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SUMMARY

The long-term environmental management of closed landfills presents
significant challenges due to persistent uncertainty regarding residual
contamination and pollutant release processes. While conventional af-
tercare practices, such as those mandated by the European Landfill Di-
rective, focus on emission monitoring and maintenance of engineered
barriers, they often overlook the complex subsurface dynamics of pollu-
tant mobility within landfill waste bodies. Accurately quantifying the in-
ternal releasable pollutant content, referred to as the emission potential,
is essential for developing realistic and scientifically-grounded aftercare
strategies.

In this dissertation, | present an integrated framework to estimate
and predict landfill emission potentials by combining stochastic mod-
eling, Bayesian uncertainty quantification, data assimilation, and hy-
drogeophysical measurements. The research introduces a stochastic
Lagrangian-based travel time modeling approach to simulate the het-
erogeneous water flow and solute transport within landfill bodies. This
method, unlike traditional grid-based models, captures preferential flow
phenomena and accommodates the spatial variability inherent in landfill
waste structures.

The model calibration is performed using Bayesian inference, employ-
ing long-term observational data of leachate production and quality from
the Braambergen landfill in the Netherlands. This probabilistic calibra-
tion explicitly quantifies uncertainties in model parameters and outputs,
providing more credible risk assessments and long-term predictions of
leachate emissions.

Recognizing the risk of error accumulation in history-matching meth-
ods, | further implement data assimilation techniques, notably the Weakly
Coupled Particle Filter (WCPF) and a hybrid Particle Filter-Markov Chain
Monte Carlo (PF-MCMC) method. These approaches enable sequential
updating of model parameters and system states as new data become
available, improving the predictive performance and reducing uncertainty
over time. The PF-MCMC method, in particular, can estimate parameters
and hidden processes, which is very helpful for understanding the dy-
namics in the landfill.

To further enhance the accuracy of emission potential estimations, the
framework integrates hydrogeophysical data obtained through Electrical
Resistivity Tomography (ERT). Using a Bayesian evidential learning ap-
proach, resistivity measurements are directly mapped into probabilistic

Xi
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water storage estimates within landfill waste bodies. This additional con-
straint strengthens the characterization of subsurface hydrological con-
ditions, distinguishing between leachable and isolated water fractions.

The dissertation is structured across six chapters, beginning with an
overview of the landfill aftercare problem, followed by the development
of the stochastic modeling framework, the application of particle filtering
and PF-MCMC, the incorporation of ERT data through Bayesian evidential
learning, and concluding with a synthesis of findings and recommenda-
tions for future research.

Overall, this work advances the scientific understanding of landfill emis-
sion dynamics by offering a unified methodological framework that in-
tegrates stochastic modeling, data assimilation, and hydrogeophysical
surveying. The contributions herein support the development of more
robust, data-driven, and cost-effective strategies for landfill aftercare,
ensuring long-term environmental protection and sustainability.



SAMENVATTING

Het langetermijnbeheer van gesloten stortplaatsen brengt aanzienlijke
uitdagingen met zich mee vanwege de voortdurende onzekerheid over
resterende verontreiniging en processen van verontreinigingsafgifte. Hoe-
wel conventionele nazorgpraktijken, zoals voorgeschreven door de Euro-
pese Stortplaatsrichtlijn, zich richten op emissiebewaking en het onder-
houden van technische barrieres, negeren zij vaak de complexe onder-
grondse dynamiek van verontreinigingsmobiliteit in de stortplaatsmassa.
Een nauwkeurige kwantificering van de intern vrijmaakbare hoeveelheid
verontreinigingen, het zogenaamde emissiepotentieel, is essentieel voor
het ontwikkelen van realistische en wetenschappelijk onderbouwde na-
zorgstrategieén.

In dit proefschrift presenteer ik een geintegreerd raamwerk om emis-
siepotentiélen van stortplaatsen te schatten en te voorspellen door sto-
chastische modellering, Bayesiaanse onzekerheidskwantificering, data-
assimilatie en hydrogeofysische metingen te combineren. Het onderzoek
introduceert een stochastische, op Lagrange gebaseerde reistijdmodelle-
ring om de heterogene waterstroming en het opgeloste transport binnen
stortplaatslichamen te simuleren. Deze methode, in tegenstelling tot tra-
ditionele roostergebaseerde modellen, vangt preferentiéle stromingsver-
schijnselen en houdt rekening met de ruimtelijke variabiliteit die inherent
is aan afvalstructuren.

De modelkalibratie wordt uitgevoerd met behulp van Bayesiaanse infe-
rentie, waarbij langjarige observatiegegevens van percolaatproductie en
-kwaliteit van de stortplaats Braambergen in Nederland worden gebruikt.
Deze probabilistische kalibratie kwantificeert expliciet de onzekerheden
in modelparameters en -uitkomsten, wat leidt tot betrouwbaardere risi-
cobeoordelingen en langetermijnvoorspellingen van percolaatemissies.

Met het oog op het risico van foutaccumulatie in history-matching me-
thoden implementeer ik bovendien data-assimilatietechnieken, met name
het Weakly Coupled Particle Filter (WCPF) en een hybride Particle Fil-
ter-Markov Chain Monte Carlo-methode (PF-MCMC). Deze benaderingen
maken het mogelijk modelparameters en systeemtoestanden sequenti-
eel bij te werken zodra nieuwe gegevens beschikbaar komen, waardoor
de voorspellende prestaties verbeteren en de onzekerheid in de loop van
de tijd afneemt. De PF-MCMC-methode kan in het bijzonder zowel pa-
rameters als verborgen processen schatten, wat zeer nuttig is om de
dynamiek in de stortplaats te begrijpen.

Om de nauwkeurigheid van emissiepotentieelinschattingen verder te
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vergroten, integreert het raamwerk hydrogeofysische gegevens die zijn
verkregen via Electrical Resistivity Tomography (ERT). Met behulp van
een Bayesiaanse evidential learning-benadering worden resistiviteitsme-
tingen direct omgezet in probabilistische schattingen van de wateropslag
in de afvalmassa. Deze extra beperking versterkt de karakterisering van
de ondergrondse hydrologische omstandigheden en maakt onderscheid
tussen uitloogbare en geisoleerde waterfracties.

Het proefschrift is opgebouwd uit zes hoofdstukken, beginnend met
een overzicht van het nazorgprobleem bij stortplaatsen, gevolgd door de
ontwikkeling van het stochastische modelleringsraamwerk, de toepas-
sing van deeltje-filtering en PF-MCMC, de integratie van ERT-gegevens
via Bayesiaanse evidential learning, en afsluitend met een synthese van
bevindingen en aanbevelingen voor toekomstig onderzoek.

Al met al vergroot dit werk het wetenschappelijke inzicht in de emis-
siedynamiek van stortplaatsen door een verenigd methodologisch raam-
werk te bieden dat stochastische modellering, data-assimilatie en hy-
drogeofysische verkenning integreert. De hier gepresenteerde bijdragen
ondersteunen de ontwikkeling van robuustere, datagedreven en kosten-
effectieve strategieén voor nazorg, waarmee langdurige milieubescher-
ming en duurzaamheid worden gewaarborgd.



1

INTRODUCTION



2 1. Introduction

1.1. CURRENT STATE OF LANDfILL AFTERCARE

andfills have long been the primary method of waste disposal in

Europe, resulting in a large number of legacy sites requiring ongoing
aftercare to protect human health and the environment. This aftercare
typically involves monitoring emissions such as leachate and landfill
gas, as well as maintaining the cover layers and collection systems. The
European Landfill Directive (EC, 1999) mandates a minimum 30-year
post-closure care period, though regulatory authorities may extend or
shorten this period based on site-specific conditions. Law and Ross
(2021) emphasize the importance of long-term care even beyond this
period, which currently remains under-regulated and underfunded.

To end this costly and time-consuming aftercare phase, clear
criteria must be established to evaluate potential risks. Laner et al.
(2012a) proposed a site-specific framework for determining aftercare
completion. This approach considers factors such as waste emission
behavior, system performance, pollutant migration modeling through
soil and groundwater, and compliance with environmental quality
standards.

Several studies have reviewed strategies for either terminating or
extending aftercare. For instance, Turner et al. (2017) used a life cycle
assessment (LCA) to explore how different aftercare strategies impact
long-term environmental outcomes. Their findings suggest that landfills
managed with higher moisture content or infiltration outperform those
capped with low-permeability barriers. Other researchers (Butt et al.,
2008; Laner et al., 2012b) advocate for risk-based assessments to
evaluate potential harm, offering more adaptive and evidence-based
approaches to aftercare.

In most cases, aftercare consists of post-closure emission monitoring
and maintenance of landfill systems. However, quantitative predictions
of future emissions are critical to assess long-term risks. Barlaz et al.
(2002) support using technical criteria based on time-series data of
leachate composition, and leachate and gas production rates. One
crucial criterion is the presence and ongoing performance of barrier
systems, especially basal barriers, which cannot be maintained after
closure and thus pose substantial long-term risks if they fail.

A research program aiming to achieve a significant reduction in
emissions from Municipal Solid Waste landfills is currently being carried
out in the Netherlands (Stichting Duurzaam Storten, 2013). More
information on this program can be found at the website of the research
program (Stichting Duurzaam Storten, 2025). In order to assess
the success of the stabilization measures, site-specific Environmental
Protection Criteria have been derived (Brand et al., 2016; Storten, 2022).
These criteria are defined to be the maximum allowable concentration
of contaminant in the drainage system below the waste body, which will
not lead to a concentration in the groundwater 20 m downstream of the
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landfill that damages human health or the ecosystem.

Notably, much of the current research focuses on monitoring
emissions rather than the pollutants remaining inside the landfill. This
is understandable, given the inaccessibility of the landfill's interior.
However, without understanding the residual contamination, long-term
risk assessments remain uncertain. Laner et al. (2011a) highlight the
importance of evaluating the remaining substance release potentials.
This assessment should be site-specific and consider the type of
deposited waste, local hydrogeological conditions, and the integrity of
barrier systems. They propose a continuous emission model, assuming
status quo conditions post-cap installation, based on a first-order decay
model by Belevi and Baccini (1989). Although Laner et al. (2011b)
outline methods for quantifying these residual release potentials, no
supporting experimental data are currently available. How to estimate
the environmental risk from the perspective of the pollutants remaining
in the landfill’s interior remains a challenge.

1.2. MODELING PROGRESS IN EMISSION POTENTIAL

ESTIMATION

n this thesis, we introduce the term emission potential to describe

the total mass of substances that can be released from a landfill's
waste body. It represents the source term within a modeling framework
designed to predict leachate flux and leachate concentration over
time. By incorporating the emission potential, such models can
more accurately reflect the temporal evolution of landfill emissions
under varying environmental conditions. For conservative solutes, we
hypothesize that the initial emission potential can be quantified by
fitting a water balance model to measured outflow time series.

Fellner and Brunner (2010) give an overview of modeling approaches
available in the literature for quantifying leachate production. Due to
the large spatial heterogeneity in waste bodies of landfill, it is generally
known that the contaminants are leached out from waste through
preferential flow (Fellner & Brunner, 2010; Uguccioni & Zeiss, 1997).
A simplified 2D two-domain grid-based model has been developed by
Fellner and Brunner (2010) to simulate the preferential flow pattern
in the landfill. However, this model cannot estimate water flow
heterogeneity as it simply categorizes waste into two groups with their
own hydraulic properties, which could not be correct in real landfills.
Traditional grid-based models need to incorporate the heterogeneous
hydraulic, chemical, and mechanical properties of the waste, arising
from waste type, composition, and placement compaction, which
requires multi-source high-quality data to quantify (Hgyer et al., 2019).
To describe the heterogeneous flow and transport through waste bodies,
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stochastic methods like Lagrangian-based travel time models attract
more attention (Malmstréom et al., 2004; Rosqvist & Destouni, 2000;
Zacharof & Butler, 2004a, 2004b). Lagrangian modeling of water
flow and solute transport is widely used in catchment hydrology field
(Benettin & Bertuzzo, 2018; Benettin et al., 2015, 2017; Harman,
2015; Rinaldo et al., 2015a, 2015b). It has advanced significantly
due to its ability to efficiently and intuitively represent flow and
solute transport through heterogeneous environments, capturing travel
time variability and complex reactions under uncertainty. Therefore,
Lagrangian modeling offers a promising approach for estimating landfill
emission potential by accounting for the inherent heterogeneity and
transport dynamics of waste systems.

1.3. UNCERTAINTY QUANTIfICATION

U ncertainty is inherent in any landfill modeling effort due to the
complex and heterogeneous nature of waste bodies, incomplete
knowledge about physical processes, and the measurement and
sampling errors in field data. Despite advances in modeling ap-
proaches—such as Lagrangian-based travel time models—to capture
the dynamics of flow and solute transport, quantifying the associated
uncertainty remains essential for accurate risk assessment and robust
decision-making.

1.3.1. NEED FOR UNCERTAINTY QUANTIfiCATION

Leachate generation and transport models, whether grid-based or
Lagrangian, rely on numerous parameters (e.g., hydraulic conductivity,
parameters in travel time distributions) that are often poorly constrained.
Field measurements can be noisy, further complicating parameter
estimation. As a result, deterministic model predictions—single “best-
guess” outputs—may fail to capture the true variability and risks posed
by landfill emissions. By conducting uncertainty quantification (UQ),
modelers and policymakers can improve risk assessments by providing
confidence intervals for predicted emission potential and leachate
emissions.

1.3.2. MARKOV CHAIN MONTE CARLO (MCMC) METHODS

One widely used approach for uncertainty quantification is Markov
Chain Monte Carlo (MCMC). It is especially relevant in the context of
complex landfill models where parameters may exhibit strong non-linear
interactions. The key idea of MCMC is to sample the model’'s parameter
space using a probability-driven, iterative procedure by comparing
model results with available measurements. Thus, it provides a robust
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and flexible way to propagate parameter uncertainty through landfill
models, enabling a deeper understanding of how uncertain inputs
influence predictions. However, obtaining parameters by fitting or
“history-matching” to data is generally a batch processing method that
defines the best fit in an average way. This implies that we get the best
fit of the measured data over the whole time range rather than the best
estimation of model states (Liu & Gupta, 2007).

