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3 Preface 

PREFACE 

In the framework of this MSc thesis the analysis of core-shell leaky-wave lens antennas is 
presented, based on a combination of asymptotic and Physical Optics techniques. This study 
aims to develop an analysis approach which can be subsequently used for the optimization of 
the Fly’s Eye antenna concept, through enabling the investigation of shaped variations of the 
core lens. The main difficulty of this prospect refers to the surface of the core lens being in 
the near field of the leaky wave feeding structure, since the evaluation of the near field is in 
general a computationally inefficient process. Adhering to this conclusion, a big part of this 
thesis elaborates on a very fast approach for the derivation of the near field, through 
asymptotically approximating the involved integral expressions. More specifically, the 
presented method exploits the nature of the near field in the examined stratification through 
introducing an approximation in the integral expressions, which in turn enables their 
asymptotic evaluation in a straightforward manner. Subsequently, the near field on the core 
lens is combined with a set of Physical Optics techniques in order to develop a model for the 
integrated lens architecture of the Fly’s Eye antenna. Modelling the core-shell structure in 
such a manner enables its study in a much more computationally efficient fashion compared 
to the use of a full-wave simulator. In addition, it facilitates the investigation of structural 
alterations in the antenna concept, like shaped variations of the core lens. The derived model 
presented in this thesis also contributed to the measurement campaign of the Fly’s Eye 
antenna prototype, through identifying a problematic component in the assembled prototype. 
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13 Introduction 

CHAPTER 1. INTRODUCTION 

Taking into account the ever-increasing domain of applications that mobile communications 
can support, as well as the continuous demand for higher experienced end-user throughput, 
future communication networks are poised with several challenges in terms of wireless traffic, 
reliability, availability, latency and more [1], [2]. Among such a list of diverse requirements, 
arguably the most crucial refers to the need for increased capacity in order to support the 
expected surge in traffic volume density due to the rising number of connected devices and 
larger data rates requested by high-demand applications [3]. The required capacity to satisfy 
the expected increase in traffic volume density will become a formidable obstacle for wireless 
networks in places such as stadiums, open air festivals and other events that attract lots of 
people, where even today’s users typically suffer from service denials due to network overload 
[4]. To properly address the connectivity requirements in such ultra-dense scenarios, which 
present the most demanding use case for modern and future communication networks in terms 
of simultaneous user connection, the Fly’s Eye antenna concept has been proposed, envisioning 
a system with capacity capabilities above 10 Tbps [5].  

Even though its specifications and requirements are extracted through considering the test 
case scenario of a sports stadium filled with spectators, the modular nature of the proposed 
antenna concept enables its scalability to a diverse range of ultra-dense deployment scenarios, 
such as shopping malls, open air festivals, offices and more.  

1.1. Fly’s Eye system overview 

Given the saturation of employing advanced signal processing in small RF bandwidths, as well 
as the shortage of available spectrum at conventional cellular communication frequencies [6], 
arguably the most reasonable approach to cope with the required Tbps system capacity is to 
target higher carrier frequencies where large swaths of unused spectrum can be exploited. 
Assessing the trade-off between available bandwidth and power, while also aiming to exploit 
the recent advances in mm-wave and sub-THz integrated chips [7], a good compromise is 
established by targeting sub-THz carriers in the hundreds of GHz.  

To further boost the overall system’s capacity, apart from moving to mm-wave frequencies, 
a reuse scheme must be employed for the inherently limited spectral resource. However, instead 
of addressing the need for enhanced spectral efficiency through infrastructure densification, 
adhering to the cellular network architecture approach by deploying a very large number of 
base stations over the stadium and performing advanced interference rejection or exploiting 
local cooperation [4], [8]; the proposed concept adopts a much more energy efficient strategy. 
In particular, massive spatial division multiplexing from a single base station is employed 
through the use of directive antennas. At full scale, the designated area within the stadium will 
be covered by thousands of overlapping fixed beams, as indicated through Figure 1-1, each 
acting as a spatial cell and providing wireless connection to several spectators through Time 
Division Multiplexing. In conjunction with the two-dimensional spatial division multiplexing, 
to mitigate interference between adjacent spatial cells, the available bandwidth is partitioned 
into four sub-bands through the use of Frequency Division Multiple Access. 

In terms of system specifications, moving to higher frequencies primarily requires the use 
of high-gain antennas in order to maintain the link budget and account for the square increase 
of the wave spreading factor with frequency. Considering that for a fixed aperture size the 
directivity is also increased with the square of the frequency, the wavelength size at the sub-
THz band enables the design of high gain antennas even through moderate sized apertures. In 
addition to the aforementioned gain considerations, the limitations of transmitted power at 
higher frequencies due to the inefficiency of upconverting chains, stresses the need for highly 
efficient front ends and antennas. 
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Figure 1-1. Simplified illustration of the Fly’s Eye antenna concept. 

With the above system level requirements in mind, in the remaining of this section the 
background regarding the design of the Fly’s Eye antenna array is going to be discussed. 

Multibeam antennas  

For the purpose of wideband operation above 100 GHz, integrated lens antennas with leaky 
wave feeds stand out when compared to other more resonant antenna solutions such as Fabry-

Figure 1-2. Wideband and directive antennas incorporated in a cellular network architecture, deployed in ultra-

dense as well as high-capacity line of sight scenarios. 

Last but not least, the proposed antenna concept must be modular and compact, to 
facilitate both its scalability and its potential deployment to different communication scenarios 
with similar capacity requirements. For example, wideband and very directive antennas such 
as those proposed in the Fly’s Eye antenna concept, can also be employed in ultra-high capacity 
line of sight use cases such as Fixed Wireless Access or Backhauling. In this manner, their 
possible utilization and exploitation in conjunction with a cellular network architecture is 
enhanced, providing an alternative to the use of labour-intensive fiber optics, as indicatively 
visualized through Figure 1-2. 
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Perot, metasurfaces or transmitarrays [9], [10], due to their capability of efficiently achieving 
large gain over a wide bandwidth. Furthermore, contrary to other multibeam solutions such as 
combining focal plane arrays of horns with reflectors, integrated lens antennas can be 
implemented in planar configurations, allowing for reduced complexity and size of the overall 
design. While even lower profile planar multibeam antennas can be implemented through the 
use of reflectarrays or transmitarryas, since their structure involves a single or multi-layered 
inhomogeneous array of printed resonant scatterers, their bandwidth performance is in general 
limited, being highly dependent on said element’s resonance [11].  Several approaches have been 
explored to increase the bandwidth of reflectarrays [12], but even the more wideband designs 
[13], [14], [15], lack the aperture efficiency performance of integrated lenses with leaky wave 
feeds [16], [17]. Finally, apart from enhancing the radiation properties of planar antennas, lenses 
enable the integration of different beams under the same aperture. This is achieved through 
featuring a set of displaced feeds in their focal plane, which in turn generate a set of fixed 
independent beams in the far field.  

It should be noted that another very popular multibeam antenna solution is the use of 
phased arrays. However, this is not well suited for the examined scenario since at frequencies 
in the hundreds of GHz the complexity and losses involved with implementing the required 
feeding network are significant. 

Having showcased some of the benefits of integrated lenses as a multibeam antenna system 
solution, a brief discussion of the fundamental design considerations for lenses with leaky wave 
feeds will be presented below. Before doing so though, an indicative depiction of the above 
discussed multibeam antenna systems is presented through Figure 1-3. 

   (a)                              (b)                                (c)                            (d) 

Figure 1-3. Focal plane array of horns with (a) parabolic reflector, (b) elliptical reflector, (c) transmitarray and 

(d) integrated lens antenna with planar feeds. 

Integrated lenses 

Taking the above discussion into account, the goal of the Fly’s Eye antenna concept is to 
develop a scalable integrated lens array in the form of modular planar panels operating from 
140 to 170 GHz [18] and capable of satisfying the requirements established for the targeted 
communication scenario [5]. For this purpose, each generated beam should feature a gain larger 
than 30 dB over the desired bandwidth. Considering a reasonable estimate for the achieved 
aperture efficiency and losses of an individual lens, the desired gain is targeted with a radiating 
aperture of 3 cm diameter.  

In terms of design considerations, through basing the optimization of the lens feed in the 
analysis of antennas in reception, the aperture efficiency of the quasi-optical component can be 
evaluated in terms of field matching between the frequency independent Geometrical Optics 
(GO) fields and the field of the feed at a specified surface, usually the Fourier Optics (FO) 
sphere. In fact, the component’s aperture efficiency is maximized when the GO and feed fields 
are conjugate matched. An extensive discussion for the analysis of antennas in reception which 
further elaborates on this field matching concept can be found in the appendix of [17], together 
with a thorough study of leaky wave feeds for integrated lenses in the rest of the document. 
Apart from the feed considerations though, there are some fundamental design limitations in 
terms of bandwidth, front-to-back ratio as well as steering capabilities, that are introduced by 
the leaky waves and lens structure themselves.  
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Primarily, integrated lenses were introduced to mitigate the impact of surface waves and 
enhance the radiation properties of printed antennas. As a matter of fact, the choice of material 
for the lens determines the front-to-back ratio of the feeding structure, since planar antennas 
printed on dense substrates radiated more energy into the denser medium. Consequently, the 
front-to-back ratio of the feed is increased with the permittivity of the lens material, as 
indicatively illustrated in Figure 1-4. 

 
Figure 1-4. Front to back ratio for planar antenna printed on dielectric substrate. 

It is worth pointing out that while any realistic printed antenna will be backed by a metallic 
reflector, forming a backing cavity, it is crucial to maintain a high front-to-back ratio for the 
feed itself. If this is not the case, a strong parallel plate waveguide mode can be excited inside 
the backing cavity, subsequently impacting the matching bandwidth and thus the performance 
of the feeding structure. 

In order to enhance the optimization potential of the basic lens design, an air cavity can be 
introduced between the ground plane and the lens dielectric, forming a leaky wave structure. 
In a few words, such a structure enables the excitation of waves inside the cavity, which 
propagate radially away from the source in the form of cylindrical waves, through sequential 
bounces between the ground plane and the partially reflecting interface. Throughout their 
propagation inside the cavity, these waves feature an exponential attenuation as they couple 
their energy to the space wave, leading to them being labelled as leaky waves. In this manner, 
they can modulate the spectrum of the structure’s Green’s function around real angles and thus 
influence its radiation properties. The impact of these waves can be conveniently described 
through their propagation constants (𝑘𝜌,𝐿𝑊 = 𝛽𝐿𝑊 + 𝑗𝛼𝐿𝑊), with its real part determining the 
angle around which the leaky wave influences the field (𝛽𝐿𝑊 = 𝑘𝑑𝑠𝑖𝑛(𝜃𝐿𝑊)), while the imaginary 
part expressing the attenuation constant and subsequently the directivity along said angle. In 
turn, these propagation constants (𝑘𝜌,𝐿𝑊) correspond to the polar singularities of the respective 
spectral Green’s function, with distinct leaky wave modes arising from different poles.  

It should be noted that leaky wave supporting stratifications can also be formed with 
dielectric cavities, provided that their permittivity is smaller than that of the lens material. To 
conclude this brief discussion, several different structures can be designed to support leaky 
waves, with two indicative examples shown in Figure 1-5 (a) and (b), featuring a dielectric slab 
and a semi-infinite dielectric medium respectively as a partially reflecting interface.  

 
                              (a)                                                                          (b)                                         

Figure 1-5. Leaky wave structure fed by an aperture in the ground plane featuring (a) a dielectric slab and (b) a 

semi-infinite dielectric medium as a partially reflecting interface. 
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Returning to the discussion regarding the fundamental limitations of lenses integrated with 
leaky wave feeds, considering a quasi-optical component such as a lens, its bandwidth must be 
evaluated in terms of aperture efficiency bandwidth, which in turn translates to the feed’s 
pattern stability. As such, it is fundamentally limited by the frequency dispersion of the leaky 
wave modes excited in the cavity, which impacts the pattern of the leaky wave structure. Said 
frequency dispersion in turn depends on the dielectric contrast between the cavity and lens 
material. This is visualized through Figure 1-6, where the dispersion of the main leaky wave 
mode pair (TE1, TM1) is examined for a structure featuring a half-wavelength air cavity 
between a ground plane and a semi-infinite dielectric medium whose permittivity is varied. 

Another aspect of equal importance refers to the steering capability of the lens, which is 
limited by the maximum acceptable displacement of a feed in the ground plane in terms of the 
achieved aperture efficiency and thus gain of the steered beam. Given that denser materials 
lead to larger scanning angles for the same displacement (dfeed), one can deduce that high 
permittivity lenses feature an enhanced field of view when compared to low permittivity 
structures. This concept can be intuitively realized through considering the geometrical ray 
picture together with the Snell’s law for the central ray, as shown in the inset of Figure 1-7. 

Figure 1-7. Illustration of broadside and steered beams for identical feed displacement in the ground plane (dfeed) 

and single dielectric elliptical lenses with (a) high and (b) low permittivity plastic. 

dfeeddfeed

High permittivity lens 
(low eccentricity) 

Low permittivity lens 
(high eccentricity) 

(b) (a) 

𝑇𝑀1 

𝑇𝐸1 

𝜀𝑜 
ℎ = 𝜆𝜊/2 

𝜀𝑟 

Figure 1-6. Frequency dispersion of main leaky wave mode pair (TE1, TM1) considering the leaky wave supporting 

stratification of the inset and varying the relative permittivity (εr) of the semi-infinite dielectric medium. 
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Having introduced some of the basic considerations regarding the design of integrated lenses 
fed by leaky wave feeds, in the following subsection these concepts will be revisited in 
conjunction with the top-level requirements of the Fly’s Eye antenna concept in order to 
introduce and justify the design choices for its lens geometry. 

Core-shell lens structure 

Regarding the implementation of a 3 cm radiating aperture capable of satisfying the specified 
gain requirements [5], single high permittivity lenses would either be too costly (e.g., high 
resistivity Si) or lossy (e.g., PREMIX) for implementing the Fly’s Eye planar panels. As such, 
the lens structure must be built by a material with very low loss tangent within the examined 
frequency range which can also be manufactured in a cost-effective manner. An ideal candidate 
satisfying the above is HDPE, which due to its low permittivity at the examined frequency 
range (𝜀𝑟,𝐻𝐷𝑃𝐸  ≃  2.3 [17]) does not feature significant reflections in the air interface, mitigating 
the need for a matching layer and thus reducing the overall complexity of the design. While a 
low permittivity lens made of HDPE integrated with a leaky wave feed, can satisfy both the 
bandwidth and gain requirements of the Fly’s Eye concept, with some prototypes achieving an 
aperture efficiency higher than 80% for bandwidths in the range of 40% [16], [17], it does suffer 
both in terms of front-to-back ratio and steering capabilities. A design capable of enhancing 
the field of view of such a structure has been introduced in [19], where a wedge of dielectric 
gratings with modulated height is integrated inside the plastic lens, to improve the aperture 
efficiency of displaced feeds and thus reduce the scan loss of steered beams. While being an 
excellent design in all the remaining aspects, still the problem of chip integration remains, due 
to the poor front-to-back of the low permittivity lens. 

To deal with this trade-off between the required scalability, bandwidth and front-to-back 
ratio, a double-lens structure has been proposed for the Fly’s Eye concept, featuring a low 
permittivity shell and a high permittivity core lens integrated on a fused silica wafer [18]. As 
introduced above, the low permittivity shell enables the implementation of a large radiating 
aperture using low cost and low loss materials, essentially enabling the required gain while 
maintaining an acceptable cost to allow for the scalability of the design. At the same time, the 
high permittivity core lens improves the front-to-back ratio, facilitating chip integration, while 
also maintaining low contrast with the resonant dielectric (fused silica) cavity, thus preserving 
the bandwidth. An indicative illustration of the aforementioned core-shell lens structure is 
presented through Figure 1-8 (a) and (b). 

Figure 1-8. Core-shell structure (a) 3D illustration and (b) Side cut. 

Depending on the desired impact of the lens component several shapes can be implemented 
exploiting the canonical properties of the respective geometries. As such, since its purpose is to 
form a directive beam, the shell lens shall feature an elliptical shape. On the other hand, to 
efficiently illuminate the high eccentricity elliptical structure (𝑒 = 1/√𝜀𝑟,𝑠ℎ𝑒𝑙𝑙), the core lens must 
act as an ideal transition between the different dielectric media, essentially simulating a leaky 
wave structure with high permittivity semi-infinite dielectric region. Considering the 

(a) (b) 

Dielectric cavity (fused silica) 

Matching layer 

Spherical lens (high 𝜀𝑟) 

Elliptical lens 
(low 𝜀𝑟) 
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observation made in [20], namely that given a proper definition of the phase center the field of 
a leaky wave structure resembles a spherical wave within a solid angle around broadside, even 
in the near field of the source, the shape of the core lens must be spherical. Furthermore, to 
reduce the level of reflections in the interface between the dense dielectric and low permittivity 
plastic material, the core structure must be coated with a matching layer, as indicated through 
Figure 1-8 (b). 

To summarize the above brief discussion, the proposed Fly’s Eye antenna concept is 
comprised of planar panels of lenses, each featuring a number of simultaneous fixed independent 
beams, as showcased through Figure 1-9. All the lens feeds are placed over a flat ground plane 
in order to enable monolithic integration at high frequencies. Moreover, to simplify the design 
and avoid complexity and losses involved with implementing an array feeding network at the 
examined frequency band, each feed contributes to a single beam. 

 

Figure 1-9. Fly’s Eye antenna array comprised of planar lens panels. 

1.2. Objectives of this work 

Having presented the motivation as well as summarized the design considerations involved in 
the Fly’s Eye antenna concept, in the current section the main aim of this work will be 
introduced. 

Considering the previous discussion regarding the core-shell structure and with the aim of 
reducing the losses and cost introduced by the high permittivity material, the dimensions of 
the core lens should be maintained as small as possible. This inevitably brings the core lens 
surface in the near field of the leaky wave feeding structure. As a consequence, for the purpose 
of analysing and subsequently optimizing such a structure, the first step refers to developing a 
computationally efficient strategy for the derivation of the near field of a leaky wave structure.  

Adhering to this conclusion, the initial stages of this work aim to present an asymptotic 
method for the derivation of the near field of a leaky wave structure, while also discussing its 
potential contribution in the optimization of the examined core-shell lens geometry. All things 
considered, this study offers the prospect of developing a fast tool for the evaluation of the near 
field of a leaky wave structure, which apart from speed can also provide insightful 
decomposition of the field into distinct components. This physical insight for the formation of 
the local phase-front in the near field, can contribute to the derivation of analytical geometries 
which optimize different aspects of the lens design. For example, in terms of shaping the lens, 
the latter can be made conformal to the incident field, thus acting as an ideal transition; or 
alternatively it can be shaped with the aim of enhancing the aperture efficiency for displaced 
feeds, in turn improving the scanning capabilities of the core-shell structure. 

Fly’s Eye antenna concept Lens panel 

Shell lens 

Core lens 

Ground plane 
with set of feeds 

Fused 
Silica cavity 
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In order to enable the future study of such prospects, i.e., shaped variations of the core 
lens, another goal of this work refers to combining the derived near field with a set of Physical 
Optics (PO) techniques, with the aim of developing a model for the Fly’s Eye antenna. 
Modelling the antenna concept in such a manner, enables its study in a much more 
computationally efficient fashion compared to the use of a full-wave simulator, while also 
facilitating the study of structural variants like lateral or vertical displacements, or even 
changes in the material dielectric properties. The versatility provided by studying the impact 
of such effects in the antenna performance can prove very useful especially when 
troubleshooting is required. 

To summarize, one of the main objectives of this work is the derivation of a fast tool able 
to extract the field on the core lens through the asymptotic evaluation of the near field integral 
expressions. Prior to thoroughly discussing the asymptotic method employed in this work 
through subsequent chapters, a brief overview of the literature will be presented in the following 
section. In particular, this section will present an overview of some of the approaches 
encountered in the literature for the asymptotic evaluation of radiation integrals. 

1.3. Literature overview – Asymptotics 

A fundamental aspect in the analysis of stratified structures with unbounded cross sections is 
the derivation of the spatial domain Green’s functions, i.e., the fields radiated by an elementary 
source. Since the Green’s functions of layered media can be extracted analytically only in the 
spectral domain, their spatial counterparts can be obtained through the inverse Fourier 
transform of their spectral representation. However, the convergence of these complex integrals 
is slow due to the highly oscillatory nature of the integrands involved, making their numerical 
evaluation very computationally inefficient.  

The most efficient techniques to improve the computational efficiency of complex integrals, 
are those which resolve the integral expressions through a finite number of analytical terms. 
To achieve this, the integrand functions are expressed in terms of simpler functions with similar 
properties in the relevant spectral region. This simplified representation is chosen such that it 
leads to closed-form expressions, allowing the evaluation of the complex integrals through a 
number of analytical terms. This process is referred to as asymptotic approximation of complex 
integrals. 

The most frequently employed techniques for the case of radiation integrals utilize 
algorithmic processes in order to express the integrand in a way that allows the integral’s 
asymptotic approximation. Some indicative approaches commonly encountered in the literature 
are the generalized pencil of function (GPOF) method or the total least square algorithm 
(TLSA), which are used to express radiation integrals as a summation of canonical forms. 
Examples of their use can be found in [21] and [22] respectively. Regarding the targeted 
canonical expressions, these can vary in each case depending on the integral’s formulation. In 
several works concerning the radiation of field distributions [21], [23], [24] canonical forms based 
on the Sommerfeld identity are used. This enables the representation of the radiation integrals 
through a summation of beam-like wave objects, which in turn constitutes an efficient mean of 
analysing the interactions between parts of a system, like quasi-optical components [25]. 

One inherent aspect of the above discussed approaches arises from the treated integral 
expressions being evaluated on slow convergent integration paths. This essentially implies that 
a significant spectral region impacts the integral’s evaluation, meaning that a large number of 
terms must be included in the representation of the integrand to maintain the accuracy of its 
asymptotic approximation. An alternative approach to the one discussed this far is to exploit 
the spectral properties of the integrand expression by identifying the dominant field 
contributions and the fastest convergent integration path. These refer to the integrand’s saddle 
points and the steepest descent path (SDP) which includes this saddle point respectively. This 
approach can be used to improve the computational efficiency of the numerical field evaluation 
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while also providing physical insight through separating the field into distinct contributions. 
The resulting integral expressions, i.e., the SDP integrals, can be evaluated asymptotically 
through transforming their integrands into canonical forms in an auxiliary complex plane, 
labelled as s-plane. This process requires isolating the spectral singularities of the integrands in 
their simplest form and subsequently evaluating them asymptotically. An extensive overview 
of such techniques can be found in section 4 of [26]. 

Given the properties of the employed integration path (SDP), the impactful spectral region 
around the integral’s dominant contributions is minimized. This essentially implies that the 
integrand can be represented with fewer number of terms compared to the previously discussed 
approaches, leading to a more compact asymptotic approximation. However, what is different 
in this case is the dependence of the integration path on the observation point. Since the path 
of integration changes, this means that the integrand’s representation must also be modified in 
response. Indicative examples for the asymptotic approximation of SDP radiation integrals can 
be found in [27] and [28], where the treatment of the integrand in each case varies depending 
on the impactful singularities and the nature of the field. One noteworthy aspect for the 
treatment employed in [27], refers to the use of the field decomposition provided by the SDP 
integration approach. In particular, the dominant contributions at different angular regions are 
identified and a distinct asymptotic treatment is employed for each region. 

With the aim of asymptotically approximating the near field on the core lens of the Fly’s 
Eye antenna, this work will focus on the asymptotic approximation of the SDP integral 
expressions presented in [20]. More specifically, the nature of the near field of a leaky wave 
structure featuring an infinite dielectric region and a cavity around resonance will be considered, 
in order to derive a simplified asymptotic evaluation of the involved integral expressions.  

1.4. Outline of this Thesis 

The remainder of this thesis is structured as follows.  

➢ Chapter 2 extensively discusses the background in spectral analysis and numerical 
evaluation techniques for the near field of leaky wave structures, which is required for this 
work. 

➢ In turn, Chapter 3 builds upon the background study of Chapter 2 and presents an 
approach which enables the asymptotic evaluation of the near field for leaky wave structures 
around resonance.  

➢ Subsequently, Chapter 4 elaborates on the complications arising in the asymptotic 
approach when a current distribution is added in the ground plane and presents some 
indicative examples for small lenses in the near field. 

➢ Following this, Chapter 5 describes the Physical Optics techniques employed to model the 
quasi-optical components of the Fly’s Eye antenna (i.e., core and shell lenses) and elaborates 
on the validity of the approximations involved.  

➢ In Chapter 6, the asymptotic evaluation of the near field presented through Chapter 3 
and 4 is combined with the Physical Optics techniques discussed in Chapter 5, to develop 
a model for the Fly’s Eye antenna. The contribution of this model in the measurement 
campaign of the assembled Fly’s Eye antenna prototype is also discussed in this chapter. 

➢ Finally, Chapter 7 draws conclusions and presents points of interest for future study, 
emphasizing on the possible improvements of the presented asymptotic near field evaluation 
approach as well as its potential utilization for shaping the core lens. 

This thesis is supplemented by a number of Appendices, elaborating further on certain concepts 
which are deemed useful to facilitate the understanding of this work. 
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CHAPTER 2. BACKGROUND 

2.1. General Considerations 

The analysis of stratified media with unbounded cross sections constitutes an electromagnetic 
problem which can be conveniently approached in the spectral domain, since only in this 
manner the respective Green’s functions can be derived analytically. Another aspect of spectral 
analysis with arguably equal importance, refers to the representation of the field as a continuous 
spectrum of plane waves. This way, dominant contributions can be identified and related to 
physical properties of the examined structure. Having said the above, prior to elaborating 
further on the analysis of stratified media in the spectral domain, the stratifications of interest 
will first be introduced. 

2.1a. Examined stratifications 

For reasons that will be explained through Chapter 5, referring to the Physical Optics 
methods employed to model the core-shell structure, the required near field evaluation for the 
modelling of the Fly’s Eye antenna corresponds to the incident field on the core lens. 
Consequently, the stratification of the core lens can be simplified through extending the dense 
dielectric region to infinity. The resulting simplified stratification is illustrated through Figure 
2-1 (a), featuring a fused silica cavity and a semi-infinite dense dielectric region. While the case 
of the Fly’s Eye antenna requires the examination of a wideband leaky wave structure with 
low dielectric contrast between the cavity and semi-infinite dielectric region, to provide a more 
complete study of the near field, a resonant stratification will also be considered in following 
chapter, as depicted in Figure 2-1 (b). Both structures are examined around resonance, meaning 
that their cavity heights correspond to half the cavity wavelength (h=λcav/2) at the central 
frequency (150 GHz), while all planar layers are assumed infinite and untruncated. 
Furthermore, to simplify the analysis presented in the initial sections of this chapter, a 𝑦-
oriented elementary magnetic current source will be considered in the ground plane for both 
structures. 

   (a)                                                               (b) 

Figure 2-1. Leaky wave structures with (a) low dielectric contrast (wideband) and (b) high dielectric contrast 

(resonant). 

It should be noted that the region of interest for the derivation of the near field for both 
stratifications is the semi-infinite dielectric region. Consequently, for the remaining of this 
chapter, when dielectric medium properties are used in expressions (i.e., ζd and kd), they will 
refer to those of the semi-infinite region, unless mentioned otherwise. 

To employ the spectral Green’s function for the above presented stratifications, first, one 
should solve their equivalent transmission line models for the voltage and current potential 
functions at the observation height of interest. To maintain the cohesion of the current 
discussion, this process will be thoroughly described through Appendices A and B.  
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2.1b. Significant leaky wave modes 

One noteworthy comment regarding the structures of Figure 2-1 refers to the number of 
impactful leaky wave modes that they support. As briefly introduced in section 1.2, leaky waves 
are related to the polar singularities of the spectral Green’s function, with their propagation 
constants (𝑘𝜌,𝐿𝑊) extracted through the values of said poles. Since these singularities are 
attributed only to the examined geometry and its capability of supporting leaky waves, they 
must occur in the Green’s function for all types of sources (either electric or magnetic) and for 
any planar orientation (either 𝑥 or 𝑦). As such, their values can be derived as the zeros of the 
common denominator of the voltage and current potential functions and can subsequently be 
separated into TE and TM variants [29]. Even if several leaky wave modes can be excited inside 
the illustrated air/dielectric cavities, given their electrical height, only three modes will feature 
small enough attenuation constants in order to be impactful, namely TE1, TM1 and TM0. The 
dispersion of these main modes for the two examined stratifications is depicted through Figure 
2-2, showcasing their pointing angles (𝜃𝐿𝑊) and attenuation constants (𝛼𝐿𝑊), considering that 
𝑘𝜌,𝐿𝑊 = 𝑘𝑑𝑠𝑖𝑛(𝜃𝐿𝑊) + 𝑗𝛼𝐿𝑊. 

     (a)                                                                (b) 

Figure 2-2. Dispersion of dominant leaky wave modes (a) wideband and (b) resonant structure of Figure 2-1. The 

top figures refer to the leaky wave pointing angles (𝜃𝐿𝑊 = 𝑎𝑠𝑖𝑛(𝑅𝑒(𝑘𝜌,𝐿𝑊)/𝑘𝑑)) while the bottom figures correspond to 

the attenuation constants (𝛼𝐿𝑊). 

While the similar behavior of the TE1, TM1 mode pair leads to its frequent exploitation in 
order to enhance the radiation properties of small apertures through forming rotationally 
symmetric beams, TM0 is usually undesirable. In fact, since it launches power at relatively 
larger angles off broadside and features small attenuation constant (𝛼LW), it constitutes a 
significant spillover loss when leaky wave feeds are integrated with lenses [17] or employed to 
illuminate reflectors [30], [31]. For this reason, a variety of methods have been explored for the 
suppression of this undesired mode. For example, in some more elegant designs, like [16], 
corrugations are introduced in the ground plane such that the attenuation constant for the 
propagation of TM0 inside the cavity is increased and subsequently its impact in the field is 
reduced. Arguably the most common approach however, involves suppressing this polar 
singularity of the spectral Green’s function (i.e., the TM0) via forcing a null around the same 
spectral position (𝑘𝜌,𝐿𝑊

𝑇𝑀0 ), through the spectrum of the current source.

Having presented some fundamental aspects of the examined leaky wave supporting 
stratifications, the following section will elaborate on the required background for the 
asymptotic evaluation of the near field integral expressions. 
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2.2. Numerical near field evaluation 

2.2a. Single complex integral formulation 

Through analyzing stratified structures in the spectral domain, the evaluation of the field begins 
with the expression of the inverse Fourier transform of the convolution between the Green’s 
function and the source’s current distribution. For a y-oriented elementary magnetic current 
source, the resulting integral expression is expressed below.  

�⃗� (𝑟 ) =
1

4𝜋2
∫ ∫ �̿�𝑒𝑚(𝑘𝑥, 𝑘𝑦 , 𝑧, 𝑧𝑠) ∙ �̂�𝑒

−𝑗𝑘𝑥𝑥𝑒−𝑗𝑘𝑦𝑦𝑑𝑘𝑥𝑑𝑘𝑦
+∞

−∞

+∞

−∞
, (2.1 a) 

Where �̿�𝑒𝑚 refers to the dyadic spectral Green’s function relating electric fields with magnetic 
currents, 𝑧 corresponds to the height of the observation point in the stratification and 𝑧𝑠 refers 
to the position of the source. 

Given the rotational symmetry of the examined stratified structures, the spectral variables 
(𝑘𝑥, 𝑘𝑦) can be transformed into their cylindrical counterparts (𝑘𝜌, 𝛼), where 𝑘𝑥 = 𝑘𝜌𝑐𝑜𝑠(𝛼) and 
𝑘𝑦 = 𝑘𝜌𝑠𝑖𝑛(𝛼). The benefit of this step is that the total field can now be expressed in terms of 
a single infinite complex integral in 𝑘𝜌, while the finite 𝛼 integral can be conveniently closed 
into a canonical form. 

�⃗� (𝑟 ) =
1

4𝜋2
∫ ∫ �̿�𝑒𝑚(𝑘𝜌, 𝛼, 𝑧, 𝑧𝑠) ∙ �̂�𝑒

−𝑗𝑘𝜌𝜌 𝑐𝑜𝑠(𝛼−𝜑)𝑘𝜌𝑑𝛼𝑑𝑘𝜌
2𝜋

0

+∞

0
, (2.1 b) 

To further progress with the integral evaluation, the projection of the spectral Green’s 
function on �̂�, as given in equation (A.1) of Appendix A, can be substituted in the above 
integral expression in terms of cylindrical spectral variables (𝑘𝜌, 𝛼). Subsequently, the finite 𝛼 
integral can be closed through the identities presented below, with the resulting integral field 
expressions now formulated in terms of a single complex integral on 𝑘𝜌 featuring Bessel 
functions. It should be noted that in all subsequent expressions the potential functions (𝑣𝑇𝐸/𝑇𝑀 

and 𝑖𝑇𝐸/𝑇𝑀) are expressed through the product of the respective wave amplitudes and the 
exponential relating to the propagation inside the semi-infinite dense medium (𝑒−𝑗𝑘𝑧𝑧), as 
described through Appendix A and given in equations (A.2) and (A.3). 

∫ 𝑐𝑜𝑠(𝑛𝛼) 𝑒−𝑗𝑘𝜌𝜌𝑐𝑜𝑠(𝛼−𝜑)𝑑𝛼
2𝜋

0
= 𝑗−𝑛2𝜋 𝑐𝑜𝑠(𝑛𝜑) 𝐽𝑛(𝑘𝜌𝜌)

∫ 𝑠𝑖𝑛(𝑛𝛼) 𝑒−𝑗𝑘𝜌𝜌𝑐𝑜𝑠(𝛼−𝜑)𝑑𝛼
2𝜋

0
= 𝑗−𝑛2𝜋 𝑠𝑖𝑛(𝑛𝜑) 𝐽𝑛(𝑘𝜌𝜌)

, (2.2 a) 

[

𝐸𝑥(𝑟 )

𝐸𝑦(𝑟 )

𝐸𝑧(𝑟 )

] =
1

4𝜋
∫

[
 
 
 
 
 −((𝑣𝑇𝛦

+ (𝑘𝜌, 𝑧𝑠) + 𝑣𝑇𝛭
+ (𝑘𝜌, 𝑧𝑠)) 𝐽0(𝑘𝜌𝜌) + (𝑣𝑇𝛦

+ (𝑘𝜌, 𝑧𝑠) − 𝑣𝑇𝛭
+ (𝑘𝜌, 𝑧𝑠)) 𝑐𝑜𝑠(2𝜑) 𝐽2(𝑘𝜌𝜌))

𝑠𝑖𝑛(2𝜑)(𝑣𝑇𝑀
+ (𝑘𝜌, 𝑧𝑠) − 𝑣𝑇𝐸

+ (𝑘𝜌, 𝑧𝑠)) 𝐽2(𝑘𝜌𝜌)

−𝑗
2𝜁𝑑
𝑘𝑑
𝑐𝑜𝑠(𝜑) 𝑖𝑇𝑀

+ (𝑘𝜌, 𝑧𝑠)𝐽1(𝑘𝜌𝜌)𝑘𝜌 ]
 
 
 
 
 

𝑘𝜌𝑒
−𝑗𝑘𝑧𝑧𝑑𝑘𝜌

+∞

0

, 

(2.2 b) 

Closing the complex integrals on 𝛼 in the above presented manner does not constitute an 
approximation when elementary sources are examined, since expressions (2.2 a) refer to 
canonical integrals. However, for the more realistic scenario where an actual current distribution 
is considered in the ground plane, transforming the integral expressions into a formulation with 
a single complex integral requires additional considerations. This aspect of the near field 
evaluation resulting from the above steps in the integral manipulation will be revisited through 
section 4.1, where the inclusion of the source will be discussed.  

2.2b. Singularities in the kρ complex plane 

Apart from the capability of deriving analytical expressions for the Green’s functions of 
stratified media, the analysis in the spectral domain also offers the potential of identifying 
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individual field components, which can in turn be related with spectral singularities of the 
Green’s functions, namely branch points and poles. 

Regarding the former, the Green’s function’s branch point singularities are a result of the 
odd nature of the transmission line solution in the semi-infinite regions of the stratified 
structure. Given that a single semi-infinite region exists in the examined geometries (Figure 
2-1), namely z > h, only one pair of branch points appears in the 𝑘𝜌 complex plane at ±𝑘𝑑. To 

make the definition of the double-valued function (𝑘𝑧 = ±√𝑘𝑑2 − 𝑘𝜌2) unique, a two-sheeted complex 

plane is required, with branch cuts providing the means of passing from one Riemann sheet to 
the other. While these branch cuts can be arbitrarily drawn in the complex plane, the most 
convenient choice is that which maintains the sign of the imaginary part of 𝑘𝑧 constant in each 
of the defined Riemann sheets, i.e., the one illustrated through Figure 2-3 (a), with the resulting 
expressions for 𝑘𝑧 provided below. 

𝑇𝑜𝑝 𝑅𝑖𝑒𝑚𝑎𝑛𝑛 𝑠ℎ𝑒𝑒𝑡 (𝐼𝑚(𝑘𝑧) < 0): 𝑘𝑧 = −𝑗√−(𝑘𝑑
2 − 𝑘𝜌

2)

𝐵𝑜𝑡𝑡𝑜𝑚 𝑅𝑖𝑒𝑚𝑎𝑛𝑛 𝑠ℎ𝑒𝑒𝑡 (𝐼𝑚(𝑘𝑧) > 0): 𝑘𝑧 = 𝑗√−(𝑘𝑑
2 − 𝑘𝜌

2)

As already introduced through section 2.1b, besides branch point singularities resulting 
from the semi-infinite medium, the spectral Green’s function also contains polar singularities 
which are directly linked to the leaky waves that can be exited in the cavity. More specifically, 

these polar singularities appear on the bottom Riemann sheet (𝑘𝑧𝐿𝑊 = 𝑗√−(𝑘𝑑
2 − 𝑘𝜌𝐿𝑊

2 )) and are only 

attributed to the examined stratification and its capability of supporting leaky waves. An 
indicative illustration of the polar singularities for the TM potential of a structure supporting 
the two main leaky wave modes (i.e., TM1 and TM0), is given through Figure 2-3 (b). 

Considering the presence of the above singularities in the 𝑘𝜌 complex plane, the integration 
path for the evaluation of the expressions of (2.2 b) commences at the origin and moves along 
the real axis, only slightly deformed to avoid the branch point at +𝑘𝑑, as shown through Figure 
2-3 (c). It should be noted that for the integrand to remain bounded as 𝑘𝜌 tends to infinity, 
the integration path must be maintained on the top Riemann sheet. 

 (a)                                           (b)                                            (c) 

Figure 2-3. (a) Branch points and cuts for the stratifications of Figure 2-1. (b) Leaky wave poles in bottom 

Riemann sheet for TM potential of structure close to resonance. (c) Integration path for TM integrals of (2.2b). 

While the equations of (2.2 b) and the integration path of Figure 2-3 (c) can be employed 
for the evaluation of the near field, their two main drawbacks refer to the slow convergence of 
the numerical integration, especially for observation points close to the source, as well as the 
lack of any insightful field decomposition. With the purpose of adopting alternative approaches 
for the numerical evaluation of the field integral expressions, in the following section, some 
fundamental concepts of complex analysis will be discussed. 
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2.2c. Integration path in the kρ complex plane 

One powerful method for the evaluation of complex integrals arises from the integral’s path 
independence. More specifically, the result of a complex integration remains unchanged between 
different integration paths, if they can be related through permissible path deformations.  

Primarily, permissible path deformations require either the initial and deformed paths to 
feature identical end points or that the translated end points can be connected through integral 
section with negligible contribution. In conjunction to the end point consideration, the residue 
contributions of any singularities enveloped during the contour path deformation must be 
separately included in the resulting expression as defined by the Cauchy’s theorem. 

Employing these considerations, integral deformations to paths which provide faster 
convergence for the numerical evaluation as well as enable the identification of distinct field 
contributions related to the spectral singularities, can be implemented. To facilitate subsequent 
deformations however, it would be convenient to transform the 𝑘𝜌 integrals of equation (2.2 b) 
into complex integrals along the real axis from negative to positive infinity. The latter is 
introduced to avoid complications that arise from maintaining the finite end point near the 
integral’s dominant contributions and force the integral’s end points to regions where it 
converges, e.g., at 𝑘𝜌 → ±∞ on the top Riemann sheet. The desired transformation can be 
performed through the identity presented below, which relates integrals of Bessel and Hankel 
functions of the second kind.  

∫ 𝐹(𝑘𝜌)𝐽𝑛(𝑘𝜌𝜌)𝑘𝜌𝑑𝑘𝜌
+∞

0
=
1

2
∫ 𝐹(𝑘𝜌)𝛨𝑛

(2)(𝑘𝜌𝜌)𝑘𝜌𝑑𝑘𝜌
+∞

−∞
, (2.3) 

Introducing (2.3) into the integrals of (2.2 b) results into infinite complex integral 
expressions featuring Hankel functions. A comparison between the integration paths in the 
complex plane of these two formulations is depicted through Figure 2-4. 

[

𝐸𝑥(𝑟 )

𝐸𝑦(𝑟 )

𝐸𝑧(𝑟 )

] =
1

8𝜋
∫

[
 
 
 
 
 − ((𝑣𝑇𝛦

+ (𝑘𝜌, 𝑧𝑠) + 𝑣𝑇𝛭
+ (𝑘𝜌, 𝑧𝑠))𝐻0

(2)(𝑘𝜌𝜌) + (𝑣𝑇𝛦
+ (𝑘𝜌, 𝑧𝑠) − 𝑣𝑇𝛭

+ (𝑘𝜌, 𝑧𝑠)) 𝑐𝑜𝑠(2𝜑)𝐻2
(2)(𝑘𝜌𝜌))

𝑠𝑖𝑛(2𝜑)(𝑣𝑇𝑀
+ (𝑘𝜌, 𝑧𝑠) − 𝑣𝑇𝐸

+ (𝑘𝜌, 𝑧𝑠))𝐻2
(2)(𝑘𝜌𝜌)

−𝑗
2𝜁𝑑
𝑘𝑑
𝑐𝑜𝑠(𝜑) 𝑖𝑇𝑀

+ (𝑘𝜌, 𝑧𝑠)𝐻1
(2)(𝑘𝜌𝜌)𝑘𝜌 ]

 
 
 
 
 

𝑘𝜌𝑒
−𝑗𝑘𝑧𝑧𝑑𝑘𝜌

+∞

−∞

, 

(2.4)

    (a)                                                                 (b) 

Figure 2-4. Integration path and singularities for the TM integrals of (a) (2.2 b) and (b) (2.4). 

One noticeable difference between the integrals of (2.2 b) and (2.4) refers to the singularities 
in the 𝑘𝜌 complex plane. In particular, while the introduction of the Hankel functions of the 
second kind facilitates the subsequent path deformations, it also introduces a branch point at 
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the origin, with its respective cut drawn along the real axis towards negative infinity, as 
showcased through Figure 2-4 (b). As will become apparent in section 3.2c, while the branch 
introduced by the Hankel function is irrelevant for numerical integral evaluations, since none 
of the implemented deformations envelopes the introduced branch cut, it will have a notable 
impact in the asymptotic integral evaluation. As such, it is deemed noteworthy to point out 
that the branch point at the origin is not related to the examined structure, i.e., the Green’s 
function, but is purely attributed to the chosen representation which facilitates the desired path 
deformations.  

