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PREFACE

In the framework of this MSc thesis the analysis of core-shell leaky-wave lens antennas is
presented, based on a combination of asymptotic and Physical Optics techniques. This study
aims to develop an analysis approach which can be subsequently used for the optimization of
the Fly’s Eye antenna concept, through enabling the investigation of shaped variations of the
core lens. The main difficulty of this prospect refers to the surface of the core lens being in
the near field of the leaky wave feeding structure, since the evaluation of the near field is in
general a computationally inefficient process. Adhering to this conclusion, a big part of this
thesis elaborates on a very fast approach for the derivation of the near field, through
asymptotically approximating the involved integral expressions. More specifically, the
presented method exploits the nature of the near field in the examined stratification through
introducing an approximation in the integral expressions, which in turn enables their
asymptotic evaluation in a straightforward manner. Subsequently, the near field on the core
lens is combined with a set of Physical Optics techniques in order to develop a model for the
integrated lens architecture of the Fly’s Eye antenna. Modelling the core-shell structure in
such a manner enables its study in a much more computationally efficient fashion compared
to the use of a full-wave simulator. In addition, it facilitates the investigation of structural
alterations in the antenna concept, like shaped variations of the core lens. The derived model
presented in this thesis also contributed to the measurement campaign of the Fly’s Eye
antenna prototype, through identifying a problematic component in the assembled prototype.
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CHAPTER 1. INTRODUCTION

Taking into account the ever-increasing domain of applications that mobile communications
can support, as well as the continuous demand for higher experienced end-user throughput,
future communication networks are poised with several challenges in terms of wireless traffic,
reliability, availability, latency and more [1], [2]. Among such a list of diverse requirements,
arguably the most crucial refers to the need for increased capacity in order to support the
expected surge in traffic volume density due to the rising number of connected devices and
larger data rates requested by high-demand applications [3]. The required capacity to satisfy
the expected increase in traffic volume density will become a formidable obstacle for wireless
networks in places such as stadiums, open air festivals and other events that attract lots of
people, where even today’s users typically suffer from service denials due to network overload
[4]. To properly address the connectivity requirements in such ultra-dense scenarios, which
present the most demanding use case for modern and future communication networks in terms
of simultaneous user connection, the Fly’s Eye antenna concept has been proposed, envisioning
a system with capacity capabilities above 10 Tbps [5].

Even though its specifications and requirements are extracted through considering the test
case scenario of a sports stadium filled with spectators, the modular nature of the proposed
antenna concept enables its scalability to a diverse range of ultra-dense deployment scenarios,
such as shopping malls, open air festivals, offices and more.

1.1. Fly’s Eye system overview

Given the saturation of employing advanced signal processing in small RF bandwidths, as well
as the shortage of available spectrum at conventional cellular communication frequencies [6],
arguably the most reasonable approach to cope with the required Tbps system capacity is to
target higher carrier frequencies where large swaths of unused spectrum can be exploited.
Assessing the trade-off between available bandwidth and power, while also aiming to exploit
the recent advances in mm-wave and sub-THz integrated chips [7], a good compromise is
established by targeting sub-THz carriers in the hundreds of GHz.

To further boost the overall system’s capacity, apart from moving to mm-wave frequencies,
a reuse scheme must be employed for the inherently limited spectral resource. However, instead
of addressing the need for enhanced spectral efficiency through infrastructure densification,
adhering to the cellular network architecture approach by deploying a very large number of
base stations over the stadium and performing advanced interference rejection or exploiting
local cooperation [4], [8]; the proposed concept adopts a much more energy efficient strategy.
In particular, massive spatial division multiplexing from a single base station is employed
through the use of directive antennas. At full scale, the designated area within the stadium will
be covered by thousands of overlapping fixed beams, as indicated through Figure 1-1, each
acting as a spatial cell and providing wireless connection to several spectators through Time
Division Multiplexing. In conjunction with the two-dimensional spatial division multiplexing,
to mitigate interference between adjacent spatial cells, the available bandwidth is partitioned
into four sub-bands through the use of Frequency Division Multiple Access.

In terms of system specifications, moving to higher frequencies primarily requires the use
of high-gain antennas in order to maintain the link budget and account for the square increase
of the wave spreading factor with frequency. Considering that for a fixed aperture size the
directivity is also increased with the square of the frequency, the wavelength size at the sub-
THz band enables the design of high gain antennas even through moderate sized apertures. In
addition to the aforementioned gain considerations, the limitations of transmitted power at
higher frequencies due to the inefficiency of upconverting chains, stresses the need for highly
efficient front ends and antennas.
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Optical nerve connecting Fly's Eye
antenna to Backhaul

Figure 1-1. Simplified illustration of the Fly’s Eye antenna concept.

Last but not least, the proposed antenna concept must be modular and compact, to
facilitate both its scalability and its potential deployment to different communication scenarios
with similar capacity requirements. For example, wideband and very directive antennas such
as those proposed in the Fly’s Eye antenna concept, can also be employed in ultra-high capacity
line of sight use cases such as Fixed Wireless Access or Backhauling. In this manner, their
possible utilization and exploitation in conjunction with a cellular network architecture is
enhanced, providing an alternative to the use of labour-intensive fiber optics, as indicatively
visualized through Figure 1-2.

Figure 1-2. Wideband and directive antennas incorporated in a cellular network architecture, deployed in ultra-
dense as well as high-capacity line of sight scenarios.

With the above system level requirements in mind, in the remaining of this section the
background regarding the design of the Fly’s Eye antenna array is going to be discussed.

Multibeam antennas

For the purpose of wideband operation above 100 GHz, integrated lens antennas with leaky
wave feeds stand out when compared to other more resonant antenna solutions such as Fabry-
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Perot, metasurfaces or transmitarrays [9], [10], due to their capability of efficiently achieving
large gain over a wide bandwidth. Furthermore, contrary to other multibeam solutions such as
combining focal plane arrays of horns with reflectors, integrated lens antennas can be
implemented in planar configurations, allowing for reduced complexity and size of the overall
design. While even lower profile planar multibeam antennas can be implemented through the
use of reflectarrays or transmitarryas, since their structure involves a single or multi-layered
inhomogeneous array of printed resonant scatterers, their bandwidth performance is in general
limited, being highly dependent on said element’s resonance [11]. Several approaches have been
explored to increase the bandwidth of reflectarrays [12], but even the more wideband designs
[13], [14], [15], lack the aperture efficiency performance of integrated lenses with leaky wave
feeds [16], [17]. Finally, apart from enhancing the radiation properties of planar antennas, lenses
enable the integration of different beams under the same aperture. This is achieved through
featuring a set of displaced feeds in their focal plane, which in turn generate a set of fixed
independent beams in the far field.

It should be noted that another very popular multibeam antenna solution is the use of
phased arrays. However, this is not well suited for the examined scenario since at frequencies
in the hundreds of GHz the complexity and losses involved with implementing the required
feeding network are significant.

Having showcased some of the benefits of integrated lenses as a multibeam antenna system
solution, a brief discussion of the fundamental design considerations for lenses with leaky wave
feeds will be presented below. Before doing so though, an indicative depiction of the above
discussed multibeam antenna systems is presented through Figure 1-3.

(d)

(a) (b)
Figure 1-3. Focal plane array of horns with (a) parabolic reflector, (b) elliptical reflector, (¢) transmitarray and
(d) integrated lens antenna with planar feeds.

Integrated lenses

Taking the above discussion into account, the goal of the Fly’s Eye antenna concept is to
develop a scalable integrated lens array in the form of modular planar panels operating from
140 to 170 GHz [18] and capable of satisfying the requirements established for the targeted
communication scenario [5|. For this purpose, each generated beam should feature a gain larger
than 30 dB over the desired bandwidth. Considering a reasonable estimate for the achieved
aperture efficiency and losses of an individual lens, the desired gain is targeted with a radiating
aperture of & ¢m diameter.

In terms of design considerations, through basing the optimization of the lens feed in the
analysis of antennas in reception, the aperture efficiency of the quasi-optical component can be
evaluated in terms of field matching between the frequency independent Geometrical Optics
(GO) fields and the field of the feed at a specified surface, usually the Fourier Optics (FO)
sphere. In fact, the component’s aperture efficiency is maximized when the GO and feed fields
are conjugate matched. An extensive discussion for the analysis of antennas in reception which
further elaborates on this field matching concept can be found in the appendix of [17], together
with a thorough study of leaky wave feeds for integrated lenses in the rest of the document.
Apart from the feed considerations though, there are some fundamental design limitations in
terms of bandwidth, front-to-back ratio as well as steering capabilities, that are introduced by
the leaky waves and lens structure themselves.
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Primarily, integrated lenses were introduced to mitigate the impact of surface waves and
enhance the radiation properties of printed antennas. As a matter of fact, the choice of material
for the lens determines the front-to-back ratio of the feeding structure, since planar antennas
printed on dense substrates radiated more energy into the denser medium. Consequently, the
front-to-back ratio of the feed is increased with the permittivity of the lens material, as
indicatively illustrated in Figure 1-4.

dielectric (&) p
ﬁ v ground plane P
Ay o g3
air /A\:‘

@ Pdown

Figure 1-4. Front to back ratio for planar antenna printed on dielectric substrate.

It is worth pointing out that while any realistic printed antenna will be backed by a metallic
reflector, forming a backing cavity, it is crucial to maintain a high front-to-back ratio for the
feed itself. If this is not the case, a strong parallel plate waveguide mode can be excited inside
the backing cavity, subsequently impacting the matching bandwidth and thus the performance
of the feeding structure.

In order to enhance the optimization potential of the basic lens design, an air cavity can be
introduced between the ground plane and the lens dielectric, forming a leaky wave structure.
In a few words, such a structure enables the excitation of waves inside the cavity, which
propagate radially away from the source in the form of cylindrical waves, through sequential
bounces between the ground plane and the partially reflecting interface. Throughout their
propagation inside the cavity, these waves feature an exponential attenuation as they couple
their energy to the space wave, leading to them being labelled as leaky waves. In this manner,
they can modulate the spectrum of the structure’s Green’s function around real angles and thus
influence its radiation properties. The impact of these waves can be conveniently described
through their propagation constants (k,.w = Biw +jauw), with its real part determining the
angle around which the leaky wave influences the field (B, = kgsin(6,y)), while the imaginary
part expressing the attenuation constant and subsequently the directivity along said angle. In
turn, these propagation constants (k,.y) correspond to the polar singularities of the respective
spectral Green’s function, with distinct leaky wave modes arising from different poles.

It should be noted that leaky wave supporting stratifications can also be formed with
dielectric cavities, provided that their permittivity is smaller than that of the lens material. To
conclude this brief discussion, several different structures can be designed to support leaky
waves, with two indicative examples shown in Figure 1-5 (a) and (b), featuring a dielectric slab
and a semi-infinite dielectric medium respectively as a partially reflecting interface.

+

4 Space wave Space wave

RN\
\VAVAVA\/AVaYAY,

(a) (b)

Figure 1-5. Leaky wave structure fed by an aperture in the ground plane featuring (a) a dielectric slab and (b) a

Leaky wave

[

semi-infinite dielectric medium as a partially reflecting interface.
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Returning to the discussion regarding the fundamental limitations of lenses integrated with
leaky wave feeds, considering a quasi-optical component such as a lens, its bandwidth must be
evaluated in terms of aperture efficiency bandwidth, which in turn translates to the feed’s
pattern stability. As such, it is fundamentally limited by the frequency dispersion of the leaky
wave modes excited in the cavity, which impacts the pattern of the leaky wave structure. Said
frequency dispersion in turn depends on the dielectric contrast between the cavity and lens
material. This is visualized through Figure 1-6, where the dispersion of the main leaky wave
mode pair (TE;, TM;) is examined for a structure featuring a half-wavelength air cavity
between a ground plane and a semi-infinite dielectric medium whose permittivity is varied.

Re(k, w /ko)
o o o
N (o))

N

oo
(o]
o
(o]
(9]

0.9 0.95 1 1.05 1.1 1.15 1.2 Ep
Normalized frequency [f/fc] I h=2,/2

&o
T T T T T T
— €,=12
~

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
Normalized frequency [f/fc]

Figure 1-6. Frequency dispersion of main leaky wave mode pair (TE;, TM1) considering the leaky wave supporting
stratification of the inset and varying the relative permittivity (e.) of the semi-infinite dielectric medium.

Another aspect of equal importance refers to the steering capability of the lens, which is
limited by the maximum acceptable displacement of a feed in the ground plane in terms of the
achieved aperture efficiency and thus gain of the steered beam. Given that denser materials
lead to larger scanning angles for the same displacement (dfecd), one can deduce that high
permittivity lenses feature an enhanced field of view when compared to low permittivity
structures. This concept can be intuitively realized through considering the geometrical ray
picture together with the Snell’s law for the central ray, as shown in the inset of Figure 1-7.

High permittivity lens Low permittivity lens

r (high eccentrz‘cz‘ty)ﬁ

&.d
F

d
V&

i i sin(;) =
MMy

'u i |||||||| /I’ﬂ%,'lr'/»

i

\T\W/ , it/
((l) dfe ed (b) dfeed

Figure 1-7. lllustration of broadside and steered beams for identical feed displacement in the ground plane (dfeed)
and single dielectric elliptical lenses with (a) high and (b) low permittivity plastic.



Introduction 18

Having introduced some of the basic considerations regarding the design of integrated lenses
fed by leaky wave feeds, in the following subsection these concepts will be revisited in
conjunction with the top-level requirements of the Fly’s Eye antenna concept in order to
introduce and justify the design choices for its lens geometry.

Core-shell lens structure

Regarding the implementation of a 8 ¢m radiating aperture capable of satisfying the specified
gain requirements [5], single high permittivity lenses would either be too costly (e.g., high
resistivity Si) or lossy (e.g., PREMIX) for implementing the Fly’s Eye planar panels. As such,
the lens structure must be built by a material with very low loss tangent within the examined
frequency range which can also be manufactured in a cost-effective manner. An ideal candidate
satisfying the above is HDPE, which due to its low permittivity at the examined frequency
range (&.yppr = 2.3 [17]) does not feature significant reflections in the air interface, mitigating
the need for a matching layer and thus reducing the overall complexity of the design. While a
low permittivity lens made of HDPE integrated with a leaky wave feed, can satisfy both the
bandwidth and gain requirements of the Fly’s Eye concept, with some prototypes achieving an
aperture efficiency higher than 80% for bandwidths in the range of 40% [16], [17], it does suffer
both in terms of front-to-back ratio and steering capabilities. A design capable of enhancing
the field of view of such a structure has been introduced in [19], where a wedge of dielectric
gratings with modulated height is integrated inside the plastic lens, to improve the aperture
efficiency of displaced feeds and thus reduce the scan loss of steered beams. While being an
excellent design in all the remaining aspects, still the problem of chip integration remains, due
to the poor front-to-back of the low permittivity lens.

To deal with this trade-off between the required scalability, bandwidth and front-to-back
ratio, a double-lens structure has been proposed for the Fly’s Eye concept, featuring a low
permittivity shell and a high permittivity core lens integrated on a fused silica wafer [18]. As
introduced above, the low permittivity shell enables the implementation of a large radiating
aperture using low cost and low loss materials, essentially enabling the required gain while
maintaining an acceptable cost to allow for the scalability of the design. At the same time, the
high permittivity core lens improves the front-to-back ratio, facilitating chip integration, while
also maintaining low contrast with the resonant dielectric (fused silica) cavity, thus preserving
the bandwidth. An indicative illustration of the aforementioned core-shell lens structure is
presented through Figure 1-8 (a) and (b).

Elliptical lens
(low &,)

Matching layer

= Spherical lens (high ;)

Dielectric cavity (fused silica)

(a) (b)
Figure 1-8. Core-shell structure (a) 3D illustration and (b) Side cut.

Depending on the desired impact of the lens component several shapes can be implemented
exploiting the canonical properties of the respective geometries. As such, since its purpose is to
form a directive beam, the shell lens shall feature an elliptical shape. On the other hand, to
efficiently illuminate the high eccentricity elliptical structure (e = 1/,/& seu), the core lens must
act as an ideal transition between the different dielectric media, essentially simulating a leaky
wave structure with high permittivity semi-infinite dielectric region. Considering the
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observation made in [20], namely that given a proper definition of the phase center the field of
a leaky wave structure resembles a spherical wave within a solid angle around broadside, even
in the near field of the source, the shape of the core lens must be spherical. Furthermore, to
reduce the level of reflections in the interface between the dense dielectric and low permittivity
plastic material, the core structure must be coated with a matching layer, as indicated through
Figure 1-8 (b).

To summarize the above brief discussion, the proposed Fly’s Eye antenna concept is
comprised of planar panels of lenses, each featuring a number of simultaneous fixed independent
beams, as showcased through Figure 1-9. All the lens feeds are placed over a flat ground plane
in order to enable monolithic integration at high frequencies. Moreover, to simplify the design
and avoid complexity and losses involved with implementing an array feeding network at the
examined frequency band, each feed contributes to a single beam.

Fly’s Eye antenna concept Lens panel

Fused
Silica cavity Shell lens

Ground plane

with set of feeds Core lens

Figure 1-9. Fly’s Eye antenna array comprised of planar lens panels.

1.2. Objectives of this work

Having presented the motivation as well as summarized the design considerations involved in
the Fly’s Eye antenna concept, in the current section the main aim of this work will be
introduced.

Considering the previous discussion regarding the core-shell structure and with the aim of
reducing the losses and cost introduced by the high permittivity material, the dimensions of
the core lens should be maintained as small as possible. This inevitably brings the core lens
surface in the near field of the leaky wave feeding structure. As a consequence, for the purpose
of analysing and subsequently optimizing such a structure, the first step refers to developing a
computationally efficient strategy for the derivation of the near field of a leaky wave structure.

Adhering to this conclusion, the initial stages of this work aim to present an asymptotic
method for the derivation of the near field of a leaky wave structure, while also discussing its
potential contribution in the optimization of the examined core-shell lens geometry. All things
considered, this study offers the prospect of developing a fast tool for the evaluation of the near
field of a leaky wave structure, which apart from speed can also provide insightful
decomposition of the field into distinct components. This physical insight for the formation of
the local phase-front in the near field, can contribute to the derivation of analytical geometries
which optimize different aspects of the lens design. For example, in terms of shaping the lens,
the latter can be made conformal to the incident field, thus acting as an ideal transition; or
alternatively it can be shaped with the aim of enhancing the aperture efficiency for displaced
feeds, in turn improving the scanning capabilities of the core-shell structure.
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In order to enable the future study of such prospects, i.e., shaped variations of the core
lens, another goal of this work refers to combining the derived near field with a set of Physical
Optics (PO) techniques, with the aim of developing a model for the Fly’s Eye antenna.
Modelling the antenna concept in such a manner, enables its study in a much more
computationally efficient fashion compared to the use of a full-wave simulator, while also
facilitating the study of structural variants like lateral or vertical displacements, or even
changes in the material dielectric properties. The versatility provided by studying the impact
of such effects in the antenna performance can prove very useful especially when
troubleshooting is required.

To summarize, one of the main objectives of this work is the derivation of a fast tool able
to extract the field on the core lens through the asymptotic evaluation of the near field integral
expressions. Prior to thoroughly discussing the asymptotic method employed in this work
through subsequent chapters, a brief overview of the literature will be presented in the following
section. In particular, this section will present an overview of some of the approaches
encountered in the literature for the asymptotic evaluation of radiation integrals.

1.3. Literature overview — Asymptotics

A fundamental aspect in the analysis of stratified structures with unbounded cross sections is
the derivation of the spatial domain Green’s functions, i.e., the fields radiated by an elementary
source. Since the Green’s functions of layered media can be extracted analytically only in the
spectral domain, their spatial counterparts can be obtained through the inverse Fourier
transform of their spectral representation. However, the convergence of these complex integrals
is slow due to the highly oscillatory nature of the integrands involved, making their numerical
evaluation very computationally inefficient.

The most efficient techniques to improve the computational efficiency of complex integrals,
are those which resolve the integral expressions through a finite number of analytical terms.
To achieve this, the integrand functions are expressed in terms of simpler functions with similar
properties in the relevant spectral region. This simplified representation is chosen such that it
leads to closed-form expressions, allowing the evaluation of the complex integrals through a
number of analytical terms. This process is referred to as asymptotic approximation of complex
integrals.

The most frequently employed techniques for the case of radiation integrals utilize
algorithmic processes in order to express the integrand in a way that allows the integral’s
asymptotic approximation. Some indicative approaches commonly encountered in the literature
are the generalized pencil of function (GPOF) method or the total least square algorithm
(TLSA), which are used to express radiation integrals as a summation of canonical forms.
Examples of their use can be found in [21] and [22] respectively. Regarding the targeted
canonical expressions, these can vary in each case depending on the integral’s formulation. In
several works concerning the radiation of field distributions [21], [23], [24] canonical forms based
on the Sommerfeld identity are used. This enables the representation of the radiation integrals
through a summation of beam-like wave objects, which in turn constitutes an efficient mean of
analysing the interactions between parts of a system, like quasi-optical components [25].

One inherent aspect of the above discussed approaches arises from the treated integral
expressions being evaluated on slow convergent integration paths. This essentially implies that
a significant spectral region impacts the integral’s evaluation, meaning that a large number of
terms must be included in the representation of the integrand to maintain the accuracy of its
asymptotic approximation. An alternative approach to the one discussed this far is to exploit
the spectral properties of the integrand expression by identifying the dominant field
contributions and the fastest convergent integration path. These refer to the integrand’s saddle
points and the steepest descent path (SDP) which includes this saddle point respectively. This
approach can be used to improve the computational efficiency of the numerical field evaluation
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while also providing physical insight through separating the field into distinct contributions.
The resulting integral expressions, i.e., the SDP integrals, can be evaluated asymptotically
through transforming their integrands into canonical forms in an auxiliary complex plane,
labelled as s-plane. This process requires isolating the spectral singularities of the integrands in
their simplest form and subsequently evaluating them asymptotically. An extensive overview
of such techniques can be found in section 4 of [26].

Given the properties of the employed integration path (SDP), the impactful spectral region
around the integral’s dominant contributions is minimized. This essentially implies that the
integrand can be represented with fewer number of terms compared to the previously discussed
approaches, leading to a more compact asymptotic approximation. However, what is different
in this case is the dependence of the integration path on the observation point. Since the path
of integration changes, this means that the integrand’s representation must also be modified in
response. Indicative examples for the asymptotic approximation of SDP radiation integrals can
be found in [27] and [28], where the treatment of the integrand in each case varies depending
on the impactful singularities and the nature of the field. One noteworthy aspect for the
treatment employed in [27], refers to the use of the field decomposition provided by the SDP
integration approach. In particular, the dominant contributions at different angular regions are
identified and a distinct asymptotic treatment is employed for each region.

With the aim of asymptotically approximating the near field on the core lens of the Fly’s
Eye antenna, this work will focus on the asymptotic approximation of the SDP integral
expressions presented in [20]. More specifically, the nature of the near field of a leaky wave
structure featuring an infinite dielectric region and a cavity around resonance will be considered,
in order to derive a simplified asymptotic evaluation of the involved integral expressions.

1.4. Outline of this Thesis

The remainder of this thesis is structured as follows.

» Chapter 2 extensively discusses the background in spectral analysis and numerical
evaluation techniques for the near field of leaky wave structures, which is required for this
work.

» In turn, Chapter 3 builds upon the background study of Chapter 2 and presents an
approach which enables the asymptotic evaluation of the near field for leaky wave structures
around resonance.

» Subsequently, Chapter 4 elaborates on the complications arising in the asymptotic
approach when a current distribution is added in the ground plane and presents some
indicative examples for small lenses in the near field.

» Following this, Chapter 5 describes the Physical Optics techniques employed to model the
quasi-optical components of the Fly’s Eye antenna (i.e., core and shell lenses) and elaborates
on the validity of the approximations involved.

» In Chapter 6, the asymptotic evaluation of the near field presented through Chapter 3
and 4 is combined with the Physical Optics techniques discussed in Chapter 5, to develop
a model for the Fly’s Eye antenna. The contribution of this model in the measurement
campaign of the assembled Fly’s Eye antenna prototype is also discussed in this chapter.

» Finally, Chapter 7 draws conclusions and presents points of interest for future study,
emphasizing on the possible improvements of the presented asymptotic near field evaluation
approach as well as its potential utilization for shaping the core lens.

This thesis is supplemented by a number of Appendices, elaborating further on certain concepts
which are deemed useful to facilitate the understanding of this work.
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CHAPTER 2. BACKGROUND

2.1. General Considerations

The analysis of stratified media with unbounded cross sections constitutes an electromagnetic
problem which can be conveniently approached in the spectral domain, since only in this
manner the respective Green’s functions can be derived analytically. Another aspect of spectral
analysis with arguably equal importance, refers to the representation of the field as a continuous
spectrum of plane waves. This way, dominant contributions can be identified and related to
physical properties of the examined structure. Having said the above, prior to elaborating
further on the analysis of stratified media in the spectral domain, the stratifications of interest
will first be introduced.

2.1a. Examined stratifications

For reasons that will be explained through Chapter 5, referring to the Physical Optics
methods employed to model the core-shell structure, the required near field evaluation for the
modelling of the Fly’s Eye antenna corresponds to the incident field on the core lens.
Consequently, the stratification of the core lens can be simplified through extending the dense
dielectric region to infinity. The resulting simplified stratification is illustrated through Figure
2-1 (a), featuring a fused silica cavity and a semi-infinite dense dielectric region. While the case
of the Fly’s Eye antenna requires the examination of a wideband leaky wave structure with
low dielectric contrast between the cavity and semi-infinite dielectric region, to provide a more
complete study of the near field, a resonant stratification will also be considered in following
chapter, as depicted in Figure 2-1 (b). Both structures are examined around resonance, meaning
that their cavity heights correspond to half the cavity wavelength (h=A../2) at the central
frequency (150 GHz), while all planar layers are assumed infinite and untruncated.
Furthermore, to simplify the analysis presented in the initial sections of this chapter, a y-
oriented elementary magnetic current source will be considered in the ground plane for both
structures.

gr,inf =12

gr,cav = 3.8 2 gr,cav =1

I h=Dcan/2 I h=Ao/2

Wideband structure Resonant structure
(a) (b)
Figure 2-1. Leaky wave structures with (a) low dielectric contrast (wideband) and (b) high dielectric contrast
(resonant).

It should be noted that the region of interest for the derivation of the near field for both
stratifications is the semi-infinite dielectric region. Consequently, for the remaining of this
chapter, when dielectric medium properties are used in expressions (i.e., (s and kg), they will
refer to those of the semi-infinite region, unless mentioned otherwise.

To employ the spectral Green’s function for the above presented stratifications, first, one
should solve their equivalent transmission line models for the voltage and current potential
functions at the observation height of interest. To maintain the cohesion of the current
discussion, this process will be thoroughly described through Appendices A and B.
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2.1b. Significant leaky wave modes

One noteworthy comment regarding the structures of Figure 2-1 refers to the number of
impactful leaky wave modes that they support. As briefly introduced in section 1.2, leaky waves
are related to the polar singularities of the spectral Green’s function, with their propagation
constants (k,,w) extracted through the values of said poles. Since these singularities are
attributed only to the examined geometry and its capability of supporting leaky waves, they
must occur in the Green’s function for all types of sources (either electric or magnetic) and for
any planar orientation (either x or y). As such, their values can be derived as the zeros of the
common denominator of the voltage and current potential functions and can subsequently be
separated into TF and TM variants [29]. Even if several leaky wave modes can be excited inside
the illustrated air/dielectric cavities, given their electrical height, only three modes will feature
small enough attenuation constants in order to be impactful, namely TE;, TM; and TMy. The
dispersion of these main modes for the two examined stratifications is depicted through Figure
2-2, showcasing their pointing angles (6,,) and attenuation constants (a,,), considering that

kpw = kasin(Ow) + japw-

40 ‘ ‘ ‘ 20
=20 =107 .
0 : ‘ : 0 | : ‘ :
0.8 0.9 1 1.1 1.2 0.8 0.9 1 1.1 1.2
Normalized frequency [f/fc] — Tk, Normalized frequency [f/fc]

0.8 0.9 1 1.1 1.2 0.8 0.9 1 1.1 1.2

Normalized frequency [f/fc] Normalized frequency [f/fc]
(a) (v)

Figure 2-2. Dispersion of dominant leaky wave modes (a) wideband and (b) resonant structure of Figure 2-1. The
top figures refer to the leaky wave pointing angles (8., = asin(Re(kyuw)/kq)) while the bottom figures correspond to
the attenuation constants (a.y ).

While the similar behavior of the TFE;, TM; mode pair leads to its frequent exploitation in
order to enhance the radiation properties of small apertures through forming rotationally
symmetric beams, TMy is usually undesirable. In fact, since it launches power at relatively
larger angles off broadside and features small attenuation constant (apw), it constitutes a
significant spillover loss when leaky wave feeds are integrated with lenses [17] or employed to
illuminate reflectors [30], [31]. For this reason, a variety of methods have been explored for the
suppression of this undesired mode. For example, in some more elegant designs, like [16],
corrugations are introduced in the ground plane such that the attenuation constant for the
propagation of TMy inside the cavity is increased and subsequently its impact in the field is
reduced. Arguably the most common approach however, involves suppressing this polar
singularity of the spectral Green’s function (i.e., the TMy) via forcing a null around the same
spectral position (k;)y,), through the spectrum of the current source.

Having presented some fundamental aspects of the examined leaky wave supporting
stratifications, the following section will elaborate on the required background for the
asymptotic evaluation of the near field integral expressions.
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2.2. Numerical near field evaluation

2.2a. Single complex integral formulation

Through analyzing stratified structures in the spectral domain, the evaluation of the field begins
with the expression of the inverse Fourier transform of the convolution between the Green’s
function and the source’s current distribution. For a y-oriented elementary magnetic current
source, the resulting integral expression is expressed below.

= 1 4+

E@® [72Gom (ke Ky 2, 25) - PeTRex e TRyY de, dk,, (2.1 a)

4q2 Y-
Where G™ refers to the dyadic spectral Green’s function relating electric fields with magnetic
currents, z corresponds to the height of the observation point in the stratification and z, refers
to the position of the source.

Given the rotational symmetry of the examined stratified structures, the spectral variables
(ky, ky) can be transformed into their cylindrical counterparts (k,, a), where k, = k,cos(a) and
k, = k,sin(a). The benefit of this step is that the total field can now be expressed in terms of
a single infinite complex integral in k,, while the finite @ integral can be conveniently closed
into a canonical form.

