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a b s t r a c t

In this paper, we consider the problem of learning a generalized Nash equilibrium (GNE) in strongly
monotone games. First, we propose semi-decentralized and distributed continuous-time solution
algorithms that use regular projections and first-order information to compute a GNE with and
without a central coordinator. As the second main contribution, we design a data-driven variant of
the former semi-decentralized algorithm where each agent estimates their individual pseudogradient
via zeroth-order information, namely, measurements of their individual cost function values, as typical
of extremum seeking control. Third, we generalize our setup and results for multi-agent systems with
nonlinear dynamics. Finally, we apply our methods to connectivity control in robotic sensor networks
and almost-decentralized wind farm optimization.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Multi-agent optimization problems and games with self-
nterested decision-makers or agents appear in many engineering
pplications, such as demand-side management in smart grids
Mohsenian-Rad, Wong, Jatskevich, Schober, & Leon-Garcia, 2010;
aad, Han, Poor, & Basar, 2012), charging/discharging coordina-
ion for plug-in electric vehicles (Ma, Callaway, & Hiskens, 2011),
hermostatically controlled loads (Li, Zhang, Lian, & Kalsi, 2015a,
015b) and robotic formation control (Lin, Qu, & Simaan, 2014).
ypically, in these games, the cost functions and the constraints of
he agents are coupled together, e.g. due to common congestion
enalties and shared resource capacity, respectively. Since the
gents are self-interested, their interaction might be unstable.
hus, one main research area is that of finding (seeking) agent de-
isions that are self-enforceable, e.g. decisions such that no agent
as an incentive to deviate from — the so-called Generalized Nash
quilibrium (GNE) (Facchinei & Kanzow, 2010). From a control-
heoretic perspective, in the presence of dynamical agents, the
ain challenge is to design distributed, possibly almost decen-

ralized, control laws that ensure both the convergence of the

✩ This work was partially supported by the ERC under research project
COSMOS (802348). The material in this paper was not presented at any
conference. This paper was recommended for publication in revised form by
Associate Editor Michael M. Zavlanos under the direction of Editor Christos G.
Cassandras.
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.grammatico@tudelft.nl (S. Grammatico).
ttps://doi.org/10.1016/j.automatica.2021.109846
005-1098/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access a
agent decisions to a GNE and the asymptotic stability of the
equilibrium for the agent dynamics.

Literature review: The literature on generalized Nash equi-
librium problems (GNEPs) is vast, see Facchinei and Kanzow
(2010) for a survey. What differentiates GNEPs from Nash equi-
librium problems (NEPs) is the presence of shared constraints.
Although the difference seems minor, it introduces several tech-
nical challenges. The main one is that the primal–dual Lagrangian
reformulation of the GNEP, which is necessary to decouple the
coupling constraints, does not preserve the strong monotonicity
of the (extended) pseudogradient (Ryu & Boyd, 2016, p. 13), the
usual background assumption in the NEP literature, as this is
a sufficient condition for the projected pseudogradient descent
to converge (Yi & Pavel, 2019, Lemma 5), Bauschke, Combettes,
et al. (2011, Thm. 26.14). For a special class of GNEPs in so-called
aggregative games this issue can be avoided. In these games, each
cost function depends on the local decision and on the aggregate
(e.g. average) of the decisions of all (other) agents. Various semi-
distributed (Belgioioso & Grammatico, 2017) and decentralized
(Belgioioso, Nedich, & Grammatico, 2020; Gadjov & Pavel, 2019)
algorithms have been developed for NE seeking in aggregative
games. The aforementioned technical challenge has only been
addressed recently in Yi and Pavel (2019) by applying a precon-
ditioning matrix on the operators. In turn, in Yi and Pavel (2019)
the authors propose a GNE seeking algorithm in games with
linear coupling constraints. In Franci, Staudigl, and Grammatico
(2020), the authors overcome the lack of strong monotonicity
by adopting an algorithm (the forward–backward–forward) with
weaker assumptions on the projected pseudogradient, at the
expense of one additional computation of the pseudogradient at
each iteration.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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In most of the literature and all of previously mentioned work,
GNE seeking algorithms are designed in discrete-time and for
static agents, i.e., where the agent costs instantaneously reflect
the chosen decisions. However, this is not the case when the
cost functions depend on some internal states of the agents
and not on their decisions (control inputs). Let us refer to this
class of agents as dynamical agents. The two main approaches to
reach a (G)NE for dynamical agents are passivity-based first-order
algorithms and payoff-based zeroth-order algorithms. By using

passivity property, in Gadjov and Pavel (2018) and Romano
nd Pavel (2019), Pavel and co-authors design a control law
hat guarantees convergence to a Nash equilibrium (NE) in a
ulti-agent system with single and multi-integrator dynamics
ver a time-invariant network. With the same goal, in De Persis
nd Grammatico (2019b), De Persis and Grammatico relax the
etwork connectivity assumption in Gadjov and Pavel (2018) by
esigning a network weight adaptation scheme. In Bianchi and
rammatico (2021), the authors extend the convergence results
o GNEPs for the first time via a preconditioning approach as
n Yi and Pavel (2019) and the use of non-Lipschitz continuous
rojections onto tangents cones.
In payoff-based algorithms, each agent can only measure the

alue of their cost function, but does not know its analytic form.
any of such algorithms are designed for NEPs with static agents
ith finite action spaces, e.g. Goto, Hatanaka, and Fujita (2012),
arden, Arslan, and Shamma (2009) and Marden and Shamma

2012). In the case of continuous action spaces, the measurements
f the cost functions are often used to estimate the pseudo-
radients. Perhaps the most popular class of control algorithms
hat exploits this principle is that of extremum seeking control
ESC). The main idea is to use perturbation signals to ‘‘excite’’
he cost function and estimate its gradient which is then used
n a gradient-descent-like algorithm (Dürr, Stanković, Ebenbauer,
Johansson, 2013; Guay & Dochain, 2015; Krstić & Wang, 2000).
s ESC estimates only one value of the (pseudo)gradient in a time
nstant, it is not possible to adopt it in algorithms that require
ultiple (pseudo)gradient computations. ESC was used for non-
eneralized NE seeking in Frihauf, Krstic, and Basar (2011) where
he proposed algorithm is proven to converge to a neighborhood
f a NE for nonlinear dynamical agents. The results are extended
n Liu and Krstić (2011) to include stochastic perturbation signals.
n Poveda and Teel (2017), Poveda and Teel propose a framework
or the synthesis of a hybrid controller which could also be used
or NEPs with nonlinear dynamical agents. For a class of NEPs
alled N-cluster games, the authors in Ye, Hu, and Xu (2020) pro-
ose an ESC-based algorithm. The extension of these algorithms
o GNEPs is nontrivial. Only for a special class of so-called popu-
ation games, the authors in Poveda and Quijano (2015) propose
n approach based on Shahshahani gradients. In fact, there is still
o methodology on data-driven (zeroth-order) GNE learning in
trongly monotone games for nonlinear dynamical agents. The
easons for that are technical: (i) the lack of strong monotonic-
ty of the extended pseudogradient in primal–dual framework;
ii) additional pseudogradient computations necessary in other
ynamics; (iii) the incompatibility of projections with available
xtremum seeking techniques. In fact, in Frihauf et al. (2011),
rihauf, Krstić and Başar specifically mention: ‘‘Several challenges
emain in the development of convergence proofs for Nash seeking
layers with projection’’.
Contribution: Motivated by the above literature and open re-

search problem, to the best of our knowledge, we consider and
solve for the first time the problem of learning a GNE in strongly
monotone games with nonlinear dynamical agents. Specifically,
our main technical contributions are summarized next:
2

• We design novel continuous-time GNE seeking algorithms
(Section 3.1, Section 3.2), which use projections onto fixed
convex sets instead of projections onto state-dependent tan-
gent cones as in Bianchi and Grammatico (2021). In this
way, the state flow is Lipschitz continuous and admits solu-
tions in the classical sense. We overcome the lack of strong
monotonicity of the primal–dual pseudogradient thanks to
a suitable preconditioning of the operators defining the
optimality conditions.