1.3.3. DATA ASSIMILATION METHODS

While MCMC methods are effective for exploring parameter uncertainty,
they are computationally intensive and do not update predictions in
real time. These methods typically sample from the full posterior
p(xo:7 | Yo:7) in batch mode, without leveraging the model dynamics
to perform sequential updates once new observations are available.
In contrast, data assimilation (DA) methods aim to reduce uncertainty
dynamically by continuously integrating new observation information
into models. Data assimilation (DA) refers broadly to Bayesian inference
approaches that integrate dynamic models with observational data to
estimate time-evolving system states and/or parameters. It includes
both filtering methods (e.g., Ensemble Kalman, Particle filter) that
estimate the current state x: using data up to time t, and smoothing
methods (e.g., Rauch-Tung-Striebel smoother, Ensemble smoothers)
that estimate past states using data over a longer window. What unifies
DA methods is their reliance on the forecast-update cycle, where the
model-generated forecast serves as a prior for Bayesian updating. While
MCMC algorithms technically perform similarly to Bayesian smoothing,
they are not usually considered data assimilation methods because
they do not exploit or preserve the recursive information assimilation
that characterises DA in operational settings. By systematically
incorporating real-time or periodic monitoring data, DA methods can
quantify uncertainties in both model parameters and states, thereby
improving the accuracy and robustness of landfill emission potential
predictions.

Among the main DA techniques, the Ensemble Kalman Filter (EnKF)
(Evensen, 2003) and the Particle Filter (PF) (Kitagawa, 1996) are
widely used for nonlinear and high-dimensional systems. EnKF updates
states and/or parameters using an affine transformation that assumes
a multivariate Gaussian distribution of states and observations (Hamid
et al., 2005; Sun et al., 2020; Zhang et al., 2017). This assumption can
lead to suboptimal updates or even violations of physical constraints in
systems that exhibit strong nonlinearity or non-Gaussianity.

Particle filtering, on the other hand, avoids this limitation by updating
the system by reweighing particles based on their likelihood, given new
observations. This approach maintains physical consistency and allows
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for fully nonlinear data assimilation. As a result, particle filters have
gained popularity in hydrological applications (Abbaszadeh et al., 2019;
Plaza Guingla et al., 2013; Vrugt et al., 2013; Zhang et al., 2017).

Two main challenges must be overcome when applying particle filters:
degeneracy and sample impoverishment (van Leeuwen et al., 2019).
Degeneracy refers to the situation where a small number of particles
have significantly higher weights than the rest, rendering most particles
ineffective. To mitigate this, particle filters use a resampling step, where
particles with higher weights are replicated while those with low weights
are discarded. While this improves sampling efficiency, it introduces
the problem of sample impoverishment, characterized by a lack of
particle diversity due to repeated replication of the same particles.
This issue is particularly severe when estimating static parameters,
as resampling alone does not provide a mechanism for parameter
evolution. Localization has been introduced as a strategy to alleviate
both issues, particularly in high-dimensional systems (Vossepoel & Jan
van Leeuwen, 2007). By restricting the influence of observations to
nearby state variables, localization reduces the effective dimensionality
of the assimilation problem, helping to maintain a greater number
of particles with meaningful weights and thus reducing degeneracy.
However, when estimating truly static global parameters, the sample
impoverishment problem is still significant.

To address this, Moradkhani et al. (2005) proposed perturbing
parameters after resampling to maintain diversity. Building on this
idea, Moradkhani et al. (2012) introduced a hybrid PF-MCMC method
that uses Metropolis-Hastings steps to avoid excessive perturbation.
This hybrid approach improves parameter sampling efficiency and has
demonstrated enhanced performance in hydrological modeling (Yan et
al., 2015). Crucially, PF-MCMC maintains mass balance by generating all
model states through forward simulations using perturbed parameters.

In scenarios involving coupled environmental systems, such as a
hydrochemical model for landfill, Coupled Data Assimilation (CDA)
becomes essential. CDA, which is mainly applied in coupled ocean-
atmosphere problems, allows each subsystem to receive information
from observations in both its own and other domains (Laloyaux et al.,
2016; Penny et al., 2019; Penny & Hamill, 2017; Smith et al., 2015;
Tardif et al., 2015).

In weakly coupled DA (WCDA), model states are propagated jointly
via a coupled forward model but updated independently within each
subsystem. The updated states are then reintegrated into the coupled
system for the next forecast cycle (Penny & Hamill, 2017).

In contrast, strongly coupled DA (SCDA) updates all states across
domains simultaneously using all available measurements (Ng et al.,
2009). Although SCDA is theoretically optimal, its application is limited
in practice due to challenges in defining cross-domain error covariances.
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Some ensemble-based methods estimate these correlations from
ensemble forecasts, but their low-rank approximations may not
adequately represent the actual error structure (Zupanski, 2017).
Even in PF-based SCDA, the “curse of dimensionality” and degeneracy
issues persist due to the high-dimensional joint state space. Evensen
et al. (n.d.) convincingly shows that iterative ensemble smoothers that
respect coupling between components can lead to more accurate and
coherent state estimation in multiscale, strongly interacting systems.
However, the assimilation window length must balance between being
long enough to allow cross-covariance to develop and short enough to
avoid nonlinear distortions

Han et al. (2013) showed that in a simplified 5-variable test, SCDA
outperformed WCDA only when the ensemble size exceeded 10%. Given
such computational demands, most practical CDA applications favor the
weakly coupled formulation (Zhang et al., 2020).

Together, MCMC and data assimilation techniques could strengthen
the predictive power of landfill emission models by accounting for
and reducing uncertainty. This integrated approach provides a more
robust and transparent basis for landfill aftercare decisions, ensuring
that estimates of leachate flux, concentration, and long-term emission
potential are both credible and actionable.

1.4. HYDROGEOPHYSICAL MEASUREMENTS

ydrogeophysical surveys provide an additional, complementary

source of information for estimating subsurface water storage in
landfill bodies. Electrical Resistivity Tomography (ERT) is particularly
attractive for these settings due to its ability to infer water content
from measured resistivities, which can be linked to saturation through
Archie’s Law. Since the pollutant mass is the product of leachate volume
and concentration, this extra water storage estimation gives us more
insight into the emission potential.

ERT has been applied successfully to map moisture content, leachate
distribution, and landfill gas accumulation in multiple studies (Feng
et al.,, 2017; Hu et al., 2019; Neyamadpour, 2019). For instance,
Zhan et al. (2019) demonstrated how ERT delineates leachate plumes
in a controlled landfill cell, while Hu et al. (2019) used time-lapse ERT
surveys to monitor changes in water content during landfill dewatering
operations. These applications highlight ERT's utility for qualitatively
tracking hydrological processes within waste bodies.

An emerging technique is hydrogeophysical joint inversion, where
water storage and other hydraulic parameters (e.g., saturation, petro-
physical coefficients) are derived directly from ERT data without
requiring a separate inversion of the resistivity field (Linde & Doetsch,
2016). Treating ERT measurements within a coupled hydrogeophysical
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model leverages explicit petrophysical relationships (like Archie’s Law)
to reduce uncertainty from intermediate inversion steps. However,
challenges remain. Landfill waste layers often lack the well-defined
water table assumed by many joint inversion algorithms, and extreme
heterogeneity can undermine standard petrophysical models. Nev-
ertheless, the potential for more accurate water content estimation
is evident, making hydrogeophysics a powerful asset for improving
emission potential predictions.

From a modeling perspective, ERT-based water storage estimates can
be incorporated into the data assimilation methods discussed in previous
sections (e.qg., EnKF, PF, or PF-MCMC). However, in landfill models, fitting
model parameters to observations typically allows us to estimate only
the portion of water that is leachable. Some water may be stored in
isolated zones, which have no influence on leachate emissions. Using
ERT data enables the estimation of total water storage, including both
the leachable and isolated fractions. This provides an important insight:
it allows us to assess how different these two portions of water might be.
In some cases, a significant amount of isolated water could be present
in landfills, which would not contribute to the emission potential.

1.5. AIMS AND OBJECTIVES

he overarching aim of this thesis is to estimate and predict the

emission potential of landfills by integrating stochastic modeling,
hydrogeophysical surveys, and uncertainty quantification methods. This
research spans from model development and validation to advanced data
assimilation and ultimately leverages hydrogeophysical measurements
(ERT) to improve water storage characterization in landfills. In detail,
the objectives of this thesis are:

1. Develop a stochastic modeling framework: formulate a Lagrangian-
based travel time model to capture the heterogeneous nature of
water flow and contaminant transport in landfill waste bodies.

2. Implement uncertainty quantification (UQ) approaches: apply
Markov Chain Monte Carlo (MCMC) to optimize the model first.
Secondly, implement coupled particle filtering methods to estimate
model states, parameters, and hidden processes.

3. Integrate hydrogeophysical (ERT) measurements: demonstrate
how Electrical Resistivity Tomography can serve as an additional
constraint for estimating water storage in landfill waste, including
both leachable and isolated fractions.

4. Provide guidelines for practical application: outline how stochastic
modeling, UQ, and ERT can be integrated into landfill management
workflows to improve aftercare strategies.
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These objectives collectively enable a more realistic, data-informed
assessment of landfill emission potentials, providing a foundation for
optimizing aftercare strategies and ensuring long-term environmental
protection.

1.6.

OUTLINE OF THE THESIS

his thesis is organized into six main chapters. Following a brief
introduction and literature review in Chapter 1, the remaining
chapters are outlined as follows:

Chapter 2 focuses on the development of a stochastic model for
landfill emissions. Here, a Lagrangian-based travel time framework
is used to represent flow heterogeneity and pollutant release
dynamics in landfill waste bodies.

Chapter 3 builds upon that model to implement a Particle Filter
for real-time state estimation. It demonstrates how sequential
data assimilation can reduce predictive uncertainty in emission
potential, leachate fluxes, and concentrations.

Chapter 4 extends the scope to PF-MCMC techniques, integrating
Markov Chain Monte Carlo steps into the Particle Filter. It aims to
enable joint estimation of model parameters, hidden states, and
processes without violating fundamental mass balances.

Chapter 5 addresses hydrogeophysical measurements, with partic-
ular emphasis on applying Electrical Resistivity Tomography (ERT)
to infer landfill water storage. A Bayesian evidential learning
method is used to predict the water storage in waste bodies with
uncertainty estimation directly with measured ERT data.

Chapter 6 concludes the thesis by synthesizing the key results
from all four chapters, reflecting on methodological contributions
and practical implications for landfill aftercare. Prospects for future
research—such as incorporating reactive transport processes or
advanced field measurements—are also discussed.

Some redundancy exists in the introduction and methods sections of
each chapter, as they were originally prepared as standalone journal
articles.
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QUANTIfiICATION OF EMISSION
POTENTIAL OF LANDfILL WASTE
BODIES USING ASTOCHASTIC
LEACHING FRAMEWORK

Sanitary engineered landfills require extensive aftercare to safeguard
human health and the environment. This involves monitoring emissions
like leachate and gas, maintaining cover layers, and managing leachate
and gas collection systems. Quantifying emission potential, a key
concept integrating various processes influencing emissions, is essential
for managing and predicting landfill impacts. In this study, we developed
a stochastic travel time model based on water life expectancies. The
model is used to predict leachate production rates and leachate chloride
concentrations from landfill waste bodies. We present new data for
long-term time series of leachate production and leachate quality for
Landfill Braambergen in the Netherlands. By analyzing the parameters
and evolution of model states, we obtain a deeper understanding of the
water and mass balance of the waste bodies. We demonstrate that the
model can be used to quantify the emission potential, and the estimated
values of total mass match data quantified by sampling from the waste
body. The results confirm that emissions with leachate are dominated
by preferential flow infiltrating from the cover layer.

Parts of this chapter have been published in Heimovaara and Wang (2025)
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2. Quantification of Emission Potential of Landfill Waste Bodies using a
8 Stochastic Leaching Framework

2.1. INTRODUCTION

andfills have long been the primary method of waste disposal in

Europe, resulting in a large number of legacy landfills that require
aftercare to protect human health and the environment. Aftercare
typically involves monitoring emissions such as leachate and gas, as
well as maintaining the cover layer and collection systems. The
European Landfill Directive (EC, 1999) mandates a minimum 30-year
aftercare period, but regulatory authorities may choose to shorten or
extend this period based on a range of factors. To aid in decision-
making, several authors have reviewed different approaches to ending
or prolonging landfill aftercare (Barlaz et al., 2002; Laner et al., 2011).
Several authors (Butt et al., 2008; Laner et al., 2012) have advocated
for using risk-based assessments to evaluate the potential for harm. By
exploring these and other solutions, we can work towards reducing the
environmental impact of legacy landfills while ensuring the continued
protection of public health.

In many cases the aftercare of sanitary engineered landfills consists
of post-closure monitoring of emissions (e.g. leachate and gas) and
maintenance of the cover layer and leachate and collection systems.
Laner et al. (2012) postulate that post-closure care can end once a
landfill no longer poses a threat to human health and the environment.
Quantitative predictions of future emissions are important in order to
assess future threats. Barlaz et al. (2002) advocate the use of technical
criteria based on measured time series of leachate composition, and
leachate and gas production rates. One such technical criterion is
the presence of barrier systems which require maintenance during the
aftercare period. Laner et al. (2011) address the importance of assessing
the remaining substance release potentials. The assessment should
be site-specific and take into account the deposited waste and the
relevant boundary conditions that influence the flow of water through
the landfill, including the performance of the barrier systems. They
propose a continuous emission model assuming that the status quo
persists (after installation of a cover layer) based on a first-order decay
rate as proposed by Belevi and Baccini (1989). Although Laner et al.
(2011) give suggestions on how to quantify the remaining substance
source term, no experimental data are provided.

A research program aiming to achieve a significant reduction in
emissions from Municipal Solid Waste landfills is currently being carried
out in the Netherlands (Kattenberg et al., 2013). More information on this
program can be found at the website of the research program (Storten,
2022a, 2022b). In this program, different approaches to stabilize waste
bodies by irrigation of water, recirculation and discharge of leachate,
and aeration of the waste body are being tested. The approaches
are tested at full scale at three different landfills. In order to assess
the success of the stabilization measures, site-specific Environmental
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Protection Criteria have been derived (Brand et al., 2016; Dijkstra
et al., 2018). These criteria are defined to be the maximum allowable
concentration of contaminant in the drainage system below the waste
body, which will not lead to a concentration in the groundwater 20
meters downstream of the landfill which damages human health or the
ecosystem. The underlying modeling approach assumes that the source
term for all compounds in the drainage system remains constant over
the complete evaluation period of 500 years.

In all the papers cited above, there is a common agreement that it
is important to have a quantitative understanding of the source term
controlling emissions of the contaminants present in the waste body. In
this chapter, we would like to propose some definitions in order to clarify
different approaches to quantify the source term.