2.2d. Saddle point (SP) and Steepest Descent Path (SDP) 

Rectilinear (𝒌𝝆) complex plane 

Having presented the concept of path deformation, as a next step, the desired integration path 
must be determined. In order to identify the optimal path both in terms of faster convergence 
as well as potential field decomposition into wave components, the properties of the integrand’s 
spectrum must first be examined. To facilitate this prospect, an indicative integral will be 
considered, featuring all the spectral dependencies of the integrals in (2.4). Without loss of 
generality, this integral employs the voltage wave amplitude of the TE variant and an nth order 
Hankel function of the second kind. Considering the spectral dependence of the phase of the 
large argument approximation for the Hankel function (2.5 a), allows for the explicit separation 
of the phase of the examined integral, as expressed in (2.5 b), through the exponential 
𝑒−𝑗(𝑘𝑧𝑧+𝑘𝜌𝜌). Subsequently, the phase variance can be represented through a function 𝑞(𝑘𝜌). 

 𝐻𝑛
(2)(𝑘𝜌𝜌) = √

2

𝜋𝑘𝜌𝜌
𝑒𝑗
𝜋

4𝑒𝑗
𝑛𝜋

2 𝑒−𝑗𝑘𝜌𝜌, (2.5 a) 

 ∫ 𝑣𝑇𝛦
+ (𝑘𝜌, 𝑧𝑠)𝛨𝑛

(2)(𝑘𝜌𝜌)𝑒
𝑗𝑘𝜌𝜌𝑘𝜌𝑒

−𝑗(𝑘𝑧𝑧+𝑘𝜌𝜌)𝑑𝑘𝜌
+∞

−∞
, (2.5 b) 

 𝑞(𝑘𝜌) = −𝑗(𝑘𝑧𝑧 + 𝑘𝜌𝜌), (2.5 c) 

Having explicitly extracted the integrand’s phase dependence on 𝑘𝜌, the points in the 
spectrum relating to dominant field contributions can be identified as stationary phase or saddle 
points of the function 𝑞(𝑘𝜌). These points are defined by the vanishing of one or more of the 
derivatives of 𝑞(𝑘𝜌), with the number of vanishing derivatives determining the order of the 
saddle point (SP). Using the above expression, together with the fact that the integration path 
remains on the top Riemann sheet (i.e., 𝐼𝑚(𝑘𝑧) < 0), a first order saddle point can be identified 
for 𝑞(𝑘𝜌), as given below.  

 𝑞′(𝑘𝜌𝑆𝑃) = 0⇒𝑘𝜌𝑆𝑃 = 𝑘𝑑 𝑠𝑖𝑛(𝜃)     𝑎𝑛𝑑   𝑞
′′(𝑘𝜌𝑆𝑃) ≠ 0, (2.6 a) 

Where 𝜃 refers to the angle of the observation point (𝑟 ) with the z axis. Evidently, this saddle 
point changes with the observation angle (𝜃), moving along the real axis of the rectilinear 𝑘𝜌 
spectrum between the origin and 𝑘𝑑. 

Given the identification of the integral’s dominant contribution as the saddle point, the 
optimal path in terms of convergence would be the one on which the integrand’s magnitude 
decays the fastest away from this point, such that only the vicinity of the saddle point is 
relevant. Deriving the expression for the path of fastest convergence begins by investigating 
the behaviour of 𝑞(𝑘𝜌) around its dominant contribution. This process commences by separating 
the real and imaginary parts of 𝑞(𝑘𝜌), as given below, where 𝑘𝜌 = 𝑥 + 𝑗𝑦 with 𝑥, 𝑦 being real 
numbers. 
 𝑞(𝑥, 𝑦) = 𝑢(𝑥, 𝑦) + 𝑗𝑣(𝑥, 𝑦), (2.6 b) 

To identify the expression for the path on which the magnitude of the integrand decays the 
fastest away from the saddle point, one should start by seeking a criterion which defines that 
𝑢(𝑥, 𝑦) and subsequently 𝑒𝑢(𝑥,𝑦)  change most rapidly. This behaviour of complex functions can be 
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evaluated through the use of the Cauchy-Riemann equations for the real (𝑢(𝑥, 𝑦)) and imaginary 
(𝑣(𝑥, 𝑦)) parts of 𝑞(𝑘𝜌), resulting in the argument that the real part changes the fastest when 
the imaginary part remains constant and vice versa. In other words, the magnitude of 𝑒𝑢(𝑥,𝑦)  
decays the fastest in constant imaginary part paths, while paths of constant real part result in 
the most rapid imaginary part variation. Utilizing the above conclusions, the expression for the 
paths with the fastest amplitude variation passing through the first order saddle point can be 
derived by identifying the constant imaginary part paths which include the saddle point. 

 𝐼𝑚 (𝑞(𝑘𝜌)) = 𝐼𝑚 (𝑞(𝑘𝜌𝑆𝑃)), (2.7) 

It should be noted that the above expression defines the paths of fastest magnitude change 
and as such results into two expressions, indicating the fastest increase and fastest decrease 
away from the saddle point, namely the Steepest Ascend Path (SAP) and the Steepest Descend 
Path (SDP). Of course, for the purpose of enhancing the convergence of the numerical 
integration, the optimal path is the one for which the smallest possible section around its 
dominant contribution is relevant, i.e., the SDP. For a more detailed discussion regarding the 
introduction of the Cauchy-Riemann equations and the nature of the spectrum around an nth 
order saddle point, the reader is referred to section 4.1b of [26]. 

Angular spectrum (β-plane) 

Although complete in terms of the theoretical steps required for the derivation of the integral’s 
dominant contributions as well as the path of fastest convergence, the previous discussion does 
not include any final expressions since the mathematical manipulations involved are more 
conveniently performed in the angular spectrum. In fact, introducing the complex angle variable 
𝛽 via the transformation given below, the branch pair related to the semi-infinite region is 
resolved and the subsequent calculations are facilitated. 

 𝑘𝜌 = 𝑘𝑑 𝑠𝑖𝑛(𝛽)    &    𝑘𝑧 = 𝑘𝑑 𝑐𝑜𝑠(𝛽), (2.8) 

In a few words, due to the single valued nature of the above transformation (𝑠𝑖𝑛(𝛽)), both 
Riemann sheets of the rectilinear spectrum (𝑘𝜌) are mapped into adjacent regions of a single 
Riemann sheet in the angular spectrum (𝛽). Furthermore, considering the periodic nature of 
the sine function (𝑠𝑖𝑛(𝛽 + 2𝜋) = 𝑠𝑖𝑛(𝛽)), multiple values of 𝛽 correspond to the same value of 
𝑘𝜌. As a result, the entire 𝑘𝜌 complex plane is periodically repeated into adjacent sections of 
width 2π in the angular spectrum. Even so, taking into account the chosen sign for the 
definition of 𝑘𝑧 (𝑘𝑧 = +𝑘𝑑𝑐𝑜𝑠(𝛽)), the origin of the 𝑘𝜌 spectrum is mapped into 𝛽 = 0 and thus 
the principal strip is defined around the origin, from -π to π. Transforming the indicative 
integral of (2.5 b) into the angular spectrum, its spectral phase dependence, first order saddle 
point and steepest descent path are expressed below. 

 𝑞(𝑘𝑑 𝑠𝑖𝑛(𝛽)) = 𝑞𝐵(𝛽) = −𝑗𝑐𝑜𝑠(𝛽 − 𝜃), (2.9 a) 

 𝑞𝛣
′ (𝛽𝑆𝑃) = 0 ⇒ 𝛽𝑆𝑃 = 𝜃,   𝑞𝐵

′′(𝜃) ≠ 0, (2.9 b) 

 𝐼𝑚(𝑞𝐵(𝛽)) = 𝐼𝑚(𝑞𝐵(𝛽𝑆𝑃)) ⇒ 𝛽𝑟 = 𝜃 ± 𝑐𝑜𝑠
−1(𝑠𝑒𝑐ℎ(𝛽𝑖)), (2.9 c) 

Where 𝑺𝑫𝑷 → 𝛽𝑟 = 𝜃 + 𝑠𝑔𝑛(𝛽𝑖) 𝑐𝑜𝑠
−1(𝑠𝑒𝑐ℎ(𝛽𝑖))  and  𝑺𝑨𝑷 → 𝛽𝑟 = 𝜃 − 𝑠𝑔𝑛(𝛽𝑖) 𝑐𝑜𝑠

−1(𝑠𝑒𝑐ℎ(𝛽𝑖)). 

To visualize the discussed nature of the saddle point as well as that of the paths of constant 
phase, the spectrum of the integrand of (2.5 b) will be depicted around the first order saddle 
point together with the two identified paths through Figure 2-5 (a) and (b) respectively; both 
corresponding to an observation point along the 𝑧 axis (𝜃 = 0𝜊). 
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   (a)                                                                     (b) 

Figure 2-5. Angular spectrum of integrand of (2.5 b) for observation points along 𝑧-axis (θ=0ο) and 𝑧=𝜆0. (a) 
Spectrum’s nature around the saddle point (SP) and (b) illustration of the SDP and SAP passing through the SP. 

The above definition for the expression of the SDP allows for the exact derivation of the 
observation angle above which the deformation from the initial integration path to that of 
steepest descent, envelops each leaky wave polar singularity. This angle, labelled as the shadow 
boundary angle for the respective leaky wave mode (𝜃𝑆𝐵), determines the domain of existence 
of the leaky waves as the outer section of a conical region emanating from the reference system 
position. Inside this conical section the total field consists only of the space wave and is derived 
by the SDP integral, while outside it is obtained through the sum of the SDP integral and the 
respective residue contribution [20]. Assuming that the leaky wave polar singularities (𝑘𝜌,𝐿𝑊) 
have been derived through solving for the zeros of the common denominator of the transmission 
line solution, the observation angle for which the SDP passing through the saddle point crosses 
a polar singularity (𝜃𝑆𝐵), is presented below.  

𝜃𝑆𝐵 = 𝑅𝑒(𝛽𝐿𝑊) − 𝑠𝑔𝑛(𝐼𝑚(𝛽𝐿𝑊)) 𝑐𝑜𝑠
−1 (𝑠𝑒𝑐ℎ(𝐼𝑚(𝛽𝐿𝑊))), (2.10) 

Where  𝛽𝐿𝑊 = 𝑎𝑠𝑖𝑛 (
𝑘𝜌,𝐿𝑊

𝑘𝑑
). 

Since for angles larger than 𝜃𝑆𝐵 the residue contribution of the leaky wave pole must be 
included in the integral evaluation during the deformation from the initial path to that of the 
steepest descent, the field expression can be re-written as given below. 

�⃗� (𝑟 ) = �⃗� 𝑆𝐷𝑃(𝑟 ) + ∑ 𝑈(𝜃 − 𝜃𝑆𝐵,𝑖)�⃗� 𝐿𝑊,𝑖
𝑇𝐸 𝑇𝑀⁄ (𝑟 )3

𝑖=1 , (2.11) 

Where U(x) corresponds to the Heaviside step function, �⃗� 𝑆𝐷𝑃(𝑟 ) refers to the integral 
expressions of (2.4) evaluated on the SDP path given in (2.9 c) and the finite sum of �⃗� 𝐿𝑊,𝑖

𝑇𝐸 𝑇𝑀⁄ (𝑟 ) 
relates to the residue field contributions of the polar singularities of the significant leaky wave 
modes, namely TE1, TM1 and TM0. As such, by implementing the above described process, the 
near field can now be computed through a much faster convergent integral expression (�⃗� 𝑆𝐷𝑃) 
and a finite sum of analytical terms. 

One interesting aspect that will be revisited in section 4.2b refers to the relative value of 
the shadow boundary angle when compared to the pointing angle of the respecive mode. In 
particular, while the shadow boundary angle is larger than the leaky wave pointing angle for 
all the examined modes, it approaches the latter (𝜃𝑆𝐵 → 𝜃𝐿𝑊) the smaller is the attenuation 
constant of the respective mode. This can be visualized through Figure 2-6, which illustrates 

↓ 𝑠𝑚𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 
↑ 𝑙𝑎𝑟𝑔𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑆𝐷𝑃 

𝑆𝐴𝑃 
𝑆𝑎𝑑𝑑𝑙𝑒 𝑝𝑜𝑖𝑛𝑡 
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the dispersion of the impactful leaky wave modes for the structures of Figure 2-1, through their 
pointing angles (solid-𝜃𝐿𝑊), shadow boundary angles (dashed-𝜃𝑆𝐵) and attenuation constants 
(𝛼𝐿𝑊). 

    (a)                                                                (b) 

Figure 2-6. Dispersion of dominant leaky wave modes (a) wideband and (b) resonant structure of Figure 2-1. The 

dashed line on the top figures refers to the shadow boundary angles (𝜃𝑆𝐵) while the solid lines correspond to the 

leaky wave pointing angles (𝜃𝐿𝑊). 

As a final note for the illustration of the aforementioned concepts, the initial integration 
path of (2.5 b) as well as the SDP for observation angle equal to the shadow boundary angle 
of the TE1 leaky wave mode are visualized through Figure 2-7 (a), (b) in the rectilinear (𝑘𝜌) 
spectrum and (c), (d) in the angular (𝛽) spectrum. 

      (c)                                                              (d) 

Figure 2-7. Initial and SDP integration paths of (2.5 b): (a),(b) in 𝑘𝜌 spectrum and (c),(d) in angular spectrum. 

  (b)  (a)    
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To conclude this section, it is worth noting that the transformation to the angular spectrum 
is a very convenient step for integrals with similar form to that of (2.4), since it removes the 
branch pair at ±𝑘𝑑, facilitating substantially all the subsequent theoretical manipulations. 
Consequently, extensive discussions for the angular spectrum transformation can be found in 
several works, like section 5.3c of [26], section 27 of [32] or section 3.1 of [33] and their references 
therein. For the completeness of the current study, a brief discussion describing the mapping 
from the rectilinear to the angular spectrum will be included through Appendix C. 

2.2e. Phase center choice 

The necessity for a phase centre definition as the point of origin for the phase which minimizes 
the phase variance over a predefined solid angle, becomes apparent when quasi-optical 
components are implemented. As a matter of fact, to exploit the canonical properties of the 
involved geometry (e.g., parabolic reflector, elliptical lens, etc.) the phase origin point of the 
feeding component must coincide with a geometric point of the introduced structure.  

Regarding stratified media capable of supporting leaky waves similar to those of Figure 2-1, 
the phase centre is not determined by the apertures in the ground plane. Instead, its position 
depends on the aperture field distribution formed by the leaky waves excited inside the cavity. 
Employing this concept, it has been shown that for an observation point in the semi-infinite 
dielectric region, the origin position for the phase appears to be displaced by Δz below the 
ground plane (Δz>0) [20], [34]. This displacement of the reference system is illustrated through 
Figure 2-8 for both the wideband and resonant examined structures.  

 
                                (a)                                                                     (b) 

Figure 2-8. Leaky wave structures with specified phase center positions below the ground plane, (a) wideband and 

(b) resonant case. 

This reference system translation in turn modifies the equivalent transmission line model 
and subsequently impacts the expression of the potential functions in the semi-infinite region, 
as shown through Figure 2-9 and expressed below.  

  
𝐹𝑜𝑟 𝛥𝑧 = 0:   𝑣𝑇𝐸/𝑇𝑀(𝑘𝜌, 𝑧, 𝑧𝑠 = 0) = 𝑣𝑇𝐸/𝑇𝑀

+ (𝑘𝜌, 𝑧𝑠 = 0)𝑒
−𝑗𝑘𝑧𝑧

𝐹𝑜𝑟 𝛥𝑧 > 0:   𝑣𝑇𝐸/𝑇𝑀(𝑘𝜌, 𝑧′, 𝑧𝑠 = 𝛥𝑧) = 𝑣𝑇𝐸/𝑇𝑀
+ (𝑘𝜌, 𝑧𝑠 = 𝛥𝑧)𝑒

−𝑗𝑘𝑧𝑧
′ (2.12 a) 

The complete derivation of the voltage and current wave amplitudes in the semi-infinite 
dielectric region for either the initial or the displaced reference systems is presented through 
Appendix B, with the final expressions given in (B.8) and (B.10). As evident through comparing 
the resulting expressions, the voltage wave amplitudes for the two structures can be related as 
follows. The same relation also holds for the current wave amplitudes. 

 𝑣𝑇𝐸/𝑇𝑀
+ (𝑘𝜌, 𝑧𝑠 = 𝛥𝑧) = 𝑣𝑇𝐸/𝑇𝑀

+ (𝑘𝜌, 𝑧𝑠 = 0)𝑒
𝑗𝑘𝑧𝛥𝑧, (2.12 b) 

𝜀𝑟,𝑐𝑎𝑣 = 3.8 

𝜀𝑟,𝑖𝑛𝑓 = 12 

𝑧′ 

Wideband structure 

𝜀𝑟,𝑖𝑛𝑓 = 11.9 

𝑧′ 

𝑦′ 
𝑥′ 

Resonant structure 

𝜀𝑟,𝑐𝑎𝑣 = 1 

h = λο / 2 h = λcav / 2 

𝑂′ 

Δz 

𝑦′ 
𝑥′ 

𝑂′ 
Δz 
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       (a)                                                     (b) 

Figure 2-9. Equivalent transmission line model of leaky wave structure, (a) reference system on the ground plane 

(Δz=0), (b) reference system displaced as in Figure 2-8. 

Introducing this reference system displacement to the indicative integral expression that 
has been treated throughout this chapter (2.5 b), results into the following, where 𝑧′ corresponds 
to the displaced reference system of Figure 2-9 (b).  

∫ 𝑣𝑇𝛦
+ (𝑘𝜌, 𝛥𝑧)𝛨𝑛

(2)(𝑘𝜌𝜌)𝑒
𝑗𝑘𝜌𝜌𝑘𝜌𝑒

−𝑗(𝑘𝑧𝑧
′ +𝑘𝜌𝜌)𝑑𝑘𝜌

+∞

−∞
, (2.13) 

Having presented the impact of displacing the reference system on the wave amplitudes 
and the near field integral formulation, the following section will elaborate on one of the most 
useful aspects of the above discussed reference system choice, that of identifying wave 
components in the near field. It should be noted that for the remaining of this document, prime 
notation in spatial variables, namely 𝑟′ and 𝜃′, would signify that they refer to the displaced 
reference system below the ground plane. 

2.3. Near field spherical wave formation 

As shown in [20], choosing the phase center displacement such that it minimizes the phase 
variance of the wave amplitudes up to the smallest shadow boundary angle, enables the 
identification of the total field as a spherical wave up the aforementioned angle, even in the 
near field of the leaky wave structure. More specifically, utilizing the approximation for the 
phase of the co polarized component of a leaky wave structure extracted in [34], the phase 
center choice introduced in [20] is presented below. 

 
𝛥𝑧
𝑇𝑀/𝑇𝐸

𝜆𝜊
=

𝑎𝑡𝑎𝑛(
𝑠𝑖𝑛2(𝜃𝑆𝐵

𝑇𝑀/𝑇𝐸
)

2(𝑎𝐿𝑊
𝑇𝑀/𝑇𝐸

)
2 )

2𝜋√𝜀𝑟(1−𝑐𝑜𝑠(𝜃𝑆𝐵
𝑇𝑀/𝑇𝐸

))
     𝑎𝑛𝑑     𝛥𝑧 =

𝛥𝑧
𝑇𝑀1+𝛥𝑧

𝑇𝐸1

2
, (2.14) 

Using the above phase centre definition, the initial and corrected phase variance of the TE 
and TM voltage wave amplitudes in the semi-infinite region of the resonant and wideband 
examined structures, are illustrated through Figure 2-10 (a), (b) and (c), (d) respectively. 
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     (c)                                                          (d) 

Figure 2-10. Phase variance of TE and TM voltage wave amplitudes (𝑣𝑇𝐸
+  and 𝑣𝑇𝑀

+ ) in the semi-infinite regions of

the (a), (b) resonant and (c), (d) wideband structure of Figure 2-1. 

The actual phase centre displacements below the ground plane (Δz>0) for the examined 
structures resulting from expression (2.14), are given through Table 2-I in terms of the free-
space wavelength of the central frequency (150 GHz).  

Phase center 
displacement 

Wideband 
structure 

Resonant 
structure 

Δz 0.42λ0 3.2λ0 

Table 2-I. Phase center displacement at central frequency (150 GHz). 

For the purpose of showcasing the spherical wave formation described above, the near field 
will be evaluated in spherical observation grids of different radii from the phase centre of the 
leaky wave structures. The evaluation of the near field is performed through the SDP numerical 
integration (2.11), where the reference system of the involved integrals is displaced below the 
ground plane as indicatively given in (2.13). In particular, the magnitude and phase of the co 
polarized component as well as the angle of the Poynting vector with the z axis will be 
examined. Regarding the Poynting vector angle, its derivation is performed as follows. It should 
be reminded that prime notation in spatial variables (i.e., 𝑟′ and 𝜃′) indicates that they refer to 
the reference system translated below the ground plane. 

𝜃𝑃𝑜𝑦(𝑟 
′) = 𝑎𝑐𝑜𝑠(�̂�𝑎𝑐𝑡(𝑟 

′) ∙ �̂�) = 𝑎𝑐𝑜𝑠 (
�⃗� 𝑎𝑐𝑡(𝑟 

′)

|�⃗� 𝑎𝑐𝑡(𝑟 
′)|
∙ �̂�), (2.15) 

Where   �⃗� 𝑎𝑐𝑡(𝑟 
′) =

1

2
𝑅𝑒 (�⃗� (𝑟 ′) × �⃗⃗� ∗(𝑟 ′)) =

1

2
𝑅𝑒 (|

�̂� �̂� �̂�

𝐸𝑥(𝑟 
′) 𝐸𝑦(𝑟 

′) 𝐸𝑧(𝑟 
′)

𝐻𝑥
∗(𝑟 ′) 𝐻𝑦

∗(𝑟 ′) 𝐻𝑧
∗(𝑟 ′)

|). 

 (b)  (a) 



34 Background 

The steps required for the derivation of the magnetic field, which is necessary for the 
evaluation of the Poynting vector, are identical to those presented in the previous chapter for 
the electric field and can be found in Appendix D. The only difference between the two cases 
arises from the expressions of the respective Green’s functions (�̿�𝑒𝑚 and �̿�ℎ𝑚). Having said the 
above, the resulting plots for the wideband structure are illustrated through Figure 2-11, with 
the co polarized component obtained using the Ludwig 3 definition. 

(a)    (b) 

  (c)  (d) 

 (e)  (f) 

Figure 2-11. Co polarized component over observation sphere from the phase center of the wideband structure. 

Magnitude (a) E-plane and (b) H-plane. Phase variance (c) E-plane and (d) H-plane. Angle of Poynting vector 

with z axis (e) E-plane and (f) H-plane. 

As evident from Figure 2-11 (a) and (b), the shape of the pattern close to the source varies 
noticeably with distance for 𝜃′ > 𝜃𝑆𝐵, but is almost independent of the distance from the source 
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below the shadow boundary angle (𝜃′ < 𝜃𝑆𝐵). Considering the presence of the TM0 for the 
examined elementary source and its strong impact in the E-plane (around 35o), the above is 
more evident in the H-plane. Together with the almost constant phase of the total field for 𝜃′ <
𝜃𝑆𝐵 even for spherical observation grids very close to the source, as seen through Figure 2-11 
(c) and (d), this means that the field within this solid angle (𝜃′ < 𝜃𝑆𝐵) can be considered as a 
spherical wave [20].  

To further illustrate the concept of the near field spherical wave formation, one can compare 
the Poynting vector angle of the total field in the main planes with the geometrical angle seen 
from the phase centre (dashed grey line), as shown through Figure 2-11 (e) and (f). While for 
observation angles smaller than the shadow boundary the Poynting vector angle and the 
geometrical angle converge, beyond this point the near field is quite more complicated, since it 
is significantly influenced by the residue polar contributions. The only clear trend can be seen 
in the E-plane, where the strongly excited TM0 dominates the near field above its shadow 
boundary (𝜃𝑆𝐵

𝛵𝛭0), as visualized through Figure 2-11 (e). The Poynting vector angles of the leaky 
waves, labelled as 𝜃𝑃𝑜𝑦

𝑇𝐸1/𝑇𝑀1/𝑇𝑀0 in the figures, refer to the angles between the Poynting vector of 
the residue contributions and the z-axis, as given in Appendix D. 

To conclude this discussion regarding the spherical wave formulation in the near field of a 
leaky wave structure, it is worth pointing out the difference between the resonant and wideband 
structures. In particular, while the same deductions can be made through Figure 2-12 (a)-(f) 
which correspond to the resonant structure, it can be observed that the higher the directivity 
of the structure, i.e., the more resonant the leaky wave stratification is, the furthest from the 
source this formation of a spherical wave occurs. This observation can be more easily visualized 
through the comparison of the Poynting vector angles shown through Figure 2-11 and Figure 
2-12 (e)-(f). This notion relating the directivity of the structure to the radial distance for which 
this near field spherical wave formation can be assumed, will be revisited in following sections 
due to its importance in determining the applicability region of the asymptotic approach.  

     (c)        (d) 

(a)   (b) 
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   (e)                                                          (f) 

Figure 2-12. Co polarized component over observation sphere from the phase center of the resonant structure. 

Magnitude (a) E-plane and (b) H-plane. Phase variance (c) E-plane and (d) H-plane. Angle of Poynting vector 

with z axis (e) E-plane and (f) H-plane. 

2.3a. Field decomposition 

Having elaborated on the concept of the near field spherical wave formation enabled through 
the appropriate choice of phase centre, one final aspect that needs to be discussed prior to the 
introduction of the asymptotic techniques refers to the field decomposition provided by the 
SDP integration approach. In particular, as already discussed in previous sections, the definition 
of the observation angle for which each leaky wave polar singularity is captured during the 
deformation from the initial integration path to that of steepest descent (shadow boundary 
angle 𝜃𝑆𝐵), determines the region of existence of the leaky waves. More specifically, this angle 
defines a conical section for each leaky wave mode, emanating from the phase centre. While 
inside this cone the leaky wave does not exist and the total field is comprised of only the SDP 
integral; outside, the residue contribution of the polar singularity must be added to the SDP 
integral in order to obtain the total field. In fact, for strong residues, i.e., small attenuation 
constant for the mode in question and observation grids close to the source, the total field 
outside this cone can be dominated by the leaky wave [20]. To visualize the aforementioned 
nature of the field, a three-dimensional illustration of an indicative leaky wave geometry is 
presented in Figure 2-13, showing this conical region defined from the phase centre.  

Figure 2-13. 3D view of leaky wave structure indicating the conical region emanating from the phase center which 

limits the domain of existence for the leaky wave.  
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Since the residue field contributions must be added only above the respective shadow 
boundary angles, in order to form a continuous total field, the SDP integral contribution must 
be discontinuous at the shadow boundaries with the exact level of said discontinuity accounted 
for by the respective residue contribution. This concept can be visualized through evaluating 
the co polarized component in the two main planes, as indicatively shown for the wideband 
structure through Figure 2-14 and Figure 2-15.  

       (a)                                                                    (b) 

Figure 2-14. E-plane of co polar component, (a) decomposed, with the solid line referring to the SDP integral 

while the dashed to the polar residues and (b) total field (ESDP+ELW). 

   (a)                                                                    (b) 

Figure 2-15. H-plane of co polar component, (a) decomposed, with the solid line referring to the SDP integral 

while the dashed to the polar residues and (b) total field (ESDP+ELW). 

Apart from the discontinuous SDP integral at the shadow boundary angles, another 
important note that can be deduced from the above figures refers to the level of the residues, 
which decays rapidly as the observation point moves away from the source. In addition, given 
the relatively large attenuation constants of the main leaky wave mode pair (TM1 and TE1), 
their residue contributions do not dominate the total field above their respective shadow 
boundary angles, where the latter is comprised by the summation of the SDP integral and the 
residue. This of course is not the case for the TM0 in its dominant plane, as can be visualized 
for 𝜃′ > 𝜃𝑆𝐵

𝛵𝛭0 in Figure 2-14, due to its small attenuation constant. Another aspect of the leaky
wave contributions visualized through the figures above, refers to the impact of each mode in 
its non-dominant (orthogonal) plane, i.e., E-plane for the TE and H-plane for the TM modes. 
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While far from the source the impact of the TM and TE leaky wave modes can be isolated in 
their respective dominant planes, i.e., E and H planes, the same cannot be said for observation 
points very close to the leaky wave cavity. Even so, for their impact to be noticeable in the 
orthogonal plane, a strongly excited leaky wave is needed (small 𝛼𝐿𝑊). As such, for the present 
structure this occurs for observation grids very close to the source and only for the TM0, as 
evident through the discontinuity at 𝜃𝑆𝐵

𝛵𝛭0 in Figure 2-15. Finally, even though both figures 
presented above correspond to the wideband structure, similar deductions can also be made for 
the resonant case. 

Having allocated a big part of the above discussion on the insight for the nature of the near 
field provided by the SDP integration approach and the phase center choice, one aspect that 
has been only briefly discussed refers to the convergence of the near field integrals involved. 
This aspect is attributed to the exploitation of the integrands’ spectral properties, as described 
through section 2.2d. In fact, through decomposition the field as given in (2.11), the near field 
can be derived through a number of fast converging integrals (�⃗� 𝑆𝐷𝑃) and a finite sum of 
analytical terms, resulting to its evaluation requiring a fraction of the time necessary for the 
integration of the initial expressions (2.4) over the real axis in the 𝑘𝜌 complex plane. To 
showcase the latter, an indicative timing comparison has been performed for the nearest 
examined spherical grid, i.e., 𝑟′=1.5λο+Δz, and a mesh of 361 𝜑 and 140 𝜃 points. As indicated 
through Table 2-II, while the adaptive quadrature integration requires 9 minutes for the 𝑘𝜌 
integrals over the real axis, the SDP is nine times faster. 

Evaluation 
method 

Numerical 
(integration path of 

Figure 2-4 b) 

Numerical  
(SDP) 

Time required 9 min 1 min 

Table 2-II. Timing comparison between integration on 𝑘𝜌 through the path shown in Figure 2-4 (b) and 

integration on the path of steepest descent. 
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CHAPTER 3. ASYMPTOTIC TECHNIQUES 

To give an overview of the numerical field evaluation techniques showcased in the previous 
chapter, simple methods like the integration over the real axis of the rectilinear spectrum (𝑘𝜌) 
have the advantage of versatility since they can be applied directly without consideration for 
the specific properties of either the integrand or the examined structure but do suffer in terms 
of computational time. Taking this into account, significant improvement in the computation 
efficiency can be achieved through exploiting the integrand’s spectral properties and 
implementing the SDP method of integration described in section 2.2d. Having said that, the 
ideal scenario one could consider would be to replace each complex integral expression with a 
finite number of analytical terms. In this manner, the need for any spectral integration would 
be mitigated and thus the computational efficiency would be enhanced even further. This 
process of evaluating complex integrals through a finite number of analytical terms is essentially 
referred to as asymptotic approximation.  

Arguably the simplest and most common method to asymptotically evaluate radiation 
integrals is the stationary phase point (SPP) approximation, which can be used to derive the 
far field of a radiating structure. In this case, given the consideration for an observation point 
far away from the source, the integrand’s phase term oscillates very fast on the integration 
path compared to the much slower varying amplitude. This behaviour enables the evaluation 
of the slow varying amplitude at the stationary phase point (saddle point) and the subsequent 
closing of the remaining integral analytically. A thorough discussion regarding the SPP 
approximation and the derivation of the far field of a leaky wave structure similar to those of 
Figure 2-1, can be found in Appendix F.  

Having introduced the concept of asymptotic approximation for complex integrals as well 
as an example for the case of the far field, the following chapter will elaborate on an asymptotic 
evaluation method that can also be applied for the near field of a leaky wave structure. Aiming 
for the cleanest asymptotic approach in the sense of requiring the smallest number of terms, 
the field decomposition introduced by the steepest descent path method will be exploited, 
essentially targeting the asymptotic evaluation of the SDP integrals (�⃗� 𝑆𝐷𝑃). Apart from its 
capability of enhancing the computational efficiency of the near field evaluation, the potential 
of extracting further insight into the wave phenomena which drive the radiation process 
through the asymptotic near field evaluation will also be explored. 

3.1. General considerations 

Integral representations play a fundamental role in spectral analysis, with the choice of 
representation enabling different approaches for the evaluation of the complex integrals 
involved. One indicative example of this concept has already been presented through the 
background section 2.2c. In particular, introducing the Hankel function of the second kind in 
the field representation, made it possible to resort to contour deformations, leading to the 
identification of the fastest convergence path and the subsequent field decomposition into the 
SDP integral and residue polar contributions. The price for enabling this approach though, is 
the introduction of the branch point at the origin of the complex plane and its respective cut, 
as depicted through Figure 2-4 (b). In turn, this singularity introduces notable complications 
in the following asymptotic approach. 

To begin approaching the asymptotic approximation of the near field integral expressions, 
first the field decomposition resulting from the SDP integration approach will be re-written 
below for clarity. The prime notation in the spatial variables (𝑟′, 𝜃′), indicates that they refer 
to the displaced reference system of Figure 2-8. 

 �⃗� (𝑟 ′) = �⃗� 𝑆𝐷𝑃(𝑟 ′) + ∑ 𝑈(𝜃′ − 𝜃𝑆𝐵,𝑖)�⃗� 𝐿𝑊,𝑖
𝑇𝐸 𝑇𝑀⁄ (𝑟 ′)3

𝑖=1 , (3.1) 
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Taking into consideration the above decomposition, the derivation of the field in the semi-
infinite region of a leaky wave structure can be reduced to the evaluation of the following 
integral expressions, evaluated on the path of steepest descent in the complex plane (2.9 c). 

[

𝐸𝑥,𝑆𝐷𝑃(𝑟 ′)

𝐸𝑦,𝑆𝐷𝑃(𝑟 ′)

𝐸𝑧,𝑆𝐷𝑃(𝑟 ′)

] =
1

8𝜋
∫   

[
 
 
 
 
 −((𝑣𝑇𝛦

+ (𝑘𝜌 , 𝛥𝑧) + 𝑣𝑇𝛭
+ (𝑘𝜌 , 𝛥𝑧))𝐻0

(2)
(𝑘𝜌𝜌) + (𝑣𝑇𝛦

+ (𝑘𝜌 , 𝛥𝑧) − 𝑣𝑇𝛭
+ (𝑘𝜌 , 𝛥𝑧)) 𝑐𝑜𝑠(2𝜑)𝐻2

(2)
(𝑘𝜌𝜌))

𝑠𝑖𝑛(2𝜑) (𝑣𝑇𝑀
+ (𝑘𝜌 , 𝛥𝑧) − 𝑣𝑇𝐸

+ (𝑘𝜌 , 𝛥𝑧))𝐻2
(2)
(𝑘𝜌𝜌)

−𝑗
2𝜁𝑑
𝑘𝑑
𝑐𝑜𝑠(𝜑) 𝑖𝑇𝑀

+ (𝑘𝜌 , 𝛥𝑧)𝐻1
(2)
(𝑘𝜌𝜌)𝑘𝜌 ]

 
 
 
 
 

 𝑘𝜌𝑒
−𝑗𝑘𝑧𝑧

′
𝑑𝑘𝜌

𝑆𝐷𝑃

, 

(3.2)

Where the reference system displacement (Δz) is chosen as defined through section 2.3. 

Similar to the previous section, in order to facilitate all the subsequent mathematic 
manipulations involved, an indicative integral will be treated instead of the complete 
expressions. As evident through (3.2), if a term-by-term integration is employed, all the SDP 
integrals consist of a Hankel function of the second kind of nth order (with n = 0, 1 or 2) and 
a voltage or current wave amplitude (either TE or TM) multiplied by a power of 𝑘𝜌. As such, 
it will suffice within the present context to focus on the asymptotic evaluation of an integral 
of the type presented below, in terms of the rectilinear (𝑘𝜌) as well as the angular (𝛽) 
spectrum. Without loss of generality, the indicative integral examined features the TE 
voltage wave amplitude. 

∫ 𝑣𝑇𝛦
+ (𝑘𝜌, 𝛥𝑧)𝛨𝑛

(2)(𝑘𝜌𝜌)𝑒
𝑗𝑘𝜌𝜌𝑘𝜌𝑒

−𝑗(𝑘𝑧𝑧
′ +𝑘𝜌𝜌)𝑑𝑘𝜌𝑆𝐷𝑃

, (3.3 a) 

∫ 𝑣𝑇𝐸
+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧)𝐻𝑛

(2)(𝑘𝑑𝜌 𝑠𝑖𝑛(𝛽))𝑒
𝑗𝑘𝑑𝜌 𝑠𝑖𝑛(𝛽)𝑘𝑑

2 𝑠𝑖𝑛(𝛽) 𝑐𝑜𝑠(𝛽) 𝑒𝑘𝑑𝑟
′𝑞𝛣(𝛽)𝑑𝛽

𝑆𝐷𝑃
, (3.3 b) 

Where 𝑞𝐵(𝛽) = −𝑗𝑐𝑜𝑠(𝛽 − 𝜃
′).

At first glance, the above presented integral representations seem unable to be closed in an 
analytical manner. However, depending on the employed representation, certain manipulations 
can be introduced to transform the integrand into a function with similar properties but a 
simpler structure, which can be evaluated asymptotically through canonical integrals, many 
times also labelled as comparison integrals. This concept roughly constitutes the basis of the 
asymptotic approximation of complex integrals, where the targeted canonical form depends on 
the implemented representation. While potentially insightful in terms of field decomposition 
and beneficial in computational efficiency, transforming the integrands into canonical forms 
introduces certain limitations for the accuracy and applicability region of the resulting 
representation, requiring in turn additional considerations prior to the implementation of any 
asymptotic approximation.  

Having elaborated on the dominant contributions of the examined integrals through section 
2.2d (𝑘𝜌𝑆𝑃 = 𝑘𝑑 sin(𝜃′) and 𝛽𝑆𝑃 = 𝜃′), as well as the deformation to the path of steepest descend 
that includes the latter, it is suggestive to approximate the SDP integrals only by the path 
section in the vicinity of the saddle point, since the contribution from the remainder of the 
path will be exponentially small in comparison. Considering the outline of all asymptotic 
approximations as introduced above, our purpose is to transform the integrand of (3.3) into a 
canonical form which describes in the simplest fashion the relevant behaviour around the saddle 
point. The first step of this process is the transformation from the angular spectrum (𝛽) to the 
s-plane, which will be the topic of discussion in the following subsection. 

3.1a. Transformation to the s-plane 

Since only the vicinity of the saddle point traversed by the steepest descent path is relevant, it 
is unnecessary to deal completely with the exponent function 𝑞𝐵(𝛽). Instead, the latter is 
replaced by another function that describes in the simplest manner the relevant saddle-point 
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arrangement around 𝛽𝑆𝑃 = 𝜃′. This transformation will be phrased in terms of a new complex 
variable 𝑠, with the simplest function describing an isolated first order saddle point being the 
following polynomial 𝜏(𝑠). 

𝑞𝐵(𝛽) = 𝜏(𝑠) = 𝑐 − 𝑠
2, (3.4 a) 

The constant c in the above expression is most conveniently chosen such that the saddle 
point is mapped in the origin of the 𝑠 complex plane, that is when c is set equal to 𝑞𝐵(𝛽𝑆𝑃). 

𝑞𝐵(𝛽) = −𝑗 − 𝑠
2, (3.4 b) 

Introducing the 𝑠-plane transformation to the test case integral of (3.3 b), results into the 
following integral expression. 

∫ 𝐹𝐵(𝛽)𝑒
𝑘𝑑𝑟

′𝑞𝛣(𝛽)𝑑𝛽
𝑆𝐷𝑃

= 𝑒−𝑗𝑘𝑑𝑟
′
∫ 𝐹𝐵(𝛽)

𝑑𝛽

𝑑𝑠
𝑒−𝑘𝑑𝑟

′𝑠2𝑑𝑠
𝑆𝐷𝑃

= 𝑒−𝑗𝑘𝑑𝑟
′
∫ 𝐺(𝑠)𝑒−𝛺𝑠

2
𝑑𝑠

𝑆𝐷𝑃
, (3.5) 

Where 𝐹𝐵(𝛽) = 𝑣𝑇𝐸
+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧)𝐻𝑛

(2)(𝑘𝑑𝜌 𝑠𝑖𝑛(𝛽))𝑒
𝑗𝑘𝑑𝜌 𝑠𝑖𝑛(𝛽)𝑘𝑑

2 𝑠𝑖𝑛(𝛽) 𝑐𝑜𝑠(𝛽) ,   𝐺(𝑠) = 𝐹𝐵(𝛽)
𝑑𝛽

𝑑𝑠

and  𝛺 = 𝑘𝑑𝑟
′.

In order to facilitate the subsequent mathematical manipulations, the integrand excluding 
the exponential phase terms is defined in terms of a function 𝐹𝐵(𝛽) for the integral on the 𝛽 
plane and a function 𝐺(𝑠) for that on the 𝑠 plane. Furthermore, while unnecessary for any step 
of the following asymptotic approach, defining the parameter 𝛺 in the principal exponential of 
the integrand of (3.5) will enable an interesting discussion regarding the fundamental 
consideration for the asymptotic evaluation of complex integrals.  

Having mapped the neighbourhood of the first order saddle point around the origin of the 
𝑠-plane through the choice of constant in the transformation (3.4), the new integration path 
can now be considered. Given the phase dependence of the final integral in (3.5), the paths of 
constant imaginary part for the exponent can be identified in a simple manner as the real and 
imaginary axes of the 𝑠-plane. Moreover, since 𝛺 is real and positive (assuming lossless 
dielectrics, i.e., 𝑘𝑑 real), the distinction between the paths of fastest descent and ascent away 
from the origin is straightforward, corresponding to the real and imaginary axis respectively, 
with the 45o and 135o diagonals constituting the boundaries which divide the valley and 
mountain spectral regions. The above discussed nature of the spectrum in the 𝑠-plane is 
visualized through Figure 3-1 (a) and (b), corresponding to the spectrum of the integrand of 
(3.5). Considering the range of the 𝑠-plane illustrated in the figures, what dominates the 

integrand’s behavior is the exponent, namely 𝑒−𝛺𝑠
2
.  

   (a)                                                                 (b) 

Figure 3-1. s-plane spectrum of integrand of (3.5). (a) Saddle point depiction and (b) Steepest Descent 

Path (SDP) - Steepest Ascent Path (SAP). 

↓ 𝑠𝑚𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 
↑ 𝑙𝑎𝑟𝑔𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑆𝐷𝑃 

𝑆𝐴𝑃 
𝑆𝑎𝑑𝑑𝑙𝑒 𝑝𝑜𝑖𝑛𝑡 
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It should be mentioned that the Jacobian transform (𝑑𝛽/𝑑𝑠) incorporated in the definition 
of 𝐺(𝑠), does introduce additional critical points to the integral in question in the form of 
algebraic branch points. These singularities arise from all the other saddle points in the angular 
spectrum, apart from the one at 𝛽𝑆𝑃 = 𝜃′. More specifically, given the periodicity of the angular 
spectrum, 𝑞𝐵′ (𝛽) = 0 results in a multitude of saddle points at 𝜃′±nπ for n integer. While the 
choice of principal strip did define the operating saddle point as 𝛽𝑆𝑃 = 𝜃′, all other saddle points 
become branch points through the s-plane transformation. An extensive discussion for this 
argument can be found in section 3.13 of [33]. Even if introducing additional critical points 
might seem worrisome, they are mapped far enough from the origin such that they do now 
impact the neighborhood of the saddle point and can thus be neglected.  

Another aspect that should be discussed regarding the s-plane transformation, refers to the 
sign ambiguity introduced by the latter. In particular, given the multi-valued nature of the 
transformation presented in (3.4), the sign of the Jacobian transform (𝑑𝛽/𝑑𝑠) must be chosen 
such that 𝑑𝛽 and 𝑑𝑠 denote elementary sections of the SDP in the respective complex planes. 
As a result, since at the saddle point the SDP in the angular spectrum forms a 45o angle with 
the real axis (for 𝛽𝑆𝑃 = 𝜃′, ∡𝑑𝛽 = 45𝜊), as showcased through Figure 2-5, while in the 𝑠-plane the 
SDP always remains on top of the real axis (for 𝑠𝑆𝑃 = 0, ∡𝑑𝑠 = 0𝜊), the Jacobian transform must 
be defined as follows. 