• We design an extremum seeking scheme that learns a GNE
in strongly monotone games with static agents who per-
form local computations and receive, broadcast information
from a central coordinator (Section 3.3). Differently from
Guay and Dochain (2015), where an optimization problem is
considered, we study a noncooperative game. Furthermore,
we prove that, with a time-scale separation, our algorithm
learns a GNE in (strongly) monotone games with nonlinear
dynamical agents (Section 4).

We also apply for the first time semi-decentralized GNE learning
to the robot connectivity problem and to wind farm optimization
(Section 5).

Notation: R denotes the set of real numbers. For a matrix A ∈

Rn×m, A⊤ and ∥A∥ denote its transpose and maximum singular
value respectively. For vectors x, y ∈ Rn, x⊤y and ∥x∥ denote
the Euclidean inner product and norm, respectively. We denote
the unit ball set as B := {x ∈ RN

| ∥x∥ ≤ 1}. Given N vectors
x1, . . . , xN , col (x1, . . . xN) :=

[
x⊤

1 , . . . , x⊤

N

]⊤. Collective vectors
are defined as x := col (x1, . . . , xN) and for each i = 1, . . . ,N ,
x−i := col (x1, . . . , xi−1, xi+1, . . . , xN). Given N matrices A1, A2, . . . ,
AN , diag (A1, . . . , AN) denotes the block diagonal matrix with Ai
on its diagonal. For a function v : Rn

× Rm
→ R differentiable

in the first argument, we denote the partial gradient vector as
∇xv(x, y) := col

(
∂v(x,y)

∂x1
, . . . ,

∂v(x,y)
∂xN

)
∈ Rn. Maximal and minimal

eigenvalues of matrix A are denoted as σmax(A) and σmin(A) re-
spectively. The mapping projS : Rn

→ S denotes the projection
onto a closed convex set S, i.e., projS(v) := argminy∈S ∥y − v∥.
he set-valued mapping NS : Rn ⇒ Rn denotes the normal

cone operator for the set S ⊆ Rn, i.e., NS(x) := ∅ if x /∈

S, NS(x) :=
{
v ∈ Rn

|supz∈S v⊤(z − x) ≤ 0
}

otherwise. Id is the
dentity operator. In is the identity matrix of dimension n and 0n
s vector column of n zeros. The non-negative orthant is defined
s Rn

+
:= {v ∈ Rn

| v ⪰ 0n}. For a set M := {1, . . . ,M} and
vector-valued function φ := col ((φi(·))i∈M) : R → RM , we
enote D+φ(t) := col

(
(lim suph→0+

φi(t+h)−φi(t)
h )i∈M

)
.

2. Multi-agent dynamical systems

We consider an N agents multi-agent system indexed by i ∈

I = {1, 2, . . . ,N}, each with the following dynamics:

ẋi = fi(xi, ui) (1a)

yi = hi(xi, x−i) (1b)

here xi ∈ Xi ⊂ Rni is the state variable, ui ∈ Ωi ⊂ Rmi is the
control input (decision variable), yi ∈ R is the output variable
hich evaluates the cost function hi : Rni × Rn−i → R, and

i : Xi × Ωi → Rni is the state flow mapping. Let us also define
n :=

∑
ni, m :=

∑
mi and n−i :=

∑
j̸=i nj.

To ensure existence and uniqueness of the solutions to (1a),
e make a common assumption in the nonlinear system litera-
ure (Khalil, 2002, Thm. 3.3):

ssumption 1 (Local Lipschitz Continuity). For each i ∈ I, fi is
ocally Lipschitz continuous. □
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Furthermore, we assume that the decision variables of the
agents are subject to local constraints ui ∈ Ωi and coupling
constraints Au ≤ b, where A ∈ Rq×m, b ∈ Rq, and u := col ((ui)i∈I)
ollects all the control inputs. Let us denote the collection of local
onstraints as

:= Ω1 × · · · × ΩN . (2)

s the decision variables are also coupled together, the overall
easible decision set U is contained in Ω , i.e.

:= Ω ∩
{
u ∈ Rm

| Au ≤ b
}
, (3)

et us also denote the feasible set of each agent i as

i(u−i) := Ωi ∩
{
ui ∈ Rmi | Au ≤ b

}
. (4)

n equilibrium seeking problems, we can consider only equi-
ibrium points of the nonlinear systems as possible solutions.
ere we consider the setting where agents have a continuum
f possible equilibria. In order to characterize them, we assume
hey are input-dependent points, similarly to reference tracking
roblems. In fact, this motivates a common assumption amongst
he extremum seeking literature (e.g. Guay and Dochain (2017,
qu. 3), Krstić and Wang (2000, Ass. 2.1), Poveda and Teel (2017,
ss. 2)), namely the existence of the steady-state mappings which
haracterizes the behavior of the systems for a constant input.

tanding Assumption 1 (Steady-state Mapping). For each i ∈ I,
there is a differentiable mapping πi : Rmi → Rni (called the
teady-state mapping) such that for every ui ∈ Ωi, it holds that
fi(πi(ui), ui) = 0. □

By using the previous definition, let us also define the collec-
ive steady-state mappings

π (u) := col
(
(πi(ui))i∈I

)
,

−i(u−i) := col
((

πj(uj)
)
j∈I\{i}

)
. (5)

nother common assumption in ESC is the (local) exponential
tability of the equilibrium points πi(ui), under constant input
u̇i = 0) (Krstić & Wang, 2000, Ass. 2.2), (Frihauf et al., 2011, Ass.
.2). Thus, with the change of coordinates zi := xi − πi(ui), we
dopt the following assumption throughout the paper:

tanding Assumption 2 (Lyapunov Stability). For each i ∈ I,
here is a smooth Lyapunov function, zi ↦→ Vi(zi, ui), with Lipschitz
ontinuous partial derivatives, i.e. for every constant ui ∈ Ui, it holds
that

αi∥zi∥
2

≤ Vi(zi, ui) ≤ αi∥zi∥2

∂Vi

∂zi
(zi, ui)⊤fi(zi + πi(ui), ui) ≤ −κi∥zi∥2

∂Vi

∂zi
(0, ui) = 0

or some positive constants αi, αi and κi. Moreover, for every con-
tant ui ∈ Ui, it holds that
∂Vi

∂ui
(0, ui) = 0. □

Formally, let the goal of each agent be to minimize their own
steady-state cost function, i.e.,

∀i ∈ I : min
ui∈Ui(u−i)

Ji(ui, u−i), (7)

:= min
ui∈Ui(u−i)

hi(π (ui), π−i(u−i)), (8)

which depends on the decision variables of other agents as well.
From a game-theoretic perspective, we actually consider the
problem to compute a generalized Nash equilibrium (GNE), as
formalized next.
3

Definition 1 (Generalized Nash Equilibrium). A set of control ac-
tions u∗

:= col
(
u∗

i

)
i∈I is a generalized Nash equilibrium if, for all

i ∈ I,

u∗

i ∈ argmin
vi

Ji
(
vi, u∗

−i

)
s.t.

(
vi, u∗

−i

)
∈ U . (9)

with U as in (3) and Ji as in (8). □

In plain words, a set of inputs is a GNE if no agent can improve
its steady-state cost function by unilaterally changing its input.
To ensure the existence of the GNE, we postulate the following
assumption (Facchinei & Kanzow, 2010, Thm. 3.3):

Standing Assumption 3 (Regularity). For each i ∈ I, the function
Ji in (8) is continuous; the function Ji (·, u−i) is convex for every u−i.
For each i ∈ I, the set Ωi is non-empty, closed and convex; U is
non-empty and satisfies Slater’s constraint qualification. □

More precisely, we focus on a subclass of GNE called vari-
ational GNE (v-GNE) (Facchinei & Kanzow, 2010, Def. 3.10). A
collective decision u∗ is a v-GNE in (9) if and only if there exists
a dual variable λ∗

∈ Rq such that the following KKT conditions
are satisfied (Facchinei & Kanzow, 2010, Th. 4.8):

0m+q ∈

[
F (u∗) + A⊤λ∗

− (Au∗
− b)

]
+

[
NΩ (u∗)
NRq

+
(λ∗)

]
, (10)

where by stacking the partial gradients ∇ui Ji(ui, u−i) into a vector,
we have the pseudogradient mapping:

F (u) := col
((

∇ui Ji (ui, u−i)
)
i∈I

)
. (11)

Let us postulate additional common assumptions ((De Persis &
Grammatico, 2019a, Std. Ass. 2), (De Persis & Grammatico, 2019b,
Ass. 1)) in order to assure the convergence of the algorithm we
propose later on.