The total mass of different compounds can be measured in the
laboratory from samples taken from the field using destructive analytical
techniques. Because contaminants can be bound in solids, total mass
can lead to a significant overestimation of leachable mass. Leachable
mass can be quantified in the laboratory using different types of leaching
methods (Kosson et al., 2002; van der Sloot et al., 2017). However,
characterization of heterogeneous landfill waste bodies using sampling
and laboratory analysis requires a large amount of samples because of
the inherent uncertainty caused by spatial variability (Sormunen et al.,
2008a, 2008b). In addition to the spatial variability, it is also important
to realize that waste bodies most likely contain zones or pockets which
isolate volumes of waste from mobile water, such as waste stored in
a closed plastic bag. The presence of dead zones implies that not all
contamination present in the waste body will be released from the waste
body. Consequently, laboratory techniques to assess the source term of
contaminants may overestimate the amounts that can be released.

In this work, we introduce the term emission potential in order to
describe the amount of mass that can be released from the waste
body. The emission potential is the result of all processes involved
in causing emissions of compounds from waste bodies. It is related
to the multi-physical coupling between fluid flow, solute transport,
biogeochemical transformations, waste body settlements, and many
more. The emission potential is the source term in a modeling framework
that is able to describe the leachate flux and leachate concentration as
a function of time. The emission potential can be quantified by fitting
models to measured time series. Finally, using these models allows us
to quantify the emission from the waste body under different scenarios,
for example, over a time period of 500 years.

Fellner and Brunner (2010) give an overview of modeling approaches
available in the literature for quantifying leachate production. They
show that preferential flow is a dominant process in waste bodies
and needs to be incorporated in models in order to describe landfill
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leachate production dynamics (Fellner & Brunner, 2010; Uguccioni &
Zeiss, 1997). In order to describe the heterogeneous flow and transport
through waste bodies, several Lagrangian-based travel time models
have been developed (Malmstrom et al., 2004; Rosqvist & Destouni,
2000; Zacharof & Butler, 2004a, 2004b). Lagrangian modeling of water
flow and solute transport in catchment systems has seen significant
progress since then (Benettin & Bertuzzo, 2018; Benettin et al., 2015,
2017; Harman, 2015; Hrachowitz et al., 2016; Rinaldo et al., 2015).
The advantage of these Lagrangian approaches is that they allow for
describing water flow and solute transport in large-scale systems where
heterogeneity is captured through probability distributions.

Given the large heterogeneity present in landfills, we have developed
a stochastic Lagrangian travel time modeling framework to simulate
landfill water and mass balances in order to quantify the emission
potential of waste bodies. The parameters in the model are calibrated
using time series measurements of leachate volumes pumped from
the drainage system and bi-weekly chemical analyses of chloride
concentrations in pumped leachate. Measuring pumped leachate
volumes and leachate quality is standard procedure for landfill operators
in the Netherlands, and as such, obtaining these time series is much
easier and cheaper than taking samples from the landfill for analysis
in the laboratory. The source term in the model, after calibration, is
considered to be the emission potential. Long-term extrapolations using
the calibrated model provide insight into how the emission potential
impacts future leachate quality. The generic feasibility and applicability
of the proposed concept are demonstrated using data from four different
waste bodies.

2.2. THEORY AND METHODS

I n order to develop the model equations, we hypothesize that the
solute concentration in (pumped) leachate is mainly controlled by
dilution of highly concentrated base flow from the waste body, with
infiltrating water originating from rainfall. We assume that the waste
body is a causal system for leachate production and solute transport.
This implies that the output of the system at any given time depends
only on the input and the system’s past behavior and consequently,
the flow of water and transport of solutes through the waste body can
be modeled using travel time probability distributions. In this work,
we assume that the travel time probability density functions (pdf) are
constant in time. The approach we follow is similar to the one described
by Benettin et al. (2015).

If we follow a water parcel that enters the waste body at time t;; and
exits the waste body at time tex then the total time in the waste body
(Tt = tex — tin) at any moment in time can be characterized by its age
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(or residence time) indicated as Tr and the time it will still remain in
the waste body before it exits the waste body (its life expectancy) is
indicated as Tg. Residence time and life expectancy are related to the
total travel time Tt by:

Tr=Tr+ TE. (2.1)

Each day as the water parcel moves through the waste body, its
residence time increases with 1 day and its life expectancy decreases
with one day, which can be written as:

dT dT
SR ZEog, (2.2)
dt dt

Equation 2.2 can be seen as a celerity with unit value, where the sign
determines which property is described.

’

2.2.1. WATER BALANCE

The upper boundary of the landfill is its surface, where water can
enter as rainfall and leaves as evapotranspiration. The lower boundary
consists of the drainage system, where water is pumped out of the
landfill as leachate. To simplify the problem, we assume that we can
model the landfill as a one-dimensional, 2-layered column, where the
first layer represents a cover layer and the second layer is the waste
body.
The water storage in the landfill is defined as:

Stotal
if

in which Stotqr is the volume of water in a landfill and A is the surface
area of the landfill and V¢ and Vy are the water storage in the cover
layer and waste body respectively.

Viotal = = Veci+ Vwe,

WATER BALANCE OF THE COVER LAYER

The water balance of the cover layer links water entering the landfill
as rain and leaving the landfill as evapotranspiration to the amount of
water infiltrating in to the waste body:

chl(t)
dt

where V is the storage in the cover layer.
The infiltration flux is assumed to be a nonlinear function of the
storage in the cover layer.

= qrf(t) — gev(t) — qing (1), (2.3)

Ginf = —Ket (Sepr)® (2.4)
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where Sefr is the effective storage which ranges from zero to one and is
defined as:
Vei— Vclm,-n
Seff=————

VC[max - VClmin
where K is the hydraulic conductivity of the cover layer [md—1], Vlmax
is the maximum achievable storage in the cover layer, V,,, is the
minimum storage in the cover layer above which water will still freely
drain and b, is a dimensionless empirical parameter which is larger than
0. When b, is less than 1, drainage from the cover layer predominantly
occurs at low effective storage values, whereas if it is larger than 1,
drainage predominantly occurs at high effective storage values.

The actual evapo-transpiration is calculated from the potential
evapotranspiration:

gev = Epot Cf fred, (2.5)

where Epot is the potential evaporation [m/day], Cr is an empirical crop
factor which is assumed to be a landfill specific constant and freq is
a factor allowing evapo-transpiration to be reduced in order to prevent
the storage in the cover layer to become negative.

This model assumes that flow is caused by gravity only, i.e. gradients
in the hydraulic head of the soil do not drive water flow. The magnitude
of flow is strongly controlled by the storage in the cover layer.

WATER BALANCE OF THE WASTE BODY
The water balance of the waste body is calculated as:

dVwb(t)
— O = Qing() = Gleach(t), (2.6)
dt
where qieach is the leachate flux from the waste body to the drainage

system.
We can rewrite equation (2.6) as a function of life expectancies using
a probability distribution of life expectancies py,,,(TE, t) using:

dVwb(TE, ) aVwp(TE, t) N dTe oVwn(TE, t)

7

dt ot at ot
to get
% = Qinf (1)Pqins (TE, ) — leacn(t) (2.7)
where
Qleach(t) = Vwp(0, t) (2.8)

which states that the leachate flux is equal to all the water present in
the waste body with a life expectancy of 0 at time t. Please note that
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after we have solved for Vv (TE, t) we can calculate py,,,(TE, t) with:

VWb(TEI t)

Te, t) =
PV (TE, t) Vor ()
In order to numerically solve equation (2.7), we need to discretize
along life expectancies (Tg). Te can range from 0 to infinity. To simplify
implementation we chose to discretize Tg in a discrete number of daily
values from Tg,0 to Tg n,- Vwo(TE,i, t) represent water storage cells with
a life expectancy Tg,; at time t. Vwp(TEn, t) represents a bulk cell
containing all water with a life expectancy larger than n¢: days. All water
with Te > Tg,n,, is assumed to be added to the storage in the bulk of the
waste body Vpyk:
Voutk(t) = Vwb(Te = TE,ng, t) (2.9)

The consequence of this choice is that an additional water flux needs
to be added to the model the rate of change in Vpyuk(t). We call this
flow, base flow and assume that it is a function of Vpyk. The base flow
(gpr ) controls the leachate flow from the landfill in prolonged drought
periods, however, it cannot continue indefinitely because of the finite
amount of water stored in the bulk of the waste body. To take this finite
amount in to account, we apply a gamma distribution function in order
to allow gpr to reduce gradually after the bulk storage reaches a critical

level: For(V )
bF(Vbuik
dbF(Vbuik) = gbF, —u, (2.10)
HbF

where
x9bF—1 a=(Vbulk—Vbutk,min)

F(obF)

where Vpuik,min is the minimal storage in the bulk where the base flow
drops to zero, upr [M] is a scaling factor for the the bulk storage and opr
[m] determines the shape of the base flow function.

Including the base flow in equation 2.7 leads to:

dt

for(Vbuik) =

= Qinf(O)Pgins (TE, 1) + GbF (Vbutk (£))Pgpe (TE, ) — Vb (0, t)

(2.11)
where we have two distinct sources for the water travelling through the
waste body: 1) water infiltrating from the cover layer, ginf and 2) the
base flow released from the bulk of the waste, gpr.

The probability distribution pgq,,(TE, t) describes the life expectancies
along a large number of trajectories in the waste body along which
water is moving. Following Rosqvist and Destouni (2000), we assume
that the ensemble of the life expectancies of all particles infiltrating from
the cover layer can be described with a bimodal log-normal probability
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density function. We assume that this bimodal probability distribution
function is time invariant.

n pqu(TE) = BPQ[nf,fClSt(TE) +(1- ,B)pqznf,slow(TE) (2.12)
1 —(In(Te) — In(T7))?

A(Te) = 2.13

mef,l( E) TEO[mexp 20_2 ) ( )

L

In these, pqu,fast(TE) and pqu,s[ow(TE) are log-normal probability
distribution functions for fractions of water experiencing fast flow and
slow flow respectively (indicated with index i in equation 2.13), where
B is the fraction of water following the fast flow probability distribution
function.

The probability distribution function for the life expectancies of the
base flow is assumed to be a time-invariant gamma distribution, in
which I" is the gamma function and apr is a value between 0 and 1:

xCle—le—X

Te)=——— 2.14
pPor(TE) Fan) ( )

where x is a normalized life expectancy of the water released from the
bulk waste, defined as:

X =Tg/TEnorm (2.15)

As stated before, assumptions underlying this approach are that the
flow in the waste body is considered to be a causal process and that both
travel time distributions are assumed to be time invariant. This implies
that the flow occurs along specific paths or streamlines and that the
flow rates in these paths remain constant in time. Harman (2015) shows
that it is relatively simple to relax the assumption of time-independent
pdfs, for example by making Tg a function of the storage.

WATER BALANCE OF THE DRAINAGE LAYER

In the landfills analyzed for this work, leachate is actively pumped from
the drainage system by an automatic system that maintains the water
level between a minimum and a maximum value. As a consequence,
water levels in the drainage system are are nearly constant and we can
assume that the flux from the drainage system is identical to the flux
entering the drainage system:

Qdrain = Qleach (2.16)
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2.2.2. SOLUTE MASS BALANCE

In order to demonstrate the concept, we chose to consider only
conservative solutes (Chloride) for this work. This implies that the mass
flux is fully controlled by water flow. Because the probability distribution
of life expectancies implicitly takes account of the dispersion that occurs
as water flows through the system, we neglect solute diffusion as a
separate process because it is very slow. The solute flux can therefore
be written as:

qu=qwC (2.17)

The solute mass balance of the cover layer can be calculated as:

ndl(t)

S dt

The solute mass balance can be defined with:

dMwp(TE, t)
dt

= Crain(£)qrf(t) — cci(t)qins (). (2.18)

(2.19)
where M and My, are the total mass of conservative species present
in the cover layer and waste body [kg/m?], respectively. As we only
consider old landfills which no longer accept waste, and we assume
that the concentration of conservative solutes in rain in the Netherlands
is much lower than those found in landfill leachate, we take influx
of solutes with rainfall to be zero. In the waste body, each water
parcel with a specific life expectancy is associated with a specific mass
(Mwp(TE, t) similar to the storage in the waste body. The concentration
of conservative species for the cover layer is:

Mcl(t)
ccl(t) = ’
Vcl(t)
and the concentrations of the water parcels in the waste body are:
Cwb(Te, ) = ———.

2.2.3. SOLUTION ALGORITHM FOR COVER LAYER

Implementing the equations for the cover layer as a differential equation
results in a model that requires quite a lot of time to solve. In order to
have a fast model which allows for a large nhumber of runs in a Monte-
Carlo simulation framework, we chose to simulate the flows for the
cover layer with an algorithmic implementation based on the equations
in paragraph 4.1.1. Rainfall data and potential evapotranspiration data
are available as daily average fluxes. The implementation is shown in
Algorithm 1 using a time step At of 1 day.

= Cinf()Qinf ()P gins (TE, )+ Coutk ()b (Vbutk (£))Pgpr (TE, t)—Mwb (0, t)
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Algorithm 1 Implementation of the water balance algorithm for the
cover layer.

1. Estimate infiltration flux with equation (2.4) and estimate the new
storage

Velest,,; = Veln + (Arfasy — Qinfy + GEvii1) AL (2.20)

2. If the estimated amount of water in the cover layer is larger than
the maximum available storage capacity, Vcies;, ., > Veimax: WE Need
to increase the amount of infiltration by short-circuiting the flow
to the waste body and and then recalculating Velestn, with the

corrected ¢, "

Ging, = Ginin + (Velmax = Velesty,,) /Bt (2.21)

Vetestpyy = Veto + @rfnes — Qipp + GEviiy) At (2.22)

3. However if (Vi , <0 and Ve, > Ve,,,) then we need to limit
the amount of infiltration (there is not enough water in the cover
layer to sustain infiltration) and perhaps also reduce the amount of
evaporation:

Ging, = Velmin = Ver,) /Bt (2.23)

after which we again calculate V¢,  , using equation (2.22).

1

4. If the estimated storage after correction is still negative, (V¢,,; <0),
we need to limit the amount of evaporation and then recalculate

VC[‘-‘an+1
qEvn+1 =gEvp1 T VCln+1 /At, (2.24)
VC[EStn+1 = Ve, + (qrfn+1 - qinfn + qEVn+1) At (2.25)
This approach implicitly implements the freq term in equation 2.5.

5. All conditions should now be fulfilled so we have a new update of
the storage in the cover layer:

VCln+1 = VClest,H,l (226)




2.2. Theory and methods 27

2.2.4. SOLUTION ALGORITHM FOR THE WASTE BODY

In order to solve equation 2.11 we discretize it over both time dimensions
where we use a daily time step dt =1 day and for each time step, the
life expectancy is distributed over n¢ + 1 values ranging from 0 to n¢:.
This approach is illustrated in Figure 2.1. Each day, water infiltrating
from the cover layer is distributed among the cells in the waste body
using pq;,(Te) and water flowing from the bulk as base flow using

Pbe(TE).