 (3.4  𝑏) ⇒
𝑑𝛽

𝑑𝑠
= ±

√2𝑗

√1−𝑗
𝑠2

2

∡(
𝑑𝛽

𝑑𝑠
)=45𝑜  𝑎𝑡 𝑠=0

⇒             
𝑑𝛽

𝑑𝑠
=

√2𝑗

√1−𝑗
𝑠2

2

, (3.6) 

One fundamental difference between the s-plane and the angular (𝛽) or rectilinear (𝑘𝜌) 
spectrums which remains yet undiscussed, refers to the behavior of the spectral singularities for 
different observation points. Even so, to facilitate the understanding of the asymptotic 
approach, the presence of singularities in the integral will be neglected until section 3.2b, 
considering for the time being an isolated saddle point. 

3.1b. Isolated Saddle Point 

The transformation of the SDP integral passing through the first order saddle point to the 𝑠-
plane, forms a Gaussian type phase (𝑒−𝛺𝑠

2
) in the integrand, which essentially filters the 

amplitude of the spectral content around the saddle point. While this integral formulation 
showcases once more that only the vicinity of the saddle point is relevant, it arguably introduces 
an even more important concept. Namely, it is the value of the real and positive parameter 
𝛺 which determines the sharpness of the filtering introduced by the exponent and thus the 
region around the saddle point that features noteworthy contribution. Having said the above, 
the process of asymptotically approximating complex integrals of forms similar to that of (3.5) 
is usually based on the presence of a large parameter in the exponential behaviour of the 
integrand. This in turn corresponds to a fast-decaying spectrum away from the saddle point, 
enabling the accurate approximation of the examined integral through substituting the 
integrand function 𝐺(𝑠) with a local representation around the origin. For the limiting case 
where 𝛺 → ∞, this process tends to the SPP method, i.e., evaluating 𝐺(𝑠) on the saddle point 
and closing the remaining integral through a canonical form. Even so, one could suggest that 
what is in fact required to enable an asymptotic evaluation is not a very large parameter in the 
exponent, but an accurate representation of the integrand function 𝐺(𝑠) for a radius around 
the saddle point where the contribution of the spectrum remains significant. Although 
fundamentally intuitive, a more rigid formulation of this argument can be found in section 3.13 
of [33]. 

Returning to the evaluation of the integral in question and considering an isolated saddle 
point at 𝑠 = 0, a representation for the spectrum’s properties around the latter can be obtained 
through a power series expansion of 𝐺(𝑠) centred at the origin.  

 𝐺(𝑠) ≅ 𝐺(0) + 𝑠𝐺′(0) +
𝑠2

2
𝐺(2)(0) +

𝑠3

3!
𝐺(3)(0) + ⋯, (3.7) 
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Assuming a regular function 𝐺(𝑠), i.e., featuring no singularities, the radius of convergence 
of this power series expansion is only determined by the number of terms included in the latter. 
Therefore, the larger the important spectral region around the saddle point (i.e., the smaller is 
𝛺), more terms are required in the expansion to ensure the accurate representation of 𝐺(𝑠) and 
subsequently reduce the error introduced by the asymptotic approximation.  

Given that the chosen representation is what determines the set of canonical integrals that 
can be employed in the asymptotic evaluation, for an isolated saddle point, the aforementioned 
Gaussian phase dependence results to integrals of the form presented below, which can be 
subsequently closed through gamma functions. 

 ∫ 𝑒−𝛺𝑠
2
𝑑𝑠

+∞

−∞
= √

𝜋

𝛺
  𝑎𝑛𝑑  ∫ 𝑠𝑛𝑒−𝛺𝑠

2
𝑑𝑠

+∞

−∞
= {

𝛤[(𝑛+1) 2⁄ ]

𝛺(𝑛+1) 2⁄
,   𝑛 𝑒𝑣𝑒𝑛

0,    𝑛 𝑜𝑑𝑑
, (3.8 a) 

Combining these concepts results into the asymptotic evaluation of an integral similar to 
(3.5), assuming a regular 𝐺(𝑠). As evident from the following equation, the odd terms of the 
power series expansion of 𝐺(𝑠) feature no contribution, due to the symmetrical end points of 
the integration and the even nature of the exponent. 

 ∫ 𝐺(𝑠)𝑒−𝛺𝑠
2
𝑑𝑠

+∞

−∞
= ∫ (𝐺(0) + 𝑠𝐺′(0) + ⋯)𝑒−𝛺𝑠

2
𝑑𝑠

+∞

−∞
= ∑ (

𝐺(2𝑛)(0)

(2𝑛!)

𝛤[
2𝑛+1

2
]

𝛺
(
2𝑛+1
2 )
)∞

𝑛=0 , (3.8 b) 

Having discussed the treatment of an isolated saddle point as well as presented an intuitive 
concept to realize the impact of the value of 𝛺, a more realistic problem can now be approached 
where the integrand function (𝐺(𝑠)) features singularities in the spectrum.  

3.2. Spectral singularities near the saddle point 

When any spectral singularities of the integral function (𝐺(𝑠)) approach the saddle point, the 
above presented processes cannot be directly employed. More specifically, the radius of 
convergence of the power series expansion (3.7) is limited by the relative position of the 
singularities to the saddle point. This in turn requires a different approach to enable the 
asymptotic evaluation of the integral in question (3.5). Taking this into account, the following 
section will elaborate on the necessary treatment for different types of singularities of 𝐺(𝑠). 
Before doing so however, the mapping of those singularities and their properties in the s-plane 
will be discussed. 

3.2a. Spectral singularities in the s-plane 

As introduced through section 2.2b, in terms of singularities in the angular spectrum, the 
integrand of (3.5) features a branch point at the origin (𝛽 = 0) due to the presence of the 
Hankel function, as well as leaky wave polar singularities in the sections of the 𝛽-plane which 
correspond to the bottom Riemann sheet of the 𝑘𝜌 complex plane. The mapping of these 
singularities in the 𝑠-plane is performed through solving (3.4 b) for 𝑠. 

 (3.4 𝑏)
𝑞𝐵(𝛽)=−𝑗𝑐𝑜𝑠(𝛽−𝜃

′)
⇒              𝑠 = ±√2𝑒

𝑗
3𝜋

4 𝑠𝑖𝑛 (
𝛽−𝜃′

2
) ⇒ 𝑠𝑖 = −√2𝑒

𝑗
3𝜋

4 𝑠𝑖𝑛 (
𝛽𝑖−𝜃

′

2
), (3.9) 

The sign choice in the above expression is performed such that 𝑠 → (𝛽 − 𝜃′) ((𝑑𝛽 𝑑𝑠⁄ )𝑠=0)⁄  for 
𝛽 → 𝜃′, as in section 4.4 of [26], whereas the subscript 𝑖 can refer to either the leaky wave polar 
singularities of the Green’s function or the branch point of the Hankel.  

One notable aspect of the s-plane which was not discussed this far refers to the behavior of 
the singularities for different observation angles (𝜃′). While in the angular and the rectilinear 
spectrum the singularities remain fixed and the saddle point and its respective SDP change for 
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different observation angles (𝜃′), this is not the case in the 𝑠-plane. In particular, since the 
saddle point and SDP are always mapped to the origin and real axis of the 𝑠-plane respectively, 
the singularities must move in the spectrum for different 𝜃′. Given that the implemented 
asymptotic approach will be determined by the type of singularities closest to the saddle point, 
in the remaining of this section the proximity of different types of singularities to the saddle 
point will be examined for different observation angles. 

Mapping each of the critical points of the integrand of (3.5) to the 𝑠-plane by using (3.9), 
their relative position with respect to the saddle point and SDP for different observation angles 
is visualized through Figure 3-2 (a), (c) and (b), (d) for the 𝛽 and 𝑠-planes respectively. 

 (a)    (b) 

    (c)                                                     (d) 

Figure 3-2. Relative position of saddle point and singularities in the spectrum for (a), (b) 𝜃′=0ο and (c), (d) 

𝜃′=45ο
 for the 𝛽 and 𝑠 planes respectively. 

As evident from the figures above, around broadside both poles of the leaky wave pole pair 
(±𝑘𝜌,𝐿𝑊

𝑇𝐸1 ) are equidistant from the saddle point, while for larger observation angles the one arising
from +𝑘𝜌,𝐿𝑊

𝑇𝐸1  features a dominant impact, being much closer to the saddle point. To account for 
their equally significant contribution for small observation angles, both poles will be considered 
during the asymptotic integral evaluation, as will be discussed in the following section. 
However, apart from the impact of the leaky wave poles, the singularity nearest to the saddle 
point for observation points around broadside is the branch point of the Hankel function 
occuring at 𝛽 = 0. In fact, for observation points along the 𝑧 axis, the branch point coincides 
with the saddle point making its proper treatment crucial. 

Adhering to the main idea behind the asymptotic evaluation of complex integrals, when the 
function 𝐺(𝑠) features singularities near the saddle point these must be isolated in their simplest 
form and subsequently evaluated through another class of canonical integrals. Taking the latter 

𝑆𝑎𝑑𝑑𝑙𝑒 𝑝𝑜𝑖𝑛𝑡 

𝐵𝑟𝑎𝑛𝑐ℎ 𝑝𝑜𝑖𝑛𝑡  
𝑜𝑓 𝐻𝑎𝑛𝑘𝑒𝑙 

𝐿𝑊 𝑝𝑜𝑙𝑒𝑠  
(𝑇𝐸1) 

↓ 𝑠𝑚𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 

↑ 𝑙𝑎𝑟𝑔𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 

𝐵𝑟𝑎𝑛𝑐ℎ 𝑐𝑢𝑡 
𝑜𝑓 𝐻𝑎𝑛𝑘𝑒𝑙 

𝑆𝐷𝑃 
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into account, the following two sections will describe the treatment of the polar and branch 
point singularities present in the examined integrals. 

3.2b. Polar singularities  

Considering that the function 𝐹𝐵(𝛽) in expression (3.5), and subsequently 𝐺(𝑠), feature a set of 
simple poles near the saddle point, the radius of convergence for any expansion of the integrand 
function 𝐺(𝑠) is limited by the positions of said poles. As a result, for cases where 𝛺 is not very 
large and thus the spectral region around the saddle point in which the properties of 𝐺(𝑠) must 
be maintained is significant, the approach presented through section 3.1b must be modified.  

Τhe first step in the method of treating polar singularities near the saddle point requires 
isolating them. This is achieved through decomposing the integrand function 𝐺(𝑠) into a regular 
part (𝑇(𝑠)), also referred to as the regularized part of 𝐺(𝑠), and a part containing all the poles, 
with this process labelled as regularization. Subsequently, the regular part can be evaluated 
through a power series expansion and term-by-term integration, as presented in section 3.1b. 
In turn, the integral of the polar contributions can be evaluated in closed form using either the 
error function (erf) or equivalently the Fresnel integral (𝐹), once the poles have been separated 
into their individual contributions. The two main approaches for the regularization of 𝐺(𝑠) 
consist of an additive and a multiplicative pole treatment [35]. An extensive comparison of the 
two, which focuses on identifying their differences, is presented through Appendix G. Given the 
deductions of this comparison, for the remaining of this document the additive method will be 
employed for the regularization.  

In the additive regularization approach, introduced by van der Waerden [36], a function 
𝐺𝑝𝑜𝑙𝑒(𝑠) containing all the polar singularities of 𝐺(𝑠) is added and subtracted from the latter, 
forming a regular part in the neighbourhood of the saddle point 𝑇𝑉𝑑𝑊(𝑠) = 𝐺(𝑠) – 𝐺𝑝𝑜𝑙𝑒(𝑠). While 
the regular part can now be expanded around the saddle point, the function 𝐺𝑝𝑜𝑙𝑒(𝑠) must be 
expressed as a combination of simple poles and zeros in terms of 𝑠. In this formulation 𝐺𝑝𝑜𝑙𝑒(𝑠) 
can be evaluated through canonical integrals similar to those presented below for only a simple 
pole and a simple pole as well as a zero near the saddle point. 

 ∫
𝑒−𝛺𝑠

2

𝑠−𝑠𝑝
𝑑𝑠

+∞

−∞
= ±2𝑗√𝜋𝑒−𝛺𝑠𝑝

2
𝑄(∓𝑗𝑠𝑝√𝛺),   𝐼𝑚(𝑠𝑝) ≷ 0, (3.10 a) 

 ∫
𝑠−𝑠𝑧

𝑠−𝑠𝑝
𝑒−𝛺𝑠

2
𝑑𝑠

+∞

−∞
= √

𝜋

𝛺
± 2𝑗(𝑠𝑝 − 𝑠𝑧)√𝜋𝑒

−𝛺𝑠𝑝
2
𝑄(∓𝑗𝑠𝑝√𝛺),   𝐼𝑚(𝑠𝑝) ≷ 0, (3.10 b) 

Where  𝑄(𝑥) = ∫ 𝑒−𝑡
2
𝑑𝑡

∞

𝑥
=
√𝜋

2
𝑒𝑟𝑓𝑐(𝑥) =

√𝜋

2
(1 − 𝑒𝑟𝑓(𝑥))   and   𝑒𝑟𝑓(𝑥) =

2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑥

0
. 

Given the complex nature of the leaky wave polar singularities, i.e., 𝑠𝑝 ∈ 𝐶, the definition of 
the error function (erf) required for the evaluation of 𝑄 and subsequently the showcased 
integrals, is expanded as discussed in [37] to account for complex input values. 

The right-hand side of equations (3.10) corresponds to functions which uniformly describe 
the impact of poles as they approach the saddle point and are thus referred to as transition 
functions. One of their most notable aspects is that if the pole in question crosses the SDP for 
some observation angle (𝜃′), the imaginary part of 𝑠𝑝 changes sign, making the transition 
function discontinuous at said angle. Similar to the properties of the SDP integral discussed in 
section 2.3a and showcased through both Figure 2-14 and Figure 2-15, the discontinuity 
introduced by the transition function is exactly equal to the resulting value by the capturing 
of the leaky wave pole through its residue contribution, making the total field continuous.  

Before proceeding further, it should be noted that closing the integrals of (3.10 a-b) through 
the error function is one potential option, a thorough discussion of which can be found in 
section 4.4a of [26]. Another completely equivalent approach is to resolve the canonical forms 
using the Fresnel integral (𝐹) as given below. 
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∫
𝑒−𝛺𝑠

2

𝑠−𝑠𝑝
𝑑𝑠

+∞

−∞
= 𝑠𝑝 ∫

𝑒−𝛺𝑠
2

𝑠2−𝑠𝑝
2 𝑑𝑠

+∞

−∞
= −

1

𝑠𝑝
√
𝜋

𝛺
𝐹(𝑗𝛺𝑠𝑝

2), (3.10 c) 

𝐹(𝑗𝛺𝑠𝑝
2) = ∓2𝑗𝑠𝑝√𝛺𝑒

−𝛺𝑠𝑝
2
𝑄(∓𝑗𝑠𝑝√𝛺),   𝐼𝑚(𝑠𝑝) ≷ 0, (3.11) 

To give an indicative example for the implementation of the additive regularization 
approach, the part of the integrand of (3.5) containing all the polar singularities will be 
considered. Taking into account that the poles of 𝐺(𝑠) are attributed to the zeros of the 
common denominator of the wave amplitudes, the integral of interest is expressed below.  

∫ 𝑣𝑇𝐸
+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧) 𝑐𝑜𝑠(𝛽) 𝑒

𝛺𝑞𝛣(𝛽)𝑑𝛽
𝑆𝐷𝑃

= 𝑒−𝑗𝑘𝑑𝑟
′
∫ 𝐺𝑝

𝑇𝐸(𝑠)𝑒−𝛺𝑠
2
𝑑𝑠

+∞

−∞
, (3.12) 

Where 𝐺𝑝
𝑇𝐸(𝑠) = 𝑣𝑇𝐸

+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧) 𝑐𝑜𝑠(𝛽)
𝑑𝛽

𝑑𝑠
and  𝛺 = 𝑘𝑑𝑟

′. 

For the leaky wave stratifications examined (Figure 2-8), the significant polar singularities 
of the 𝑣𝑇𝐸 potential, refer to ±𝑘𝜌,𝐿𝑊 for the TE1 leaky wave mode. Therefore, for the 
implementation of the additive regularization method, a function describing the behaviour of 
the 𝑣𝑇𝐸 around the aforementioned polar singularities needs to be introduced. This is obtained 
through the following expression, as in [27]. 

𝑣𝑎𝑝𝑟,𝑇𝐸
+ (𝑘𝜌, 𝛥𝑧) =

2𝑘𝜌,𝐿𝑊

𝑘𝜌
2−𝑘𝜌,𝐿𝑊

2 𝑅𝑒𝑠 (𝑣𝑇𝐸
+ (𝑘𝜌, 𝛥𝑧))

𝑘𝜌=𝑘𝜌,𝐿𝑊
, (3.13) 

To eventially showcase the impact of the regularlization, the spectrum of 𝐺𝑝
𝑇𝐸(𝑠) is initially 

depicted through Figure 3-3, in the bottom Riemann sheet sections of the 𝑘𝜌 complex plane 
which contain the leaky wave poles.  

Figure 3-3. Bottom Riemann sheet of 𝐺𝑝
𝑇𝐸(𝑠) = 𝑣𝑇𝐸

+ (𝑘𝜌 , 𝛥𝑧)𝑐𝑜𝑠(𝛽)𝑑𝛽/𝑑𝑠, depicted in the sections of the rectilinear (𝑘𝜌)

spectrum indicated in the inset on the top right. 

The voltage wave function approximation introduced through (3.13), contains both leaky 
wave poles of the ±𝑘𝜌,𝐿𝑊 TE1 pole pair. Consequently, the regularized part of 𝐺𝑝

𝑇𝐸(𝑠), presented 
below, is free of both polar singularities as can be visualized through the respective spectral 
regions in Figure 3-4. 

𝑇𝑉𝑑𝑊𝛵𝛦(𝑠) = (𝑣𝑇𝐸
+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧) − 𝑣𝑎𝑝𝑟,𝑇𝐸

+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧)) 𝑐𝑜𝑠(𝛽)
𝑑𝛽

𝑑𝑠
, (3.14) 

It should be noted that while expressions (3.12) and (3.14) include both 𝛽 and 𝑠 variable 
dependence, this is done purely to maintain a compact form. In fact, these variables are related 

Re(𝑘𝜌) 

Ιm(𝑘𝜌) 

𝑘𝑑,𝑖𝑛𝑓 

-𝑘𝑑,𝑖𝑛𝑓 

Depicted sections of Bottom Riemann 
       sheet 
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through 𝑠(𝛽) = −√2𝑒𝑗(3𝜋 4⁄ ) 𝑠𝑖𝑛((𝛽 − 𝜃′) 2⁄ ) and its inverse, while the Jacobian transform (𝑑𝛽/𝑑𝑠) is 
given by (3.6). 

Figure 3-4. Bottom Riemann sheet of the regularized part through the additive method (𝑇𝑉𝑑𝑊𝛵𝛦(𝑠)). The depicted 

sections of the rectilinear (𝑘𝜌) spectrum are indicated in the inset of Figure 3-3. 

Considering the integral of 𝐺𝑝𝑇𝐸(𝑠) in (3.12), which below is labelled 𝐼𝑆𝐷𝑃(𝛺), the previously 
discussed steps for the asymptotic evaluation using the additive regularization approach are 
given below. 

𝐼𝑆𝐷𝑃(𝛺) = ∫ 𝐺𝑝
𝑇𝐸(𝑠)𝑒−𝛺𝑠

2

+∞

−∞

𝑑𝑠 = ∫ 𝑇𝑉𝑑𝑊𝑇𝐸(𝑠)𝑒
−𝛺𝑠2

+∞

−∞

𝑑𝑠 + ∫ 𝐺𝑝𝑜𝑙𝑒
𝑇𝐸1 (𝑠)𝑒−𝛺𝑠

2

+∞

−∞

𝑑𝑠 ⇒ 

⇒ 𝐼𝑆𝐷𝑃(𝛺) = ∫ (𝑇𝑉𝑑𝑊𝑇𝐸(0) + 𝑠𝑇𝑉𝑑𝑊𝑇𝐸
′ (0) +

𝑠2

2
𝑇𝑉𝑑𝑊𝑇𝐸
(2) (0) +

𝑠3

3!
𝑇𝑉𝑑𝑊𝑇𝐸
(3) (0) +⋯)

+∞

−∞

𝑒−𝛺𝑠
2
𝑑𝑠 + ∫ 𝐺𝑝𝑜𝑙𝑒

𝑇𝐸1 (𝑠)

+∞

−∞

𝑒−𝛺𝑠
2
𝑑𝑠 ⇒

⇒ 𝐼𝑆𝐷𝑃(𝛺) = 𝑇𝑉𝑑𝑊𝑇𝐸(0)√
𝜋

𝛺
+ 𝑇𝑉𝑑𝑊𝑇𝐸

(2) (0)
𝛤[3 2⁄ ]

2𝛺(3 2⁄ )
+ 𝑇𝑉𝑑𝑊𝑇𝐸

(4) (0)
𝛤[5 2⁄ ]

4! 𝛺(5 2⁄ )
+⋯+ ∫ 𝐺𝑝𝑜𝑙𝑒

𝑇𝐸1 (𝑠)𝑒−𝛺𝑠
2

+∞

−∞

𝑑𝑠 ⇒ 

⇒ 𝐼𝑆𝐷𝑃(𝛺) = ∑ (
𝑇𝑉𝑑𝑊𝑇𝐸
(2𝑛) (0)

(2𝑛!)

𝛤[
2𝑛+1

2
]

𝛺
(
2𝑛+1
2 )
)∞

𝑛=0 + ∫ 𝐺𝑝𝑜𝑙𝑒
𝑇𝐸1 (𝑠)𝑒−𝛺𝑠

2+∞

−∞
𝑑𝑠, (3.15) 

Where 𝐺𝑝𝑜𝑙𝑒
𝑇𝐸1 (𝑠) = 𝑣𝑎𝑝𝑟,𝑇𝐸

+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧) 𝑐𝑜𝑠(𝛽)
𝑑𝛽

𝑑𝑠
 and 𝑇𝑉𝑑𝑊𝑇𝐸(𝑠) as given in (3.14).

Number of terms in regularized expansion 

Having showcased the integral decomposition resulting from the additive regularization 
approach through (3.15), the impact of higher order terms in the expansion of the regularized 
part (𝑇𝑉𝑑𝑊𝑇𝐸(𝑠)) will now be more thoroughly examined. This process aims to evaluate the 
number of terms required in the expansion for different radial distances (𝑟′) and thus different 
values of 𝛺, in order to recover the complete integral of 𝑇𝑉𝑑𝑊𝑇𝐸(𝑠) with sufficient accuracy. The 
utilized test case integral refers to the regularized part of the above presented example, with 
the comparison between the complete integral and an expansion with different number of terms 
presented through Figure 3-5. It should be noted that the number of terms indicated in the 
legends of the following figures refer to terms which contribute to the integral, thus even orders 
of 𝑠 in the expansion of 𝑇𝑉𝑑𝑊𝑇𝐸(𝑠). The showcased example refers to the wideband structure of 
Figure 2-8 for the central frequency and an observation grid of 2.5𝜆0 from its phase center. 

𝐼𝑅𝑒𝑔(𝜃
′) = ∫ 𝑇𝑉𝑑𝑊𝑇𝐸(𝑠)𝑒

−𝛺𝑠2𝑑𝑠

+∞

−∞

= ∫ ((𝑣𝑇𝐸
+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧) − 𝑣𝑎𝑝𝑟,𝑇𝐸

+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧)) 𝑐𝑜𝑠(𝛽)
𝑑𝛽

𝑑𝑠
) 𝑒−𝛺𝑠

2
𝑑𝑠

+∞

−∞

(3.16 a) 
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    (c)                                                                 (d) 

Figure 3-5. Comparison between the complete integral of the regularized part (𝑇𝑉𝑑𝑊𝛵𝛦(𝑠)) and its expansion using a 

different number of terms, (a) one, (b) two, (c) three and (d) four terms. 

It can be noticed through the figures above that the inclusion of higher order terms in the 
expansion of the regularized part (𝑇𝑉𝑑𝑊𝑇𝐸(𝑠)) mainly impacts angular regions farther off 
broadside. In contrast, the region which would correspond to the main lobe of the resulting 
pattern (roughly 𝜃′ < 𝜃𝑆𝐵) is mostly recovered by the first couple of terms and only slightly 
influenced by the higher order terms of the expansion. Utilizing this observation, an estimate 
for the required number of terms in the expansion will be evaluated through obtaining the 
magnitude and phase errors between the results of the complete integral and that with 𝑇𝑉𝑑𝑊𝑇𝐸(𝑠) 
expanded, as given through the following expressions.  

𝐸𝑟𝑟𝑜𝑟,𝑚𝑎𝑔(𝜃′) [𝑑𝐵] = 20𝑙𝑜𝑔10(|𝐼𝑅𝑒𝑔
𝑐𝑜𝑚𝑝𝑙.(𝜃′)|) − 20𝑙𝑜𝑔10(|𝐼𝑅𝑒𝑔

𝑒𝑥𝑝𝑎𝑛𝑠.(𝜃′)|)

𝐸𝑟𝑟𝑜𝑟,𝑝ℎ𝑎𝑠𝑒(𝜃′) [𝑑𝑒𝑔] = |(∡ 𝐼𝑅𝑒𝑔
𝑐𝑜𝑚𝑝𝑙.(𝜃′) − ∡ 𝐼𝑅𝑒𝑔

𝑐𝑜𝑚𝑝𝑙.(0)) − (∡ 𝐼𝑅𝑒𝑔
𝑒𝑥𝑝𝑎𝑛𝑠.(𝜃′) − ∡ 𝐼𝑅𝑒𝑔

𝑒𝑥𝑝𝑎𝑛𝑠.(0))|

,  (3.16 b) 

Subsequently, the maximum absolute errors within the angular region defined by the 
shadow boundary angle (𝜃𝑆𝐵 = 𝜃𝑆𝐵

𝑇𝐸1) are computed and presented through Figure 3-6, for both
the wideband and resonant structures. These errors are depicted in terms of the electrical 
distance between the observation spheres along broadside and the ground plane (𝑟′ − 𝛥𝑧 − ℎ). 

 (b)  (a)  

(b) (a) 
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Figure 3-6. Maximum magnitude (a), (c) and phase errors (b), (d) between the complete integral of the 

regularized part and its expansion with different number of terms, (a),(b) wideband and (c),(d) resonant structure. 

As can be visualized through the maximum error comparison presented above, using a 
three-term expansion for the regularized part allows the evaluation of the integral in question 
with sufficiently small magnitude and phase errors, even very close to the phase centre. 
Furthermore, it can be visualized that for smaller radial distances from the phase centre, i.e., 
small values of 𝛺, the filtering of the spectrum around the saddle point introduced by the 
Gaussian exponential term of the integrand (𝑒−𝛺𝑠

2
) is less sharp, therefore requiring more terms 

in the expansion of 𝑇𝑉𝑑𝑊𝑇𝐸(𝑠) to enable its accurate representation. 

Integral of polar contributions 

Before concluding with this section, two concepts must still be discussed. Namely, the 
derivation of the power series expansion for the regular part (𝑇𝑉𝑑𝑊𝑇𝐸(𝑠)) and most importantly 
the evaluation of the integral containing the polar contributions in (3.15). Regarding the 
former, the expansion of the regular part requires the use of the chain rule together with the 
finite difference method in order to numerically obtain the higher order derivatives of 𝑇𝑉𝑑𝑊𝑇𝐸(𝑠), 
and is further discussed through Appendix H. In turn, the evaluation of the integral containing 
the polar contributions of the initial function, for this example 𝐺𝑝𝑜𝑙𝑒

𝑇𝐸1 (𝑠), requires its separation
into simple poles such that either of the canonical integrals given in (3.10) can be employed.  

For this purpose, one must first identify the impactful poles of 𝐺𝑝𝑜𝑙𝑒
𝑇𝐸1 (𝑠), i.e., those that

approach the saddle point for some observation angle (𝜃′). Expressing the integral of interest 
through (3.16 c), distinguishing the impactful poles can be more conveniently performed by 
considering the angular spectrum. In particular, taking into account that the integral’s saddle 
point moves in the real axis between 0 and π/2, the nature of the integrand’s spectrum and 
the relative position of the poles and the saddle point is illustrated, through Figure 3-7. 

Figure 3-7. Angular spectrum of 𝐺𝑝𝑜𝑙𝑒
𝑇𝐸1 (𝑠) = 𝑣𝑎𝑝𝑟,𝑇𝐸

+

𝛽𝑝1
𝑇𝐸1 = 𝑎𝑠𝑖𝑛 (𝑘𝜌,𝐿𝑊

𝑇𝐸1 𝑘𝑑ൗ ) 

𝛽𝑝2
𝑇𝐸1 = −𝛽𝑝1 

↓ 𝑠𝑚𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 
↑ 𝑙𝑎𝑟𝑔𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 

𝛽𝑝3
𝑇𝐸1 = 𝜋 + 𝛽𝑝1 

𝛽𝑝4
𝑇𝐸1 = 𝜋 + 𝛽𝑝2 

𝜷𝒑𝟐
𝜯𝜠𝟏

𝜷𝒑𝟏
𝜯𝜠𝟏 𝜷𝒑𝟑

𝜯𝜠𝟏

𝜷𝒑𝟒
𝜯𝜠𝟏𝜷𝒑𝟐

𝜯𝜠𝟏

𝜷𝒑𝟏
𝜯𝜠𝟏

(c)                                                                 (d) 

    (b)

(𝑘𝜌 , 𝛥𝑧)𝑐𝑜𝑠(𝛽)𝑑𝛽/𝑑𝑠 for (a) 𝜃′=0ο and (b) 𝜃′=90ο. 

 (α) 
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𝐼𝑝𝑜𝑙𝑒(𝜃
′) = ∫ 𝐺𝑝𝑜𝑙𝑒

𝑇𝐸1 (𝑠)𝑒−𝛺𝑠
2+∞

−∞
𝑑𝑠 = ∫ 𝑣𝑎𝑝𝑟,𝑇𝐸

+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧) 𝑐𝑜𝑠(𝛽)
𝑑𝛽

𝑑𝑠
𝑒−𝛺𝑠

2+∞

−∞
𝑑𝑠, (3.16 c) 

As evident through the figure above, the ±𝑘𝜌,𝐿𝑊
𝑇𝐸1  poles mapped to ±𝛽𝐿𝑊

𝑇𝐸1 (labelled 𝛽𝑝1
𝑇𝐸1 and 

𝛽𝑝2
𝑇𝐸1 in the figure above), are equidistant from the saddle point for observation points at 

broadside, making them both necessary for the asymptotic evaluation of 𝐺𝑝𝑜𝑙𝑒
𝑇𝐸1 (𝑠). Furthermore,

the periodic nature of the angular spectrum leads the approximation of the potential function 
(3.13) to also feature poles at π±𝛽𝐿𝑊

𝑇𝐸1 (𝛽𝑝3
𝑇𝐸1 and 𝛽𝑝4

𝑇𝐸1 in the figure) which in fact approach the 
saddle point for large observation angles, near 90o, as shown through Figure 3-7 (b). As such, 
while their impact is negligible compared to that of the main poles (𝛽𝑝1

𝑇𝐸1 and 𝛽𝑝2
𝑇𝐸1) for smaller 

observation angles, they need to be included for the accurate reconstruction of 𝐺𝑝𝑜𝑙𝑒
𝑇𝐸1 (𝑠).

Employing the expressions for the positions of the polar singularities in the angular 
spectrum given in the inset at the bottom of Figure 3-7 (𝛽𝑝1−4

𝑇𝐸1 ), their mapping in the 𝑠-plane 
can be obtained through (3.9) and corresponds to (𝑠𝑝1−4

𝑇𝐸1 ). Subsequently, the function containing 
all the polar contributions 𝐺𝑝𝑜𝑙𝑒

𝑇𝐸1 (𝑠) can be modelled through the summation of four simple poles
as given below.  

𝐺𝑝𝑜𝑙𝑒
𝑇𝐸1 (𝑠) = ∑

𝑎𝑝𝑖
𝑇𝐸1

𝑠−𝑠
𝑝𝑖
𝑇𝐸1

4
𝑖=1 ,  where 𝑎𝑝𝑖

𝑇𝐸1 = 𝑙𝑖𝑚
𝑠→𝑠

𝑝𝑖
𝑇𝐸1
(𝑠 − 𝑠𝑝𝑖

𝑇𝐸1)𝐺𝑝𝑜𝑙𝑒
𝑇𝐸1 (𝑠), (3.17 a) 

In this form, 𝐺𝑝𝑜𝑙𝑒
𝑇𝐸1 (𝑠) can be evaluated asymptotically through the integral of (3.10 a) 

∫ 𝐺𝑝𝑜𝑙𝑒
𝑇𝐸1 (𝑠)𝑒−𝛺𝑠

2+∞

−∞
𝑑𝑠 = ∑ (∫

𝑎𝑝𝑖
𝑇𝐸1

𝑠−𝑠𝑝𝑖
𝑇𝐸1
𝑒−𝛺𝑠

2+∞

−∞
𝑑𝑠)4

𝑖=1 = ∑ (±2𝑗𝑎𝑝𝑖
𝑇𝐸1√𝜋𝑒

−𝛺(𝑠𝑝𝑖
𝑇𝐸1)

2

𝑄(∓𝑗𝑠𝑝𝑖
𝑇𝐸1√𝛺))4

𝑖=1 ,   𝐼𝑚(𝑠𝑝𝑖
𝑇𝐸1) ≷ 0 

(3.17 b) 

It should be mentioned that in the case where 𝐺𝑝𝑜𝑙𝑒
𝑇𝐸1 (𝑠) also features a zero near the saddle

point for some observation angle, (3.10 a) cannot be directly applied. Instead, the zero must 
be extracted as indicated in the following expression assuming 𝐺𝑝𝑜𝑙𝑒

𝑇𝐸1 (𝑠0)=0, with the remaining
part expanded as in (3.17 a) and the resulting canonical form evaluated through the integral 
of (3.10 b).  

𝐺𝑝𝑜𝑙𝑒
𝑇𝐸1 (𝑠) = (𝑠 − 𝑠0) (

𝐺𝑝𝑜𝑙𝑒
𝑇𝐸1 (𝑠)

𝑠−𝑠0
) = (𝑠 − 𝑠0)∑

𝑏𝑝𝑖
𝑇𝐸1

𝑠−𝑠
𝑝𝑖
𝑇𝐸1

4
𝑖=1 (3.17 c) 

In this specific example, this step could be employed for the zero of 𝑐𝑜𝑠(𝛽) at π/2; however, 
its impact will be negligible except for observation angles very close to 90o which are of little 
interest for the presented study. Aiming to evaluate the above discussed modelling process, the 
decomposition of 𝐺𝑝𝑜𝑙𝑒

𝑇𝐸1 (𝑠) into four simple poles will be performed for the integral of (3.16 c). In
particular, the impact of including the poles which lie outside the visible spectrum (𝛽𝑝3

𝑇𝐸1 and 
𝛽𝑝4
𝑇𝐸1 in Figure 3-7) will be compared to that of using only the main poles (𝛽𝑝1

𝑇𝐸1 and 𝛽𝑝2
𝑇𝐸1), while 

the contribution of adding the zero arising from the cosine will also be shown. This is illustrated 
through Figure 3-8 (a) and (b), which correspond to the asymptotic evaluation of (3.16 c) using 
the modelling described in the respective legends. The figures refer to the wideband leaky wave 
structure, the central frequency and a spherical observation grid of 2𝜆0 from the phase centre. 

Figure 3-8. Comparing the integral of 𝐺𝑝𝑜𝑙𝑒
𝑇𝐸1 (𝑠) in (3.16 c) when using (a) two or four simple poles and (b) four 

poles and adding the zero. 

 (b)  (a) 
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As visualized through the figures above, the poles which lie outside the visible region feature 
a small contribution only for large observation angles. In addition, the impact of the zero is 
negligible as anticipated by the previous discussion.  

The steps described above can be employed in a similar manner for integrals featuring TM 
potentials with the only difference being the need for regularizing both the TM1 and the TM0 
pole pairs and subsequently treating their polar contributions independently. To illustrate this 
process, the wave amplitude of the indicative integral (3.12) will be swapped to the TM variant 
and the necessary steps for the asymptotic evaluation of the resulting expression will be briefly 
presented below. 

∫ 𝑣𝑇𝑀
+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧) 𝑐𝑜𝑠(𝛽) 𝑒

𝛺𝑞𝛣(𝛽)𝑑𝛽
𝑆𝐷𝑃

= 𝑒−𝑗𝑘𝑑𝑟′ ∫ 𝐺𝑝
𝑇𝑀(𝑠)𝑒−𝛺𝑠

2
𝑑𝑠

+∞

−∞
, (3.18 a) 

𝐼𝑆𝐷𝑃(𝛺) = ∫ 𝐺𝑝
𝑇𝑀(𝑠)𝑒−𝛺𝑠

2+∞

−∞
𝑑𝑠 = ∫ 𝑇𝑉𝑑𝑊𝑇𝑀(𝑠)𝑒

−𝛺𝑠2+∞

−∞
𝑑𝑠 + ∫ 𝐺𝑝𝑜𝑙𝑒

𝑇𝑀1(𝑠)𝑒−𝛺𝑠
2+∞

−∞
𝑑𝑠 + ∫ 𝐺𝑝𝑜𝑙𝑒

𝑇𝑀0(𝑠)𝑒−𝛺𝑠
2+∞

−∞
𝑑𝑠,

(3.18 b) 

Where 𝑇𝑉𝑑𝑊𝛵𝑀(𝑠) = (𝑣𝑇𝑀
+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧) − 𝑣𝑎𝑝𝑟,𝑇𝑀1

+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧) − 𝑣𝑎𝑝𝑟,𝑇𝑀0
+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧)) 𝑐𝑜𝑠(𝛽)

𝑑𝛽

𝑑𝑠
, 

𝐺𝑝𝑜𝑙𝑒
𝑇𝑀1(𝑠) = 𝑣𝑎𝑝𝑟,𝑇𝑀1

+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧) 𝑐𝑜𝑠(𝛽)
𝑑𝛽

𝑑𝑠
   and  𝐺𝑝𝑜𝑙𝑒

𝑇𝑀0(𝑠) = 𝑣𝑎𝑝𝑟,𝑇𝑀0
+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧) 𝑐𝑜𝑠(𝛽)

𝑑𝛽

𝑑𝑠
.

In turn (3.18 b) can be treated through expanding the regularized part around the saddle 
point, similar to (3.15), and representing each of the polar contributions (𝐺𝑝𝑜𝑙𝑒

𝑇𝑀1(𝑠), 𝐺𝑝𝑜𝑙𝑒
𝑇𝑀0(𝑠))

through a sum of four simple poles. This process results into the following expression, where 
the remaining integrals can be closed with the use of (3.10 a). 

𝐼𝑆𝐷𝑃(𝛺) = ∑ (
𝑇𝑉𝑑𝑊𝑇𝑀
(2𝑛) (0)

(2𝑛!)

𝛤[
2𝑛+1

2
]

𝛺
(
2𝑛+1
2
)
)∞

𝑛=0 + ∑ (∫
𝑎𝑝𝑖
𝑇𝑀1

𝑠−𝑠
𝑝𝑖
𝑇𝑀1
𝑒−𝛺𝑠

2+∞

−∞
𝑑𝑠)4

𝑖=1 +∑ (∫
𝑎𝑝𝑖
𝑇𝑀0

𝑠−𝑠
𝑝𝑖
𝑇𝑀0
𝑒−𝛺𝑠

2+∞

−∞
𝑑𝑠)4

𝑖=1 , 

(3.18 c) 

Where  𝑎𝑝𝑖
𝑇𝑀1 = 𝑙𝑖𝑚

𝑠→𝑠𝑝𝑖
𝑇𝑀1
(𝑠 − 𝑠𝑝𝑖

𝑇𝑀1)𝐺𝑝𝑜𝑙𝑒
𝑇𝑀1(𝑠)  and  𝑎𝑝𝑖

𝑇𝑀0 = 𝑙𝑖𝑚
𝑠→𝑠𝑝𝑖

𝑇𝑀0
(𝑠 − 𝑠𝑝𝑖

𝑇𝑀0)𝐺𝑝𝑜𝑙𝑒
𝑇𝑀0(𝑠). 

Finally, the impact of the individual poles for the TM1 and TM0 leaky wave modes will be 
presented through Figure 3-9 (a) and (b) respectively, similar to the comparison performed in 

 (a)   (b) 

Figure 3-9. Comparing the integrals of (a) 𝐺𝑝𝑜𝑙𝑒
𝑇𝑀1(𝑠) and (b) 𝐺𝑝𝑜𝑙𝑒

𝑇𝑀0(𝑠) of (3.18 b), using only the main poles and using 

all four simple poles of the respective polar contributions. 

While the deductions with respect to the importance of the individual poles are the same 
as those extracted for the TE1 mode, the different nature of the polar contribution between the 
TE1, TM1 pole pair and the TM0, will be discussed in section 3.3a. 

Figure 3-8. 
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3.2c. Branch point and Hankel considerations 

Having described a method for the asymptotic approximation of integrals whose saddle point 
approaches polar singularities, still the evaluation of the test case integral of (3.5) cannot be 
performed. In particular, as introduced through section 3.2a, while the choice of representation 
using the Hankel function in our typical integral has made it possible to resort to contour 
deformations, it has also introduced the branch point and its respective cut, depicted through 
Figure 3-2. Consequently, for observation points around broadside the singularity nearest to 
the saddle point is precisely this branch point occuring in the origin of the angular spectrum. 
As such, specific considerations must be introduced for the treatment of this singularity in 
order to enable the asymptotic evaluation of the integrals of interest. 

The first step in the subsequent deliberations refers to identifying the type of branch point 
to be treated. As a matter of fact, different types of branch points arise from different 
multivalued functions and in turn require distinct canonical forms for their asymptotic 
approximation. As an indicative example, algebraic branch points introduced by roots of any 
order, can be conveniently evaluated asymptotically through the use of parabolic cylinder 
functions, as discussed in section 4.4c of [26] or more thoroughly elaborated in [38]. Having 
said that, the branch point of the Hankel function of 0th order (𝐻0) is of logarithmic nature and 
thus cannot be evaluated in the aforementioned manner. 

Another complication related to the treatment of the Hankel function refers to the utilized 
representation. In particular, the most accurate approach would necessitate the use of the 
integral represenation for the Hankel function in (3.3 b) and the subsequent asymptotic 
evaluation of the resulting double integral. However, this step would contribute significant 
complication to the overall problem, since it results to integral expressions that cannot be 
transformed into the targeted one-dimensional integrals in the 𝑠-plane. Furthermore, given that 
the argument of the Hankel function is proportional to 𝜌, and thus 𝑠𝑖𝑛(𝜃′), if an asymptotic 
expansion is utilized, the employed expression would need to change between the large and 
small argument representation for the evaluation of the field over a spherical observation grid. 