Standing Assumption 4 (Well-behavedness). For each i ∈ I, Ji
in (8) is twice differentiable, and its gradient ∇Ji is ℓ-Lipschitz
continuous, with ℓ > 0. The pseudogradient mapping F in (11) is
µ-strongly monotone, i.e., for any pair u, v ∈ Rn, (u − v)⊤(F (u) −

F (v)) ≥ µ∥u − v∥2, with µ > 0. □

3. Generalized Nash equilibrium seeking for static agents

Let us start from the case of static agents to highlight the
proposed algorithm and its integration with the zeroth-order
gradient scheme.

Assumption 2 (Static Agents). For each i ∈ I, xi = ui (in place of
(1a)). □

We propose three control schemes for GNE seeking with static
agents. In the first two, the agents have perfect information about
the decisions of other agents and know the analytic expression
of their partial gradient. The third scheme is data-driven, i.e. the
agents have access to the output of their cost function only.
Additionally, the first scheme assumes the existence of the central
coordinator for dual variable calculation, while in the second one,
the computation of the dual variable is distributed.

3.1. Gradient-based case with central coordinator

Our GNE seeking algorithm is based on the forward–backward
splitting (Bauschke et al., 2011, Thm. 26.14), (Boţ & Csetnek, 2017,
Thm. 12) applied to a variant of the KKT operator in (10). In fact,
we emphasize that there is a fundamental issue in applying the
forward–backward splitting directly to (10): the forward part of

the monotone operator must be cocoercive (Bauschke et al., 2011,
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ef. 4.2). Thus, the standard approach must move all the non-
ocoercive elements in the backward step, but this would make
he backward step impossible to compute (non-causal equa-
ions). Other splitting methods that only require monotonicity of
he operator require multiple evaluations of the pseudogradient
Bauschke et al., 2011, Th. 26.17), which makes them incompati-
le with ESC as the latter can only estimate one pseudogradient.
o overcome these issues, we apply a continuous-time variant
f the approach introduced in Yi and Pavel (2019), where a
reconditioning matrix is used. However, differently from Bianchi
nd Grammatico (2021), we do not use projections onto tangent
ones to enable the use of extremum seeking techniques later on.
e refer to Appendix A for technical details.
In our proposed algorithm, each agent updates their decision,

i, based on: (i) decisions of all other agents; (ii) the dual variable,
hich is computed by a central coordinator, indexed by 0, who

s in a bidirectional computation with all of the agents:

i ∈ I : u̇i = −ui + projΩi

(
ui − γi(∇ui Ji(u) + A⊤

i λ)
)

λ̇ = −λ + projRq
+
(λ + γ0(Au − b + 2Au̇)),

or in collective form[
u̇
λ̇

]
=

[
−u + projΩ

(
u − Γ (F (u) + A⊤λ)

)
−λ + projRq

+
(λ + γ0(Au − b + 2Au̇))

]
, (12)

where Ai are the mi columns of A which correspond to coupling
constraints on ui, λ ∈ Rq

+, (γi) i∈I0 are the step sizes chosen by
the agents and the central coordinator; I0 := I ∪ {0}; Γ =

diag
(
(γiImi )i∈I

)
. We note that the decision dynamics are primal–

dual pseudogradient dynamics, while those of the dual variable
resemble the dual ascent, here with the additional pricing term
2Au̇. We are now ready to state our first convergence result:

Theorem 1 (v-GNE Seeking). Let the Standing Assumptions and
Assumption 2 hold and let (u(t), λ(t))t≥0 be the solution to (12).
Then, there exist small enough (γi)i∈I0 such that the pair (u(t),
λ(t))t≥0 converges to some (u∗, λ∗) ∈ U×Rq

+, where u∗ is the v-GNE
of the game in (7). □

Proof. See Appendix A. ■

3.2. Gradient-based case without a central coordinator

Let us study the case where the agents communicate with each
other in order to calculate the dual variable. The communication
structure is described via a graph G := (I, E), where the first
member of the ordered pair is the set of nodes (agents) and
the second member is the set of edges (communication links)
E ∈ I × I. The weight of the communication link wij ≥ 0
is equal to zero if there is no edge between nodes i and j. We
make a common assumption for consensus algorithms (Bianchi &
Grammatico, 2021; Yi & Pavel, 2019):

Assumption 3. The communication graph G is strongly con-
nected, undirected and its Laplacian satisfies L = L⊤.

Each agent updates his decision variable ui, dual variable esti-
mate λi and auxiliary variable zi as follows:

u̇i = −ui + projΩi

(
ui − γi

(
∇ui Ji(u) + A⊤

i λi
))

żi = γi
∑

j∈Ni
wij(zi − zj)

λ̇i = −λi + projRq
+

(
λi + γi

(
Ai(ui + 2u̇i) −

b
N +

∑
j∈Ni

wij(2żi − 2żj − zi + zj − λi + λj)
))

, (13)
4

or, as in collective from:⎡⎣u̇
ż
λ̇

⎤⎦ =

⎡⎢⎢⎣
−u + projΩ

(
u − Γm(F (u) + Λ⊤λ)

)
Γ L̄λ

λ + projRNq
+

(−λ + Γ (Λ(u + 2u̇) −
b
N

+L̄(2ż − z − λ)))

⎤⎥⎥⎦ , (14)

here zi ∈ Rq is an auxiliary variable; L̄ := L ⊗ Iq; Ni is
a set of agents with whom agent i has a communication link;
Γ := diag

(
(γiIq)i∈I

)
; Λ := diag ((Ai)i∈I); b = col (b, . . . , b),

here b repeats N times. We conclude the subsection with our
onvergence result:

heorem 2 (Distributed v-GNE Seeking). Let the Standing Assump-
ions, Assumptions 2 and 3 hold and let (u(t), z(t), λ(t))t≥0 be the
olution to (14). Then, there exist small enough (γi)i∈I such that
u(t), z(t), λ(t))t≥0 converges to some (u∗, 1N ⊗ z∗, 1N ⊗ λ∗) ∈

× RNq
+ × RNq

+ , where u∗ is the v-GNE of the game in (7). □

roof. See Appendix B. ■

.3. Data-driven case

In this section, we consider that the agents have access to the
ost output only. We emphasize that in this case, they neither
now the actions of the other agents, nor they know the analytic
xpressions of their partial gradients. In fact, this is a standard
etup used in extremum seeking (Guay & Dochain, 2017; Krstić
Wang, 2000; Poveda & Teel, 2017 among others). However,
e assume that the agents can communicate with a central
oordinator, to whom they send their decision variable and its
erivative.
Let us first evaluate the time derivative of the cost output

i = Ji(ui, u−i) along the trajectories of u:

i = θ0
i (u) + θ1

i (u)u̇i = [1, u̇⊤

i ]θi(u), (15)

here we define
0
i = θ0

i (u) := ∇u−i Ji(ui, u−i)⊤u̇−i (16)
1
i = θ1

i (u) := ∇ui Ji(ui, u−i)⊤ (17)