Forcing data:

l: Rainfall,

4: Evapotranspiration

Baseflow
TTD

Bulk storage

Waste body

Drainage system

Observations:
Leachate production rate
Chloride concentration

Figure 2.1.: lllustration of the conceptual model of the landfill system. The
cover layer allows rainwater to be buffered so that evaporation can also occur
on days without rainfall. Water subsequently infiltrates into the waste body. In
the waste body, the infiltrated water is distributed over a discrete number of
life-expectancy cells, and the remainder is added to the bulk. On a daily basis,
water in the cell with a life expectancy (Tg) of zero is emptied in the drainage
system from where it is immediately removed as leachate.

At t =0, all cells are initialized with an initial amount of storage Vj,;.
Then every daily time step, all cells are shifted in life expectancy, i.e.
the cell with Te =1 becomes 0, the cell with Tg = n¢t becomes ng— 1
days and the cell with Tg = ntt— 1 is filled with water from the bulk
waste depending on the base flow.

2.2.5. MODEL CALIBRATION USING BAYESIAN INFERENCE

Before we can use this model to simulate leachate production rate
and quality, we need to quantify the parameters. The parameters can
be obtained by history matching of simulated leachate volumes and
leachate concentrations to those obtained from measurements. We
inferred the values of the parameters with the Multiple-try DREAM(ZS)
package Laloy and Vrugt (2012), implemented in pyDREAM (Shockley
etal., 2018). DREAM (Vrugt, 2016) applies a Bayesian inference scheme
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to obtain the distribution of model parameters (8) which optimally
describe the measured data in a probabilistic framework. Bayesian
inference,

p(6ly) x p(8)-L(6]y), (2.27)

allows us to calculate the joint posterior probability distribution (p (8]y))
of the set of parameters using the measured data. The posterior
distribution is calculated using the prior distribution of the parameters
(p(@)) and the likelihood of the parameters given the measured data
(L(O]y)).

For the likelihood function, we applied the generalized likelihood
function proposed by Schoups and Vrugt (2010):

- Zot—cBZ|agt|2/(1+ﬁ) (2.28)
s 5 =1

For a detailed description and explanation of the parameters in this
function we refer to Schoups and Vrugt (2010). We chose to use
the generalized likelihood function because it allows for an improved
handling of residual errors, which can be correlated, heteroscedastic,
and non-Gaussian with varying degrees of kurtosis and skewness. As
a result, this approach allows for a correct statistical description of the
data and residual errors, without the need for separating the different
error sources. In equation 2.28, we defined the measurement error as
ot = 0o + 01yt(0), agt is an independently and identically distributed
random error with zero mean and unit standard deviation, described by
a skew exponential power (SEP) density using parameters § and 8 to
account for non-normality, scalars wg, 0g, and cg are derived from values
of & and B which are a skewness and kurtosis parameter respectively
and ¢ = {¢1,..., 94} stores coefficients for an auto-regressive model of
error residuals.

The generalized likelihood function is based on an additive non-linear
regression model:

L(6ly)=—n In

Y=E+e

where Y is a vector of n observations, E is a corresponding vector
of expected values; and e is a vector of zero mean random errors or
residuals. The vector e includes measurement error, model input, and
model structural errors. In order to account for heteroscedastic errors,
Schoups and Vrugt (2010) suggest to include multiplicative bias factors
in order to account for systematic deviations in model predictions:

E: = Yh,t(XIGh)[,lt. (2.29)

In this equation, we assume that expected values can be modelled
with a mass-balanced base flow model h, which yields simulated values
Y4 as function of an observed input X and a vector of model parameters
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0. In this equation the simulated flow Yx ¢, and bias factor u; vary as
a function of time. Schoups and Vrugt (2010) suggest to amplify the
non-linearity in the response of the leachate production using

Mt = exp(U1Yh,t), (2.30)

but we found that we obtained the best results by not including this bias
factor so we kept u; to zero.

As suggested by Vrugt (2016), we include og, 01, 8, &, ¢ and ymin as
so-called nuisance variables in the inference, together with all the other
unknown parameters.

The generalized likelihood function was applied to both the time series
of leachate production volumes and concentration data. The prediction
of the cumulative total was constrained by adding a third normal
likelihood term based on the cumulative leachate production over the
inference period as a likelihood based on a sum of squares:

1
l—cum(ﬂf’cum)=_§|n(}/cum—f’cum)2- (2.31)

The total likelihood, Ltot is the sum of the three likelihood values.

2.2.6. BOUNDARY CONDITIONS

The model is driven by daily rainfall and evaporation data, which we
downloaded from the Royal Dutch Meteorological Institute (KNMI, 2022).

2.2.7. INITIALIZATION OF THE MODEL

Initial values for the model states need to be defined before we can
keep track of the change in states, which are driven by the varying
boundary conditions. The important states are the storage in the cover
layer, V¢, the storage in the waste body, Vyp and the solute mass in the
cover layer and waste body, respectively, M and My,. The model is
started in the past, well before measurements become available, so that
the effect of the initial conditions has been minimized by the seasonally
varying boundary conditions. For the scenarios presented here, we start
the simulation on the first of January 2003. The model is driven by daily
precipitation and potential evapotranspiration data.

In order to facilitate a physical interpretation of the initial storage
states, we relate them to the average water-filled porosity and heights
of the cover layer and waste bodies. In addition, we estimate the
initial mass present in the cover layer and waste body using an average
concentration. The effect of initializing with average values will become
smaller over time due to the cyclic seasonality in the meteorological
boundary conditions.
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The initial states are calculated with:

Vei= 0w, * Hel (2.32)
Vwp = ewwb * Hyp (2.33)
Mci= Ve Ccl (2.34)
Mwb = Vwpb Cwb (2.35)

where subscripts cl and wb indicate cover layer and waste body. 6y,
and 6v,, are the volumetric water contents in the cover layer and
waste body [-], H and Hyp are the thickness of the cover layer and
waste body [m]. M and My, are the solute masses in the cover layer
and waste body per unit landfill area. The maximum saturation of the
cover layer is then parameterized using the maximum volumetric water
content (6w,.,max) which is equal to the porosity of the cover layer. In
order to ensure that the minimum storage in the cover layer is always
less the maximum storage, it is initialized as a fraction of 6w, max:
fwea,min. The saturation of the cover layer is initialized as to be half the
difference between V¢, and Vc,,,, and the saturation of the waste
body was initialized directly. The minimum bulk storage, Vpuik.. IS
parameterized in a similar manner with fy,,,.min.

Each life expectancy cell and the bulk storage in the waste body are
initialized with the same initial concentration from which the initial mass
present in the waste body is calculated. The amount of mass removed
every time step with the leachate is the amount of mass present in
the cell with a life expectancy of 0 days. Mass can only enter the life
expectancy cells from the bulk with the base flow. The mass in the
bulk is updated every time step with the amount removed with the
base flow. The mass in the life expectancy cells remains constant with
time, infiltrating water from the cover layer only leads to dilution of the
concentration.

2.3. SITE-SPECIfiC DATA AND PRIOR DISTRIBUTIONS OF
UNKNOWN PARAMETERS

2.3.1. LANDfILLS

Il data are from two landfills, which are currently part of the Natural

Biodegradation Research Program on Dutch Landfills (Stichting
Duurzaam Storten, 2017). The Wieringermeer landfill is near Medemblik,
and the Braambergen landfill is near Almere, both in the Netherlands.
Details for these landfills are given in Table 2.1. Both landfills are
operated by Afvalzorg N.V.
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Table 2.1.: General background information on the landfill cells
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2. Quantification of Emission Potential of Landfill Waste Bodies using a
2 Stochastic Leaching Framework

Geo-referencing available as-built drawings to background maps and
recent high-resolution areal photographs in a GIS package allowed us to
estimate the surface area of the basal drainage system and the heights
and surface areas of the landfills. The heights of the basal drains
were measured in 2016. As the topography of the sites is variable, we
estimated the volume of the waste body from the GIS derived data and
then calculated the average height of the waste body by dividing the
volume by the area of the basal drainage system. Background data for
the four landfill cells can be found in Table 2.1.

Detailed monitoring of produced leachate volumes and leachate
quality is carried out in the context of the biodegradation research
program by the landfill operator since March 2012.

Data available for model calibration and verification were the
cumulative leachate production measured every 15 minutes from 14
June 2012 to 1 November 2024 and chloride concentrations measured
in a commercial laboratory over the same period. Laboratory analyses
were performed on leachate samples that were taken once every two
weeks.

By testing different attempts to infer the parameters from the data,
we found that the best results were obtained when cumulative leachate
production is transformed to weekly leachate production rates by
differentiation of the cumulative production. This transformation allows
the model to capture the weekly dynamics in the data.

Rainfall and potential evaporation data are downloaded from automatic
weather stations operated by the Royal Dutch Meteorological Institute
(KNMI, 2022). For the Wieringermeer landfill, we used the data from the
Berkhout station; for Braambergen, we used the data from the Lelystad
station. Daily rainfall and calculated reference evapo-transpiration were
used for the water balance analysis.

Between October 2016 and February 2017, a large number of wells
were installed at both landfills through which the waste body is aerated.
As the aim of aeration is to ultimately improve leachate quality, the
filters of the wells are installed deep in the waste body (about 1 to 2 m
above the top of the drainage system. In 2023, additional wells were
installed at Braambergen.

2.3.2. PRIOR DISTRIBUTION RANGES

In order to use Bayesian inference, we require prior distributions of
uncertain model parameters. We chose to initialize the optimization
with uniformly distributed priors over a predefined search range (Table
2.2). The initial ranges were defined based on the expected physical
values and sometimes by trial and error. In this last case, when it
became apparent during the optimization that the initial prior was too
constrained, the boundaries of the distribution were extended. For
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priors where variation is expected to vary across orders of magnitude,
the ranges were initialized using the log-10 values of the parameters.

The number of finite travel times (n¢:) was set to be equal 1825 days
(or 5 years). The model bias factor y; in equations 2.29 and 2.30 was
set to zero as first inference attempts indicated that model bias was not
important.

In order to minimize the effect of the initial parameters on the
calibration with measured data, we started the model on January 1st,
2003. This 'burn-in’ time allows for the base flow from the bulk that
initiated on January 1st 2003, to have moved completely across all 1825
cells before the results are compared to any measurement values. As
such the solute mass and volume of water in the travel time cells are by
then fully constrained by the base flow from the bulk waste five years
earlier.

The model was calibrated using measured leachate volumes and
chloride concentrations from the 1st of January 2014 to the 31st of
December 2020. The remaining available data from the complete data
set from 12 June 2012 until 1 November 2024 were used to assess the
model performance beyond the calibration range.

Calibration was initially started, allowing the pyDREAM to randomly
sample from the prior distributions. Once the inference had converged,
pyDREAM was restarted with the final values of the 3 chains as an initial
guess until the Gelman-Rubin criterion indicating convergence was met
(Vrugt, 2016). The data were analyzed using the final distributions from
this last optimization. The convergence and consequently the parameter
distributions were assessed using the final 50% of the length of each
chain (Vrugt, 2016). The optimal parameter set is the Pareto optimal
of the three likelihoods calculated for leachate cumulative outflow,
leachate outflow rate, and leachate concentration.

2.4. RESULTS AND DISCUSSION

2.4.1. SIMULATED LEACHATE OUTflOW RATE AND LEACHATE
CONCENTRATION VALUES

fter convergence in pyDREAM, we may assume that all likelihood

values in the final parameter set are samples from the distribution of
likelihood values in the model that fit the measurements best. Because
the inference is carried out in a hyperspace with 29 dimensions, different
parameters can be highly correlated with each other.

As a result, we cannot use averaged parameter values from the
posterior joint probability distributions. Instead, we need to select
individual parameter vectors from the total converged distribution of
parameters.

In order to provide insight into how well the model is able to describe
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Table 2.2.: Priors for the Parameter Distributions Used in the Bayesian

Inference

Parameter Minimum Maximum 10log
Cover layer

Cr 0.75 1.5 -
Ow, max 0.3 0.5 -
Sfwe,min 0.0001 1 -
Kei -5 3 X
b 0 8 -
Cinig -4 -4 X
Waste body

Tfast 1 730 -
Ofast -5 2.5 X
ATsiow 0 9125 -
Oslow -5 3 X
Br 0 1 -
Owbin; 0.0 0.5 -
Fwbmin 0.0 0.5 -
bFo -5 -2 X
Ciniwp 2 6 X
UbF 0 15 -
ObF 0 15 -
apF -9 0 X
thorm 0 1825 -
Generalized likelihood

0o -8 2 X
01 -8 2 X
M1 0 - -
B -1 1 -
&g 0.1 10 -
¢1,Ieachate -1 1 -
¢1,conc -1 1 -

[¢2, @3, P4l [0, 0, 0]

Note. Priors are uniform distributions. The column 1%log indicates

have a range defined by the 10log values.

which parameters

Parameters with only a minimum value
have not been inferred; the given values are used as a constant.

The parameters

for the generalized likelihood function are the same for both the leachate flow and
the concentration data, except for the correlation parameter ¢;, which was maximized

based on trial and error.
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the measured data, we decided to present model estimations based
on the posterior likelihood for parameter vectors where the density is
1, and close to 0.95, 0.5, and 0.05 from the converged distribution.
The cumulative distribution of likelihood values is shown in Figure S1
in Appendix for the four waste bodies analyzed in this chapter. The
likelihood values corresponding to the probability quantiles of the lines
in the following graphs are reported in the legends of the figures.

The results of the simulated values of leachate production and
leachate chloride concentration are compared with measured values for
the Braambergen 11Z waste body in Figure 2.2. In the Appendix (Figure
S2), we present similar figures for the Braambergen 11N and 12 and the
Wieringermeer VP06 waste bodies.

Braambergen 11Z
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Figure 2.2.: Simulated and measured values of cumulative leachate production
(CL [m]), leachate pump rate (LPR [m/day]) and leachate chloride concentration
(conc [kg/m3] for Braambergen 11Z. The four colors are the results of four
scenarios corresponding to distinct values of likelihood from the converged
parameter set. The shaded areas are the 95% confidence intervals estimated
from the generalized likelihood model. The legends give the likelihood of the
parameter set for the three objective functions used for optimization.

The generalized likelihood model of Schoups and Vrugt (2010) allows
us to calculate a simulated measurement error with the forward model.
For all sites the model is able to describe cumulative leachate production
and leachate flow dynamics with similar accuracy. The uncertainty
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estimated with the 95% confidence intervals is able to capture the
spread in the measurement data for the data set used for the calibration.
In the generalized likelihood model of Schoups and Vrugt (2010),
heteroscedasticity is explicitly accounted for by assuming that the
measurement error increases linearly with the expected value:

Ot =00 + 01E¢.