Considering all the above, together with the nature of the near field for the examined 
structures, two sequential approximations are introduced for the treatment of the Hankel 
functions in the integrals in question. First, the latter is substituted by its first order large 
argument approximation and subsequently, part of the integrand (𝑘𝜌𝐻𝑛

(2)
(𝑘𝜌𝜌)𝑒

𝑗𝑘𝜌𝜌) is evaluated 
on the saddle point (𝑘𝜌𝑆𝑃 = 𝑘𝑑𝑠𝑖𝑛(𝜃′)). The impact of these two sequential approximations on the 
resulting integral expressions will be separately shown below. Before doing so however, it should 
be emphasized that these approximations do not aim to provide a generic method for the 
asymptotic treatment of Hankel functions; instead their applicability for the examined leaky 
wave structures is based in the nature of their near field and is enabled by the phase centre 
choice. Since the presented asymptotic study refers to the remaining integral term (�⃗� 𝑆𝐷𝑃) of the 
decomposition given in (3.1), the initial SDP integral expressions are presented below. To 
faciliate the subsequent observations, the cylindrical field components are treated. 

[

𝐸𝜌,𝑆𝐷𝑃(𝑟 ′)

𝐸𝜑,𝑆𝐷𝑃(𝑟 ′)

𝐸𝑧,𝑆𝐷𝑃(𝑟 ′)

] =
1

8𝜋
∫   

[
 
 
 
 
 − 𝑐𝑜𝑠(𝜑) (𝑣𝑇𝑀

+ (𝑘𝜌 , 𝛥𝑧) (𝛨0
(2)
(𝑘𝜌𝜌) − 𝛨2

(2)
(𝑘𝜌𝜌)) + 𝑣𝑇𝛦

+ (𝑘𝜌 , 𝛥𝑧) (𝛨0
(2)
(𝑘𝜌𝜌) + 𝛨2

(2)
(𝑘𝜌𝜌)))

𝑠𝑖𝑛(𝜑) (𝑣𝑇𝐸
+ (𝑘𝜌 , 𝛥𝑧) (𝛨0

(2)
(𝑘𝜌𝜌) − 𝛨2

(2)
(𝑘𝜌𝜌)) + 𝑣𝑇𝑀

+ (𝑘𝜌 , 𝛥𝑧) (𝛨0
(2)
(𝑘𝜌𝜌) + 𝛨2

(2)
(𝑘𝜌𝜌)))

−𝑗
2𝜁𝑑

𝑘𝑑
𝑐𝑜𝑠(𝜑) 𝑖𝑇𝑀

+ (𝑘𝜌 , 𝛥𝑧)𝛨1
(2)
(𝑘𝜌𝜌)𝑘𝜌 ]

 
 
 
 
 

 𝑘𝜌𝑒
−𝑗𝑘𝑧𝑧

′
𝑑𝑘𝜌𝑆𝐷𝑃

,  

(3.19) 

The first step of the introduced approximation refers to substituting the Hankel functions 
of the second kind with their first order large argument approximations.  

 𝐻𝑛
(2)
(𝑘𝜌𝜌) ≅ √

2

𝜋𝑘𝜌𝜌
𝑒𝑗

𝜋

4𝑒𝑗
𝑛𝜋

2 𝑒−𝑗𝑘𝜌𝜌, (3.20 a) 
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Doing so, transforms the integrals of (3.19) into the following expressions. 

 [

𝐸𝜌,𝑆𝐷𝑃(𝑟 ′)

𝐸𝜑,𝑆𝐷𝑃(𝑟 ′)

𝐸𝑧,𝑆𝐷𝑃(𝑟 ′)

] ≅
1

4𝜋
∫   

[
 
 
 
 
 
 − 𝑐𝑜𝑠(𝜑) 𝑣𝑇𝑀

+ (𝑘𝜌, 𝛥𝑧)√
2𝑘𝜌

𝜋𝜌
𝑒𝑗

𝜋

4

𝑠𝑖𝑛(𝜑) 𝑣𝑇𝐸
+ (𝑘𝜌, 𝛥𝑧)√

2𝑘𝜌

𝜋𝜌
𝑒𝑗

𝜋

4

−𝑗
𝜁𝑑

𝑘𝑑
𝑐𝑜𝑠(𝜑) 𝑖𝑇𝑀

+ (𝑘𝜌, 𝛥𝑧)√
2𝑘𝜌
3

𝜋𝜌
𝑒𝑗

3𝜋

4
]
 
 
 
 
 
 

 𝑒−𝑗𝑘𝑧𝑧
′
𝑒−𝑗𝑘𝜌𝜌𝑑𝑘𝜌𝑆𝐷𝑃

, (3.20 b) 

As evident by the above integral expressions, using the large argument approximation for 
the Hankel function leads to the decoupling of the TM and TE solutions of the transmission 
line equivalent problem to their respective dominant regions, which for a magnetic current 
source are visualized through Figure 3-10. This effect results directly from the relation between 
the large argument approximations of Hankel functions of the second king of 0th and 2nd order, 
namely 𝐻2

(2)
(𝑘𝜌𝜌) = −𝐻0

(2)
(𝑘𝜌𝜌), considering (3.20 a). 

  
Figure 3-10. Dominant regions for the TE and TM transmission line solutions for a magnetic current 

source.  

While this decoupling of the TE and TM parts of the transmission line solution in their 
respective dominant regions constitutes a very good approximation for most cases, it starts to 
fail as the observation point moves close to the source, as discussed through section 2.3a and 
shown in Figure 2-15. This difference might be negligible for the weaker modes, e.g., TE1 and 
TM1, but can be clearly noticed for modes with small attenuation constant (𝛼𝐿𝑊), like the TM0. 
Even so, given that the impact of the TM0 in its non-dominant plane (H-plane) is mostly 
described by its residue contribution and not the SDP integral, this approximation would not 
significantly influence the near field, as will be showcased in following sections. 

Having discussed the resulting impact from using the large argument approximation for the 
Hankel function, the second part of the introduced approximation refers to evaluating part of 
the integrand, including the approximation of the Hankel function, on the saddle point. This 
is presented through the following equations, first substituting the Hankel function with its 
large argument approximation (3.20 a) and subsequently evaluating the resulting expression 
on the saddle point (𝑘𝜌𝑆𝑃 = 𝑘𝑑𝑠𝑖𝑛(𝜃′)).  

 𝑘𝜌𝛨𝑛
(2)
(𝑘𝜌𝜌)𝑒

𝑗𝑘𝜌𝜌     

𝛨𝑛
(2)
 𝑓𝑟𝑜𝑚

(3.20 𝑎)
≅

     √
2𝑘𝜌

𝜋𝜌
𝑒𝑗

𝜋

4𝑒𝑗
𝑛𝜋

2      

𝑘𝜌 = 𝑘𝜌𝑆𝑃
𝜌 = 𝑟′ 𝑠𝑖𝑛(𝜃′)

≅
     √

2𝑘𝑑

𝜋𝑟′
𝑒𝑗

𝜋

4𝑒𝑗
𝑛𝜋

2 , (3.21 a) 

Introducing this step to the integral expressions of (3.20 b) transforms them as follows.  

 [

𝐸𝜌,𝑆𝐷𝑃(𝑟 ′)

𝐸𝜑,𝑆𝐷𝑃(𝑟 ′)

𝐸𝑧,𝑆𝐷𝑃(𝑟 ′)

] ≅
1

4𝜋
√
2𝑗𝑘𝑑

𝜋𝑟′
∫   

[
 
 
 
− 𝑐𝑜𝑠(𝜑) 𝑣𝑇𝑀

+ (𝑘𝜌, 𝛥𝑧)

𝑠𝑖𝑛(𝜑) 𝑣𝑇𝐸
+ (𝑘𝜌, 𝛥𝑧)

𝜁𝑑

𝑘𝑑
𝑐𝑜𝑠(𝜑) 𝑖𝑇𝑀

+ (𝑘𝜌, 𝛥𝑧)𝑘𝜌]
 
 
 

 𝑒−𝑗𝑘𝑧𝑧
′
𝑒−𝑗𝑘𝜌𝜌𝑑𝑘𝜌𝑆𝐷𝑃

, (3.21 b) 

Since the approximated integrals of (3.21 b) feature only first order saddle points (𝑘𝜌𝑆𝑃 =
𝑘𝑑 sin(𝜃

′)) and simple polar singularities through the wave amplitudes (𝑣𝑇𝐸/𝑇𝑀
+  and 𝑖𝑇𝑀+ ), they can 

TM: {𝛦𝜌, 𝐻𝜑, 𝛦𝑧} 

E-plane 

TE: {𝐻𝜌, 𝛦𝜑, 𝐻𝑧} 

H-plane 

z 

y 
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be transformed into the 𝑠-plane, using (2.8) and (3.4), and subsequently asymptotically 
evaluated as discussed in section 3.2b. In turn, combining the resulting asymptotic 
approximation of the SDP integral with the residue polar contributions (3.1), results to the 
total field in the semi-infinite region of the leaky wave structure.  

One noteworthy aspect of the introduced approximation is that it is only employed on the 
SDP integrals (�⃗� 𝑆𝐷𝑃(𝑟 ′)) of the decomposition given through (3.1). In other words, these 
approximation are not performed on the residue contributions. This is done to minimize the 
error involved, since for the residues the integrand is evaluated on the polar singularity in the 
complex part of the spectrum and not on the saddle point. On the other hand, the dominant 
contribution of the SDP integral is actually the saddle point, rendering the approximation of 
part of the integrand on this point (saddle point) sufficiently accurate. Considering that the 
nature of the SDP integral is being discontinuous at the shadow boundaries such that this 
discontinuity is exactly compensated by the residue polar contributions; employing different 
approximations for the SDP and the residues leads to slight discontinuities at all the shadow 
boundaries. As will be shown through section 3.3c, these discontinuities are not significant even 
for observation points very close to the source and are thus deemed acceptable.  

To conclude this section, it must be emphasized once more that contrary to the 
considerations of section 3.2b, the above presented treatment of the Hankel function is based 
on the nature of the near field of the examined structures and thus it is specific to this problem. 
Its physical interpretation as well as its applicability to the leaky wave structures of interest 
will be the subject of discussion in the following section. 

3.2d. Physical interpretation & phase center choice 

As described in the previous section, to resolve the branch singularity of the Hankel function 
and subsequently enable the asymptotic approximation of the SDP integrals of interest, part 
of the integrand is evaluated on the saddle point (3.21 a). This approximation is applicable to 
the examined problem due to the spherical wave nature of the near field. As a result, it is very 
much dependent on the choice of reference system such that the near field spherical wave 
formation can be assumed, similar to what was discussed in [20].  

The performance of the introduced approximation will be evaluated by considering the 
following example for the test case SDP integral of (3.3 b). In particular, the results of the 
numerical integration will be compared using three different reference system positions (Δz) 
with respect to the ground plane. In all cases, the wideband structure is examined at the central 
frequency, with the observation grid defined as a sphere of 1.6𝜆

0
 (or 3.2 mm) from the reference 

system given through section 2.3, i.e., Δz=0.42𝜆0. The three different reference system cases 
are illustrated through Figure 3-11 (a)-(c), and correspond to Δz=0.42𝜆0, Δz=0.84𝜆0 and Δz=0. 

(a) (b) 
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Figure 3-11. Different setups where the reference system is chosen at (a) Δz=0.42 𝜆0, (b) Δz=0.84 𝜆0 below the 

ground plane and (c) directly on the ground plane. The observation grid is the same for all three cases, 

corresponding to a sphere of 1.6𝜆0 radius from the reference system of (a). 

The order of the Hankel function of the second kind chosen for the examined SDP integral 
is that of 0th order, with the two compared integrals (i.e., initial and approximated) re-written 
below for clarity. For the purpose of visualizing the impact of the introduced approximation at 
the shadow boundary angles, the residue contribution resulting from the capturing of the TE1 
leaky wave pole during the deformation to the path of steepest descent will also be included.  

𝐼𝑆𝐷𝑃(𝜃
′) = ∫ 𝑣𝑇𝐸

+ (𝑘𝜌, 𝛥𝑧)𝐻0
(2)(𝑘𝜌𝜌)𝑆𝐷𝑃

𝑒𝑗𝑘𝜌𝜌𝑘𝜌𝑒
−𝑗𝑘𝜌𝜌𝑒−𝑗𝑘𝑧𝑧

′
𝑑𝑘𝜌, (3.22 a) 

𝐼𝑆𝐷𝑃
𝑎𝑝𝑝𝑟𝑜𝑥.(𝜃′) = √

2𝑘𝑑

𝜋𝑟′
𝑒𝑗
𝜋

4 ∫ 𝑣𝑇𝐸
+ (𝑘𝜌, 𝛥𝑧)𝑆𝐷𝑃

𝑒−𝑗𝑘𝜌𝜌𝑒−𝑗𝑘𝑧𝑧
′
𝑑𝑘𝜌, (3.22 b) 

𝐼𝑅𝑒𝑠
𝛵𝛦1(𝜃′) = −2𝜋𝑗𝑈(𝜃′ − 𝜃𝑆𝐵

𝑇𝐸1)𝑘𝜌,𝐿𝑊
𝑇𝐸1 𝐻0

(2)(𝑘𝜌,𝐿𝑊
𝑇𝐸1 𝜌)𝑅𝑒𝑠 (𝑣𝑇𝐸(𝑘𝜌, 𝑧, 𝛥𝑧))

𝑘𝜌=𝑘𝜌,𝐿𝑊
𝑇𝐸1

, (3.22 c) 

Considering the three cases visualized through Figure 3-11, the results of the numerical 
evaluation of the examined integrals are depicted through Figure 3-12 to 3-14. It should be 
noted that the illustrated angles on the horizontal axes of the following plots (𝜃0−2) correspond 
to the observation angles from the respective reference system positions of each setup. 

       (a)                                                           (b) 
Figure 3-12. Numerical comparison of the integrals of (3.22) using the reference system of Figure 3-11 (a). Where 

(a) refers to the comparison of only the SDP integrals while (b) includes the residue. 

(c) 
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(a) refers to the comparison of only the SDP integrals while (b) includes the residue. 

       (a)                                                           (b) 
Figure 3-14. Numerical comparison of the integrals of (3.22) using the reference system of Figure 3-11 (c). Where 

(a) refers to the comparison of only the SDP integrals while (b) includes the residue. 

As visualized through the comparisons presented above, the initial and approximated 
integrals feature very good agreement when the reference system with respect to which the 
approximation is performed is that from which the field resembles a spherical wave.  

Within the shadow boundary cone (i.e., 𝜃′ < 𝜃𝑆𝐵,𝑇𝐸1), this reference system choice refers to 
the phase centre for the near field spherical wave formation, i.e., the case of Δz=0.42𝜆0 
illustrated through Figure 3-12. Instead, it seems that for the region outside this cone (𝜃′ >
𝜃𝑆𝐵,𝑇𝐸1), the approximation’s accuracy is improved when choosing the reference system for the 
integral’s evaluation on the ground plane, i.e., Figure 3-14. This is a bit more evident through 
comparing the first sidelobe of the above figures. This effect can be justified due to the 
approximation being performed only on the SDP integrals. Above the shadow boundary angle, 
the space wave significantly contributes to the SDP term meaning that at this region the 
resulting field can be viewed as a spherical wave with its origin closer to the ground plane.  

To further illustrate this concept regarding the different wave nature of the SDP integrals 
above and below the shadow boundary angles, the integral of (3.22 a) will be evaluated 
numerically over a 2D cut in the semi-infinite dielectric region of the wideband structure. 
Subsequently, the resulting phase profile over the examined plane will be visualized through 
Figure 3-15, together with the cross section of the shadow boundary cone referring to the TE1 
leaky wave mode. As visualized through this illustration, while inside the shadow boundary 
cone the phase front of the SDP integral resembles that of a spherical wave originating from 
the displaced reference system below the ground plane (Δz=0.42𝜆0), outside the shadow 
boundary cone this is not the case. In particular, for observation points close to the source, the 

       (a)                                                           (b) 
Figure 3-13. Numerical comparison of the integrals of (3.22) using the reference system of Figure 3-11 (b). Where 
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phase front of the SDP integral resembles that of a spherical wave originating from a point 
slightly above the ground plane. 

Figure 3-15. Phase front illustration for the SDP integral of (3.22 a). 

Taking into account that the SDP integral is better represented as a spherical wave 
originating from the ground plane above the shadow boundary angle, the option of modifying 
the reference system choice with the observation angle (𝜃′) will be considered. In particular, 
the reference system will be moved back to the ground plane after the shadow boundary, as 
given through the following expression. It should be noted that this option will make the 
representation of the near field non-uniform, since the field decomposition will change above 
and below the shadow boundary angle.  

𝛥𝑧0(𝜃
′) = 𝑈(𝜃𝑆𝐵 − 𝜃

′)𝛥𝑧
(2.14)

, (3.23) 

Where 𝑈(𝑥) the Heaviside step function, 𝜃𝑆𝐵 = 𝑚𝑖𝑛(𝜃𝑆𝐵,𝑇𝐸1 , 𝜃𝑆𝐵,𝑇𝑀1) and 𝛥𝑧
(2.14) refers to the phase 

centre choice given in [20] and expressed through equation (2.14). 

While this phase centre choice will improve the accuracy of the introduced approximation 
in regions where the SDP integral expressions resemble a spherical wave, this will not be the 
case for a small angular region around the shadow boundary angle. This is caused by the SDP 
integral being significantly influenced by the transition function of the respective leaky wave 
mode, as will be discussed in section 3.3a. As such, in a region around the shadow boundary 
angle the SDP integral cannot be purely described by a spherical wave. 

It is also important to note that while the phase centre choice of (3.23) might perform 
adequately well for SDP integrals featuring TE potentials, like that of (3.22), some 
complications are indeed expected for integrals with TM potentials. This is attributed to the 
fact that the former are influenced by only one significant mode, namely TE1, and thus feature 
a single shadow boundary. On the contrary, integrals featuring TM potentials are impacted by 
both the TM1 and TM0 modes, featuring two shadow boundaries. As such, it is expected that 
for such integrals the phase centre choice of (3.23) will create a somewhat problematic region 
around the shadow boundary angle of the TM0. In this region, the nature of the near field 
would not be well represented by the approximation of section 3.2c and the phase centre choice 
of (3.23). This difference regarding the shadow boundaries for the TE and TM integrals can be 
visualized through Figure 3-16, which illustrates the shadow boundary cones of the significant 
leaky wave modes in their respective dominant planes. 
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 (a)                                                                      (b)  

Figure 3-16. Shadow boundaries for 𝑦-oriented elementary source in the wideband structure, (a) H and (b) E-

plane. 

To further visualize this concept, the above presented example will be repeated where this 
time the wave amplitudes of the integrals given in (3.22) are swapped to those of the TM 
variant, as expressed below. The resulting comparisons for the three different reference systems 
positions presented of Figure 3-11 are visualized through Figure 3-17 to 3-19. 

𝐼𝑆𝐷𝑃(𝜃
′) = ∫ 𝑣𝑇𝑀

+ (𝑘𝜌, 𝛥𝑧)𝐻0
(2)(𝑘𝜌𝜌)𝑆𝐷𝑃

𝑒𝑗𝑘𝜌𝜌𝑘𝜌𝑒
−𝑗𝑘𝜌𝜌𝑒−𝑗𝑘𝑧𝑧

′
𝑑𝑘𝜌, (3.24 a) 

𝐼𝑆𝐷𝑃
𝑎𝑝𝑝𝑟𝑜𝑥.(𝜃′) = √

2𝑘𝑑

𝜋𝑟′
𝑒𝑗
𝜋

4 ∫ 𝑣𝑇𝑀
+ (𝑘𝜌, 𝛥𝑧)𝑆𝐷𝑃

𝑒−𝑗𝑘𝜌𝜌𝑒−𝑗𝑘𝑧𝑧
′
𝑑𝑘𝜌, (3.24 b) 

𝐼𝑅𝑒𝑠
𝑇𝑀1/𝑇𝑀0(𝜃′) = −2𝜋𝑗𝑈(𝜃′ − 𝜃𝑆𝐵

𝑇𝑀1/𝑇𝑀0)𝑘𝜌,𝐿𝑊
𝑇𝑀1/𝑇𝑀0𝐻0

(2)(𝑘𝜌,𝐿𝑊
𝑇𝑀1/𝑇𝑀0𝜌)𝑅𝑒𝑠 (𝑣𝑇𝑀(𝑘𝜌, 𝑧, 𝛥𝑧)) 𝑇𝑀1/𝑇𝑀0

,  (3.24 c) 

  (a)                                                       (b) 

Figure 3-17. Numerical comparison of the integrals of (3.24) using the reference system of Figure 3-11 (a). Where 

(a) refers to the comparison of only the SDP integrals while (b) includes the residues. 

   (a)                                                       (b) 

Figure 3-18. Numerical comparison of the integrals of (3.24) using the reference system of Figure 3-11 (b). Where 

(a) refers to the comparison of only the SDP integrals while (b) includes the residues. 
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   (a)                                                       (b) 

Figure 3-19. Numerical comparison of the integrals of (3.24) using the reference system of Figure 3-11 (c). Where 

(a) refers to the comparison of only the SDP integrals while (b) includes the residues. 

As illustrated through the figures above, the improvement of moving the reference system 
back to the ground plane cannot be clearly seen in the total integral due to the residue of the 
TM0 dominating the region above its shadow boundary (𝜃′ > 𝜃𝑆𝐵,𝑇𝑀0). However, what can be 
visualized through those figures is the region between the shadow boundaries of the TM1 and 
that of the TM0, where neither of the explored phase centre choices results into an exact 
recovery of the SDP integral. 

Even though it would certainly be interesting to explore the possibility for an even more 
elaborate phase centre choice, differing between integrals with TE and TM potentials and 
including an additional region to account for the TM0, for this study we will employ the 
somewhat simplified phase centre choice of (3.23). Potential improvements on this aspect with 
the concept of adjusting the phase centre choice in different angular regions such that the 
introduced approximation provides a good representation of the field’s nature, are left as part 
of future work. 

Non-uniform phase centre impact on the near field 

To visualize the performance of the non-uniform phase centre choice in terms of improving the 
accuracy of the asymptotic approximation, the complete near field will be considered (3.1). For 
this purpose, the approximated SDP integral expressions of (3.21 b) are evaluated numerically, 
using the reference system displacements of (2.14) and (3.23) over the observation grid of 
Figure 3-11. Subsequently, the co-polarized component extracted through the use of the Ludwig 
3 definition is compared to that obtained when the approximations of section 3.2c are not 
employed. The resulting comparison is visualized through Figure 3-20 and Figure 3-21.  

𝐸𝑐𝑜(𝑟 ′) = 𝐸𝜃(𝑟 ′) 𝑐𝑜𝑠(𝜑) − 𝐸𝜑(𝑟 ′) 𝑠𝑖𝑛(𝜑)

𝐸𝑐𝑟𝑜𝑠𝑠(𝑟 ′) = 𝐸𝜃(𝑟 ′) 𝑠𝑖𝑛(𝜑) + 𝐸𝜑(𝑟 ′) 𝑐𝑜𝑠(𝜑)
, (3.25) 

(a)                                                               (b) 
Figure 3-20. Comparison of numerical integration with and without approximation, with the uniform phase centre 

(2.14), (a) co pol., E and H planes, (b) co and cross pol., D plane. The observation grid is that of Figure 3-11. 
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(a)                                                               (b) 

Figure 3-21. Comparison of numerical integration with and without approximation, with the non-uniform phase 

centre (3.23), (a) co pol., E and H planes, (b) co and cross pol., D plane. The observation grid is that of Figure 

3-11. 

As can be noted from the figures above, moving the reference system to the ground plane 
beyond the shadow boundary improves the approximation’s accuracy. This is more clearly 
illustrated in the H-plane due to the residue contribution of the TM0, which is not impacted 
by the phase centre choice, dominating the E-plane at larger angles. 

Regarding the problematic region between the shadow boundaries of the TM1 and TM0 
modes described above, it is not visible in the figures above due to the observation distance. In 
particular, considering the reference system change, this problematic region essentially 
corresponds to the non-overlapping sections of the shadow boundary cones of the TM1 mode 
from the reference system below the ground plane and the shadow boundary cone of the TM0 
from the reference system on the ground plane, as visualized through the shaded region of 
Figure 3-22 (a). To illustrate how this region’s impact changes with the distance, the E-plane 
for the above example will be evaluated at progressively larger radial distances as illustrated 
through Figure 3-22 (b). Regarding the observation angle 𝜃′ in the horizontal axis, it 
corresponds to the displaced reference system below the ground plane. 

(a)                                                                       (b) 

Figure 3-22. (a) E-plane of co polarized component at different radial distances and (b) illustration of problematic 

region for TM integrals in terms of the non-uniform phase centre choice of (3.23). 

To summarize the above discussion, the phase centre choice of (3.23) provides adequately 
accurate representation of the field in all regions apart from that indicated through Figure 3-22 
(a). The performance of this simplified phase centre choice will be evaluated throughout the 
remaining of this document with further improvements in this aspect maintained as part of 
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future work. It should be noted once more that modifying the reference system choice over the 
observation grid makes the resulting representation non uniform. This essentially negates its 
potential use to study the resulting field components, since the field decomposition changes 
above and below the shadow boundary. Consequently, both phase centre options will be 
employed in subsequent sections with the uniform one (2.14) used to evaluate the near field 
decomposition and study the field components, while the non-uniform (3.23) utilized to 
accurately recover the field and evaluate the performance of the asymptotic approach. 

To conclude, throughout this section an extensive overview of the theoretical aspects and 
mathematical manipulations involved in the asymptotic approximation of the SDP integrals 
has been presented. In the remaining of this chapter, the main implications of applying this 
process for the asymptotic evaluation of the near field will be described.  

3.3. Near field asymptotic evaluation 

It is without question that the asympotic approach described through section 3.2 is more 
elaborate in terms of the mathematical steps required to formulate the near field integral 
expressions into canonical forms, compared to the numerical methods showcased in Chapter 2. 
Even so, the asymptotic approximation of the near field provides several benefits both in terms 
of computational efficiency as well as understanding of the wave phenomena which drive the 
radiation process. In the remaining sections of this chapter, these aspects of the asymptotic 
approach will be showcased and discussed. Furthermore, its applicability region arising from 
the nature of the near field implied by the approximation of section 3.2c, will also be assessed.  

As a first step towards this goal, the conclusions of sections 3.2b and 3.2c will be introduced 
into one vectorial field component to showcase the formulation of the asymptotically 
approximated field. The chosen component is 𝛦𝜑, since with the introduced approximations 
(3.21 a) it is only influenced by the TE potential. As such, a single pole-pair regularization 
treatment is required (±𝑘𝜌,𝐿𝑊

𝑇𝐸1 ), making the overall analysis shorter and more compact. It should 
be noted that the same steps can be implemented for the remaining field components (𝛦𝜌 and 
𝐸𝑧), with the difference of regularizing the wave amplitudes (𝑣𝑇𝑀 and 𝑖𝑇𝑀) for both TM1 and 
TM0 pole pairs.  

Using the decomposition of the steepest descent path method (3.1) as the basis of the 
asymptotic approach, the steps for the evaluation of one of the SDP integrals of (3.21 b) will 
be briefly summarized below.  

Step 1: The SDP integral is transformed into the 𝑠-plane, using (2.8) and (3.4), defining in 
the process the integrand function 𝐺(𝑠) and the parameter 𝛺. 

𝐸𝜑,𝑆𝐷𝑃(𝑟 ′) ≅
𝑠𝑖𝑛(𝜑)

4𝜋
√
2𝑘𝑑
𝜋𝑟′

𝑒𝑗
𝜋
4 ∫ 𝑣𝑇𝐸

+ (𝑘𝜌, 𝛥𝑧)𝑒
−𝑗𝑘𝑧𝑧

′
𝑒−𝑗𝑘𝜌𝜌𝑑𝑘𝜌

𝑆𝐷𝑃

⇒ 

⇒ 𝐸𝜑,𝑆𝐷𝑃(𝑟 ′) ≅
𝑠𝑖𝑛(𝜑)

4𝜋
√
2𝑘𝑑
3

𝜋𝑟′
𝑒𝑗
𝜋
4𝑒−𝑗𝑘𝑑𝑟

′
∫ 𝐺(𝑠)𝑒−𝛺𝑠

2
𝑑𝑠

+∞

−∞

 

  (3.26 a) 

Where 𝐺(𝑠) = 𝑣𝑇𝐸
+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧) 𝑐𝑜𝑠(𝛽) (

𝑑𝛽
𝑑𝑠
ൗ )  and  𝛺 = 𝑘𝑑𝑟′. 

Step 2: The resulting integral is decomposed into the regularized part (𝑇𝑉𝑑𝑊𝑇𝐸(𝑠)) and the part 
containing all the polar singularities of 𝐺(𝑠) (𝐺𝑝𝑜𝑙𝑒

𝑇𝐸1 (𝑠)), employing the additive pole treatment 
discussed in section 3.2b.  

𝐸𝜑,𝑆𝐷𝑃(𝑟 
′) ≅

𝑠𝑖𝑛(𝜑)

4𝜋
√
2𝑘𝑑
3

𝜋𝑟′
𝑒𝑗
𝜋
4𝑒−𝑗𝑘𝑑𝑟

′
 [ ∫ 𝑇𝑉𝑑𝑊𝑇𝐸(𝑠)𝑒

−𝛺𝑠2𝑑𝑠

+∞

−∞

+ ∫ 𝐺𝑝𝑜𝑙𝑒
𝑇𝐸1 (𝑠)𝑒−𝛺𝑠

2
𝑑𝑠

+∞

−∞

] 

  (3.26 b) 
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Step 3: By expanding 𝑇𝑉𝑑𝑊𝑇𝐸(𝑠) around the saddle point and expressing 𝐺𝑝𝑜𝑙𝑒
𝑇𝐸1 (𝑠) as a sum of 

simple poles (and, if necessary, zeros), the integral can be evaluated as a finite sum of terms 
using (3.15) and (3.17 b). 

𝐸𝜑,𝑆𝐷𝑃(𝑟 ′) ≅
𝑠𝑖𝑛(𝜑)

4𝜋
√
2𝑘𝑑
3

𝜋𝑟′
𝑒𝑗
𝜋
4𝑒−𝑗𝑘𝑑𝑟

′
[∑(

𝑇𝑉𝑑𝑊𝑇𝐸
(2𝑛) (0)

(2𝑛!)

𝛤 [
2𝑛 + 1
2

]

𝛺
(
2𝑛+1
2
)
)

2

𝑛=0

+∑(±2𝑗𝑎𝑝𝑖
𝑇𝐸1√𝜋𝑒

−𝛺(𝑠𝑝𝑖
𝑇𝐸1)

2

𝑄(∓𝑗𝑠𝑝𝑖
𝑇𝐸1√𝛺))

4

𝑖=1

] 

  (3.26 c) 

Where 𝑎𝑝𝑖
𝑇𝐸1 = 𝑙𝑖𝑚

𝑠→𝑠
𝑝𝑖
𝑇𝐸1
(𝑠 − 𝑠𝑝𝑖

𝑇𝐸1)𝐺𝑝𝑜𝑙𝑒
𝑇𝐸1 (𝑠) and the ± sign allocation is performed for 𝐼𝑚(𝑠𝑝𝑖

𝑇𝐸1) ≷ 0. 

Taking into account the existence of an inherent limitation for the approximations of section 
3.2c in terms of the radial distance (𝑟′) from the phase centre where they can be employed, the 
expansion of the regularized part is limited to three terms. To put it simply, for radial distances 
where the value of 𝛺 necessitates the use of more terms in the expansion in order to maintain 
acceptable accuracy, the approximations of section 3.2c start to fail. 

Step 4: Finally, the asymptotically approximated SDP integral is combined with the residue 
contributions of the component in question, resulting in the total field. 

 𝐸𝜑(𝑟 
′) = 𝐸𝜑,𝑆𝐷𝑃(𝑟 

′) + ∑ 𝑈(𝜃′ − 𝜃𝑆𝐵
𝐿𝑊,𝑖)𝑅𝑒𝑠

𝐿𝑊,𝑖 (𝛦𝜑(𝑟 
′))3

𝑖=1 ,  (3.26 d) 

Where 𝑖=1, 2, 3 corresponds to the TE1, TM1 and TM0 leaky wave modes. 

The above-described process can be employed in a similar manner either for the uniform 
case of the phase centre choice (2.14) or the non-uniform one (3.23). Having presented an 
indicative example for the formulation of the asymptotically evaluated field components, the 
first part of the following discussion regarding the asymptotic field evaluation will refer to the 
study of the individual terms of (3.26). This process will begin by taking a closer look to the 
transition functions which result from the asymptotic evaluation of the function containing the 
polar singularities of 𝐺(𝑠), for the above example 𝐺𝑝𝑜𝑙𝑒

𝑇𝐸1 (𝑠). Since this essentially refers to the 
study of field components, the uniform representation in terms of Δz will be employed, i.e., 
that which uses a single reference system (2.14).  

 Transition function 

As briefly discussed in section 3.2b, expressions which result from the integral of polar 
singularities like those of (3.10), uniformly describe the impact of poles approaching the saddle 
point and are thus referred to as transition functions. These functions are concentrated around 
the observation point for which the distance between the polar singularities in question and the 
saddle point is minimized, while also featuring a discontinuity at the observation angle for 
which the pole crosses the SDP. Furthermore, in some cases, a transition region limited by the 
value of |𝑠𝑝√𝛺| can be identified, within which the field changes its wave structure in order to 
account for the discontinuity introduced by the pole crossing the SDP. This behaviour becomes 
easier to observe for strongly excited leaky wave modes, given that their respective transition 
regions are more concentrated, and their residue contributions dominate the field after the 
shadow boundary. One such example clearly illustrating the transition region within which the 
space-wave modifies its wave structure from spherical to conical (residue), can be found in [28]. 

Nature of transition function 

In our case, the pole contributions are isolated through a double pole regularization (3.13), and 
subsequently expressed into a sum of four simple poles which are evaluated as given in (3.17 
b). Some aspects of this approach which have not been treated this far refer to the shape of the 
transition functions as well as the impact of each individual pole included in the representation 
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of 𝐺𝑝𝑜𝑙𝑒(𝑠). To showcase both of the above, the co-polarized component of the field resulting 
from the integral of the polar contributions of the TE1 and TM0 leaky wave modes are presented 
through Figure 3-23, in their respective dominant planes. The following results correspond to 
the central frequency and a spherical observation grid of 3mm (1.5𝜆0) radius from the phase 
centre of the wideband structure. In terms of the phase centre choice, the uniform asymptotic 
approximation is employed (2.14). 

    (a)                                                                    (b) 

Figure 3-23. Complete pole contribution and its decomposition to foul simple poles for a spherical observation grid 

of 3mm radius from the phase centre. (a) TE1 leaky wave mode in the H-plane and (b) TM0 leaky wave mode in 

the E-plane. 

As visualized through the figures above, the poles which lie outside the visible region feature 
a small contribution for large observation angles but otherwise their impact is negligible, as 
anticipated during the discussion in the final part of section 3.2b. Furthermore, while the 
contribution of the two main poles (+𝛽𝐿𝑊 and –𝛽𝐿𝑊) is equal along broadside (equidistant from 
the saddle point for 𝜃′ = 0𝑜), as the observation angle increases, their relative impact changes 
substantially. 

Another deduction that can be made through the above comparison refers to the different 
nature of the two examined leaky wave modes. Regarding the TM0, its main pole pair (+𝛽𝐿𝑊 
and –𝛽𝐿𝑊) is separated sufficiently in the spectrum such that the complete integral of the polar 
contribution peaks around its shadow boundary angle (𝜃𝑆𝐵,𝑇𝑀0). This is attributed to the large 
pointing angle (𝜃𝐿𝑊) of the TM0. On the other hand, the same cannot be said for the TE1 leaky 
wave mode where the main pole pair (+𝛽𝐿𝑊 and –𝛽𝐿𝑊) coalesces around the saddle point, 
forming a broader shape as shown through Figure 3-23 (a). It is noted that the TM1 leaky wave 
mode behaves very similar to the TE1 in complementary angular regions, as depicted through 
Figure 3-10. Consequently, through their transition functions one can visualize how the TE1 
and TM1 leaky wave mode pair contributes towards enhancing the radiation along broadside, 
contrary to the TM0 which launches power towards larger angles. 

Transition function shape 

Having described the above, the shape of the transition function can also be derived, in an 
identical fashion to that described in [28] and [39]. More specifically, considering one single pole 
which crosses the SDP (i.e., 𝑘𝜌,𝐿𝑊

𝑇𝐸1 , 𝑘𝜌,𝐿𝑊
𝑇𝑀1  or 𝑘𝜌,𝐿𝑊

𝑇𝑀0 ) and as such its transition function peaks around
its shadow boundary angle, the shape of its transition region results to be elliptical, with the 
parameters given in Table 3-I. In those expressions, 𝜀′ refers to an arbitrarily small number 
used to define the elliptical contour.  
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Major axis 
angle (𝜽′) 

Major axis length (𝒂) Minor axis length (𝒃) Centre (𝝆𝝄, 𝒛𝒐
′ ) 

𝜃′ = 𝑅𝑒(𝛽𝐿𝑊) 𝑎 =
𝜋(𝜀′)2 𝑐𝑜𝑠ℎ(𝐼𝑚(𝛽𝐿𝑊))

4𝑘𝑑(𝑐𝑜𝑠ℎ
2(𝐼𝑚(𝛽𝐿𝑊)) − 1) 𝑏 =

𝜋(𝜀′)2√𝑐𝑜𝑠ℎ2(𝐼𝑚(𝛽𝐿𝑊)) − 1

4𝑘𝑑(𝑐𝑜𝑠ℎ
2(𝐼𝑚(𝛽𝐿𝑊)) − 1)

𝜌𝜊 =
𝜋(𝜀′)2 sin(𝑅𝑒(𝛽𝐿𝑊))

4𝑘𝑑(𝑐𝑜𝑠ℎ
2(𝐼𝑚(𝛽𝐿𝑊)) − 1)

𝑧𝑜
′ = 

𝜋(𝜀′)2𝑐𝑜𝑠 (𝑅𝑒(𝛽𝐿𝑊))

4𝑘𝑑(𝑐𝑜𝑠ℎ
2(𝐼𝑚(𝛽𝐿𝑊)) − 1)

Table 3-I. Parameters of the transition region elliptical shape derived as defined in [39]. 

An indicative illustration of the two-dimensional cross-section of the elliptical transition 
region is visualized through Figure 3-24 (a). As depicted, the major axis direction is along 

𝜃′ = 𝑅𝑒(𝛽𝐿𝑊), the lower focus is located at the origin and the shadow boundary is tilted with 
respect to the ellipse orientation, intersecting it at the level of its minimum waist. To 
supplement this figure, the co-polarized components of the complete asymptotic evaluation of 
𝐺𝑝𝑜𝑙𝑒(𝑠) (including all four poles) for the TE1 and TM0 leaky wave modes will be presented into 
two 2D plots in their respective dominant planes through Figure 3-24 (b) and (c). 

Figure 3-24. (a) Illustration of elliptical cross-section of transition function, (b) 2D plot of co polarized component 

of all four poles for TE1 leaky wave mode in the H-plane and (c) 2D plot of co polarized component of all four 

poles for TM0 leaky wave mode in the E-plane. 

As already noted above, contrary to the case of the TM0 where the contributions of the 
𝑘𝜌,𝐿𝑊 and –𝑘𝜌,𝐿𝑊 poles are distinguishable, for the TE1 leaky wave mode this pole pair coalesces 
around broadside forming a broader structure as visualized through Figure 3-24 (b) and (c). 
While the above discussion for the shape referred to the dominant planes of the respective 
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modes, it should be noted that the transition functions are also shaped in φ through either a 
sine or cosine function, as given by (3.21 b) and shown through Figure 3-10. 

To conclude this discussion on the transition functions, the impact of using the non-uniform 
phase center choice of (3.23) will be showcased. This will be performed by comparing the 
complete pole contributions of Figure 3-23, with those obtained in the same setup by modifying 
the reference system choice to that of (3.23). The resulting comparison for the TE1 and TM0 
leaky wave mode is presented through Figure 3-25. 

     (a)                                                           (b) 

Figure 3-25. Complete pole contribution comparison between uniform (2.14) and non-uniform (3.23) phase centre 

choice (a) TE1 leaky wave mode for the H-plane and (b) TM0 leaky wave mode for the E-plane. 

While for the case of the TE1/TM1 leaky wave modes the change is not significant, for the 
TM0 this is not the case. More specifically, in the non-uniform approach, its transition function 
does not peak around its shadow boundary angle (𝜃𝑆𝐵,𝑇𝑀0). This is attributed to the nature of 
the shadow boundary; each time being defined from the utilized reference system. As such, by 
altering the reference system prior to the shadow boundary of the TM0 (𝜃𝑆𝐵,𝑇𝑀1 < 𝜃𝑆𝐵,𝑇𝑀0), one 
might end up in a region after this shadow boundary in the new reference system. To facilitate 
the understanding of this concept, the pole contribution of the TM0 leaky wave mode is 
evaluated from two reference systems, one on the ground plane and another displaced as given 
in (2.14), with the resulting plots illustrated through Figure 3-26. To briefly explain the 
depicted results, until the shadow boundary angle of TM1, the reference system from (2.14) is 
utilized (yellow color in Figure 3-26), while after the shadow boundary angle, the reference 
system from the ground plane is used (purple color in Figure 3-26). In this manner, for the 
examined observation grid the shadow boundary angle of the TM0 is not crossed in any region. 

Figure 3-26. Co polarized field component resulting from the complete integral of 𝐺𝑝𝑜𝑙𝑒
𝑇𝑀0(𝑠), evaluated from a 

displaced reference system (yellow) until 𝜃𝑆𝐵
𝑇𝑀1 and from the ground plane (purple) after this angle. The angle 

𝜃′refers to that between the observation vector (𝑟 ′) and the 𝑧-axis from the displaced reference system (O1). 

SB cone 
𝑇𝑀0 

𝜃𝑆𝐵
𝑇𝑀1  

Does not cross the shadow 
boundary angle of 𝑇𝑀0 

𝑂1 

𝑂2 



66 Asymptotic techniques 

Whether this behavior occurs for the TM0 depend on the overlapping of the shadow 
boundary cones illustrated through Figure 3-22 (a) for the examined observation grid.  

Regularized component 

Having showcased the asymptotic approximation of the SDP integrals through a finite sum of 
terms in (3.26), as well as explored the nature of the transition function resulting from the 
integral of the polar singularities in the previous section, now the regularized component will 
be examined. To facilitate this process, the expansion of 𝑇𝑉𝑑𝑊𝑇𝐸(𝑠) is explored further, 
substituting the actual expression for the parameter 𝛺 (𝑘𝑑𝑟′) and separating the resulting terms 
by their spreading factors ( 1

(𝑟′)𝑛
). 

𝐸𝜑,𝑅𝑒𝑔(𝑟 
′) ≅

𝑠𝑖𝑛(𝜑)

4𝜋
√
2𝑘𝑑

3

𝜋𝑟′
𝑒𝑗
𝜋
4𝑒−𝑗𝑘𝑑𝑟

′
∑(

𝑇𝑉𝑑𝑊𝑇𝐸
(2𝑛) (0)

(2𝑛!)

𝛤 [
2𝑛 + 1
2

]

𝛺(
2𝑛+1
2
)
)

2

𝑛=0

= 𝐸𝜑,𝑅𝑒𝑔1(𝑟 
′) + 𝐸𝜑,𝑅𝑒𝑔2(𝑟 

′) + 𝐸𝜑,𝑅𝑒𝑔3(𝑟 
′) +⋯ 

 (3.27) 

Where  𝐸𝜑,𝑅𝑒𝑔1(𝑟 ′) =
√2𝑗𝑘𝑑 𝑠𝑖𝑛(𝜑)

4𝜋

𝑇𝑉𝑑𝑊𝑇𝐸
(0) (0)

𝑟′
𝑒−𝑗𝑘𝑑𝑟

′
,      𝐸𝜑,𝑅𝑒𝑔2(𝑟 ′) =

√2𝑗 𝑠𝑖𝑛(𝜑)

16𝜋

𝑇𝑉𝑑𝑊𝑇𝐸
(2) (0)

(𝑟′)2
𝑒−𝑗𝑘𝑑𝑟

′
 and 

𝐸𝜑,𝑅𝑒𝑔3(𝑟 ′) =
√2𝑗 𝑠𝑖𝑛(𝜑)

128𝜋𝑘𝑑

𝑇𝑉𝑑𝑊𝑇𝐸
(4) (0)

(𝑟′)3
𝑒−𝑗𝑘𝑑𝑟

′
.