θi = θi(u) := [θ0
i , θ1⊤

i ] (18)

n (16), the variable θ0
i measures the influence of the decision

ariables of the other agents on the cost output of agent i. Instead,
n (17), the variable θ1

i measures the effect of the decision variable
f agent i on the cost output li, which is needed for (12). To
stimate the local θ0

i and θ1
i , we use a time-varying parameter

stimation approach, as proposed in Guay and Dochain (2017) for
entralized optimization. Let us provide a basic intuition first.
Let l̂i and θ̂i be estimations of the output li and the variable

i respectively and let ei = li − l̂i be the estimation error and
˜i = θi − θ̂i the parameter estimation error. Then, the estimator
odel in (15) for agent i is given by

i = [1, u̇⊤

i ]θ̂i + Kiei + c⊤

i
˙̂
θi, (19)

here Ki is a free design parameter. Note that the first two terms
n the right-hand side resemble high gain observer schemes (Oh
Khalil, 1997). As the structure of the problem does not directly
llow the use of high gain observers, it is necessary to introduce
ome other dynamics into the estimation. This is the primary role
f the third term in (19). Therefore, the dynamics of ci(t) are
hosen as

˙
⊤

= −K c⊤
+ [1, u̇⊤

]. (20)
i i i i



S. Krilašević and S. Grammatico Automatica 133 (2021) 109846

L

t

w
n
A
o

A
e

w

u
i

P

4

N
a
c
t
a

p
t

ϵ

s
(

P

5

5

S
r
b
c
c
f
t
e
r
a
r

c
f
(

w

k
s
t

et us also introduce an auxiliary variables η̃i = ηi − η̂i, ηi =

ei − c⊤

i θ̃i, with dynamics D+ηi = −Kiηi − c⊤

i D+θ , and its estimate
η̂i, with dynamics
˙̂ηi = −Kiη̂i. (21)

It is also necessary to define a positive definite matrix variable
Σi ∈ R(mi+1)×(mi+1) with dynamics given by

Σ̇i = cic⊤

i − ρiΣi + σiI Σi(0) = Σ0
i , (22)

where ρi, σi and Σ0
i are free design parameters. We note that,

in Adetola and Guay (2008), Σ̇i = cic⊤

i , but this proved to be
inconvenient in practical implementations, as the elements of Σi
grow unbounded. Instead, as in (22), dynamics of Σi behave as a
first-order system. The third term is added so that the matrix is
always invertible. Eqs. (19)-(22) form the parameter update law
in Adetola and Guay (2008):
˙̂
θi = Σ−1

i (ci(ei − η̂i) − σiθ̂i). (23)

We are finally ready to propose our semi-decentralized v-GNE
learning algorithm:

∀i ∈ I : u̇i = −ui + projΩi

(
ui − γi(θ̂1

i + A⊤

i λ) + di
)

,

λ̇ = −λ + projRq
+
(λ + γ0(Au − b + 2Au̇)),

where di represents the perturbation signal of agent i. In collec-
ive form, it can be written as[
u̇
λ̇

]
=

[
−u + projΩ

(
u − Γ (θ̂

1
+ A⊤λ) + d

)
−λ + projRq

+
(λ + γ0(Au − b + 2Au̇))

]
, (24)

here θ̂
1
col
((

θ̂1
i

)
i∈I

)
. For θ̂

1
to successfully estimate F (u), it is

ecessary to assume that the input signals are ‘‘exciting’’ enough.
s in Guay and Dochain (2017, Ass. 5), we postulate a persistency
f excitation (PE) assumption.

ssumption 4 (Persistence of Excitation). For each i ∈ I, there
xist αi, Ti > 0, such that∫ t+Ti

t
ci(τ )ci(τ )⊤dτ ≥ αiI, for all t > 0, (25)

here ci is the solution to (20). □

We conclude the section with the convergence result. For
any initial condition of the decision variables, there exist gains
such that the control variables converge to an arbitrarily small
neighborhood of a v-GNE.

Theorem 3 (v-GNE Static Learning). Let the Standing Assumptions
and Assumptions 2 and 4 hold and let (s(t) := (η̂(t), θ̂(t), u(t),
λ(t)))t≥0 be the closed-loop solution to (19)–(24). Then, for any
compact set K and any ε > 0, there exist small enough parameters
( 1
Ki

, 1
ρi

, σi, γi)i∈I and γ0, such that for every solution with s(0) ∈ K,

(t) converges to the set {u∗
}+εB, where u∗ is a v-GNE of the game

n (7). □

roof. See Appendix C. ■

. Generalized Nash equilibrium learning for dynamical agents

In this section, we propose a control scheme for generalized
ash equilibrium learning for dynamical agents. We consider
data-driven scenario only, i.e. the agents have access to the

ost output measurements and the information that is given
o them by a central coordinator. They are not aware of the
nalytic expression of their steady-state cost function, nor of their
 t

5

seudogradient, nor can they observe the states and decisions of
he other agents.

For the multi-agent dynamical system

ẋ = col
(
(fi(xi, ui))i∈I

)
= f (x, u), (26)

where ϵ > 0 is a time scale separation constant with the objective
of reaching a neighborhood of a v-GNE, we propose the same
control law as in (24), with the distinction that θ̂

1
is estimated

by a parameter estimation scheme (19) – (23), where we collect
the measurements of the output yi in (1b) instead of Ji(ui, u−i)
directly. Thus, the estimation error is hereby redefined as

ei = yi − l̂i. (27)

We conclude the section with the most general theoretical re-
sult of the paper, namely, the convergence of the closed-loop
dynamics to a neighborhood of a v-GNE.

Theorem 4 (v-GNE Dynamic Learning). Let the Standing Assump-
tions and Assumptions 1 and 4 hold and let (s(t) := (η̂(t), θ̂(t), x(t),
u(t), λ(t)))t≥0 be the closed-loop solution to (19)–(24), (26), (27).
Then, for any compact set K and any ε > 0, there exist small enough
parameters ( 1

Ki
, 1

ρi
, σi, γi)i∈I , γ0 and ϵ such that every solution with

(0) ∈ K, (x(t), u(t)) converges to an ε neighborhood of some
π (u(t)), u∗), where u∗ is a v-GNE of the game in (7). □

roof. See Appendix D. ■

. Illustrative applications

.1. Connectivity control in robotic swarms

The problem of connectivity control has been considered in
tankovic, Johansson, and Stipanovic (2011) as a Nash equilib-
ium problem. In many practical scenarios, multi-agent systems,
esides their primary objective, are designed to uphold certain
onnectivity as their secondary objective. In what follows, we
onsider a similar problem in which each agent is tasked with
inding a source of an unknown signal while maintaining cer-
ain connectivity. Unlike Stankovic et al. (2011), we require the
xistence of a central coordinator and we allow for coupled
estrictions on the decisions variables. Moreover, we model the
gents as unicycles with setpoint regulators, which does not
equire a constant angular velocity as in Stankovic et al. (2011).

Consider a multi-agent system consisting of unicycle vehi-
les, indexed by i ∈ {1, . . .N}, where each one implements the
eedback controller studied in Lee, Cho, Hwang-Bo, You, and Oh
2000) for target tracking, to have the following dynamics:⎡⎣ ẋi
ẏi
φ̇i

⎤⎦ =

⎡⎢⎢⎣
−K 1

i ∥ri − ui∥ cos (φi) cos
(
φi − arctan yi

xi

)
−K 1

i ∥ri − ui∥ cos (φi) sin
(
φi − arctan yi

xi

)
−K 2

i φi

⎤⎥⎥⎦ , (28)

here xi, yi are position variables, φi is the relative angle with
respect to the setpoint, K 1

i , K 2
i > 0 controller parameters, ri =

col (xi, yi) and ui = col
(
ux
i , u

y
i

)
is the input of the transformed

system, which represents the coordinates of the setpoint input.
Note that, in the new dynamics (28), we do not follow the global
angle coordinate, but rather φi (local coordinate), as illustrated
in Figure (Lee et al., 2000, Fig. 1). For each i, the steady-state
mapping is then given by πi(ui) = col (ui, 0).

Each agent is tasked with locating a source of a unique un-
nown signal. The strength of all signals abides by the inverse-
quare law, i.e. proportional to 1/r2. Therefore, the inverse of
he signal strength can be used in the cost function. Additionally,
he agents must not drift apart from each other too much, as
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f
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Fig. 1. Distance of the final average steady-state trajectory from the v-GNE for
agent 4.

they should provide quick assistance to each other in case of
critical failure. This is enforced in two ways: by incorporating the
signal strength of the fellows agents in the cost functions and by
communicating with the central coordinator. Thus, we design the
cost output and position constraints as

∀i ∈ I :

{
hi(ri) = ∥ri − r si ∥

2
+ c

∑
j∈I−i

∥ri − rj∥2,col ((ui − uj)j∈I−i

)
∞

≤ b
(29)

where I−i := I \{i}, c, b > 0 and r si represents the position of the
source assigned to agent i. The safe traversing area is described
by a rectangle: [xmin, xmax] × [ymin, ymax].