E@) =— 7 [T G (kp @, 2,2) - e 0P o@D dadl,, (2.1b)

To further progress with the integral evaluation, the projection of the spectral Green’s
function on 9, as given in equation (A.1) of Appendiz A, can be substituted in the above
integral expression in terms of cylindrical spectral variables (k,,a). Subsequently, the finite a
integral can be closed through the identities presented below, with the resulting integral field
expressions now formulated in terms of a single complex integral on k, featuring Bessel
functions. It should be noted that in all subsequent expressions the potential functions (vrg/ru
and irg/ry) are expressed through the product of the respective wave amplitudes and the
exponential relating to the propagation inside the semi-infinite dense medium (e /%#), as
described through Appendiz A and given in equations (A.2) and (A.3).

fozn cos(na) e JkoP cos@=9dq = j="21 cos(ne) ], (k,p)

. 2.2 a
fom sin(na) e J*eP c0s@=Pdg = 7 2m sin(ng) J,(k,p) ’ ( /

A— (v O 20) + s (ko 20)) Jo (o) + (v (ki 25) = i (K 2:)) co5 20 12 (ko))
[Ey(?)l = 4— Sin(2<ﬂ) (V;M(kprzs) - V;E(kp: Zs))]z(kpp) kpe_jkzzdkp,

E,(# 2 .
® ‘ —]kijcos((p) l;M(kp:Zs)jl(kpp)kp

(2.2h)

Closing the complex integrals on a in the above presented manner does not constitute an
approximation when elementary sources are examined, since expressions (2.2 a) refer to
canonical integrals. However, for the more realistic scenario where an actual current distribution
is considered in the ground plane, transforming the integral expressions into a formulation with
a single complex integral requires additional considerations. This aspect of the near field
evaluation resulting from the above steps in the integral manipulation will be revisited through
section 4.1, where the inclusion of the source will be discussed.

2.2b. Singularities in the k, complex plane

Apart from the capability of deriving analytical expressions for the Green’s functions of
stratified media, the analysis in the spectral domain also offers the potential of identifying
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individual field components, which can in turn be related with spectral singularities of the
Green’s functions, namely branch points and poles.

Regarding the former, the Green’s function’s branch point singularities are a result of the
odd nature of the transmission line solution in the semi-infinite regions of the stratified
structure. Given that a single semi-infinite region exists in the examined geometries (Figure
2-1), namely z > h, only one pair of branch points appears in the k, complex plane at +k,. To

make the definition of the double-valued function (k, = + [k3 — k2) unique, a two-sheeted complex

plane is required, with branch cuts providing the means of passing from one Riemann sheet to
the other. While these branch cuts can be arbitrarily drawn in the complex plane, the most
convenient choice is that which maintains the sign of the imaginary part of k, constant in each
of the defined Riemann sheets, i.e., the one illustrated through Figure 2-3 (a), with the resulting
expressions for k, provided below.

Top Riemann sheet (Im(k,) < 0): k,=—j ’—(kazl - k2)
Bottom Riemann sheet (Im(k,) > 0): k, =] /—(kﬁ - k2)

As already introduced through section 2.1b, besides branch point singularities resulting
from the semi-infinite medium, the spectral Green’s function also contains polar singularities
which are directly linked to the leaky waves that can be exited in the cavity. More specifically,

LW

these polar singularities appear on the bottom Riemann sheet (k,,,, =j /—(kfi -k2,,)) and

are only

attributed to the examined stratification and its capability of supporting leaky waves. An
indicative illustration of the polar singularities for the T'M potential of a structure supporting

the two main leaky wave modes (i.e., TM; and TMy), is given through Figure 2-3 (b).

Considering the presence of the above singularities in the k, complex plane, the integration
path for the evaluation of the expressions of (2.2 b) commences at the origin and moves along
the real axis, only slightly deformed to avoid the branch point at +k,, as shown through Figure
2-3 (c). It should be noted that for the integrand to remain bounded as k, tends to infinity,

the integration path must be maintained on the top Riemann sheet.

-

\

N

-

Im(k) Im(k,) Im(k)
® Branch points K, aas ® LW poles
_k/),TM()
kd, inf ® ka, inf N -
i, g Relk,|| TS A S et
® k/).TM() ®
k/)‘TMI
(a) (b) (c)

Figure 2-3. (a) Branch points and cuts for the stratifications of Figure 2-1. (b) Leaky wave poles in bottom
Riemann sheet for TM potential of structure close to resonance. (c) Integration path for TM integrals of (2.2b).

While the equations of (2.2 b) and the integration path of Figure 2-3 (¢) can be employed
for the evaluation of the near field, their two main drawbacks refer to the slow convergence of
the numerical integration, especially for observation points close to the source, as well as the
lack of any insightful field decomposition. With the purpose of adopting alternative approaches
for the numerical evaluation of the field integral expressions, in the following section, some
fundamental concepts of complex analysis will be discussed.
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2.2c. Integration path in the k, complex plane

One powerful method for the evaluation of complex integrals arises from the integral’s path
independence. More specifically, the result of a complex integration remains unchanged between
different integration paths, if they can be related through permissible path deformations.

Primarily, permissible path deformations require either the initial and deformed paths to
feature identical end points or that the translated end points can be connected through integral
section with negligible contribution. In conjunction to the end point consideration, the residue
contributions of any singularities enveloped during the contour path deformation must be
separately included in the resulting expression as defined by the Cauchy’s theorem.

Employing these considerations, integral deformations to paths which provide faster
convergence for the numerical evaluation as well as enable the identification of distinct field
contributions related to the spectral singularities, can be implemented. To facilitate subsequent
deformations however, it would be convenient to transform the k, integrals of equation (2.2 b)
into complex integrals along the real axis from negative to positive infinity. The latter is
introduced to avoid complications that arise from maintaining the finite end point near the
integral’s dominant contributions and force the integral’s end points to regions where it
converges, e.g., at k, — *oo on the top Riemann sheet. The desired transformation can be
performed through the identity presented below, which relates integrals of Bessel and Hankel
functions of the second kind.

17 F (e ) (epp)lepdky = 2 17 F(kp ) HP (o) ey, (2.3)

Introducing (2.3) into the integrals of (2.2 b) results into infinite complex integral
expressions featuring Hankel functions. A comparison between the integration paths in the
complex plane of these two formulations is depicted through Figure 2-4.

(ot 2) + vt G 2)) HS () + (v b 25) = v (b 25)) co520) HE (ko))

E(#)
[Ey(f’)‘ =& f sin(2¢) (U;M(kp,zs) - v}'E(kp,zS)) Héz)(kpp) kpe‘j"zzdkp,

E,(# 22 ‘
@ 17 c0s() ity 2 )1 ey

—co

(2.4)
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®  Re(k) ®  Re(k)
® ®
Integral with finite end point at origin Integral with end point at infinity

L (Bessel formulation) ) L (Hankel formulation) )
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Figure 2-4. Integration path and singularities for the TM integrals of (a) (2.2 b) and (b) (2.4).

One noticeable difference between the integrals of (2.2 b) and (2.4) refers to the singularities
in the k, complex plane. In particular, while the introduction of the Hankel functions of the
second kind facilitates the subsequent path deformations, it also introduces a branch point at
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the origin, with its respective cut drawn along the real axis towards negative infinity, as
showcased through Figure 2-4 (b). As will become apparent in section 3.2c, while the branch
introduced by the Hankel function is irrelevant for numerical integral evaluations, since none
of the implemented deformations envelopes the introduced branch cut, it will have a notable
impact in the asymptotic integral evaluation. As such, it is deemed noteworthy to point out
that the branch point at the origin is not related to the examined structure, i.e., the Green’s
function, but is purely attributed to the chosen representation which facilitates the desired path
deformations.

2.2d. Saddle point (SP) and Steepest Descent Path (SDP)

Rectilinear (kp) complex plane

Having presented the concept of path deformation, as a next step, the desired integration path
must be determined. In order to identify the optimal path both in terms of faster convergence
as well as potential field decomposition into wave components, the properties of the integrand’s
spectrum must first be examined. To facilitate this prospect, an indicative integral will be
considered, featuring all the spectral dependencies of the integrals in (2.4). Without loss of
generality, this integral employs the voltage wave amplitude of the TE variant and an ng order
Hankel function of the second kind. Considering the spectral dependence of the phase of the
large argument approximation for the Hankel function (2.5 a), allows for the explicit separation
of the phase of the examined integral, as expressed in (2.5 b), through the exponential
e~i(kzz+kpp) - Subsequently, the phase variance can be represented through a function q(kp).

HP (k,p) = /nkzppejzejTe‘jkpp, (2.5 a)

12 vt (k2 )HSD (pp) e/ 0P ke jo = (kaztkoP) g (2.5b)

q(kp) = —i(kez + kpp), (2.5 ¢c)

Having explicitly extracted the integrand’s phase dependence on k,, the points in the
spectrum relating to dominant field contributions can be identified as stationary phase or saddle
points of the function g(k,). These points are defined by the vanishing of one or more of the
derivatives of q(kp), with the number of vanishing derivatives determining the order of the
saddle point (SP). Using the above expression, together with the fact that the integration path
remains on the top Riemann sheet (i.e., I,(k,) < 0), a first order saddle point can be identified
for q(k,), as given below.

q,(kpsp) = OﬁkpSP = kd Sln(@) and q”(kpsp) * 0, (26 a)

Where 6 refers to the angle of the observation point (7) with the z axis. Evidently, this saddle
point changes with the observation angle (6), moving along the real axis of the rectilinear k,
spectrum between the origin and k.

Given the identification of the integral’s dominant contribution as the saddle point, the
optimal path in terms of convergence would be the one on which the integrand’s magnitude
decays the fastest away from this point, such that only the vicinity of the saddle point is
relevant. Deriving the expression for the path of fastest convergence begins by investigating
the behaviour of q(k,) around its dominant contribution. This process commences by separating
the real and imaginary parts of q(k,), as given below, where k, = x + jy with x, y being real
numbers.

q(x,y) =ulx,y) +jv(x,y), (2.6 b)

To identify the expression for the path on which the magnitude of the integrand decays the
fastest away from the saddle point, one should start by seeking a criterion which defines that
u(x,y) and subsequently e*®» change most rapidly. This behaviour of complex functions can be
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evaluated through the use of the Cauchy-Riemann equations for the real (u(x,y)) and imaginary
(v(x,y)) parts of q(k,), resulting in the argument that the real part changes the fastest when
the imaginary part remains constant and vice versa. In other words, the magnitude of e**»
decays the fastest in constant imaginary part paths, while paths of constant real part result in
the most rapid imaginary part variation. Utilizing the above conclusions, the expression for the
paths with the fastest amplitude variation passing through the first order saddle point can be
derived by identifying the constant imaginary part paths which include the saddle point.

Im (q(kp)) =Im (q(kpsp)), (2.7)

It should be noted that the above expression defines the paths of fastest magnitude change
and as such results into two expressions, indicating the fastest increase and fastest decrease
away from the saddle point, namely the Steepest Ascend Path (SAP) and the Steepest Descend
Path (SDP). Of course, for the purpose of enhancing the convergence of the numerical
integration, the optimal path is the one for which the smallest possible section around its
dominant contribution is relevant, i.e., the SDP. For a more detailed discussion regarding the
introduction of the Cauchy-Riemann equations and the nature of the spectrum around an ng,
order saddle point, the reader is referred to section 4.1b of [26].

Angular spectrum (B-plane)

Although complete in terms of the theoretical steps required for the derivation of the integral’s
dominant contributions as well as the path of fastest convergence, the previous discussion does
not include any final expressions since the mathematical manipulations involved are more
conveniently performed in the angular spectrum. In fact, introducing the complex angle variable
B via the transformation given below, the branch pair related to the semi-infinite region is
resolved and the subsequent calculations are facilitated.

k, =kqsin(B) & k,=kqcos(p), (2.8)

In a few words, due to the single valued nature of the above transformation (sin(g)), both
Riemann sheets of the rectilinear spectrum (k,) are mapped into adjacent regions of a single
Riemann sheet in the angular spectrum (f). Furthermore, considering the periodic nature of
the sine function (sin(B + 2m) = sin(B)), multiple values of B correspond to the same value of
k,. As a result, the entire k, complex plane is periodically repeated into adjacent sections of
width 27 in the angular spectrum. Even so, taking into account the chosen sign for the
definition of k, (k, = +kqcos(B)), the origin of the k, spectrum is mapped into g = 0 and thus
the principal strip is defined around the origin, from -z to z. Transforming the indicative
integral of (2.5 b) into the angular spectrum, its spectral phase dependence, first order saddle
point and steepest descent path are expressed below.

q(kq sin(B)) = qg(B) = —jcos(B — 0), (2.9 a)
q(Bsp) = 0=Psp =6, q5(6) # 0, (2.9b)
Im(QB(B)) = Im(qB(.BSP)) >p. =0+ COS_l(SeCh(ﬁi))7 (2.9 c)

Where SDP - B, = 0 + sgn(B;) cos™(sech(p;)) and SAP - B, = 6 — sgn(p;) cos™*(sech(By)).

To visualize the discussed nature of the saddle point as well as that of the paths of constant
phase, the spectrum of the integrand of (2.5 b) will be depicted around the first order saddle
point together with the two identified paths through Figure 2-5 (a) and (b) respectively; both
corresponding to an observation point along the z axis (8 = 0°).
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Figure 2-5. Angular spectrum of integrand of (2.5 b) for observation points along z-azis (8=0°) and z=2,. (a)
Spectrum’s nature around the saddle point (SP) and (b) illustration of the SDP and SAP passing through the SP.

The above definition for the expression of the SDP allows for the exact derivation of the
observation angle above which the deformation from the initial integration path to that of
steepest descent, envelops each leaky wave polar singularity. This angle, labelled as the shadow
boundary angle for the respective leaky wave mode (6sz), determines the domain of existence
of the leaky waves as the outer section of a conical region emanating from the reference system
position. Inside this conical section the total field consists only of the space wave and is derived
by the SDP integral, while outside it is obtained through the sum of the SDP integral and the
respective residue contribution [20]. Assuming that the leaky wave polar singularities (k)
have been derived through solving for the zeros of the common denominator of the transmission
line solution, the observation angle for which the SDP passing through the saddle point crosses
a polar singularity (6sz), is presented below.

8sp = Re(Bry) — sgn(Im(Bw)) cos ™ (sech(lm(,BLW))), (2.10)
Where B, = asin (%).

Since for angles larger than 65 the residue contribution of the leaky wave pole must be
included in the integral evaluation during the deformation from the initial path to that of the
steepest descent, the field expression can be re-written as given below.

E(#) = Espp() + 232, U(6 — 055, ) ELy/ ™ (), (2.11)

Where U(z) corresponds to the Heaviside step function, Es,p(7) refers to the integral
expressions of (2.4) evaluated on the SDP path given in (2.9 ¢) and the finite sum of E/./™ #)
relates to the residue field contributions of the polar singularities of the significant leaky wave
modes, namely TFE;, TM; and TMy. As such, by implementing the above described process, the
near field can now be computed through a much faster convergent integral expression (Egpp)

and a finite sum of analytical terms.

One interesting aspect that will be revisited in section 4.2b refers to the relative value of
the shadow boundary angle when compared to the pointing angle of the respecive mode. In
particular, while the shadow boundary angle is larger than the leaky wave pointing angle for
all the examined modes, it approaches the latter (653 = 6,y,) the smaller is the attenuation
constant of the respective mode. This can be visualized through Figure 2-6, which illustrates
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the dispersion of the impactful leaky wave modes for the structures of Figure 2-1, through their
pointing angles (solid-6, ), shadow boundary angles (dashed-6g5) and attenuation constants

(aLw).
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Figure 2-6. Dispersion of dominant leaky wave modes (a) wideband and (b) resonant structure of Figure 2-1. The
dashed line on the top figures refers to the shadow boundary angles (8sg) while the solid lines correspond to the

leaky wave pointing angles (B ).

As a final note for the illustration of the aforementioned concepts, the initial integration
path of (2.5 b) as well as the SDP for observation angle equal to the shadow boundary angle
of the TE; leaky wave mode are visualized through Figure 2-7 (a), (b) in the rectilinear (k,)

spectrum and (¢), (d) in the angular () spectrum.
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Figure 2-7. Initial and SDP integration paths of (2.5 b): (a),(b) in k, spectrum and (c),(d) in angular spectrum.
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To conclude this section, it is worth noting that the transformation to the angular spectrum
is a very convenient step for integrals with similar form to that of (2.4), since it removes the
branch pair at +k,, facilitating substantially all the subsequent theoretical manipulations.
Consequently, extensive discussions for the angular spectrum transformation can be found in
several works, like section 5.5c of [26], section 27 of [32] or section 3.1 of [33] and their references
therein. For the completeness of the current study, a brief discussion describing the mapping
from the rectilinear to the angular spectrum will be included through Appendiz C.

2.2e. Phase center choice

The necessity for a phase centre definition as the point of origin for the phase which minimizes
the phase variance over a predefined solid angle, becomes apparent when quasi-optical
components are implemented. As a matter of fact, to exploit the canonical properties of the
involved geometry (e.g., parabolic reflector, elliptical lens, etc.) the phase origin point of the
feeding component must coincide with a geometric point of the introduced structure.

Regarding stratified media capable of supporting leaky waves similar to those of Figure 2-1,
the phase centre is not determined by the apertures in the ground plane. Instead, its position
depends on the aperture field distribution formed by the leaky waves excited inside the cavity.
Employing this concept, it has been shown that for an observation point in the semi-infinite
dielectric region, the origin position for the phase appears to be displaced by A, below the
ground plane (A.>0) [20], [34]. This displacement of the reference system is illustrated through
Figure 2-8 for both the wideband and resonant examined structures.

Wideband structure Resonant structure

(a) (b)
Figure 2-8. Leaky wave structures with specified phase center positions below the ground plane, (a) wideband and
(b) resonant case.

This reference system translation in turn modifies the equivalent transmission line model
and subsequently impacts the expression of the potential functions in the semi-infinite region,
as shown through Figure 2-9 and expressed below.

FOT AZ = 0: UTE/TM(kp'Z' ZS = 0) = U;:E/TM(kpl ZS = O)e_jkzz

(2.12 a)

. ’
For 4, > 0: vpgyry(ky, 2,25 = 4,) = vig ey (kp, 2, = 4,)e ke

The complete derivation of the voltage and current wave amplitudes in the semi-infinite
dielectric region for either the initial or the displaced reference systems is presented through
Appendiz B, with the final expressions given in (B.8) and (B.10). As evident through comparing
the resulting expressions, the voltage wave amplitudes for the two structures can be related as
follows. The same relation also holds for the current wave amplitudes.

v;'E/TM(kp, zg=4,)= v}'E/TM(kp, zg = 0)elkz4z, (2.12°b)
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(a) (b)
Figure 2-9. Equivalent transmission line model of leaky wave structure, (a) reference system on the ground plane
(A.=0), (b) reference system displaced as in Figure 2-8.

Introducing this reference system displacement to the indicative integral expression that
has been treated throughout this chapter (2.5 b), results into the following, where z’ corresponds
to the displaced reference system of Figure 2-9 (b).

[0 vip(ky, 8,)HE (kpp)el*oP ke eI +koP) e (2.13)

Having presented the impact of displacing the reference system on the wave amplitudes
and the near field integral formulation, the following section will elaborate on one of the most
useful aspects of the above discussed reference system choice, that of identifying wave
components in the near field. It should be noted that for the remaining of this document, prime
notation in spatial variables, namely ' and 6’, would signify that they refer to the displaced
reference system below the ground plane.

2.3. Near field spherical wave formation

As shown in [20], choosing the phase center displacement such that it minimizes the phase
variance of the wave amplitudes up to the smallest shadow boundary angle, enables the
identification of the total field as a spherical wave up the aforementioned angle, even in the
near field of the leaky wave structure. More specifically, utilizing the approximation for the
phase of the co polarized component of a leaky wave structure extracted in [34], the phase
center choice introduced in [20] is presented below.

5 TM/TE
atan| SO
g NG 2.14)
= an = .
2o 2n\/§(1—cos(6;£4/TE)) z 2 ’

Using the above phase centre definition, the initial and corrected phase variance of the TFE
and TM voltage wave amplitudes in the semi-infinite region of the resonant and wideband
examined structures, are illustrated through Figure 2-10 (a), (b) and (¢), (d) respectively.
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Figure 2-10. Phase variance of TE and TM voltage wave amplitudes (viy and viy) in the semi-infinite regions of
the (a), (b) resonant and (c), (d) wideband structure of Figure 2-1.

The actual phase centre displacements below the ground plane (A.>0) for the examined
structures resulting from expression (2.14), are given through Table 2-1 in terms of the free-
space wavelength of the central frequency (150 GHz).

Phase center Wideband Resonant
displacement structure structure
A, 0.4220 ‘ 3.2

Table 2-1. Phase center displacement at central frequency (150 GHz).

For the purpose of showcasing the spherical wave formation described above, the near field
will be evaluated in spherical observation grids of different radii from the phase centre of the
leaky wave structures. The evaluation of the near field is performed through the SDP numerical
integration (2.11), where the reference system of the involved integrals is displaced below the
ground plane as indicatively given in (2.13). In particular, the magnitude and phase of the co
polarized component as well as the angle of the Poynting vector with the z axis will be
examined. Regarding the Poynting vector angle, its derivation is performed as follows. It should
be reminded that prime notation in spatial variables (i.e., r’ and 6') indicates that they refer to
the reference system translated below the ground plane.

Opoy (7)) = acos(Pye (7') - 2) = acos (M : Z“), (2.15)

|Bace()|

o

X y Z
Where P, (7') = 1Re (E(F’)xﬁ*(?’))=%Re E.(7) E,() E,()
Hy(7') Hy(#') H; ()
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The steps required for the derivation of the magnetic field, which is necessary for the
evaluation of the Poynting vector, are identical to those presented in the previous chapter for
the electric field and can be found in Appendiz D. The only difference between the two cases
arises from the expressions of the respective Green’s functions (G*™ and ¢"™). Having said the
above, the resulting plots for the wideband structure are illustrated through Figure 2-11, with
the co polarized component obtained using the Ludwig 3 definition.
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Figure 2-11. Co polarized component over observation sphere from the phase center of the wideband structure.
Magnitude (a) E-plane and (b) H-plane. Phase variance (¢) E-plane and (d) H-plane. Angle of Poynting vector
with z azis (e) E-plane and (f) H-plane.

As evident from Figure 2-11 (a) and (b), the shape of the pattern close to the source varies
noticeably with distance for 8’ > 655, but is almost independent of the distance from the source
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below the shadow boundary angle (6’ <6s). Considering the presence of the TM, for the
examined elementary source and its strong impact in the E-plane (around 35°), the above is
more evident in the H-plane. Together with the almost constant phase of the total field for 6’ <
055 even for spherical observation grids very close to the source, as seen through Figure 2-11
(c) and (d), this means that the field within this solid angle (8’ < 6s3) can be considered as a
spherical wave [20].

To further illustrate the concept of the near field spherical wave formation, one can compare
the Poynting vector angle of the total field in the main planes with the geometrical angle seen
from the phase centre (dashed grey line), as shown through Figure 2-11 (e) and (f). While for
observation angles smaller than the shadow boundary the Poynting vector angle and the
geometrical angle converge, beyond this point the near field is quite more complicated, since it
is significantly influenced by the residue polar contributions. The only clear trend can be seen
in the E-plane, where the strongly excited TMy dominates the near field above its shadow
boundary (6;,"°), as visualized through Figure 2-11 (e). The Poynting vector angles of the leaky
waves, labelled as 6;.2/™/™o in the figures, refer to the angles between the Poynting vector of
the residue contributions and the zaxis, as given in Appendiz D.

To conclude this discussion regarding the spherical wave formulation in the near field of a
leaky wave structure, it is worth pointing out the difference between the resonant and wideband
structures. In particular, while the same deductions can be made through Figure 2-12 (a)-(f)
which correspond to the resonant structure, it can be observed that the higher the directivity
of the structure, i.e., the more resonant the leaky wave stratification is, the furthest from the
source this formation of a spherical wave occurs. This observation can be more easily visualized
through the comparison of the Poynting vector angles shown through Figure 2-11 and Figure
2-12 (e)-(f). This notion relating the directivity of the structure to the radial distance for which
this near field spherical wave formation can be assumed, will be revisited in following sections
due to its importance in determining the applicability region of the asymptotic approach.
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Figure 2-12. Co polarized component over observation sphere from the phase center of the resonant structure.
Magnitude (a) E-plane and (b) H-plane. Phase variance (¢) E-plane and (d) H-plane. Angle of Poynting vector
with z azis (e) E-plane and (f) H-plane.

2.3a. Field decomposition

Having elaborated on the concept of the near field spherical wave formation enabled through
the appropriate choice of phase centre, one final aspect that needs to be discussed prior to the
introduction of the asymptotic techniques refers to the field decomposition provided by the
SDP integration approach. In particular, as already discussed in previous sections, the definition
of the observation angle for which each leaky wave polar singularity is captured during the
deformation from the initial integration path to that of steepest descent (shadow boundary
angle 6gz), determines the region of existence of the leaky waves. More specifically, this angle
defines a conical section for each leaky wave mode, emanating from the phase centre. While
inside this cone the leaky wave does not exist and the total field is comprised of only the SDP
integral; outside, the residue contribution of the polar singularity must be added to the SDP
integral in order to obtain the total field. In fact, for strong residues, i.e., small attenuation
constant for the mode in question and observation grids close to the source, the total field
outside this cone can be dominated by the leaky wave [20]. To visualize the aforementioned
nature of the field, a three-dimensional illustration of an indicative leaky wave geometry is
presented in Figure 2-13, showing this conical region defined from the phase centre.

Figure 2-13. 3D view of leaky wave structure indicating the conical region emanating from the phase center which
limits the domain of existence for the leaky wave.
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Since the residue field contributions must be added only above the respective shadow
boundary angles, in order to form a continuous total field, the SDP integral contribution must
be discontinuous at the shadow boundaries with the exact level of said discontinuity accounted
for by the respective residue contribution. This concept can be visualized through evaluating
the co polarized component in the two main planes, as indicatively shown for the wideband
structure through Figure 2-14 and Figure 2-15.
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Figure 2-14. E-plane of co polar component, (a) decomposed, with the solid line referring to the SDP integral
while the dashed to the polar residues and (b) total field (Espp+Erw).
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Figure 2-15. H-plane of co polar component, (a) decomposed, with the solid line referring to the SDP integral
while the dashed to the polar residues and (b) total field (Espp+FErw).

Apart from the discontinuous SDP integral at the shadow boundary angles, another
important note that can be deduced from the above figures refers to the level of the residues,
which decays rapidly as the observation point moves away from the source. In addition, given
the relatively large attenuation constants of the main leaky wave mode pair (TM; and TFEj),
their residue contributions do not dominate the total field above their respective shadow
boundary angles, where the latter is comprised by the summation of the SDP integral and the
residue. This of course is not the case for the TMp in its dominant plane, as can be visualized
for 6’ > 6, in Figure 2-14, due to its small attenuation constant. Another aspect of the leaky
wave contributions visualized through the figures above, refers to the impact of each mode in

its non-dominant (orthogonal) plane, i.e., E-plane for the TE and H-plane for the TM modes.
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While far from the source the impact of the TM and TFE leaky wave modes can be isolated in
their respective dominant planes, i.e., E and H planes, the same cannot be said for observation
points very close to the leaky wave cavity. Even so, for their impact to be noticeable in the
orthogonal plane, a strongly excited leaky wave is needed (small ;). As such, for the present
structure this occurs for observation grids very close to the source and only for the TMjy, as
evident through the discontinuity at 6.5° in Figure 2-15. Finally, even though both figures
presented above correspond to the wideband structure, similar deductions can also be made for
the resonant case.

Having allocated a big part of the above discussion on the insight for the nature of the near
field provided by the SDP integration approach and the phase center choice, one aspect that
has been only briefly discussed refers to the convergence of the near field integrals involved.
This aspect is attributed to the exploitation of the integrands’ spectral properties, as described
through section 2.2d. In fact, through decomposition the field as given in (2.11), the near field
can be derived through a number of fast converging integrals (Egpp) and a finite sum of
analytical terms, resulting to its evaluation requiring a fraction of the time necessary for the
integration of the initial expressions (2.4) over the real axis in the k, complex plane. To
showcase the latter, an indicative timing comparison has been performed for the nearest
examined spherical grid, i.e., r'=1.54,+A,, and a mesh of 361 ¢ and 140 6 points. As indicated
through Table 2-1I, while the adaptive quadrature integration requires 9 minutes for the k,
integrals over the real axis, the SDP is nine times faster.

Evaluation ( tNur?erlca;lll ; Numerical
integration path o
method Figure 2-4 b) (SDP)
Time required 9 min 1 min

Table 2-1I. Timing comparison between integration on k, through the path shown in Figure 2-4 (b) and
integration on the path of steepest descent.
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CHAPTER 3. ASYMPTOTIC TECHNIQUES

To give an overview of the numerical field evaluation techniques showcased in the previous
chapter, simple methods like the integration over the real axis of the rectilinear spectrum (k,)
have the advantage of versatility since they can be applied directly without consideration for
the specific properties of either the integrand or the examined structure but do suffer in terms
of computational time. Taking this into account, significant improvement in the computation
efficiency can be achieved through exploiting the integrand’s spectral properties and
implementing the SDP method of integration described in section 2.2d. Having said that, the
ideal scenario one could consider would be to replace each complex integral expression with a
finite number of analytical terms. In this manner, the need for any spectral integration would
be mitigated and thus the computational efficiency would be enhanced even further. This
process of evaluating complex integrals through a finite number of analytical terms is essentially
referred to as asymptotic approximation.

Arguably the simplest and most common method to asymptotically evaluate radiation
integrals is the stationary phase point (SPP) approximation, which can be used to derive the
far field of a radiating structure. In this case, given the consideration for an observation point
far away from the source, the integrand’s phase term oscillates very fast on the integration
path compared to the much slower varying amplitude. This behaviour enables the evaluation
of the slow varying amplitude at the stationary phase point (saddle point) and the subsequent
closing of the remaining integral analytically. A thorough discussion regarding the SPP
approximation and the derivation of the far field of a leaky wave structure similar to those of
Figure 2-1, can be found in Appendiz F.

Having introduced the concept of asymptotic approximation for complex integrals as well
as an example for the case of the far field, the following chapter will elaborate on an asymptotic
evaluation method that can also be applied for the near field of a leaky wave structure. Aiming
for the cleanest asymptotic approach in the sense of requiring the smallest number of terms,
the field decomposition introduced by the steepest descent path method will be exploited,
essentially targeting the asymptotic evaluation of the SDP integrals (Espp). Apart from its
capability of enhancing the computational efficiency of the near field evaluation, the potential
of extracting further insight into the wave phenomena which drive the radiation process
through the asymptotic near field evaluation will also be explored.

3.1. General considerations

Integral representations play a fundamental role in spectral analysis, with the choice of
representation enabling different approaches for the evaluation of the complex integrals
involved. One indicative example of this concept has already been presented through the
background section 2.2c. In particular, introducing the Hankel function of the second kind in
the field representation, made it possible to resort to contour deformations, leading to the
identification of the fastest convergence path and the subsequent field decomposition into the
SDP integral and residue polar contributions. The price for enabling this approach though, is
the introduction of the branch point at the origin of the complex plane and its respective cut,
as depicted through Figure 2-4 (b). In turn, this singularity introduces notable complications
in the following asymptotic approach.

To begin approaching the asymptotic approximation of the near field integral expressions,
first the field decomposition resulting from the SDP integration approach will be re-written
below for clarity. The prime notation in the spatial variables (r,6"), indicates that they refer
to the displaced reference system of Figure 2-8.

E() = Espp(P) + 231 U(0" — 055, By ™ (), (3.1)
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Taking into consideration the above decomposition, the derivation of the field in the semi-
infinite region of a leaky wave structure can be reduced to the evaluation of the following
integral expressions, evaluated on the path of steepest descent in the complex plane (2.9 ¢).