While deriving the phase dependence of the higher order derivatives of the regularized part 
is not straightforward, their amplitude dependence with the radial distance can be explicitly 
extracted. In particular, as can be noticed from the above presented expressions, the first term 
(𝑇𝑉𝑑𝑊
(0) (0)) features an 1/𝑟′ dependence, the second (𝑇𝑉𝑑𝑊

(2) (0)) an 1/(𝑟′)2 dependence and so on.
Considering this amplitude dependence with the radial distance (𝑟′), it can be anticipated that 
the level of the higher order terms falls off as the observation grid moves away from the source, 
eventually leading to the description of the regularized part by only the first term of the 
expansion. 

To also showcase the nature of the above presented terms with respect to the angular 
regions they influence, their contributions are isolated and visualized through Figure 3-27. The 
co polarized component is examined in the main planes, referring to a spherical observation 
gird with 2𝜆0 radius from the phase centre of the wideband structure. As a first step, this 
comparison is performed for the uniform phase centre choice (2.14), i.e., Δz=0.42𝜆0. 

                                 (a)                                                                   (b) 
Figure 3-27. Regularized term decomposition for the wideband structure and 𝑟′ = 2𝜆0, using the uniform phase 

centre choice (2.14), (a) E-plane and (b) H-plane. 

As visualized through the above presented figures, the first term of the regularized 
expansion (𝐸𝑅𝑒𝑔,1), dominates the contribution of the regularized part along broadside with the 
higher order terms (𝐸𝑅𝑒𝑔,2, 𝐸𝑅𝑒𝑔,3) mostly contributing at larger angular regions. Similar 
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deductions can also be made for the resonant structure, as shown through Figure 3-28 for a 
spherical observation grid with radius 𝑟′ = 9𝜆0 from its phase centre position (Δz=3.2𝜆0). 

   (a)                                                                    (b) 
Figure 3-28. Regularized term decomposition for the wideband structure and 𝑟′ = 9𝜆0, using the uniform phase 

centre choice (2.14), (a) E-plane and (b) H-plane. 

One important note refers to the contribution of the regularized component after the change 
of reference system (3.23). In particular, through the change of decomposition introduced by 
moving the reference system to the ground plane, the contribution of the regularized component 
is substantially diminished. To visualize this concept, the setup examined through Figure 3-27 
is evaluated once more, employing the non-uniform phase center choice of (3.23). As evident 
through Figure 3-29, above the shadow boundary the contribution of all regularized terms is 
substantially reduced, meaning that essentially only the first term is important. 

   (a)                                                                   (b) 
Figure 3-29. Regularized term decomposition for the wideband structure and 𝑟′ = 2𝜆0, using the non-uniform phase 

centre choice (3.23), (a) E-plane and (b) H-plane. 

To summarize this comparison, while for the uniform phase centre choice the higher order 
terms of the regularized part can be used to better recover the larger angular regions of the 
near field; for the non-uniform approach the contribution of the higher order terms is mostly 
limited along broadside.  

Having described the nature of the transition functions as well as that of the regularized 
component in the previous two sections, in the remaining of this chapter, the fundamental 
aspects resulting from the decomposition of the near field into a finite sum of terms will be 
showcased. 
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Near field as a finite sum of terms 

Employing the steps described in the introductory part of this section results into the 
asymptotic approximation of the near field through a small number of terms, as indicatively 
expressed in (3.26). These terms include the residue contributions, the transition functions 
resulting from the integral of the polar contributions and the terms of the expansion of the 
regularized part. The above terms are mostly analytical, with the only exception referring to 
the higher order derivatives of 𝑇𝑉𝑑𝑊

𝑇𝐸/𝑇𝑀(s), which are acquired in a numerical manner as discussed
in Appendix H. Substituting the integral expressions with such a small number of mostly 
analytical terms, has a significant effect in the computational efficiency of the near field 
evaluation, since it mitigates the need for any spectral integration.  

As an indicative example, for a spherical observation grid at 𝑟′ = 2λ0 from the phase centre 
of the wideband structure featuring 361 𝜑 and 140 𝜃 points, the asymptotic approximation of 
the near field requires roughly 1.5 sec, with very small deviation depending on the number of 
terms included in the expansion of the regularized part. For the same problem, the SDP 
integration approach described in Chapter 2, requires approximately 1 minute, being roughly 
forty times slower. This timing comparison is summarized through Table 3-II. 

Evaluation 
method 

Numerical 
(integration path 
of Figure 2-4 b) 

Numerical 
(SDP) 

Asymptotic 
(1 term) 

Asymptotic 
(3 terms) 

Time 
required 

9 min 1 min 1.4 sec 1.5 sec 

Table 3-II. Timing comparison between different near field evaluation methods. 

One important comment regarding the time required for the derivation of the near field 
using the asymptotic approach, refers to it not being influenced by neither the spectral 
properties of the source nor directly by the distance from the phase centre (𝑟′). In particular, 
the latter has an indirect impact since it determines the number of terms required in the 
expansion of the regularized part to maintain acceptable accuracy, but this effect is very small. 
The same cannot be said for the numerical methods of Chapter 2, for which both the spectrum 
of any potential source as well as the radial distance, significantly impact the convergence of 
the spectral integrals involved in the near field evaluation. 

As a final remark regarding the near field decomposition into a finite sum of terms, it will 
be indicatively showcased for both the uniform (2.14) and non-uniform (3.23) phase centre 
choices. This is illustrated for an observation sphere of 2𝜆0 radius from the phase center of the 
wideband structure, through Figure 3-30 and Figure 3-31 respectively. Both asymptotic 
approximations employ three terms in the expansion of the regularized part. 

  (a)                                                                (b) 
Figure 3-30. Field decomposition for asymptotic approximation with the uniform phase centre choice (a) E and 
(b) H-plane (150 GHz). The observation grid is a sphere of 𝑟′ = 2𝜆0 from the phase centre (wideband structure). 



69 Asymptotic techniques 

   (a)                                                               (b) 
Figure 3-31. Field decomposition for asymptotic approximation with the non-uniform phase centre choice (a) E 

and (b) H-plane (150 GHz). The observation grid is a sphere of 𝑟′ = 2𝜆0 from the phase centre (wideband 

structure). 

Applicability region 

The trade-off involved for this improvement of the computational efficiency through the 
asymptotic approximation of the near field, refers to the applicability region of the 
approximations introduced through section 3.2c. To visualize this impact in accuracy and how 
it changes with the radial distance, the co and cross polarized components of the near field 
(3.25) will be evaluated over spherical observation grids of different radii from the phase centre 
for both the wideband and resonant structures. For this comparison, the non-uniform 
asymptotic approach will be employed (3.23). Even so, it should be noted that for the region 
along broadside for which the main accuracy concerns will be expressed, both the uniform and 
non-uniform approaches are actually equivalent. Having said the above, as a first step for the 
following discussion the numerical and asymptotically approximated near field will be compared 
for the wideband structure and two observation grids of 𝑟′ = 2𝜆0 and 𝑟′ = 1.4𝜆0 from the phase 
centre through Figure 3-32 and Figure 3-33 respectively. In both cases, the asymptotic 
approximations is performed with three terms in the expansion of the regularized part. 

 (a)                                                                      (b) 
Figure 3-32. Field comparison for numerical integration and asymptotic approximation (3 term expansion of the 

regularized part), (a) co pol. at E and H planes, (b) co and cross pol. at D plane (150 GHz). The observation grid 

is a sphere with 𝑟′ = 2𝜆0 (wideband structure). 
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 (a)                                                                   (b) 

Figure 3-33. Field comparison for numerical integration and asymptotic approximation (3 term expansion of the 

regularized part), (a) co pol. at E and H planes, (b) co and cross pol. at D plane (150 GHz). The observation grid 

is a sphere with 𝑟′ = 1.4𝜆0 (wideband structure). 

As visualized through the figures above, the approximations of section 3.2c result into slight 
discontinuities at all the shadow boundaries in the asymptotically approximated near field, due 
to the different treatment of the SDP integrals and the residue contributions. However, given 
the small level of those discontinuities, what in fact constitutes a limit for the applicability 
region of the asymptotic approach is the somewhat reduced accuracy along broadside with the 
reduction of the radial distance. This effect can be justified through the physical interpretation 
of the introduced approximations and the nature of the near field. In particular, as discussed 
through section 3.2d the approximations of (3.21 a) essentially implies the near field spherical 
wave formation for 𝜃′ < 𝜃𝑆𝐵. Consequently, the applicability region of this asymptotic approach 
is inherently limited to radial distances where the introduced definition of the phase centre 
enables this spherical wave formation around broadside.  

In turn, the radial distance from the phase centre where this nature of the near field can 
be assumed for a leaky wave structure depends on its directivity, as hinted through the 
Poynting vector angles examined in the final section of Chapter 2 (Figure 2-11 and Figure 2-12 
(e), (f)). More specifically, given the relatively large attenuation constants (𝛼𝐿𝑊) for the 
significant leaky wave modes in the wideband structure, the near field spherical wave formation 
can be considered even at very small distances from the phase centre, as visualized through 
Figure 3-32 and 3-33. Contrary to the latter, due to the small attenuation constants of the 
significant modes in the resonant structure, the larger aperture field distribution formed by the 
leaky waves implies that the spherical wave formation occurs at larger distances from the phase 
centre as hinted through the Poynting vector angle depicted in Figure 2-12 (e) and (f). In turn, 
this leads to the failure of the presented asymptotic approach for distances very close to the 
source. To visualize this concept, the numerical and asymptotically evaluated field for the 
resonant structure will be compared through Figure 3-34 and Figure 3-35, referring to 
observation grids of 𝑟′ = 8𝜆0 and 𝑟′ = 5𝜆0 respectively. Similar to the previous case of the 
wideband structure, three terms are included in the expansion of the regularized part. 
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 (a)                                                                    (b) 

Figure 3-34. Field comparison for numerical integration and asymptotic approximation (3 term expansion of the 

regularized part), (a) co pol. at E and H planes, (b) co and cross pol. at D plane (150 GHz). The observation grid 

is a sphere with 𝑟′ = 8𝜆0 (resonant structure). 

     (a)                                                                    (b) 
Figure 3-35. Field comparison for numerical integration and asymptotic approximation (3 term expansion of the 

regularized part), (a) co pol. at E and H planes, (b) co and cross pol. at D plane (150 GHz). The observation grid 

is a sphere with 𝑟′ = 5𝜆0 (resonant structure). 

Following the above discussion one can deduce that accurately reconstructing the near field 
of the leaky wave structure through the introduced asymptotic approach, requires evaluating 
it at radial distances where the spherical wave formation around broadside can be assumed. 
Taking this into account, in the remaining part of this section a rough estimate of the region 
which satisfies this nature of the near field will be identified for both the examined structures. 
This is performed through deriving the percentage magnitude and absolute phase errors 
between the co polarized component obtained via the numerical and asymptotic approaches, 
as given below.  

𝐸𝑟𝑟𝑜𝑟,𝑚𝑎𝑔(𝜃
′ , 𝜑)  =

|𝐸𝑐𝑜
𝑛𝑢𝑚(𝜃′, 𝜑)| − |𝐸𝑐𝑜

𝑎𝑠𝑦(𝜃′, 𝜑)|

|𝐸𝑐𝑜
𝑛𝑢𝑚(𝜃′, 𝜑)|

(3.28) 

𝐸𝑟𝑟𝑜𝑟,𝑝ℎ𝑎𝑠𝑒(𝜃
′ , 𝜑) [𝑑𝑒𝑔] = |(∡𝐸𝑐𝑜

𝑛𝑢𝑚(𝜃′ , 𝜑) − ∡𝐸𝑐𝑜
𝑛𝑢𝑚(0,0)) − (∡𝐸𝑐𝑜

𝑎𝑠𝑦(𝜃′, 𝜑) − ∡𝐸𝑐𝑜
𝑎𝑠𝑦(0,0))| 
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Subsequently, the maximum errors are computed for both the wideband and resonant 
structures, using different number of terms in the expansion of the regularized part. The 
resulting comparison is illustrated through Figure 3-36, in terms of the electrical distance of 
the observation spheres from the respective phase centre positions. Given that the failure of 
the approximation (3.21 a) occurs along broadside, as seen through Figure 3-33 and Figure 
3-35, this process is performed for 𝜃′ < 𝑚𝑖𝑛(𝜃𝑆𝐵,𝑇𝐸1 , 𝜃𝑆𝐵,𝑇𝑀1). 

  (a)                                                                   (b) 
Figure 3-36. Maximum percentage magnitude and absolute phase errors between numerically and asymptotically 

evaluated co polarized component (𝐸𝑐𝑜). The examined errors refer to the solid angle defined by the smallest 

shadow boundary angle (𝜃𝑆𝐵), for (a) the wideband and (b) the resonant structure. 

Through comparing the above presented maximum errors, the applicability limit of the 
asymptotic approach can be visualized. In particular, it can be noticed that increasing the 
number of terms above a certain point would not lead to any improvement in terms of 
recovering the field around broadside at small radial distances. This essentially constitutes the 
inherent limitation of the asymptotic approach, arising from the assumed nature of the near 
field. Taking this into account, for the remaining of this document three terms will be used in 
the expansion of the regularized part to obtain the asymptotically approximated near field. 

Defining in a somehow arbitrary manner a maximum acceptable error of 10% for the 
magnitude and 11.25o absolute error for the phase, the applicability region of the asymptotic 
approach can be identified as less than 1 and roughly 5.5 𝜆0 for the wideband and resonant 
structures respectively.  

Before proceeding further, it should be noted that the fundamental difference of leaky wave 
structures with different dielectric contrasts between the cavity and semi-infinite region, refers 
to the dispersion of the excited leaky wave modes. In turn, this determines the operational 
bandwidth of the respective structure. Therefore, examining the applicability region of the 
asymptotic approach only for the central frequency is somewhat lacking in terms of evaluating 
its actual utility. For this reason, the same maximum errors for the co polarized component 
will be derived for the lower and higher frequencies of the structures’ bandwidths, assuming 
the central frequency at 150 GHz and a 40% and 15% operational bandwidth for the wideband 
and resonant structures respectively. The resulting maximum magnitude and phase errors for 
both structures are presented through Figure 3-37. The errors are computed in spheres of 
progressively larger radii, centred at the phase centre position of the leaky wave structure for 
the central frequency. The normalizing free space wavelength on the horizontal axis refers to 
that of the central frequency (𝜆0 = 𝜆0150 𝐺𝐻𝑧). 
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   (a)                                                                   (b) 
Figure 3-37. Maximum percentage magnitude and absolute phase error between the numerically and asymptotically 

evaluated co polarized component, for 𝜃′ < 𝜃𝑆𝐵
150 𝐺𝐻𝑧 and different frequencies (a) wideband and (b) resonant 

structure. 

As visualized through the figures above, the change of the operational frequency has a 
notable impact in the applicability region of the asymptotic approach. In fact, this impact 
seems to be more significant at higher frequencies, given the larger aperture field distribution 
formed by the leaky waves (smaller 𝛼𝐿𝑊) and thus the more directive nature of the structure. 
This in turn forces the previously discussed assumption for the nature of the near field further 
away from the source. Consequently, to extract a somewhat more conservative estimate for the 
applicability region of the asymptotic approach, the same maximum acceptable thresholds are 
introduced for the percentage magnitude and absolute phase errors. The resulting limits for the 
applicability region are roughly 1.5 𝜆0 and 8 𝜆0 for the wideband and resonant structures 
respectively, where 𝜆0 refers to the free space wavelength for the central frequency (150 GHz). 

Apart from the larger directivity of the structure as the frequency increases, another 
noteworthy aspect regarding the applicability region refers to the accuracy of the phase centre 
definition presented through [20]. As a matter of fact, its derivation employs an approximation 
for the phase of the co polarized component, given in [34], which assumes a similar nature for 
the TE1 and TM1 leaky wave modes, as well as that for each mode the attenuation constant is 
almost equal to the propagation constant (𝛼𝐿𝑊 ≈ 𝛽𝐿𝑊) [40], something that fails away from 
resonance (i.e., when h ≠ λcav /2).  

To visualize this performance degradation of the asymptotic approximation with frequency, 
the numerically and asymptotically evaluated near field will be compared for the wideband 
structure and an observation grid of 𝑟′ = 3.2𝑚𝑚 from the phase center at 150 GHz (Δz=0.84mm), 
through Figure 3-38.  

(a) (b) 
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Figure 3-38. Field comparison for numerically and asymptotically evaluated near field (3 term expansion of 

regularized part), (a) 120 GHz, (b) 150 GHz and (c) 180 GHz. The observation grid is a sphere with 𝑟′ = 3.2𝑚𝑚 

from the phase centre at the central frequency (Δz=0.84mm) and it refers to the wideband structure. 

Evidently, the more significant degradation of the asymptotic approximation’s accuracy 
appears at the higher frequencies, due to the larger field distribution formed by the leaky waves 
inside the cavity and thus the higher directivity of the structure. 

To conclude the discussion presented in this chapter, the asymptotic approximation of the 
SDP integral expressions allows for a much faster derivation of the near field for a leaky wave 
structure around resonance. Moreover, provided that the phase centre choice enables the 
assumption for a spherical wave formed in a region around broadside, the asymptotic 
approximation maintains good accuracy. At those regions, the only hint of any approximation 
appears through the discontinuities at the shadow boundaries arising from the different 
treatment of the residues and the SDP integrals. In addition, these discontinuities are a bit 
more evident in planes dominated by TM modes, due to neglecting the impact of the TM0 in 
the phase centre choice of section 3.2d. It should be noted that while the above presented 
approach could be applied for the study of near field lenses, like that of the Fly’s Eye antenna 
concept, a more generic asymptotic near field study would require a complete treatment of the 
Hankel function, instead of using the approximation of (3.21 a). 

(c) 
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CHAPTER 4. NEAR FIELD LENSES 

In the previous chapter, the approximations of the SDP integrals which enabled the asymptotic 
evaluation of the near field for elementary sources were introduced and the near field 
decomposition was discussed. To build upon this concept, the following chapter will briefly 
explore the use of the asymptotically approximated near field to illuminate small lenses. For 
this purpose, the additional considerations required to enable the asymptotic approximation of 
the near field when an actual current distribution is considered in the ground plane will first 
be presented. Following this, some indicative cases of small lenses will be examined. This study 
will showcase one potential benefit of putting a lens in the near field and also provide an 
indicative example on how the decomposition of the incident field into wave components can 
contribute to the analysis and design of small lenses.  

4.1. Source inclusion  

4.1a. Integral formulation 

Considering an equivalent magnetic current distribution in the ground plane of a leaky wave 
supporting stratification similar to those of Figure 2-8, the near field can be evaluated through 
the following double spectral integral. This integral corresponds to the inverse Fourier 
transform of the convolution between the Spectral Green’s function and the current distribution 
in the ground plane. Assuming an equivalent magnetic current distribution in the ground plane, 
the pertinent Green’s function is the one relating electric fields and magnetic currents (i.e., 
�̿�𝑒𝑚(𝑘𝜌, 𝛼, 𝑧, 𝑧𝑠)). 

 �⃗� (𝑟 ) =
1

4𝜋2
∫ ∫ �̿�𝑒𝑚(𝑘𝜌, 𝛼, 𝑧, 𝛥𝑧) ∙ 𝐶 𝑚(𝑘𝜌, 𝛼)𝑒

−𝑗𝑘𝜌𝜌 𝑐𝑜𝑠(𝛼−𝜑)𝑘𝜌𝑑𝛼𝑑𝑘𝜌
2𝜋

0

+∞

0
, (4.1) 

Where 𝐶 𝑚(𝑘𝜌, 𝛼) refers to the spectrum of the equivalent current distribution. 

In order to resort to either the computationally efficient numerical methods for the near 
field evaluation (Chapter 2) or the asymptotic approach (Chapter 3), the 𝛼 integral must first 
be closed, leading to the single complex integral expression in 𝑘𝜌 similar to equation (2.2 b). 
When an elementary source was considered in Chapter 2, this step was performed through the 
use of the identities given in (2.2 a). However, for the case of an actual current distribution in 
the ground plane, this approach is not directly applicable. 

To enable the closing of the integral in 𝛼 in the same manner and end up with the single 
complex integral in 𝑘𝜌, the spectrum of the current distribution (𝐶 𝑚(𝑘𝜌, 𝛼)) must first be 
extracted from the 𝛼 integral. This can be performed through the stationary phase point 
approximation. In particular, considering the spectrum of the source slow varying in 𝛼 
compared to the exponential of the integrand (𝑒−𝑗𝑘𝜌𝜌𝑐𝑜𝑠(𝛼−𝜑)), 𝐶 𝑚(𝑘𝜌, 𝛼) can be evaluated on the 
saddle point 𝛼𝑆𝑃 = 𝜑 and subsequently extracted from the integral as shown below. 

 �⃗� (𝑟 ) =
1

4𝜋2
∫ 𝐶𝑚(𝑘𝜌, 𝜑) ∫ �̿�𝑒𝑚(𝑘𝜌, 𝛼, 𝑧, 𝛥𝑧) ∙ �̂�𝑒

−𝑗𝑘𝜌𝜌 𝑐𝑜𝑠(𝛼−𝜑)𝑘𝜌𝑑𝛼𝑑𝑘𝜌
2𝜋

0

+∞

0
, (4.2) 

assuming 𝐶 𝑚(𝑘𝜌, 𝛼) = �̂�𝐶𝑚(𝑘𝜌, 𝛼)  

Following this step, the remaining 𝛼 integral can be evaluate as was done for an elementary 
source in section 2.2a and subsequently the near field can be treated either numerically or 
asymptotically. One alternative to the above would be to represent a more complex current 
distribution through a number of elementary sources with different weights. This would enable 
directly employing the asymptotic approach of Chapter 3 but would require superimposing a 
potentially large number of sources, depending on the modelled current distribution. As such, 
this approach would end up being somewhat more time consuming and thus it will not be 
considered further at this stage. 
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4.1b. Slow varying spectrum on α 

When the observation grid is far away from the source, the assumption for a slow varying 
spectrum of the current distribution on 𝛼 can be employed without much consideration. This 
is attributed to the large radial distance of the observation points (𝑟′), which make the 
exponential term (𝑒−𝑗𝑘𝜌𝜌 𝑐𝑜𝑠(𝛼−𝜑)) fast varying on the integration path compared to the spectrum 
of the source (𝐶 𝑚(𝑘𝜌, 𝛼)). Having said the above, in the near field where the radial distance of 
the observation points is not that large, additional considerations must be made prior to this 
assumption in order to ensure the slow varying nature of the source’s spectrum. 

Considering an overview of the problem at hand, leaky lenses are usually illuminated by a 
pair of apertures in the ground plane which are spaced apart such that they suppress the TM0 
in its dominant plane [17]. More specifically, the suppression of the TM0 is performed through 
forcing a null around its polar singularity (𝑘𝜌,𝐿𝑊

𝑇𝑀0 ) via the array factor of the employed apertures.
While these can feature an iris shape to enhance the suppression in the diagonal planes, for the 
time being we will consider elementary sources for simplicity. 

If the assumption for a slow varying spectrum is performed when the array factor is included 
in the spectral representation of the source (𝐶 𝑚(𝑘𝜌, 𝛼)), its accuracy will degrade, especially 
around the angular region where the array factor contributes its null. Taking the above into 
account, such structures comprised of a pair of elements can be more conveniently treated 
through superposition, as indicatively illustrated in Figure 4-1. 

 (a)   (b) 

    (c) 

Figure 4-1. Combination of the fields from individual sources (a) and (b), for the derivation of the total field of a 

double elementary magnetic current source (c). 
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To showcase this improvement in accuracy resulting from the use of superposition, one 
indicative example is considered for the above presented double elementary structure. In 
particular, two 𝑦-oriented elementary sources are assumed in the ground plane of the wideband 
structure (𝜀𝑟,𝑐𝑎𝑣 = 3.8 and 𝜀𝑟,𝑖𝑛𝑓 = 12), spaced along 𝑥 by 𝑑 = 500 𝜇𝑚 ≈ 𝜋/𝑅𝑒(𝑘𝜌,𝐿𝑊

𝑇𝑀0 ), such that they
suppress the TM0 in the E-plane. In turn, the near field extracted through the superposition of 
the two elementary sources (𝐶𝑚,𝑒𝑙𝑒(𝑘𝜌, 𝛼) = 1) is compared to that obtained by using their 
combined spectrum (𝐶𝑚,𝑑𝑜𝑢𝑏𝑙𝑒(𝑘𝜌, 𝛼) = 2 cos(𝑘𝜌 𝑐𝑜𝑠(𝛼) 𝑑 2⁄ )) and assuming it to be slow varying on 
𝛼, as given through (4.2). The near field is evaluated numerically for both approaches at the 
central frequency (150 GHz) and in turn compared over a sphere close to the source (𝑟′ =
2.5 𝑚𝑚 ≅ 1.25𝜆0

150 𝐺𝐻𝑧). To illustrate which approach is more accurate, the near field extracted 
through of a full-wave simulation (CST) is also included in the comparison of Figure 4-2. 

Figure 4-2. Near field comparison (𝑟′ = 2.5 𝑚𝑚) for two 𝑦-oriented elementary magnetic current sources integrated 

in the ground plane of the wideband structure of Figure 2-8. The two elementary sources are spaced in 𝑥 by 

500μm, while the observation grid is drawn with respect to the phase centre of the structure (Δz=0.42𝜆0). The 

resulting comparison is performed in the main planes with (a) E-plane, (b) D-plane and (c) H-plane. 

As evident from the figures above, deriving the field through the superposition of the two 
sources improves the accuracy of the evaluated near field around angular regions where the 
array factor features its null. Having said that, it is without saying that the difference of the 
two approaches is reduced as the observation grid moves away from the source, owing to the 
faster varying exponential with the increasing of the observation distance (𝑟′). Even so, to 
preserve the accuracy of the near field evaluation even for very small radial distances, structures 
of double straight or elementary sources will be treated through superposition for the remaining 
of this document. 

To finalize this section, the co and cross polarized field components extracted through the 
full-wave simulation of the double elementary structure will also be compared to the 
asymptotically approximated near field, using three terms in the expansion of the regularized 
part. The comparison refers to the main planes over the same observation grid as Figure 4-2 
and is depicted through Figure 4-3.  

(a) (b) 

(c) 
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     (a)                                                             (b)    
Figure 4-3. E-field comparison for double elementary structure (d = 500 μm), (a) co pol., E and H planes, (b) co 

and cross pol., D plane (150 GHz). The observation grid is identical to that of Figure 4-2. 

Evidently the asymptotically approximated near field is in very good agreement with the 
full-wave simulation. The only notable difference refers to the discontinuities around the 
shadow boundary of the TM1 mode (𝜃𝑆𝐵

𝑇𝑀1 ≅ 28𝑜), mainly visible for the co polarized component
in the E-plane and the cross polarized in the D-plane. These discontinuities arise from the 
different approximations introduced in the treatment of the SDP integral and the residue 
contributions. They are more evident in planes with significant impact from the TM modes due 
to the simplification employed for the phase centre choice in the TM integrals in section 3.2d. 

4.1c. Straight slots as feeding elements 

Further expanding on the above discussion, double straight slots will also be treated apart from 
pairs of elementary structures. The spectrum of the current distribution of a straight slot can 
be approximated as given below for 𝑦-oriented slots, where the effective wavenumber is chosen 
as 𝑘𝑒𝑓𝑓 = (𝑘0 + 𝑘𝑑,𝑐𝑎𝑣)/2. 

𝐶 𝑚,𝑠𝑙𝑜𝑡(𝑘𝜌, 𝛼) = �̂�
2𝑘𝑒𝑓𝑓𝑠𝑖𝑛𝑐(

𝑘𝜌 𝑐𝑜𝑠(𝛼)𝑊𝑠𝑙𝑜𝑡
2

)(𝑐𝑜𝑠(
𝑘𝜌𝑠𝑖𝑛(𝛼)𝐿𝑠𝑙𝑜𝑡

2
)−𝑐𝑜𝑠(

𝑘𝑒𝑓𝑓𝐿𝑠𝑙𝑜𝑡

2
))

(𝑘𝑒𝑓𝑓
2 −𝑘𝜌

2 sin2(𝛼)) 𝑠𝑖𝑛(
𝑘𝑒𝑓𝑓𝐿𝑠𝑙𝑜𝑡

2
)

, (4.3) 

While pairs of straight slots will be treated through superposition, as described in the 
previous section, for each individual slot the slow varying assumption for its spectrum will still 
be employed (𝐶 𝑚,𝑠𝑙𝑜𝑡(𝑘𝜌, 𝛼) ≅ 𝐶 𝑚,𝑠𝑙𝑜𝑡(𝑘𝜌, 𝜑)). This step introduces an approximation with respect to 
the actual near field. However, for reasonable sized slots (i.e., 𝐿𝑠𝑙𝑜𝑡 around 𝜆𝑒𝑓𝑓/2), the impact of 
this approximation is negligible compared to the simplification it introduces. To illustrate this, 
the single slot depicted through Figure 4-4 will be indicatively examined.  

Figure 4-4. Single straight slot used to evaluate the slow varying assumption for its spectrum. 

In order to evaluate the impact of assuming a slow varying spectrum for the indicated 
straight slot, the field resulting from the double integral of (4.1) will be compared to that 
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        (a)                                                                (b)    
Figure 4-5. E-field comparison for double and single integral evaluation (150 GHz), (a) co pol. at E and H planes, 

(b) co and cross pol. at D plane. The observation grid is a sphere with 𝑟′ = 3𝑚𝑚 = 1.5𝜆0 (wideband structure). 

As visualized from the figures above, the assumption for a slow varying spectrum constitutes 
a very good approximation for the examined slot, even for observation points very close to the 
source. This is important since combining the above approximation with the array factor 
treatment of section 4.1b enables the subsequent evaluation of the near field of double straight 
slots through either the methods described in Chapter 2 or 3. 

4.1d. Asymptotic analysis 

Introducing the Fourier transform of the current distribution in the near field integral 
expressions slightly modifies the asymptotic approach described through Chapter 3. This 
section will explain this concept and describe the required treatment when a single slot is 
considered in the ground plane of the stratification. Towards this goal, the field decomposition 
resulting from the regularization of the SDP integral expressions is re-written below. 

�⃗� (𝑟 ′) = �⃗� 𝑅𝑒𝑔.(𝑟 ′) + �⃗� 𝑃𝑜𝑙𝑒(𝑟 ′) + ∑ 𝑈(𝜃′ − 𝜃𝑆𝐵,𝑖)�⃗� 𝐿𝑊,𝑖
𝑇𝐸 𝑇𝑀⁄ (𝑟 ′)3

𝑖=1 , (4.4 a) 

Where �⃗� 𝑃𝑜𝑙𝑒 is the part containing all the polar contributions of the SDP integrals. 
Regarding the field decomposition presented above, the approaches used to evaluate the 

residue contributions of the polar singularities (�⃗� 𝐿𝑊,𝑖
𝑇𝐸 𝑇𝑀⁄ (𝑟 ′)) as well as the regularized part of the

SDP integral (�⃗� 𝑅𝑒𝑔.(𝑟 ′)), are not modified by the presence of the source’s spectrum in the 
integrand. Having said that, what does change is the treatment of the part of the SDP which 
contains all its singularities, i.e., �⃗� 𝑃𝑜𝑙𝑒(𝑟 ′). To showcase why this occurs and present an approach 
to resolve the problem, the integral expressions of �⃗� 𝑃𝑜𝑙𝑒(𝑟 ′) are first expressed for a 𝑦-oriented 
slot, as given below.  

[

𝐸𝜌,𝑃𝑜𝑙𝑒(𝑟 ′)

𝐸𝜑,𝑃𝑜𝑙𝑒(𝑟 ′)

𝐸𝑧,𝑃𝑜𝑙𝑒(𝑟 ′)

] =
1

4𝜋
√
2𝑘𝑑
3

𝜋𝑟′
𝑒𝑗
𝜋
4𝑒−𝑗𝑘𝑑𝑟

′
∫   [

− 𝑐𝑜𝑠(𝜑) (𝑣𝑎𝑝𝑟,𝑇𝑀1
+ + 𝑣𝑎𝑝𝑟,𝑇𝑀0

+ )

𝑠𝑖𝑛(𝜑) 𝑣𝑎𝑝𝑟,𝑇𝐸1
+

𝜁𝑑 𝑐𝑜𝑠(𝜑) (𝑖𝑎𝑝𝑟,𝑇𝑀1
+ + 𝑖𝑎𝑝𝑟,𝑇𝑀0

+ ) 𝑠𝑖𝑛(𝛽)

] 𝐶𝑚,𝑠𝑙𝑜𝑡(𝑘𝜌, 𝜑) 𝑐𝑜𝑠(𝛽) (
𝑑𝛽

𝑑𝑠
) 𝑒−𝑘𝑑𝑟

′𝑠2𝑑𝑠

+∞

−∞

(4.4 b) 

Where 𝐶𝑚,𝑠𝑙𝑜𝑡(𝑘𝜌, 𝜑) as given in (4.3), 𝑣𝑎𝑝𝑟,𝑇𝑀/𝑇𝐸 
+ = 𝑣𝑎𝑝𝑟,𝑇𝑀/𝑇𝐸 

+ (𝑘𝜌, 𝛥𝑧) and  𝑖𝑎𝑝𝑟,𝑇𝑀/𝑇𝐸 
+ =  𝑖𝑎𝑝𝑟,𝑇𝑀/𝑇𝐸 

+ (𝑘𝜌, 𝛥𝑧). 
Also, while several spectral variables are included in the integrands to maintain a compact 
form, namely 𝑘𝜌, 𝛽 and 𝑠, all are related as given in (2.8) and (3.4). 

obtained by using the slow varying spectrum assumption (𝐶𝑚(𝑘𝜌, 𝛼) ≅ 𝐶𝑚(𝑘𝜌, 𝜑)) and in turn 
employing the integral of (4.2). The resulting comparison for 150 GHz is depicted in Figure 
4-5, referring to a sphere of 𝑟′ = 3 𝑚𝑚 from the phase center of the wideband structure.  
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In section 3.2b it was described that at this stage the integrands must be expressed through 
four simple poles which in turn can be evaluated asymptotically, resulting into a sum of 
transition functions as given in (3.17). Following this mindset, the representation of 𝐺𝑝𝑜𝑙𝑒(𝑠) is 
introduced in the integrands and subsequently expressed as given through (4.4 d). 

[

𝐸𝜌,𝑃𝑜𝑙𝑒(𝑟 ′)

𝐸𝜑,𝑃𝑜𝑙𝑒(𝑟 ′)

𝐸𝑧,𝑃𝑜𝑙𝑒(𝑟 ′)

] =
1

4𝜋
√
2𝑘𝑑
3

𝜋𝑟′
𝑒𝑗

𝜋

4𝑒−𝑗𝑘𝑑𝑟
′
∫

[
 
 
 
 − 𝑐𝑜𝑠(𝜑) (𝐺𝑝𝑜𝑙𝑒

𝑣𝑇𝑀1(𝑠) + 𝐺𝑝𝑜𝑙𝑒
𝑣𝑇𝑀0(𝑠))

𝑠𝑖𝑛(𝜑)𝐺
𝑝𝑜𝑙𝑒

𝑣𝑇𝐸1(𝑠)

𝜁𝑑 𝑐𝑜𝑠(𝜑) (𝐺𝑝𝑜𝑙𝑒
𝑖𝑇𝑀1(𝑠) + 𝐺𝑝𝑜𝑙𝑒

𝑖𝑇𝑀0(𝑠))]
 
 
 
 

𝐶𝑚,𝑠𝑙𝑜𝑡(𝑘𝜌, 𝜑)𝑒
−𝑘𝑑𝑟

′𝑠2𝑑𝑠
+∞

−∞
, (4.4 c) 

𝐺𝑝𝑜𝑙𝑒
(𝑣/𝑖)𝑇𝐸/𝑇𝑀(𝑠) = ∑

𝑎
𝑝𝑖

(𝑣/𝑖)𝑇𝐸/𝑇𝑀

𝑠−𝑠
𝑝𝑖

(𝑣/𝑖)𝑇𝐸/𝑇𝑀

4
𝑖=1 ,   where   𝑎

𝑝𝑖

(𝑣/𝑖)𝑇𝐸/𝑇𝑀
= 𝑙𝑖𝑚
𝑠→𝑠𝑝𝑖

(𝑠 − 𝑠
𝑝𝑖

(𝑣/𝑖)𝑇𝐸/𝑇𝑀
)𝐺𝑝𝑜𝑙𝑒

(𝑣/𝑖)𝑇𝐸/𝑇𝑀(𝑠), (4.4 d) 

At first glance, one might consider that the spectrum of the straight slot (𝐶𝑚,𝑠𝑙𝑜𝑡(𝑘𝜌, 𝜑)) 
should be included in 𝐺𝑝𝑜𝑙𝑒(𝑠) and in turn the treatment of (4.4 d) can be applied without issue. 
However, as was mentioned at the end of section 3.2b (3.17 c), if the integrand function also 
features zeros which approach the saddle point for some observation angles, these must also be 
isolated and subsequently evaluated through the canonical forms describing simple poles and 
zeros (3.10 b). For the case of elementary slots, the only zeros in the integrands were caused 
by cosine and sine functions arising in the representation. However, the addition of the Fourier 
transform of the source changes this aspect. In particular, the spectrum of a straight slot (4.3) 
features a number of periodic zeros with their proximity to the saddle point determined by the 
electrical size of the slot, and most importantly its length. 

 An analytical way to resolve this issue would require all the important zeros (the ones that 
approach the saddle point) to be isolated and treated as described in equation (3.17 c). Even 
so, to simplify this process and make it a bit more generic, the spectral behaviour of the source 
can be included in the integral by simply evaluating its spectrum on the dominant integral’s 
contribution, namely, the saddle point (𝑘𝜌𝑆𝑃 = 𝑘𝑑𝑠𝑖𝑛(𝜃′)). To showcase the performance of this 
approach, the resulting co polarized component from the asymptotic approximation of the 
integrals (4.4 c) will be derived for the TE1 and the TM1 leaky wave modes in their respective 
dominant planes and compared to the numerical result. The asymptotically approximated 
terms will be obtained through both approaches, i.e., including 𝐶𝑚(𝑘𝜌, 𝜑) in 𝐺𝑝𝑜𝑙𝑒(𝑠) and using 
(4.4 d) as well as evaluating 𝐶𝑚(𝑘𝜌, 𝜑) on the saddle point. The above described comparison is 
presented through Figure 4-6, referring to a spherical observation grid of 𝑟′ = 3 𝑚𝑚 from the 
phase centre of the wideband structure, with the utilized slot being that of Figure 4-4. While 
the illustrated results correspond to the non-uniform phase centre choice described in section 
3.2d, the same deductions can also be extracted for the uniform case. 

TM1 in the E-plane, using different treatments for the spectrum of the source (f=150 GHz). 

    (a)                                                                                      (b) 

Figure 4-6. Co polarized component of polar contributions expressed in (4.4 c) for (a) TE1 in the H-plane and (b) 
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As visualized from the figure above, while for the TM1 mode the presence of the source does 
not seem to impact the described treatment for its polar contributions, the same cannot be said 
for the case of the TE1. This is due to the fact that the dominant zeros of the source’s Fourier 
transform are attributed to its length. As such, for a 𝑦-oriented slot they appear at the H-plane 
and thus mainly impact the TE variants of the transmission line solutions. In order to increase 
the accuracy of the process, the source’s spectrum around the saddle point can be represented 
through a power series expansion in terms of 𝑠. Given the electrical length of the examined slot 
(𝐿𝑠𝑙𝑜𝑡 = 𝜆𝑒𝑓𝑓/2), in our case a two-term expansion is sufficient. 

𝐶𝑚(𝑘𝜌, 𝜑) ≅ 𝐶𝑚(𝑘𝜌𝑆𝑃, 𝜑) + 𝑠 (
𝑑𝑘𝜌

𝑑𝑠

𝑑𝐶𝑚(𝑘𝜌,𝜑)

𝑑𝑘𝜌
)
𝑘𝜌=𝑘𝜌𝑆𝑃

, (4.5) 

To illustrate the impact of this step, the result of using (4.5) for the representation of the 
source is incorporated in the comparison of Figure 4-6. This is illustrated through Figure 4-7, 
showing improved agreement with the numerical integral in the region before the shadow 
boundary. It should be noted that, if necessary, a higher order expansion can also be employed 
instead of (4.5), to even better represent the spectrum of the source. However, as the source 
gets electrically larger and thus requires a higher order expansion, one should also consider 
evaluating the validity of the assumption for a slow varying spectrum on 𝛼. 

Figure 4-7. Co polarized component of (4.4 c) in the H-plane, considering only the TE1 leaky wave mode. 

To conclude this section, the performance of the described treatment in terms of modelling 
the behaviour of the source will be showcased by comparing the numerically and asymptotically 
evaluated near field for a pair of 𝑦-oriented slots. To do so, the co and cross polarized 
components of the field will be evaluated at spherical observation grids of different radii from 
the phase centre of the wideband structure, as illustrated through Figure 4-8 and Figure 4-9. 
Each slot is identical to that of Figure 4-4, with their spacing in 𝑥 being d=500μm.  

    (a)                                                                 (b) 

Figure 4-8. Numerical and asymptotic (3 term expansion of regularized part) comparison for 𝑟′ = 3𝑚𝑚 = 1.5𝜆0 

(wideband structure) (a) co pol. in E and H planes and (b) co and cross pol. in D plane (f=150 GHz). 
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   (a)                                                                (b) 

Figure 4-9. Numerical and asymptotic (3 term expansion of regularized part) comparison for 𝑟′ = 4.5𝑚𝑚 = 2.25𝜆0 

(wideband structure) (a) co pol. in E and H planes and (b) co and cross pol. in D plane (f=150 GHz). 

As illustrated through the figures above, the numerical and asymptotically evaluated near 
field feature overall good agreement. Having said that, the superposition of the two individual 
elements forms a region around the shadow boundary angle of the TM1 where the field is not 
that well represented. This region is situated between the crossings of the shadow boundary 
angle of the TM1 for the individual elements from their respective reference systems. Given 
that this particular issue is somewhat reduced through the uniform phase centre choice 
described through section 3.2d, as indicatively visualized through Figure 4-10, it is reasonable 
to claim that in order to reduce its impact in Figure 4-8 and Figure 4-9, the phase centre choice 
for the TM integrals must be further improved to account for the presence of the TM0. 

co and cross pol. in D plane (f=150 GHz). 

4.2. Small lenses in the near field 

Having discussed all the complications involved with adding a double straight slot in the near 
field evaluation, in the following section the utility of the asymptotic approach will be 
showcased. This will be performed by examining small elliptical lenses, such that their surface 
approaches the near field of the source. For the illumination of those lenses, two 𝑦-oriented 
straight slots, each identical to that of Figure 4-4, are assumed in the ground plane of a leaky 
wave supporting stratification. The two sources are spaced in x such that the TM0 is suppressed 
in the E-plane, i.e., 𝑑 ≅ 𝜋 𝑅𝑒(𝑘𝜌,𝐿𝑊

𝑇𝑀0 )⁄ , while the lens is truncated at the smallest shadow boundary 
angle (𝜃𝑡𝑟𝑢 = 𝑚𝑖𝑛 (𝜃𝑆𝐵

𝑇𝐸1 , 𝜃𝑆𝐵
𝑇𝑀1)) and its lower focus is centred at a distance Δz below the ground 

  (a)                                                                 (b) 
Figure 4-10. Numerical and asymptotic (3 term expansion of regularized part) comparison for 𝑟′ = 4.5𝑚𝑚 = 2.25𝜆0 
(wideband structure) using the uniform phase centre choice of section 3.2d, (a) co pol. in E and H planes and (b) 
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plane, as illustrated through Figure 4-11. The truncation is introduced considering that 
elliptical lenses are optimally illuminated by spherical waves, whereas the near field of a leaky 
wave structure resembles a spherical wave only up to the shadow boundary. 