For our numerical simulations, we choose the parameters:
N = 4, (xmin, xmax) = (−16, 16), (ymin, ymax) = (−6, 6), r s1 =

(−4, −8), r s2 = (−12, −3), r s3 = (1, 7), r s4 = (16, 8), (c, b) =

(0.04, 14), Ki = 100, kσ
i = 100, σi = 10−6, Σi(0) = 0.1I ,

γi = 0.002, γ0 = 0.002, ϵ = 0.1, K i
1 = 3, K i

2 = 6,
(ω1

1, ω
2
1) = (5.11, 6.38), (ω1

2, ω
2
2) = (4.42, 5.16), (ω1

3, ω
2
3) =

10.59, 11.91), (ω1
4, ω

2
4) = (14.65, 16.12). We run simulations

or different values of perturbation amplitudes in range [0.1, 0.5]
and different values of the frequency factor kω in range [0.17, 1].
The numerical results are illustrated in Figs. 1–3. In Fig. 1, we
see that smaller perturbations and frequency factors bring the
system closer towards the v-GNE; however in Fig. 2, we see
that the convergence rate slows down significantly. Thus, there
is a trade-off between convergence speed and closeness to the
solution. Moreover, we numerically test robustness to output
noise on a representative example of agent trajectories. We sim-
ulate noise with zero mean and variance equal to 1 and 3. In
Fig. 3, the shaded regions represent envelopes of the trajectories
(ten simulations per variance). The darkest shade represents the
case without noise, while the lightest represents the case with
largest variance. We observe that the algorithm still converges to
a neighborhood of the v-GNE.

5.2. Wind farm optimization

As one of the main sources of renewable energy, wind farms
and their optimization have been addressed extensively from
different perspectives such as power tracking of single turbines
(Boukhezzar, Siguerdidjane, & Hand, 2006; Koutroulis & Kalaitza-
kis, 2006), power tracking via extremum seeking (Ghaffari, Krstic,
& Seshagiri, 2014), power tracking with load reduction (Soli-
man, Malik, & Westwick, 2011; Soltani, Wisniewski, Brath, &
6

Fig. 2. Hours required to enter a ball of size ε = 1.5 centered around the v-GNE
or agent 4.

Fig. 3. State trajectories in the x–y plane for the case of di = 0.49 and various
noise levels. Circle symbols represent locations of the sources, while the ×

symbols represent locations of the v-GNE.

Boyd, 2011), distributed optimization of wind farms (Barreiro-
Gomez, Ocampo-Martinez, Bianchi, & Quijano, 2015; Marden,
Ruben, & Pao, 2013) and distributed optimization via extremum
seeking (Ebegbulem & Guay, 2017). While in the power tracking
case, often the torque or some other related variable is taken as
the control input, in the distributed optimization case, the axial
induction factor (AIL) is usually taken as the control input.

In what follows, we consider a similar problem in which a
wind farm tries to maximize its power output with AIL as the
control input. The control variables are subject to local constraints
(feasible values of AIL). Also, we require that the turbines experi-
ence a similar amount of mechanical stress. To do that, we impose
that AILs of a row of wind turbines cannot differ too much from
AILs of the succeeding row, which introduces coupling constraints
to the optimization problem. Unlike the previously mentioned
literature on distributed wind farm optimization, here we also al-
low for AIL dynamics in order to reflect the turbine time constant
and its effect on the power output. One possible way of solving
the problem would be via global optimization, where a central
coordinator would minimize a global cost function and send AIL
commands to the turbines. To avoid having a single critical node
for computation and communication, an alternative approach is
to pose the problem as a potential game, where the cost function
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Fig. 4. Layout of the wind turbines and the wind directions.

of the turbines is ‘‘aligned’’ to a global utility function. In our case,
the potential function would be the sum of all power outputs.
We choose that the individual cost functions are equal to the
potential function and each of the agents minimizes their cost
function on their own, with limited information from the central
coordinator. In this setup, a v-GNE corresponds to an optimal
solution to the global power maximization problem.

Technically speaking, we consider N wind turbines, indexed by
∈ {1, . . . ,N}, each with the following AIL dynamics and power
utput:

˙ i = −
1
τ
(ai − ui) (30)

yi = −

∑
i∈I

Pi(a) = −
1
2ρA

∑
i∈I

CP (ai) Vi(a)3, (31)

here ai represent the state variable, ui represent the control in-
ut, namely the AIL reference, yi is the measured power output of
he wind farm, which is broadcasted by the central coordinator, ρ
s the air density, A is the surface area encompassed by the blades
f a single turbine, CP (ai) := ai(1 − ai)2 is the power efficiency
oefficient and Vi is the average wind speed experienced by wind
urbine i, as in Marden et al. (2013, Equ. 5):

i(a) = U∞

(
1 − 2

√∑(
ajcji

)2)
. (32)

The wind turbines are placed in R rows and C columns with
coordinates xi and their indices can be written as i = ic + irC ,
where ic ∈ {1, . . . , C} and ir ∈ {0, . . . , R − 1}. They are tasked
to maximize the wind farm power output under local constraints
ai ∈ [amin, amax] and coupling constraints |ai − aj| ≤ b for all i, j,
where it holds that jr = ir + 1.

For our numerical simulation, we choose a similar setup as in
Marden et al. (2013). The wind farm geometric setup is shown
in Fig. 4 and the following parameters are chosen: ρ = 1.225,
U∞ = 8, τ = 10, γi = γ0 = 0.05, ϵ = 0.005, b = 0.03, amin =

0.1, amax =
1
3 . We take the same parameter estimation scheme

as in previous numerical simulation, apart for the perturbation
frequencies that we randomly choose in the interval [3, 11] and
erturbation amplitudes that we take as ∥di∥ = 0.01. All initial
onditions, apart for ai, were set to zero. The initial condition
or ai was set to 1

3 , which corresponds to the greedy strategy in
arden et al. (2013). In our simulations, we use three different
ind directions. In the time interval [0, 50000), the wind was
lowing with speed direction vector v⃗1 = (2, −1); in the time
nterval [50000, 100000), the wind was blowing with the speed
7

Fig. 5. Power generation with the proposed algorithm (solid line) compared to
the greedy power output setpoint (dashed red) and the global optimal power
setpoint (dot-dashed black).

direction vector v⃗2 = (0, −1); and finally, in the time interval
[100000, 150000], the wind was blowing with speed direction
vector v⃗3 = (−1, −1). We assume that the wind turbines in-
stantly adjust their orientation towards the wind direction as this
process is relatively fast compared with the GNE learning process.
The simulation results are shown in Fig. 5. We can see that the
wind turbines reach a neighborhood of the v-GNE, even with the
delay introduced by AIL dynamics.

6. Conclusion

Generalized Nash equilibrium problems with nonlinear
dynamical agents can be solved via a preconditioned forward–
backward algorithm that uses estimates of the pseudogradient
mapping if it is strongly monotone and Lipschitz continuous,
and if the dynamical agents have a certain exponential stability
property. Regular projections enable the use of a parameter
estimation scheme. Numerical simulations show that there is a
trade-off between closeness to the equilibrium solution and the
speed of convergence.