Eyspp @) 1
Ey,SDP (F’) =45

EZ,SDP (F,)

~ (v (ko 22) + v (b 4.)) HEP () + (02 (K 4,) = v (0 4,)) cos(200) HE? (kpp))l
Sln(Z(P) (U;M(kpﬁAz) - U;E(kp'Az)) HZ(Z) (kpp) I kpeijkzzrdkp,

I
.28, .
{ 1522 c05(0) il BIHE (), |

Where the reference system displacement (A.) is chosen as defined through section 2.3.

Similar to the previous section, in order to facilitate all the subsequent mathematic
manipulations involved, an indicative integral will be treated instead of the complete
expressions. As evident through (3.2), if a term-by-term integration is employed, all the SDP
integrals consist of a Hankel function of the second kind of ng order (with n = 0, 1 or 2) and
a voltage or current wave amplitude (either TE or T'M) multiplied by a power of k,. As such,
it will suffice within the present context to focus on the asymptotic evaluation of an integral
of the type presented below, in terms of the rectilinear (k,) as well as the angular (B)
spectrum. Without loss of generality, the indicative integral examined features the TFE
voltage wave amplitude.

Jspp Ve (kpy 8, HS (K,pp)e ko ke eIk ko), (3.3 a)

Jopp Ve (ka sin(B), A,)H (fegp sin(B))e *ap SmB) k2 sin(B) cos(B) ek Bdp,  (3.3b)

Where g (B) = —jcos(B — 0").

At first glance, the above presented integral representations seem unable to be closed in an
analytical manner. However, depending on the employed representation, certain manipulations
can be introduced to transform the integrand into a function with similar properties but a
simpler structure, which can be evaluated asymptotically through canonical integrals, many
times also labelled as comparison integrals. This concept roughly constitutes the basis of the
asymptotic approximation of complex integrals, where the targeted canonical form depends on
the implemented representation. While potentially insightful in terms of field decomposition
and beneficial in computational efficiency, transforming the integrands into canonical forms
introduces certain limitations for the accuracy and applicability region of the resulting
representation, requiring in turn additional considerations prior to the implementation of any
asymptotic approximation.

Having elaborated on the dominant contributions of the examined integrals through section
2.2d (kpsp = kqsin(@’) and B = '), as well as the deformation to the path of steepest descend
that includes the latter, it is suggestive to approximate the SDP integrals only by the path
section in the vicinity of the saddle point, since the contribution from the remainder of the
path will be exponentially small in comparison. Considering the outline of all asymptotic
approximations as introduced above, our purpose is to transform the integrand of (3.%) into a
canonical form which describes in the simplest fashion the relevant behaviour around the saddle
point. The first step of this process is the transformation from the angular spectrum () to the
s-plane, which will be the topic of discussion in the following subsection.

3.1a. Transformation to the s-plane
Since only the vicinity of the saddle point traversed by the steepest descent path is relevant, it

is unnecessary to deal completely with the exponent function ggz(B). Instead, the latter is
replaced by another function that describes in the simplest manner the relevant saddle-point
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arrangement around Bsp = 6’. This transformation will be phrased in terms of a new complex
variable s, with the simplest function describing an isolated first order saddle point being the
following polynomial z(s).

as(B) = 7(s) = c —s?, (3.4 a)

The constant ¢ in the above expression is most conveniently chosen such that the saddle
point is mapped in the origin of the s complex plane, that is when c is set equal to qg(Bsp)-

az(B) = —j — 5%, (3.40)

Introducing the s-plane transformation to the test case integral of (3.3 b), results into the
following integral expression.

fsup FB(ﬁ)ekdr'QB(ﬁ)dﬁ = o ~Jkar' fSDP Fy(B) %e—kdr'szds = g Jkar' fSDP G(S)e_ﬂszds, (3 5)

Where Fy(8) = vi; (kq sin(B), 4, HS? (kap sin(B))e a0 Sm B2 sin(B) cos(B), G(s) = Fa(B)
and 0 =kgr'.

In order to facilitate the subsequent mathematical manipulations, the integrand excluding
the exponential phase terms is defined in terms of a function Fz(B) for the integral on the g
plane and a function G(s) for that on the s plane. Furthermore, while unnecessary for any step
of the following asymptotic approach, defining the parameter 2 in the principal exponential of
the integrand of (3.5) will enable an interesting discussion regarding the fundamental
consideration for the asymptotic evaluation of complex integrals.

Having mapped the neighbourhood of the first order saddle point around the origin of the
s-plane through the choice of constant in the transformation (3.4), the new integration path
can now be considered. Given the phase dependence of the final integral in (3.5), the paths of
constant imaginary part for the exponent can be identified in a simple manner as the real and
imaginary axes of the s-plane. Moreover, since 2 is real and positive (assuming lossless
dielectrics, i.e., k4 real), the distinction between the paths of fastest descent and ascent away
from the origin is straightforward, corresponding to the real and imaginary axis respectively,
with the 45° and 135° diagonals constituting the boundaries which divide the valley and
mountain spectral regions. The above discussed nature of the spectrum in the s-plane is
visualized through Figure 3-1 (a) and (b), corresponding to the spectrum of the integrand of
(3.5). Considering the range of the s-plane illustrated in the figures, what dominates the
integrand’s behavior is the exponent, namely e™%5".

1000
500
[dB] o

-500

-1000

-2 0 1 2
Re(s)
T large values . SDP
(a) | small values ® Saddle point === SAP | (b)

Figure 3-1. s-plane spectrum of integrand of (3.5). (a) Saddle point depiction and (b) Steepest Descent
Path (SDP) - Steepest Ascent Path (SAP).
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It should be mentioned that the Jacobian transform (df/ds) incorporated in the definition
of G(s), does introduce additional critical points to the integral in question in the form of
algebraic branch points. These singularities arise from all the other saddle points in the angular
spectrum, apart from the one at gs» = 8’. More specifically, given the periodicity of the angular
spectrum, qp(8) = 0 results in a multitude of saddle points at 8’ +nn for n integer. While the
choice of principal strip did define the operating saddle point as s = 6’, all other saddle points
become branch points through the s-plane transformation. An extensive discussion for this
argument can be found in section 3.13 of [33]|. Even if introducing additional critical points
might seem worrisome, they are mapped far enough from the origin such that they do now
impact the neighborhood of the saddle point and can thus be neglected.

Another aspect that should be discussed regarding the s-plane transformation, refers to the
sign ambiguity introduced by the latter. In particular, given the multi-valued nature of the
transformation presented in (3.4), the sign of the Jacobian transform (df/ds) must be chosen
such that df and ds denote elementary sections of the SDP in the respective complex planes.
As a result, since at the saddle point the SDP in the angular spectrum forms a 45° angle with
the real axis (for s = 0', 4df = 45°), as showcased through Figure 2-5, while in the s-plane the
SDP always remains on top of the real axis (for ssp = 0, 4ds = 0°), the Jacobian transform must
be defined as follows.

AB\_,ro0 _
4B _ o 8(G5)=45° at 05 3
Babn=>L=1 = =T (3.6)
2 2

One fundamental difference between the s-plane and the angular (B) or rectilinear (k,)
spectrums which remains yet undiscussed, refers to the behavior of the spectral singularities for
different observation points. Even so, to facilitate the understanding of the asymptotic
approach, the presence of singularities in the integral will be neglected until section 3.2,
considering for the time being an isolated saddle point.

3.1b. Isolated Saddle Point

The transformation of the SDP integral passing through the first order saddle point to the s-
plane, forms a Gaussian type phase (e7?") in the integrand, which essentially filters the
amplitude of the spectral content around the saddle point. While this integral formulation
showcases once more that only the vicinity of the saddle point is relevant, it arguably introduces
an even more important concept. Namely, it is the value of the real and positive parameter
0 which determines the sharpness of the filtering introduced by the exponent and thus the
region around the saddle point that features noteworthy contribution. Having said the above,
the process of asymptotically approximating complex integrals of forms similar to that of (3.5)
is usually based on the presence of a large parameter in the exponential behaviour of the
integrand. This in turn corresponds to a fast-decaying spectrum away from the saddle point,
enabling the accurate approximation of the examined integral through substituting the
integrand function G(s) with a local representation around the origin. For the limiting case
where 2 — oo, this process tends to the SPP method, i.e., evaluating G(s) on the saddle point
and closing the remaining integral through a canonical form. Even so, one could suggest that
what is in fact required to enable an asymptotic evaluation is not a very large parameter in the
exponent, but an accurate representation of the integrand function G(s) for a radius around
the saddle point where the contribution of the spectrum remains significant. Although
fundamentally intuitive, a more rigid formulation of this argument can be found in section 3.13
of 33].

Returning to the evaluation of the integral in question and considering an isolated saddle
point at s = 0, a representation for the spectrum’s properties around the latter can be obtained
through a power series expansion of G(s) centred at the origin.

G(s) = G(0) +5G'(0) + 5 GD(0) + 6P (0) + -, (3.7)
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Assuming a regular function G(s), i.e., featuring no singularities, the radius of convergence
of this power series expansion is only determined by the number of terms included in the latter.
Therefore, the larger the important spectral region around the saddle point (i.e., the smaller is
), more terms are required in the expansion to ensure the accurate representation of G(s) and
subsequently reduce the error introduced by the asymptotic approximation.

Given that the chosen representation is what determines the set of canonical integrals that
can be employed in the asymptotic evaluation, for an isolated saddle point, the aforementioned
Gaussian phase dependence results to integrals of the form presented below, which can be
subsequently closed through gamma functions.

4o _pez +oo 2 AmtD/2) - even
Jo e ds = I~ and [ s"e™ ™ ds = { a7z , (3.8 a)
2 0, nodd

Combining these concepts results into the asymptotic evaluation of an integral similar to
(3.5), assuming a regular G(s). As evident from the following equation, the odd terms of the
power series expansion of G(s) feature no contribution, due to the symmetrical end points of
the integration and the even nature of the exponent.

2n+1]

© ) , _ . (zn) ri——
[12G(s)e™5"ds = [*(G(0) +5G'(0) + - )e~5"ds = ¥ (G (Zm()")ngz,;i)) (3.8 b)

Having discussed the treatment of an isolated saddle point as well as presented an intuitive
concept to realize the impact of the value of 2, a more realistic problem can now be approached
where the integrand function (G(s)) features singularities in the spectrum.

3.2. Spectral singularities near the saddle point

When any spectral singularities of the integral function (G(s)) approach the saddle point, the
above presented processes cannot be directly employed. More specifically, the radius of
convergence of the power series expansion (3.7) is limited by the relative position of the
singularities to the saddle point. This in turn requires a different approach to enable the
asymptotic evaluation of the integral in question (3.5). Taking this into account, the following
section will elaborate on the necessary treatment for different types of singularities of G(s).
Before doing so however, the mapping of those singularities and their properties in the s-plane
will be discussed.

3.2a. Spectral singularities in the s-plane

As introduced through section 2.2b, in terms of singularities in the angular spectrum, the
integrand of (3.5) features a branch point at the origin (8 =0) due to the presence of the
Hankel function, as well as leaky wave polar singularities in the sections of the g-plane which
correspond to the bottom Riemann sheet of the k, complex plane. The mapping of these
singularities in the s-plane is performed through solving (3.4 b) for s.

qp(B)=—jcos(p-6' 37 -0’ 37 i—6'
(b BT 3o sin (BY) = 5, = —vEe T sin (B2, (3.9)

The sign choice in the above expression is performed such that s - (8 —6")/((dB/ds)s—,) for
B - 6', as in section 4.4 of [26], whereas the subscript i can refer to either the leaky wave polar
singularities of the Green’s function or the branch point of the Hankel.

One notable aspect of the s-plane which was not discussed this far refers to the behavior of
the singularities for different observation angles (8’). While in the angular and the rectilinear
spectrum the singularities remain fixed and the saddle point and its respective SDP change for
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different observation angles ('), this is not the case in the s-plane. In particular, since the
saddle point and SDP are always mapped to the origin and real axis of the s-plane respectively,
the singularities must move in the spectrum for different 6’. Given that the implemented
asymptotic approach will be determined by the type of singularities closest to the saddle point,
in the remaining of this section the proximity of different types of singularities to the saddle
point will be examined for different observation angles.

Mapping each of the critical points of the integrand of (3.5) to the s-plane by using (3.9),
their relative position with respect to the saddle point and SDP for different observation angles
is visualized through Figure 3-2 (a), (c¢) and (b), (d) for the B and s-planes respectively.

ne, 8’ = 0° '

T large values
| small values

® Saddle point

: Branch point
ﬁro/ﬂ 0.5 0.5 Reo(s) 0.5 of Hankel
(b) ° LW poles
(TE,)
== Branch cut
of Hankel
SDP

0.2 0 0.2 o.4 0.6 ’ 0.5 0 0.5
B/ Re(s)
(c) ()

Figure 3-2. Relative position of saddle point and singularities in the spectrum for (a), (b) 6'=0° and (c), (d)
0'=45° for the B and s planes respectively.

As evident from the figures above, around broadside both poles of the leaky wave pole pair
(#k, 1) are equidistant from the saddle point, while for larger observation angles the one arising
from +k§f§v features a dominant impact, being much closer to the saddle point. To account for
their equally significant contribution for small observation angles, both poles will be considered
during the asymptotic integral evaluation, as will be discussed in the following section.
However, apart from the impact of the leaky wave poles, the singularity nearest to the saddle
point for observation points around broadside is the branch point of the Hankel function
occuring at B = 0. In fact, for observation points along the z axis, the branch point coincides
with the saddle point making its proper treatment crucial.

Adhering to the main idea behind the asymptotic evaluation of complex integrals, when the
function G(s) features singularities near the saddle point these must be isolated in their simplest
form and subsequently evaluated through another class of canonical integrals. Taking the latter



Asymptotic techniques 45

into account, the following two sections will describe the treatment of the polar and branch
point singularities present in the examined integrals.

3.2b. Polar singularities

Considering that the function Fgz(B) in expression (3.5), and subsequently G(s), feature a set of
simple poles near the saddle point, the radius of convergence for any expansion of the integrand
function G(s) is limited by the positions of said poles. As a result, for cases where 2 is not very
large and thus the spectral region around the saddle point in which the properties of G(s) must
be maintained is significant, the approach presented through section 3.1b must be modified.

The first step in the method of treating polar singularities near the saddle point requires
isolating them. This is achieved through decomposing the integrand function G(s) into a regular
part (T(s)), also referred to as the regularized part of G(s), and a part containing all the poles,
with this process labelled as regularization. Subsequently, the regular part can be evaluated
through a power series expansion and term-by-term integration, as presented in section 3.1b.
In turn, the integral of the polar contributions can be evaluated in closed form using either the
error function (erf) or equivalently the Fresnel integral (F), once the poles have been separated
into their individual contributions. The two main approaches for the regularization of G(s)
consist of an additive and a multiplicative pole treatment [35]. An extensive comparison of the
two, which focuses on identifying their differences, is presented through Appendiz G. Given the
deductions of this comparison, for the remaining of this document the additive method will be
employed for the regularization.

In the additive regularization approach, introduced by van der Waerden [36], a function
Gpote(s) containing all the polar singularities of G(s) is added and subtracted from the latter,
forming a regular part in the neighbourhood of the saddle point Ty (s) = G(5) — Gpoe(s). While
the regular part can now be expanded around the saddle point, the function G, (s) must be
expressed as a combination of simple poles and zeros in terms of s. In this formulation G, (s)
can be evaluated through canonical integrals similar to those presented below for only a simple
pole and a simple pole as well as a zero near the saddle point.

2
+00 g™28

ds = +2jvme™ % Q(Fjs,V12), Im(s,) 2 0, (3.0 a)

—® s=sp

[10 55 gmast gs = fa £ 2j(s, = s;)]Vme 5Q(Fjs,Va), Im(s,) 20, (8:100)

—® s=sp

Where Q(x) = fxooe‘tzdt = gerfc(x) = g(l —erf(x)) and erf(x) = \/%foxe_tzdt.

Given the complex nature of the leaky wave polar singularities, i.e., s, € C, the definition of
the error function (erf) required for the evaluation of @ and subsequently the showcased
integrals, is expanded as discussed in [37] to account for complex input values.

The right-hand side of equations (3.10) corresponds to functions which uniformly describe
the impact of poles as they approach the saddle point and are thus referred to as transition
functions. One of their most notable aspects is that if the pole in question crosses the SDP for
some observation angle (8'), the imaginary part of s, changes sign, making the transition
function discontinuous at said angle. Similar to the properties of the SDP integral discussed in
section 2.3a and showcased through both Figure 2-14 and Figure 2-15, the discontinuity
introduced by the transition function is exactly equal to the resulting value by the capturing
of the leaky wave pole through its residue contribution, making the total field continuous.

Before proceeding further, it should be noted that closing the integrals of (3.10 a-b) through
the error function is one potential option, a thorough discussion of which can be found in
section 4.4a of [26]. Another completely equivalent approach is to resolve the canonical forms
using the Fresnel integral (F) as given below.
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+oo e— 5% +o0 e~ 5% 1 ,
f—oo es__spdszspf—oo ;fsgds:—;\/gF(].Qsﬁ), (310 C)
F(j0s2) = F2js,V2e~2%Q(Fjs,VQ2), Im(s,) =0, (3.11)

To give an indicative example for the implementation of the additive regularization
approach, the part of the integrand of (3.5) containing all the polar singularities will be
considered. Taking into account that the poles of G(s) are attributed to the zeros of the
common denominator of the wave amplitudes, the integral of interest is expressed below.

Jspp Vi (ka sin(B), 4,) cos(B) e3P dp = e~Ikar’ [ GTE(5)e="ds, (3.12)

Where G 5(s) = vig(kysin(B),4;) cos(ﬁ)% and 2 = kgr'.

For the leaky wave stratifications examined (Figure 2-8), the significant polar singularities
of the vrz potential, refer to #+k,., for the TE; leaky wave mode. Therefore, for the
implementation of the additive regularization method, a function describing the behaviour of
the vy; around the aforementioned polar singularities needs to be introduced. This is obtained
through the following expression, as in [27].

vgpr,TE(kp:Az) = rpdW Res (U;E(kp; Az)) (3.13)

2 2 )
kp=kp.Lw kp=kp,Lw

To eventially showcase the impact of the regularlization, the spectrum of G;*(s) is initially
depicted through Figure 3-3, in the bottom Riemann sheet sections of the k, complex plane
which contain the leaky wave poles.

Bottom Riemann sheet sections of GL¥(s) = v} 5(k,, A.) cos(8) dB/ds
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Figure 3-3. Bottom Riemann sheet of G *(s) = viz(k,,A,)cos(B)dB/ds, depicted in the sections of the rectilinear (k,)
spectrum indicated in the inset on the top right.

The voltage wave function approximation introduced through (3.13), contains both leaky
wave poles of the #+k,,,, TE; pole pair. Consequently, the regularized part of GJ*(s), presented
below, is free of both polar singularities as can be visualized through the respective spectral
regions in Figure 3-4.

Tyaws(s) = (vig(ka Sin(B), 8,) = Vipr.rs (ka sin(B), 4,) ) cos(B) L, (3.14)

It should be noted that while expressions (3.12) and (3.14) include both g and s variable
dependence, this is done purely to maintain a compact form. In fact, these variables are related
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through s(g) = —V2e/®™Y sin((B — 6")/2) and its inverse, while the Jacobian transform (df/ds) is
given by (3.6).

Bottom Riemann sheet sections of regularized (VAW) Tyaw,,(s) = (v7p(ky, Az) — va, rp(kp, AL)) cos(B) dB/ds
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m(ky)/Kaing 0 02 Re(ky)/kans ' 0 Re(k,)/ka,ing

Figure 3-4. Bottom Riemann sheet of the regularized part through the additive method (Tyaw,,(s)). The depicted
sections of the rectilinear (k,) spectrum are indicated in the inset of Figure 3-3.

Considering the integral of GJ%(s) in (8.12), which below is labelled Is,p(2), the previously
discussed steps for the asymptotic evaluation using the additive regularization approach are
given below.

+0oo +co 400
Ispp(2) = f G{E(s)e—ﬂsz ds = f TVdWTE(S)e‘”SZ ds + f ;flle(s)e‘”s ds =
+0o0

o Igpp(2) = f (TVdWTE(0)+sTVdWTE(O)+ TS 0 + 3 TV‘?WTE(O)+--~>e—nszds+ f 6T (s) =" ds =

— 00

(s)e " ds =

+00
e r[s/z ] 7@ 1"[5/2] GTE
= ISDP(-Q) - TVdWTE(O)\/7 VdWTE(O) 2[2(3/2) VdWTE( )41 _{2(5/2) -t polle

—oo

(zn) 2n+1
or
= Ispp (D) = Tt (7(””) Ezm])ﬂ_* Gpole(5)e™7" ds, (3.15)

Where G 5L (s) = Viprre(Ka sin(B),4,) cos(ﬁ)% and Ty, (s) as given in (3.14).

pole

Number of terms in regularized expansion

Having showcased the integral decomposition resulting from the additive regularization
approach through (3.15), the impact of higher order terms in the expansion of the regularized
part (Tyaw,,(s)) will now be more thoroughly examined. This process aims to evaluate the
number of terms required in the expansion for different radial distances (r') and thus different
values of 2, in order to recover the complete integral of Tyqw,,.(s) with sufficient accuracy. The
utilized test case integral refers to the regularized part of the above presented example, with
the comparison between the complete integral and an expansion with different number of terms
presented through Figure 3-5. It should be noted that the number of terms indicated in the
legends of the following figures refer to terms which contribute to the integral, thus even orders
of s in the expansion of Tyu,,(s). The showcased example refers to the wideband structure of
Figure 2-8 for the central frequency and an observation grid of 2.54, from its phase center.

+00 ] +o0 p ]
IReg (9’) = f TVdWTE (S)e_ﬂs ds = f ((U’ItE (kd Sin(ﬁ) , AZ) - vgpr,TE (kd Sin(ﬁ) ’ Az)) COS(ﬁ) d_f> e % ds

(3.16 a)
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Figure 3-5. Comparison between the complete integral of the regularized part (Tyaw,,(s)) and its expansion using a
different number of terms, (a) one, (b) two, (c) three and (d) four terms.

It can be noticed through the figures above that the inclusion of higher order terms in the
expansion of the regularized part (Tyaw,,(s)) mainly impacts angular regions farther off
broadside. In contrast, the region which would correspond to the main lobe of the resulting
pattern (roughly 6’ < 6g5) is mostly recovered by the first couple of terms and only slightly
influenced by the higher order terms of the expansion. Utilizing this observation, an estimate
for the required number of terms in the expansion will be evaluated through obtaining the
magnitude and phase errors between the results of the complete integral and that with Tyau,.,(s)
expanded, as given through the following expressions.

Erroramag (8 [dB] = 20log;o(| I (8)]) — 20l0gyo(|15sn ™™ (6)])
, (3.16 b)

Errorphase(8") [deg] = |(# gy ™ (8) — & Iy ™ (0)) — (# Iy ™™ (6) — & I5gy ™™ (0)|

Subsequently, the maximum absolute errors within the angular region defined by the
shadow boundary angle (655 = 645") are computed and presented through Figure 3-6, for both
the wideband and resonant structures. These errors are depicted in terms of the electrical
distance between the observation spheres along broadside and the ground plane (r' — 4, — h).
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Figure 8-6. Mazimum magnitude (a), (c¢) and phase errors (b), (d) between the complete integral of the
regularized part and its expansion with different number of terms, (a),(b) wideband and (c),(d) resonant structure.

As can be visualized through the maximum error comparison presented above, using a
three-term expansion for the regularized part allows the evaluation of the integral in question
with sufficiently small magnitude and phase errors, even very close to the phase centre.
Furthermore, it can be visualized that for smaller radial distances from the phase centre, i.e.,
small values of 0, the filtering of the spectrum around the saddle point introduced by the
Gaussian exponential term of the integrand (e=?5*) is less sharp, therefore requiring more terms
in the expansion of Tyau,,(s) to enable its accurate representation.

Integral of polar contributions

Before concluding with this section, two concepts must still be discussed. Namely, the
derivation of the power series expansion for the regular part (Tyaw,,(s)) and most importantly
the evaluation of the integral containing the polar contributions in (3.15). Regarding the
former, the expansion of the regular part requires the use of the chain rule together with the
finite difference method in order to numerically obtain the higher order derivatives of Tyay,,(s),
and is further discussed through Appendiz H. In turn, the evaluation of the integral containing
the polar contributions of the initial function, for this example GZOE,;(S), requires its separation
into simple poles such that either of the canonical integrals given in (&.10) can be employed.

For this purpose, one must first identify the impactful poles of G;f;e(s), i.e., those that
approach the saddle point for some observation angle (6'). Expressing the integral of interest
through (3.16 ¢), distinguishing the impactful poles can be more conveniently performed by
considering the angular spectrum. In particular, taking into account that the integral’s saddle
point moves in the real axis between 0 and 7/2, the nature of the integrand’s spectrum and
the relative position of the poles and the saddle point is illustrated, through Figure 3-7.

Angular spectrum sections for § in [0" — 0.8, 0" 4 0.87] of v, 15 (kasin(B3), A.)cos(B)dpB/ds
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Figure 3-7. Angular spectrum of G:Z;(s) = vy e (kp, 4,)cos(B)dB/ds for (a) 8'=0° and (b) 6'=90°.
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Lpote(0) = [ Grot()e ™" ds = [*7 vy g (ky sin(B), 4,) cos(B) L e~ ds,  (3.16 ¢)

—oo

As evident through the figure above, the +k 7, poles mapped to iﬁ”l (labelled g;1* and
/3;2’51 in the figure above), are equidistant from the saddle point for observation points at
broadside, making them both necessary for the asymptotic evaluation of G;fl; (s). Furthermore,
the periodic nature of the angular spectrum leads the approximation of the potential function
(3.13) to also feature poles at n#g)," (85" and ;" in the figure) which in fact approach the
saddle point for large observation angles, near 90" as shown through Figure 3-7 (). As such,
while their impact is negligible compared to that of the main poles (g,;* and g;,*) for smaller

observation angles, they need to be included for the accurate reconstruction of GTE1 (s).

pole
Employing the expressions for the positions of the polar singularities in the angular
spectrum given in the inset at the bottom of Figure 3-7 (/?Zf;), their mapping in the s-plane

can be obtained through (3.9) and corresponds to (s,;*,). Subsequently, the function containing

all the polar contributions GTOEfe(s) can be modelled through the summation of four simple poles
as given below.
apt
Gpore () = Tty 1y, where ay* =l (5= 5,7) Gyore (5, (5.17 a)
Spi - pl

In this form, 'L (s) can be evaluated asymptotically through the integral of (3.10 a)

pole

TEy
[17 6TE (s)e™5" ds = zz1<f_*;°£’;‘r,a1e-ﬂszds) sh 1(+zja”1fe i) o(wjsTm )) m(syt) 2 0
pi

(3.17°b)
It should be mentioned that in the case where G,z (s) also features a zero near the saddle

point for some observation angle, (3.10 a) cannot be directly applied. Instead, the zero must
be extracted as indicated in the following expression assuming Gpole(so):o, with the remaining
part expanded as in (3.17 a) and the resulting canonical form evaluated through the integral

of (5.10 b).

GTE Gpois(S) bTEl
polle(s) - (S - ) < z; —so ) (S - SO) Zl 1 _s TE1 (3'17 C)
Spi

In this specific example, this step could be employed for the zero of cos(B) at 7/2; however,
its impact will be negligible except for observation angles very close to 90° which are of little
interest for the presented study. Aiming to evaluate the above discussed modelling process, the
decomposition of G;f;e(s) into four simple poles will be performed for the integral of (3.16 ¢). In
particular, the impact of including the poles which lie outside the visible spectrum (ﬁp31 and
By:* in Figure 3-7) will be compared to that of using only the main poles (g;;* and g;;*), while
the contribution of adding the zero arising from the cosine will also be shown. This is illustrated
through Figure 3-8 (a) and (), which correspond to the asymptotic evaluation of (3.16 ¢) using
the modelling described in the respective legends. The figures refer to the wideband leaky wave
structure, the central frequency and a spherical observation grid of 24, from the phase centre.
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vote(8) i1 (3.16 ¢) when using (a) two or four simple poles and (b) four
poles and adding the zero.

Figure 3-8. Comparing the integral of G
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As visualized through the figures above, the poles which lie outside the visible region feature
a small contribution only for large observation angles. In addition, the impact of the zero is
negligible as anticipated by the previous discussion.

The steps described above can be employed in a similar manner for integrals featuring T'M
potentials with the only difference being the need for regularizing both the TM; and the TMy
pole pairs and subsequently treating their polar contributions independently. To illustrate this
process, the wave amplitude of the indicative integral (3.12) will be swapped to the T'M variant
and the necessary steps for the asymptotic evaluation of the resulting expression will be briefly
presented below.

Jipp VinCeq sin(B) , 4,) cos(B) e8P dp = e~ka [ GIM (5)e=5"ds, (3.18 a)
Lpp(Q) = f:: Gg""’(s)e‘”s2 ds = f_Jro:O T‘,g”,vm(s)e‘”s2 ds + f::o Gﬂ;’;(s)e‘”s ds + f G;ﬂg(s)e‘”sz ds,
(3.18 b)

Where Tyauy,, (s) = (v (ea sin(8),4,) = vior,rar, (ka SINB) , 82) = Uiy, (ka SN(B) , 8,) ) cos(B) 5,

TM1
pole

TM,
pole

() = Vdprran, (ka SiN(B), 4,) cos(B) L and G2 (s) = Viprru, (ka sin(B), 4,) cos() L

In turn (3.18 b) can be treated through expanding the regularized part around the saddle
point, similar to (3.15), and representing each of the polar contributions ( ;;Vl’;(s), Gpor())
through a sum of four simple poles. This process results into the following expression, where
the remaining integrals can be closed with the use of (3.10 a).

‘%1;‘)/ or [Zn+1] - aM1 ) oo oMo .
ISDP('Q):Z%O:O — M +Z f per e " ds +Z f pffMo e 5% ds ,
(2nh) !2( ) 5=Sp; s-s
pi
(5.18 ¢)
T . T™ TM . TM TM
Wit g~ i o= i, e e
pi - pi

Finally, the impact of the individual poles for the TM; and TM; leaky wave modes will be
presented through Figure 3-9 (a) and (b) respectively, similar to the comparison performed in
Figure 3-8.
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Figure 8-9. Comparing the integrals of (a) G;:f;(s) and (b) G;:L'g(s) of (8.18 b), using only the main poles and using

all four simple poles of the respective polar contributions.

While the deductions with respect to the importance of the individual poles are the same
as those extracted for the TE; mode, the different nature of the polar contribution between the
TE;, TM; pole pair and the T'Mjy, will be discussed in section 3.3a.
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3.2c. Branch point and Hankel considerations

Having described a method for the asymptotic approximation of integrals whose saddle point
approaches polar singularities, still the evaluation of the test case integral of (3.5) cannot be
performed. In particular, as introduced through section 3.2a, while the choice of representation
using the Hankel function in our typical integral has made it possible to resort to contour
deformations, it has also introduced the branch point and its respective cut, depicted through
Figure 3-2. Consequently, for observation points around broadside the singularity nearest to
the saddle point is precisely this branch point occuring in the origin of the angular spectrum.
As such, specific considerations must be introduced for the treatment of this singularity in
order to enable the asymptotic evaluation of the integrals of interest.