Figure 4-11. Elliptical lens integrated with leaky wave supporting stratification and fed by two 𝑦-oriented slots in 

the ground plane. 

To evaluate the performance of the discussed asymptotic approach, the aperture efficiency 
of the examined lenses is computed using both the numerical and asymptotic methods for the 
derivation of the near field, with the resulting values subsequently being compared. In both 
approaches the field of the double slot is obtained through superposition in the Fourier Optics 
(FO) sphere, as was described through section 4.1b. Following this, the lens aperture efficiency 
is derived via evaluating the reaction integral between the Geometrical Optics (GO) fields in 
the FO sphere and the near field of the leaky wave structure at the same surface. The steps 
required for this analysis of lens antennas in reception, which in turn result in the evaluation 
of the aperture efficiency through the aforementioned reaction integral, can be found in the 
Appendix of [17]. 

The resulting comparison of the derived aperture efficiencies at the central frequency (150 
GHz) for the resonant and wideband stratifications of Figure 2-8, is presented through Figure 
4-12 and Figure 4-13, in terms of the electrical diameter of the elliptical lens together with the 
resulting radius of the FO sphere. For both structures a quarter-wave matching layer is 
considered between the elliptical lens aperture and the air region. For comparison purposes, 
the resulting aperture efficiency through assuming the far field of the feeding structure incident 
on the elliptical lens is also included. 

Figure 4-12. Aperture efficiency of elliptical lens integrated on resonant leaky wave structure (h=λ0/2). 
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Figure 4-13. Aperture efficiency of elliptical lens integrated on wideband leaky wave structure (h=λcav/2). 

The first noteworthy aspect of the above comparison refers to the performance of the 
asymptotic approach. More specifically, provided that lenses with FO spheres within the 
applicability region of the respective structures are examined, the asymptotic approach is in 
very good agreement with the numerical method. Having said that, the benefit of the 
asymptotic approach refers to the substantially improved computational efficiency. As an 
indicative example, for the study case referring to the wideband structure which considers 16 
different elliptical lenses each with 60 𝜃 and 361 𝜑 points in the FO sphere, the timing 
comparison between the numerical and asymptotic approaches is given in Table 4-I. 

Evaluation 
method 

Numerical 

(SDP) 

Asymptotic 

(3 terms) 

Time required 15 min 30 sec 

Table 4-I. Timing comparison between different near field evaluation methods 

Apart from the difference in computational efficiency between the numerical and asymptotic 
approaches, two interesting remarks can also be performed regarding the resulting aperture 
efficiencies themselves. These are the convergence of the aperture efficiency to that of the far 
field for the wideband structure and the improved efficiency in the near field for the resonant 
structure. The following two sections will elaborate on these aspects. 

4.2a. Far field convergence 

Contrary to aperture antennas for which the far field distance depends on their electrical size, 
when apertures are etched on the ground plane of a leaky wave supporting stratification this is 
not the case. More specifically, the far field distance of leaky wave structures depends on the 
size of the aperture field distribution formed by the excited leaky waves inside the cavity. This 
is in turn determined by the attenuation constants (𝛼𝐿𝑊) of the significant modes, with smaller 
attenuation corresponding to larger field distribution.  

Considering the significant modes of the examined structures, the one with the smallest 
attenuation constant which at first glance seems to determine the far field distance is the TM0. 
However, when the feeding structure is designed such that this mode is suppressed, the size of 
the aperture field distribution formed by the leaky waves depends on the much weaker mode 
pair, namely TE1 and TM1. Given that the attenuation constants of these modes are smaller 
the larger is the dielectric contrast between the cavity and semi-infinite region, the far field 
distance of the resonant structure is much farther than that of the wideband.  

To further build upon this concept, in [20] it was shown that given a proper definition of 
the phase centre position the near field up to the shadow boundary converges very fast to the 
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far field. This can be clearly observed for the wideband structure through Figure 4-13, given 
the resemblance of the far field aperture efficiency to that obtained when using the near field. 
To visualize this concept, the near and far field of the double slot pair will be compared for the 
case of the wideband structure in a sphere of 2𝜆0 radius through Figure 4-14.  

   (a)                                                                      (b) 

Figure 4-14. Near field and far field comparison for double slot, (a) co pol. at E and H planes, (b) co and cross 

pol. at D plane (150 GHz). The observation grid is a sphere of 𝑟′ = 4𝑚𝑚 = 2𝜆0 radius (wideband structure), while 

the near field is approximated asymptotically using three terms in the expansion of the regularized part. 

The converge to the far field up to the shadow boundary (𝜃𝑡𝑟𝑢 = 𝑚𝑖𝑛(𝜃𝑆𝐵
𝑇𝐸1 , 𝜃𝑆𝐵

𝑇𝑀1)) is very much 
evident through the E and H plane comparison of Figure 4-14 (a). While this is a bit less 
noticeable for the D-plane due to the improper suppression of the TM0, one might still consider 
that employing the far field would be sufficient for the design of small lenses in wideband leaky 
wave structures. However, the far field convergence can only be assumed up to the shadow 
boundary angle. As such, if the truncation angle of the lens is increased, using the far field 
would not be sufficient.  

To illustrate this, an indicative test case will be considered resembling the core lens of the 
Fly’s Eye antenna. More specifically a spherical lens of 4 mm radius is assumed integrated in 
the wideband stratification (𝜀𝑟,𝑐𝑎𝑣 = 3.8, 𝜀𝑟,𝑐𝑜𝑟𝑒 = 12), radiating inside an infinite plastic medium 
(𝜀𝑟,𝑠ℎ𝑒𝑙𝑙 = 2.3). The lens is coated with a matching layer (𝜀𝑟,𝑚𝑎𝑡𝑐ℎ = 5.25), its truncation angle is 
chosen at 35o (whereas 𝜃𝑆𝐵

𝑇𝐸1 ≅ 𝜃𝑆𝐵
𝑇𝑀1 ≅ 28𝑜) and the aforementioned slot pair is considered in the 

ground plane. To visualize the different nature of the near field above the shadow boundary 
angle, first, the ray picture of the transmitted field in the core-plastic interface is illustrated in 
Figure 4-15 at the H-plane, assuming far field and near field incidence on the spherical lens. 

      (a)                                                                   (b) 
Figure 4-15. Ray picture of transmitted field after the core lens (H-plane) for (a) far field and (b) near field. 
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Evidently, while up to angles very close to the shadow boundary the spherical wave 
assumption for the near field holds, above this point the nature of the field is more complex. 
To further illustrated this concept, the far field inside the plastic region for the above example 
is depicted for two different truncation angles through Figure 4-16.  

     (a)                                                                    (b) 
Figure 4-16. Far field comparison inside plastic region for far field and near field incidence on the core lens (150 

GHz). In (a) the lens is truncated at 28o (roughly the smallest shadow boundary angle), while in (b) at 35o
. 

When the lens is truncated at the shadow boundary angle (Figure 4-16 (a)), its far field is 
quite similar either for far field or near field incidence. However, if the truncation angle is 
increased (Figure 4-16 (b)), this is no more the case. Essentially what this implies is that in a 
scenario where the lens is truncated above the shadow boundary, knowledge of the actual near 
field would be required. It should be noted that the modelling of the small spherical lens used 
for this example is performed through the Physical Optics techniques described in Chapter 5. 

4.2b. Near field lens efficiency 

The second noteworthy aspect regarding the results presented in the introductory part of 
section 4.2, refers to the improved aperture efficiency of the resonant structure when the lens 
surface is placed in the near field. In fact, the resulting efficiency seems to peak for lenses with 
diameters around 4𝜆0. To provide a physical interpretation of this effect, the aperture efficiency 
will first be decomposed into the tapper and spillover terms, as given through Figure 4-17. 

Figure 4-17. Efficiency term decomposition for resonant case. The reflection efficiency at the air interface is 

included in the spillover term. 
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As illustrated through the above figure, the term which provides the above-described nature 
of the aperture efficiency is the spillover. To realize the reason for this behaviour, the wave 
decomposition of the near field must be considered. More specifically, by evaluating the field 
through the path of steepest descent, it is decomposed into the SDP integral and the residue 
polar contributions. The residue contribution of each mode exists only above its shadow 
boundary angle, with its Poynting vector angle being constant and tending to the pointing 
angle of the leaky wave mode (Appendix E, 𝜃𝐿𝑊 ≅ 𝜃𝑃𝑜𝑦𝑅𝑒𝑠.). Considering the structural aspects of 
the elliptical lens in the example of Figure 4-12, the ellipse is truncated at the shadow boundary 
angle of the main mode pair (𝜃𝑆𝐵,𝑇𝐸1 ≅ 𝜃𝑆𝐵,𝑇𝑀1 ≅ 10

𝑜), meaning that the residues exist only outside 
the solid angle defined by the elliptical surface.  

Having said the above, to explain the behaviour of the spillover efficiency one must consider 
the relative value of the shadow boundary and Poynting vector angles for the main leaky wave 
mode pair (TE1 and TM1). As was shown in Figure 2-6 and is again depicted through Figure 
4-18, the shadow boundary angles of the leaky wave modes are larger than their Poynting 
vector angles (𝜃𝑃𝑜𝑦.). This means that the residues of the main mode pair progressively push 
power inside the shadow boundary cone as the radial distance from the phase centre is 
increased. This can be visualized through Figure 4-18 (a), which illustrates the direction of the 
residue Poynting vector at different observation heights together with the limits of the shadow 
boundary cone. The latter essentially corresponds to the solid angle defined by the elliptical 
surface. 

   (a)                                                                  (b) 

Figure 4-18. (a) Poynting vector angle illustration in the H-plane with respect to the shadow boundary cone and 

(b) dispersion of the main leaky wave mode pair (TE1, TM1) in terms of their Poynting vector and shadow 

boundary angles. 

To finalize this discussion, the attenuation of the residues at the rim of elliptical lenses with 
different diameters (𝑟′ = 𝑅𝐹𝑂 and  𝜃′ = 𝜃𝑆𝐵), is computed and plotted together with the resulting 
aperture efficiency in Figure 4-19. 

𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 [𝑑𝐵] = 20 𝑙𝑜𝑔10(𝑒
𝐼𝑚(𝑘𝑧,𝐿𝑊)𝑅𝐹𝑂 𝑐𝑜𝑠(𝜃𝑆𝐵)𝑒𝐼𝑚(𝑘𝜌,𝐿𝑊)𝑅𝐹𝑂 𝑠𝑖𝑛(𝜃𝑆𝐵)), (4.6) 

It can be visualized through the following figure that the elliptical lens diameter for which 
the aperture efficiency is maximized corresponds to the one for which the average attenuation 
of the residues of the main modes at the edge of the shadow boundary cone is -15 dB. This 
essentially means that at the point of maximum aperture and thus spillover efficiency, most of 
the power of the residues has already entered the shadow boundary cone. This effect is directly 
related to the strength of excitation for the residues and thus it can be mainly observed in 
resonant structures. 
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Figure 4-19. Aperture efficiency of Figure 4-12 together with the attenuation of the residues at the rim of the 

elliptical lens (𝑟′ = 𝑅𝑓𝑜 and 𝜃′ = 𝜃𝑆𝐵) (4.6). 

Having elaborated of the asymptotic approximation of the near field through Chapter 3 
and 4, in the remaining of this document, the use of the asymptotically approximated near field 
to model the Fly’s Eye antenna concept will be discussed. As a first step in this process, in the 
following chapter the Physical Optics techniques used to model the core-shell structure will be 
described. 
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CHAPTER 5. PHYSICAL OPTICS ANALYSIS

Having described the asymptotic method used to derive the near field of a leaky wave 
supporting stratification, the following chapter will discuss the Physical Optics techniques 
employed for the modelling of the integrated lens architecture of the Fly's Eye antenna (core-
shell). Even though the same steps will be applied for both the core and shell lenses, the 
process will be separately presented for the two structures in their respective subsections. For 
the case of the core lens, the performance of the Physical Optics techniques will be evaluated 
through a full-wave simulation, while for the shell lens, it will be compared to an analysis in 
reception approach. To maintain the focus of this chapter only on the performance of the 
Physical Optics techniques, the feeding element will be simply represented by two elementary 
sources. In particular, two 𝑦-oriented sources are considered in the ground plane, displaced in 
𝑥 by dele = 500 μm such that they suppress the TM0 leaky wave mode in its dominant plane. 
The modelling of the Fly’s Eye antenna, employing additional considerations for the 
representation of the feeding element, will be presented in the following chapter. 

5.1. Core lens 

5.1a. Structure overview 

In the context of the Fly’s Eye antenna concept, the high permittivity core lens is primarily 
used to improve the front-to-back ratio of the feeding structure and thus facilitate chip 
integration. Simultaneously, it maintains low dielectric contrast with the resonant fused silica 
cavity, preserving the bandwidth of the leaky wave feeding structure. Its spherical shape allows 
the efficient illumination of the high eccentricity elliptical lens (shell), essentially simulating a 
leaky wave stratification with a high permittivity semi-infinite dielectric region. In terms of 
dimensions and dielectric properties, the synthesis of the core lens is done with a type of PPE 
plastic featuring a relative permittivity of 9.3 (PREMIX). To minimize the losses introduced 
by the core lens material, the size of the lens is maintained small, featuring a radius of 3.2 
mm and centred at the phase centre of the leaky wave structure (for 150 GHz), displaced by 
0.7 mm below the ground plane. To improve the spillover on the core lens, i.e., minimize the 
power launched outside its truncation angle, the latter is chosen to be 44o. Finally, to reduce 
the level of reflections in its surface, the core lens is coated with a matching layer. In the 
actual design this is done by drilling holes in the PREMIX such that a layer of the desired 
effective permittivity is formed. However, in the modelling process a uniform matching layer of 
quarter-wave thickness at 150 GHz is considered for simplicity (𝜀𝑟,𝑀𝐿 = √𝜀𝑟,𝑐𝑜𝑟𝑒𝜀𝑟,𝑠ℎ𝑒𝑙𝑙). To visualize 
the above, the core lens with its physical dimensions is illustrated through Figure 5-1. 

Figure 5-1. Core lens of the Fly’s Eye antenna concept with its physical dimensions. 
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5.1b. Field on the core lens surface 

One significant simplification for the analysis of the core lens refers to the derivation of the 
field on its surface, which in turn is required to obtain the field radiated inside the plastic 
region of the shell lens. Considering that the spherical core lens is centred at the phase centre 
of the leaky wave feeding structure, the near field incident on the latter can be assumed to 
resemble very well a spherical wave, conformal to the core lens surface [18]. Combining this 
fact with the presence of the matching layer between the PREMIX and plastic regions, enables 
the deduction that the level of reflections on the core lens is small. This means that a good 
approximation for the total field on the core lens surface can be derived by using only the field 
incident on the latter. As a result, the modelling of the near field can be significantly simplified 
by considering a leaky wave supporting stratification with an infinite PREMIX region, similar 
to those explored through Chapter 2 to 4. The core lens structure and the simplified 
stratification used to obtain the near field on its surface are visualized through Figure 5-2. 

   (a)                                                                        (b) 
Figure 5-2. (a) Core lens structure and (b) simplified stratification employed to obtain the near field incident on 

the core lens. 

To evaluate the validity of this assumption, both structures of Figure 5-2 are simulated in 
CST (full-wave simulation) and the field on the core lens surface is compared between the two 
cases. The resulting comparison, showcased through Figure 5-3, refers to the co polarized 
component produced by the double elementary source on top of the core lens surface.  

 (b)  (a)  
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    (c) 

Figure 5-3. Comparison of total and incident near field on the core lens surface for (a) 140 GHz, (b) 155 GHz 

and (c) 170 GHz. The angle 𝜃′ corresponds to a reference system at the center of the core lens. 

The very good agreement between the total field, derived through the stratification of 
Figure 5-2 (a), and incident field, obtained using the stratification of Figure 5-2 (b), justifies 
the above described simplification for the core lens structure. 

5.1c. Modelling the core lens 

Once the incident field on the core lens surface has been derived, the field transmitted through 
the core-plastic interface (�⃗� 𝑡,𝑐𝑜𝑟𝑒 , �⃗⃗� 𝑡,𝑐𝑜𝑟𝑒) can be obtained by the assumption of a locally flat 
interface at every point of incidence and the use of a transmission dyad. The presence of the 
matching layer can be included in the modelling process through the transmission dyad, by 
modifying the transmission coefficients for 𝜃′ < 𝜃𝑡𝑟𝑢,𝑐𝑜𝑟𝑒, to those obtained from an equivalent 
transmission line model. Subsequently, the transmitted field can be employed to derive 
equivalent currents which radiate inside the plastic region, as illustrated through Figure 5-4. 

(a)                                                                  (b) 

Figure 5-4. (a) Core lens structure and (b) equivalent problem for the field inside the plastic region. 

More specifically, employing the equivalence theorem [41], the field radiated by the core 
lens can be calculated through substituting the structure with an equivalent current 
distribution radiating in its absence. This current distribution is considered on top of a closed 
surface surrounding the core lens and infinitely extended laterally. Furthermore, using Love’s 
formulation of the theorem, the equivalent current distributions are obtained through applying 
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the boundary conditions on the equivalent closed surface, such that the electric and magnetic 
fields are zero inside the surface and equal to the field produced by the actual source outside 
of it (�⃗� 𝑡,𝑐𝑜𝑟𝑒 , �⃗⃗� 𝑡,𝑐𝑜𝑟𝑒).  

 𝐽 𝑒𝑞,𝑐𝑜𝑟𝑒(𝑟 ′) = �̂�𝑐𝑜𝑟𝑒(𝑟 ′) × �⃗⃗� 𝑡,𝑐𝑜𝑟𝑒(𝑟 ′)     &     �⃗⃗� 𝑒𝑞,𝑐𝑜𝑟𝑒(𝑟 ′) = �⃗� 𝑡,𝑐𝑜𝑟𝑒(𝑟 ′) × �̂�𝑐𝑜𝑟𝑒(𝑟 ′), (5.1) 

Where �̂�𝑐𝑜𝑟𝑒 refers to the normal vector of the core lens surface as indicated in Figure 5-4 (a). 

Once these equivalent current distributions are obtained, the field radiated by the core lens 
inside the surrounding medium can be evaluated through the convolution between the Green’s 
function of the medium in question and the equivalent currents distributions (𝐽 𝑒𝑞,𝑐𝑜𝑟𝑒, �⃗⃗� 𝑒𝑞,𝑐𝑜𝑟𝑒). 
Considering an infinitely extended and homogeneous dielectric region of relative permittivity 
𝜀𝑟,𝑠ℎ𝑒𝑙𝑙 and maintaining only the radiative components of the dyadic Green’s functions, since 
the field needs to be obtained on top of the shell lens which is far enough from the core structure 
(𝑅𝐹𝑂 ≅ 24 𝑚𝑚); the resulting expressions for the field inside the plastic are given below, with 𝑟 𝑜𝑏𝑠 
and 𝑟 ′ corresponding to the observation and the source grids respectively. The considered 
reference system is placed at the center of the core lens, i.e., displaced by Δz=0.7mm below the 
ground plane. 

 

�⃗� 𝑝𝑙𝑎𝑠𝑡𝑖𝑐(𝑟 𝑜𝑏𝑠) = ∬ 𝑗𝑘𝑑[�̂� × �⃗⃗� 𝑒𝑞,𝑐𝑜𝑟𝑒(𝑟 ′)]
𝑒−𝑗𝑘𝑑𝑅

4𝜋𝑅
𝑑𝑆

𝑆
−∬ 𝑗𝜔𝜇 [𝐽 𝑒𝑞,𝑐𝑜𝑟𝑒(𝑟 ′) − (�̂� ∙ 𝐽 𝑒𝑞,𝑐𝑜𝑟𝑒(𝑟 ′)) ∙ �̂�]

𝑒−𝑗𝑘𝑑𝑅

4𝜋𝑅
𝑑𝑆

𝑆

�⃗⃗� 𝑝𝑙𝑎𝑠𝑡𝑖𝑐(𝑟 𝑜𝑏𝑠) = −∬ 𝑗𝑘𝑑[�̂� × 𝐽 𝑒𝑞,𝑐𝑜𝑟𝑒(𝑟 ′)]
𝑒−𝑗𝑘𝑑𝑅
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[�⃗⃗� 𝑒𝑞,𝑐𝑜𝑟𝑒(𝑟 ′) − (�̂� ∙ �⃗⃗� 𝑒𝑞,𝑐𝑜𝑟𝑒(𝑟 ′)) ∙ �̂�]
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4𝜋𝑅
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𝑆

, 

 (5.2) 

Where �̂� =
�⃗� 𝑜𝑏𝑠−𝑟 

′

|�⃗� 𝑜𝑏𝑠−𝑟 
′|
, 𝑘𝑑 = 𝑘0√𝜀𝑟,𝑠ℎ𝑒𝑙𝑙 and 𝑑𝑆 describes the domain of integration. 

Given the small electrical size of the core lens (Dcore ≈ 3.3𝜆𝑑  at 150 GHz), one approximation 
that should be treated carefully refers to assuming a locally flat interface at every point of 
incidence. To evaluate the validity of this step in the modelling process, the far field inside the 
plastic obtained with (5.2) will be compared to that derived by a full-wave simulation (CST).  

Before doing so, however, it should be noted that an aspect not modelled through the above 
procedure refers to the power trapped inside the PREMIX slab. In fact, by considering only 
the transmitted field on the core-plastic interface, all reflections are essentially completely 
neglected. For an actual source in the ground plane this approximation will provide reasonable 
results, since the source is designed such that the power launched outside the core lens is 
minimized. Even so, for the purpose of evaluating the validity of the Physical Optics techniques 
using the aforementioned double elementary source, additional considerations are required. 
More specifically, to enable the desired comparison the first step refers to adding a PEC plane 
on top of the PREMIX slab in the core lens model used for the full-wave simulation, as 
illustrated through Figure 5-5. 

 
Figure 5-5. Core lens model in CST featuring a decoupling PEC plane above the PREMIX slab. 

With the aim of isolating only the field radiated by the core lens in the full wave simulation, 
an additional step is needed. To obtain the far field inside the plastic region, CST derives 
equivalent currents on the bounding box surface, which in turn radiate in a uniform dielectric 
region, for this case with relative permittivity of 𝜀𝑟,𝑝𝑙𝑎𝑠𝑡𝑖𝑐 = 2.3. While the presence of the PEC 
plane shown through Figure 5-5, limits the impact of the power trapped inside the PREMIX 
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slab to the region below said plane, the latter will still influence the equivalent currents on the 
boundaries and thus impact the far field. To avoid this issue, one can retain only the equivalent 
currents associated to the top box (plastic region), as illustrated through Figure 5-6, by using 
the decoupling plane option. This operation leads to neglecting the contributions to the far 
field arising from the lower box and thus isolate the field radiated by the core lens. 

(a)  (b) 

Figure 5-6. Illustration of (a) equivalent currents on bounding box surface of full-wave simulation and (b) 

equivalent currents maintained through the introduction of the decoupling plane. 

Employing this approach, the far field inside the plastic obtained through the above 
discussed Physical Optics techniques, is compared to that extracted from the full-wave 
simulation by using the decoupling plane option. The resulting comparison of the far field is 
presented through Figure 5-7, showing very good agreement. 

  (c) 
Figure 5-7. Far field in plastic comparison between full-wave simulation with decoupling plane and asymptotically 

approximated near field (3 term expansion of the regularized part) combined with Physical Optics techniques. The 

comparison is performed for three frequencies (a) 140 GHz, (b) 155 GHz and (c) 170 GHz. The observation angle 

𝜃′ corresponds to the reference system at the center of the core lens. 

𝑴𝒆𝒒 𝑱𝒆𝒒 Equivalent currents on bounding box surface: 

(a) (b) 
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5.2. Shell lens 

5.2a. Structure overview 

In the context of the core-shell structure, the elliptical shell lens aims to enable the 
implementation of a large radiating aperture capable of satisfying the gain requirements [5], 
through the use of low cost and low loss materials. An ideal candidate material satisfying the 
above is HDPE, which due to its low permittivity at the examined frequency range (𝜀𝑟,𝐻𝐷𝑃𝐸 ≃
 2.3 [17]) does not feature significant reflections in the plastic-air interface, mitigating the need 
for a matching layer and thus reducing the overall complexity of the design. For the physical 
dimensions of the shell lens, a 3 cm diameter (Dshell) aperture is chosen, with the lens truncated 
at 38o. Regarding the lower focus of the ellipse, it is displaced by 0.27 mm (Δz,shell) above the 
ground plane of the core lens structure. As will be showcased in the final part of Chapter 6, 
the relative position of the lower focus with respect to the core lens structure is chosen to 
improve the antenna performance at the lower end of the desired band of operation (140–170 
GHz). 

5.2b. Modelling the shell lens  

Having discussed the modelling of the core lens in the previous section, the free space 
patterns radiated by the shell lens can in turn be computed through a step-by-step 
implementation of the same Physical Optics techniques. In particular, due to its large extension 
in terms of the wavelength, the field on the shell lens will be obtained through the use of the 
equivalent currents derived via the modelling of the core lens (Jeq,core and Meq,core), radiating 
inside an infinite plastic region, as given in (5.2). In turn, approximating the total with the 
incident field on the shell lens surface, the field transmitted outside the interface can be derived 
through a transmission dyad and can be subsequently used to obtain equivalent currents 
radiating in free space. 

𝐽 𝑒𝑞,𝑠ℎ𝑒𝑙𝑙(𝑟 ′) = �̂�𝑠ℎ𝑒𝑙𝑙(𝑟 ′) × �⃗⃗� 𝑡,𝑠ℎ𝑒𝑙𝑙(𝑟 ′)     &     �⃗⃗� 𝑒𝑞,𝑠ℎ𝑒𝑙𝑙(𝑟 ′) = �⃗� 𝑡,𝑠ℎ𝑒𝑙𝑙(𝑟 ′) × �̂�𝑠ℎ𝑒𝑙𝑙(𝑟 ′), (5.3) 

Similar to the modelling of the core lens, the equivalent currents result from the 
implementation of the Love’s formulation for the equivalence theorem [41] and can thus be 
utilized to derive the field only outside the modelled region, in this case being the shell lens. 
The set of equivalent problems employed for the modelling of the core-shell structure are jointly 
depicted through Figure 5-8. 

                (a)                                           (b)                                            (c)     
Figure 5-8. (a) Core-shell structure, (b) equivalent problem for the field on the shell lens surface and 

(c) equivalent problem for the field outside the shell lens. 
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Once the equivalent currents on the shell lens surface have been derived, the field radiated 
outside the elliptical lens can be evaluated through the convolution between the free space 
Green’s function and the respective equivalent currents distributions (Jeq,shell and Meq,shell). In 
other words, the secondary patterns of the shell lens can be extracted through the integral 
expressions (5.2), where the current distributions and integration domain are modified to those 
of the shell lens and 𝑘𝑑 is substituted with 𝑘0. 

To evaluate the described Physical Optics model of the shell lens, the free-space patterns 
obtained through this approach will be compared to those extracted by employing the far field 
inside the plastic from the full-wave simulation showcased in Figure 5-7 and the GO/FO tool 
of [42]. The resulting comparison of the secondary patterns is presented through Figure 5-9. 

Figure 5-9. Secondary pattern comparison between full-wave simulation of core lens combined with a GO/FO tool 

[42] and Physical Optics combined with asymptotic techniques for core-shell modelling (a) 140 GHz, (b) 155 GHz 

and (c) 170 GHz. The observation angle 𝜃 refers to a reference system on the tip of the elliptical lens. 

As evident through the comparison presented above, while the two methods are in overall 
very good agreement, a small difference can indeed be observed in the level of the first sidelobe, 
especially at higher frequencies. A reasonable explanation for the latter refers to the assumption 
for far field incidence on the shell lens when using the GO/FO tool, whereas no such assumption 
is employed through the integrals of (5.2). In fact, at the higher end of the operating frequency 
range (170 GHz), the assumption for the FO sphere being in the far field of the core lens 
degrades in accuracy given the core lens electrical dimensions (𝑅𝐹𝐹170 𝐺𝐻𝑧 ≅ 2𝐷𝑐𝑜𝑟𝑒2 𝜆𝑑

170 𝐺𝐻𝑧⁄ ≈ 33.2 𝑚𝑚 
whereas 𝑅𝐹𝑂 ≅ 24 𝑚𝑚). 

(a) (b) 

(c) 
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CHAPTER 6. APPLICATION TO THE FLY’S EYE 

ANTENNA 
The following chapter presents a model for the Fly’s eye antenna concept in matlab and 
elaborates on its contribution in terms of evaluating the measurements of the assembled 
prototype. The model is derived through a combination of asymptotic and Physical Optics 
techniques, with the former used for the modelling of the near field incident on the core lens, 
while the latter employed to enable the representation of the free space field radiated by the 
shell lens structure. The description of the modelling approach is followed by a discussion on 
the contribution of the derived model in the measurement campaign, and finally the chapter is 
concluded with a brief tolerance study.  

6.1. Modelling the feeding element 

6.1a. Double iris shaped slot 

As already discussed through the introductory section of this document, when leaky wave feeds 
are used to illuminate lenses, the radiation properties of the feeding element are mostly 
determined by the nature of the excited leaky wave modes inside the cavity, rather than the 
apertures etched on the ground plane. Having said that, for stratifications around resonance 
(hcav ≈ λcav/2), not all the impactful leaky wave modes are desirable. In particular, while the 
TE1 and TM1 leaky wave mode pair can contribute to the efficient illumination of the integrated 
lens, since they enhance the radiation of the feeding element along broadside, TM0 launches 
power at relatively larger angles and can thus constitute a significant spillover loss.  

Taking this into account, several design approaches can be employed in order to suppress 
the undesired TM0 leaky wave mode; with the most common being the choice of the feeding 
element such that its Fourier transform features a null near the spectral position of the leaky 
wave polar singularity of the undesired mode (TM0). The simplest structure capable of the 
desired suppression is the double slot, as discussed in Chapter 4. However, while providing very 
good suppression for the E-plane, the double straight slot does not significantly impact the TM0 
in the diagonal planes. To also improve the suppression in those planes, several designs employ 
an iris shaped double slot [17], [20]. In turn, this leads to more symmetric patterns which 
provide an overall better illumination of integrated lenses.  

Adhering to this thought process, a double iris shaped slot is used to illuminate the core 
lens of the Fly’s Eye antenna. In terms of additional considerations for its design, in order to 
enhance its matching performance while also maintaining low levels of coupling between the 
two slots by limiting their angular size, the double iris slot is elliptically elongated [18], as 
illustrated through Figure 6-1. 

6.1b. Modelling the near field of the iris 

Having introduced the feeding element, the first step for the modelling of the Fly’s Eye antenna 
refers to recreating the field on the core lens surface. Given the radius of the core lens, this 
essentially corresponds to the near field of the double iris shaped slot. Considering the discussion 
of section 5.1b, a good approximation for the total field on the core lens is the incident field, 
simplifying the core structure with one featuring an infinite dense region. To justify the 
reasoning behind the choice of representation used to model the double iris shaped slot, a brief 
overview of the deductions made in Chapter 3 and 4 will first be presented.  

Obtaining the near field of a leaky wave supporting stratification can be performed in a 
straightforward manner through the following double spectral integral. 

 �⃗� (𝑟 ) =
1

4𝜋2
∫ ∫ �̿�𝑒𝑚(𝑘𝜌, 𝛼, 𝑧, 𝛥𝑧) ∙ 𝐶 𝑚(𝑘𝜌, 𝛼)𝑒

−𝑗𝑘𝜌𝜌 𝑐𝑜𝑠(𝛼−𝜑)𝑘𝜌𝑑𝛼𝑑𝑘𝜌
2𝜋

0

+∞

0
, (6.1) 

While the derivation of the near field through (6.1) is feasible, it is a very computationally 
inefficient process due to the slow convergence of the integral in question. This is problematic 



 
97 Application to the Fly’s Eye Antenna 

since a versatile modelling tool primarily needs to be fast such that the studies of interest can 
be performed in a reasonable time frame. Substantial reduction in the time required for the 
evaluation of the near field integral expression can indeed be achieved by exploiting the spectral 
properties of the Green’s function (�̿�𝑒𝑚), as described in [20] and summarized through the 
background Chapter 2. In this manner, the near field can be expressed through a much faster 
convergent integral (�⃗� 𝑆𝐷𝑃) and a finite sum of analytical terms which correspond to the leaky 
wave modes supported by the stratification. As extensively discussed in Chapter 3, to further 
enhance this concept, the polar singularities of the SDP integral can be isolated, separating the 
integral in question into two terms. Combining this decomposition with the approximation 
described in section 3.2c, allows each of the resulting integrals to be evaluated asymptotically. 
This essentially enables the evaluation of the initial integral expressions through a finite sum 
of analytical terms, negating the need for any spectral integration and thus constituting a very 
fast approach to obtain the near field.  

While computationally efficient, one limiting aspect of the above-described process is that 
the manipulation of the integrals involved enforces certain requirements on the spectral 
properties of the current distributions considered in the ground plane, as described through 
section 4.1. The most fundamental of these requirements refers to a slow varying spectrum of 
the source (𝐶 𝑚(𝑘𝜌, 𝛼)) in terms of 𝛼 (section 4.1b). Consequently, this gives rise to certain 
considerations for the modelling approach employed to derive the near field of the double iris 
shaped slot of the Fly’s Eye antenna. One option would be to model the actual current 
distribution in the ground plane through a number of elementary sources with different weights. 
This would in principle enable the representation of any current distribution, provided that a 
large enough number of elementary sources is used, but it would partly negate the 
computational efficient of the near field derivation approach due to the need of superimposing 
a large number of sources. To preserve the computational efficiency of the asymptotic near field 
evaluation, another approach could be to use a simplified model for the double iris shaped slot 
which satisfies the required spectral properties.  

With the aim of maintaining the prospect for a fast-modelling tool, the second option is 
chosen. In particular, the employed model is comprised of two straight slots which are treated 
through superposition, since each of them satisfies the required spectral properties (sections 
4.1b and 4.1c). The Fourier transform of the equivalent current distribution used to model each 
of the employed slots was given in equation (4.3). Finally, the dimensions and spacing of the 
straight slots are tuned to those depicted in Figure 6-1 (a), such that they provide a sufficient 
matching for the near field of the iris shaped structure. 

 
         (a)                                                        (b) 

Figure 6-1. (a) Double straight slot used for the modelling of (b) the iris shaped slot of the Fly’s Eye antenna. 

 As an indicative example to showcase the modelling of the double iris shaped slot, the near 
field inside the infinite dense region of the simplified stratification of the core lens (i.e., infinite 
dielectric of 𝜀𝑟,𝑐𝑜𝑟𝑒) will be compared for the two structures presented in Figure 6-1. The field 
comparison illustrated through Figure 6-2, is performed at a sphere of 3.2 mm radius from the 
phase center of the leaky wave structure, which is displaced by Δz,core=0.7 mm below the 
ground plane. The near field of the double iris shaped slot is obtained through a full-wave 
simulation (CST) while that of the double straight slot is derived asymptotically using matlab. 

𝑑𝑠𝑙𝑜𝑡 

𝑊𝑠𝑙𝑜𝑡 

𝐿𝑠𝑙𝑜𝑡 𝑎 𝑤1 

𝑤2 

𝜌2 
𝜌1 

𝐿𝑠𝑙𝑜𝑡 = 900𝜇𝑚, 𝑊𝑠𝑙𝑜𝑡 = 70𝜇𝑚 
𝑑𝑠𝑙𝑜𝑡 = 500𝜇𝑚 

 𝜌1 = 300𝜇𝑚 

𝜌2 = 340𝜇𝑚 

𝑤1 = 100𝜇𝑚 

𝑤2 = 300𝜇𝑚 
𝑎 = 67.3𝜊 
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Considering the discussion of section 3.3d, the asymptotically approximated near field is 
extracted using three terms in the expansion of the regularized part. 

The observation angle (𝜃′) corresponds to the displaced reference system below the ground plane. 

As visualized through the figures above, the model provides satisfactory agreement for 
angles up to roughly 35o, with the main difference appearing for larger angles at the E and D 
planes. In those regions the double straight slot features higher field values compared to the 
iris shaped structure, due to the inadequate suppression of the TM0 leaky wave mode. 

It is important to note that while representing the double iris shaped slot with a simple 
double straight slot cannot lead to an exact recreation of the field incident on the core lens, it 
enables the development of a fast-modelling tool, which can be subsequently used to evaluate 
the antenna performance. Having said that, for the purpose of examining shaped variants of 
the core lens within the context of a future study, a more accurate model of the iris shaped 
structure would need to be derived as will be elaborated through section 7.3. 

6.2. Core-shell model performance 

Once the asymptotically approximated near field on the core lens has been obtained, the next 
step refers to combining the derived near field with the Physical Optics techniques described 
through Chapter 5, to model the Fly’s Eye antenna. 

6.2a. Core lens 

The first step in this process refers to evaluating the near field model’s performance when 
combined with the core lens. To accommodate the latter, a full-wave simulation (CST) is used 
to obtain the far field of the core lens fed by the double iris shaped slot of the Fly’s Eye antenna, 
inside the plastic region of the shell lens. Subsequently, the resulting far field is compared to 
that obtained through combining the model of the near field presented in the previous section, 
with the Physical Optics techniques discussed in section 5.1. An indicative example of the 
resulting comparison is presented through Figure 6-3, with the black lines referring to the full-
wave simulation of the core lens, while the colored lines corresponding to the developed model. 

(b) (a) 

(c) 

Figure 6-2. Near field comparison for the structures of Figure 6-1 (a) 145 GHz, (b) 155 GHz and (c) 165 GHz. 
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and (c) H-plane. 

While the model provides good agreement with the full-wave simulation, one noteworthy 
difference in the figures above refers to the ripples appearing in the E and D planes of the CST 
results. This effect can be attributed to power trapped inside the PREMIX slab of the 
stratification in the full-wave simulation. Since the modelling process for the core lens (section 
5.1) considers only the transmitted field at the core-plastic interface, this effect is essentially 
neglected. Even so, given the good suppression of the TM0 provided by the double iris shaped 
structure of the Fly’s Eye antenna, the amount of power trapped inside the PREMIX slab is 
small; meaning that the model still provides a good representation of the field inside the plastic 
region. To showcase the model’s performance with frequency, some additional comparisons for 
the far field inside the plastic are presented through Figure 6-4. 

GHz. 

(a)                                           (b)                                            (c) 

Figure 6-3. Comparison of the far field of the core lens inside the plastic (𝜀𝑟,𝑝𝑙𝑎𝑠𝑡𝑖𝑐 = 2.3) (a) E-plane, (b) D-plane 

(a) (b) 

(c) 
Figure 6-4. Comparison of the far field in the plastic (𝜀𝑟,𝑝𝑙𝑎𝑠𝑡𝑖𝑐 = 2.3) for (a) 145 GHz, (b) 155 GHz and (c) 165 
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6.2b. Shell lens 

Having evaluated the modelling of the core lens, the free space patterns of the shell lens can in 
turn be computed through the steps described in section 5.2. The performance of this part in 
the modelling process will be evaluated as described below.  

First, the far field inside the plastic obtained by the full-wave simulation of the core lens is 
introduced into the GO/FO tool of [42], which computes the secondary patterns of the shell 
lens through performing an analysis in reception approach. Subsequently, these free space 
patterns (solid) are compared to those obtained by the modelling process for the shell lens 
through the Physical Optics techniques described in section 5.2 (dashed). The resulting 
comparison is depicted for four frequencies through Figure 6-5. 

Since the far field inside the plastic was recreated with significant accuracy by the utilized 
model, as visualized through Figure 6-4, the good agreement of this comparison is somehow 
anticipated. It is worth noting that while the secondary patterns illustrated through Figure 6-5 
do not include the impact of a number of effects that will be present in a full-wave simulation, 
like secondary reflections from the plastic-air interface, they still provide a good first order 
model for the performance of the Fly’s Eye antenna. 

As a final note, the resulting efficiencies obtained through the described model will be 
compared to those of the actual Fly’s Eye antenna concept. This is performed through 
extracting the far field inside the plastic and introducing it to the GO/FO tool of [42] which 
computes the efficiencies through an analysis in reception approach. The resulting comparison 
is illustrated through Figure 6-6 (a) and (b). The difference between the two figures refers to 
the inclusion of the spillover and reflections on the core lens. In particular, in Figure 6-6 (a) 
the power radiated by the feed is considered as that launched into an infinite dielectric region 

(b) (a) 

                                  (c)                                                                     (d)
Figure 6-5. Shell lens pattern comparison for full-wave simulation of core lens combined with the GO/FO tool of 
[42] and Physical Optics techniques of Chapter 5, for (a) 140 GHz, (b) 150 GHz (c) 160 GHz and (d) 170 GHz. 
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of relative permittivity 𝜀𝑟,𝑐𝑜𝑟𝑒, while for Figure 6-6 (b) only the power of the far field inside the 
plastic is considered for the efficiency derivation. 

     (a)                                                                   (b) 
Figure 6-6. Aperture efficiency performance for the model of the Fly’s Eye antenna using the far field inside the 

plastic and the GO/FO tool of [42], (a) with and (b) without spillover and reflections on the core lens. 

The above presented comparison illustrates that the developed model features a similar 
trend with frequency as that of the Fly’s Eye antenna concept but has a degraded performance 
in terms of spillover efficiency. Furthermore, through the comparison of Figure 6-6 (b) one can 
deduce that this difference in spillover is mainly attributed to the simplified modelling of the 
iris structure with a double straight slot. In particular, due to the worse suppression of the TM0 
in the diagonal planes, the power launched outside the core lens for the double straight slot is 
significantly more when compared with the iris, leading to a reduction in the spillover efficiency. 

6.3. Contribution to measurement campaign 

Having presented the modelling of the Fly’s Eye antenna through a combination of Asymptotic 
and Physical Optics techniques, the following section will discuss the utilization of the described 
modelling tool for the purpose of examining the measurements of the assembled prototype. 
Within this context, the main deductions extracted from the measurements will be presented 
together with the thought process behind their subsequent study. Starting from the former, the 
phase profiles extracted from two distinct measurements are shown through Figure 6-7. These 
measurements correspond to two distinct 2D scans, one performed close to the tip of the 
elliptical lens, while the other derived from a farther distance. 

Figure 6-7. Phase profile of 2D scan (a) close to and (b) further away from the shell lens. 

(a) (b) 
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As clearly visible from the figures above, instead of a more or less flat phase profile within 
the area defined by the shell lens aperture (Dshell = 30 mm), which would correspond to a beam 
focused in the far field; both measurements feature substantial phase variance, each relating to 
a different focusing behavior. More specifically, given the phase profile of the measurement 
close to the shell lens, the field at this position seems to converge, while considering the 
measurement farther away from the shell lens, the field seems to diverge. Combining these 
observations for the behavior of the field in the two measuring planes, the field picture produced 
by the shell lens seems to resemble that of Figure 6-8, instead of being collimated.  

Figure 6-8. Ray picture representation of the field produced by the shell lens. 

Using this insight derived from the examination of the measurements, the modelling tool 
presented in the two previous sections will be employed in an effort to identify the cause of the 
observed focusing effect. 