The inferred parameters in the generalized likelihood model (09, eachate,
01,leachate, 00,conc, and 01,conc) Of which the log10 values are reported in
table 2.3, allow us to calculate the estimated measurement error for the
simulated leachate production rates and leachate concentrations. For
the concentration data, this calculation is less straightforward because
the measurement error is estimated using the logl0 transform of the
measured concentration data. These uncertainties can be estimated for
the other waste bodies as is graphically shown in Figure S3.

Although the uncertainty in the simulated values is significant, the
estimates of the expected values give a good description of both
measured time series. Please note that the calibration was carried using
data that were measured between 1-1-2014 and 31-12-2020.

The estimates of the leachate production rates do not capture the
extremes in the measured data. This is due to several reasons. The
first is because the optimal parameter set is a pareto optimum of both
leachate production rates and chloride concentrations. The simulation
represented by the red line in Figure 2.2 for the Braambergen 11Z waste
body is a clear example, with a high likelihood for the concentration
data, but a lower one for the leachate data. An important reason for
this ambiguity lies in the fact that the model is an initial boundary
value problem in which many of the waste body properties cannot
vary with time. Early attempts, where first only leachate production
data were used in the objective criterion, gave better fits of measured
leachate production values, however attempts to subsequently describe
the concentration data with fixed optimal parameters for the leachate
production rate simulation led to poor results for the concentration
data (results not shown). This implies that the assumption of purely
convective flow for chloride is not completely true or that the parameters
in the model vary with time. When inferring the parameters from both
time series, leachate production rates need to be smoothed in the model
to a certain extent. Another example of the initial boundary condition
problem can be seen in the early predictions of the concentration data
(before the start of the calibration period in 2014), where the simulated
concentrations poorly describe the measured values for Braambergen
117, 12, and Wieringermeer waste bodies.

The second reason is related to the quality of the measurement data.
Leachate levels in the pump-pits of the waste body cells are allowed
to vary over a narrow bandwidth of 10 cm. When the maximum level
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is reached, the pump will be switched on; when the minimum level is
reached, it switches off. During pumping, flow is cumulatively recorded.
Since the start of monitoring in April 2012, several problems were
encountered with the pumps, causing them to be switched off, leading
to a zero flow. As a consequence, the drainage system buffered the
leachate. As soon as the issues were fixed, the pumps quickly pumped
the excess water until the set-points were reached. Pumping excess
water led to much higher flow rates temporarily. In order to minimize
this effect in the data, flow rates were obtained by taking backward
differences of the cumulative data over a period of 7 days.

Because measurements of qrf(t) and qieacn(t) were used to calibrate
the model, and the uncertainty in the water balance is mainly associated
with the estimation of gev(t). In the approach we used, the final
estimate of gev(t) is determined by multiple (correlated) parameters
in the model. For most of the time geyv(t) is equal to the estimated
potential evapotranspiration, but there are moments when evaporation
becomes zero due to insufficient water present in the cover layer.

—44.0 -3.5 -3.0 -2.5 -2.0 -1.5 -4 -2 0 2
10|Og bF, Oslow

Figure 2.3.: Posterior (black) and prior (dashed blue) cumulative distributions
of selected parameters for Braambergen 11Z. The left column gives examples
of sensitive parameters that have converged to narrow posterior distributions,
the right column gives examples of parameters that are highly correlated with
other parameters or that are not sensitive and therefore are close to the prior.

The posterior distributions of the model parameters indicate the
model sensitivity of the system to the parameter values within the
optimal likelihood parameter set. Figure 2.3 gives examples of
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Table 2.3.: Statistics and optimal parameter values after optimization
with DREAM(ZS), Braambergen 11Z, number of samples in
converged parameter set = 15000

mean std min 25.00% 50.00% 75.00% max 1 0.975 0.5 0.025
Cr 1.0 0.04 0.93 0.97 0.99 1.02 1.19 1.01 1.02 1.06 0.94
devmax 0.39 0.02 0.35 0.38 0.39 0.4 0.44 0.39 0.39 0.38 0.36
Sweymin 0.21 0.03 0.1 0.2 0.22 0.23 0.27 0.23 0.23 0.22 0.18
101og Ky 1.22 0.32 0.49 0.97 1.23 1.45 214 1.21 0.81 1.44 0.89
bel 274 1.0 1.43 1.96 2.39 3.26 6.36 2.09 1.65 2.41 4.21
Tfast 40.15 5.28 27.24 36.34 39.21 43.64 59.7 36.57 34.43 38.95 30.78
1010g Ofast 0.19 0.06 0.06 0.15 0.18 0.23 0.35 0.13 0.08 0.17 0.25
ATsiow 2537.39  399.88  1683.64  2226.64 256219  2816.19  3703.74 23294  1967.03 2480.16  1986.02
10109 Ostow -2.15 1.28 -4.97 -3.2 -2.0 -1.31 0.64 -2.52 -1.44 -1.42 -0.85
Br 0.72 0.07 0.51 0.67 0.71 0.77 0.93 0.68 0.65 0.73 0.68
ewb[m 0.44 0.04 0.34 0.41 0.44 0.47 0.5 0.45 0.43 0.41 0.45
Vmin 0.13 0.05 0.02 0.1 0.13 0.16 0.26 0.13 0.04 0.12 0.1
10109 bFy -2.55 0.15 3.0 -2.65 -2.57 2.45 2.06 -2.69 -2.54 2.7 2.4
10109 Cinig -0.55 1.84 -4.0 -1.93 -0.79 0.75 4.74 -3.13 -1.76 0.47 -0.96
10109 Ciniy,y, 3.37 0.03 33 335 3.37 3.39 3.46 3.33 3.34 335 3.39
HbF 3.34 1.05 1.57 2.57 3.08 3.88 6.57 2.82 3.59 2.93 1.94
ObF 1.97 0.41 11 1.69 1.93 2.19 3.76 1.9 1.95 1.62 3.05
1%1og apr -2.56 1.29 -6.05 -3.65 -2.46 -1.54 -0.02 -2.42 -3.46 -4.29 -3.22
TE norm 1403.17 156.77 907.43 1296.37 1407.54  1523.52  1752.52 1419.21 1620.3 1431.87 1391.85
19109 00, ieachate 373 0.04 -3.87 -3.76 373 37 -3.58 375 -3.76 -373 -3.65
10109 01, teachate -0.39 0.09 -0.71 -0.45 -0.39 -0.33 -0.15 -0.35 -0.28 -0.34 -0.5
Bieachate 0.92 0.07 0.57 0.89 0.94 0.97 1.0 0.95 0.98 0.84 0.91
Eleachate 122 0.08 0.97 117 1.21 1.26 1.57 12 118 1.1 12
01, eachate 0.26 0.04 0.15 0.24 0.26 0.29 0.37 0.22 0.3 0.23 0.27
10109 00, conc -5.43 0.91 -7.47 -5.97 -5.51 -4.96 -2.08 -5.66 -5.55 -6.3 -6.09
10109 01, conc -1.5 0.04 -1.63 -1.53 -1.5 -1.48 -1.38 -1.52 -1.5 -1.46 -1.49
Beonc 0.95 0.04 0.76 0.93 0.96 0.98 1.0 0.97 0.97 0.96 0.92
Econc 125 0.12 0.88 1.16 125 133 1.59 1.22 1.24 1.29 1.29
®1,conc 0.65 0.04 0.51 0.62 0.66 0.68 0.7 0.67 0.69 0.62 0.59
Ltot 2617.21 3.88 2597.87 2615.21 2617.52  2619.87  2626.13  2626.13  2622.75  2617.52 2610.57

posterior cumulative parameter distributions (in black) compared to
the prior distributions in blue: the left column shows the inferred
distributions for C¢, bro, and cini,,, which are examples that have narrow
distributions compared with the prior ranges given in table 2.2. This
narrow distribution implies that the measured data contain sufficient
information to infer these parameters. The total water balance depends
strongly on the crop factor, C¢, because the surface area of the landfill is
fixed, and the crop factor is the only parameter that can limit or enhance
the evapotranspiration. Outflow concentrations strongly depend on the
amount of solute mass present in the waste body, which is controlled by
the initial concentration cin;,, and the base flow, brg, which constrains
the lowest flow rate during dry periods.

The parameters in the right column of Figure 2.3 are examples of
poorly inferred parameters because the posterior distribution is very
similar to the uniform prior distribution in table 2.2. The outflow
concentration does not depend on the initial concentration in the cover
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layer, Cini,, in 2003. The simulation results show that any conservative
solute in the cover layer is quickly removed. The posterior distribution
can also be similar to the prior when the parameter is highly correlated
with another one. A good example of this is the distribution of the
mobile fraction in the cover layer, b, which is highly correlated with
residual water content in the cover layer. The last example of a poorly
inferred parameter is the posterior distribution for osiow, Which does
have a narrower range than the prior, however, the final parameter
range is still uniform over a wide range. ogsiow value controls the spread
or variability of life expectancy values of water parcels traveling slowly
through the landfill waste. When the slow-flow component has a very
long mean travel time (large Tsiow), water from this slow pathway may
rarely or never exit during the calibration period. As a consequence,
observed data (leachate concentration and volume) provide little or no
insight into this parameter.

2.4.2. ERROR MODEL

In order to check if the parameters in the error model are correctly
inferred, we follow the approach used by Schoups and Vrugt (2010),
where different aspects of the residuals are evaluated. Figure 2.3
presents the results of this analysis for the Braambergen 11Z waste
body. For the error model, we assume that the errors are heteroscedastic;
the left plots show the residuals as a function of the expected values
of measured leachate production rates and concentrations. The
errors are nicely distributed around zero, indicating that there is no
bias in the results. The middle plots show that the distributions of
errors are well described using the inferred parameters in the Skewed
Exponential Power distribution of the generalized likelihood model.
Clearly, the error model does not follow a normal distribution. Finally,
the autocorrelation in the residuals is adequately captured with the
autocorrelation parameter, even though the range for this parameter
was constrained by a maximum value of 0.7. In addition, the different
chains show similar results, demonstrating that the final parameter set
is indeed from a converged distribution.

2.4.3. EXTRAPOLATION TO THE YEAR 2066

The model allows us to make predictions of how emissions vary in the
future while taking the uncertainty in the inferred model parameters
into account. The results for the Braambergen 11Z waste body are
shown in Figure 2.5, for the other waste bodies we refer to the
Supporting Information, Figure S3 in the Appendix. For all waste bodies,
simulated results for selected parameter sets lie close to each other
in the time range used to infer the parameters, but before and after
the measurement time range, the results can diverge. This is most
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Braambergen 11Z: leachate pump rate [m/day]
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Figure 2.4.: Braambergen 11Z. Plots of the residuals as a function of leachate
production rate or concentration, distribution of the errors and auto-correlation
in the errors for the flow data (top row) and concentration data (bottom row).



2.4. Results and discussion 41

clearly seen in the plot of the cumulative leachate production because
small differences in the simulated cumulative over time. For the
time range used for the parameter inference, these small differences
are compensated, so the results for the different parameter sets do
not diverge from each other. Similar effects also occur for leachate
production rates and leachate concentration data. However, as the
effects do not accumulate as quickly as for the cumulative leachate
production, it will take a much longer time series to see the effects in
the graphs.

The simulated cumulative leachate production starts to deviate
significantly from the measured cumulative flow after 2022 and in spring
2024 we see that measured flow rates fall above the 95% intervals. This
is due to the fact that the past years have moved from exceptionally dry
to exceptionally wet in a very short time. An additional factor is that in
2022, additional wells were installed on Braambergen.

One of the most important assumptions in developing this approach
is that the probability density functions of the travel time distributions
do not change with time. It is likely that this assumption is too strict.
Apparently, the waste body is not able to store more water as rainfall
increases; instead, preferential flow to the drainage system seems to
increase as well. Measurement artifacts also play a role. Because of
the excess amount of water due to heavy rainfall, the landfill operator
had to reduce the discharge to the water treatment plant by reducing
the pump rate from the drainage system for a couple of weeks. The
reduced flow of water may have led to a higher leaching of chloride.

In order to capture time-dependent changes in the properties of the
waste body and boundary conditions, other approaches are required
than those used for this work. Parameter distributions can be adjusted
so that they become time-dependent. This could be done by making
them depend on the storage in the waste body as suggested by Harman
(2015) or by inferring parameters and states in time using a particle
filter as suggested by Wang and Heimovaara (2025).

The long-term predictions (Figure 2.5) indicate that chloride is
gradually leached from the waste body, and the concentration varies
with the seasonal variation in infiltration. All scenarios (see also
Figure S3 in the Appendix) indicate that water storage in all waste
bodies reaches a long-term dynamic steady state where base-flow is
compensated by storage from infiltration with life-time expectancies
above n¢ or 1825 days.

The concentration in the leachate is controlled by chloride mass and
the amount of water draining from the bulk volume of the waste body as
base flow. The base flow rate is controlled by the volume of water stored
in the bulk volume. Figure 2.6 shows the base flow as a function of the
bulk storage. Figure 2.7 shows the simulated base flow over time, and
Figure 2.8 shows the bulk concentration, which is the ratio of the solute
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Figure 2.5.: Long term extrapolation of cumulative leachate production (CL
[m]), leachate pump rate (LPR [m/day]) and leachate chloride concentration
(conc [kg/m3] for Braambergen 11Z. The scenarios are identical to the ones
presented in figure 2.2
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mass and storage. Each parameter set results in base flows with a
different magnitude; however, as the model is simulating both the water
balance and the chloride mass-balance, final outcomes are very similar
(see figures 2.2 and 2.5). The differences in magnitudes for the base
flow are caused by the fact that concentration is the ratio of solute mass
to water storage. A higher concentration leads to a higher water mass,
which therefore will lead to higher bulk storage values and, therefore,
a different base flow function to achieve similar base flow mass rates.
A clear indication of the mass balance is the similar magnitudes of the
variations in the bulk storage (Vpyik) in Figure 2.8.

The oscillations in the base flow (Figure 2.6) can be explained by the
the seasonal variation in the infiltration leading to a variation in the bulk
storage (Figure 2.8) and the slope of the base flow function (Figure 2.6).