The first step in the subsequent deliberations refers to identifying the type of branch point
to be treated. As a matter of fact, different types of branch points arise from different
multivalued functions and in turn require distinct canonical forms for their asymptotic
approximation. As an indicative example, algebraic branch points introduced by roots of any
order, can be conveniently evaluated asymptotically through the use of parabolic cylinder
functions, as discussed in section 4.4c of [26] or more thoroughly elaborated in [38]. Having
said that, the branch point of the Hankel function of 0y order (H,) is of logarithmic nature and
thus cannot be evaluated in the aforementioned manner.

Another complication related to the treatment of the Hankel function refers to the utilized
representation. In particular, the most accurate approach would necessitate the use of the
integral represenation for the Hankel function in (3.3 b) and the subsequent asymptotic
evaluation of the resulting double integral. However, this step would contribute significant
complication to the overall problem, since it results to integral expressions that cannot be
transformed into the targeted one-dimensional integrals in the s-plane. Furthermore, given that
the argument of the Hankel function is proportional to p, and thus sin(8"), if an asymptotic
expansion is utilized, the employed expression would need to change between the large and
small argument representation for the evaluation of the field over a spherical observation grid.

Considering all the above, together with the nature of the near field for the examined
structures, two sequential approximations are introduced for the treatment of the Hankel
functions in the integrals in question. First, the latter is substituted by its first order large
argument approximation and subsequently, part of the integrand (ka,(f) (k,p)ei*e?) is evaluated
on the saddle point (k,sp = kgsin(8")). The impact of these two sequential approximations on the
resulting integral expressions will be separately shown below. Before doing so however, it should
be emphasized that these approximations do not aim to provide a generic method for the
asymptotic treatment of Hankel functions; instead their applicability for the examined leaky
wave structures is based in the nature of their near field and is enabled by the phase centre
choice. Since the presented asymptotic study refers to the remaining integral term (Espp) of the
decomposition given in (3.1), the initial SDP integral expressions are presented below. To
faciliate the subsequent observations, the cylindrical field components are treated.

By oo ) — 059 (vl ) (HP (ko) = B (kyp)) + v by 4,) (HP (p0) + HE (k)
iz
E(p,snp(?’)} = —Jfoor | sin(®) (U;E(kp,az) (B (kpp) = HP (kyp)) + Ve (ko 4,) (HS (ko) + H (K, p))) ke /e dk,,

Eyspp () . .
15 cos(p) ik 8, ) 157 (k)

(3.19)

The first step of the introduced approximation refers to substituting the Hankel functions
of the second kind with their first order large argument approximations.

HP (k,p) = ’nkzpp ej%ej%e‘jkpp, (3.20 a)
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Doing so, transforms the integrals of (3.19) into the following expressions.

2k, i
. —cos(p) v}'M(kp,AZ) ’ﬂ—:eh
Ep spp(7)

S 1 . 2k i i ro_
Eq,,spp(i‘ )\ = Efsnp | sin(ep) v;'E(kp,Az) n—:e14 | e=Jkez'e TkoPdk,, (3.20 b)
Ez,SDP(T’)

l—ji—icos((p)i}“M(kp,Az) %e’TJ

As evident by the above integral expressions, using the large argument approximation for
the Hankel function leads to the decoupling of the TM and TF solutions of the transmission
line equivalent problem to their respective dominant regions, which for a magnetic current
source are visualized through Figure 3-10. This effect results directly from the relation between
the large argument approximations of Hankel functions of the second king of 0y, and 2,4 order,
namely HS? (k,p) = —H{? (k,p), considering (3.20 a).

B\ LA

«_ = — S TM:{E, H,, E,} TE: {H, E,, H,}
_ >~ _ E-plane H-plane

A 7NN
A K/ A

\ 4
/AN y
»/‘\4 |
v o, P x

Figure 3-10. Dominant regions for the TE and TM transmission line solutions for a magnetic current
source.

While this decoupling of the TE and T'M parts of the transmission line solution in their
respective dominant regions constitutes a very good approximation for most cases, it starts to
fail as the observation point moves close to the source, as discussed through section 2.3a and
shown in Figure 2-15. This difference might be negligible for the weaker modes, e.g., TFE; and
TM;, but can be clearly noticed for modes with small attenuation constant (a,y ), like the TMj.
Even so, given that the impact of the TMjy in its non-dominant plane (H-plane) is mostly
described by its residue contribution and not the SDP integral, this approximation would not
significantly influence the near field, as will be showcased in following sections.

Having discussed the resulting impact from using the large argument approximation for the
Hankel function, the second part of the introduced approximation refers to evaluating part of
the integrand, including the approximation of the Hankel function, on the saddle point. This
is presented through the following equations, first substituting the Hankel function with its
large argument approximation (3.20 a) and subsequently evaluating the resulting expression
on the saddle point (k,sp = kqsin(8")).

H,(LZ) from kp = kpgp
i 2k jToonm — ' cj I 2k monm
ka,(lz)(kpp)efkﬂp (3-2&9 a) ,n—:e14e’ 2 P r;m(@ ) n—r'fe’4e] 2, (5.21 a)

Introducing this step to the integral expressions of (3.20 b) transforms them as follows.

Ep spp(T) [ — cos(p) vin(ky, A7) ]
[Ew'SDP(F,) = o [t o | S@ vhe(ko 7)) ekt e ko, (3.21b)
E,spp(F') i—ZCOS((p) it (kp, Az)ka

Since the approximated integrals of (3.21 b) feature only first order saddle points (k,s =
kqsin(9")) and simple polar singularities through the wave amplitudes (vf; ., and ify), they can
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be transformed into the s-plane, using (2.8) and (3.4), and subsequently asymptotically
evaluated as discussed in section 3.2b. In turn, combining the resulting asymptotic
approximation of the SDP integral with the residue polar contributions (3.1), results to the
total field in the semi-infinite region of the leaky wave structure.

One noteworthy aspect of the introduced approximation is that it is only employed on the
SDP integrals (Egpp(i)) of the decomposition given through (3.1). In other words, these
approximation are not performed on the residue contributions. This is done to minimize the
error involved, since for the residues the integrand is evaluated on the polar singularity in the
complex part of the spectrum and not on the saddle point. On the other hand, the dominant
contribution of the SDP integral is actually the saddle point, rendering the approximation of
part of the integrand on this point (saddle point) sufficiently accurate. Considering that the
nature of the SDP integral is being discontinuous at the shadow boundaries such that this
discontinuity is exactly compensated by the residue polar contributions; employing different
approximations for the SDP and the residues leads to slight discontinuities at all the shadow
boundaries. As will be shown through section 3.3c, these discontinuities are not significant even
for observation points very close to the source and are thus deemed acceptable.

To conclude this section, it must be emphasized once more that contrary to the
considerations of section 3.2b, the above presented treatment of the Hankel function is based
on the nature of the near field of the examined structures and thus it is specific to this problem.
Its physical interpretation as well as its applicability to the leaky wave structures of interest
will be the subject of discussion in the following section.

3.2d. Physical interpretation & phase center choice

As described in the previous section, to resolve the branch singularity of the Hankel function
and subsequently enable the asymptotic approximation of the SDP integrals of interest, part
of the integrand is evaluated on the saddle point (3.21 a). This approximation is applicable to
the examined problem due to the spherical wave nature of the near field. As a result, it is very
much dependent on the choice of reference system such that the near field spherical wave
formation can be assumed, similar to what was discussed in [20].

The performance of the introduced approximation will be evaluated by considering the
following example for the test case SDP integral of (3.8 b). In particular, the results of the
numerical integration will be compared using three different reference system positions (A.)
with respect to the ground plane. In all cases, the wideband structure is examined at the central
frequency, with the observation grid defined as a sphere of 1.61, (or 3.2 mm) from the reference
system given through section 2.3, i.e., A.,=0.422,. The three different reference system cases
are illustrated through Figure 3-11 (a)-(c), and correspond to A.=0.424y, A.=0.842, and A,=0.

Rseference system at phase centre of LW structure Reference system further below

1 | / Ercar = 3.8
0F AL =084, 47
-1 -1
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
2 (mm) « (mm)
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Reference system in the ground plane

-3 -2 -1 0 1 2 3
 (mm)
(c)
Figure 3-11. Different setups where the reference system is chosen at (a) A.=0.42 2y, (b) A.=0.84 2y below the
ground plane and (c) directly on the ground plane. The observation grid is the same for all three cases,
corresponding to a sphere of 1.61y radius from the reference system of (a).

The order of the Hankel function of the second kind chosen for the examined SDP integral
is that of 0y, order, with the two compared integrals (i.e., initial and approximated) re-written
below for clarity. For the purpose of visualizing the impact of the introduced approximation at
the shadow boundary angles, the residue contribution resulting from the capturing of the TFE;
leaky wave pole during the deformation to the path of steepest descent will also be included.

Ispp(8") = [, Ve (kp, A,)HE (kypp) €70 ke ~ToPe~INa e, (3.22 a)
o [2ka j= e
IPPTo% (") = n—r‘fe’4 Jopp Vi (kp, 4,) e TRoP e~k dle (3.22 )
218" = —2mju (6’ — BST:l)k;]ia,Héz)(k;i},Vp)Res (vTE(kp, Z,Az))k _TEL (3.22 ¢c)
P~ "p, LW

Considering the three cases visualized through Figure 3-11, the results of the numerical
evaluation of the examined integrals are depicted through Figure 3-12 to 3-14. It should be
noted that the illustrated angles on the horizontal axes of the following plots (6,_,) correspond
to the observation angles from the respective reference system positions of each setup.
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Figure 8-12. Numerical comparison of the integrals of (3.22) using the reference system of Figure 3-11 (a). Where
(a) refers to the comparison of only the SDP integrals while (b) includes the residue.
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Figure 8-13. Numerical comparison of the integrals of (3.22) using the reference system of Figure 3-11 (b). Where
(a) refers to the comparison of only the SDP integrals while (b) includes the residue.
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Figure 3-14. Numerical comparison of the integrals of (3.22) using the reference system of Figure 3-11 (c). Where
(a) refers to the comparison of only the SDP integrals while (b) includes the residue.

As visualized through the comparisons presented above, the initial and approximated
integrals feature very good agreement when the reference system with respect to which the
approximation is performed is that from which the field resembles a spherical wave.

Within the shadow boundary cone (i.e., 8’ < 8s57g, ), this reference system choice refers to
the phase centre for the near field spherical wave formation, i.e., the case of A,=0.422,
illustrated through Figure 3-12. Instead, it seems that for the region outside this cone (8’ >
0557k, ), the approximation’s accuracy is improved when choosing the reference system for the
integral’s evaluation on the ground plane, i.e., Figure 3-14. This is a bit more evident through
comparing the first sidelobe of the above figures. This effect can be justified due to the
approximation being performed only on the SDP integrals. Above the shadow boundary angle,
the space wave significantly contributes to the SDP term meaning that at this region the
resulting field can be viewed as a spherical wave with its origin closer to the ground plane.

To further illustrate this concept regarding the different wave nature of the SDP integrals
above and below the shadow boundary angles, the integral of (3.22 a) will be evaluated
numerically over a 2D cut in the semi-infinite dielectric region of the wideband structure.
Subsequently, the resulting phase profile over the examined plane will be visualized through
Figure 3-15, together with the cross section of the shadow boundary cone referring to the TF;
leaky wave mode. As visualized through this illustration, while inside the shadow boundary
cone the phase front of the SDP integral resembles that of a spherical wave originating from
the displaced reference system below the ground plane (A.=0.421,), outside the shadow
boundary cone this is not the case. In particular, for observation points close to the source, the
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phase front of the SDP integral resembles that of a spherical wave originating from a point
slightly above the ground plane.

Phase front of Ispp over the YZ plane

150
25
100
2
50
L 1 0 [deg.]
]
1 -50
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-2 -1.5 -1 -0.5 0 05 1 1.5 2
z/ Ao
Figure 3-15. Phase front illustration for the SDP integral of (3.22 a).

Taking into account that the SDP integral is better represented as a spherical wave
originating from the ground plane above the shadow boundary angle, the option of modifying
the reference system choice with the observation angle (6") will be considered. In particular,
the reference system will be moved back to the ground plane after the shadow boundary, as
given through the following expression. It should be noted that this option will make the
representation of the near field non-uniform, since the field decomposition will change above
and below the shadow boundary angle.

4,,(6") = U(fsp — 647, (3.23)

Agz.m)

Where U(x) the Heaviside step function, 655 = min(6ssre,, 0s5rm,) and refers to the phase

centre choice given in [20] and expressed through equation (2.14).

While this phase centre choice will improve the accuracy of the introduced approximation
in regions where the SDP integral expressions resemble a spherical wave, this will not be the
case for a small angular region around the shadow boundary angle. This is caused by the SDP
integral being significantly influenced by the transition function of the respective leaky wave
mode, as will be discussed in section 3.3a. As such, in a region around the shadow boundary
angle the SDP integral cannot be purely described by a spherical wave.

It is also important to note that while the phase centre choice of (3.23) might perform
adequately well for SDP integrals featuring TE potentials, like that of (3.22), some
complications are indeed expected for integrals with TM potentials. This is attributed to the
fact that the former are influenced by only one significant mode, namely TFE;, and thus feature
a single shadow boundary. On the contrary, integrals featuring TM potentials are impacted by
both the TM; and TMj modes, featuring two shadow boundaries. As such, it is expected that
for such integrals the phase centre choice of (3.23) will create a somewhat problematic region
around the shadow boundary angle of the TMjy. In this region, the nature of the near field
would not be well represented by the approximation of section 3.2¢ and the phase centre choice
of (3.23). This difference regarding the shadow boundaries for the TE and TM integrals can be
visualized through Figure 3-16, which illustrates the shadow boundary cones of the significant
leaky wave modes in their respective dominant planes.
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Figure 3-16. Shadow boundames for y-oriented elementary source in the wideband structure, (a) H and (b) E-

plane.

To further visualize this concept, the above presented example will be repeated where this
time the wave amplitudes of the integrals given in (3.22) are swapped to those of the TM
variant, as expressed below. The resulting comparisons for the three different reference systems
positions presented of Figure 3-11 are visualized through Figure 3-17 to 3-19.
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Figure 3-17. Numerical comparison of the integrals of (3.24) using the reference system of Figure 3-11 (a). Where
(a) refers to the comparison of only the SDP integrals while (b) includes the residues.
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Figure 3-18. Numerical comparison of the integrals of (3.24) using the reference system of Figure 3-11 (b). Where
(a) refers to the comparison of only the SDP integrals while (b) includes the residues.
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Figure 8-19. Numerical comparison of the integrals of (3.24) using the reference system of Figure 3-11 (c). Where
(a) refers to the comparison of only the SDP integrals while (b) includes the residues.

As illustrated through the figures above, the improvement of moving the reference system
back to the ground plane cannot be clearly seen in the total integral due to the residue of the
TMy dominating the region above its shadow boundary (6’ > 6szry,). However, what can be
visualized through those figures is the region between the shadow boundaries of the TM; and
that of the TMjy, where neither of the explored phase centre choices results into an exact
recovery of the SDP integral.

Even though it would certainly be interesting to explore the possibility for an even more
elaborate phase centre choice, differing between integrals with TE and TM potentials and
including an additional region to account for the TMjy, for this study we will employ the
somewhat simplified phase centre choice of (3.23). Potential improvements on this aspect with
the concept of adjusting the phase centre choice in different angular regions such that the
introduced approximation provides a good representation of the field’s nature, are left as part
of future work.

Non-uniform phase centre impact on the near field

To visualize the performance of the non-uniform phase centre choice in terms of improving the
accuracy of the asymptotic approximation, the complete near field will be considered (3.1). For
this purpose, the approximated SDP integral expressions of (3.21 b) are evaluated numerically,
using the reference system displacements of (2.14) and (3.23) over the observation grid of
Figure 3-11. Subsequently, the co-polarized component extracted through the use of the Ludwig
3 definition is compared to that obtained when the approximations of section 38.2c¢ are not
employed. The resulting comparison is visualized through Figure 3-20 and Figure 3-21.
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Figure 3-20. Comparison of numerical integration with and without approximation, with the uniform phase centre
(2.14), (a) co pol., E and H planes, (b) co and cross pol., D plane. The observation grid is that of Figure 3-11.
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Figure 3-21. Comparison of numerical integration with and without approximation, with the non-uniform phase
centre (3.23), (a) co pol., E and H planes, (b) co and cross pol., D plane. The observation grid is that of Figure
3-11.

As can be noted from the figures above, moving the reference system to the ground plane
beyond the shadow boundary improves the approximation’s accuracy. This is more clearly
illustrated in the H-plane due to the residue contribution of the T'Mj, which is not impacted
by the phase centre choice, dominating the E-plane at larger angles.

Regarding the problematic region between the shadow boundaries of the TM; and TMy
modes described above, it is not visible in the figures above due to the observation distance. In
particular, considering the reference system change, this problematic region essentially
corresponds to the non-overlapping sections of the shadow boundary cones of the TM; mode
from the reference system below the ground plane and the shadow boundary cone of the T'My
from the reference system on the ground plane, as visualized through the shaded region of
Figure 3-22 (a). To illustrate how this region’s impact changes with the distance, the E-plane
for the above example will be evaluated at progressively larger radial distances as illustrated
through Figure 3-22 (b). Regarding the observation angle 6’ in the horizontal axis, it
corresponds to the displaced reference system below the ground plane.
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Figure 8-22. (a) E-plane of co polarized component at different radial distances and (b) illustration of problematic
region for TM integrals in terms of the non-uniform phase centre choice of (3.23).

To summarize the above discussion, the phase centre choice of (3.23) provides adequately
accurate representation of the field in all regions apart from that indicated through Figure 3-22
(a). The performance of this simplified phase centre choice will be evaluated throughout the
remaining of this document with further improvements in this aspect maintained as part of
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future work. It should be noted once more that modifying the reference system choice over the
observation grid makes the resulting representation non uniform. This essentially negates its
potential use to study the resulting field components, since the field decomposition changes
above and below the shadow boundary. Consequently, both phase centre options will be
employed in subsequent sections with the uniform one (2.14) used to evaluate the near field
decomposition and study the field components, while the non-uniform (3.23) utilized to
accurately recover the field and evaluate the performance of the asymptotic approach.

To conclude, throughout this section an extensive overview of the theoretical aspects and
mathematical manipulations involved in the asymptotic approximation of the SDP integrals
has been presented. In the remaining of this chapter, the main implications of applying this
process for the asymptotic evaluation of the near field will be described.

3.3. Near field asymptotic evaluation

It is without question that the asympotic approach described through section 3.2 is more
elaborate in terms of the mathematical steps required to formulate the near field integral
expressions into canonical forms, compared to the numerical methods showcased in Chapter 2.
Even so, the asymptotic approximation of the near field provides several benefits both in terms
of computational efficiency as well as understanding of the wave phenomena which drive the
radiation process. In the remaining sections of this chapter, these aspects of the asymptotic
approach will be showcased and discussed. Furthermore, its applicability region arising from
the nature of the near field implied by the approximation of section 3.2¢, will also be assessed.

As a first step towards this goal, the conclusions of sections 3.2b and 3.2¢ will be introduced
into one vectorial field component to showcase the formulation of the asymptotically
approximated field. The chosen component is E,, since with the introduced approximations
(3.21 a) it is only influenced by the TFE potential. As such, a single pole-pair regularization
treatment is required (#+k,3,), making the overall analysis shorter and more compact. It should
be noted that the same steps can be implemented for the remaining field components (E, and
E,), with the difference of regularizing the wave amplitudes (v and ipy) for both TM; and
TMy pole pairs.

Using the decomposition of the steepest descent path method (3.1) as the basis of the
asymptotic approach, the steps for the evaluation of one of the SDP integrals of (3.21 b) will
be briefly summarized below.

Step 1: The SDP integral is transformed into the s-plane, using (2.8) and (3.4), defining in
the process the integrand function G(s) and the parameter Q.

. Sin(@) [2kg m .
Egspp(T) = Fej“ IU;E(kprAz)e Jkaz e IkoP dk, =

SDP

+00
sin 2k3 m .,
= Egspp(F') = 4fr(p) n—;e’fte_”‘dr fG(s)e‘ﬂszds

—oo

(3.26 a)
Where G(s) = vz (kqsin(8), 4,) cos(B) (/) and 2= kyr.
Step 2: The resulting integral is decomposed into the regularized part (Tygu,,(s)) and the part

containing all the polar singularities of G(s) (G;f;e(s)), employing the additive pole treatment
discussed in section 3.2b.

+0o0 + o0
L Sin(e) 2k mo ., 052 TE —_0s?
E(p,SDP(TI) = 7 Fe]‘te Jkar f TVdWTE(S)e {1s ds + f Gpolz(s)e f2s ds

—o0

(3.26 b)
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Step 3: By expanding Tyaw,,(s) around the saddle point and expressing Gpole(s) as a sum of

simple poles (and, if necessary, zeros), the integral can be evaluated as a finite sum of terms
using (3.15) and (3.17 b).

(2n) r 2n+1 -
Egspp(F') = Sm(‘l’) de ]4 o IZ <TVdWTE(0) [ >+Z<+2]aTElx/— (s ) (+JST51\/5)>

| 2n+1
(2n!) .Q 2 ) i=1

(3.26 c)

Where a;;* = lim (s —5,:1)Gyon(s) and the + sign allocation is performed for Im(s,;*) 2 0.

pl

Taking into account the existence of an inherent limitation for the approximations of section
3.2¢ in terms of the radial distance (') from the phase centre where they can be employed, the
expansion of the regularized part is limited to three terms. To put it simply, for radial distances
where the value of 2 necessitates the use of more terms in the expansion in order to maintain
acceptable accuracy, the approximations of section 3.2c¢ start to fail.

Step 4: Finally, the asymptotically approximated SDP integral is combined with the residue
contributions of the component in question, resulting in the total field.

Ep(7") = Epspp () + 23, U(8" — 65 )RE (E, (7)), (3.26 d)
Where i=1, 2, & corresponds to the TFE;, TM; and TMy leaky wave modes.

The above-described process can be employed in a similar manner either for the uniform
case of the phase centre choice (2.14) or the non-uniform one (3.23). Having presented an
indicative example for the formulation of the asymptotically evaluated field components, the
first part of the following discussion regarding the asymptotic field evaluation will refer to the
study of the individual terms of (3.26). This process will begin by taking a closer look to the
transition functions which result from the asymptotic evaluation of the function containing the
polar singularities of G(s), for the above example G;f;e(s). Since this essentially refers to the
study of field components, the uniform representation in terms of A, will be employed, i.e.,

that which uses a single reference system (2.14).
3.3a. Transition function

As briefly discussed in section 3.2b, expressions which result from the integral of polar
singularities like those of (3.10), uniformly describe the impact of poles approaching the saddle
point and are thus referred to as transition functions. These functions are concentrated around
the observation point for which the distance between the polar singularities in question and the
saddle point is minimized, while also featuring a discontinuity at the observation angle for
which the pole crosses the SDP. Furthermore, in some cases, a transition region limited by the
value of |s,V| can be identified, within which the field changes its wave structure in order to
account for the discontinuity introduced by the pole crossing the SDP. This behaviour becomes
easier to observe for strongly excited leaky wave modes, given that their respective transition
regions are more concentrated, and their residue contributions dominate the field after the
shadow boundary. One such example clearly illustrating the transition region within which the
space-wave modifies its wave structure from spherical to conical (residue), can be found in [28].

Nature of transition function

In our case, the pole contributions are isolated through a double pole regularization (3.13), and
subsequently expressed into a sum of four simple poles which are evaluated as given in (3.17
b). Some aspects of this approach which have not been treated this far refer to the shape of the
transition functions as well as the impact of each individual pole included in the representation
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of Gpore(s). To showcase both of the above, the co-polarized component of the field resulting
from the integral of the polar contributions of the TFE; and TMyleaky wave modes are presented
through Figure 3-23, in their respective dominant planes. The following results correspond to
the central frequency and a spherical observation grid of 3mm (1.51,) radius from the phase
centre of the wideband structure. In terms of the phase centre choice, the uniform asymptotic
approximation is employed (2.14).
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Figure 3-23. Complete pole contribution and its decomposition to foul simple poles for a spherical observation grid
of 8mm radius from the phase centre. (a) TE; leaky wave mode in the H-plane and (b) TMy leaky wave mode in
the E-plane.

As visualized through the figures above, the poles which lie outside the visible region feature
a small contribution for large observation angles but otherwise their impact is negligible, as
anticipated during the discussion in the final part of section 3.2b. Furthermore, while the
contribution of the two main poles (+B,, and -, ) is equal along broadside (equidistant from
the saddle point for 8’ = 0°), as the observation angle increases, their relative impact changes
substantially.

Another deduction that can be made through the above comparison refers to the different
nature of the two examined leaky wave modes. Regarding the T'Mp, its main pole pair (+B.y
and —B,,) is separated sufficiently in the spectrum such that the complete integral of the polar
contribution peaks around its shadow boundary angle (6557y,). This is attributed to the large
pointing angle (6,,,) of the T'My. On the other hand, the same cannot be said for the TE; leaky
wave mode where the main pole pair (+f,, and —B,,) coalesces around the saddle point,
forming a broader shape as shown through Figure 3-23 (). It is noted that the T'M; leaky wave
mode behaves very similar to the TFE;in complementary angular regions, as depicted through
Figure 3-10. Consequently, through their transition functions one can visualize how the TFE;
and T'M; leaky wave mode pair contributes towards enhancing the radiation along broadside,
contrary to the T'My which launches power towards larger angles.

Transition function shape

Having described the above, the shape of the transition function can also be derived, in an
identical fashion to that described in [28]| and [39]. More specifically, considering one single pole
which crosses the SDP (i.e., k)55, kyyw or k%) and as such its transition function peaks around
its shadow boundary angle, the shape of its transition region results to be elliptical, with the
parameters given in Table 3-1. In those expressions, &' refers to an arbitrarily small number

used to define the elliptical contour.
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IZII?;;: (a;(,l)s Major axis length (a) Minor axis length (b) Centre (p,, z,)
9 = (e")? sin(Re(Byw))
6" = Re(Byy) o m(e")? cosh(lm(ﬁLW)) m(e)? ’Coshz(lm(ﬁLW)) -1 4kd(COSh2(1m(BLW)) -1
4key(cosh2(Im(By)) — 1) b= 4kq(cosh2(Im(Bm)) — 1) . m(e")2cos (Re(Bry))
® 4ky(cosh2(Im(By)) — 1)

Table 3-1. Parameters of the transition region elliptical shape derived as defined in [39].

An indicative illustration of the two-dimensional cross-section of the elliptical transition
region is visualized through Figure 3-24 (a). As depicted, the major axis direction is along
6’ = Re(B.y), the lower focus is located at the origin and the shadow boundary is tilted with
respect to the ellipse orientation, intersecting it at the level of its minimum waist. To
supplement this figure, the co-polarized components of the complete asymptotic evaluation of
Gpote(s) (including all four poles) for the TE; and TMy leaky wave modes will be presented into
two 2D plots in their respective dominant planes through Figure 3-24 () and (c).
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Figure 3-24. (a) Illustration of elliptical cross-section of transition function, (b) 2D plot of co polarized component
of all four poles for TE; leaky wave mode in the H-plane and (c) 2D plot of co polarized component of all four
poles for TMy leaky wave mode in the E-plane.

As already noted above, contrary to the case of the T My where the contributions of the
kow and —k, ., poles are distinguishable, for the T'E;leaky wave mode this pole pair coalesces
around broadside forming a broader structure as visualized through Figure 3-24 (b) and (c¢).
While the above discussion for the shape referred to the dominant planes of the respective
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modes, it should be noted that the transition functions are also shaped in ¢ through either a
sine or cosine function, as given by (3.21 b) and shown through Figure 3-10.

To conclude this discussion on the transition functions, the impact of using the non-uniform
phase center choice of (3.23) will be showcased. This will be performed by comparing the
complete pole contributions of Figure 3-23, with those obtained in the same setup by modifying
the reference system choice to that of (3.23). The resulting comparison for the TE; and TM;
leaky wave mode is presented through Figure 3-25.
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Figure 3-25. Complete pole contribution comparison between uniform (2.14) and non-uniform (8.23) phase centre
choice (a) TE; leaky wave mode for the H-plane and (b) TMy leaky wave mode for the E-plane.

While for the case of the TE;/TM; leaky wave modes the change is not significant, for the
TMy this is not the case. More specifically, in the non-uniform approach, its transition function
does not peak around its shadow boundary angle (6szry,). This is attributed to the nature of
the shadow boundary; each time being defined from the utilized reference system. As such, by
altering the reference system prior to the shadow boundary of the TMy (8s5rm, < Oss7m,), ODE
might end up in a region after this shadow boundary in the new reference system. To facilitate
the understanding of this concept, the pole contribution of the TM; leaky wave mode is
evaluated from two reference systems, one on the ground plane and another displaced as given
in (2.14), with the resulting plots illustrated through Figure 3-26. To briefly explain the
depicted results, until the shadow boundary angle of TM;, the reference system from (2.14) is
utilized (yellow color in Figure 3-26), while after the shadow boundary angle, the reference
system from the ground plane is used (purple color in Figure 3-26). In this manner, for the
examined observation grid the shadow boundary angle of the T'My is not crossed in any region.
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Figure 3-26. Co polarized field component resulting from the complete integral of G;ﬂg(s), evaluated from a

displaced reference system (yellow) until 013" and from the ground plane (purple) after this angle. The angle
0'refers to that between the observation vector (*') and the z-axis from the displaced reference system (Op).
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Whether this behavior occurs for the TMp depend on the overlapping of the shadow
boundary cones illustrated through Figure 3-22 (a) for the examined observation grid.

3.3b. Regularized component

Having showcased the asymptotic approximation of the SDP integrals through a finite sum of
terms in (3.26), as well as explored the nature of the transition function resulting from the
integral of the polar singularities in the previous section, now the regularized component will
be examined. To facilitate this process, the expansion of T,ay,,.(s) is explored further,
substituting the actual expression for the parameter 2 (k,r’) and separating the resulting terms
by their spreading factors ( ,)n)

2 (2n) 2n+1
L o Sin(e) [2kG mo Tyaw,; (0T . . .
Eppeq(7') = “ar S gl ikar Z 2:: [ Zn+1 ] = Eppeg, (') + Eg peg, (') + Eg pegy (7') + -
n=0 (2nt) .Q )

(3.27)

(0) @)
S _ J2Jka sin(p) Tyawrg©®  _p S _ /2] sin(p) Tyawrg©®) _op
Where Ejgeq, () = pon e B peg,(T) = — oy € Jam and

4)
V2J sin(p) TVdWTE © e~Jkar’

(pReg3( ) 128mkg (TI)3

While deriving the phase dependence of the higher order derivatives of the regularized part
is not straightforward, their amplitude dependence with the radial distance can be explicitly
extracted. In particular, as can be noticed from the above presented expressions, the first term
(19,(0)) features an 1/r" dependence, the second (T,%),(0)) an 1/(+")?> dependence and so on.
Considering this amplitude dependence with the radial distance ('), it can be anticipated that
the level of the higher order terms falls off as the observation grid moves away from the source,
eventually leading to the description of the regularized part by only the first term of the
expansion.