6.3a. Physical displacement 

Arguably the simplest reason which can lead to the replication of the observed focusing refers 
to simulating a physical vertical displacement between the origin of the spherical wave incident 
of the shell lens surface and the lower focus of the ellipse. More specifically, if the lower focus 
of the elliptical shell lens is displaced above the spherical wave origin, the produced ray picture 
starts to feature the observed focusing effect as illustrated through Figure 6-9. 

Figure 6-9. Ray picture of shell lens assuming �̂�𝑖𝑛𝑐,𝑠ℎ𝑒𝑙𝑙 = �̂�, for (a) lower focus of ellipse coinciding with origin of 

spherical wave and (b) lower focus displaced above spherical wave origin. 

Converging Diverging 

(a) (b) 
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Even so, in order to begin to replicate the focusing observed in the measurements, the 
required displacement of the elliptical lens must be in the range of 7 mm, as indicated through 
the phase profile comparison shown in Figure 6-10. Considering the physical size of the 
structures, such a difference in dimensions is unreasonable to assume since it would be easily 
identified in either the core or the shell lenses. As a result, this option can be ruled out. 

Figure 6-10. Phase profile comparison between measurement and recreated field close to the tip of the ellipse, with 

and without displacement of the shell lens. 

6.3b. Core lens material permittivity 

The next potential cause that can recreate the observed focusing refers to featuring a larger 
than anticipated permittivity in the core lens material. In this case, given the more resonant 
structure, the origin of the near field spherical wave would drop farther below the ground plane. 
In turn, this would cause the core lens to act as an extended hemispherical lens, thus forming 
a virtual focus even farther below the ground plane. Having said that, in order to create an 
impactful difference between the expected origin of the spherical wave and the virtual focus, 
the relative permittivity of the core lens material would need to be significantly increased 
(𝜀𝑟,𝑐𝑜𝑟𝑒 ≈ 20), as indicatively showcased by the ray picture illustration of Figure 6-11.  

Figure 6-11. Ray picture for core lens assuming spherical wave incidence, for (a) 𝜀𝑟,𝑐𝑜𝑟𝑒=14 and (b) 𝜀𝑟,𝑐𝑜𝑟𝑒=20. 

Similar to the previous case of the physical displacement, considering the permittivity 
values necessary to cause the required displacement together with the measured values for the 
permittivity of the PREMIX (𝜀𝑟,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  ≈  9.3), this effect can also be ruled out.  

(b) (a) 
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6.3c. Shell lens material permittivity 

Having elaborated on the possibility of recreating the measured focusing effect through either 
a physical displacement or an increased permittivity for the core lens material, the next step 
in the examination process refers to considering the impact of changing the plastic material’s 
permittivity. In particular, the elliptical structure of the shell lens is designed such that it 
transforms a spherical wave originating from its lower focus to a plane wave and vice versa. 
This process is very much dependent on the permittivity of the plastic, since its value 
determines the level of refraction at the plastic-air interface and as such the overall behavior 
of the elliptical structure. In fact, if the geometry of an elliptical structure is designed expecting 
a certain permittivity but the actual permittivity of the utilized material is larger; the refraction 
on the shell surface is increased, essentially causing a focusing effect as indicatively illustrated 
through the ray pictures presented in Figure 6-12.  

incidence (�̂�𝑖𝑛𝑐,𝑠ℎ𝑒𝑙𝑙 = �̂�), for (a) 𝜀𝑟,𝑠ℎ𝑒𝑙𝑙=2.3, (b) 𝜀𝑟,𝑠ℎ𝑒𝑙𝑙=2.5 and (c) 𝜀𝑟,𝑠ℎ𝑒𝑙𝑙=2.8. 

Using this insight, the model described through the previous sections will be employed in 
an effort to recreate the magnitude and phase profiles obtained from the measurements of the 
assembled prototype. Defining the geometry of the elliptical lens with the expected relative 
permittivity of HDPE (𝜀𝑟,𝑠ℎ𝑒𝑙𝑙=2.3) and testing different permittivity values for the plastic, we 
are able to reproduce the measured patterns with sufficient accuracy for permittivity values 
in the range of 2.8 to 2.9. This is indicatively showcased through the comparison presented in 
Figure 6-13, corresponding to a plastic permittivity of 2.85.  

(b) (a) 

(a) (b) (c) 
Figure 6-12. Ray picture outside the elliptical shell lens designed for a permittivity of 2.3, assuming spherical wave 
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Figure 6-13. Measurement and simulation comparison for close position, (a) magnitude and (b) phase profile and 

for farther away position (c) magnitude and (d) phase profile. 

As visualized through the figures above, the magnitude and phase profiles are recreated 
with significant accuracy for both the close and the farther away measurement setups. The 
impact of employing a plastic with such a different permittivity from its nominal value on the 
antenna performance, can be clearly indicated through either the above phase profiles or the 
illustration of the focusing effect in Figure 6-8. Even so, to showcase this even further, the 
directivity of the shell lens is presented versus frequency for large permittivity variation through 
Figure 6-14, considering that the value for which the elliptical lens is design is 𝜀𝑟,𝑠ℎ𝑒𝑙𝑙=2.3. The 
illustrated directivity† is computed using the recreated free space patterns of the shell lens.  

𝐷𝑖𝑟,𝑚𝑎𝑥 =
4𝜋𝑅2|𝐸𝑚𝑎𝑥|

2

2𝜁0𝑃𝑟𝑎𝑑,𝑓𝑒𝑒𝑑
, (6.2) 

Where Prad,feed corresponds to the power radiated by the double slot described in section 6.1 
inside an infinite dielectric region with relative permittivity of 𝜀𝑟,𝑐𝑜𝑟𝑒 and 𝑅 refers to the distance 
between the tip of the elliptical shell lens and an observation sphere in the far field.  

Figure 6-14. Directivity tolerance for significant permittivity variation of 𝜀𝑟,𝑠ℎ𝑒𝑙𝑙. 

To conclude this section, it is worth mentioning that the presented study and thought 
process led to the measurement of the permittivity of the plastic used in the assembled 
prototype of the Fly’s Eye antenna, extracting its value to be very close to the estimated one 
(𝜀𝑟,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ≈ 2.83) and as such identifying it to be the issue of the assembled prototype. 

† The directivity includes both the spillover and reflection losses of the core-shell structure. 

(c) (d) 
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6.4. Tolerance study 

Having discussed the utilization of the developed model towards studying the measurements, 
this chapter will conclude with a brief tolerance study regarding the impact of the plastic’s 
permittivity to the performance of the Fly’s Eye antenna. For this purpose, a reasonable 
variation is considered for the relative permittivity of HDPE (±0.1) with its nominal value, 
i.e., the one used for the definition of the elliptical structure, being 𝜀𝑟,𝐻𝐷𝑃𝐸 = 2.3. The resulting
directivity comparison is presented through Figure 6-15. It is worth noting that this 
comparison refers to the developed model and thus it’s not the exact directivity values that 
must be taken into account but the impact of changing the permittivity from its nominal value. 

Figure 6-15. Directivity tolerance for reasonable permittivity variation of 𝜀𝑟,𝑠ℎ𝑒𝑙𝑙. 

One noteworthy question that arises from the comparison presented above, refers to the 
reason behind the bigger impact in the antenna directivity when using a larger permittivity 
plastic compared to that for a lower permittivity, especially noticeable at higher frequencies. 
To give an answer to this question the problem will be decomposed in two parts, separating 
the impact of the elliptical shell lens from the primary pattern of the core lens structure. To 
identify the former, the analysis in reception is employed to derive the Geometrical Optics 
(GO) fields in the Fourier Optics (FO) sphere produced by an incident plane wave from 
broadside, as illustrated through Figure 6-16 (a). This process is repeated for the above 
examined permittivity values, with an elliptical lens geometry defined for 𝜀𝑟,𝑠ℎ𝑒𝑙𝑙 = 2.3. The 
impact of the different permittivity values can be clearly illustrated through the phase variance 
of the GO fields over the FO sphere, as shown in Figure 6-16 (b).  

fields over the FO sphere for f=170GHz. 

(a) (b)
Figure 6-16. (a) Ray tracing of incident plane wave to FO sphere for 𝜀𝑟,𝑠ℎ𝑒𝑙𝑙=2.3 and (b) phase variance of GO 
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As visualized from the above phase variance, while for the nominal permittivity of the 
plastic (𝜀𝑟,𝑠ℎ𝑒𝑙𝑙 = 2.3) the phase is constant over the FO sphere, the same cannot be said for the 
other two examined cases. However, given that the level of phase variance does not significantly 
change between the two cases (𝜀𝑟,𝑠ℎ𝑒𝑙𝑙 = 2.2 and 2.4), one can anticipate that, on its own, the 
elliptical lens cannot justify the different impact of the two permittivity values observed 
through Figure 6-15. As such, to identify the reason behind the bigger impact of the larger 
permittivity, the behavior of the primary patterns illuminating the shell lens must also be 
considered. 

Analyzing lenses in reception enables the evaluation of their performance in terms of the 
field matching between the GO fields and the field of the feeding structure in the FO sphere. 
In fact, when the GO and feed fields are conjugate matched, the component’s aperture efficiency 
is maximized; meaning that the obtained directivity approaches the maximum possible one for 
the given aperture size. Having said the above, to evaluate the antenna performance in 
combination with the change in the structure’s permittivity, the phase of the primary patterns 
will be compared to the conjugate of that of the GO fields in the FO sphere for the three 
different permittivity cases (𝜀𝑟,𝑠ℎ𝑒𝑙𝑙 = 2.2, 2.3 and 2.4). The reference system used to derive the 
field is displaced by 0.27 mm above the ground plane, corresponding to the physical position 
of the lower focus of the shell lens in the Fly’s Eye antenna prototype. The resulting comparison 
of the phases over the FO sphere for a frequency of 170 GHz, is presented through Figure 6-17. 

Figure 6-17. Phase comparison over the FO sphere between main planes of feeding structure and GO fields at 170 

GHz, for (a) 𝜀𝑟,𝑠ℎ𝑒𝑙𝑙=2.2, (b) 𝜀𝑟,𝑠ℎ𝑒𝑙𝑙=2.3 and (c) 𝜀𝑟,𝑠ℎ𝑒𝑙𝑙=2.4. The observation angle 𝜃 refers to a reference system 

displaced above the ground plane to the position of the lower focus of the elliptical shell lens (Δz,shell=0.27mm). 

Given the behavior of the phase of the primary pattern over the FO sphere relative to that 
of the GO fields, as illustrated through the figures above, it can be deduced that the phase 
matching is much more degraded for the larger permittivity of the plastic, compared to that 
for the smaller permittivity case. This essentially justifies the different impact in the directivity 
observed through Figure 6-15.  

(a) (b) 

(c) 
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In order to provide a physical explanation of this effect in terms of the core-shell structure 
design, one must consider the relative position of the spherical wave origin compared to the 
lower focus of the elliptical structure. As a first step in this consideration, the ray tracing of 
the broadside incident plane wave is performed for the three different permittivity cases, as 
visualized through Figure 6-18. 

Figure 6-18. Ray tracing of broadside incident plane wave for (a) 𝜀𝑟,𝑠ℎ𝑒𝑙𝑙=2.2, (b) 𝜀𝑟,𝑠ℎ𝑒𝑙𝑙=2.3 and (c) 𝜀𝑟,𝑠ℎ𝑒𝑙𝑙=2.4. 

While the only structure for which the elliptical lens focuses the rays to a single point is 
the one with the nominal permittivity (𝜀𝑟,𝑠ℎ𝑒𝑙𝑙 = 2.3), it is worth noting that for larger 
permittivity values in the plastic, the rays are focussed above the lower focus of the elliptical 
lens while for smaller values they are focussed below. Taking into account that the spherical 
wave origin of the primary patterns changes with frequency, together with the directivity 
comparison presented through Figure 6-15, one can deduce that the phase centre of the primary 
pattern at higher frequencies is below the chosen lower focus of the elliptical lens, approaching 
the focussing point for the lower permittivity (Figure 6-18 (a)). This can in turn be attributed 
to the choice of the lower focus placement in the design process such that it improves the Fly’s 
Eye antenna performance at the lower frequencies of the desired band of operation (140-170 
GHz). To showcase the latter, the field inside the plastic will be derived through a full-wave 
simulation (CST) of the core lens structure, considering the double iris shaped slot etched in 
the ground plane and a plastic permittivity of 𝜀𝑟,𝑠ℎ𝑒𝑙𝑙 = 2.3. Subsequently, the extracted far field 
will be introduced into the GO/FO tool of [42] to derive the resulting aperture efficiency for 
different positions of the lower focus of the elliptical lens relative to the ground plane. The 
improvement of the lens performance at lower frequencies for lower focus placements above the 
ground plane can be visualized through Figure 6-19. 

Figure 6-19. Aperture efficiency comparison for different positions of the lower focus of the shell lens. The 

displayed efficiencies are derived using the far field inside the plastic obtained by a full-wave simulation and the 

GO/FO tool of [42]. 

(a) (b) (c) 
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK 

7.1. Summary  

Excluding the introduction as well as the motivation for this work which were presented in 
Chapter 1, the content of this thesis can be neatly separated into two parts. The first, comprised 
of Chapter 2 and 3, provides an extensive description of the mathematical steps required for 
the efficient evaluation of the near field of a leaky wave structure. Following this, the second 
part which consists of Chapter 4 to 6, presents some basic implementations of small lenses and 
describes the development of a model for the Fly’s Eye antenna concept as well as its utilization. 

As discussed through Chapter 1, the motivation for developing a computationally efficient 
approach to evaluate the near field of a leaky wave structure lies on the potential of shaping 
the core lens of the Fly’s Eye antenna. Towards this goal, Chapter 2 provides an extensive 
description of an efficient numerical method in which the involved complex integrals are 
evaluated over the path of steepest descent in the spectrum. Using this background, in Chapter 
3, an approach for the asymptotic evaluation of the integral expression resulting from the 
steepest descent path method of integration is presented. While this method substantially 
improves the computational efficiency, essentially mitigating the need for any spectral 
integration; its accuracy is based on the applicability of the approximation described through 
section 3.2c. In a few words, the utilized approximations enable the derivation of the near field, 
provided that at the examined region the latter resembles a spherical wave around broadside. 
For a leaky wave structure around resonance, this assumption can be performed even very close 
to the leaky wave cavity given a proper choice of the phase centre position as described through 
[20] and elaborated in section 3.2d. 

The complete discussion presented through Chapter 3 considered the evaluation of the near 
field for the case of an elementary source. To build upon this concept, the initial stages of 
Chapter 4 elaborate on the complications involved in the asymptotic evaluation process when 
an actual source is introduced, treating the case of a double straight slot in the ground plane. 
Following this, some basic small lens concepts are examined, showcasing the far field 
convergence in wideband structures up to the shadow boundary angle, as well as the potential 
improvement of the spillover efficiency for resonant structures when placing lenses in the near 
field. Subsequently, Chapter 5 describes the combination of Physical Optics techniques that 
can be used to replicate the impact of the core-shell structure, with Chapter 6 combining those 
techniques with a simplified representation of the iris shaped slot to develop a model of the 
Fly’s Eye antenna. Finally, the last part of Chapter 6 describes the utilization of this model for 
troubleshooting during the measurement campaign of the Fly’s Eye antenna prototype. 
Through this process it showcases how the model contributed to identifying the problem in the 
antenna prototype, by simulating different design alterations with the aim of recreating the 
measured patterns. This led to the identification of the problem as the shell lens material 
relative permittivity, which was substantially different from its nominal value. 

7.2. Conclusions 

To supplement the summary of the content of this thesis presented above, the most noteworthy 
concluding remarks will be outlined in the following section. 

 
➢ The spherical wave nature of the near field of a leaky wave structure arising from the proper 

choice of phase centre [20], allows its asymptotic evaluation through an approximation that 
mitigates the branch singularity of the Hankel function (section 3.2c). This enables the 
subsequent asymptotic evaluation of the near field integral expressions, through treating 
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only polar singularities related to the leaky wave modes supported by the examined 
stratification. 

 

➢ This approximation’s accuracy can be enhanced through modifying the phase centre choice 
above and below the shadow boundary angles. This approach could be further improved by 
defining additional angular regions for the treatment of the TM integrals, in order to also 
account for the TM0 leaky wave mode (section 3.2d). 

 

➢ Since the introduced approximation is based on the spherical wave nature of the near field, 
it’s accuracy along broadside progressively degrades as the observation point moves closer 
to the source. An indicative estimate for its applicability region identified it to be radial 
distances larger than 1.5 𝜆0 for the wideband and 8 𝜆0 for the resonant leaky wave structures 
(section 3.3d). However, it should be noted that the applicability region must be defined per 
individual case, considering the acceptable accuracy and the angular region of interest. 

 

➢ Regarding the source inclusion, the treatment of the near field integral expression depends 
on the nature of the source’s spectrum with respect to the principle exponential term of the 
integrand (section 4.1). To maintain an accurate representation of the near field for the 
distances of interest, the examined double straight slot was treated through superimposing 
two straight slots. In this manner, the source’s spectrum could be assumed to be slow varying 
with respect to the exponential for each slot, allowing the closing of the 𝛼 integral through 
the SPP approximation. 

 

➢ The asymptotic approximation of the near field can be combined with a set of Physical 
Optics techniques to model the core-shell structure of the Fly’s Eye antenna. This becomes 
useful when the structure needs to be simulated several times, since the asymptotic 
approximation negates the need for any spectral integration in order to calculate the near 
field, making it very computationally efficient. In particular, the asymptotic approximation 
of the near field is roughly forty times faster compared to the numerical evaluation of the 
same SDP integral expressions. 

 

➢ The elliptically elongated double iris shaped slot of the Fly’s Eye antenna has been 
approximated via a simple double straight slot to model the core-shell structure in an efficient 
manner. In turn, this provided a versatile tool that was employed to evaluate the antenna 
performance during the measurement campaign of the Fly’s Eye antenna assembled 
prototype. 

 

7.3. Future work 

Asymptotic approach - elementary source 

As was noted through several parts of this thesis report, the asymptotic approach presented 
through Chapter 3 for the evaluation of the near field, and more specifically the treatment of 
the Hankel function, is based on the nature of the near field. As such, its applicability is limited 
to regions where the near field spherical wave formation along broadside can be assumed. While 
this can indeed be employed for the study of small lenses in wideband stratifications, similar 
to the core lens of the Fly’s Eye antenna, a neater approach would require asymptotically 
treating the branch of the Hankel functions similar to what was done in [43]. Even if this would 
substantially complicate the presented asymptotic analysis, requiring separate treatment for 
the branch singularity both in the regularized part as well as the polar contribution, while also 
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necessitating the separate treatment of the small and large argument representations of the 
Hankel function, it indeed constitutes an interesting aspect for future study. Essentially, if the 
approximation of section 3.2c is not employed, there would be no inherent limitation for the 
applicability region of the asymptotic approach, enabling further studies on the wave 
phenomena which drive the radiation process for leaky wave structures. 

Asymptotic approach – source inclusion  

Another important aspect that would be a significant improvement of the asymptotic approach, 
refers to the treatment of the source. In particular, the approach described through Chapter 4 
considered as a given the closing of the integral in 𝛼 in a similar manner to what was done for 
the case of elementary sources (section 2.2a). This approach led to the separation of pairs of 
sources into distinct elements (section 4.1b) and their subsequent treatment through 
superposition. Having said that, another potentially interesting alternative would be to expand 
the spectrum of the source in a Fourier series prior to closing the integral in 𝛼, as given below. 

𝐶𝑚(𝑘𝜌, 𝛼) = ∑ 𝑐𝑛(𝑘𝜌)𝑒
−𝑗𝑛𝛼

∞

𝑛=−∞

 

(7.1) 

Where the coefficients cn(𝑘𝜌) can be represented by the generalized pencil of function (GPOF) 
method [44], as in [21].  

In this manner, the 𝛼 integral can be closed analytically through a term-by-term integration 
into Bessel functions using the following identity. 

 ∫ 𝑒−𝑗𝑛𝛼𝑒−𝑗𝑘𝜌𝜌 𝑐𝑜𝑠(𝛼−𝜑)𝑑𝛼
2𝜋

0
= 2𝜋(−𝑗)𝑛𝑒−𝑗𝑛𝜑𝐽𝑛(𝑘𝜌𝜌), (7.2) 

This process would result into a sum of single complex integrals in 𝑘𝜌 with Bessel and in 
turn, through the use of (2.3), Hankel functions of higher order. As a result, while it allows for 
a more generic treatment of any source, in terms of the asymptotic evaluation of the near field, 
this approach would necessitate dealing with Hankel functions of higher order in addition to 
those already presented in the integral representation. 

Shaping of the core lens 

While up till now the proposed future steps referred to the overall improvement of the 
asymptotics, in the following paragraph the future applicability of such a computationally 
efficient approach will be described. More specifically, having presented an asymptotic method 
able to evaluate very fast the near field on small lenses, the latter can be used in combination 
with an optimizer to further improve the performance of the Fly’s Eye antenna via changing 
the core lens shape. For example, the core lens can be made conformal to the incident field, 
thus acting as an ideal transition; or alternatively it can be shaped with the aim of enhancing 
the aperture efficiency for displaced feeds, in turn improving the scanning capabilities of the 
core-shell structure. Such an approach can be employed in combination with laterally displacing 
the feeds for scanning cases, as in [45], in order to derive shaped variants of core lenses 
depending on their position in the focal plane, or in other words the scanning they produce.  

It should be noted that in order to optimize the Fly’s Eye antenna performance through 
shaping the core lens, the simplified model of the iris shaped structure presented through section 
6.1b would not be sufficient. Instead, a simple approach to improve the modelling process would 
be to segment the iris structure and represent it through a superposition of elementary sources 
or straight slots, using the process described throughout this thesis.  

To conclude, all the above presented ideas are yet to be further explored, with their analysis 
and implementation expected to be the continuation of the work presented in this thesis. 
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APPENDICES 

Appendix A. Spectral Green’s function  

The Green’s functions correspond to the impulsive response of the examined structure, i.e., the 
fields radiated by an elementary source, with distinct variants relating different kinds of sources 
(Jeq or Meq) to different types of fields (E or H). For any stratified structure with an arbitrary 
number of planar and unbounded dielectric layers, obtaining the Green’s function primarily 
requires solving for the voltage and current potentials of the equivalent transmission line 
problem. This equivalent problem is in turn constructed with respect to the examined structure, 
where E-field discontinuities in the stratification (i.e., magnetic currents) correspond to series 
voltage sources in the transmission line model, while H-field discontinuities in the stratification 
(i.e., electric currents), relate to parallel current sources. For the stratified structures presented 
through Figure 2-1, the equivalent transmission line models are depicted through Figure A-1. 
The only difference between the two refers to the dielectric properties of the cavity and semi-
infinite regions, as well as the physical height of the cavity. 

 
                                          (a)                                                        (b) 

Figure A-1. Equivalent transmission line models for (a) wideband and (b) resonant structures of Figure 2-1. 

Once the equivalent transmission line model has been extracted, the voltage and current 
potential functions can be obtained in a straightforward manner as will be presented through 
Appendix B. More specifically, two different types of potential functions can be derived, labelled 
as TE and TM solutions (𝑣𝑇𝐸 , 𝑖𝑇𝐸 and 𝑣𝑇𝑀, 𝑖𝑇𝑀). These correspond to the fields produced by the 
different kinds of auxiliary potentials introduced for the derivation of the Green’s function for 
the stratified structure, namely the TE solutions relates to the electric vector potential (𝐹 ), 
while the TM to the magnetic vector potential (𝐴 ). Having discussed the above, the voltage 
and current potential functions can be substituted into analytical expressions for the spectral 
Green’s function of stratified media. Considering the examined structures which feature 
equivalent magnetic current distributions in the ground plane, the required dyadic spectral 
Green’s function (Gem) for planar sources (i.e., along 𝑥 or 𝑦), is given below.  

�̿�𝑒𝑚(𝑘𝑥, 𝑘𝑦 , 𝑧, 𝑧𝑠) =  

[
 
 
 
 
 
 

   

(𝑣𝑇𝑀(𝑘𝑥,𝑘𝑦,𝑧,𝑧𝑠)−𝑣𝑇𝐸(𝑘𝑥,𝑘𝑦 ,𝑧,𝑧𝑠))𝑘𝑥𝑘𝑦

𝑘𝜌
2 −

𝑣𝑇𝛦(𝑘𝑥,𝑘𝑦,𝑧,𝑧𝑠)𝑘𝑦
2+𝑣𝑇𝛭(𝑘𝑥,𝑘𝑦,𝑧,𝑧𝑠)𝑘𝑥

2

𝑘𝜌
2

𝑣𝑇𝛦(𝑘𝑥,𝑘𝑦,𝑧,𝑧𝑠)𝑘𝑥
2+𝑣𝑇𝛭(𝑘𝑥,𝑘𝑦,𝑧,𝑧𝑠)𝑘𝑦

2

𝑘𝜌
2

(𝑣𝑇𝐸(𝑘𝑥,𝑘𝑦,𝑧,𝑧𝑠)−𝑣𝑇𝑀(𝑘𝑥,𝑘𝑦,𝑧,𝑧𝑠))𝑘𝑥𝑘𝑦

𝑘𝜌
2

−
𝜁𝑑𝑘𝑦𝑖𝑇𝑀(𝑘𝑥,𝑘𝑦,𝑧,𝑧𝑠)

𝑘𝑑

𝜁𝑑𝑘𝑥𝑖𝑇𝑀(𝑘𝑥,𝑘𝑦,𝑧,𝑧𝑠)

𝑘𝑑

   

]
 
 
 
 
 
 

, 

 (A.1) 
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Since this work focuses on the derivation of the field in the semi-infinite region of the leaky 
wave structure, the potential functions can be written as follows, expressed in terms of the 
voltage and current wave amplitudes in the semi-infinite region (𝑣𝑇𝑀/𝑇𝐸

+  and 𝑖𝑇𝑀/𝑇𝐸
+ ) together 

with the exponential term relating to the propagation inside the latter.  

 
𝑣𝑇𝑀/𝑇𝐸(𝑘𝑥, 𝑘𝑦 , 𝑧, 𝑧𝑠) = 𝑣𝑇𝑀/𝑇𝐸

+ (𝑘𝑥, 𝑘𝑦 , 𝑧𝑠)𝑒
−𝑗𝑘𝑧𝑧

𝑖𝑇𝑀/𝑇𝐸(𝑘𝑥, 𝑘𝑦 , 𝑧, 𝑧𝑠) = 𝑖𝑇𝑀/𝑇𝐸
+ (𝑘𝑥 , 𝑘𝑦 , 𝑧𝑠)𝑒

−𝑗𝑘𝑧𝑧
, (A.2) 

Introducing this notation to (A.1), allows for the extraction of the 𝑧 dependence from the 
dyadic expression when examining the field in the semi-infinite region of a leaky wave structure. 

 �̿�𝑒𝑚(𝑘𝑥, 𝑘𝑦, 𝑧, 𝑧𝑠) = �̿�
𝑒𝑚(𝑘𝑥, 𝑘𝑦, 𝑧𝑠)𝑒

−𝑗𝑘𝑧𝑧, (A.3) 

Where  �̿�𝑒𝑚(𝑘𝑥, 𝑘𝑦, 𝑧𝑠) =  

[
 
 
 
 
 

  

(𝑣𝑇𝑀
+ −𝑣𝑇𝐸

+ )𝑘𝑥𝑘𝑦

𝑘𝜌
2 −

𝑣𝑇𝐸
+ 𝑘𝑦

2+𝑣𝑇𝑀
+ 𝑘𝑥

2

𝑘𝜌
2

𝑣𝑇𝐸
+ 𝑘𝑥

2+𝑣𝑇𝑀
+ 𝑘𝑦

2

𝑘𝜌
2

(𝑣𝑇𝐸
+ −𝑣𝑇𝑀

+ )𝑘𝑥𝑘𝑦

𝑘𝜌
2

−
𝜁𝑑𝑘𝑦𝑖𝑇𝑀

+

𝑘𝑑

𝜁𝑑𝑘𝑥𝑖𝑇𝑀
+

𝑘𝑑

  

]
 
 
 
 
 

   and   
𝑣𝑇𝐸/𝑇𝑀
+ = 𝑣𝑇𝐸/𝑇𝑀

+ (𝑘𝑥 , 𝑘𝑦, 𝑧𝑠)

𝑖𝑇𝐸/𝑇𝑀
+ = 𝑖𝑇𝐸/𝑇𝑀

+ (𝑘𝑥 , 𝑘𝑦, 𝑧𝑠)
. 
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Appendix B. Transmission line solution  

The leaky wave supporting stratifications introduced in Chapter 2 and subsequently discussed 
in the remaining of this document, consist of a resonant cavity confined between a ground plane 
and a semi-infinite dielectric region, with all planar layers assumed infinite and untruncated. 
The equivalent transmission line models for both the wideband and resonant structures of 
Figure 2-1 were illustrated through Figure A-1 and their purpose of deriving the potential 
functions (𝑣𝑇𝐸/𝑇𝑀, 𝑖𝑇𝐸/𝑇𝑀) to be subsequently introduced in the analytic expression of the spectral 
Green’s function (A.1), has been discussed in Appendix A. In the following appendix section, 
the solution of this transmission line model will be extracted both for observation points inside 
the cavity and the semi-infinite region. Furthermore, the different treatment required for the 
TE and TM solutions will also be discussed.  

Before proceeding to the transmission line solution itself, it should be noted that the spectral 
Green’s function given through (A.1), is modified such that the transmission line voltages and 
currents solutions correspond to an equivalent problem with unitary amplitude sources. In other 
words, H-field discontinuities in the stratification are substituted by 1 A parallel current 
sources, while E-field discontinuities are replaced by 1 V series voltage sources. Consequently, 
assuming a generic planar magnetic current source in the ground plane (Meq) of the examined 
stratification, a unitary amplitude voltage source is used in the equivalent model. This voltage 
source is placed in series with the short representing the infinitely extending ground plane, 
assumed to be a perfect electric conductor.  

Having said the above, for the derivation of the analytical solution of the equivalent 
transmission line problem, the complete expressions for the voltage and current representations 
are formulated in each transmission line section and the voltage continuity is enforced at the 
interfaces (boundary conditions), resulting in all the necessary voltage wave amplitudes. As a 
first step, the derivation of the voltage and current transmission line solutions is performed for 
the structure of Figure B-1 (a), featuring its reference system on the ground plane. The variable 
𝑧𝑠 included in the following expressions refers to the height of the source in the stratifications. 

 
                                      (a)                                                         (b) 

Figure B-1. Equivalent transmission line model of wideband structure for reference system (a) in ground plane 

and (b) displaced by Δz below the ground plane. 
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For section representing the cavity (0 ≤ z ≤ h) 

 𝑣𝑐𝑎𝑣(𝑘𝜌, 𝑧, 𝑧𝑠 = 0) = 𝑣𝑐𝑎𝑣,+(𝑘𝜌, 𝑧𝑠 = 0)𝑒
−𝑗𝑘𝑧,𝑐𝑎𝑣𝑧 (1 + 𝛤1(𝑘𝜌, 𝑧, 𝑧𝑠)), 

  (B.1) 

Where  𝛤1(𝑘𝜌, 𝑧, 𝑧𝑠 = 0) =
𝑣𝑐𝑎𝑣,−(𝑘𝜌,𝑧𝑠=0)

𝑣𝑐𝑎𝑣,+(𝑘𝜌,𝑧𝑠=0)
𝑒𝑗2𝑘𝑧,𝑐𝑎𝑣𝑧. 

Expressing the reflection coefficient at a height 𝑧 inside the cavity (𝛤1(𝑘𝜌, 𝑧, 𝑧𝑠)) in terms of 
its value at the interface 𝑧 = h (𝛤𝐴): 

 𝛤𝐴 = 𝛤1(𝑘𝜌, ℎ, 𝑧𝑠 = 0) =
𝑍𝑖𝑛𝑓−𝑍𝑐𝑎𝑣

𝑍𝑖𝑛𝑓+𝑍𝑐𝑎𝑣
=
𝑣𝑐𝑎𝑣,−(𝑘𝜌,𝑧𝑠=0)

𝑣𝑐𝑎𝑣,+(𝑘𝜌,𝑧𝑠=0)
𝑒𝑗2𝑘𝑧,𝑐𝑎𝑣ℎ ⇒ 𝛤1(𝑘𝜌, 𝑧, 𝑧𝑠 = 0) = 𝛤𝐴𝑒

𝑗2𝑘𝑧,𝑐𝑎𝑣(𝑧−ℎ), (B.2) 

Enforcing boundary conditions (voltage continuity) for the voltage solutions at 𝑧 = 0: 

 𝑣𝑐𝑎𝑣(𝑘𝜌, 0, 𝑧𝑠 = 0) = 1 ⇒ 𝑣𝑐𝑎𝑣,−(𝑘𝜌, 𝑧𝑠 = 0) = 1 − 𝑣𝑐𝑎𝑣,+(𝑘𝜌, 𝑧𝑠 = 0), (B.3) 

Combining (B.2) and (B.3) results in the required voltage wave amplitude. 

 𝑣𝑐𝑎𝑣,+(𝑘𝜌, 𝑧𝑠 = 0) =
1

1+𝛤𝐴𝑒
−2𝑗𝑘𝑧,𝑐𝑎𝑣ℎ

, (B.4) 

The current solution can be expressed in a straightforward manner through the voltage 
wave amplitudes as given below, with both the transmission line solutions at a height 𝑧 inside 
the cavity presented through (B.5). 

𝑖𝑐𝑎𝑣(𝑘𝜌, 𝑧, 𝑧𝑠 = 0) =
𝑣𝑐𝑎𝑣,+(𝑘𝜌, 𝑧𝑠 = 0)

𝛧𝑐𝑎𝑣
𝑒−𝑗𝑘𝑧,𝑐𝑎𝑣𝑧(1 − 𝛤𝐴𝑒

2𝑗𝑘𝑧,𝑐𝑎𝑣(𝑧−ℎ)) 

 
𝑉𝑜𝑙𝑡𝑎𝑔𝑒 & 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

𝑓𝑜𝑟 𝑡ℎ𝑒 𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑐𝑎𝑣𝑖𝑡𝑦 (𝑧 < ℎ)
:   
𝑣𝑐𝑎𝑣(𝑘𝜌, 𝑧, 𝑧𝑠 = 0) =

𝑒−𝑗𝑘𝑧,𝑐𝑎𝑣𝑧(1+𝛤𝐴𝑒
2𝑗𝑘𝑧,𝑐𝑎𝑣(𝑧−ℎ))

1+𝛤𝐴𝑒
−2𝑗𝑘𝑧,𝑐𝑎𝑣ℎ

𝑖𝑐𝑎𝑣(𝑘𝜌, 𝑧, 𝑧𝑠 = 0) =
𝑒−𝑗𝑘𝑧,𝑐𝑎𝑣𝑧(1−𝛤𝐴𝑒

2𝑗𝑘𝑧,𝑐𝑎𝑣(𝑧−ℎ))

𝑍𝑐𝑎𝑣(1+𝛤𝐴𝑒
−2𝑗𝑘𝑧,𝑐𝑎𝑣ℎ)

 (B.5) 

For the section representing the semi-infinite medium (z ≥ h) 

Assuming an infinitely extended dielectric region, the voltage and current solutions can be 
expressed as follows.  

𝑣𝑖𝑛𝑓(𝑘𝜌, 𝑧, 𝑧𝑠 = 0) = 𝑣𝑖𝑛𝑓,+(𝑘𝜌, 𝑧𝑠 = 0)𝑒
−𝑗𝑘𝑧,𝑖𝑛𝑓𝑧  &  𝑖𝑖𝑛𝑓(𝑘𝜌, 𝑧, 𝑧𝑠 = 0) =

1

𝑍𝑖𝑛𝑓
𝑣𝑖𝑛𝑓,+(𝑘𝜌, 𝑧𝑠 = 0)𝑒

−𝑗𝑘𝑧,𝑖𝑛𝑓𝑧 

Evidently the current solution (𝑖𝑖𝑛𝑓) can be directly derived through dividing the voltage 
solution (𝑣𝑖𝑛𝑓) with the characteristic independence of the transmission line section (𝑍𝑖𝑛𝑓). This 
results from assuming no reflections at any height of the examined dielectric region, which in 
turn leads to the existence of a single propagating wave along positive 𝑧. Having said that, 
enforcing voltage continuity at the interface of the two regions (𝑧 = h), returns the required 
voltage wave amplitude. 

 𝑣𝑖𝑛𝑓(𝑘𝜌, ℎ, 𝑧𝑠 = 0) = 𝑣𝑐𝑎𝑣(𝑘𝜌, ℎ, 𝑧𝑠 = 0) ⇒ 𝑣𝑖𝑛𝑓,+(𝑘𝜌, 𝑧𝑠 = 0) =
1+𝛤𝐴

1+𝛤𝐴𝑒
−2𝑗𝑘𝑧,𝑐𝑎𝑣ℎ

𝑒𝑗(𝑘𝑧,𝑖𝑛𝑓−𝑘𝑧,𝑐𝑎𝑣)ℎ, (B.6) 

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 & 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟

𝑠𝑒𝑚𝑖 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 (𝑧 > ℎ)
:     

𝑣𝑖𝑛𝑓(𝑘𝜌, 𝑧, 𝑧𝑠 = 0) =
1+𝛤𝐴

1+𝛤𝐴𝑒
−2𝑗𝑘𝑧,𝑐𝑎𝑣ℎ

𝑒𝑗(𝑘𝑧,𝑖𝑛𝑓−𝑘𝑧,𝑐𝑎𝑣)ℎ𝑒−𝑗𝑘𝑧,𝑖𝑛𝑓𝑧

𝑖𝑖𝑛𝑓(𝑘𝜌, 𝑧, 𝑧𝑠 = 0) =
1

𝑍𝑖𝑛𝑓

1+𝛤𝐴

1+𝛤𝐴𝑒
−2𝑗𝑘𝑧,𝑐𝑎𝑣ℎ

𝑒𝑗(𝑘𝑧,𝑖𝑛𝑓−𝑘𝑧,𝑐𝑎𝑣)ℎ𝑒−𝑗𝑘𝑧,𝑖𝑛𝑓𝑧
 

  (B.7) 
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As evident through equations (B.6) and (B.7), due to the existence of a single propagating 
wave in the semi-infinite region, the voltage and current potential functions can be decomposed 
into their respective wave amplitudes, featuring no 𝑧 dependence, and the exponential term 
corresponding to the propagation inside the semi-infinite medium. For the examined structure 
of Figure B-1 (a), this decomposition is expressed through equation (B.8). 

𝑣𝑖𝑛𝑓(𝑘𝜌, 𝑧, 𝑧𝑠 = 0) = 𝑣𝑖𝑛𝑓
+ (𝑘𝜌, 𝑧𝑠 = 0)𝑒

−𝑗𝑘𝑧,𝑖𝑛𝑓𝑧  &  𝑖𝑖𝑛𝑓(𝑘𝜌, 𝑧, 𝑧𝑠 = 0) = 𝑖𝑖𝑛𝑓
+ (𝑘𝜌, 𝑧𝑠 = 0)𝑒

−𝑗𝑘𝑧,𝑖𝑛𝑓𝑧, (B.8) 

where    
𝑣𝑖𝑛𝑓
+ (𝑘𝜌, 𝑧𝑠 = 0) =

1+𝛤𝐴

1+𝛤𝐴𝑒
−2𝑗𝑘𝑧,𝑐𝑎𝑣ℎ

𝑒𝑗(𝑘𝑧,𝑖𝑛𝑓−𝑘𝑧,𝑐𝑎𝑣)ℎ

𝑖𝑖𝑛𝑓
+ (𝑘𝜌, 𝑧𝑠 = 0) =

1

𝑍𝑖𝑛𝑓

1+𝛤𝐴

1+𝛤𝐴𝑒
−2𝑗𝑘𝑧,𝑐𝑎𝑣ℎ

𝑒𝑗(𝑘𝑧,𝑖𝑛𝑓−𝑘𝑧,𝑐𝑎𝑣)ℎ
 

This nature of the transmission line solution is what enables the extraction of the 
exponential term relating to the propagation inside the semi-infinite region from the dyadic 
part of the spectral Green’s function, as was showcased in Appendix A (A.3).  

Regarding the distinction between the TE and TM cases, the above expressions for the 
transmission line solutions (B.5), (B.7) can be employed for both, with the only difference being 
the characteristic impedances of the transmission line sections as given below. 

𝐹𝑜𝑟 𝑇𝐸 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛:  (𝑍𝑐𝑎𝑣, 𝑍𝑖𝑛𝑓) ⇒ (𝑍𝑇𝐸,𝑐𝑎𝑣 , 𝑍𝑇𝐸,𝑖𝑛𝑓)

𝐹𝑜𝑟 𝑇𝑀 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛:  (𝑍𝑐𝑎𝑣, 𝑍𝑖𝑛𝑓) ⇒ (𝑍𝑇𝑀,𝑐𝑎𝑣, 𝑍𝑇𝑀,𝑖𝑛𝑓)
      where 𝑍𝑇𝐸,𝑖 =

𝑘𝑖𝜁𝑖

𝑘𝑧𝑖
  &  𝑍𝑇𝑀,𝑖 =

𝑘𝑧𝑖𝜁𝑖

𝑘𝑖
 

Displacing the reference system 

Considering the structure of Figure B-1 (b) with its reference system displaced by Δz below the 
ground plane (Δz > 0), the voltage and current solutions in the semi-infinite region are 
transformed as follows, where 𝑧′ = 𝑧 + 𝛥𝑧 as evident by Figure B-1. 

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 & 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟

𝑠𝑒𝑚𝑖 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 (𝑧′ > ℎ + 𝛥𝑧)
:   
𝑣𝑖𝑛𝑓(𝑘𝜌, 𝑧

′, 𝑧𝑠 = 𝛥𝑧) = 𝑣𝑖𝑛𝑓
+ (𝑘𝜌, 𝑧𝑠 = 𝛥𝑧)𝑒

−𝑗𝑘𝑧,𝑖𝑛𝑓𝑧
′

𝑖𝑖𝑛𝑓(𝑘𝜌, 𝑧
′, 𝑧𝑠 = 𝛥𝑧) = 𝑖𝑖𝑛𝑓

+ (𝑘𝜌, 𝑧𝑠 = 𝛥𝑧)𝑒
−𝑗𝑘𝑧,𝑖𝑛𝑓𝑧

′  

  (B.10) 

 with  
𝑣𝑖𝑛𝑓
+ (𝑘𝜌, 𝑧𝑠 = 𝛥𝑧) =

1+𝛤𝐴

1+𝛤𝐴𝑒
−2𝑗𝑘𝑧,𝑐𝑎𝑣ℎ

𝑒𝑗(𝑘𝑧,𝑖𝑛𝑓−𝑘𝑧,𝑐𝑎𝑣)ℎ𝑒𝑗𝑘𝑧,𝑖𝑛𝑓𝛥𝑧

𝑖𝑖𝑛𝑓
+ (𝑘𝜌, 𝑧𝑠 = 𝛥𝑧) =

1

𝑍𝑖𝑛𝑓

1+𝛤𝐴

1+𝛤𝐴𝑒
−2𝑗𝑘𝑧,𝑐𝑎𝑣ℎ

𝑒𝑗(𝑘𝑧,𝑖𝑛𝑓−𝑘𝑧,𝑐𝑎𝑣)ℎ𝑒𝑗𝑘𝑧,𝑖𝑛𝑓𝛥𝑧
   

With the aim of relating the displacement of the reference system with the spectral 
representation of the field in the semi-infinite region, presented through Chapter 2 and utilized 
in this document, the voltage wave amplitudes for the two structures of Figure B-1 can be 
associated as follows. The same expression applies for the current wave amplitudes. 