Appendix A. Proof of Theorem 1

To prove the convergence of the algorithm, we show that
equation in (12) is equivalent to a continuous-time precondi-
tioned forward–backward algorithm, whose convergence is
proven using well-known properties of monotone operators. First,
we show the equivalence. Let us denote ω = col(u, λ). We write
Eq. (12) as:

ω̇ = −ω + projΩ×Rq
+

(
ω + Γ

[
−F (u) − A⊤λ

Au − b + 2Au̇

])
, (A.1)

where Γ = diag
(
Γ , γ0Iq

)
. Next, by the property of projection

operator in Bauschke et al. (2011, Prep. 6.47), Eq. (A.1) reads as

ω̇ + ω + ΓNΩ×Rq
+
(ω̇ + ω) ∋ ω + Γ

[
−F (u)−A⊤λ
Au−b+2Au̇

]
. (A.2)

When the elements of the last matrix product in (A.2) are rear-
ranged and the equation is premultiplied by Γ−1, the equations
read as follows:(
Γ−1

+ NΩ×Rq
+

)
(ω̇ + ω) ∋ Φ̂ω +

[
−F (u)
−b

]
+
[

0
2Au̇

](
Γ−1

+ NΩ×Rq
+

)
(ω̇ + ω) ∋ Φω −

[
F (u)
b

]
+ Â(ω + ω̇). (A.3)
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here we have used the notation

ˆ =

[
Γ −1

−A⊤

A γ −1
0 Iq

]
, Φ =

[
Γ −1

−A⊤

−A γ −1
0 Iq

]
, Â =

[
0 0
2A 0

]
.

Next, the following expression is valid for the matrices:

Γ−1
− Â = Φ +

[
0 A⊤

−A 0

]
= Φ + Ψ . (A.4)

From Eqs. (A.3) and (A.4), it follows(
Id+Φ−1

(
NΩ×Rq

+
+ Ψ

))
(ω̇ + ω) ∋ ω − Φ−1[ F (u)

b

]
.

By inverting the operator on the left side of the previous expres-
sion, we finally arrive to desired equation:

ω̇ = −ω +
(
Id+Φ−1A

)−1
◦
(
ω − Φ−1B(ω)

)
⇔

ω̇ = −ω + JΦ−1A
(
ω − Φ−1B(ω)

)
, (A.5)

where A = NΩ×Rq
+
+Ψ and B = col (F (u), b). Eq. (A.5) represents

a forward–backward algorithm preconditioned by matrix Φ−1.
Fixed points of the operator on the right-hand side of (A.5)
((Bauschke et al., 2011, Prep. 26.1, (iv)(a)), (Yi & Pavel, 2019,
Lemma 1), (10)) represent GNE that are the solutions to the game
in (7) and equilibrium points of dynamics in (24). Before proving
convergence, we have to prove an additional result.

Lemma 1. Let T = (Id+A)−1
◦ (Id−B), where A is maximally

monotone. Then it holds:

(Tx − x∗)⊤(x − Tx) ≥ (Tx − x∗)⊤(Bx − Bx∗).

for all (x, x∗) ∈ dom(T ) × fix(T ). □

Proof. Let us denote x∗
= Tx∗

= JAy∗ as the fixed point of
operator T . Then it holds:

(Tx − x∗)⊤(x − Tx − (Bx − Bx∗))

= (Tx − x∗)⊤(x − Bx − Tx + x∗
− (x∗

− Bx∗))

= (Tx − x∗)⊤(y − Tx + x∗
− y∗)

= (JAy − JAy∗)⊤((Id−JA)y − (Id−JA)y∗)

≥ 0, (A.6)

where the last equation holds due to properties of firmly nonex-
pansive operators. ■

Now we denote Ã = Φ−1A, B̃ = Φ−1B and T = (Id+Ã)−1
◦

(Id−B̃). Then, the dynamics in (A.5) read as ω̇ = −ω + Tω. We
propose the Lyapunov function candidate

V (ω) =
1
2∥ω − ω∗

∥
2, (A.7)

here ω∗ is a fixed point of operator T . Its derivative along the
rajectory in (A.5) is then
˙ (ω) = −(ω − ω∗)⊤(ω − Tω)

= −∥ω̇∥
2
− (Tω − ω∗)⊤(ω − Tω) (A.8)

rom Lemma 1, it follows that
˙ (ω) ≤ −∥ω̇∥

2
− (Tω − ω∗)⊤(B̃ω − B̃ω∗)

≦ −∥ω̇∥
2
− (Tω − ω)⊤(B̃ω − B̃ω∗) − (ω − ω∗)⊤(B̃ω − B̃ω∗)

≦ −∥ω̇∥
2
− (Tω − ω)⊤Φ−1(Bω − Bω∗)

− (ω − ω∗)⊤Φ−1(Bω − Bω∗). (A.9)

Bounds on the eigenvalues of Φ can be estimated with Gersh-
gorin’s theorem. For small enough step sizes, we denote the lower
and upper bounds on the eigenvalues as σmin =

1
maxi∈I0 (γ

−1
i )+∥A∥

nd σmax =
1

mini∈I0 (γ
−1
i )−∥A∥

, respectively. We bound (A.9) as

V̇ (ω) ≤ − ∥ω̇∥
2
+ σ ∥ω̇∥∥Bω − Bω∗

∥
max s

8

− σmin(ω − ω∗)⊤(Bω − Bω∗). (A.10)

Since F (u) is strongly monotone and Lipschitz continuous, it
is also cocoercive (Yi & Pavel, 2019, Lemma 5). Therefore, the
operator B is µ

L2
cocoercive. Eq. (A.10) then becomes:

V̇ (ω) ≤ −∥ω̇∥
2
+ σmax∥ω̇∥∥Bω − Bω∗

∥

−
σmin
2 β∥Bω − Bω∗

∥
2
−

σmin
2 (ω − ω∗)⊤(Bω − Bω∗)

≤ −
1
2∥ω̇∥

2
−

σmin
2 (ω − ω∗)⊤(Bω − Bω∗)

−
1
2 [ ∥ω̇∥ ∥Bω−Bω∗

∥ ]
[ 1 σmax

σmax βσmin

][
∥ω̇∥

∥Bω−Bω∗
∥

]
(A.11)

Since, it is always possible to choose parameters γi and γ0 small
enough such that βσmin ≥ σ 2

max and the matrix in (A.11) is
negative definite, the last equation reads as

V̇ (ω) ≤ −
1
2∥ω̇∥

2
−

σmin
2 (ω − ω∗)⊤(Bω − Bω∗)

≤ −
1
2∥ω̇∥

2
−

µσmin
2 ∥ũ∥

2, (A.12)

where ũ = u − u∗ and the last line follows from strong mono-
tonicity of F (u∗). The rest of the proof represents a La Salle
rgument. As the right-hand side is a sum of negative squares,
t follows that V̇ (ω) ≤ 0 for all ω. Let us denote the following
sets

ζc := {ω ∈ Ω × Rq
+ | V (ω) ≤ c}

ζo := {ω ∈ ζc | ∥ω̇∥ = 0 and
ũ = 0}

Z := {ω ∈ ζc | V̇ (ω) = 0}
O := {ω ∈ ζc | ω(0) ∈ Z H⇒ ω(t) ∈ Z ∀t ∈ R},

A := {ω ∈ ζc | ω̇ = 0}, (A.13)

where ζc is a compact level set chosen such that it is nonempty,
Z is the zero set of (A.8), ζo is the superset of Z which follows
from (A.12), O is the maximum invariant set as explained in
Khalil (2002, Chp. 4.2) and A is the equilibrium set. It holds that
ζc ⊇ ζo ⊇ Z ⊇ O ⊇ A. As ζc is invariant and the right-hand side
equations of (12) are (locally) Lipschitz, by Khalil (2002, Thm. 3.3)
we conclude that solutions to (12) exist and are unique. Next we
note that ω̇ = 0 ⇔ ω ∈ fix(T ). Therefore, the set A is the set of
fixed points and it holds ζo ≡ Z ≡ O ≡ A. Hence, by La Salle’s
invariance principle (Khalil, 2002, Thm. 4.4), trajectories converge
to the set A. Additionally, as ũ = 0 in A, it follows that u∗ is a
singleton, which is not necessarily true for λ∗.