To also showcase the nature of the above presented terms with respect to the angular
regions they influence, their contributions are isolated and visualized through Figure 3-27. The
co polarized component is examined in the main planes, referring to a spherical observation
gird with 21, radius from the phase centre of the wideband structure. As a first step, this

comparison is performed for the uniform phase centre choice (2.14), i.e., A.=0.424,.
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Figure 3-27. Regularized term decomposition for the wideband structure and r'=22,, using the uniform phase
centre choice (2.14), (a) E-plane and (b) H-plane.

As visualized through the above presented figures, the first term of the regularized
expansion (Egeg,), dominates the contribution of the regularized part along broadside with the
higher order terms (Egeys, Eregs) mostly contributing at larger angular regions. Similar



Asymptotic techniques 67

deductions can also be made for the resonant structure, as shown through Figure 3-28 for a
spherical observation grid with radius r' = 94, from its phase centre position (A.=3.24,).
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Figure 3-28. Regularized term decomposition for the wideband structure and r' = 91,, using the uniform phase
centre choice (2.14), (a) E-plane and (b) H-plane.

One important note refers to the contribution of the regularized component after the change
of reference system (8.23). In particular, through the change of decomposition introduced by
moving the reference system to the ground plane, the contribution of the regularized component
is substantially diminished. To visualize this concept, the setup examined through Figure 3-27
is evaluated once more, employing the non-uniform phase center choice of (3.23). As evident
through Figure 3-29, above the shadow boundary the contribution of all regularized terms is
substantially reduced, meaning that essentially only the first term is important.
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Figure 3-29. Regularized term decomposition for the wideband structure and r' = 22y, using the non-uniform phase
centre choice (3.23), (a) E-plane and (b) H-plane.

To summarize this comparison, while for the uniform phase centre choice the higher order
terms of the regularized part can be used to better recover the larger angular regions of the
near field; for the non-uniform approach the contribution of the higher order terms is mostly
limited along broadside.

Having described the nature of the transition functions as well as that of the regularized
component in the previous two sections, in the remaining of this chapter, the fundamental
aspects resulting from the decomposition of the near field into a finite sum of terms will be
showcased.
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3.3c. Near field as a finite sum of terms

Employing the steps described in the introductory part of this section results into the
asymptotic approximation of the near field through a small number of terms, as indicatively
expressed in (3.20). These terms include the residue contributions, the transition functions
resulting from the integral of the polar contributions and the terms of the expansion of the
regularized part. The above terms are mostly analytical, with the only exception referring to
the higher order derivatives of T..'™ (s), which are acquired in a numerical manner as discussed
in Appendiz H. Substituting the integral expressions with such a small number of mostly
analytical terms, has a significant effect in the computational efficiency of the near field
evaluation, since it mitigates the need for any spectral integration.

As an indicative example, for a spherical observation grid at r' = 2A, from the phase centre
of the wideband structure featuring 361 ¢ and 140 6 points, the asymptotic approximation of
the near field requires roughly 1.5 sec, with very small deviation depending on the number of
terms included in the expansion of the regularized part. For the same problem, the SDP
integration approach described in Chapter 2, requires approximately I minute, being roughly
forty times slower. This timing comparison is summarized through Table 3-1II.

Evaluation . Nume.)mcal Numerical | Asymptotic | Asymptotic
method (integration path (SDP) (1 term) (3 terms)
of Figure 2-4 b)
reﬁﬁﬁid ‘ 9 min ‘ 1 min ‘ 1.4 sec ‘ 1.5 sec

Table 3-II. Timing comparison between different near field evaluation methods.

One important comment regarding the time required for the derivation of the near field
using the asymptotic approach, refers to it not being influenced by neither the spectral
properties of the source nor directly by the distance from the phase centre (r'). In particular,
the latter has an indirect impact since it determines the number of terms required in the
expansion of the regularized part to maintain acceptable accuracy, but this effect is very small.
The same cannot be said for the numerical methods of Chapter 2, for which both the spectrum
of any potential source as well as the radial distance, significantly impact the convergence of
the spectral integrals involved in the near field evaluation.

As a final remark regarding the near field decomposition into a finite sum of terms, it will
be indicatively showcased for both the uniform (2.14) and non-uniform (3.23) phase centre
choices. This is illustrated for an observation sphere of 21, radius from the phase center of the
wideband structure, through Figure 3-30 and Figure 3-31 respectively. Both asymptotic
approximations employ three terms in the expansion of the regularized part.
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Figure 8-30. Field decomposition for asymptotic approximation with the uniform phase centre choice (a) E and
(b) H-plane (150 GHz). The observation grid is a sphere of v' = 22, from the phase centre (wideband structure).
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Co polarized component decomposition, E-plane Co polarized component decomposit_ion7 H-plane
115 ] 115}
110 110
—~ 105} —~ 105
3 g \
— 100} =100 \
S S
95 95
——Total field
90 Regularized i 901
Sum of transition functions
ST ) pe— Residues 1 85 /\
0 10 20 30 40 50 60 0 10 20 30 40 50 60
(%) (%)
(a) (b)

Figure 3-31. Field decomposition for asymptotic approximation with the non-uniform phase centre choice (a) E
and (b) H-plane (150 GHz). The observation grid is a sphere of v’ = 21, from the phase centre (wideband
structure).

3.3d. Applicability region

The trade-off involved for this improvement of the computational efficiency through the
asymptotic approximation of the near field, refers to the applicability region of the
approximations introduced through section 3.2c. To visualize this impact in accuracy and how
it changes with the radial distance, the co and cross polarized components of the near field
(3.25) will be evaluated over spherical observation grids of different radii from the phase centre
for both the wideband and resonant structures. For this comparison, the non-uniform
asymptotic approach will be employed (3.23). Even so, it should be noted that for the region
along broadside for which the main accuracy concerns will be expressed, both the uniform and
non-uniform approaches are actually equivalent. Having said the above, as a first step for the
following discussion the numerical and asymptotically approximated near field will be compared
for the wideband structure and two observation grids of r' = 21, and r’ = 144, from the phase
centre through Figure 3-32 and Figure 3-33 respectively. In both cases, the asymptotic
approximations is performed with three terms in the expansion of the regularized part.
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Figure 3-32. Field comparison for numerical integration and asymptotic approximation (3 term expansion of the
regularized part), (a) co pol. at E and H planes, (b) co and cross pol. at D plane (150 GHz). The observation grid
is a sphere with r' = 21, (wideband structure).
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Figure 3-33. Field comparison for numerical integration and asymptotic approzimation (3 term expansion of the
regularized part), (a) co pol. at E and H planes, (b) co and cross pol. at D plane (150 GHz). The observation grid
is a sphere with ' = 1.4, (wideband structure).

As visualized through the figures above, the approximations of section 3.2c result into slight
discontinuities at all the shadow boundaries in the asymptotically approximated near field, due
to the different treatment of the SDP integrals and the residue contributions. However, given
the small level of those discontinuities, what in fact constitutes a limit for the applicability
region of the asymptotic approach is the somewhat reduced accuracy along broadside with the
reduction of the radial distance. This effect can be justified through the physical interpretation
of the introduced approximations and the nature of the near field. In particular, as discussed
through section 3.2d the approximations of (3.21 a) essentially implies the near field spherical
wave formation for 8’ < 6s5. Consequently, the applicability region of this asymptotic approach
is inherently limited to radial distances where the introduced definition of the phase centre
enables this spherical wave formation around broadside.

In turn, the radial distance from the phase centre where this nature of the near field can
be assumed for a leaky wave structure depends on its directivity, as hinted through the
Poynting vector angles examined in the final section of Chapter 2 (Figure 2-11 and Figure 2-12
(e), (f)). More specifically, given the relatively large attenuation constants (a, ) for the
significant leaky wave modes in the wideband structure, the near field spherical wave formation
can be considered even at very small distances from the phase centre, as visualized through
Figure 3-32 and 3-33. Contrary to the latter, due to the small attenuation constants of the
significant modes in the resonant structure, the larger aperture field distribution formed by the
leaky waves implies that the spherical wave formation occurs at larger distances from the phase
centre as hinted through the Poynting vector angle depicted in Figure 2-12 (e) and (f). In turn,
this leads to the failure of the presented asymptotic approach for distances very close to the
source. To visualize this concept, the numerical and asymptotically evaluated field for the
resonant structure will be compared through Figure 3-34 and Figure 3-35, referring to
observation grids of r' =84, and r’' =51, respectively. Similar to the previous case of the
wideband structure, three terms are included in the expansion of the regularized part.
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Figure 3-34. Field comparison for numerical integration and asymptotic approximation (3 term expansion of the
regularized part), (a) co pol. at E and H planes, (b) co and cross pol. at D plane (150 GHz). The observation grid
is a sphere with r' = 84, (resonant structure).
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Figure 3-35. Field comparison for numerical integration and asymptotic approzimation (3 term expansion of the
regularized part), (a) co pol. at E and H planes, (b) co and cross pol. at D plane (150 GHz). The observation grid
is a sphere with r' = 51y (resonant structure).

Following the above discussion one can deduce that accurately reconstructing the near field
of the leaky wave structure through the introduced asymptotic approach, requires evaluating
it at radial distances where the spherical wave formation around broadside can be assumed.
Taking this into account, in the remaining part of this section a rough estimate of the region
which satisfies this nature of the near field will be identified for both the examined structures.
This is performed through deriving the percentage magnitude and absolute phase errors
between the co polarized component obtained via the numerical and asymptotic approaches,
as given below.

|EZ™ (0", )| = |Eco” (8", )
|Ec™ (6", 9)I

ETTOT,mag (01’ ¢) =
(3. 28)
Error,phase(9’: ®) [deg] = |(4 EZ™(6', 9) — 4 EZ™(0,0)) — (4 Eg;y(gl' ®)— AEg;y (0'0))|
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Subsequently, the maximum errors are computed for both the wideband and resonant
structures, using different number of terms in the expansion of the regularized part. The
resulting comparison is illustrated through Figure 3-36, in terms of the electrical distance of
the observation spheres from the respective phase centre positions. Given that the failure of
the approximation (3.21 a) occurs along broadside, as seen through Figure 3-33 and Figure
3-35, this process is performed for 6 < min(8sprg,, Osp,rm,)-
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Figure 3-36. Mazimum percentage magnitude and absolute phase errors between numerically and asymptotically
evaluated co polarized component (E.,). The examined errors refer to the solid angle defined by the smallest
shadow boundary angle (8sg), for (a) the wideband and (b) the resonant structure.

Through comparing the above presented maximum errors, the applicability limit of the
asymptotic approach can be visualized. In particular, it can be noticed that increasing the
number of terms above a certain point would not lead to any improvement in terms of
recovering the field around broadside at small radial distances. This essentially constitutes the
inherent limitation of the asymptotic approach, arising from the assumed nature of the near
field. Taking this into account, for the remaining of this document three terms will be used in
the expansion of the regularized part to obtain the asymptotically approximated near field.

Defining in a somehow arbitrary manner a maximum acceptable error of 10% for the
magnitude and 11.25° absolute error for the phase, the applicability region of the asymptotic
approach can be identified as less than 7 and roughly 5.5 4, for the wideband and resonant
structures respectively.

Before proceeding further, it should be noted that the fundamental difference of leaky wave
structures with different dielectric contrasts between the cavity and semi-infinite region, refers
to the dispersion of the excited leaky wave modes. In turn, this determines the operational
bandwidth of the respective structure. Therefore, examining the applicability region of the
asymptotic approach only for the central frequency is somewhat lacking in terms of evaluating
its actual utility. For this reason, the same maximum errors for the co polarized component
will be derived for the lower and higher frequencies of the structures’ bandwidths, assuming
the central frequency at 150 GHz and a 40% and 15% operational bandwidth for the wideband
and resonant structures respectively. The resulting maximum magnitude and phase errors for
both structures are presented through Figure 3-37. The errors are computed in spheres of
progressively larger radii, centred at the phase centre position of the leaky wave structure for
the central frequency. The normalizing free space wavelength on the horizontal axis refers to
that of the central frequency (1, = 25%° ¢47).
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As visualized through the figures above, the change of the operational frequency has a
notable impact in the applicability region of the asymptotic approach. In fact, this impact
seems to be more significant at higher frequencies, given the larger aperture field distribution
formed by the leaky waves (smaller ;) and thus the more directive nature of the structure.
This in turn forces the previously discussed assumption for the nature of the near field further
away from the source. Consequently, to extract a somewhat more conservative estimate for the
applicability region of the asymptotic approach, the same maximum acceptable thresholds are
introduced for the percentage magnitude and absolute phase errors. The resulting limits for the
applicability region are roughly 1.5 1, and 8 1, for the wideband and resonant structures
respectively, where 4, refers to the free space wavelength for the central frequency (150 GHz).

Apart from the larger directivity of the structure as the frequency increases, another
noteworthy aspect regarding the applicability region refers to the accuracy of the phase centre
definition presented through [20]. As a matter of fact, its derivation employs an approximation
for the phase of the co polarized component, given in [34], which assumes a similar nature for
the TFE; and TM; leaky wave modes, as well as that for each mode the attenuation constant is
almost equal to the propagation constant (a,, = B.y) [40], something that fails away from
resonance (i.e., when h # Acay/2).

To visualize this performance degradation of the asymptotic approximation with frequency,
the numerically and asymptotically evaluated near field will be compared for the wideband
structure and an observation grid of »’ = 3.2mm from the phase center at 150 GHz (A.=0.84mm),
through Figure 3-38.
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Main plane comparison (f=180 GHz)
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Figure 3-38. Field comparison for numerically and asymptotically evaluated near field (8 term expansion of
regularized part), (a) 120 GHz, (b) 150 GHz and (c) 180 GHz. The observation grid is a sphere with v’ = 3.2mm

from the phase centre at the central frequency (A.=0.84mm) and it refers to the wideband structure.

Evidently, the more significant degradation of the asymptotic approximation’s accuracy
appears at the higher frequencies, due to the larger field distribution formed by the leaky waves
inside the cavity and thus the higher directivity of the structure.

To conclude the discussion presented in this chapter, the asymptotic approximation of the
SDP integral expressions allows for a much faster derivation of the near field for a leaky wave
structure around resonance. Moreover, provided that the phase centre choice enables the
assumption for a spherical wave formed in a region around broadside, the asymptotic
approximation maintains good accuracy. At those regions, the only hint of any approximation
appears through the discontinuities at the shadow boundaries arising from the different
treatment of the residues and the SDP integrals. In addition, these discontinuities are a bit
more evident in planes dominated by T'M modes, due to neglecting the impact of the TMy in
the phase centre choice of section 3.2d. It should be noted that while the above presented
approach could be applied for the study of near field lenses, like that of the Fly’s Eye antenna
concept, a more generic asymptotic near field study would require a complete treatment of the
Hankel function, instead of using the approximation of (3.21 a).
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CHAPTER 4. NEAR FIELD LENSES

In the previous chapter, the approximations of the SDP integrals which enabled the asymptotic
evaluation of the near field for elementary sources were introduced and the near field
decomposition was discussed. To build upon this concept, the following chapter will briefly
explore the use of the asymptotically approximated near field to illuminate small lenses. For
this purpose, the additional considerations required to enable the asymptotic approximation of
the near field when an actual current distribution is considered in the ground plane will first
be presented. Following this, some indicative cases of small lenses will be examined. This study
will showcase one potential benefit of putting a lens in the near field and also provide an
indicative example on how the decomposition of the incident field into wave components can
contribute to the analysis and design of small lenses.

4.1. Source inclusion

4.1a. Integral formulation

Considering an equivalent magnetic current distribution in the ground plane of a leaky wave
supporting stratification similar to those of Figure 2-8, the near field can be evaluated through
the following double spectral integral. This integral corresponds to the inverse Fourier
transform of the convolution between the Spectral Green’s function and the current distribution
in the ground plane. Assuming an equivalent magnetic current distribution in the ground plane,
the pertinent Green’s function is the one relating electric fields and magnetic currents (i.e.,
5em(kp,a,z, ZS)>.

E@® = [ [ 6™ (ky a,2,4,) - Culk,, a)e TkoP o@Dk dadk,, (4.1)

T 4n?

Where Cp,(k,, @) refers to the spectrum of the equivalent current distribution.

In order to resort to either the computationally efficient numerical methods for the near
field evaluation (Chapter 2) or the asymptotic approach (Chapter 3), the a integral must first
be closed, leading to the single complex integral expression in k, similar to equation (2.2 b).
When an elementary source was considered in Chapter 2, this step was performed through the
use of the identities given in (2.2 a). However, for the case of an actual current distribution in
the ground plane, this approach is not directly applicable.

To enable the closing of the integral in a in the same manner and end up with the single
complex integral in k,, the spectrum of the current distribution (C(k, a)) must first be
extracted from the a integral. This can be performed through the stationary phase point
approximation. In particular, considering the spectrum of the source slow varying in «a
compared to the exponential of the integrand (e /*orcos@=®) ¢ (k, a) can be evaluated on the
saddle point agp = ¢ and subsequently extracted from the integral as shown below.

1

= + o0 2 = ~ —j -
E@®) =3, Cn(kpr 0) fonGem(kp,a,z,Az)-ye Jkpp cos@=0) i dadk,, (4.2)

assuming Cp(ky, @) = 9Cn(k, @)

Following this step, the remaining a integral can be evaluate as was done for an elementary
source in section 2.2a and subsequently the near field can be treated either numerically or
asymptotically. One alternative to the above would be to represent a more complex current
distribution through a number of elementary sources with different weights. This would enable
directly employing the asymptotic approach of Chapter 3 but would require superimposing a
potentially large number of sources, depending on the modelled current distribution. As such,
this approach would end up being somewhat more time consuming and thus it will not be
considered further at this stage.



Near field lenses 76

4.1b. Slow varying spectrum on o

When the observation grid is far away from the source, the assumption for a slow varying
spectrum of the current distribution on a can be employed without much consideration. This
is attributed to the large radial distance of the observation points (r’), which make the
exponential term (e=/kePcos(@=#)) fagt varying on the integration path compared to the spectrum
of the source (Cp(k, a)). Having said the above, in the near field where the radial distance of
the observation points is not that large, additional considerations must be made prior to this
assumption in order to ensure the slow varying nature of the source’s spectrum.

Considering an overview of the problem at hand, leaky lenses are usually illuminated by a
pair of apertures in the ground plane which are spaced apart such that they suppress the T'My
in its dominant plane [17]. More specifically, the suppression of the TMy is performed through
forcing a null around its polar singularity (k;"f;’,,) via the array factor of the employed apertures.
While these can feature an iris shape to enhance the suppression in the diagonal planes, for the
time being we will consider elementary sources for simplicity.

If the assumption for a slow varying spectrum is performed when the array factor is included
in the spectral representation of the source (Cn(k, a)), its accuracy will degrade, especially
around the angular region where the array factor contributes its null. Taking the above into
account, such structures comprised of a pair of elements can be more conveniently treated
through superposition, as indicatively illustrated in Figure 4-1.

( N\ (

(1,01, 91) (12,02, 92)

Zi El = Exl/A\H— Ey1?+ E212

Elementary magnetic
current source

(¢)

Figure 4-1. Combination of the fields from individual sources (a) and (b), for the derivation of the total field of a
double elementary magnetic current source (c).
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To showcase this improvement in accuracy resulting from the use of superposition, one
indicative example is considered for the above presented double elementary structure. In
particular, two y-oriented elementary sources are assumed in the ground plane of the wideband
structure (e, cq, = 3.8 and &,y = 12), spaced along x by d =500 um ~ n/Re(kZﬁj’V , such that they
suppress the TMp in the E-plane. In turn, the near field extracted through the superposition of
the two elementary sources (Cpee(k, @)=1) is compared to that obtained by using their
combined spectrum (Cpaoupie(kp, a) = 2 cos(k, cos(a) d/2)) and assuming it to be slow varying on
a, as given through (4.2). The near field is evaluated numerically for both approaches at the
central frequency (150 GHz) and in turn compared over a sphere close to the source (' =
2.5mm = 1.2525°°6H7). To illustrate which approach is more accurate, the near field extracted

through of a full-wave simulation (CST) is also included in the comparison of Figure 4-2.

5 ‘ E-plane ‘ 5 ‘ D-plane
Or=——_
Superposition of
-5 " elementary sources
2 0 )
- Slow varrying -
S .45l array factor .
S S
20"+ 1 Full-wave _
~ 7 simulation (CST)
-25 ¢
% 10 20 30 40 50 % 10 20 30 40 50
0'(°) 5 H-plane 0'(°)
(a) (b)

|E.| (dB)

30 40 50

10 20

0'(°)
(c)
Figure 4-2. Near field comparison (r' = 2.5mm) for two y-oriented elementary magnetic current sources integrated
in the ground plane of the wideband structure of Figure 2-8. The two elementary sources are spaced in x by
500um, while the observation grid is drawn with respect to the phase centre of the structure (A,=0.422,). The
resulting comparison is performed in the main planes with (a) E-plane, (b) D-plane and (c) H-plane.

As evident from the figures above, deriving the field through the superposition of the two
sources improves the accuracy of the evaluated near field around angular regions where the
array factor features its null. Having said that, it is without saying that the difference of the
two approaches is reduced as the observation grid moves away from the source, owing to the
faster varying exponential with the increasing of the observation distance (r'). Even so, to
preserve the accuracy of the near field evaluation even for very small radial distances, structures
of double straight or elementary sources will be treated through superposition for the remaining
of this document.

To finalize this section, the co and cross polarized field components extracted through the
full-wave simulation of the double elementary structure will also be compared to the
asymptotically approximated near field, using three terms in the expansion of the regularized
part. The comparison refers to the main planes over the same observation grid as Figure 4-2
and is depicted through Figure 4-3.
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Figure 4-3. E-field comparison for double elementary structure (d = 500 um), (a) co pol., E and H planes, (b) co
and cross pol., D plane (150 GHz). The observation grid is identical to that of Figure 4-2.

Evidently the asymptotically approximated near field is in very good agreement with the
full-wave simulation. The only notable difference refers to the discontinuities around the
shadow boundary of the TM; mode (6" = 28°), mainly visible for the co polarized component
in the E-plane and the cross polarized in the D-plane. These discontinuities arise from the
different approximations introduced in the treatment of the SDP integral and the residue
contributions. They are more evident in planes with significant impact from the T'M modes due
to the simplification employed for the phase centre choice in the TM integrals in section 3.2d.

4.1c. Straight slots as feeding elements

Further expanding on the above discussion, double straight slots will also be treated apart from
pairs of elementary structures. The spectrum of the current distribution of a straight slot can
be approximated as given below for y-oriented slots, where the effective wavenumber is chosen

as keff = (ko + kd,cav)/z'

5 ZkeffSinC(kp COS(;Z)Wslot)(Cos(kpsin(:c)leot)_Cos(kefle,slot))

(ks kp sin?(@) sm(w)

Em,slot (kp' a) = 3 (4 . 3)

While pairs of straight slots will be treated through superposition, as described in the
previous section, for each individual slot the slow varying assumption for its spectrum will still
be employed (Cpsior(kp @) = Consior (ko 9)). This step introduces an approximation with respect to
the actual near field. However, for reasonable sized slots (i.e., Lgo, around A.f;/2), the impact of
this approximation is negligible compared to the simplification it introduces. To illustrate this,
the single slot depicted through Figure 4-4 will be indicatively examined.

150 GH
P i
slot 2
150 GHz
W s
slot 20
--------- kO + kd cav
< i or k =
for kess >

Figure 4-4. Single straight slot used to evaluate the slow varying assumption for its spectrum.

In order to evaluate the impact of assuming a slow varying spectrum for the indicated
straight slot, the field resulting from the double integral of (4.1) will be compared to that
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obtained by using the slow varying spectrum assumption (Cp(k, a) = Cn(k, ¢)) and in turn
employing the integral of (4.2). The resulting comparison for 150 GHz is depicted in Figure
4-5, referring to a sphere of r' = 3 mm from the phase center of the wideband structure.
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Figure 4-5. E-field comparison for double and single integral evaluation (150 GHz), (a) co pol. at E and H planes,
(b) co and cross pol. at D plane. The observation grid is a sphere with r' = 3mm = 1.5, (wideband structure).

As visualized from the figures above, the assumption for a slow varying spectrum constitutes
a very good approximation for the examined slot, even for observation points very close to the
source. This is important since combining the above approximation with the array factor
treatment of section 4.1b enables the subsequent evaluation of the near field of double straight
slots through either the methods described in Chapter 2 or 3.

4.1d. Asymptotic analysis

Introducing the Fourier transform of the current distribution in the near field integral
expressions slightly modifies the asymptotic approach described through Chapter 3. This
section will explain this concept and describe the required treatment when a single slot is
considered in the ground plane of the stratification. Towards this goal, the field decomposition
resulting from the regularization of the SDP integral expressions is re-written below.

E() = Ereg.(F) + Epore () + 232, U(0' — 055, EL/ ™ ), (4-4 )

Where Ep,. is the part containing all the polar contributions of the SDP integrals.

Regarding the field decomposition presented above, the approaches used to evaluate the
residue contributions of the polar singularities (E/./™ (")) as well as the regularized part of the
SDP integral (Eg, ("), are not modified by the presence of the source’s spectrum in the
integrand. Having said that, what does change is the treatment of the part of the SDP which
contains all its singularities, i.e., Epo (7). To showcase why this occurs and present an approach
to resolve the problem, the integral expressions of Epq.(7) are first expressed for a y-oriented

slot, as given below.

Ep,Pole (GD) 23w to —cos(¢) (vgpr,TMl + v;pr,TMo) dp
N _ i i
E(p,Pole (T’) E TITd ]49 Jkar' sm(@) Vgpr,TEl Cm,slot(ka (p) COS(ﬁ) (E) € kqr's ds

E; pote (") - {acos(p) (i:{pr,ﬂw1 + inT,TMO) sin(B)
(4-4b)
Where Cm.SIOt(k ,(P) as given in (43)7 v;pr-TM/TE = v;pT,TM/TE (kP'AZ) a‘nd i‘-{pr'TM/TE = ilJlrIJT.TM/TE (kP‘AZ)'
Also, while several spectral variables are included in the integrands to maintain a compact
form, namely k,, B and s, all are related as given in (2.8) and (3.4).
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In section 3.2b it was described that at this stage the integrands must be expressed through
four simple poles which in turn can be evaluated asymptotically, resulting into a sum of
transition functions as given in (3.17). Following this mindset, the representation of G, (s) is
introduced in the integrands and subsequently expressed as given through (4.4 d).

Ep pote (F") I[ cos() (G;ZZl () + Gpops (s))]l
qJPole(T )‘ \/Eeﬁe jkar' f o‘: I sin(e) G;;f;(s) | Cm,slot(k "P)e_kdr’szd& (44 c)
I

e (@) i
Fapote Sacos(@) Gy (5) + Gy () |
/i)
("/l)TE/TM() 4 pi TE here w/DTE/TM __ li ( _ (V/i)TE/TM) (V/l)TE/TM() ( d)
pole i= 1 ("/DTE/TM’ w api - sirsr;i S Spi pole ’ 44
i

At first glance, one might consider that the spectrum of the straight slot (Cpmsioc(kp @))
should be included in Gy, (s) and in turn the treatment of (4.4 d) can be applied without issue.
However, as was mentioned at the end of section 3.2b (3.17 c), if the integrand function also
features zeros which approach the saddle point for some observation angles, these must also be
isolated and subsequently evaluated through the canonical forms describing simple poles and
zeros (3.10 b). For the case of elementary slots, the only zeros in the integrands were caused
by cosine and sine functions arising in the representation. However, the addition of the Fourier
transform of the source changes this aspect. In particular, the spectrum of a straight slot (4.3%)
features a number of periodic zeros with their proximity to the saddle point determined by the
electrical size of the slot, and most importantly its length.

An analytical way to resolve this issue would require all the important zeros (the ones that
approach the saddle point) to be isolated and treated as described in equation (3.17 ¢). Even
s0, to simplify this process and make it a bit more generic, the spectral behaviour of the source
can be included in the integral by simply evaluating its spectrum on the dominant integral’s
contribution, namely, the saddle point (k,s = kqsin(8")). To showcase the performance of this
approach, the resulting co polarized component from the asymptotic approximation of the
integrals (4.4 ¢) will be derived for the TE; and the TM; leaky wave modes in their respective
dominant planes and compared to the numerical result. The asymptotically approximated
terms will be obtained through both approaches, i.e., including Cy,(ky, ¢) in G4 (s) and using
(4.4 d) as well as evaluating Cn(k, ¢) on the saddle point. The above described comparison is
presented through Figure 4-6, referring to a spherical observation grid of ' =3mm from the
phase centre of the wideband structure, with the utilized slot being that of Figure 4-4. While
the illustrated results correspond to the non-uniform phase centre choice described in section
3.2d, the same deductions can also be extracted for the uniform case.

45 : : : : : 45

0 Y,
SB,TE, Numerical integral SB,TM,
~ evaluation 400
]
35
. Ch(kp, ¢) evaluated
% 30 ----on saddle point and % 30
— Gpoe(s) = Z',4:1‘11#/(3 — Spi) —
my 25 w2
20 Ch(ky, ¢) included 20
in Gpole(s) and ]
5 Gpote(s) = Syai/(s—5,) 19
10 : : : : 10 :
0 10 20 30 40 50 60 0 10 20 30 40 50 60
9/((}) 9/(0)
(a) (b)

Figure 4-6. Co polarized component of polar contributions expressed in (4.4 c) for (a) TE; in the H-plane and (b)
TM; in the E-plane, using different treatments for the spectrum of the source (f=150 GHz).
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As visualized from the figure above, while for the TM; mode the presence of the source does
not seem to impact the described treatment for its polar contributions, the same cannot be said
for the case of the TFE;. This is due to the fact that the dominant zeros of the source’s Fourier
transform are attributed to its length. As such, for a y-oriented slot they appear at the H-plane
and thus mainly impact the TFE variants of the transmission line solutions. In order to increase
the accuracy of the process, the source’s spectrum around the saddle point can be represented
through a power series expansion in terms of s. Given the electrical length of the examined slot
(Lsior = Aefr/2), in our case a two-term expansion is sufficient.

Gk 0) = Cullipsrs) +5 (G2eed) (4.5)

kp=Kpsp

To illustrate the impact of this step, the result of using (4.5) for the representation of the
source is incorporated in the comparison of Figure 4-6. This is illustrated through Figure 4-7,
showing improved agreement with the numerical integral in the region before the shadow
boundary. It should be noted that, if necessary, a higher order expansion can also be employed
instead of (4.5), to even better represent the spectrum of the source. However, as the source
gets electrically larger and thus requires a higher order expansion, one should also consider
evaluating the validity of the assumption for a slow varying spectrum on a.