Braambergen 11Z: base flow function
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Figure 2.6.: Base flow (bf) functions for Braambergen 11Z using equation 2.10

2.4.4. LIFE EXPECTANCY DISTRIBUTIONS

In figure 2.9, cumulative density functions are plotted for the life
expectancy time distributions used to partition the water from the
infiltration flux from the cover layer and the base flow from the bulk.
Until a life expectancy of 2500 days, the probability density functions for
giny are completely determined by the fast flow fraction for all scenarios
except the green one. Apparently, the slow fraction only has an impact
on water with a life expectancy which is much larger than 2500 days.
Given the fact that all water with a life expectancy older than n¢ = 1825
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Braambergen 11Z: base Flow
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Figure 2.7.: Simulated base flow (bf)for Braambergen 11Z.
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Figure 2.8.: Simulated chloride concentration, mass and total storage in the
bulk of the waste body for Braambergen 11Z.
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days is added to the bulk, the results imply that about 40 % of the
infiltrating water is added to the bulk of the waste body, and that about
20% of the infiltrating water will have left the waste body as leachate
after about 45 days. The same is true for the green scenario, as the
jump occurs after 1900 days.

The cumulative density function for the base flow indicates that in
all scenarios, except for the 100% probability scenario (blue with a
likelihood of 2531) are directly added to the cell with a life expectancy
of 1825 days, which is consistent with convective transport of the water.

Braambergen 11Z: traveltime distributions
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Figure 2.9.: Cumulative densities of the travel time distributions for the
infiltration flux from the cover layer (ginf) using Equation 2.12 and the base
flow from the bulk (gpr) using Equation 2.14.

Because 20% of the water infiltrating from the cover layer has a
life expectancy of less than 45 days, leachate concentration dynamics
are dominated by this water moving preferentially through the waste
body. This preferential flow explains why in winter, concentrations
are low and in summer, concentrations are high. In the Netherlands,
evapo-transpiration is high in summer, leading to no or very low
infiltration fluxes from the cover layer, and solute present in cells with
short life expectancy is not diluted. In winter, evapo-transpiration is
very low, leading to high infiltration fluxes, which significantly dilute the
solute present in the cells with short life expectancy.
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2.4.5. EMISSION POTENTIAL

The model keeps track of the mass balances of water and chloride in
the waste body. The dynamics in the long-term leachate production
rates and leachate chloride concentrations are controlled by the mass
present in the bulk. The only source for chloride in the leachate is the
mass present at initialization, and water is added via precipitation and
subsequent infiltration into the waste body. These assumptions lead
to a gradual decrease in chloride mass, which then leads to a gradual
reduction in leachate concentrations as well.

Figure 2.10 shows the simulated totals of chloride mass, water
storage, and corresponding chloride concentrations for the waste body
of Braambergen 11Z. Clearly, the mass shows an exponential decrease
with time, which is to be expected.

The leachate volume in the waste body decreases from 4.8 m to
values between 2 and 2.6 m. The concentration is the ratio of the mass
to the volume. As long as base flow occurs, the total mass in the waste
body will decrease. The rate of decrease is controlled by the magnitude
of the base flow and the concentration in the bulk. Similar patterns have
been found for the other waste bodies in this study as well.

Braambergen 11Z: total mass LF
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1000
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Figure 2.10.: Total chloride mass, total storage and solute concentration in the
waste body of Braambergen 11Z.

These results indicate that our approach provides insight in the mass
controlling long-term emissions from waste bodies. The total mass
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in Figure 2.10 shows the emission potential of this waste body as a
function of time. This mass controls the concentration in the leachate,
and as no new mass is added to the waste body, it will also control
future emissions.

2.4.6. IMPLICATIONS FOR MANAGING LANDFILL AFTER CARE

The model and parameter inference approach based on life-expectancy
modeling is a viable approach to describe measured time series
of leachate production rates and leachate concentration dynamics.
Because the parameter inference approach provides us with uncertainty
estimates, we also obtain insight in the uncertainty of the simulated
values. The inferred parameters allow us to understand the uncertainty
in the parameters controlling the emission of solutes from the waste
body. The model allows us to make sense of the measured variations
in leachate concentration data without having the need to smooth the
data.

An important result is that this approach can provide minimum and
maximum estimates of leachate concentrations over time which can be
used to assess the necessity of landfill after-care measures. In addition
the inferred parameter distributions allow for an estimate of amount
of mass in the waste body that is controlling the long-term leachate
concentrations. This information is essential for understanding long
term future risk associated with leachate emissions.

The results also clearly demonstrate that concentrations in leachate
are dominated by dilution with water infiltrating from the cover layer
and quickly moving via preferential path ways to the drainage system.
Transport of mass from the bulk of the waste body to the drainage
system is a relatively slow process. Dilution is a dominating mechanism
reducing the actual leachate concentrations compared with the solute
concentrations present in the waste body. Enhancing preferential
flow by engineered measures in the waste body, may reduce these
concentrations even further because the amount of water being stored
in the bulk will decrease. This then leads to a decrease in the release
rate from the bulk because of a decrease in storage. However the
decrease in emission potential will slow down as well.

This methodology requires long-term time series of leachate production
rates and leachate concentration values in order to infer the parameters.
Leachate production rates and leachate concentrations are parameters
that landfill are obliged to measure in order to be compliant with
the regulations. For the Wieringermeer and Braambergen landfills the
landfill operator did increase the measurement frequency significantly.
When applying the approach to new data sets one can start using the
posterior distributions obtained published with this paper, instead of
starting with fresh uninformative priors.
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2.5. SUMMARY AND CONCLUSIONS

A model has been developed for simulating leachate production rates
and leachate concentrations using a mass balance approach combined
with a stochastic trave time approach based on life time expectancies.
The model is one dimensional and consists of two layers. The first layer
is a reservoir model for the cover layer, the second layer a stochastic
life expectancy model. The model is driven by measured rainfall and
potential evapotranspiration and is calibrated using measured leachate
production rates and leachate concentrations. Posterior parameter
distributions are inferred using a Bayesian MCMC approach implemented
in PyDREAM (Shockley et al., 2018) where the objective functions are
based on the generalized likelihood model of Schoups and Vrugt (2010).
The model has been applied to analyze data sets obtained from two
different landfills and a total of four waste bodies.

We also propose to use emission potential as a term to describe the
amount of mass that can be released from the waste body in realistic
conditions. This emission potential is the source term in a modeling
framework that can describe measured leachate flux and leachate
concentration.

The model with posterior parameter distributions can describe the
measured time series of leachate production rates and leachate chloride
concentrations.  In addition uncertainty bandwidths using inferred
measurement errors can be determined as well. Model simulations
can be carried out to extrapolate leachate production and leachate
concentration in to the future allowing for assessment of the future
development of concentration and leachate production volume.

Integrating biogeochemical reactions in the approach would allow the
model to be used for evaluation of reactive compounds as well. This
however will considerably increase the complexity of the model as well.

The results indicate that the waste bodies that have been studied,
have reached seasonal steady state until 2022, where total water
storage in the waste body oscillates around a constant value. From 2022
onward, the measured cumulative leachate production is larger than
simulated. This implies that using time independent life-expectancy
probability distributions is too strict.

The oscillations in leachate production rates and leachate concentra-
tions are controlled by infiltration rates from the cover layer and the life
time expectancy distribution. Leachate concentrations depend strongly
on the simulated base flow which is controlled by the storage in the bulk
of the waste body where life expectancy of water is longer than 1825
days.

Emission potential is a combination of the total mass present in the
waste body and the expected future behavior of the base flow. The
model can be used to plot the future development of the two parameters
controlling leachate concentrations being total solute mass and total
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water storage for different climate forcing scenarios. The total mass is a
quantification of the emission potential. The results of such simulations
can be used to assess different landfill after care scenarios.
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QUANTIFYING LANDFILL
EMISSION POTENTIALUSINGA
WEAKLY COUPLED PARTICLE
FILTER

The emission potential, which represents the total leachable mass in
landfill waste body, is hard to measure directly. Therefore, we propose
to quantify it by assimilating available measurements. The total water
storage influences the leachate production rate in the waste body, while
both total chloride mass and total water storage in the waste body
influence the chloride concentration in the leachate. Thus, assimilating
leachate volume and chloride concentration simultaneously will help
quantify the uncertainties in emission potential. This study investigated
the feasibility of using a particle filter in a concentration-volume coupled
travel time distribution model to estimate the emission potential.
Leachate production rates and chloride concentrations were assimilated
simultaneously by a weakly coupled data assimilation(WCDA) method.
The time lag issue in the travel time distribution model was solved by
adding a daily model error to cover layer states. The proposed method
was tested in synthetic experiments first to investigate the performance.
The results show that the uncertainties in chloride mass and total water
storage in the waste body were quantified and reduced. The predictions
of chloride concentrations were also improved.

Parts of this chapter have been published in Wang and Heimovaara (2025)
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3.1. INTRODUCTION

M unicipal solid waste(MSW) landfill leachate is a primary source of
pollution to the surrounding environment because it is a source
of contamination for soil and groundwater (Brand, 2014; Fatoba et al.,
2021; Gworek et al., 2016). The environmental risk of leachate
is determined by its composition and the amount released to the
environment. The leachate flux from old landfills is mainly controlled
by the water balance of the landfill which depends on precipitation and
evapotranspiration. Leachate composition is influenced by the water
storage and pollutant mass present in the waste body (Grugnaletti et al.,
2016; Laner et al., 2011; Yang et al., 2015). Also, reliable predictions of
leachate emissions in the long term require a quantitative assessment
of total pollutant mass and water storage in the waste body. As such,
this quantitative assessment is an important criterion to determine the
aftercare strategy (Kattenberg & Heimovaara, 2011).

Direct measurement of pollutant mass and water storage is virtually
impossible due to the size and heterogeneity of waste bodies. As
a result, researchers have developed alternative approaches that use
forward modeling to predict leachate flux, composition, and the evolution
of pollutant mass and water storage over time. For instance, Pantini
et al. (2014) developed a process-based landfill water balance model
where biodegradation and waste compression processes are included.
Grugnaletti et al. (2016) got more accurate leachate production
predictions by carrying out a parameter calibration with available
outflow measurements. Zhang et al. (2021) proposed a pollutant
concentration, leakage rate, and a solute transport coupled model that
allows the prediction of concentrations. Generally, initial values of water
and pollutant storages in the models are often approximated by waste
characteristics like waste initial moisture (Sao Mateus et al., 2012; Yang
etal., 2015). However, these estimations could be biased because of the
significant spatial variation in initial states and the lack of information
on waste composition. Laboratory studies help quantify certain model
parameters, but small-scale tests often fail to capture the behavior of
full-scale landfills (Fellner et al., 2009). Even when initial moisture levels
are calibrated with observations, as in Grugnaletti et al. (2016), the
results reflect an averaged value of the whole waste body. While these
models can reasonably predict leachate production rates, they struggle
to capture the dynamics of pollutant concentration in leachate.

It is generally known that the contaminants are leached out from waste
through preferential flow (Fellner & Brunner, 2010). It means we may
not need to explicitly consider the heterogeneity of waste properties if
we can use a function to describe the preferential flow. Recent research
shows that travel time distributions can be used to characterize the flow
pathway heterogeneity (Rinaldo et al., 2011). We have developed a
travel time distribution(TTD) model to predict leachate production rate
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(LPR) and chloride concentration from landfill waste bodies (Heimovaara
& Wang, 2025). The preferential water flow in landfill waste bodies
is primarily characterized by two travel time distributions: one for
infiltration from the cover layer and another for baseflow from bulk
storage. The concentration states in this model are one-way coupled to
the water volume states, meaning changes in concentration levels are
controlled by changes in water volume. Parameters and initial states in
this model are obtained by optimization using the DREAM,s algorithm
(Vrugt, 2016), a Markov chain Monte Carlo (MCMC) method for Bayesian
inference.

In recent years, MCMC methods have been widely applied to hydrology
models. It allows for estimating the probability distribution of model
parameters by comparing model results with available measurements.
However, obtaining parameters by fitting or 'history-matching’ to data
is generally a batch processing method that defines the best fit in an
average way. This implies that we get the best fit of the measured data
over the whole time range rather than the best estimation of model
states (Liu & Gupta, 2007). Hence, normal MCMC-like batch processing
methods cannot recursively include new information when it becomes
available.

Data assimilation (DA) is another class of Bayesian inference methods.
It is widely used because of its power to recursively assimilate new
measurements to improve understanding of immeasurable or hidden
states (Carrassi et al.,, 2018; Liu et al., 2012). Most DA algorithms
consist of alternating forecast and analysis steps. Model states are
propagated with time using a forward model to get predictions, and then
measurements are used to update the predictions in analysis steps. This
sequential updating allows model states to be refined whenever new
observations become available.

Filter and smoother are two main categories of data assimilation.
Filters estimate current states using past and current observations,
making them efficient for real-time applications. On the other
hand, Smoothers use both past and future observations to improve
accuracy but are more computationally demanding. For example,
the ensemble Rauch-Tung-Striebel smoother (EnRTSS) (Raanes, 2016)
leverages batch processing to recursively update states, making it
suitable for retrospective analysis. Since our objective is to update
model states once new observations are available, we focus on the more
computationally efficient filtering methods

Among the main data assimilation filtering methods, the ensemble
Kalman filter(EnKF) (Evensen et al.,, n.d.) and the particle filter (PF)
(Djuri¢ et al., 2003) are commonly used for nonlinear forward models.
The state update performed by the EnKF is an affine transformation that
is precise only when the joint distribution of states and observations
follows a multivariate Gaussian distribution. If it isn’t, the update is
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only approximate and can violate all manner of physics. In contrast,
particle filtering approaches can preserve the physics because the
measurements are used to weigh particles instead of adjusting them.
Due to its ability to handle fully nonlinear systems, it has been widely
used in hydrology (Abbaszadeh et al., 2019; Plaza Guingla et al., 2013;
Vrugt et al., 2013; Zhang et al., 2017).

A coupled data assimilation (CDA) method is typically employed
when the forward model is a coupled system with different types of
measurements. CDA is popular due to its ability to enable each model
component to receive information from measurements in other domains
(Laloyaux et al., 2016; Penny et al., 2019; Penny & Hamill, 2017; Smith
et al., 2015; Tardif et al., 2015). In weakly CDA, all model states are
predicted simultaneously by a coupled forward model but are updated
separately within each domain (Penny & Hamill, 2017). The updated
states are then propagated to the next time step by the coupled model,
integrating measurement information from both domains. Conversely, in
strongly CDA, states in individual domains are predicted by the coupled
model and updated simultaneously using measurements from all
domains (Ng et al., 2009). This approach is optimal compared to weakly
CDA because it leverages information from all measurements in both
the prediction and update steps. However, the successful application
of strongly CDA is limited due to the challenges associated with model
error covariance (Zhang et al., 2020). Defining error covariance in
coupled data assimilation is particularly challenging because it requires
defining the correlations between states in different domains, which are
often the least understood. Although some ensemble data assimilation
methods derive correlations through ensemble forecasts, it is difficult to
determine if the low-dimensional approximation of the ensemble error
covariance is acceptable (Zupanski, 2017). In methods where the error
covariance is not explicitly defined, such as particle filter, the problem
still exists because of the low quality of the fundamental Monte Carlo
approximation. In addition, particle filter methods introduce issues
such as the ‘Curse of Dimensionality’ and particle degeneracy because
the state space encompasses all states in both domains in strongly
CDA. The drawbacks of strongly CDA were demonstrated in a 5-variable
test, where strongly CDA outperformed weakly CDA only when the
ensemble size was increased to approximately 104 (Han et al., 2013).
Consequently, most CDA systems in practical applications are weakly
CDA (Zhang et al., 2020).