 𝑣𝑖𝑛𝑓
+ (𝑘𝜌, 𝑧𝑠 = 𝛥𝑧) = 𝑣𝑖𝑛𝑓

+ (𝑘𝜌, 𝑧𝑠 = 0)𝑒
𝑗𝑘𝑧,𝑖𝑛𝑓𝛥𝑧, (B.11) 
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Appendix C. Mapping to the angular spectrum 

The transformation to the angular spectrum is a very convenient step for integrals with similar 
form to that of (2.4), since it removes one branch pair (that at ±𝑘𝑑), facilitating substantially 
all the subsequent theoretical manipulations. A short discussion regarding the single valued 
nature of this transformation as well as the periodicity of the angular spectrum was presented 
through the second part of section 2.2d. For the completeness of this discussion, a brief 
description of the mapping from the rectilinear to the angular spectrum will be included through 
the following appendix section. 

Due to the single valued nature of the transformation (2.8), both Riemann sheets of the 
rectilinear spectrum (𝑘𝜌) are mapped into adjacent regions of a single Riemann sheet in the 
angular spectrum (𝛽). This is illustrated through Figure C-1 (a) and (b), where the horizontally 
shaded regions in the angular spectrum correspond to the top, while the vertically shaped 
regions refer to the bottom Riemann sheets of the 𝑘𝜌 complex plane. 

The depicted mapping can be derived in a simple manner by separating 𝑘𝜌 and 𝑘𝑧 into their 
real and imaginary parts through substituting the complex angle variable 𝛽 = 𝛽𝑟 + 𝑗𝛽𝑖, as 
follows.  

𝑘𝜌 = 𝑘𝑑(𝑠𝑖𝑛(𝛽𝑟) 𝑐𝑜𝑠ℎ(𝛽𝑖) + 𝑗𝑐𝑜𝑠(𝛽𝑟) 𝑠𝑖𝑛ℎ(𝛽𝑖))

𝑘𝑧 = 𝑘𝑑(𝑐𝑜𝑠(𝛽𝑟) 𝑐𝑜𝑠ℎ(𝛽𝑖) − 𝑗𝑠𝑖𝑛(𝛽𝑟)𝑠𝑖𝑛ℎ(𝛽𝑖))
, (C.1) 

As an indicative example, region 1 of Figure C-1 (a) features positive real and imaginary 
part of 𝑘𝜌. This corresponds to the sections of the angular spectrum with 0 < Re(𝛽) < π/2 and 
Im(𝛽) > 0 as well as that with π/2 < Re(𝛽) < π and Im(𝛽) < 0. In turn, these two regions 
feature different sign for the imaginary part of 𝑘𝑧 with the former referring to the top while the 
latter to the bottom Riemann sheet of the 𝑘𝜌 complex plane. The same process can be applied 
for all regions of Figure C-1 (a), resulting to the mapping presented below. 

   (a)                                                                      (b) 
Figure C-1. Mapping of the (a) four quadrants of the 𝑘𝜌 complex plane, to the (b) principal strip (-π,π) of the 

angular spectrum. 
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Appendix D. Magnetic field components derivation 

The integral expressions for the electric field in the semi-infinite region of a leaky wave structure 
fed by a 𝑦-oriented elementary magnetic current source in the ground plane, have been 
presented through section 2.2a. Considering those integrals, Chapter 2 and 3 elaborated on 
numerical and asymptotic methods for their evaluation. Regarding the magnetic field integral 
expressions, they can be formulated and subsequently evaluated in a similar manner as those 
of the electric field, with the only difference between the two cases being the employed Green’s 
function of the stratified structure (�̿�𝑒𝑚 for the electric field and �̿�ℎ𝑚 for the magnetic field). 
The required steps, starting from the expression of the magnetic field as the inverse Fourier 
transform (D.1), up to the formulation of the integral expression through a represenation which 
enables contour deformations (D.5), are presented below. It should be noted that the following 
expressions refer to the reference system displaced below the ground plane by Δz. 

 �⃗⃗� (𝑟 ′) =
1

4𝜋2
∫ ∫ �̿�ℎ𝑚(𝑘𝑥 , 𝑘𝑦 , 𝛥𝑧) ∙ �̂�𝑒

−𝑗𝑘𝑧𝑧
′
𝑒−𝑗𝑘𝑥𝑥𝑒−𝑗𝑘𝑦𝑦𝑑𝑘𝑥𝑑𝑘𝑦

+∞

−∞

+∞

−∞
, (D.1) 

(𝐷. 1)

𝑘𝑥=𝑘𝜌 𝑐𝑜𝑠(𝛼)

𝑘𝑦=𝑘𝜌 𝑠𝑖𝑛(𝛼)

⇒         �⃗⃗� (𝑟 ′) =
1

4𝜋2
∫ ∫ �̿�ℎ𝑚(𝑘𝜌, 𝛼, 𝛥𝑧) ∙ �̂�𝑒

−𝑗𝑘𝑧𝑧
′
𝑒−𝑗𝑘𝜌𝜌 𝑐𝑜𝑠(𝛼−𝜑)𝑘𝜌𝑑𝛼

2𝜋

0
𝑑𝑘𝜌

+∞

0
, (D.2) 

The required projection of the dyadic part of the Green’s function relating magnetic fields 
and currents (�̿�ℎ𝑚) for the semi-infinite region, to the 𝑦 unitary vector, is given below. It should 
be noted that all the showcased expression corresponds only to the semi-infinite dielectric 
region, since the 𝑧 dependence of the potential functions is explicitly extracted, with 𝑣𝑇𝐸/𝑇𝑀

+ , 
𝑖𝑇𝐸/𝑇𝑀
+  referring to the wave amplitudes as discussed in Appendices A and B. 

 �̿�ℎ𝑚(𝑘𝜌, 𝛼, 𝛥𝑧) ∙ �̂� =
1

2
   

[
 
 
 
 

  

(𝑖𝑇𝑀
+ (𝑘𝜌, 𝛥𝑧) − 𝑖𝑇𝐸

+ (𝑘𝜌, 𝛥𝑧)) sin(2𝛼)

− (𝑖𝑇𝑀
+ (𝑘𝜌, 𝛥𝑧) + 𝑖𝑇𝐸

+ (𝑘𝜌, 𝛥𝑧) + (𝑖𝑇𝑀
+ (𝑘𝜌, 𝛥𝑧) − 𝑖𝑇𝐸

+ (𝑘𝜌, 𝛥𝑧)) cos(2𝛼))

2

𝜁𝑑𝑘𝑑
𝑘𝜌 𝑠𝑖𝑛(𝛼) 𝑣𝑇𝐸

+ (𝑘𝜌, 𝛥𝑧)

 

]
 
 
 
 

  , (D.3) 

Introducing the expression (D.3), into the inverse Fourier transform of (D.2) and evaluating 
the 𝛼 integrals through the identities of (2.2 a), results into field expressions featuring a single 
complex integral in 𝑘𝜌. 

 [

𝐻𝑥(𝑟 
′)

𝐻𝑦(𝑟 
′)

𝐻𝑧(𝑟 
′)

] =
1

4𝜋
∫    

[
 
 
 
 

 

− 𝑠𝑖𝑛(2𝜑) (𝑖𝑇𝑀
+ − 𝑖𝑇𝐸

+ )𝐽2(𝑘𝜌𝜌)

 − ((𝑖𝑇𝐸
+ + 𝑖𝑇𝑀

+ )𝐽0(𝑘𝜌𝜌) + 𝑐𝑜𝑠(2𝜑) (𝑖𝑇𝐸
+ − 𝑖𝑇𝑀

+ )𝐽2(𝑘𝜌𝜌))

−𝑗
2

𝜁𝑑𝑘𝑑
𝑠𝑖𝑛(𝜑)𝑣𝑇𝐸

+ 𝐽1(𝑘𝜌𝜌)𝑘𝜌

 

]
 
 
 
 

 
+∞

0
𝑒−𝑗𝑘𝑧𝑧

′
𝑘𝜌𝑑𝑘𝜌, 

   (D.4) 

Finally, the Bessel functions are transformed into Hankel functions of the second kind 
through the use of (2.3), resulting to integral expressions whose formulation facilitates contour 
deformations and thus the steepest descent path method of integration as well as the subsequent 
asymptotic evaluation. 

 [

𝐻𝑥(𝑟 
′)

𝐻𝑦(𝑟 
′)

𝐻𝑧(𝑟 
′)

] =
1

8𝜋
∫    

[
 
 
 
 

  

− 𝑠𝑖𝑛(2𝜑) (𝑖𝑇𝑀
+ − 𝑖𝑇𝐸

+ )𝐻2
(2)
(𝑘𝜌𝜌)

− ((𝑖𝑇𝐸
+ + 𝑖𝑇𝑀

+ )𝐻0
(2)
(𝑘𝜌𝜌) + 𝑐𝑜𝑠(2𝜑) (𝑖𝑇𝐸

+ − 𝑖𝑇𝑀
+ )𝐻2

(2)
(𝑘𝜌𝜌))

−𝑗
2

𝜁𝑑𝑘𝑑
𝑠𝑖𝑛(𝜑)𝑣𝑇𝐸

+ 𝐻1
(2)
(𝑘𝜌𝜌)𝑘𝜌

 

]
 
 
 
 

 
+∞

−∞
𝑒−𝑗𝑘𝑧𝑧

′
𝑘𝜌𝑑𝑘𝜌, 

   (D.5) 

Where for both (D.4) and (D.5),  𝑣𝑇𝐸/𝑇𝑀
+ = 𝑣𝑇𝐸/𝑇𝑀

+ (𝑘𝜌, 𝛥𝑧)  and  𝑖𝑇𝐸/𝑇𝑀
+ = 𝑖𝑇𝐸/𝑇𝑀

+ (𝑘𝜌, 𝛥𝑧) 

The final integral expressions of (D.5) are in a similar form to those of the electric field 
(2.4) and thus can be evaluated through either of the numerical methods discussed in Chapter 
2 or the asymptotic approach described in Chapter 3. 
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Appendix E. Poynting vector angles of residues 

This appendix section will discuss the derivation of the Poynting vector angle for the residue 
contributions. This angle is obtained through projecting the active part of the time average 
Poynting vector to the 𝑧 unitary vector, as given in the following steps for the TE and TM 
residue contributions respectively. The large argument approximation is used for the Hankel 
function (2.5 a) in order to simplify the resulting expressions, while the indicated voltage and 
current potentials refer to the wave amplitudes in the semi-infinite region of the structure with 
the displaced reference system, thus 𝑣𝑇𝐸/𝑇𝑀

+ = 𝑣𝑇𝐸/𝑇𝑀
+ (𝑘𝜌, 𝛥𝑧) and 𝑖𝑇𝐸/𝑇𝑀

+ = 𝑖𝑇𝐸/𝑇𝑀
+ (𝑘𝜌, 𝛥𝑧). 

TE modes 

 

[
 
 
 
 
 
 
𝐸𝜌𝐿𝑊,𝑇𝐸(𝑟 ′)

𝐸𝜑𝐿𝑊,𝑇𝐸(𝑟 ′)

𝐸𝑧𝐿𝑊,𝑇𝐸(𝑟 ′)

𝐻𝜌𝐿𝑊,𝑇𝐸(𝑟 ′)

𝐻𝜑𝐿𝑊,𝑇𝐸(𝑟 ′)

𝐻𝑧𝐿𝑊,𝑇𝐸(𝑟 ′)]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

 

0

−
𝑗

2
𝑠𝑖𝑛(𝜑)𝑅𝑒𝑠(𝑣𝑇𝐸

+ )𝑘𝜌=𝑘𝜌,𝐿𝑊𝛨0
(2)(𝑘𝜌,𝐿𝑊𝜌)𝑘𝜌,𝐿𝑊𝑒

−𝑗𝑘𝑧,𝐿𝑊𝑧
′

0
𝑗

2
𝑠𝑖𝑛(𝜑)𝑅𝑒𝑠(𝑖𝑇𝐸

+ )𝑘𝜌=𝑘𝜌,𝐿𝑊𝛨0
(2)(𝑘𝜌,𝐿𝑊𝜌)𝑘𝜌,𝐿𝑊𝑒

−𝑗𝑘𝑧,𝐿𝑊𝑧
′

0

−
1

2𝜁𝑑𝑘𝑑
𝑠𝑖𝑛(𝜑) 𝑅𝑒𝑠(𝑣𝑇𝐸

+ )𝑘𝜌=𝑘𝜌,𝐿𝑊𝛨1
(2)(𝑘𝜌,𝐿𝑊𝜌)𝑘𝜌,𝐿𝑊

2 𝑒−𝑗𝑘𝑧,𝐿𝑊𝑧
′

 

]
 
 
 
 
 
 
 

, 

   (E.1) 

Where  𝑅𝑒𝑠(𝑖𝑇𝐸
+ ) =

𝑅𝑒𝑠(𝑣𝑇𝐸
+ )

𝑍𝑖𝑛𝑓,𝑇𝐸
  and  𝑍𝑖𝑛𝑓,𝑇𝐸 =

𝑘𝑑𝜁𝑑

𝑘𝑧
. 

Using the field expressions of (E.1), the resulting Poynting vector angle can be extracted 
as given below, resulting into expression (E.2). 

�⃗� 𝐿𝑊(𝑟 ′) =
1

2
𝑅𝑒 (�⃗� 𝐿𝑊(𝑟 ′) × �⃗⃗� 𝐿𝑊

∗ (𝑟 ′)) =
1

2
𝑅𝑒 (|

�̂� �̂� �̂�

𝐸𝑥(𝑟 ′) 𝐸𝑦(𝑟 ′) 𝐸𝑧(𝑟 ′)

𝐻𝑥
∗(𝑟 ′) 𝐻𝑦

∗(𝑟 ′) 𝐻𝑧
∗(𝑟 ′)

|)
𝐻1
(2)
=𝑗𝐻0

(2)

⇒        

⇒ �̂�𝐿𝑊(𝑟 ′) =
�⃗� 𝐿𝑊(𝑟 ′)

|�⃗� 𝐿𝑊(𝑟 ′)|
=
(𝑅𝑒(𝑘𝜌,𝐿𝑊)(𝑐𝑜𝑠(𝜑) �̂� + 𝑠𝑖𝑛(𝜑) �̂�) + 𝑅𝑒(𝑘𝑧,𝐿𝑊)�̂�)

√𝑅𝑒(𝑘𝜌,𝐿𝑊)
2
+ 𝑅𝑒(𝑘𝑧,𝐿𝑊)

2
 

 𝜃𝑃𝑜𝑦,𝑇𝐸 = 𝑎𝑐𝑜𝑠(�̂�𝐿𝑊(𝑟 ′) ∙ �̂�) = 𝑎𝑐𝑜𝑠 (
𝑅𝑒(𝑘𝑧,𝐿𝑊)

√𝑅𝑒(𝑘𝜌,𝐿𝑊)
2
+𝑅𝑒(𝑘𝑧,𝐿𝑊)

2
), (E.2) 

TM  modes 

 

[
 
 
 
 
 
 
𝐸𝜌𝐿𝑊,𝑇𝑀(𝑟 ′)

𝐸𝜑𝐿𝑊,𝑇𝑀(𝑟 ′)

𝐸𝑧𝐿𝑊,𝑇𝑀(𝑟 ′)

𝐻𝜌𝐿𝑊,𝑇𝑀(𝑟 ′)

𝐻𝜑𝐿𝑊,𝑇𝑀(𝑟 ′)

𝐻𝑧𝐿𝑊,𝑇𝑀(𝑟 ′)]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

 

𝑗

2
𝑐𝑜𝑠(𝜑) 𝑅𝑒𝑠(𝑣𝑇𝑀

+ )𝑘𝜌=𝑘𝜌,𝐿𝑊𝛨0
(2)(𝑘𝜌,𝐿𝑊𝜌)𝑘𝜌,𝐿𝑊𝑒

−𝑗𝑘𝑧,𝐿𝑊𝑧
′

0

−
𝜁𝑑

2𝑘𝑑
𝑐𝑜𝑠(𝜑) 𝑅𝑒𝑠(𝑖𝑇𝑀

+ )𝑘𝜌=𝑘𝜌,𝐿𝑊𝛨1
(2)(𝑘𝜌,𝐿𝑊𝜌)𝑘𝜌,𝐿𝑊

2 𝑒−𝑗𝑘𝑧,𝐿𝑊𝑧
′

0
𝑗

2
𝑐𝑜𝑠(𝜑) 𝑅𝑒𝑠(𝑖𝑇𝑀

+ )𝑘𝜌=𝑘𝜌,𝐿𝑊𝛨0
(2)(𝑘𝜌,𝐿𝑊𝜌)𝑘𝜌,𝐿𝑊𝑒

−𝑗𝑘𝑧,𝐿𝑊𝑧
′

0

 

]
 
 
 
 
 
 
 

, 

   (E.3) 

Using the field expressions of (E.3), the Poynting vector angle is obtained as given through 
(E.4), similar to the case of the TE modes. 

 𝜃𝑃𝑜𝑦,𝑇𝑀 = 𝑎𝑐𝑜𝑠(�̂�𝐿𝑊(𝑟 ′) ∙ �̂�) = 𝑎𝑐𝑜𝑠 (
𝑅𝑒(𝑘𝑧,𝐿𝑊)

√𝑅𝑒(𝑘𝜌,𝐿𝑊)
2
+𝑅𝑒(𝑘𝑧,𝐿𝑊)

2
), (E.4) 

It should be noted that the Poynting vector angles derived above, tends to the one of (E.5), 
for cases where the mode’s attenuation constant is not very large. 

 𝜃𝐿𝑊 = 𝑎𝑠𝑖𝑛 (
𝑅𝑒(𝑘𝜌,𝐿𝑊)

𝑘𝑑
), (E.5) 
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Appendix F. Stationary Phase Point approximation 

Arguably the simplest and most common method to asymptotically evaluate radiation integrals 
is the stationary phase point approximation. As an indicative example, the implementation of 
this method to derive the far field of a stratified structure will be presented in the following 
appendix section.   

Taking into account that the far field is a spherical wave, it is reasonable to target the 
canonical integral of the inverse Fourier transform of the spherical spreading term (scalar 
Green’s function) during the asymptotic evaluation of the complex integrals. 

 ∫ ∫ 𝑒−𝑗𝑘𝑥𝑥𝑒−𝑗𝑘𝑦𝑦
𝑒−𝑗𝑘𝑧𝑧

𝑘𝑧
𝑑𝑘𝑥𝑑𝑘𝑦

∞

−∞

∞

−∞
= ∫ ∫ 𝑒−𝑗𝑘𝜌𝜌 𝑐𝑜𝑠(𝛼−𝜙)

𝑒−𝑗𝑘𝑧𝑧

𝑘𝑧
𝑘𝜌𝑑𝛼

2𝜋

0

∞

0
𝑑𝑘𝜌 = 2𝜋𝑗

𝑒−𝑗𝑘𝑑𝑟

𝑟
, (F.1) 

Using as an example the structures of Figure 2-1, fed by a generic magnetic current source 
in the ground plane with spectrum 𝐶𝑚(𝑘𝑥, 𝑘𝑦), the total field in the semi-infinite dielectric region 
can be expressed as the inverse Fourier transform of the convolution between the Green’s 
function (�̿�𝑒𝑚) and the current distribution of the source. 

 �⃗� (𝑟 ) =
1

4𝜋2
∫ ∫ �̿�𝑒𝑚(𝑘𝜌, 𝛼, 𝑧, 0) ∙ 𝐶 𝑚(𝑘𝜌, 𝛼)𝑒

−𝑗𝑘𝜌𝜌 𝑐𝑜𝑠(𝛼−𝜑)𝑘𝜌𝑑𝛼𝑑𝑘𝜌
2𝜋

0

+∞

0
, (F.2 a) 

By multiplying and dividing the integrand with 𝑘𝑧, the inverse Fourier transform of the 
spherical spreading term can be formed inside the integral; together with an amplitude term 
comprised of the dyadic spectral Green’s function (�̿�𝑒𝑚), the spectrum of the current source 
(𝐶𝑚) and the spectral variable 𝑘𝑧. 

 �⃗� (𝑟 ) =
1

4𝜋2
∫ ∫ �̿�𝑒𝑚(𝑘𝜌, 𝛼, 0) ∙ 𝐶 𝑚(𝑘𝜌, 𝛼)𝑘𝑧

𝑒−𝑗𝑘𝑧𝑧

𝑘𝑧
𝑒−𝑗𝑘𝜌𝜌 𝑐𝑜𝑠(𝛼−𝜑)𝑘𝜌𝑑𝛼𝑑𝑘𝜌

2𝜋

0

+∞

0
, (F.2 b) 

Employing the saddle point considerations for the double integral of (F.2 b), its dominant 
contribution can be identified as the point 𝑘𝜌𝑆𝑃 = 𝑘𝑑  𝑠𝑖𝑛(𝜃) and 𝛼𝑆𝑃 = 𝜑 (double saddle point), 
where (𝑟, 𝜃, 𝜑) refers to the observation point. Assuming an observation point in the far field 
region of the source, i.e., a large enough radial distance (𝑟), the integrand’s phase term oscillates 
very fast on the integration path compared to the much slower varying amplitude. As a matter 
of fact, this behaviour of a rapidly oscillating phase and a slow varying amplitude, leads to 
destructive contributions in all regions of the integration path away from the saddle point, 
which can also be considered as the point of least phase variance (stationary phase point). 

Since sections of the complex plane where the phase function is fast varying compared to 
the amplitude, would not contribute to the integral result, the latter can be asymptotically 
approximated by evaluating the slow varying amplitude at the stationary phase point and 
extracting it from the integral. Subsequently, the remaining infinite integral can be analytically 
closed, given that it corresponds to the inverse Fourier transform of the spherical spreading 
term. The aforementioned steps are indicated below together with the resulting far field.  

 (𝐹. 2 𝑏) ⇒ �⃗� 𝐹𝐹(𝑟 ) =
1

4𝜋2
�̿�𝑒𝑚(𝑘𝜌𝑆𝑃, 𝛼𝑆𝑃 , 0) ∙ 𝐶 𝑚(𝑘𝜌𝑆𝑃, 𝛼𝑆𝑃)𝑘𝑧𝑆𝑃 ∫ ∫

𝑒−𝑗𝑘𝑧𝑧

𝑘𝑧
𝑒−𝑗𝑘𝜌𝜌 𝑐𝑜𝑠(𝛼−𝜑)𝑘𝜌𝑑𝛼𝑑𝑘𝜌

2𝜋

0

+∞

0
⇒ 

 
(3.1)
⇒  �⃗� 𝐹𝐹(𝑟 ) = 𝑗𝑘𝑧𝑆𝑃�̿�

𝑒𝑚(𝑘𝜌𝑆𝑃 , 𝛼𝑆𝑃, 0) ∙ �⃗⃗� 𝑚(𝑘𝜌𝑆𝑃 , 𝛼𝑆𝑃)
𝑒−𝑗𝑘𝑑𝑟

2𝜋𝑟
, (F.3) 

To visualize the previously described properties of the stationary phase point, the behavior 
of the fast-varying term of (F.2 a) is presented through Figure F-1 (a) and (b) for different 
observation points, considering the wideband structure of Figure 2-1. 
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    (a)                                                                      (b) 
Figure F-1. Fast varying part of (F.2 b) along the real axis of 𝑘𝜌 spectrum with 𝑎𝑆𝑃 = 𝜑 and different radial 

distances of the observation point (𝑟), for (a) 𝜃=0ο and (b) 𝜃=25ο
.

As evident from the above figure, the larger is the radial distance (𝑟), the oscillations away 
from the saddle point become more rapid thus the consideration for meaningful contribution of 
the amplitude only in the vicinity of the latter becomes increasingly neat, showcasing the 
applicability of the stationary phase point (SPP) method for the far field. 
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Appendix G. Regularization approach comparison 

In section 3.2b, the necessary treatment for polar singularities approaching the saddle point of 
the integrand function was described. While two methods were introduced for the isolation of 
the integrand’s polar singularities (regularization), only the additive approach was utilized for 
the purpose of the subsequent study. In this appendix section, the choice of the additive 
regularization approach will be justified through comparing the resulting formulation with that 
obtained by the multiplicative regularization approach. For this purpose, the same indicative 
integral treated in the example of section 3.2b, will be evaluated with the multiplicative 
approach. 

∫ 𝑣𝑇𝐸
+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧) 𝑐𝑜𝑠(𝛽) 𝑒

𝛺𝑞𝛣(𝛽)𝑑𝛽
𝑆𝐷𝑃

= 𝑒−𝑗𝑘𝑑𝑟
′
∫ 𝐺𝑝

𝑇𝐸(𝑠)𝑒−𝛺𝑠
2
𝑑𝑠

+∞

−∞
, (G.1) 

Where 𝐺𝑝
𝑇𝐸(𝑠) = 𝑣𝑇𝐸

+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧) 𝑐𝑜𝑠(𝛽)
𝑑𝛽

𝑑𝑠
,  𝛺 = 𝑘𝑑𝑟

′ and 𝑞𝐵(𝛽) = −𝑗𝑐𝑜𝑠(𝛽 − 𝜃
′). 

Multiplicative pole treatment 

In contrast to the additive method, in the multiplicative pole treatment introduced by Pauli-
Clemmow for a simple pole and expanded by Bleisten [38], the function 𝐺(𝑠) is expressed as 
the product of two functions, namely 𝐺(𝑠) = 𝑇𝑃𝐶(𝑠) 𝐵(𝑠), where 𝑇𝑃𝐶(𝑠) is regular around the 
saddle point while 𝐵(𝑠) contains the poles of 𝐺(𝑠). Subsequently, similar to the additive method, 
the regular part can be expanded into a power series around the saddle point, while 𝐵(𝑠) needs 
to be decomposed into a summation of simple poles. In turn the product of these two expressions 
can be evaluated through term-wise integration, using either of the integrals given in (3.10).  

Whereas, for the additive regularization method a function describing the behaviour of the 
𝑣𝑇𝐸 around the aforementioned polar singularities was needed (3.13), for the multiplicative 
approach only the positions of these poles in the 𝑠-plane needs to be derived. The latter is 
obtained by using the mapping given in (3.9) considering that the positions of a polar 
singularity in the angular and rectilinear spectrum are related through 𝛽𝐿𝑊 = 𝑎𝑠𝑖𝑛(𝑘𝜌,𝐿𝑊/𝑘𝑑). 

The regularized part derived through the multiplicative approach is given below, labelling 

the mapped singularities ±𝑘𝜌,𝐿𝑊
𝑇𝐸1  to the 𝑠-plane as 𝑠𝑇𝐸,+ and 𝑠𝑇𝐸,− respectively. 

𝑇𝑃𝐶𝑇𝐸(𝑠) = 𝑣𝑇𝐸
+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧)(𝑠 − 𝑠𝑇𝐸,+)(𝑠 − 𝑠𝑇𝐸,−) 𝑐𝑜𝑠(𝛽)

𝑑𝛽

𝑑𝑠
, (G.2) 

To showcase the equivalent impact of this regurlarization approach compared to the 
additive case, the spectral regions depicted through Figure 3-3 and Figure 3-4 are also visualized 
for 𝑇𝑃𝐶

𝑇𝐸(𝑠) in Figure G-1. 

Figure G-1. Bottom Riemann sheet of the regularized part through the multiplicative method (𝑇𝑃𝐶
𝑇𝐸(𝑠)). The 

depicted sections of the rectilinear (𝑘𝜌) spectrum are indicated in the inset of Figure 3-3. 
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Resolving the remaining integral of (G.1), labelled 𝐼𝑆𝐷𝑃(𝛺), through the additive 
regularization approach resulted in the following decomposition. 

 𝐼𝑆𝐷𝑃(𝛺) = ∑ (
𝑇𝑉𝑑𝑊𝑇𝐸
(2𝑛) (0)

(2𝑛!)

𝛤[
2𝑛+1

2
]

𝛺
(
2𝑛+1
2 )
)∞

𝑛=0 + ∫ 𝐺𝑝𝑜𝑙𝑒
𝑇𝐸1 (𝑠)𝑒−𝛺𝑠

2+∞

−∞
𝑑𝑠, (G.3) 

Where 𝐺𝑝𝑜𝑙𝑒
𝑇𝐸1 (𝑠) = 𝑣𝑎𝑝𝑟,𝑇𝐸

+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧) 𝑐𝑜𝑠(𝛽)
𝑑𝛽

𝑑𝑠
  and 𝑇𝑉𝑑𝑊𝑇𝐸(𝑠) as given in (3.14).  

For the purpose of comparing the additive and multiplicative regularization approaches, 
the same integral (𝐼𝑆𝐷𝑃(𝛺)) is treated using the multiplicative approach as presented below.  

𝐼𝑆𝐷𝑃(𝛺) = ∫ 𝐺𝑝
𝑇𝐸(𝑠)𝑒−𝛺𝑠

2

+∞

−∞

𝑑𝑠 = ∫
(𝑠 − 𝑠𝑇𝐸,+)(𝑠 − 𝑠𝑇𝐸,−)𝐺𝑝

𝑇𝐸(𝑠)

(𝑠 − 𝑠𝑇𝐸,+)(𝑠 − 𝑠𝑇𝐸,−)
𝑒−𝛺𝑠

2

+∞

−∞

𝑑𝑠 = ∫
𝑇𝑃𝐶𝑇𝐸(𝑠)

(𝑠 − 𝑠𝑇𝐸,+)(𝑠 − 𝑠𝑇𝐸,−)
𝑒−𝛺𝑠

2

+∞

−∞

𝑑𝑠 ⇒ 

 ⇒ 𝐼𝑆𝐷𝑃(𝛺) = 𝐶𝑇𝐸,+ ∫
𝑇𝑃𝐶𝑇𝐸(𝑠)

𝑠−𝑠𝑇𝐸,+
𝑒−𝛺𝑠

2+∞

−∞
𝑑𝑠 + 𝐶𝑇𝐸,− ∫

𝑇𝑃𝐶𝑇𝐸(𝑠)

𝑠−𝑠𝑇𝐸,−
𝑒−𝛺𝑠

2+∞

−∞
𝑑𝑠, (G.4) 

using  (∏(𝑠 − 𝑠𝑖)

𝑁

𝑖=1

)

−1

=∑
𝐶𝑖
𝑠 − 𝑠𝑖

𝑁

𝑖=1

   with   𝐶𝑖 =

(

 
 
∏(𝑠𝑖 − 𝑠𝑗)

𝑁

𝑗=1
𝑗≠𝑖 )

 
 

−1

 

While the complete expression of (G.4) will not be included here to maintain some 
semblance of simplicity, in general, the integral of 𝐼𝑆𝐷𝑃(𝛺) can be separated into a summation 
of simple pole integrals, as shown above. This in turn enables its evaluation through summing 
expressions of the following form. 

𝐼𝑇𝐸,𝑖
𝑆𝐷𝑃(𝛺) = ∫

𝑇𝑃𝐶𝑇𝐸(𝑠)

𝑠 − 𝑠𝑇𝐸,𝑖
𝑒−𝛺𝑠

2
𝑑𝑠

+∞

−∞

= ∫
𝑇𝑃𝐶𝑇𝐸(𝑠)(𝑠 + 𝑠𝑇𝐸,𝑖)

𝑠2 − 𝑠𝑇𝐸,𝑖
2 𝑒−𝛺𝑠

2
𝑑𝑠

+∞

−∞

𝑒𝑥𝑝𝑎𝑛𝑑𝑖𝑛𝑔 𝑇𝑃𝐶𝑇𝐸(𝑠) 𝑎𝑟𝑜𝑢𝑛𝑑 

𝑠=0 𝑎𝑛𝑑 𝑢𝑠𝑖𝑛𝑔 (3.10 𝑐)
⇒                       

 ⇒ 𝐼𝑇𝐸,𝑖
𝑆𝐷𝑃(𝛺) = −

1

𝑠𝑇𝐸,𝑖
√
𝜋

𝛺
𝑇𝑃𝐶𝑇𝐸(0) + ⋯+ (

1

𝑠𝑇𝐸,𝑖
𝛵𝑃𝐶𝑇𝐸(0) + 𝑇𝑃𝐶𝑇𝐸

′ (0) +
𝑠𝑇𝐸,𝑖

2
𝑇𝑃𝐶𝑇𝐸
(2) (0) + ⋯)√

𝜋

𝛺
(1 − 𝐹(𝑗𝛺𝑠𝛵𝛦,𝑖

2 )) ⇒ 

⇒ 𝐼𝑇𝐸,𝑖
𝑆𝐷𝑃(𝛺) = −

𝑇𝑃𝐶𝑇𝐸(0)

𝑠𝑇𝐸,𝑖
√
𝜋

𝛺
+∑(

𝑇𝑃𝐶𝑇𝐸
(𝑛) (0)

𝑛!
𝑠𝑇𝐸,𝑖
(𝑛−1)√

𝜋

𝛺
(1 − 𝐹(𝑗𝛺𝑠𝑇𝐸,𝑖

2 )))

∞

𝑛=0

+
𝛤 [
3
2
]

𝛺
(
3
2
)
∑(

𝑇𝑃𝐶𝑇𝐸
(𝑛) (0)

𝑛!
𝑠𝑇𝐸,𝑖
𝑛−3)

∞

𝑛=3

+
𝛤 [
5
2
]

𝛺
(
5
2
)
∑(

𝑇𝑃𝐶𝑇𝐸
(𝑛) (0)

𝑛!
𝑠𝑇𝐸,𝑖
𝑛−5)

∞

𝑛=5

+⋯ 

(G.5) 

Having resolved the test case integral (𝐼𝑆𝐷𝑃(𝛺)) through both the additive (G.3) and 
multiplicative regularization approaches (G.4) and (G.5), the fundamental difference of the two 
can now be observed.  

In the additive method, the integral of the polar contributions is not related with the 
expansion of the regular part. In contrast, in the multiplicative approach, each term of the 
power series of 𝑇𝑃𝐶𝑇𝐸(𝑠) is multiplied by a Fresnel integral (or equivalently an erf function). The 
fundamental property of the polar contributions is that they are comprised of a sum of 
transition functions, each corresponding to a distinct pole in the 𝑠-plane and introducing a 
discontinuity if the respective polar singularity crosses the SDP. Considering the latter, one 
can deduce that the two expressions would be completely equivalent only if an infinite number 
of terms is used in the expansion [46].  

To visualize this concept, the two regularization approaches will be compared considering 
the integral of (G.6). In particular, the given integral in the 𝑘𝜌 complex plane is transformed 
into the angular spectrum and subsequently deformed into the SDP passing through the saddle 
point (𝛽𝑆𝑃 = 𝜃′). In turn, the resulting SDP integral is transformed into the 𝑠-plane and 
regularized with either of the previously discussed approaches. In both cases the regular part 
(𝑇𝑉𝑑𝑊𝑇𝐸(𝑠) or 𝑇𝑃𝐶𝑇𝐸(𝑠)) is expanded around the saddle point, with the resulting integrals evaluated 
numerically. The only reason for using (G.6) instead of directly comparing the two methods 
for the integral of (G.1), is that the former also includes the residue contribution above the 
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shadow boundary angle, something that will facilitate the evaluation of the difference between 
the two regularization approaches. 

𝐼(𝜃′) =
1

𝑘𝑑
∫ 𝑣𝑇𝐸

+ (𝑘𝜌, 𝛥𝑧)𝑒
−𝑗(𝑘𝑧𝑧

′+𝑘𝜌𝜌)𝑑𝑘𝜌
+∞

−∞
= 𝛪𝑆𝐷𝑃(𝜃

′) + 𝑈(𝜃′ − 𝜃𝑆𝐵,𝑇𝐸1)𝐼𝑟𝑒𝑠(𝜃
′), (G.6) 

where 
𝐼𝑆𝐷𝑃(𝜃

′) = ∫
𝑣𝑇𝐸
+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧) 𝑐𝑜𝑠(𝛽) 𝑒

−𝑗𝑘𝑑𝑟
′𝑐𝑜𝑠( 𝛽−𝜃′)𝑑𝛽

𝑆𝐷𝑃

𝛪𝑟𝑒𝑠(𝜃
′) = −

1

𝑘𝑑
2𝜋𝑗𝑅𝑒𝑠(𝑣𝑇𝐸

+ (𝑘𝜌, 𝛥𝑧)𝑒
−𝑗(𝑘𝑧𝑧

′+𝑘𝜌𝜌))
𝑘𝜌=𝑘𝜌,𝐿𝑊

𝑇𝐸1

Considering as an indicative example the wideband structure of Figure 2-8 for the derivation 
of the voltage wave amplitude (𝑣𝑇𝐸

+ ) and a spherical observation grid at 𝑟′ = 2.5𝜆0 from the 
phase centre, the resulting comparison is presented through Figure G-2 for different number of 
terms in the expansion of the regularized parts (𝑇𝑉𝑑𝑊𝑇𝐸(𝑠) and 𝑇𝑃𝐶𝑇𝐸(𝑠)).  

Figure G-2. Comparison of the additive and multiplicative regularization approaches for the integral of (G.6) at 

150 GHz, with different number of terms in the expansion of the regular part, as noted in the respective legends. 

As evident through comparing the figures above, while after a certain number of terms both 
approaches converge to the same result, their difference can be identified through observing the 
shadow boundary angles. In particular, if an insufficient number of terms is used in the 
expansion of the regularized part for the multiplicative approach (𝑇𝑃𝐶𝑇𝐸(𝑠)), the result is 
discontinuous. This impact is related to the nature of the SDP integral, which is discontinuous 
at the shadow boundaries with the exact level of the featured discontinuity compensated by 
the inclusion of the residue contribution, making the total result continuous. Having said that, 
it can be intuitively realized that for the case of the multiplicative approach where each term 
of the power series expansion of 𝑇𝑃𝐶𝑇𝐸(𝑠) is multiplied by a Fresnel integral (or equivalently an 
erf function), if an inadequate number of terms is used in the expansion, the total result would 
be discontinuous. The actual number of terms deemed sufficient for the expansion of the 
regularized part depends on the value of 𝛺. 
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Appendix H. Power series expansion of T(s) 

As discussed through section 3.2, the asymptotic evaluation of complex integrals requires the 
approximation of their integrant functions around the saddle point (integral’s dominant 
contribution), such that the resulting expressions can be evaluated through canonical integrals. 
The simplest manner, in which to describe the spectral properties of an analytical function 
around a certain point is to obtain its power series expansion as indicatively shown below for 
the saddle point at 𝑠 =  0.  

 𝑇(𝑠) ≅ 𝑇(0) + 𝑠𝑇′(0) +
𝑠2

2
𝑇(2)(0) +

𝑠3

3!
𝑇(3)(0) +

𝑠4

4!
𝑇(4)(0) + ⋯, (H.1) 

Given that 𝑇(𝑠) does not feature any singularities around the origin, the radius of 
convergence of the power series expansion, or equivalently the spectral region for which (H.1) 
describes the function in question (𝑇(𝑠)), depends only on the number of terms included in the 
expansion. Considering the encountered integrals throughout this work, their regularized parts 
can be expressed in terms of a function which depends on the complex angle variable 𝛽 and the 
Jacobian transform 𝑑𝛽/𝑑𝑠 in terms of 𝑠, as indicatively shown through (H.2) for the integral of 
the Eφ component of (3.26). 

 ∫ 𝑇𝑉𝑑𝑊(𝑠)𝑒
−𝛺𝑠2𝑑𝑠

+∞

−∞
= ∫ 𝐹𝑉𝑑𝑊(𝛽)

𝑑𝛽

𝑑𝑠
𝑒−𝛺𝑠

2
𝑑𝑠

+∞

−∞
, (H.2) 

Where 𝐹𝑉𝑑𝑊(𝛽) = (𝑣𝑇𝐸+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧) − 𝑣𝑎𝑝𝑟,𝑇𝐸+ (𝑘𝑑 𝑠𝑖𝑛(𝛽) , 𝛥𝑧)) 𝑐𝑜𝑠(𝛽)  and  
𝑑𝛽

𝑑𝑠
=

√2𝑗

√1−𝑗
𝑠2

2

 . 

Setting the Jacobian transform as the function 𝜑(𝑠) to facilitate the subsequent 
formulations, the higher order derivatives of 𝑇𝑉𝑑𝑊(𝑠) can be obtained through the chain rule, as 
indicatively given through (H.3) for derivatives up to the 3rd order. 

 

𝑇𝑉𝑑𝑊
′ (𝑠) =

𝑑

𝑑𝑠
(𝑇𝑉𝑑𝑊(𝑠)) =

𝑑

𝑑𝛽
(𝐹𝑉𝑑𝑊(𝛽))

𝑑𝛽

𝑑𝑠
𝜑(𝑠) + 𝐹𝑉𝑑𝑊(𝛽)𝜑

′(𝑠) = 𝐹𝑉𝑑𝑊
′ (𝛽)(𝜑(𝑠))

2
+ 𝐹𝑉𝑑𝑊(𝛽)𝜑

′(𝑠)

𝑇𝑉𝑑𝑊
(2) (𝑠) =

𝑑

𝑑𝑠
(𝑇𝑉𝑑𝑊
′ (𝑠)) = 𝐹𝑉𝑑𝑊

(2) (𝛽)(𝜑(𝑠))
3
+ 𝐹𝑉𝑑𝑊(𝛽)𝜑

(2)(𝑠)

𝑇𝑉𝑑𝑊
(3) (𝑠) =

𝑑

𝑑𝑠
(𝑇𝑉𝑑𝑊
(2) (𝑠)) = 𝐹𝑉𝑑𝑊

(3) (𝛽)(𝜑(𝑠))
4
+ 3𝐹𝑉𝑑𝑊

(2) (𝛽)(𝜑(𝑠))
2
𝜑′(𝑠) + 𝐹𝑉𝑑𝑊

′ (𝛽)𝜑(𝑠)𝜑(2)(𝑠) + 𝐹𝑉𝑑𝑊(𝛽)𝜑
(3)(𝑠)

, 

  (H.3) 

The higher order derivatives of the Jacobian transform (𝜑(𝑠) or 𝑑𝛽/𝑑𝑠) around the saddle 
point can be obtained analytically given that its expression is both simple and known. In 
contrast, for the case of 𝐹𝑉𝑑𝑊(𝛽) which includes either the voltage or the current wave 
amplitudes (𝑣𝑇𝐸/𝑇𝑀

+ , 𝑖𝑇𝐸/𝑇𝑀
+ ), to mitigate the complexity involved, the higher order derivatives 

are obtained numerically through the finite difference method. This approach refers all higher 
derivatives to values of 𝐹𝑉𝑑𝑊(𝛽) allowing for their numerical extraction. The resulting 
expressions for the first four derivatives using the central difference formula are indicatively 
given below. It should be noted that different formalisms can also be obtained using the 
forwards or backwards difference formulas. 

 

𝐹′(𝛽) =
𝐹(𝛽+

𝛥𝛽

2
)−𝐹(𝛽−

𝛥𝛽

2
)

𝛥𝛽

𝐹(2)(𝛽) =
𝐹(𝛽+𝛥𝛽)−2𝐹(𝛽)+𝐹(𝛽−𝛥𝛽)

(𝛥𝛽)2

𝐹(3)(𝛽) =
𝐹(𝜃+

3

2
𝛥𝛽)−3𝐹(𝜃+

𝛥𝛽

2
)+3𝐹(𝜃−

𝛥𝛽

2
)−𝐹(𝜃−

3

2
𝛥𝛽)

(𝛥𝛽)3

𝐹(4)(𝛽) =
𝐹(𝛽+2𝛥𝛽)−4𝐹(𝛽+𝛥𝛽)+6𝐹(𝛽)−4𝐹(𝛽−𝛥𝛽)+𝐹(𝛽−2𝛥𝛽) 

(𝛥𝛽)4

, (H.4) 
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