45

Os,1E, Numerical integral
a0 " evaluation
TTTTTEREL
T~ Chn(ky, @) evaluated
= 35¢ 1 --on saddle point and
= Gpote(8) = Bi1api/ (5 — $pi)
— 30+
) Chn(k,, ¢) included
25 | in Gpoe(s) and
Gpol{a(s) = E?:lapi/(s - spi)
20
Chn(k,, ¢) as in (4.5) and

5 ! _ . . Gooe(s) = S/ (s — s
0O 10 20 30 40 50 60 poe () 191/ (5 = o)

o)

Figure 4-7. Co polarized component of (4.4 ¢) in the H-plane, considering only the TE; leaky wave mode.

To conclude this section, the performance of the described treatment in terms of modelling
the behaviour of the source will be showcased by comparing the numerically and asymptotically
evaluated near field for a pair of y-oriented slots. To do so, the co and cross polarized
components of the field will be evaluated at spherical observation grids of different radii from
the phase centre of the wideband structure, as illustrated through Figure 4-8 and Figure 4-9.
Each slot is identical to that of Figure 4-4, with their spacing in x being d=500um.

Co polarized, E and H planes (' = 3mm) Co and cross pol., D plane (7' = 3mm)
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25+ /
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0/(())
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Figure 4-8. Numerical and asymptotic (8 term expansion of reqularized part) comparison for r' = 3mm = 1.54,
(wideband structure) (a) co pol. in E and H planes and (b) co and cross pol. in D plane (=150 GHz).
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Figure 4-9. Numerical and asymptotic (3 term expansion of regularized part) comparison for r' = 4.5mm = 2.252
(wideband structure) (a) co pol. in E and H planes and (b) co and cross pol. in D plane (f=150 GHz).

0

As illustrated through the figures above, the numerical and asymptotically evaluated near
field feature overall good agreement. Having said that, the superposition of the two individual
elements forms a region around the shadow boundary angle of the T'M; where the field is not
that well represented. This region is situated between the crossings of the shadow boundary
angle of the T'M; for the individual elements from their respective reference systems. Given
that this particular issue is somewhat reduced through the uniform phase centre choice
described through section 3.2d, as indicatively visualized through Figure 4-10, it is reasonable
to claim that in order to reduce its impact in Figure 4-8 and Figure 4-9, the phase centre choice
for the T'M integrals must be further improved to account for the presence of the T'Mj.

Co polarized, E and H planes (' = 4.5mm) Co and cross pol., D plane (r' = 4.5mm)
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Figure 4-10. Numerical and asymptotic (3 term expansion of reqularized part) comparison for r' = 4.5mm = 2.251,
(wideband structure) using the uniform phase centre choice of section 3.2d, (a) co pol. in E and H planes and (b)
co and cross pol. in D plane (=150 GHz).

4.2. Small lenses in the near field

Having discussed all the complications involved with adding a double straight slot in the near
field evaluation, in the following section the utility of the asymptotic approach will be
showcased. This will be performed by examining small elliptical lenses, such that their surface
approaches the near field of the source. For the illumination of those lenses, two y-oriented
straight slots, each identical to that of Figure 4-4, are assumed in the ground plane of a leaky
wave supporting stratification. The two sources are spaced in x such that the T'Mj is suppressed
in the E-plane, i.e., d = n/Re(k;,)y,), while the lens is truncated at the smallest shadow boundary

angle (6., = min (652", 6:5™)) and its lower focus is centred at a distance A, below the ground
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plane, as illustrated through Figure 4-11. The truncation is introduced considering that
elliptical lenses are optimally illuminated by spherical waves, whereas the near field of a leaky
wave structure resembles a spherical wave only up to the shadow boundary.

air Qlens T Clens
\\\ /II
Rro g S
N SB g
Er,lens S S/
= ‘\\ S
Er,cav 7”6(% . / éneq,z I h
______________ ! v 34,
X

Lower focus of ellipse

Figure 4-11. Elliptical lens integrated with leaky wave supporting stratification and fed by two y-oriented slots in
the ground plane.

To evaluate the performance of the discussed asymptotic approach, the aperture efficiency
of the examined lenses is computed using both the numerical and asymptotic methods for the
derivation of the near field, with the resulting values subsequently being compared. In both
approaches the field of the double slot is obtained through superposition in the Fourier Optics
(FO) sphere, as was described through section 4.1b. Following this, the lens aperture efficiency
is derived via evaluating the reaction integral between the Geometrical Optics (GO) fields in
the FO sphere and the near field of the leaky wave structure at the same surface. The steps
required for this analysis of lens antennas in reception, which in turn result in the evaluation
of the aperture efficiency through the aforementioned reaction integral, can be found in the
Appendix of [17].

The resulting comparison of the derived aperture efficiencies at the central frequency (150
GHz) for the resonant and wideband stratifications of Figure 2-8, is presented through Figure
4-12 and Figure 4-13, in terms of the electrical diameter of the elliptical lens together with the
resulting radius of the FO sphere. For both structures a quarter-wave matching layer is
considered between the elliptical lens aperture and the air region. For comparison purposes,
the resulting aperture efficiency through assuming the far field of the feeding structure incident
on the elliptical lens is also included.
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Figure 4-12. Aperture efficiency of elliptical lens integrated on resonant leaky wave structure (h=»249/2).
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Figure 4-13. Aperture efficiency of elliptical lens integrated on wideband leaky wave structure (h=2Acav/2).
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The first noteworthy aspect of the above comparison refers to the performance of the
asymptotic approach. More specifically, provided that lenses with FO spheres within the
applicability region of the respective structures are examined, the asymptotic approach is in
very good agreement with the numerical method. Having said that, the benefit of the
asymptotic approach refers to the substantially improved computational efficiency. As an
indicative example, for the study case referring to the wideband structure which considers 16
different elliptical lenses each with 60 6 and 361 ¢ points in the FO sphere, the timing
comparison between the numerical and asymptotic approaches is given in Table 4-1.

Evaluation Numerical Asymptotic
method (SDP) (3 terms)

15 man 30 sec

Table 4-1. Timing comparison between different near field evaluation methods

Time required

Apart from the difference in computational efficiency between the numerical and asymptotic
approaches, two interesting remarks can also be performed regarding the resulting aperture
efficiencies themselves. These are the convergence of the aperture efficiency to that of the far
field for the wideband structure and the improved efficiency in the near field for the resonant
structure. The following two sections will elaborate on these aspects.

4.2a. Far field convergence

Contrary to aperture antennas for which the far field distance depends on their electrical size,
when apertures are etched on the ground plane of a leaky wave supporting stratification this is
not the case. More specifically, the far field distance of leaky wave structures depends on the
size of the aperture field distribution formed by the excited leaky waves inside the cavity. This
is in turn determined by the attenuation constants (ay, ) of the significant modes, with smaller
attenuation corresponding to larger field distribution.

Considering the significant modes of the examined structures, the one with the smallest
attenuation constant which at first glance seems to determine the far field distance is the T'My.
However, when the feeding structure is designed such that this mode is suppressed, the size of
the aperture field distribution formed by the leaky waves depends on the much weaker mode
pair, namely TE; and TM;. Given that the attenuation constants of these modes are smaller
the larger is the dielectric contrast between the cavity and semi-infinite region, the far field
distance of the resonant structure is much farther than that of the wideband.

To further build upon this concept, in [20] it was shown that given a proper definition of
the phase centre position the near field up to the shadow boundary converges very fast to the
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far field. This can be clearly observed for the wideband structure through Figure 4-13, given
the resemblance of the far field aperture efficiency to that obtained when using the near field.
To visualize this concept, the near and far field of the double slot pair will be compared for the
case of the wideband structure in a sphere of 24, radius through Figure 4-14.

Co polarized, E and H planes Co and cross pol., D plane

0 0
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-20 f i) -20 \ 4
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Figure 4-14. Near field and far field comparison for double slot, (a) co pol. at E and H planes, (b) co and cross
pol. at D plane (150 GHz). The observation grid is a sphere of r' = 4mm = 21y radius (wideband structure), while
the near field is approrimated asymptotically using three terms in the expansion of the regularized part.

The converge to the far field up to the shadow boundary (6., = min(65;",655™)) is very much
evident through the E and H plane comparison of Figure 4-14 (a). While this is a bit less
noticeable for the D-plane due to the improper suppression of the TMy, one might still consider
that employing the far field would be sufficient for the design of small lenses in wideband leaky
wave structures. However, the far field convergence can only be assumed up to the shadow
boundary angle. As such, if the truncation angle of the lens is increased, using the far field
would not be sufficient.

To illustrate this, an indicative test case will be considered resembling the core lens of the
Fly’s Eye antenna. More specifically a spherical lens of 4 mm radius is assumed integrated in
the wideband stratification (e, ., = 3.8, &-.core = 12), radiating inside an infinite plastic medium
(ersnew = 2.3). The lens is coated with a matching layer (e macn = 5.25), its truncation angle is
chosen at 35° (whereas 6, = 6., = 28°) and the aforementioned slot pair is considered in the
ground plane. To visualize the different nature of the near field above the shadow boundary
angle, first, the ray picture of the transmitted field in the core-plastic interface is illustrated in

Figure 4-15 at the H-plane, assuming far field and near field incidence on the spherical lens.
8 A\ E I‘ 8 E : -

-5 -2.5 0 25 5 -5 -2.5 0 2.5 5

y (mm) y (mm)
(a) (b)

Figure 4-15. Ray picture of transmitted field after the core lens (H-plane) for (a) far field and (b) near field.
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Evidently, while up to angles very close to the shadow boundary the spherical wave
assumption for the near field holds, above this point the nature of the field is more complex.
To further illustrated this concept, the far field inside the plastic region for the above example
is depicted for two different truncation angles through Figure 4-16.

%‘runcation of spherical lens: 6;., = 0gp ~ 28° Truncation of spherical lens: 6., = 35°
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Figure 4-16. Far field comparison inside plastic region for far field and near field incidence on the core lens (150
GHz). In (a) the lens is truncated at 28° (roughly the smallest shadow boundary angle), while in (b) at 35°.

When the lens is truncated at the shadow boundary angle (Figure 4-16 (a)), its far field is
quite similar either for far field or near field incidence. However, if the truncation angle is
increased (Figure 4-16 (b)), this is no more the case. Essentially what this implies is that in a
scenario where the lens is truncated above the shadow boundary, knowledge of the actual near
field would be required. It should be noted that the modelling of the small spherical lens used
for this example is performed through the Physical Optics techniques described in Chapter 5.

4.2b. Near field lens efficiency

The second noteworthy aspect regarding the results presented in the introductory part of
section 4.2, refers to the improved aperture efficiency of the resonant structure when the lens
surface is placed in the near field. In fact, the resulting efficiency seems to peak for lenses with
diameters around 44,. To provide a physical interpretation of this effect, the aperture efficiency
will first be decomposed into the tapper and spillover terms, as given through Figure 4-17.
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Figure 4-17. Efficiency term decomposition for resonant case. The reflection efficiency at the air interface is
included in the spillover term.
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As illustrated through the above figure, the term which provides the above-described nature
of the aperture efficiency is the spillover. To realize the reason for this behaviour, the wave
decomposition of the near field must be considered. More specifically, by evaluating the field
through the path of steepest descent, it is decomposed into the SDP integral and the residue
polar contributions. The residue contribution of each mode exists only above its shadow
boundary angle, with its Poynting vector angle being constant and tending to the pointing
angle of the leaky wave mode (Appendiz E, 6, = 6§ ). Considering the structural aspects of
the elliptical lens in the example of Figure 4-12, the ellipse is truncated at the shadow boundary
angle of the main mode pair (6sp g, = 0sp 1y, = 10°), meaning that the residues exist only outside
the solid angle defined by the elliptical surface.

Having said the above, to explain the behaviour of the spillover efficiency one must consider
the relative value of the shadow boundary and Poynting vector angles for the main leaky wave
mode pair (TE; and TM;). As was shown in Figure 2-6 and is again depicted through Figure
4-18, the shadow boundary angles of the leaky wave modes are larger than their Poynting
vector angles (8p,y ). This means that the residues of the main mode pair progressively push
power inside the shadow boundary cone as the radial distance from the phase centre is
increased. This can be visualized through Figure 4-18 (a), which illustrates the direction of the
residue Poynting vector at different observation heights together with the limits of the shadow
boundary cone. The latter essentially corresponds to the solid angle defined by the elliptical
surface.

Dispersion for main modes (T'E; and T'M;)

6 Poynting vector decomposition (150 GHz), H-plane
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Figure 4-18. (a) Poynting vector angle illustration in the H-plane with respect to the shadow boundary cone and
(b) dispersion of the main leaky wave mode pair (TE1, TM1) in terms of their Poynting vector and shadow
boundary angles.

To finalize this discussion, the attenuation of the residues at the rim of elliptical lenses with
different diameters (v’ = Rpo and 6’ = 6s), is computed and plotted together with the resulting
aperture efficiency in Figure 4-19.

Attenuation [dB] = 20 log,, (e’m(kZ'LW)RFO cos(9sp) gIm(kp,Lw)RFo sin(6sp)), (4.6)

It can be visualized through the following figure that the elliptical lens diameter for which
the aperture efficiency is maximized corresponds to the one for which the average attenuation
of the residues of the main modes at the edge of the shadow boundary cone is -15 dB. This
essentially means that at the point of maximum aperture and thus spillover efficiency, most of
the power of the residues has already entered the shadow boundary cone. This effect is directly
related to the strength of excitation for the residues and thus it can be mainly observed in
resonant structures.
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Figure 4-19. Aperture efficiency of Figure 4-12 together with the attenuation of the residues at the rim of the
elliptical lens (v' = Ry, and 6" = 655) (4.6).

Having elaborated of the asymptotic approximation of the near field through Chapter 3
and 4, in the remaining of this document, the use of the asymptotically approximated near field
to model the Fly’s Eye antenna concept will be discussed. As a first step in this process, in the
following chapter the Physical Optics techniques used to model the core-shell structure will be
described.
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CHAPTER 5. PHYSICAL OPTICS ANALYSIS

Having described the asymptotic method used to derive the near field of a leaky wave
supporting stratification, the following chapter will discuss the Physical Optics techniques
employed for the modelling of the integrated lens architecture of the Fly's Eye antenna (core-
shell). Even though the same steps will be applied for both the core and shell lenses, the
process will be separately presented for the two structures in their respective subsections. For
the case of the core lens, the performance of the Physical Optics techniques will be evaluated
through a full-wave simulation, while for the shell lens, it will be compared to an analysis in
reception approach. To maintain the focus of this chapter only on the performance of the
Physical Optics techniques, the feeding element will be simply represented by two elementary
sources. In particular, two y-oriented sources are considered in the ground plane, displaced in
x by deie = 500 pm such that they suppress the TMy leaky wave mode in its dominant plane.
The modelling of the Fly’s Eye antenna, employing additional considerations for the
representation of the feeding element, will be presented in the following chapter.

5.1. Core lens

5.1a. Structure overview

In the context of the Fly’s Eye antenna concept, the high permittivity core lens is primarily
used to improve the front-to-back ratio of the feeding structure and thus facilitate chip
integration. Simultaneously, it maintains low dielectric contrast with the resonant fused silica
cavity, preserving the bandwidth of the leaky wave feeding structure. Its spherical shape allows
the efficient illumination of the high eccentricity elliptical lens (shell), essentially simulating a
leaky wave stratification with a high permittivity semi-infinite dielectric region. In terms of
dimensions and dielectric properties, the synthesis of the core lens is done with a type of PPE
plastic featuring a relative permittivity of 9.3 (PREMIX). To minimize the losses introduced
by the core lens material, the size of the lens is maintained small, featuring a radius of 3.2
mm and centred at the phase centre of the leaky wave structure (for 150 GHz), displaced by
0.7 mm below the ground plane. To improve the spillover on the core lens, i.e., minimize the
power launched outside its truncation angle, the latter is chosen to be 44°. Finally, to reduce
the level of reflections in its surface, the core lens is coated with a matching layer. In the
actual design this is done by drilling holes in the PREMIX such that a layer of the desired
effective permittivity is formed. However, in the modelling process a uniform matching layer of
quarter-wave thickness at 150 GHz is considered for simplicity (e, ms = \/&rcoreérshen)- L0 visualize
the above, the core lens with its physical dimensions is illustrated through Figure 5-1.

€r shell = 2.3 Diore = 4.4 mm = 3.3\150GH>

l ML = )\}&%GHZ/AI

1 €ear = 3.8 7 heay = 0.5 mm

1
-5 -2.5 0 25 5
2 (mm)
Figure 5-1. Core lens of the Fly’s Eye antenna concept with its physical dimensions.
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5.1b. Field on the core lens surface

One significant simplification for the analysis of the core lens refers to the derivation of the
field on its surface, which in turn is required to obtain the field radiated inside the plastic
region of the shell lens. Considering that the spherical core lens is centred at the phase centre
of the leaky wave feeding structure, the near field incident on the latter can be assumed to
resemble very well a spherical wave, conformal to the core lens surface [18]. Combining this
fact with the presence of the matching layer between the PREMIX and plastic regions, enables
the deduction that the level of reflections on the core lens is small. This means that a good
approximation for the total field on the core lens surface can be derived by using only the field
incident on the latter. As a result, the modelling of the near field can be significantly simplified
by considering a leaky wave supporting stratification with an infinite PREMIX region, similar
to those explored through Chapter 2 to 4. The core lens structure and the simplified
stratification used to obtain the near field on its surface are visualized through Figure 5-2.

Core lens structure

Simplified stratification

6 €r,shell 6
5 5
4 . 4
= Matching layer £)
Es E3
RN K
2 2
1 . P €r,cav 1 S 2 €rcav
7 <. - A AN e
0 Ground plane éiMMImAz,core 0 Ground plane ‘1Azcore
‘ Spherical wave origin | . Spherical wave origin
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
z (mm) z (mm)
(a) (b)

Figure 5-2. (a) Core lens structure and (b) simplified stratification employed to obtain the near field incident on
the core lens.

To evaluate the validity of this assumption, both structures of Figure 5-2 are simulated in
CST (full-wave simulation) and the field on the core lens surface is compared between the two
cases. The resulting comparison, showcased through Figure 5-3, refers to the co polarized
component produced by the double elementary source on top of the core lens surface.
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lgear field in dense medium, f =170 GHz
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Figure 5-3. Comparison of total and incident near field on the core lens surface for (a) 140 GHz, (b) 155 GHz
and (c) 170 GHz. The angle ' corresponds to a reference system at the center of the core lens.

The very good agreement between the total field, derived through the stratification of
Figure 5-2 (a), and incident field, obtained using the stratification of Figure 5-2 (b), justifies
the above described simplification for the core lens structure.

5.1c. Modelling the core lens

Once the incident field on the core lens surface has been derived, the field transmitted through
the core-plastic interface (E,core, Hicore) Can be obtained by the assumption of a locally flat
interface at every point of incidence and the use of a transmission dyad. The presence of the
matching layer can be included in the modelling process through the transmission dyad, by
modifying the transmission coefficients for 6’ < 6, core, t0 those obtained from an equivalent
transmission line model. Subsequently, the transmitted field can be employed to derive
equivalent currents which radiate inside the plastic region, as illustrated through Figure 5-4.

Core lens structure Equivalent problem
6 Eplastic; leasti(z 6 Eplasti(:y lea.stic €r shell
5 5 Equivalent currents Mg core /oy o
Matching layer (e, a1 = (er,career,shell)l/ %) radiating inside plastic medium
4 4
g
Es3
RS
1 1

Groun(fplane I Az,core ‘ o B
oL Spherical wave origin | 0f Ein =0, Hin =0 //
30 -2 - 0 1 2 3 30 -2 A 0 1 2 3
z (mm) z (mm)
(a) (b)

Figure 5-4. (a) Core lens structure and (b) equivalent problem for the field inside the plastic region.

More specifically, employing the equivalence theorem [41], the field radiated by the core
lens can be calculated through substituting the structure with an equivalent current
distribution radiating in its absence. This current distribution is considered on top of a closed
surface surrounding the core lens and infinitely extended laterally. Furthermore, using Love’s
formulation of the theorem, the equivalent current distributions are obtained through applying
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the boundary conditions on the equivalent closed surface, such that the electric and magnetic
fields are zero inside the surface and equal to the field produced by the actual source outside
Of lt (Et,core; ﬁt,core)'

]eq,core (?,) = flcore (?I) X Ht,core(?,) & Meq,core (?1) =E core (‘F,) X flgore (?’)7 (5' 1)

Where fi,,. refers to the normal vector of the core lens surface as indicated in Figure 5-4 (a).

Once these equivalent current distributions are obtained, the field radiated by the core lens
inside the surrounding medium can be evaluated through the convolution between the Green’s
function of the medium in question and the equivalent currents distributions (feq,mre, Iﬁgqycm).
Considering an infinitely extended and homogeneous dielectric region of relative permittivity
& snen and maintaining only the radiative components of the dyadic Green’s functions, since
the field needs to be obtained on top of the shell lens which is far enough from the core structure
(Rpo = 24mm); the resulting expressions for the field inside the plastic are given below, with 7,
and 7 corresponding to the observation and the source grids respectively. The considered
reference system is placed at the center of the core lens, i.e., displaced by A.=0.7mm below the
ground plane.

e~ JkaR e

. 7 > 5.7 21 ) [t
as — ffs Jwp [jeq,core(r ) - (R *Jeq,core (T )) ! R] 4R s

Eplastic(ﬁ)bs) = ffs jka [R X Meq,care(?l)] R

)
e—ikaR

— N . ~ > L1 e FkaR ka2 o s~ = i ~
leastic(robs) == ffs Jka [R x]eq,core(r )] 4R as - ffs J a [Meq,core(r )— (R ' Meq,core(r )) ' R] AR ds

(5.2)

Where R = Lo:=" kq = ko\/€rsnen and dS describes the domain of integration.

[Pops—7'17
Given the small electrical size of the core lens (Deore= 8.314 at 150 GHz), one approximation
that should be treated carefully refers to assuming a locally flat interface at every point of
incidence. To evaluate the validity of this step in the modelling process, the far field inside the
plastic obtained with (5.2) will be compared to that derived by a full-wave simulation (CST).

Before doing so, however, it should be noted that an aspect not modelled through the above
procedure refers to the power trapped inside the PREMIX slab. In fact, by considering only
the transmitted field on the core-plastic interface, all reflections are essentially completely
neglected. For an actual source in the ground plane this approximation will provide reasonable
results, since the source is designed such that the power launched outside the core lens is
minimized. Even so, for the purpose of evaluating the validity of the Physical Optics techniques
using the aforementioned double elementary source, additional considerations are required.
More specifically, to enable the desired comparison the first step refers to adding a PEC plane
on top of the PREMIX slab in the core lens model used for the full-wave simulation, as
illustrated through Figure 5-5.

Core lens wit

matching layer
PEC plane

<— PREMIX
<+ Fused stlica

N

Figure 5-5. Core lens model in CST featuring a decoupling PEC plane above the PREMIX slab.

With the aim of isolating only the field radiated by the core lens in the full wave simulation,
an additional step is needed. To obtain the far field inside the plastic region, CST derives
equivalent currents on the bounding box surface, which in turn radiate in a uniform dielectric
region, for this case with relative permittivity of &, 45 = 2.3. While the presence of the PEC
plane shown through Figure 5-5, limits the impact of the power trapped inside the PREMIX
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slab to the region below said plane, the latter will still influence the equivalent currents on the
boundaries and thus impact the far field. T'o avoid this issue, one can retain only the equivalent
currents associated to the top box (plastic region), as illustrated through Figure 5-6, by using
the decoupling plane option. This operation leads to neglecting the contributions to the far
field arising from the lower box and thus isolate the field radiated by the core lens.

Equivalent currents on bounding box surface: M f Jeq /1

Figure 5-6. Illustration of (a) equivalent currents on bounding box surface of full-wave simulation and (b)
equivalent currents maintained through the introduction of the decoupling plane.

Employing this approach, the far field inside the plastic obtained through the above
discussed Physical Optics techniques, is compared to that extracted from the full-wave
simulation by using the decoupling plane option. The resulting comparison of the far field is
presented through Figure 5-7, showing very good agreement.
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Figure 5-7. Far field in plastic comparison between full-wave simulation with decoupling plane and asymptotically

approzimated near field (3 term expansion of the regularized part) combined with Physical Optics techniques. The

comparison is performed for three frequencies (a) 140 GHz, (b) 155 GHz and (c¢) 170 GHz. The observation angle
0’ corresponds to the reference system at the center of the core lens.
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5.2. Shell lens

5.2a. Structure overview

In the context of the core-shell structure, the elliptical shell lens aims to enable the
implementation of a large radiating aperture capable of satisfying the gain requirements [5],
through the use of low cost and low loss materials. An ideal candidate material satisfying the
above is HDPE, which due to its low permittivity at the examined frequency range (&, yppg =
2.3 |[17]) does not feature significant reflections in the plastic-air interface, mitigating the need
for a matching layer and thus reducing the overall complexity of the design. For the physical
dimensions of the shell lens, a & ¢m diameter (Dgnen) aperture is chosen, with the lens truncated
at 38°. Regarding the lower focus of the ellipse, it is displaced by 0.27 mm (A sen) above the
ground plane of the core lens structure. As will be showcased in the final part of Chapter 6,
the relative position of the lower focus with respect to the core lens structure is chosen to
improve the antenna performance at the lower end of the desired band of operation (140-170
GHz).

5.2b. Modelling the shell lens

Having discussed the modelling of the core lens in the previous section, the free space
patterns radiated by the shell lens can in turn be computed through a step-by-step
implementation of the same Physical Optics techniques. In particular, due to its large extension
in terms of the wavelength, the field on the shell lens will be obtained through the use of the
equivalent currents derived via the modelling of the core lens (Jeg,core and Meg,core), radiating
inside an infinite plastic region, as given in (5.2). In turn, approximating the total with the
incident field on the shell lens surface, the field transmitted outside the interface can be derived
through a transmission dyad and can be subsequently used to obtain equivalent currents
radiating in free space.

7 ~ - - v = ~
Jeqsneu () = Asnen () X Hypen () &  Meg sneut (") = Epsnen(T") X fispen (F'), (5.38)

Similar to the modelling of the core lens, the equivalent currents result from the
implementation of the Love’s formulation for the equivalence theorem [41] and can thus be
utilized to derive the field only outside the modelled region, in this case being the shell lens.
The set of equivalent problems employed for the modelling of the core-shell structure are jointly
depicted through Figure 5-8.
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Figure 5-8. (a) Core-shell structure, (b) equivalent problem for the field on the shell lens surface and
(¢) equivalent problem for the field outside the shell lens.
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Once the equivalent currents on the shell lens surface have been derived, the field radiated
outside the elliptical lens can be evaluated through the convolution between the free space
Green’s function and the respective equivalent currents distributions (Jegsher and Megshen). In
other words, the secondary patterns of the shell lens can be extracted through the integral
expressions (5.2), where the current distributions and integration domain are modified to those
of the shell lens and k,; is substituted with k.

To evaluate the described Physical Optics model of the shell lens, the free-space patterns
obtained through this approach will be compared to those extracted by employing the far field
inside the plastic from the full-wave simulation showcased in Figure 5-7 and the GO/FO tool
of [42]. The resulting comparison of the secondary patterns is presented through Figure 5-9.
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Figure 5-9. Secondary pattern comparison between full-wave simulation of core lens combined with a GO/FO tool
[42] and Physical Optics combined with asymptotic techniques for core-shell modelling (a) 140 GHz, (b) 155 GHz
and (c¢) 170 GHz. The observation angle 0 refers to a reference system on the tip of the elliptical lens.

As evident through the comparison presented above, while the two methods are in overall
very good agreement, a small difference can indeed be observed in the level of the first sidelobe,
especially at higher frequencies. A reasonable explanation for the latter refers to the assumption
for far field incidence on the shell lens when using the GO /FO tool, whereas no such assumption
is employed through the integrals of (5.2). In fact, at the higher end of the operating frequency
range (170 GHz), the assumption for the FO sphere being in the far field of the core lens
degrades in accuracy given the core lens electrical dimensions (RE° 647 = 2D2,,, /250 6H? ~ 33.2 mm
whereas Rpy = 24 mm).
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CHAPTER 6. APPLICATION TO THE FLY’S EYE
ANTENNA

The following chapter presents a model for the Fly’s eye antenna concept in matlab and
elaborates on its contribution in terms of evaluating the measurements of the assembled
prototype. The model is derived through a combination of asymptotic and Physical Optics
techniques, with the former used for the modelling of the near field incident on the core lens,
while the latter employed to enable the representation of the free space field radiated by the
shell lens structure. The description of the modelling approach is followed by a discussion on
the contribution of the derived model in the measurement campaign, and finally the chapter is
concluded with a brief tolerance study.

6.1. Modelling the feeding element
6.1a. Double iris shaped slot

As already discussed through the introductory section of this document, when leaky wave feeds
are used to illuminate lenses, the radiation properties of the feeding element are mostly
determined by the nature of the excited leaky wave modes inside the cavity, rather than the
apertures etched on the ground plane. Having said that, for stratifications around resonance
(heav = Acan/2), not all the impactful leaky wave modes are desirable. In particular, while the
TFE;and TM; leaky wave mode pair can contribute to the efficient illumination of the integrated
lens, since they enhance the radiation of the feeding element along broadside, T'My launches
power at relatively larger angles and can thus constitute a significant spillover loss.

Taking this into account, several design approaches can be employed in order to suppress
the undesired TMj leaky wave mode; with the most common being the choice of the feeding
element such that its Fourier transform features a null near the spectral position of the leaky
wave polar singularity of the undesired mode (TMjy). The simplest structure capable of the
desired suppression is the double slot, as discussed in Chapter 4. However, while providing very
good suppression for the E-plane, the double straight slot does not significantly impact the TMy
in the diagonal planes. To also improve the suppression in those planes, several designs employ
an iris shaped double slot [17], [20]. In turn, this leads to more symmetric patterns which
provide an overall better illumination of integrated lenses.

Adhering to this thought process, a double iris shaped slot is used to illuminate the core
lens of the Fly’s Eye antenna. In terms of additional considerations for its design, in order to
enhance its matching performance while also maintaining low levels of coupling between the
two slots by limiting their angular size, the double iris slot is elliptically elongated [18], as
illustrated through Figure 6-1.

6.1b. Modelling the near field of the iris

Having introduced the feeding element, the first step for the modelling of the Fly’s Eye antenna
refers to recreating the field on the core lens surface. Given the radius of the core lens, this
essentially corresponds to the near field of the double iris shaped slot. Considering the discussion
of section 5.1b, a good approximation for the total field on the core lens is the incident field,
simplifying the core structure with one featuring an infinite dense region. To justify the
reasoning behind the choice of representation used to model the double iris shaped slot, a brief
overview of the deductions made in Chapter 3 and 4 will first be presented.

Obtaining the near field of a leaky wave supporting stratification can be performed in a
straightforward manner through the following double spectral integral.