In a synthetic experiment, comparative research on weakly CDA
was performed by Gharamti et al. (2013), where an ensemble Kalman
filter was used in a 2D subsurface flow-transport coupled model. The
hydraulic head and contaminant concentration observations in multiple
wells are assimilated to estimate the evolution of these two states.
However, the problem with the Ensemble Kalman Filter (EnKF) persists
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when the states and observations do not follow a joint multivariate
Gaussian distribution.

This study investigates the feasibility of using a weakly coupled
particle filtering approach in a landfill TTD model for estimating the
emission potential. The emission potential is determined by the waste
body’s pollutant mass states and water storage states. Based on
our knowledge, no research has used particle filtering approaches
to estimate both volume quantities and solute concentrations in
hydrochemical coupled models. We also believe this is the first
time data assimilation has been used to estimate landfill emission
potential. Moreover, mass state estimation remains a problem in many
data assimilation applications in hydrology. Six synthetic assimilation
scenarios were tested to verify the proposed method and optimize the
assimilation strategy. Several implementation steps of the algorithm
were adjusted to make it suitable for the TTD model. The uncertainties
of these hidden states were quantified, and improvement in prediction
was evaluated. The chloride mass in the landfill was selected as the
representative emission potential in this research.

3.2. METHODS

This data assimilation framework uses a coupled TTD model as the
forward model. The weakly coupled particle filter was used as a data
assimilation algorithm. The first part of this section describes the theory
of weakly coupled particle filter. The second part introduces the forward
model and its specific characteristics, which must be addressed in the
DA application. The last part concerns synthetic experiment design,
implementation procedure, and performance estimation matrices.

3.2.1. WEAKLY COUPLED PARTICLE fiLTER
SEQUENTIAL IMPORTANCE SAMPLING

The weakly coupled PF is based on the sequential importance sampling
(SIS) PF. Model and measurement equations are required during the
state estimation process as given by Arulampalam et al. (2002). We
take x: to represent a state vector that contains all the model states at
the current time step t. Firstly, the state vector is propagated from the
former time step to the current step with the model equation

Xt = M¢(Xt—1) + Emodel (3.1)

where M¢(-) denotes the forward model, and g€mogdel represents the model
error vector caused by different sources of uncertainty. The state vector
will then be linked to measurements through the measurement equation

yt = Ht(Xt) + Emeaq (3.2)
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in which H¢(-) denotes the measurement operator that connects model
states to measured states, and &4 represents the measurement error
vector.

The main task of state estimation is to estimate the probability density
function (pdf) of immeasurable states based on measurement series.
We use the subscript 1 :t to represent the time range from the initial
step to step t. Hence, y1.+ are the available measurements until current
step t and p(x:t | y1.t) represents the pdf of current state vector x;
given y1.:. Bayes’ theorem is used to calculate p(x; | y1:t), the so-called
posterior pdf, by combining prior pdf p(x: | y1.t—1) from last time step
with likelihood pdf p (yt | x¢) as

p(yt|xe)p (Xt |y1:t-1)
p(xt|y1:t) = (3.3)
p(yt|y1:t—1)
p(y: | y1:t—1) is @ normalization factor in making sure the integral of pdf
is 1. If the posterior pdf p(x:—1 | y1:t—1) at the previous assimilation step
is known, the prior pdf p(x: | y1:t—1) could be calculated as

p(xt | y1:t-1) = J p(Xt | Xt—1)p(Xt—1 | y1:t—1)dXt_1 (3.4)

Then we obtain the aim posterior pdf p(x | y1:t) as

p(yelxt) [ p(xe | Xe—1)p(Xe—1 | Y1:t-1)dXt_1
p(yt|yi—1)

The core idea of sequential importance sampling is to approximate
the required pdf through N independent particles with weight w;
respectively. More specifically, sampling from p(x:—1 | y1:t—1) means
several particles are obtained from the previous time step. p(x: | Xt—1)
indicates propagating these particles with forward model (equation 4.1).
The posterior pdf p (x; | y1:¢t) can be approximated as

p(xt | y1:t) = (3.5)

N
p(xt | y1:0) & > wis(x:—x1) (3.6)
i=1

In which 6 represents the Dirac delta function. N is the number of
particles. The w‘t is calculated recursively as

i wl_ plye|x)) 57)
CON (wip(ye | X))

The conditional probability p(y: | x:) is often computed as a Gaussian
likelihood:

p(ye | xt) = exp {=0.5[y: — H:(x)]TR [yt — He(x))]}  (3.8)
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where H¢(:) is the measurement operator, R is the error covariance

of the measurements (Van Leeuwen, 2009). Common statistics can
be easily acquired with the posterior pdf or weighted particles. For
instance, the mean of state vector x is calculated as

N
it=2wix" (3.9)
i1

SYSTEMATIC RESAMPLING

Particle degeneracy is one main limitation of sequence importance
sampling, which occurs after several assimilation steps when the
weights of all but one particle can be neglected (Snyder et al., 2008).
The effective ensemble size is used to evaluate the degeneracy problem.

It is computed as
1

S (wh)?
When the effective ensemble size is smaller than N/2, resampling
should be performed. The idea of resampling is duplicating particles
with high weights and discarding those with low weights. After that, all
weights will be set as 1/N. The general resampling algorithms include
multinomial, stratified, systematic, and residual resampling methods.
In this research, we chose systematic resampling due to its superior
resampling quality and computational efficiency compared with the

others. A more detailed description of resampling algorithms is given in
Hol et al. (2006).

N =

t (3.10)

WEAKLY COUPLED DATA ASSIMILATION (WCDA)

Coupled data assimilation is used when there is more than one
measurement type. Also, a coupled model should be available. In
WCDA, a coupled model is used to predict all the model states at
the current time step, while the weighting and updating steps are
performed within each component domain. Then the updated states
are propagated to the next step by the coupled model. Although the
measurements in one model domain are used to update the states in
the same domain, the coupled model propagates the information to the
other domain(Zhang et al., 2020). The details about the implementation
of WCDA are introduced in section 3.2.7.

3.2.2. COUPLED TRAVEL TIME DISTRIBUTION MODEL

The coupled travel time distribution (TTD) model predicts leachate
production rates and chloride concentrations. A detailed description
and implementation of the coupled TTD model are given in Chapter 2.
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Here, we briefly introduce the model to facilitate understanding of our
approach.

Forcing data:
A v Rainfall,
A 4: Evapotranspiration
Infiltration
I'TD v
Baseflow
TTD
&« VA m’c A <
§
A'- |'_ |‘_ }‘ i l‘ l“ ‘ Waste body

<

Observations:
Leachate production rate
Chloride concentration

Drainage system

Figure 3.1.: A schematic overview of model structure.

As shown in Figure 3.1, the model consists of two layers representing
a cover layer and waste body in a landfill. The forcing data at the top
boundary are rainfall (R) and potential evapotranspiration (Pey), which
will enter or leave the landfill from the cover layer. The water storage
in the cover layer determines the amount of water (qginf) infiltrating the
waste body. The waste body is conceptually divided into a single bulk
storage and P cells to represent different travel times of water parcels
before they flow out (discretization of the travel time distribution). The
number of mobile cells needs to be large enough to capture the dilution
pattern in the travel time distribution of cover layer infiltration but not
so large that it assumes the water in the mobile part of the landfill can
stay too long. The time difference between neighboring cells is one
day. This means that it takes P days for leachate in the last cell to
exit. It is important to note that these P cells do not refer to physical
locations within the waste body, but rather represent leachate parcels
with different travel times. The discretization into P cells is a method
used to model the distribution of travel times.

The leachate that flows out from bulk storage is considered baseflow,
and its volume is a function of bulk water storage. This baseflow
is modeled by a log-normal distribution, parameterized by a shape
parameter opr and a scale parameter In(upr). The final baseflow value
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is obtained by multiplying the output of this log-normal distribution and
the maximum baseflow value bFg. The baseflow will then be distributed
to P cells according to a Gamma travel time distribution function
I'(kpr, ® = 1). Similarly, the ginr from the cover layer is distributed to the
waste body with another travel time distribution function. The infiltration
TTD itself is modeled as a mixture distribution that combines both
fast-flow and slow-flow components, each represented by a separate
log-normal distribution. We use parameter B to describe the fast-flow
fraction, and 1— B is the fraction of slow flow.

Similar to the transport model from Gharamti et al. (2013), the
chloride concentration is one-way coupled in the water balance model.
The concentration states in P cells are determined by time propagation,
as well as distributed leachate from baseflow and infiltration from the
cover layer. The parameters and initial states were optimized using
DREAM(ZS) (Shockley, 2020; Vrugt, 2016). The model parameters used
in this manuscript is shown in Table 3.1.

The state vector is given by

;
xt = [Vete, Mct, Ceter Vbutker Mbutkes Coutker Veeyr Meettr Ceeltt] (3.11)

where | represents ity cell state. The concentration defined as
¢ = m/v applies to all elements in the conceptual model. Also,
Vwb: = Vbulk: + Zf;_ol Vcellé and Myp, = Mpuik, + Zfz_ol mceué are used in
the following parts to represent the entire storage states in the waste
body. Cyp indicates the average concentration in the waste body. We
use capital letters to represent the overall state variables of each layer,
and we use lowercase letters to represent all internal variables. A
detailed explanation of the variables in the model is presented in the
nomenclature list.

3.2.3. spEcIfic MODEL CHARACTERISTICS
ONE WAY COUPLED MODEL

The TTD model we use is based on a one-way coupling between water
volume and chloride concentration. The leachate production rates only
contain information on water volume states, while the concentration
states depend both on water volume and solute mass. However,
it is unknown how much information concentration measurements
contain about water volume states. Is it possible to only assimilate
concentration measurements, or do we need both the leachate outflow
and concentration measurements? Gharamti et al. (2013) always use
the concentration measurements to update the water head states,
while the research does not investigate the benefits of assimilating
both measurements compared with assimilating only one. Assimilating
both measurements could get the best overall estimation for the
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Table 3.1.: Parameters values and description in the coupled TTD model

Parameter Values Description
An empirical crop-factor to compensate for
cf 9.759 x 10~1 different types of crops to close the water
balance [—]

Ow,, max 3.437 x 10~1  Porosity of the cover layer [—]

Fraction of maximum volumetric water con-
SFwe,min 2.472 x10~2 tent in cover layer representing minimum
water storage [—]
Saturated hydraulic conductivity of the cover

_ -1
Kel 1.960x10 layer [md=1], 10jg
b 5427 Empirical shape factor for the non-linear flow
cl : term of the cover layer [—]
Expected fast travel time (log-normal infiltra-
1
Tfast 3.813x 10" ion distribution) [d]
Std. deviation of fast infiltration travel time
-1
Ofast 2.660x 10 [d], 10log
A 7.934 % 102 Difference between Tfqst and Tsiow; Tsiow =
Tslow ' Trast + A'l'slow
o 2.993 Std. deviation of slow infiltration travel time
slow ' [d]. 1olog
By 6.281 x 101  Fraction of fast flow in waste body [—]
bF _3.368 Maximum baseflow from bulk storage to
0 ’ mobile cells [m], 10yq
_1 Shape factor of log-normal baseflow function
(o] —0.294x1071!
bF 0.294x10 [m], 1040g
_ Scale parameter of log-normal baseflow func-
HbF 0.321 tion [m], 10g
KbF _8.341 Shape parameter for baseflow travel-time

distribution (Gamma distribution) [m]

model states, but it is not necessarily true for specific model parts.
For example, when assimilating both types of measurements, the
estimation results for volume states may be poorer compared with using
only leachate production rate measurements. In order to explore this
issue, we have designed different scenarios to investigate the optimal
assimilation strategy.

TIME LAGS IN TTD MODEL

In particle filtering approaches, we can estimate hidden states
in the model using measurements of observable states because the
measurements contain some information about hidden states. Assuming
the model is imperfect, errors will be added to both hidden states
and observable states during the state propagation process. One
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beneficial side effect of introducing model error is that it “rejuvenates”
the ensemble of a particle filter. This means that adding model errors
to hidden states enables the exploration of the hidden state space more
thoroughly. The hidden states with model error will be assessed in
the following time steps because they influence the measurable states.
However, if this influence is weak or does not exist, the hidden states
will be updated randomly, and the estimation will be poor (Plaza Guingla
etal., 2013).

In the forward TTD model we use, we have explicit time lags
between many model states and measurements because the travel time
distribution considers the time information explicitly. At each time step,
the model state vector includes thousands of individual cell states as
well as a bulk state, which summarizes the entire system. The time
lag between the oldest and youngest cell states is determined by the
infiltration travel time distribution, with a maximum lag of 5 years, as
illustrated in Figure 3.2. The infiltration water with a travel time larger
than 5 years is added to the bulk.

0.8

0.7

0.6

0.5

cdf
o
S

0.3
0.2
0.1

0.0

0 250 500 750 1000 1250 1500 1750
travel time [days]

Figure 3.2.: Cumulative distribution of infiltration TTD

It's important to distinguish between two types of time discretization
here: one that tracks the evolution of model states over time and
another representing the distribution of travel times for infiltration from
a cover layer or baseflow from bulk to exit the system. In this context,
a time lag represents the difference in these travel times. As shown in
Figure 3.1, the cells mean the water parcels with different travel times
rather than real physical water cells. For instance, the leachate in the
oldest cell at time step t will take P— 1 days to move to the youngest
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cell at time step t+ P—1. This means the oldest cell will only be
reflected in the measurements after P days. This time lag complicates
the estimation of multiple hidden states using current measurements.

Several studies are trying to solve these challenges with time-lagged
measurements in data assimilation (Li et al., 2013; McMillan et al.,
2013; Noh et al., 2013, 2014). McMillan et al. (2013) used the current
measurements to update states at previous time steps within the time
lag. Noh et al. (2013, 2014) used the measurements after an extended
time to estimate current model states to consider the time lag effect.
These methods use the forward models as measurement operators to
link the model states to corresponding lagged measurements. In these
approaches, the assumption is that the forward models are accurate
for this extended prediction; otherwise, the representation error (Janji¢
et al.,, 2018) in the measurement operator should be considered. The
maximum time lag in the landfill TTD model is around five years. This
is much longer than those previously used in distributed catchment
models. Consequently, model error accumulation is expected to be
severe during the extended prediction process (Noh et al., 2013, 2014),
so it is unreasonable to assume a correct model for such a long
prediction period. Additionally, the TTD model has thousands of states
that are lagged in time due to the discretization of TTD, whereas the
published applications usually have time lag issues for between two
states. To overcome these issues, we have developed a specific strategy
for the TTD model.