Appendix B. Proof of Theorem 2

Similarly to Theorem 1, it can be shown that the dynamics in
(14) can be written as

˙̄ω = −ω̄ + JΦ̄−1Ā
(
ω̄ − Φ−1B̄(ω)

)
, (B.1)

where ω̄ := col (u, z, λ), Ā := N
Ω×RNq×RNq

+

+ Ψ̄ , B̄ := (F (u),
0Nq,

b
N + L̄λ

)
,

¯ :=

[
0 0 Λ⊤

0 0 −L̄
−Λ⊤ L̄ 0

]
, Φ̄ :=

[
Γ −1 0 −Λ⊤

0 Γ̄ −1 L̄
−Λ L̄ Γ̄ −1

]
.

roof that an equilibrium point ω̄∗ of (B.1) exists and that u∗ is
he solution to the game in (7) is analogous to proof of Theorem 2
n Yi and Pavel (2019) and is omitted for brevity. Furthermore, as
ll of the operators and matrices hold the same properties as the
nes in Theorem 1 of this paper, convergence is proven in the

ame manner.
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ppendix C. Proof of Theorem 3

Let us consider a Lyapunov function candidate V = Vθ +

ω , where Vθ represents a parameter estimation error and Vω

epresents a primal–dual convergence error:

θ (η̃, θ̃) =
∑

i∈I

( 1
2 η̃

⊤

i η̃i +
1
2 θ̃

⊤

i Σĩθi
)
, (C.1)

ω(ω) =
1
2∥ω − ω∗

∥
2. (C.2)

Since we anticipate that the derivative of the projection function
does not exist on some corner points, we use the Lyapunov theory
for differential inclusions as in Blanchini and Miani (2008, Chp. 2),
namely we use upper Dini derivatives (D+) instead of regular time
derivatives. For ease of notation, we use the regular derivatives
whenever they are equal to Dini derivatives.

Outline of the proof: We first bound all of the positive terms
in D+Vθ with functions of variables (η, θ̂, ω), then we similarly
bound all of the terms in D+Vω introduced by the parameter
estimates. Finally, we use the quadratic terms of D+V to show
that the positive terms are majorized by the negative terms.

Parameter estimation term: We bound the Dini derivative of
Vθ similarly to Guay and Dochain (2017, Thm. 1) and Guay,
Vandermeulen, Dougherty, and McLellan (2018, Eq. 31) with the
only difference that we let each agent choose their own param-
eters (σi, Ki, ρi). The Lyapunov derivative, similarly to Guay and
Dochain (2017, p. 4, col. 1), reads as follows:

D+Vθ (η̃, θ̃) ≤

∑
i∈I

(
−η̃⊤

i

(
Ki −

1+k1ζi
2

)
η̃i −

1
2∥ei − ηi∥

2
+

σi
2 θ⊤

i θi

−
ρ′
iγ

1
i

2 θ̃⊤

i θ̃i +
1

2k1
D+θ⊤

i D+θi +
γ 2
i

2k2
D+θ⊤

i D+θi

)
≤ −ka∥η̃∥

2
− kb∥θ̃∥2

−
1
2∥e − η∥

2
+ kc∥D+θ∥2

+
σ
2 ∥θ∥2, (C.3)

where k1, k2 > 0, ζi = cic⊤

i , 0 < γ 1
i ≤ γ 2

i are bounds for
matrices Σi, ρ ′

i = ρi − k2 for all i ∈ I, ka := mini

(
Ki −

1+k1ζi
2

)
,

kb := mini

(
kΣ ′
i γ 1

i
2

)
, kc := maxi

(
1

2k1
+

γ 2
i

2k2

)
and σ := maxi σi.1

Assumption 4 is used in order to derive these expressions. We
define the compact set ζc := {(ω, η̂, θ̂) ∈ U × Rq

× RN
×

Rm
| V (ω, η̃, θ̃) ≤ c}. Next, we bound the positive terms in (C.3).

The analysis starts with θ = col
(
θ0, θ1), where

0
:= col

((
∇u−i Ji (ui, u−i)

⊤ u̇−i
)
i∈I

)
:= J0(u)u̇, (C.4)

1
:= F (u). (C.5)

e have that

θ0
∥ ≤ ∥J0(u)∥∥u̇∥ = L0∥u̇∥,

∥θ1
∥ = ∥F (u)∥ ≤ ∥F (u) − F (u∗)∥ + ∥F (u∗)∥

≤ ℓ∥ũ∥ + ∥F (u∗)∥,

where L0 := maxu∈U
J0(u) < ∞, since U is bounded. Then, we

bound ∥θ∥ as follows

∥θ∥
2

≤ L0
2
∥u̇∥

2
+ (ℓ∥ũ∥ + ∥F (u∗)∥)2

≦ L1∥u̇∥
2
+ L2∥ũ∥

2
+ L3∥F (u∗)∥2,

1 The term 1
2 ∥e−η∥

2 was omitted in Guay and Dochain (2017) (page 4, first
column, second to last equation) and Guay et al. (2018), as it is not required.
9

for L1 := L02, L2 := 2ℓ2 and L3 = 2. In order to bound ∥D+θ∥, we
observe the dini derivatives of θ0 and θ1:

∥D+θ0
∥ ≤ ∥u̇⊤HJ0 u̇∥ + ∥J0(u)D+u̇∥, (C.6)

∥D+θ1
∥ = ∥∇F (u)u̇∥ ≤ L∥u̇∥, (C.7)

∥D+u̇∥ =
u̇ + D+ projΩ

(
u − Γ (θ1

+ A⊤λ) + d(t)
)

≤ 2∥u̇∥ + σmax(Γ )∥ ˙̂
θ1

∥ + σmax(Γ )∥A∥∥λ̇∥ + ∥ḋ(t)∥

ext, we bound ∥
˙̂
θ1

∥ using the dynamics in (23):
˙̂
θ∥ ≤

∑
i∈I

(
∥Σ−1

i ci(ei − ηi)∥ + σi∥Σ−1
i ∥∥θi − θ̃i∥

)
On a compact set ζc , ci and Σi are bounded, therefore, the last
equation reads as:

∥
˙̂
θ∥ ≤ L∗

3∥(e − η)∥ + L∗

4∥θ∥ + L∗

5∥θ̃∥, L∗

3, L
∗

4, L
∗

5 > 0

Now, bound on ∥D+u̇∥ equals to:

∥D+u̇∥ ≤ 2∥u̇∥ + σmax(Γ )L∗

3∥(e − η)∥ + σmax(Γ )L∗

4∥θ∥

+ σmax(Γ )L∗

5∥θ̃∥ + σmax(Γ )∥A∥∥λ̇∥ + ∥ḋ(t)∥ (C.8)

On a compact set ζc , u̇⊤HJ0 is bounded, therefore by combin-
ing (C.6), (C.7), (C.8) and the arithmetic mean–quadratic mean
inequality, it follows:

∥D+θ∥2
≤ L4∥u̇∥

2
+ L5∥λ̇∥

2
+ L6∥θ∥2

+ L7∥θ̃∥2
+ L8∥e − η∥

2

+ L9∥ḋ(t)∥2,

or some positive L4 to L9. By using the previously calculated
ounds, D+Vθ reads as:
+Vθ ≤ − ka∥η̃∥

2
− (kb − kcL7)∥θ̃∥2

−
( 1
2 − kcL8

)
∥e − η∥

2

+ (kcL4 + (σ + kcL6)L1)∥u̇∥
2
+ (σ + kcL6)L2∥ũ∥

2

+ kcL5∥λ̇∥
2
+ kcL9∥ḋ(t)∥2

+ (σ + kcL6)L3∥F (u∗)∥. (C.9)

Primal–dual term: Unlike the full-information case, our agents
se the estimate θ̂

1
instead of F (u). Therefore, by adding and

ubtracting the derivative of full-information case in the Dini
erivative of (C.1), we have:

+Vω(ω) = (ω − ω∗)⊤
[

− ω + JΦ−1A
(
ω − Φ−1B(ω)

)
− projΩ×Rq

+

(
ω + Γ

[
−F (u)−A⊤λ
Au−b+2Au̇

])
+ projΩ×Rq

+

(
ω + Γ

[
−θ1−A⊤λ
Au−b+2Au̇

]
+
[
d(t)
0

]) ]
≤ −

1
2∥ω̇∥

2
−

µσmin
2 ∥ũ∥

2
+ σmax(Γ )∥ũ∥∥θ̃∥ + ∥ũ∥∥d(t)∥

≤ −
1
2∥ω̇∥

2
−

(
µσmin

2 −
σmax(Γ )