EF) = 1) T 6™ (ky, @,2,4,) - G (K, a)e™T*0P 5@~ dadky, (6.1)

While the derivation of the near field through (6.1) is feasible, it is a very computationally
inefficient process due to the slow convergence of the integral in question. This is problematic
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since a versatile modelling tool primarily needs to be fast such that the studies of interest can
be performed in a reasonable time frame. Substantial reduction in the time required for the
evaluation of the near field integral expression can indeed be achieved by exploiting the spectral
properties of the Green’s function (G°™), as described in [20] and summarized through the
background Chapter 2. In this manner, the near field can be expressed through a much faster
convergent integral (Espp) and a finite sum of analytical terms which correspond to the leaky
wave modes supported by the stratification. As extensively discussed in Chapter 3, to further
enhance this concept, the polar singularities of the SDP integral can be isolated, separating the
integral in question into two terms. Combining this decomposition with the approximation
described in section 3.2c, allows each of the resulting integrals to be evaluated asymptotically.
This essentially enables the evaluation of the initial integral expressions through a finite sum
of analytical terms, negating the need for any spectral integration and thus constituting a very
fast approach to obtain the near field.

While computationally efficient, one limiting aspect of the above-described process is that
the manipulation of the integrals involved enforces certain requirements on the spectral
properties of the current distributions considered in the ground plane, as described through
section 4.1. The most fundamental of these requirements refers to a slow varying spectrum of
the source (Cp(k,a)) in terms of a (section 4.1b). Consequently, this gives rise to certain
considerations for the modelling approach employed to derive the near field of the double iris
shaped slot of the Fly’s Eye antenna. One option would be to model the actual current
distribution in the ground plane through a number of elementary sources with different weights.
This would in principle enable the representation of any current distribution, provided that a
large enough number of elementary sources is used, but it would partly negate the
computational efficient of the near field derivation approach due to the need of superimposing
a large number of sources. To preserve the computational efficiency of the asymptotic near field
evaluation, another approach could be to use a simplified model for the double iris shaped slot
which satisfies the required spectral properties.

With the aim of maintaining the prospect for a fast-modelling tool, the second option is
chosen. In particular, the employed model is comprised of two straight slots which are treated
through superposition, since each of them satisfies the required spectral properties (sections
4.1b and 4.1c). The Fourier transform of the equivalent current distribution used to model each
of the employed slots was given in equation (4.3). Finally, the dimensions and spacing of the
straight slots are tuned to those depicted in Figure 6-1 (a), such that they provide a sufficient
matching for the near field of the iris shaped structure.

Wslot

Lsior = 900pum, Wiior = 70um p1 = 300um wy = 100um a=67.3°
dgor = 500um p, = 340um w, = 300um
(a) (b)

Figure 6-1. (a) Double straight slot used for the modelling of (b) the iris shaped slot of the Fly’s Eye antenna.

As an indicative example to showcase the modelling of the double iris shaped slot, the near
field inside the infinite dense region of the simplified stratification of the core lens (i.e., infinite
dielectric of & o) Will be compared for the two structures presented in Figure 6-1. The field
comparison illustrated through Figure 6-2, is performed at a sphere of 3.2 mm radius from the
phase center of the leaky wave structure, which is displaced by A, core=0.7 mm below the
ground plane. The near field of the double iris shaped slot is obtained through a full-wave
simulation (CST) while that of the double straight slot is derived asymptotically using matlab.
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Considering the discussion of section 3.3d, the asymptotically approximated near field is
extracted using three terms in the expansion of the regularized part.

N%ar field in dense medium (e,=9.3), f=145 GHz Neoar field in dense medium (e,=9.3), f=155 GHz
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Figure 6-2. Near field comparison for the structures of Figure 6-1 (a) 145 GHz, (b) 155 GHz and (¢) 165 GHz.
The observation angle (8') corresponds to the displaced reference system below the ground plane.

As visualized through the figures above, the model provides satisfactory agreement for
angles up to roughly $5°, with the main difference appearing for larger angles at the E and D
planes. In those regions the double straight slot features higher field values compared to the
iris shaped structure, due to the inadequate suppression of the TMy leaky wave mode.

It is important to note that while representing the double iris shaped slot with a simple
double straight slot cannot lead to an exact recreation of the field incident on the core lens, it
enables the development of a fast-modelling tool, which can be subsequently used to evaluate
the antenna performance. Having said that, for the purpose of examining shaped variants of
the core lens within the context of a future study, a more accurate model of the iris shaped
structure would need to be derived as will be elaborated through section 7.5.

6.2. Core-shell model performance

Once the asymptotically approximated near field on the core lens has been obtained, the next
step refers to combining the derived near field with the Physical Optics techniques described
through Chapter 5, to model the Fly’s Eye antenna.

6.2a. Core lens

The first step in this process refers to evaluating the near field model’s performance when
combined with the core lens. To accommodate the latter, a full-wave simulation (CST) is used
to obtain the far field of the core lens fed by the double iris shaped slot of the Fly’s Eye antenna,
inside the plastic region of the shell lens. Subsequently, the resulting far field is compared to
that obtained through combining the model of the near field presented in the previous section,
with the Physical Optics techniques discussed in section 5.1. An indicative example of the
resulting comparison is presented through Figure 6-3, with the black lines referring to the full-
wave simulation of the core lens, while the colored lines corresponding to the developed model.
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Figure 6-3. Comparison of the far field of the core lens inside the plastic (¢, piaseic = 2.3) (a) E-plane, (b) D-plane
and (¢) H-plane.

While the model provides good agreement with the full-wave simulation, one noteworthy
difference in the figures above refers to the ripples appearing in the E and D planes of the CST
results. This effect can be attributed to power trapped inside the PREMIX slab of the
stratification in the full-wave simulation. Since the modelling process for the core lens (section
5.1) considers only the transmitted field at the core-plastic interface, this effect is essentially
neglected. Even so, given the good suppression of the TMy provided by the double iris shaped
structure of the Fly’s Eye antenna, the amount of power trapped inside the PREMIX slab is
small; meaning that the model still provides a good representation of the field inside the plastic
region. T'o showcase the model’s performance with frequency, some additional comparisons for
the far field inside the plastic are presented through Figure 6-4.
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Figure 6-4. Comparison of the far field in the plastic (&, piaseic = 2-3) for (a) 145 GHz, (b) 155 GHz and (c) 165
GHz.
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6.2b. Shell lens

Having evaluated the modelling of the core lens, the free space patterns of the shell lens can in
turn be computed through the steps described in section 5.2. The performance of this part in
the modelling process will be evaluated as described below.

First, the far field inside the plastic obtained by the full-wave simulation of the core lens is
introduced into the GO/FO tool of [42]|, which computes the secondary patterns of the shell
lens through performing an analysis in reception approach. Subsequently, these free space
patterns (solid) are compared to those obtained by the modelling process for the shell lens
through the Physical Optics techniques described in section 5.2 (dashed). The resulting
comparison is depicted for four frequencies through Figure 6-5.
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Figure 6-5. Shell lens pattern comparison for full-wave simulation of core lens combined with the GO/FO tool of
[42] and Physical Optics techniques of Chapter 5, for (a) 140 GHz, (b) 150 GHz (¢) 160 GHz and (d) 170 GHz.

Since the far field inside the plastic was recreated with significant accuracy by the utilized
model, as visualized through Figure 6-4, the good agreement of this comparison is somehow
anticipated. It is worth noting that while the secondary patterns illustrated through Figure 6-5
do not include the impact of a number of effects that will be present in a full-wave simulation,
like secondary reflections from the plastic-air interface, they still provide a good first order
model for the performance of the Fly’s Eye antenna.

As a final note, the resulting efficiencies obtained through the described model will be
compared to those of the actual Fly’s Eye antenna concept. This is performed through
extracting the far field inside the plastic and introducing it to the GO/FO tool of [42] which
computes the efficiencies through an analysis in reception approach. The resulting comparison
is illustrated through Figure 6-6 (a) and (). The difference between the two figures refers to
the inclusion of the spillover and reflections on the core lens. In particular, in Figure 6-6 (a)
the power radiated by the feed is considered as that launched into an infinite dielectric region
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of relative permittivity &, core, while for Figure 6-6 () only the power of the far field inside the
plastic is considered for the efficiency derivation.
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Figure 6-6. Aperture efficiency performance for the model of the Fly’s Eye antenna using the far field inside the
plastic and the GO/FO tool of [42], (a) with and (b) without spillover and reflections on the core lens.

The above presented comparison illustrates that the developed model features a similar
trend with frequency as that of the Fly’s Eye antenna concept but has a degraded performance
in terms of spillover efficiency. Furthermore, through the comparison of Figure 6-6 (b) one can
deduce that this difference in spillover is mainly attributed to the simplified modelling of the
iris structure with a double straight slot. In particular, due to the worse suppression of the T'My
in the diagonal planes, the power launched outside the core lens for the double straight slot is
significantly more when compared with the iris, leading to a reduction in the spillover efficiency.

6.3. Contribution to measurement campaign

Having presented the modelling of the Fly’s Eye antenna through a combination of Asymptotic
and Physical Optics techniques, the following section will discuss the utilization of the described
modelling tool for the purpose of examining the measurements of the assembled prototype.
Within this context, the main deductions extracted from the measurements will be presented
together with the thought process behind their subsequent study. Starting from the former, the
phase profiles extracted from two distinct measurements are shown through Figure 6-7. These
measurements correspond to two distinct 2D scans, one performed close to the tip of the
elliptical lens, while the other derived from a farther distance.

Distance [mm]

(a)

Distance [mm]

(b)

Figure 6-7. Phase profile of 2D scan (a) close to and (b) further away from the shell lens.
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As clearly visible from the figures above, instead of a more or less flat phase profile within
the area defined by the shell lens aperture (Dsnen = 30 mm), which would correspond to a beam
focused in the far field; both measurements feature substantial phase variance, each relating to
a different focusing behavior. More specifically, given the phase profile of the measurement
close to the shell lens, the field at this position seems to converge, while considering the
measurement farther away from the shell lens, the field seems to diverge. Combining these
observations for the behavior of the field in the two measuring planes, the field picture produced
by the shell lens seems to resemble that of Figure 6-8, instead of being collimated.

Converging Diverging

Figure 6-8. Ray picture representation of the field produced by the shell lens.

Using this insight derived from the examination of the measurements, the modelling tool
presented in the two previous sections will be employed in an effort to identify the cause of the
observed focusing effect.

6.3a. Physical displacement

Arguably the simplest reason which can lead to the replication of the observed focusing refers
to simulating a physical vertical displacement between the origin of the spherical wave incident
of the shell lens surface and the lower focus of the ellipse. More specifically, if the lower focus
of the elliptical shell lens is displaced above the spherical wave origin, the produced ray picture
starts to feature the observed focusing effect as illustrated through Figure 6-9.
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Figure 6-9. Ray picture of shell lens assuming kincsnen = 7, for (a) lower focus of ellipse coinciding with origin of
spherical wave and (b) lower focus displaced above spherical wave origin.
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Even so, in order to begin to replicate the focusing observed in the measurements, the
required displacement of the elliptical lens must be in the range of 7 mm, as indicated through
the phase profile comparison shown in Figure 6-10. Considering the physical size of the
structures, such a difference in dimensions is unreasonable to assume since it would be easily
identified in either the core or the shell lenses. As a result, this option can be ruled out.
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Figure 6-10. Phase profile comparison between measurement and recreated field close to the tip of the ellipse, with
and without displacement of the shell lens.

6.3b. Core lens material permittivity

The next potential cause that can recreate the observed focusing refers to featuring a larger
than anticipated permittivity in the core lens material. In this case, given the more resonant
structure, the origin of the near field spherical wave would drop farther below the ground plane.
In turn, this would cause the core lens to act as an extended hemispherical lens, thus forming
a virtual focus even farther below the ground plane. Having said that, in order to create an
impactful difference between the expected origin of the spherical wave and the virtual focus,
the relative permittivity of the core lens material would need to be significantly increased
(&r.core = 20), as indicatively showcased by the ray picture illustration of Figure 6-11.
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Figure 6-11. Ray picture for core lens assuming spherical wave incidence, for (a) &.core =14 and (b) & core =20.

Similar to the previous case of the physical displacement, considering the permittivity
values necessary to cause the required displacement together with the measured values for the

permittivity of the PREMIX (& measurea = 9:3), this effect can also be ruled out.
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6.3c. Shell lens material permittivity

Having elaborated on the possibility of recreating the measured focusing effect through either
a physical displacement or an increased permittivity for the core lens material, the next step
in the examination process refers to considering the impact of changing the plastic material’s
permittivity. In particular, the elliptical structure of the shell lens is designed such that it
transforms a spherical wave originating from its lower focus to a plane wave and vice versa.
This process is very much dependent on the permittivity of the plastic, since its value
determines the level of refraction at the plastic-air interface and as such the overall behavior
of the elliptical structure. In fact, if the geometry of an elliptical structure is designed expecting
a certain permittivity but the actual permittivity of the utilized material is larger; the refraction
on the shell surface is increased, essentially causing a focusing effect as indicatively illustrated
through the ray pictures presented in Figure 6-12.
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Figure 6-12. Ray picture outside the elliptical shell lens designed for a permittivity of 2.3, assuming spherical wave
incidence (kincsnen = 1), for (a) &rshelt =2-3, (b) &rsnenn=2.5 and (c) & spert =2.8.

Using this insight, the model described through the previous sections will be employed in
an effort to recreate the magnitude and phase profiles obtained from the measurements of the
assembled prototype. Defining the geometry of the elliptical lens with the expected relative
permittivity of HDPE (e, sn.y=2.3) and testing different permittivity values for the plastic, we
are able to reproduce the measured patterns with sufficient accuracy for permittivity values
in the range of 2.8 to 2.9. This is indicatively showcased through the comparison presented in
Figure 6-13, corresponding to a plastic permittivity of 2.85.
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Ex (Ho-plane), 8.5 cm from tip of ellipse, f = 150 GHz 50 Phase of Ex (H-plane), f = 150 GHz
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Figure 6-13. Measurement and simulation comparison for close position, (a) magnitude and (b) phase profile and
for farther away position (c) magnitude and (d) phase profile.

As visualized through the figures above, the magnitude and phase profiles are recreated
with significant accuracy for both the close and the farther away measurement setups. The
impact of employing a plastic with such a different permittivity from its nominal value on the
antenna performance, can be clearly indicated through either the above phase profiles or the
illustration of the focusing effect in Figure 6-8. Even so, to showcase this even further, the
directivity of the shell lens is presented versus frequency for large permittivity variation through
Figure 6-14, considering that the value for which the elliptical lens is design is &, gpe;y =2.3. The
illustrated directivity' is computed using the recreated free space patterns of the shell lens.

D. _ 4TR?|Emax|?
irmax —

(6.2)

Z(OPrad,feed’

Where Prad feea corresponds to the power radiated by the double slot described in section 6.1
inside an infinite dielectric region with relative permittivity of €, ... and R refers to the distance
between the tip of the elliptical shell lens and an observation sphere in the far field.
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Figure 6-14. Directivity tolerance for significant permittivity variation of & speu -

To conclude this section, it is worth mentioning that the presented study and thought
process led to the measurement of the permittivity of the plastic used in the assembled
prototype of the Fly’s Eye antenna, extracting its value to be very close to the estimated one
(& measurea = 2.83) and as such identifying it to be the issue of the assembled prototype.

I The directivity includes both the spillover and reflection losses of the core-shell structure.
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6.4. Tolerance study

Having discussed the utilization of the developed model towards studying the measurements,
this chapter will conclude with a brief tolerance study regarding the impact of the plastic’s
permittivity to the performance of the Fly’s Eye antenna. For this purpose, a reasonable
variation is considered for the relative permittivity of HDPE (£0.1) with its nominal value,
i.e., the one used for the definition of the elliptical structure, being &, yppr = 2.3. The resulting
directivity comparison is presented through Figure 6-15. It is worth noting that this
comparison refers to the developed model and thus it’s not the exact directivity values that
must be taken into account but the impact of changing the permittivity from its nominal value.
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One noteworthy question that arises from the comparison presented above, refers to the
reason behind the bigger impact in the antenna directivity when using a larger permittivity
plastic compared to that for a lower permittivity, especially noticeable at higher frequencies.
To give an answer to this question the problem will be decomposed in two parts, separating
the impact of the elliptical shell lens from the primary pattern of the core lens structure. To
identify the former, the analysis in reception is employed to derive the Geometrical Optics
(GO) fields in the Fourier Optics (FO) sphere produced by an incident plane wave from
broadside, as illustrated through Figure 6-16 (a). This process is repeated for the above
examined permittivity values, with an elliptical lens geometry defined for &, gpo; = 2.3. The
impact of the different permittivity values can be clearly illustrated through the phase variance
of the GO fields over the FO sphere, as shown in Figure 6-16 (b).
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Figure 6-16. (a) Ray tracing of incident plane wave to FO sphere for &, spen=2.3 and (b) phase variance of GO
fields over the FO sphere for f=170GHz.
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As visualized from the above phase variance, while for the nominal permittivity of the
plastic (&spen = 2.3) the phase is constant over the FO sphere, the same cannot be said for the
other two examined cases. However, given that the level of phase variance does not significantly
change between the two cases (&.speny = 2.2 and 2.4), one can anticipate that, on its own, the
elliptical lens cannot justify the different impact of the two permittivity values observed
through Figure 6-15. As such, to identify the reason behind the bigger impact of the larger
permittivity, the behavior of the primary patterns illuminating the shell lens must also be
considered.

Analyzing lenses in reception enables the evaluation of their performance in terms of the
field matching between the GO fields and the field of the feeding structure in the FO sphere.
In fact, when the GO and feed fields are conjugate matched, the component’s aperture efficiency
is maximized; meaning that the obtained directivity approaches the maximum possible one for
the given aperture size. Having said the above, to evaluate the antenna performance in
combination with the change in the structure’s permittivity, the phase of the primary patterns
will be compared to the conjugate of that of the GO fields in the FO sphere for the three
different permittivity cases (&-gpey = 2.2, 2.3 and 2.4). The reference system used to derive the
field is displaced by 0.27 mm above the ground plane, corresponding to the physical position
of the lower focus of the shell lens in the Fly’s Eye antenna prototype. The resulting comparison
of the phases over the FO sphere for a frequency of 170 GHz, is presented through Figure 6-17.
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Figure 6-17. Phase comparison over the FO sphere between main planes of feeding structure and GO fields at 170
GHz, for (a) €rsnen="2-2, (b) €rsneu=>2.3 and (c) & sneny=2.4. The observation angle 8 refers to a reference system
displaced above the ground plane to the position of the lower focus of the elliptical shell lens (A shen=0.27mm,).

Given the behavior of the phase of the primary pattern over the FO sphere relative to that
of the GO fields, as illustrated through the figures above, it can be deduced that the phase
matching is much more degraded for the larger permittivity of the plastic, compared to that
for the smaller permittivity case. This essentially justifies the different impact in the directivity
observed through Figure 6-15.
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In order to provide a physical explanation of this effect in terms of the core-shell structure
design, one must consider the relative position of the spherical wave origin compared to the
lower focus of the elliptical structure. As a first step in this consideration, the ray tracing of
the broadside incident plane wave is performed for the three different permittivity cases, as
visualized through Figure 6-18.
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Figure 6-18. Ray tracing of broadside incident plane wave for (a) & snen=2.2, (b) €rsnen=>2-3 and (c) &rspen=2-4.

While the only structure for which the elliptical lens focuses the rays to a single point is
the one with the nominal permittivity (& gy = 2.3), it is worth noting that for larger
permittivity values in the plastic, the rays are focussed above the lower focus of the elliptical
lens while for smaller values they are focussed below. Taking into account that the spherical
wave origin of the primary patterns changes with frequency, together with the directivity
comparison presented through Figure 6-15, one can deduce that the phase centre of the primary
pattern at higher frequencies is below the chosen lower focus of the elliptical lens, approaching
the focussing point for the lower permittivity (Figure 6-18 (a)). This can in turn be attributed
to the choice of the lower focus placement in the design process such that it improves the Fly’s
Eye antenna performance at the lower frequencies of the desired band of operation (140-170
GHz). To showcase the latter, the field inside the plastic will be derived through a full-wave
simulation (CST) of the core lens structure, considering the double iris shaped slot etched in
the ground plane and a plastic permittivity of &, ;4o = 2.3. Subsequently, the extracted far field
will be introduced into the GO/FO tool of [42] to derive the resulting aperture efficiency for
different positions of the lower focus of the elliptical lens relative to the ground plane. The
improvement of the lens performance at lower frequencies for lower focus placements above the
ground plane can be visualized through Figure 6-19.
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Figure 6-19. Aperture efficiency comparison for different positions of the lower focus of the shell lens. The
displayed efficiencies are derived using the far field inside the plastic obtained by a full-wave simulation and the

GO/FO tool of [42].
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.1. Summary

Excluding the introduction as well as the motivation for this work which were presented in
Chapter 1, the content of this thesis can be neatly separated into two parts. The first, comprised
of Chapter 2 and 3, provides an extensive description of the mathematical steps required for
the efficient evaluation of the near field of a leaky wave structure. Following this, the second
part which consists of Chapter 4 to 6, presents some basic implementations of small lenses and
describes the development of a model for the Fly’s Eye antenna concept as well as its utilization.

As discussed through Chapter 1, the motivation for developing a computationally efficient
approach to evaluate the near field of a leaky wave structure lies on the potential of shaping
the core lens of the Fly’s Eye antenna. Towards this goal, Chapter 2 provides an extensive
description of an efficient numerical method in which the involved complex integrals are
evaluated over the path of steepest descent in the spectrum. Using this background, in Chapter
3, an approach for the asymptotic evaluation of the integral expression resulting from the
steepest descent path method of integration is presented. While this method substantially
improves the computational efficiency, essentially mitigating the need for any spectral
integration; its accuracy is based on the applicability of the approximation described through
section 3.2c. In a few words, the utilized approximations enable the derivation of the near field,
provided that at the examined region the latter resembles a spherical wave around broadside.
For a leaky wave structure around resonance, this assumption can be performed even very close
to the leaky wave cavity given a proper choice of the phase centre position as described through
[20] and elaborated in section 3.2d.

The complete discussion presented through Chapter 3 considered the evaluation of the near
field for the case of an elementary source. To build upon this concept, the initial stages of
Chapter 4 elaborate on the complications involved in the asymptotic evaluation process when
an actual source is introduced, treating the case of a double straight slot in the ground plane.
Following this, some basic small lens concepts are examined, showcasing the far field
convergence in wideband structures up to the shadow boundary angle, as well as the potential
improvement of the spillover efficiency for resonant structures when placing lenses in the near
field. Subsequently, Chapter 5 describes the combination of Physical Optics techniques that
can be used to replicate the impact of the core-shell structure, with Chapter 6 combining those
techniques with a simplified representation of the iris shaped slot to develop a model of the
Fly’s Eye antenna. Finally, the last part of Chapter 6 describes the utilization of this model for
troubleshooting during the measurement campaign of the Fly’s Eye antenna prototype.
Through this process it showcases how the model contributed to identifying the problem in the
antenna prototype, by simulating different design alterations with the aim of recreating the
measured patterns. This led to the identification of the problem as the shell lens material
relative permittivity, which was substantially different from its nominal value.

7.2. Conclusions

To supplement the summary of the content of this thesis presented above, the most noteworthy
concluding remarks will be outlined in the following section.

» The spherical wave nature of the near field of a leaky wave structure arising from the proper
choice of phase centre [20], allows its asymptotic evaluation through an approximation that
mitigates the branch singularity of the Hankel function (section 3.2c). This enables the
subsequent asymptotic evaluation of the near field integral expressions, through treating
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only polar singularities related to the leaky wave modes supported by the examined
stratification.

» This approximation’s accuracy can be enhanced through modifying the phase centre choice
above and below the shadow boundary angles. This approach could be further improved by
defining additional angular regions for the treatment of the TM integrals, in order to also
account for the TMy leaky wave mode (section 3.2d).

» Since the introduced approximation is based on the spherical wave nature of the near field,
it’s accuracy along broadside progressively degrades as the observation point moves closer
to the source. An indicative estimate for its applicability region identified it to be radial
distances larger than 1.5 4, for the wideband and 8 2, for the resonant leaky wave structures
(section 3.3d). However, it should be noted that the applicability region must be defined per
individual case, considering the acceptable accuracy and the angular region of interest.

» Regarding the source inclusion, the treatment of the near field integral expression depends
on the nature of the source’s spectrum with respect to the principle exponential term of the
integrand (section 4.1). To maintain an accurate representation of the near field for the
distances of interest, the examined double straight slot was treated through superimposing
two straight slots. In this manner, the source’s spectrum could be assumed to be slow varying
with respect to the exponential for each slot, allowing the closing of the a integral through
the SPP approximation.

» The asymptotic approximation of the near field can be combined with a set of Physical
Optics techniques to model the core-shell structure of the Fly’s Eye antenna. This becomes
useful when the structure needs to be simulated several times, since the asymptotic
approximation negates the need for any spectral integration in order to calculate the near
field, making it very computationally efficient. In particular, the asymptotic approximation
of the near field is roughly forty times faster compared to the numerical evaluation of the
same SDP integral expressions.

» The elliptically elongated double iris shaped slot of the Fly’s Eye antenna has been
approximated via a simple double straight slot to model the core-shell structure in an efficient
manner. In turn, this provided a versatile tool that was employed to evaluate the antenna
performance during the measurement campaign of the Fly’'s Eye antenna assembled
prototype.

7.3. Future work

Asymptotic approach - elementary source

As was noted through several parts of this thesis report, the asymptotic approach presented
through Chapter 3 for the evaluation of the near field, and more specifically the treatment of
the Hankel function, is based on the nature of the near field. As such, its applicability is limited
to regions where the near field spherical wave formation along broadside can be assumed. While
this can indeed be employed for the study of small lenses in wideband stratifications, similar
to the core lens of the Fly’s Eye antenna, a neater approach would require asymptotically
treating the branch of the Hankel functions similar to what was done in [43]. Even if this would
substantially complicate the presented asymptotic analysis, requiring separate treatment for
the branch singularity both in the regularized part as well as the polar contribution, while also
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necessitating the separate treatment of the small and large argument representations of the
Hankel function, it indeed constitutes an interesting aspect for future study. Essentially, if the
approximation of section 3.2c is not employed, there would be no inherent limitation for the
applicability region of the asymptotic approach, enabling further studies on the wave
phenomena which drive the radiation process for leaky wave structures.

Asymptotic approach — source inclusion

Another important aspect that would be a significant improvement of the asymptotic approach,
refers to the treatment of the source. In particular, the approach described through Chapter 4
considered as a given the closing of the integral in « in a similar manner to what was done for
the case of elementary sources (section 2.2a). This approach led to the separation of pairs of
sources into distinct elements (section 4.1b) and their subsequent treatment through
superposition. Having said that, another potentially interesting alternative would be to expand
the spectrum of the source in a Fourier series prior to closing the integral in «, as given below.

Co(ky @) = Z ek, )eIn
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(7.1)

Where the coefficients ¢, (k,) can be represented by the generalized pencil of function (GPOF)
method [44], as in [21].

In this manner, the a integral can be closed analytically through a term-by-term integration
into Bessel functions using the following identity.

fozne‘f”“e‘f"ﬂp cosl=0) g = 2m(—j)"e ], (k,p), (7.2)

This process would result into a sum of single complex integrals in k, with Bessel and in
turn, through the use of (2.3), Hankel functions of higher order. As a result, while it allows for
a more generic treatment of any source, in terms of the asymptotic evaluation of the near field,

this approach would necessitate dealing with Hankel functions of higher order in addition to
those already presented in the integral representation.

Shaping of the core lens

While up till now the proposed future steps referred to the overall improvement of the
asymptotics, in the following paragraph the future applicability of such a computationally
efficient approach will be described. More specifically, having presented an asymptotic method
able to evaluate very fast the near field on small lenses, the latter can be used in combination
with an optimizer to further improve the performance of the Fly’s Eye antenna via changing
the core lens shape. For example, the core lens can be made conformal to the incident field,
thus acting as an ideal transition; or alternatively it can be shaped with the aim of enhancing
the aperture efficiency for displaced feeds, in turn improving the scanning capabilities of the
core-shell structure. Such an approach can be employed in combination with laterally displacing
the feeds for scanning cases, as in [45]|, in order to derive shaped variants of core lenses
depending on their position in the focal plane, or in other words the scanning they produce.

It should be noted that in order to optimize the Fly’s Eye antenna performance through
shaping the core lens, the simplified model of the iris shaped structure presented through section
6.1b would not be sufficient. Instead, a simple approach to improve the modelling process would
be to segment the iris structure and represent it through a superposition of elementary sources
or straight slots, using the process described throughout this thesis.

To conclude, all the above presented ideas are yet to be further explored, with their analysis
and implementation expected to be the continuation of the work presented in this thesis.
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APPENDICES

Appendix A. Spectral Green’s function

The Green’s functions correspond to the impulsive response of the examined structure, i.e., the
fields radiated by an elementary source, with distinct variants relating different kinds of sources
(Jeq or Mey) to different types of fields (E or H). For any stratified structure with an arbitrary
number of planar and unbounded dielectric layers, obtaining the Green’s function primarily
requires solving for the voltage and current potentials of the equivalent transmission line
problem. This equivalent problem is in turn constructed with respect to the examined structure,
where E-field discontinuities in the stratification (i.e., magnetic currents) correspond to series
voltage sources in the transmission line model, while H-field discontinuities in the stratification
(i.e., electric currents), relate to parallel current sources. For the stratified structures presented
through Figure 2-1, the equivalent transmission line models are depicted through Figure A-1.
The only difference between the two refers to the dielectric properties of the cavity and semi-
infinite regions, as well as the physical height of the cavity.

. . Wideband structure i _Resonant structure
1 1 1
z z
vinf,+ A ﬁ Uinf,+ ﬁ A
Zd?mf’ kd?mf Zd,inf’ kd,inf

I ........... I ................ L2 =h :E ........... I ................ Lz =n

— < > — |

cav’ cav o’ Vo

(a)
Figure A-1. Equivalent transmission line models for (a) wideband and (b) resonant structures of Figure 2-1.
Once the equivalent transmission line model has been extracted, the voltage and current
potential functions can be obtained in a straightforward manner as will be presented through
Appendixz B. More specifically, two different types of potential functions can be derived, labelled
as TFE and TM solutions (vrg, irg and vry,iry ). These correspond to the fields produced by the
different kinds of auxiliary potentials introduced for the derivation of the Green’s function for
the stratified structure, namely the TE solutions relates to the electric vector potential (F),
while the TM to the magnetic vector potential (4). Having discussed the above, the voltage
and current potential functions can be substituted into analytical expressions for the spectral
Green’s function of stratified media. Considering the examined structures which feature
equivalent magnetic current distributions in the ground plane, the required dyadic spectral
Green’s function (G*") for planar sources (i.e., along x or y), is given below.

(VTM(kkayvzvzs)_VTE(kx‘kvast))kxky UTE(kx,ky,Z,ZS)k32,+vTM(kx,ky,Z,Zs)k,2¢
kb kb
Gem (kx' kyr z, Zs) — vrE(kx Ky 2,25)k2+vrM (K ky,2,25) K3 (VTE(kx.ky,Z‘Zs)—VTM(kx'ky'Z'Zs))kxky ;
k2 k2
[ b
_ qdky iTM(erkyrZrZs) qdkxiTM(kx:ky:Z:Zs)
ka kq

(A.1)
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Since this work focuses on the derivation of the field in the semi-infinite region of the leaky
wave structure, the potential functions can be written as follows, expressed in terms of the
voltage and current wave amplitudes in the semi-infinite region (vfyz and ify rz) together
with the exponential term relating to the propagation inside the latter.

