

6 Conclusion
This study demonstrates the feasibility of providing a reliable baseload power from wind energy when
information about future wind power is limited in time and uncertain. Our results show that the reliability
corresponding to a baseload production can be increased when using a dispatch optimization method using
a pessimistic version of the power forecast, following a robust formulation of the optimization problem.
In particular, the impact of forecast uncertainties can be efficiently mitigated by the proposed method.
We further show that the impact on revenues is limited on average.

Finally, our results demonstrates that the proposed robust dispatch method allows the storage dispatch
to shift its priority from satisfaction of baseload power in time of need and revenue maximization through
arbitrage any other time. This ability to automatically adapt the goal during operation is a clear strength
of dispatch optimization strategies over rule-based strategies.
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Code and data availability
The wind speed and wind direction forecast data used to generate the results presented in this work are
available open-source in the data repository associated with [17]. The research results can be reproduced
with the open-source code SHIPP available at https://github.com/jennaiori/shipp [18].
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