2k3
−

1
2k4

)
∥ũ∥

2

+
σmax(Γ )k3

2 ∥θ̃∥2
+

k4
2 ∥d(t)∥2,

here the last line follows from the inequality

b ≤
1
2ka

2
+

k
2b

2, ∀(a, b, k) ∈ (R2
× R>0). (C.10)

Complete Lyapunov candidate: Finally, the Dini derivative of V is
bounded as follows:

D+Vω + D+Vθ ≤ −
( 1
2 − kcL4 − (σ + kcL6)L1

)
∥u̇∥

2

−
( 1
2 − kcL5

)
∥λ̇∥

2
− ka∥η̃∥

2
−
( 1
2 − kcL8

)
∥e − η∥

2

−

(
µσmin

2 −
σmax(Γ )

2k3
−

1
2k4

− (σ − kcL6)L2
)

∥ũ∥
2

−

(
kb − kcL7 −

σmax(Γ )k3
2

)
∥θ̃∥2

+ kcL9∥ḋ(t)∥2
+ (σ + kcL6)L3∥F (u∗)∥2

+
k4
2 ∥d(t)∥2

≦ −b ∥u̇∥
2
− b ∥λ̇∥

2
− k ∥η̃∥

2b − b ∥e − η∥
2
− b ∥ũ∥

2

1 2 a 3 3 4
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B

− b5∥θ̃∥2
+ kcL9∥ḋ(t)∥2

+ (σ + kcL6)L3∥F (u∗)∥2

+
k4
2 ∥d(t)∥2. (C.11)

Now, we can make the last three norms arbitrarily small and
b1, b2, b3 positive by choosing kc, σ and k4 small enough, we
an make b4 positive by choosing (σi) i∈I small enough, we can
ake b5 positive by making kb large enough. Of the mentioned
arameters, only kb and kc cannot be chosen arbitrarily. To make
b large enough, we chose (Ki) i∈I and (ρi) i∈I large enough, to
ake kc small enough we have to chose parameters k1 and k2
mall enough. Since the positive terms can be made arbitrarily
mall, we conclude that the Lyapunov derivative can be made
egative on the boundary of the set ζc , which implies that the set
s invariant. As the right-hand side of equations (19)–(22), (24) is
locally) Lipschitz on their domain, by Khalil (2002, Thm. 3.3), we
onclude that their solutions exist and are unique. Furthermore,
s ζc was chosen for arbitrary c , it follows that for any compact
et K of initial conditions, it is possible to find such control
arameters that for (η(0), θ̂(0), u(0)) ∈ K , (η̃, θ̃, u) converge to
n arbitrarily small neighborhood of (0, 0, u∗), which concludes
he proof. For λ we can only claim that this is bounded.

ppendix D. Proof of Theorem 4

We have to prove that there exists a timescale separation
etween the GNE learning scheme described in Section 3 and
ynamics of the multi-agent system in (26) such that the inter-
onnection is also stable. Let us consider a Lyapunov function
andidate V = Vθ + Vω + Vz , where Vθ and Vω are the same as
C.1), (C.2) and Vz is formed using Standing Assumption 2 in the
ollowing way:

z(z, u) =
∑

i∈I Vi(zi, ui). (D.1)

Outline of the proof: We first bound all of the terms in D+Vz
ntroduced by nonconstant inputs with functions of the variables
η, θ̂, ω, z), then we bound all of the terms in D+Vθ introduced
y the redefinition of error ei in (27) in the same manner. At the
nd, we use the quadratic terms of the complete D+V to show
hat the additional terms are majorized by the negative terms.

Multi-agent term: Let us do a change of variables z = x−π (u)
n (26). New dynamics read as

ż = f (z + π (u), u) − ϵ∇π (u)u̇. (D.2)

ini derivative of (D.1), by plugging in (D.2), reads as
+Vz(z, u) = ∇zV⊤

z ż + ∇uV⊤

z u̇
=

1
ϵ
∇zVz(z, u)⊤f (z + π (u), u)

− ∇zVz(z, u)⊤∇π (u)u̇ + ∇uVz(z, u)⊤u̇

By using Standing Assumption 2 and inequality (C.10), we can
further improve the bound:

D+Vz(z, u) ≤ −
κ
ϵ
∥z∥2

+ L10∥z∥∥u̇∥

≤ −

(
κ
ϵ

−
L10k5

2

)
∥z∥2

+
L10
2k5

∥u̇∥
2,

here L10 > 0 is the Lipschitz constant of the function maxu∈U

uVz(z, u) − ∇zVz(z, u)⊤∇π (u) and k5 > 0.
Parameter estimation term: GNE learning is identical as in the

tatic case, apart from the measurements of the cost function. Let
s denote

l := col
(
(li)i∈I

)
,

y := col
(
(yi)i∈I

)
,

(x) := col
(
(hi (ui, u−i))i∈I

)
.

10
The difference in the measurement introduces an additional com-
ponent in the bound for the derivative of the Lyapunov function
of the parameter estimation term:

∥η̃∥
ẏ − l̇

 =
η̃  d

dt (h(x) − h(π (u)))


= ∥η̃∥
 1

ϵ
∇h(x)f (x, u) − ∇h(π (u))∇π (u)u̇


≤

1
ϵ
∥η̃∥ ∥∇h(x)f (x, u) − ∇h(x)f (π (u), u)∥ (D.3)

+ ∥η̃∥ ∥∇h(π (u))∇π (u)u̇∥

≤
L11
ϵ

∥η̃∥∥z∥ + L12∥η̃∥∥u̇∥

≤

(
L11k6
2ϵ +

L12k7
2

)
∥η̃∥

2
+

L11
2ϵk6

∥z∥2
+

L12
2k7

∥u̇∥
2,

where L11, L12, k7, k6 > 0 and the second to last equation follows
from the (local) Lipschitz continuity of the functions and the
fact that the variables are bounded on a compact set ζc :=

{(x, ω, η̂, θ̂) ∈ X × U × Rq
× RN

× Rm
| V (z, ω, η̃, θ̃) ≤ c}.

Complete Lyapunov candidate: Finally, the Dini derivative of the
complete Lyapunov function candidate is:

D+Vθ (ω) + D+Vθ (η̂, θ̂) + D+Vz(z, u)

≤ −

(
1
2 − kcL4 − (σ + kcL6)L1 −

L10
2k5

−
L12
2k7

)
∥u̇∥

2

−
( 1
2 − kcL5

)
∥λ̇∥

2
−

(
ka −

L11k6
2ϵ −

L12k7
2

)
∥η̃∥

2

−

(
kb − kcL7 −

σmax(Γ )k3
2

)
∥θ̃∥2

−

(
µσmin

2 −
σmax(Γ )

2k3
−

1
2k4

− (σ − kcL6)L2
)

∥ũ∥
2

−

(
κ
ϵ

−
L10k5

2 −
L11
2ϵk6

)
∥z∥2

−
( 1
2 − kcL8

)
∥e − η∥

2

+ kcL9∥ḋ(t)∥2
+ (σ + kcL6)L3∥F (u∗)∥ +

k4
2 ∥d(t)∥2

≦ −b1∥u̇∥
2
− b2∥λ̇∥

2
− b3∥η̃∥

2
− b4∥θ̃∥2

− b5∥ũ∥
2
− b6∥z∥2

− b7∥e − η∥
2
+ b8∥F (u∗)∥2

+ b9∥ḋ(t)∥2
+ b10∥d(t)∥2. (D.4)

The rest follows analogously to the proof of Theorem 3 with
ddition of the parameter ϵ. We conclude that it is possible to
ind such control parameters that for (η̃(0), θ̃(0), u(0), z(0)) ∈

, (η̃, θ̃, u, z) converge to an arbitrarily small neighborhood of
0, 0, u∗, 0), which concludes the proof. For λ the dual variable
e can only claim boundedness.
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