— 7t —jkzz
UTM/TE(kx' ky' Z, Zs) - UTM/TE (kx' kyt Zs)e iz

. . kg (A.2)
lTM/TE(kxv ky, z, Zs) = l;M/TE(kx' ky, zg)e JkzZ

Introducing this notation to (A.1), allows for the extraction of the z dependence from the
dyadic expression when examining the field in the semi-infinite region of a leaky wave structure.

~em _ pem —jkyz
G™(ky ky, z,25) = D™ (ky, ky, z5)eTHe%, (A.3)
(vim—viglkcky  vigk§+viyk:
k2 k2
+ 2p+ 2 + +p v =y} (k k Z)
Wh l=)em(k K ) | viekiviymkd  (vig-viy)kiky d TE/TM TE/TM\"x) Kyr Zs
ere x Ky Zg) = P 2 an - ot (k ' )
4 P lre/rm = lrerm\Kx) Ky» Zs

_ zdky i;"—M dex i’ltM
kq kq
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Appendix B. Transmission line solution

The leaky wave supporting stratifications introduced in Chapter 2 and subsequently discussed
in the remaining of this document, consist of a resonant cavity confined between a ground plane
and a semi-infinite dielectric region, with all planar layers assumed infinite and untruncated.
The equivalent transmission line models for both the wideband and resonant structures of
Figure 2-1 were illustrated through Figure A-1 and their purpose of deriving the potential
functions (vrg/ru, irg/ru) to be subsequently introduced in the analytic expression of the spectral
Green’s function (A.1), has been discussed in Appendiz A. In the following appendix section,
the solution of this transmission line model will be extracted both for observation points inside
the cavity and the semi-infinite region. Furthermore, the different treatment required for the
TE and TM solutions will also be discussed.

Before proceeding to the transmission line solution itself, it should be noted that the spectral
Green’s function given through (A.7), is modified such that the transmission line voltages and
currents solutions correspond to an equivalent problem with unitary amplitude sources. In other
words, H-field discontinuities in the stratification are substituted by I A parallel current
sources, while E-field discontinuities are replaced by 1 V series voltage sources. Consequently,
assuming a generic planar magnetic current source in the ground plane (M,,) of the examined
stratification, a unitary amplitude voltage source is used in the equivalent model. This voltage
source is placed in series with the short representing the infinitely extending ground plane,
assumed to be a perfect electric conductor.

Having said the above, for the derivation of the analytical solution of the equivalent
transmission line problem, the complete expressions for the voltage and current representations
are formulated in each transmission line section and the voltage continuity is enforced at the
interfaces (boundary conditions), resulting in all the necessary voltage wave amplitudes. As a
first step, the derivation of the voltage and current transmission line solutions is performed for
the structure of Figure B-1 (a), featuring its reference system on the ground plane. The variable
z; included in the following expressions refers to the height of the source in the stratifications.

1 1
1 1 Z,
A
AZ
Zd,inf’ kd,inf
Zd,mf’ kd,mf
------------------------------- rz' = A, +h
_______________________________ L7z = h
cav’ cav
Z
cav’ eav
.............................. Lz = A,
.............................. Lz =0
__________________________________ Lz =0
(a) (b)

Figure B-1. Equivalent transmission line model of wideband structure for reference system (a) in ground plane
and (b) displaced by A, below the ground plane.
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For section representing the cavity (0 <z <h)

Veav(kp, 2,25 = 0) = vegy 4 (ky, zg = 0)e T Fzcar? (1 + (k2 ZS)),

(B.1)

v, _(kp,zs=0 :
Whel‘e [:'l(kp: Z’ZS = 0) = MelZI(z,cayz‘
Vcav,+(kp.zs=0)

Expressing the reflection coefficient at a height z inside the cavity (I (k,, z z:)) in terms of
its value at the interface z = h (I}):

Zinf—Zcav Veav,—(Kp,Zs=0) iop h j2k -h
I, =1k, h oz, =0) =22L = <o ef2kzcavh = [ (k ), 2,2z, = 0) = [yel2kzcav(z=h) B.2
A 1( pr b 4g ) Zinf+anv Vcav,+(kp:zs:0) 1( pr 4 és ) A ’ ( )

Enforcing boundary conditions (voltage continuity) for the voltage solutions at z = 0:

Vear(kp, 0,25 = 0) = 1= v (kp, 2, =0) = 1 = vpgy 1 (kp, 2, = 0), (B.3)

Combining (B.2) and (B.3) results in the required voltage wave amplitude.

Vean e (p 22 = 0) = e (B.4)

The current solution can be expressed in a straightforward manner through the voltage
wave amplitudes as given below, with both the transmission line solutions at a height z inside
the cavity presented through (B.5).

(kp'Zs = 0)

vCaU‘l' . .

1 — — 4 —jk 2ik —h

lcav(kp,Z’ Zs = O) = e ] z,cavz(l — {Ae Jkzcav(z ))
anv

e—jkz,cavz(1+rAeszz,cau(Z—h))

Voltage & Current solutions Veav (kP’ % Zs = 0) -

for the dielectric cavity (z < h):

14T ge 2Kz cavh

(B.5)

e—sz,cavz(1_pAeszz,cav(Z—h))

icav(ky 2,2, = 0) =

Zeap(14T ge2Ikz cavh)

For the section representing the semi-infinite medium (z > h)

Assuming an infinitely extended dielectric region, the voltage and current solutions can be
expressed as follows.

vinf(kp, Z,Zg = 0) = vinf_+(kp,zs = O)e_jkz'i"fz & iinf(kp, Z,Zg = 0) = %ﬁvinf‘+(kp, zZy = O)e_jkz'i"fz

Evidently the current solution (iy,s) can be directly derived through dividing the voltage
solution (v,r) with the characteristic independence of the transmission line section (Z,s). This
results from assuming no reflections at any height of the examined dielectric region, which in
turn leads to the existence of a single propagating wave along positive z. Having said that,
enforcing voltage continuity at the interface of the two regions (z = h), returns the required
voltage wave amplitude.

_ _ _ _ _ 14Ty i(k, inr—k h
vinf(kp' h,zs = 0) = vcaV(kp' h,zs = O) = Uinf.+(kp' Zs = 0) - We]( ninf Kz cav) ; (B.6)
. = —_  14la j(kz,inf_kz.cav)h —jkzinfz
Voltage & Current solutions for Vinf (kP' Z,Zs 0) 14T 4o 2Jkzcavh e e
1 144

semi infinite dielectric (z > h) " s (ky 2,2, = 0) = e (kzimf—Kzcav)h o =Jkz,infz

Zinf 1+FA€_2jkzvcavh

(B.7)
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As evident through equations (B.6) and (B.7), due to the existence of a single propagating
wave in the semi-infinite region, the voltage and current potential functions can be decomposed
into their respective wave amplitudes, featuring no z dependence, and the exponential term
corresponding to the propagation inside the semi-infinite medium. For the examined structure
of Figure B-1 (a), this decomposition is expressed through equation (B.8).

vinf(kp,z, z;=0) = v;;lf(kp, Zy = O)e‘jkz"'"fz & iinf(kp,z,zs =0)= i;;lf(kp,zs = O)e_jkzinfz7 (B.8)
1+ i P

v?‘r—lf(kp' zZ, = O) = Wej(kllmf kz,cav)h

where

7 — - 1 1+ j kzin _kzcav h
ity (kyr 25 = 0) —Emd( /o)

This nature of the transmission line solution is what enables the extraction of the
exponential term relating to the propagation inside the semi-infinite region from the dyadic
part of the spectral Green’s function, as was showcased in Appendiz A (A.3).

Regarding the distinction between the TE and TM cases, the above expressions for the
transmission line solutions (B.5), (B.7) can be employed for both, with the only difference being
the characteristic impedances of the transmission line sections as given below.

For TE solution: (Z,.,,,Z:¢) = (Z AT 7 .z
( cav mf) ( TE,cav TE,mf) where ZTE,i _ l:_ﬁ & ZTM,i — ki—lzl
For TM solution: (an,,, Zl-nf) = (ZTM’ca,,,ZTM‘mf) z ‘

Displacing the reference system

Considering the structure of Figure B-1 (b) with its reference system displaced by A. below the
ground plane (A, > 0), the voltage and current solutions in the semi-infinite region are
transformed as follows, where z' = z + 4, as evident by Figure B-1.

Voltage & Current solutions for Ving(k, 2’25 = 4,) = v;lf(kp! zy = A, )e Tizins?
semi infinite dielectric (z' > h+4,) i (2, 25 = A;) = ifip (K p 25 = Az)e—jkz,infz’

(B.10)

14T

+ — -_ -TA

) vinf(kp' Zs = AZ) - 1+rAe—2jkz,cavh
with i (k2 = 4 ) 1 1474

infATPr 2 T T2) T Zing 141 g Kz cavh

ej(kz,inf_kz,cav)he jkz,ianz

ej(kz,inf_kz,cav)he jkz,ianz

With the aim of relating the displacement of the reference system with the spectral
representation of the field in the semi-infinite region, presented through Chapter 2 and utilized
in this document, the voltage wave amplitudes for the two structures of Figure B-1 can be
associated as follows. The same expression applies for the current wave amplitudes.

vitlf(kp, Zy = AZ) = vitlf(kp, Zy = O)ejkz'i”f“z, (B.11)
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Appendix C. Mapping to the angular spectrum

The transformation to the angular spectrum is a very convenient step for integrals with similar
form to that of (2.4), since it removes one branch pair (that at +kg,), facilitating substantially
all the subsequent theoretical manipulations. A short discussion regarding the single valued
nature of this transformation as well as the periodicity of the angular spectrum was presented
through the second part of section 2.2d. For the completeness of this discussion, a brief
description of the mapping from the rectilinear to the angular spectrum will be included through
the following appendix section.

Due to the single valued nature of the transformation (2.8), both Riemann sheets of the
rectilinear spectrum (k,) are mapped into adjacent regions of a single Riemann sheet in the
angular spectrum (). This is illustrated through Figure C-1 (a) and (b), where the horizontally
shaded regions in the angular spectrum correspond to the top, while the vertically shaped
regions refer to the bottom Riemann sheets of the k, complex plane.

The depicted mapping can be derived in a simple manner by separating k, and k, into their
real and imaginary parts through substituting the complex angle variable g = g, + jB;, as
follows.

ky = kq(sin(By) cosh(By) + jeos(B,) sinh(B;))

k. = ka(cos(,) cosh(B) — jsin(B,)sinh())’ (¢4)

As an indicative example, region 1 of Figure C-1 (a) features positive real and imaginary
part of k,. This corresponds to the sections of the angular spectrum with 0 < Re(B) < n/2 and
Im(B) > 0 as well as that with n/2 < Re(f) < m and Im(f) < 0. In turn, these two regions
feature different sign for the imaginary part of k, with the former referring to the top while the
latter to the bottom Riemann sheet of the k, complex plane. The same process can be applied
for all regions of Figure C-1 (a), resulting to the mapping presented below.

I
Im(k,) )
® © lelie| SO=Z0=
Re(p)
Re(k,) -
— _ = e T
2 2 |
@ @ =2 Y= lili\¢ 1
Top RS = Bottom RS |||
(a) (b)

Figure C-1. Mapping of the (a) four quadrants of the k, complex plane, to the (b) principal strip (-m,n) of the
angular spectrum.
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Appendix D. Magnetic field components derivation

The integral expressions for the electric field in the semi-infinite region of a leaky wave structure
fed by a y-oriented elementary magnetic current source in the ground plane, have been
presented through section 2.2a. Considering those integrals, Chapter 2 and 3 elaborated on
numerical and asymptotic methods for their evaluation. Regarding the magnetic field integral
expressions, they can be formulated and subsequently evaluated in a similar manner as those
of the electric field, with the only difference between the two cases being the employed Green’s
function of the stratified structure (Ge™ for the electric field and G"™ for the magnetic field).
The required steps, starting from the expression of the magnetic field as the inverse Fourier
transform (D.1), up to the formulation of the integral expression through a represenation which
enables contour deformations (D.5), are presented below. It should be noted that the following
expressions refer to the reference system displaced below the ground plane by A..

HGEY = 25 [*2 [*2 D" (ky, ky, 4,) - 9o~/ ekt ~IhvY dk dk, . (D.1)
kx=kp cos(a)

y=kp sin(a) _, 1

k [o%e} = . 12 .
D.1)=———HGF) == fOZ"Dhm(kp,a,Az)- yeIkaz g=ikppcos@=@ dq dk,, (D.2)

an?
The required projection of the dyadic part of the Green’s function relating magnetic fields

and currents (D"™) for the semi-infinite region, to the y unitary vector, is given below. It should

be noted that all the showcased expression corresponds only to the semi-infinite dielectric

region, since the z dependence of the potential functions is explicitly extracted, with vig ry,

i ferri h litud di din A dices A and B

izgrm referring to the wave amplitudes as discussed in Appendices A and B.

(L';EM(kp,AZ) - i;’E(kp,AZ)) sin(2a)
DM (kp 0, 8,) -9 =3 | = (ihu (ks 42) + i (lep, 4,) + (i (kp, 4,) = i (K, 8,) ) cos@a)) |, (D.3)
ik‘, sin(a) v}'E(kp,Az)

Introducing the expression (D.3), into the inverse Fourier transform of (D.2) and evaluating
the a integrals through the identities of (2.2 a), results into field expressions featuring a single
complex integral in k,.

—sin(2¢) (ify — i;E)]z(ka)
=10 - (Gte + thado(kop) + co5(20) (iFz = )2 (kpp) ) | e=e'k ke,
. 2 .
~J g sin(@)vighi (kpp)k,

H, ()
H,(7")
H, (")

(D.4)

Finally, the Bessel functions are transformed into Hankel functions of the second kind
through the use of (2.9), resulting to integral expressions whose formulation facilitates contour
deformations and thus the steepest descent path method of integration as well as the subsequent
asymptotic evaluation.

— 5in(29) (ity — i) HP (kop)

H, (7")

Hy ()| == [ —((i&+i;M)HéZ)(kpp)+cos(2qo) (i;E—iiM)Hé”(kpp)) eIk ke dk,,
H,(#' .2

() —j Esm(qo)v}’EHl(z)(kpp)kp

(D.5)
Where for both (D.4) and (D.5), vigrm = vigm(kp,4;) and ife .y = iferm(ko 47)
The final integral expressions of (D.5) are in a similar form to those of the electric field

(2.4) and thus can be evaluated through either of the numerical methods discussed in Chapter
2 or the asymptotic approach described in Chapter 3.
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Appendix E. Poynting vector angles of residues

This appendix section will discuss the derivation of the Poynting vector angle for the residue
contributions. This angle is obtained through projecting the active part of the time average
Poynting vector to the z unitary vector, as given in the following steps for the TFE and TM
residue contributions respectively. The large argument approximation is used for the Hankel
function (2.5 a) in order to simplify the resulting expressions, while the indicated voltage and
current potentials refer to the wave amplitudes in the semi-infinite region of the structure with
the displaced reference system, thus vi. ry = vig/rm(kp 4,) and ifgry = iferu (ko 4,)-

TE modes

E 7 - 0
N L snrestoty Ho? (K w Pk e ™ e’
Epwre(@) 2 ¢ TE kp=kp w10 (KpLwP)Kpw
E 7' 0
zLW,TE(_)’) — isin( )Res(i+ ) H(Z) (k )k e_jkz,LWZ, ’
Hppw,re(T") 2 ¢ TE)kp=kp w70~ Kp,LwP)Kp 1w
H, 7 0
(pLW,TE(_),) _ 1 . ( )R ( + ) H(Z)(k )k2 —jkzLWZ’
LHoow, e (F) ] L7 2g40 STHP) RESWrE Dk p=tep w1 \Kp LwP ) Kp w7 .
(E.1)
+
Where Res(ifz) = Res(vrE) and Zpysrp = kafa
Zinf,TE ’ kz

Using the field expressions of (E.I), the resulting Poynting vector angle can be extracted
as given below, resulting into expression (F.2).

~

B} 1 . q 1 ST AP A WP
Puw () = 5 Re (B () x Hiy (7)) = sRe| |Ex(™) E,(™) E(M)| | ===
Hy(7) Hy,(7) H;(F")

B, (7) _ (Re(kprw)(cos(p) 2 + sin(@) 9) + Re(k,11)2)

2 2
W (Re(kpi)” + Re(i,u)
5 o s Re(k
Opoyre = acos(Puy (7) - 2) = acos e(Z'LW) - |, (E.2)
\/Re(kp’Lw) +Re(kz'Lw)
TM modes
[ EpLw Tty (7;’,) 1 [ écos () Res (U;M)k!,:kp_LWHéZ)(kp,LWP)kp,LWe_jkz'LWZ
Eorwtm G) 0
21 ¢ . . ’
EzLW,TM(T:") _ —icos(q)) ReS(ﬁM)kp:kp,LWHl(z) (kpLwp) k2 eI *ziw? 7
HpLW,TM(T' ) 0
Howrm (:) éCOS (@) Res (it i =k, H éZ) (kp,cwP)kp e~ Kztw?
L Hypw o (P10 L 0

Using the field expressions of (E.3), the Poynting vector angle is obtained as given through
(E.4), similar to the case of the TE modes.

& an s Re(k;
Opoyrm = acos(Py (7) - 2) = acos e( Z'LW) = |, (E.4)
Re(kp'Lw) +Re(kZ'Lw)

It should be noted that the Poynting vector angles derived above, tends to the one of (E.5),
for cases where the mode’s attenuation constant is not very large.

O, = asin (%‘:W)), (E.5)
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Appendix F. Stationary Phase Point approximation

Arguably the simplest and most common method to asymptotically evaluate radiation integrals
is the stationary phase point approximation. As an indicative example, the implementation of
this method to derive the far field of a stratified structure will be presented in the following
appendix section.

Taking into account that the far field is a spherical wave, it is reasonable to target the
canonical integral of the inverse Fourier transform of the spherical spreading term (scalar
Green’s function) during the asymptotic evaluation of the complex integrals.

—Jjkqr

[ 1% ek ity S dk ke, = [ I ko costam®) 2 L dadk, = 2] S (F.1)

Using as an example the structures of Figure 2-1, fed by a generic magnetic current source
in the ground plane with spectrum C,,(k,, k), the total field in the semi-infinite dielectric region
can be expressed as the inverse Fourier transform of the convolution between the Green’s
function (G°™) and the current distribution of the source.

—

E@) =

— T T G (K, 0, 2,0) - Gy (K, )e 0P 5@ dardky, (F.2 a)

By multiplying and dividing the integrand with k,, the inverse Fourier transform of the
spherical spreading term can be formed inside the integral; together with an amplitude term
comprised of the dyadic spectral Green’s function (D®™), the spectrum of the current source
(C,,) and the spectral variable k,.

elz

= 1 +00 21
E(F):F o J

Dem(ky, @,0) - Cp(k,, @)k, e Ikppcosa=® dadk,, ~ (F.2b)
Employing the saddle point considerations for the double integral of (F.2 b), its dominant
contribution can be identified as the point k,s = kg sin(8) and asp = ¢ (double saddle point),
where (r, 8, ¢) refers to the observation point. Assuming an observation point in the far field
region of the source, i.e., a large enough radial distance (r), the integrand’s phase term oscillates
very fast on the integration path compared to the much slower varying amplitude. As a matter
of fact, this behaviour of a rapidly oscillating phase and a slow varying amplitude, leads to
destructive contributions in all regions of the integration path away from the saddle point,
which can also be considered as the point of least phase variance (stationary phase point).
Since sections of the complex plane where the phase function is fast varying compared to
the amplitude, would not contribute to the integral result, the latter can be asymptotically
approximated by evaluating the slow varying amplitude at the stationary phase point and
extracting it from the integral. Subsequently, the remaining infinite integral can be analytically
closed, given that it corresponds to the inverse Fourier transform of the spherical spreading
term. The aforementioned steps are indicated below together with the resulting far field.

5 . 1 = N +o0 (2 —jkzz . _
(F.2b) = Epp(7) = FDem(kpspt Qsp, 0) ' Cm(kpSP! aSP)szP fo fo nek_ze Tkpp costa (p)kpdadkp =

(3.1) - e~ Jkar

= Epp(7) = ]kzspD (kpSP' Asp, 0) Cm(kpSP: asp) , (F 3)

2nr

To visualize the previously described properties of the stationary phase point, the behavior
of the fast-varying term of (F.2 a) is presented through Figure F-1 (a) and (b) for different
observation points, considering the wideband structure of Figure 2-1.
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Normalized fast varrying part of IF'T integral, § = 0° Normalized fast varrying part of IFT integral, 6 = 25°
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Figure F-1. Fast varying part of (F.2 b) along the real axis of k, spectrum with agp = ¢ and different radial
distances of the observation point (r), for (a) 0=0° and (b)6=25°.

As evident from the above figure, the larger is the radial distance (r), the oscillations away

from the saddle point become more rapid thus the consideration for meaningful contribution of

the

amplitude only in the vicinity of the latter becomes increasingly neat, showcasing the

applicability of the stationary phase point (SPP) method for the far field.



Appendices 199

Appendix G. Regularization approach comparison

In section 3.2b, the necessary treatment for polar singularities approaching the saddle point of
the integrand function was described. While two methods were introduced for the isolation of
the integrand’s polar singularities (regularization), only the additive approach was utilized for
the purpose of the subsequent study. In this appendix section, the choice of the additive
regularization approach will be justified through comparing the resulting formulation with that
obtained by the multiplicative regularization approach. For this purpose, the same indicative
integral treated in the example of section 3.2b, will be evaluated with the multiplicative
approach.

Jsop vz (ka Sin(B), A;) cos(p) e*Pdp = ekar’ [T G (s)e™ ds, (G.1)
Where GI(s) = vis (ka sin(B), 4,) cos(B) 57, 2= kqr’ and q5(B) = ~jcos(B — 0.

Multiplicative pole treatment

In contrast to the additive method, in the multiplicative pole treatment introduced by Pauli-
Clemmow for a simple pole and expanded by Bleisten [38|, the function G(s) is expressed as
the product of two functions, namely G(s) = Tpc(s) B(s), where Tpc(s)is regular around the
saddle point while B(s) contains the poles of G(s). Subsequently, similar to the additive method,
the regular part can be expanded into a power series around the saddle point, while B(s) needs
to be decomposed into a summation of simple poles. In turn the product of these two expressions
can be evaluated through term-wise integration, using either of the integrals given in (3.10).

Whereas, for the additive regularization method a function describing the behaviour of the
vrp around the aforementioned polar singularities was needed (3.13), for the multiplicative
approach only the positions of these poles in the s-plane needs to be derived. The latter is
obtained by using the mapping given in (3.9) considering that the positions of a polar
singularity in the angular and rectilinear spectrum are related through B,y = asin(k, w/kq).

The regularized part derived through the multiplicative approach is given below, labelling

the mapped singularities j:k;i},v to the s-plane as sy and sy _ respectively.
. d
TPCTE(S) = vip(kq sin(B), Az)(s - STE,+)(S - STE,—) cos(B) d_f; (G.2)

To showcase the equivalent impact of this regurlarization approach compared to the
additive case, the spectral regions depicted through Figure 3-3 and Figure 3-4 are also visualized
for TZE (s) in Figure G-1.

Bottom Riemann sheet sections of regularized (PC) Tpc,, (s) = vig(ky AL) (s — ste4) (s — sre—) cos(B) dB/ds
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01 0.2

Im(kp)/k{l.inf

Figure G-1. Bottom Riemann sheet of the regularized part through the multiplicative method (TEE(s)). The
depicted sections of the rectilinear (k,) spectrum are indicated in the inset of Figure 3-3.
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Resolving the remaining integral of (G.1), labelled I5pp(R2), through the additive
regularization approach resulted in the following decomposition.

T(zn) ©) 2n+1
Ismm)=z;’;o(Mr[ ])+f CGIEL(s)e™ " ds, (G.3)

zn) !2 2n+1 pole

Where G, (s) = vibyrrg (kg sin(B), 4,) cos([)’)% and Tyaw,,(s) as given in (3.14).

pole

For the purpose of comparing the additive and multiplicative regularization approaches,
the same integral (Ispp(2)) is treated using the multiplicative approach as presented below.

C0e2
e " ds=>

STE +)(5 — STE,— )GTE(S) e~25% s = TO TPCTE(S)
(s—sre+)(s —sre-) (s = sre4)(s = srz-)

Ispp(2) = J- GTE(S)E_QS ds = J- (S

4o T, (s) _ 40T, ) _
= Ispp(2) = Crpy [ LB o057 s s+ Crg- J_ —LIE g5 ds, (G.4)

® S—STE+ ®  S—STE-
-1

N

N
using (H(s - si)> = ZSTLSE with C; = | H(si — sj) [
i=1 i=1 \J;i /

While the complete expression of (G.4) will not be included here to maintain some
semblance of simplicity, in general, the integral of Is,p(2) can be separated into a summation
of simple pole integrals, as shown above. This in turn enables its evaluation through summing
expressions of the following form.

expanding Tpc,(s) around
s=0 and using (3.10 ¢)

_ 02
I)sds

+00 too
L $ T s)(s+s
HORY| S”_CTi;T(:e-ﬂszds: | Trers (G + s720)
i

— 00 —00

s? _STEL

= B = = 2 (BT, 00 + o (2 Ty (00 + Thry O + 272, 0 + ) [2(1- F(853.) =

W

> i) = - ez j§+i<"”;ﬁ(°) s [E (1= F(asts) ) i(‘%(o) ) 42]2(’%(0) )

n=3

(G.5)

Having resolved the test case integral (Ispp(2)) through both the additive (G.3) and
multiplicative regularization approaches (G.4) and (G.5), the fundamental difference of the two
can now be observed.

In the additive method, the integral of the polar contributions is not related with the
expansion of the regular part. In contrast, in the multiplicative approach, each term of the
power series of Tpe, (s) is multiplied by a Fresnel integral (or equivalently an erf function). The
fundamental property of the polar contributions is that they are comprised of a sum of
transition functions, each corresponding to a distinct pole in the s-plane and introducing a
discontinuity if the respective polar singularity crosses the SDP. Considering the latter, one
can deduce that the two expressions would be completely equivalent only if an infinite number
of terms is used in the expansion [46].

To visualize this concept, the two regularization approaches will be compared considering
the integral of (G.6). In particular, the given integral in the k, complex plane is transformed
into the angular spectrum and subsequently deformed into the SDP passing through the saddle
point (Bsp =6'). In turn, the resulting SDP integral is transformed into the s-plane and
regularized with either of the previously discussed approaches. In both cases the regular part
(Tvawyy(s) OF Tpe,,(s)) is expanded around the saddle point, with the resulting integrals evaluated
numerically. The only reason for using (G.6) instead of directly comparing the two methods
for the integral of (G.1), is that the former also includes the residue contribution above the
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shadow boundary angle, something that will facilitate the evaluation of the difference between
the two regularization approaches.

10" = if_:o v;‘—E(kp'Az)e_j(k22,+kpp)dkp = Ispp(6) + U(H' - HSB,TEI)Ires(9’)7 (G.6)
lspp(0") = [, Ve (ka Sn(B), 4,) cos(B) eItar'eosti=0Dap
where . N
Los(8') = —k—danRes(v;’E(kp,AZ)e‘l( 22+ pp))kp=k;ia,

Considering as an indicative example the wideband structure of Figure 2-8 for the derivation
of the voltage wave amplitude (vfz) and a spherical observation grid at r’ = 2.54, from the
phase centre, the resulting comparison is presented through Figure G-2 for different number of
terms in the expansion of the regularized parts (Tyaw,,(s) and Tec,(s)).
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Figure G-2. Comparison of the additive and multiplicative regularization approaches for the integral of (G.6) at
150 GHz, with different number of terms in the expansion of the regular part, as noted in the respective legends.

As evident through comparing the figures above, while after a certain number of terms both
approaches converge to the same result, their difference can be identified through observing the
shadow boundary angles. In particular, if an insufficient number of terms is used in the
expansion of the regularized part for the multiplicative approach (Tpc,,(s)), the result is
discontinuous. This impact is related to the nature of the SDP integral, which is discontinuous
at the shadow boundaries with the exact level of the featured discontinuity compensated by
the inclusion of the residue contribution, making the total result continuous. Having said that,
it can be intuitively realized that for the case of the multiplicative approach where each term
of the power series expansion of Tp,,(s) is multiplied by a Fresnel integral (or equivalently an
erf function), if an inadequate number of terms is used in the expansion, the total result would
be discontinuous. The actual number of terms deemed sufficient for the expansion of the
regularized part depends on the value of Q.
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Appendix H. Power series expansion of T(s)

As discussed through section 3.2, the asymptotic evaluation of complex integrals requires the
approximation of their integrant functions around the saddle point (integral’s dominant
contribution), such that the resulting expressions can be evaluated through canonical integrals.
The simplest manner, in which to describe the spectral properties of an analytical function
around a certain point is to obtain its power series expansion as indicatively shown below for
the saddle point at s = 0.

T(s) = T(0) + sT'(0) + %T(Z)(O) + 53—3|T(3)(0) + Z—TT(‘*)(O) + oo (H.1)

Given that T(s) does not feature any singularities around the origin, the radius of
convergence of the power series expansion, or equivalently the spectral region for which (H.1)
describes the function in question (T(s)), depends only on the number of terms included in the
expansion. Considering the encountered integrals throughout this work, their regularized parts
can be expressed in terms of a function which depends on the complex angle variable g and the
Jacobian transform dB/ds in terms of s, as indicatively shown through (H.2) for the integral of
the Ey, component of (3.26).

f:: TVdW(S)e_ﬂSZdS = fj;o FVdW(ﬁ)%e_ﬂszds; (HQ)

Where Fray (8) = (v (ka sin(8), 42) ~ viprze (ko sin8), 4,)) cos(§) and % = L
/1—j57
Setting the Jacobian transform as the function ¢(s) to facilitate the subsequent
formulations, the higher order derivatives of Ty 4y (s) can be obtained through the chain rule, as
indicatively given through (H.3) for derivatives up to the 3'¢ order.

Toaw(®) = £ (Traw()) = 12 (Fraw () F () + Fraw B9’ (8) = Foaw B)(#(9)” + Fraw (B9’ (s)
Taw(®) = 5 (Taw() = Ky (@)’ + Fraw B)o@(s) ,
Tyaw(s) = %(TIE?W(S)) = FyawB)(9())" + 3F5, () (9()) 9’ (5) + Fyaw (B0 ()@ (5) + Fraw (1)@ (s)
(H.3)

The higher order derivatives of the Jacobian transform (¢(s) or df/ds) around the saddle
point can be obtained analytically given that its expression is both simple and known. In
contrast, for the case of F,4,(B) which includes either the voltage or the current wave
amplitudes (vigry, itg/ru), to mitigate the complexity involved, the higher order derivatives
are obtained numerically through the finite difference method. This approach refers all higher
derivatives to values of F,4,(8) allowing for their numerical extraction. The resulting
expressions for the first four derivatives using the central difference formula are indicatively
given below. It should be noted that different formalisms can also be obtained using the
forwards or backwards difference formulas.

4B\ _p(g-48
Fr(g) = () E5)

@ ¢y _ FB+AB)-2F(B)+F(B-4p)

F(B) ah7
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