In the TTD landfill model, the cell states are propagated with time.
After P (the number of cells) days, there will be a connection among
all cells and bulk states. We call this implicit relationship "history’. We
can estimate hidden states by current measurements if this’ history’ is
maintained. Hence, the initialization of particles and the model errors
should guarantee this ’history’. The implementation strategy is further
explained in section 3.2.7.

3.2.4. SITE AND DATA DESCRIPTION

The model parameter calibration is based on actual measurements from
the Braambergen landfill in the Netherlands (Duurzaam stortbeheer,
2023). Daily meteorological forcing data (same as model resolution)
are obtained from the nearest weather station affiliated with KNMI
(2022). The leachate is pumped out from the drainage system, and
the daily production volume is acquired. The chloride concentration
is measured by sampling from the drainage layer generally with a
bi-weekly frequency(with some larger intervals up to 28 days). In
practical cases, there are many irregular values in daily production
rate measurements because of the management of the leachate pump
system by the landfill operator. When the pump system is broken, the
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outflow remains in the drainage layer, resulting in an observed leachate
production volume of zero. Afterward, the water is pumped out, a large
leachate volume is measured. In order to limit the effect of these
operational irregularities, seven days’ average leachate production rates
were calculated from the cumulative leachate measurements and used
as measurements. The measurement equations for leachate production
rate and chloride concentration are:

Z.t__ Veelly.
LPR; = %MHLPRW (3.12)

Ct=Cce[[0t +ECmea (313)

3.2.5. SYNTHETIC TRUTH GENERATION

Synthetic experiments are often designed to evaluate the performance
of data assimilation techniques. Artificial truth states are generated
by running a known forward model. If the DA algorithm is effective,
estimated states or parameters are expected to converge to the
synthetic truth by assimilating the simulated measurements obtained
from the forward model. The method of creating artificial truth is
highly dependent on the aim of the applied DA technique and the
assumption of existing underlying uncertainties. The primary sources
of uncertainty for a deterministic model are errors in forcing data,
initial states, model parameters, and model concepts. The most
simple scenario assumes that the model is correct and only adds
white noise to simulated measurements as measurement error. Weerts
and El Serafy (2006) perturbed forcing data to consider the forcing
data uncertainties in a state estimation problem. Plaza Guingla et al.
(2013) further added Gaussian noise to model parameters, although
only model states are updated in that research. Li et al. (2013) chose
to perturb the state variables in a probability-distributed hydrological
model. All the uncertainties above are considered to be included in
state variables. Gelsinari et al. (2020) used the 'truth’ generated from
the unperturbed model, while the model used in assimilation is with
a perturbed parameter set. Since we aim to assess the feasibility
of estimating emission potential in the TTD model by coupled particle
filter, we assume the forward model parameters to be correct in order
to simplify the problem. The initial states and input data were perturbed
in order to simulate a scenario where we have a poor understanding of
initial states and the input measurements are inaccurate.

The initial states in 2003 were obtained from model calibration in
order to generate a synthetic truth. Zero mean Gaussian error with a
standard deviation of 10% x cin; and 10% x vi,; were added to perturb
the initial states.
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Zero-mean Gaussian errors were added to daily rainfall and potential
evapotranspiration during the simulation period from 2003 to 2021. The
uncertainty range of rainfall is often chosen as (0 — 15%) x R (Weerts
& El Serafy, 2006). Here the standard deviation of random rainfall error
was set as 15% x R¢. The perturbation of evapotranspiration followed
Plaza Guingla et al. (2013) where a 30% x Pev; standard deviation was
used.

Although this study primarily focuses on synthetic experiments, we
aim to adapt the framework to accommodate the assimilation of real-
world data for further research. Hence, the data assimilation frequency
was set to be identical to the frequency of the real concentration
measurements.

Once the simulation results are obtained as synthetic truth, the
measurement errors should be added to observable states to simulate
measurements as shown in equation 4.12 and equation 4.13. The
standard deviations of Gaussian measurement error are selected as
10% of LPR: and C¢, respectively.

All the errors are presented in Table 3.2. It is worth emphasizing that
although we try to simulate the actual case in the synthetic experiment,
the artificial truth is only trying to approach the natural world in the
context of a proof-of-concept study (Matgen et al., 2010).

Table 3.2.: Standard deviation of Gaussian random errors for truth
generation
Variables R Pev Vini Cini
Standard deviation 0.15x Ry 0.3 x Pev: 0.1 x Vini 0.1 x Cini
Vini and cjy; represent all the initial volume and concentration states
in the model.

3.2.6. ENSEMBLE GENERATION PERFORMANCE CONTROL

The performance of DA relies on the appropriate representation of
uncertainties in the prediction. More specifically, the model error in
equation 4.1 should make the spread of generated ensembles realistic
compared to real measurements. Following the method proposed by
De Lannoy et al. (2006), the ensemble spread(enspt), the mean square
error(mset), and the ensemble skill(ensk:) are calculated as:

1y
enspe == > vy —¥o)? (3.14)
i=1

14
mse; = NZ(y;_ymeat)Z (3.15)
i=1
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enskt = (¥t — Ymea:)? (3.16)

N, i, t, ¥, Ymea represent ensemble size, ith ensemble number,
assimilation time step, simulated observable states, and assimilated
measurements, respectively. According to De Lannoy et al. (2006),
to ensure the generated ensembles’ statistical accuracy, the following
requirements should be considered:

< ensk >
— =~ (3.17)
<ensp >

<> means the average over the simulation time range. More
specifically, a value larger than 1 indicates insufficient ensemble spread,
while a value smaller than 1 indicates excessive spread. If the truth
is indistinguishable from a member of the ensemble, the following
equation should be true(De Lannoy et al., 2006):

< Yensk > N+1
~ (3.18)
< Jmse > 2N

When both leachate production rate and concentration measurements
are assimilated, we need a sufficiently large ensemble spread in the
simulated output. This is achieved by manually optimizing the standard
deviations of model error. Firstly we obtained the model error for the
cover layer water storage using an interval search to get an appropriate
spread in leachate production rate simulations. If the spread for
concentration states is not sufficient or excessive with the chosen model
error, we adjust the initial uncertainty range for the bulk concentration
states. Using this approach allows us to obtain a good ensemble
spread for concentration states while not making the spread in leachate
production excessive.

3.2.7. IMPLEMENTATION PROCEDURE

Based on the theory and model characteristics, the implementation
of sequential importance resampling in this coupled TTD model is as
follows:

1. Initialization: from the model calibration results, we take one
parameter set and initial states in 2003. The initial samples are
sampled from Gaussian distributions where the means are the
optimized initial values. Initially, the corresponding percentiles of
standard deviations in Gaussian distributions are set to be the
same as the ones used in the generation of synthetic initial states
(see table 3.2). Subsequently, the standard deviations undergo
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adjustment to meet the ensemble spread criteria, as is discussed
in section 3.3.1. With a warm-up simulation, the samples are
propagated to the starting date of data assimilation on the 19th
June 2012, a time step 7 days earlier than the first measurement
date. The reason to perform this warm-up propagation is that we
need to build connections among waste body states. Otherwise,
the time lag between bulk states and measurements will make the
estimation unreliable.

. Update step: all the particles are propagated to the next

assimilation step with equation 4.1, where M(:) indicates the
coupled TTD model. The forward model is discretized with a
daily time step, and the assimilation frequency is the same as
the real concentration measurement frequency, which is generally
two weeks. The choice of model error is crucial for representing
uncertainties and ensuring a good data assimilation technique
performance. Most studies applying particle filter or ensemble
Kalman filter choose to add a Gaussian random error to perturb
forcing data, model states, and/or parameters (Mattern et al.,
2013; Tran et al., 2020; Vrugt et al.,, 2013; Weerts & El Serafy,
2006). Considering the time lag issue, if we add independent
model error to each state directly, the accumulation of errors of
states like vpyik will be huge after several years’ lag. Therefore,
we choose to add daily error to V. The daily errors added on
day t will be propagated to waste body states since day t+ 1
according to the infiltration TTD curve with time until the next
assimilation step. Therefore, we are actually adding correlated
model errors to waste body states. Since the influence of error
in Vo on fast flow cells(cells with small travel time) can be
estimated by current measurements, we can avoid adding too
many unreasonable errors to old states like vpyik. Additionally, this
error choice maintains the total mass balance in waste body water
storage(Vwp,,; = Vwe, + infiltration — outflow). No model error is
introduced to the concentration states directly. Once the initial
concentration values are determined, the concentration variation
is assumed to be determined by volume states only.

. Analysis step: The particle weights are calculated by equation 4.7.

Based on different assimilation strategies, we weigh the states
differently. In a coupled assimilation scenario, the weights for
volume w, and concentration states w, are calculated separately
using their corresponding measurements. Both concentration and
leachate volume are used to calculate wpm: wm = we * wy. Then
Wm is normalized before estimating the mass states. If only
concentration measurements are assimilated, all the model states
are weighted based on the concentration measurements. When
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only LPR measurements are assimilated, the weights are used to
estimate all states except concentration states.

4. Resampling step: this step is similar to the analysis step, effective
ensemble size N7, N7 is computed according to equation 3.10.
Then the volume states will be resampled when N\e,ff is smaller than

N/2. The concentration states will be resampled if N?ff is smaller
than N/2. These two resampling steps are totally separated,
which means the resampling of volume states will not change the
concentration states and their weights w., and vice versa. If
volume or concentration states are resampled, the mass states will
be recalculated based on the current volume and concentration
states, and the weights w,, are also updated with new w, and
w.. The resampled volume and concentration states are then used
in the coupled forward model to make a prediction until the next
assimilation step.

5. Iteration: all former steps after initialization are repeated until the
last assimilation step.

3.2.8. PERFORMANCE ESTIMATION

Besides the evolution of hidden states, the accuracy of state estimation
results is evaluated with the temporal mean root-mean-square error,
which is described in equation 4.16. The L indicates the number of
assimilation time steps.

L N [ truth
thl \/Z[:l Wt(xt_xt )?
L

The prediction accuracy is also evaluated using a logarithmic form(n)
proposed by (Ercolani, 2017):

MRMSE = (3.19)

n=—In(1— NSE) (3.20)

Where NSE is the Nash-Sutcliffe efficiency calculated as:

ZtT:l(Yt — Ymear)?

NSE=1-— T
Zt=1()’meat —Ymea)?

(3.21)

where ymeq, are the measurements at time step t, y: represents the
model prediction, and the over bar means the average over time. The
logarithmic scale allows dealing with high NSE values(close to 1). It
tends to plus infinity when the observations and predictions achieve a
perfect match. The reliability of ensemble prediction is not considered
here because the model error is optimized to get reliable predictions.
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3.2.9. SYNTHETIC SCENARIOS

Different synthetic scenarios are designed to test the application’s
feasibility. As shown in table 3.3, in total six scenarios are used to
test the assimilation performance and get optimal assimilation strategy.
Scenarios A,D follow the proposed coupled assimilation procedure
described above. In other scenarios, only LPR or concentration
measurements are assimilated. The concentration observations are
used to estimate all states when assimilated solely, while the LPR
observations are used to update volume states solely. This is because
concentration measurements contain information on both volume
and concentration states, while the LPR observations only contain
information on volume states. Scenarios D to F are similar to A to C but
with the difference that we initialize the simulation with much smaller
initial bulk volume values. These scenarios are used to test the influence
of the baseflow function, which will be discussed in the following part.
Two open-loop simulations are also performed to get reference results
for scenarios A— C and D—E. The open loop simulations have the same
initial sample distributions and model errors as corresponding scenarios,
but no measurements are assimilated to update model states.

Table 3.3.: Synthetic scenarios
Scenario Assimilate LPR Assimilate C Small initial Vpyuik

A Yes Yes No
B Yes No No
C No Yes No
D Yes Yes Yes
E Yes No Yes
F No Yes Yes
OLac No No No
OLpr No No Yes

3.3. RESULTS AND DISCUSSION

The results of the experiment will be presented as follows. First, we
present the performance of ensemble generation. Next, we discuss
the hidden state estimations, including cover layer water storage, total
water storage, average concentration, and total chloride mass in the
waste body. Finally, we show the prediction performance results across
all scenarios. Based on our experimental scenario settings, we will
primarily make two types of comparisons: one between scenarios with
different initial bulk storage states, and another between scenarios with
the same initial bulk storage but different measurements assimilated.
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3.3.1. ENSEMBLE GENERATION

The appropriateness of ensemble generation and the generated initial
particles on the starting date of data assimilation, which is the 19th of
June, is verified using equations 4.14 and 4.15. Based on the results
of a preliminary sensitivity analysis of ensemble size, all experiments
use 10240 particles to ensure stable performance. The final choice of
initialization, model errors and the corresponding ensemble generation
skills are presented in table 3.4.

Table 3.4.: Ensemble generation performance

. k 13 k k
Scenario Mvy,  Ovpux  Ocpun €Evy :gZszLpR Z/%: LPR :ggzpi c Z/%: c
A-C 4.067 0.100 0.130 0.0145 1.002 0.651 1.082 0.587
D-E 2.000 0.100 0.100 0.0135 0.998 0.624 1.013 0.583

Note. All the initial states in 2003 are sampled from Gaussian

distributions N(M, g x M). The distribution parameters are the same as
truth generation if not explicitly defined in the table. My, , represents
the initial mean of bulk water storage. oy, and oc,,, refer to the
standard deviation percentile of bulk water storage and chloride
concentration, respectively. €y, shows the standard deviation percentile
for Gaussian model error (N(O, ey, x V) added to cover layer water
storage. If the newly generated cover layer water storage with model
error is negative, we manually set it to a small value of 0.001.

3.3.2. ASSIMILATION PERFORMANCE
ESTIMATION OF HIDDEN STATES

The hidden state estimation performance of the method is evaluated
using the proposed performance matrices (equation 4.16 - 4.18). The
results of total water storage in the cover layer, chloride mass, and
water storage in the waste body are presented in Figure 3.3. In
addition, the results of average chloride concentration are presented to
understand the state update process better. Although there is a small
amount of chloride in the cover layer, it can be ignored compared with
the amount in the waste body.

Total water storage in cover layer

As shown in Figure 3.3, the four MRMSE values for the storage in the
cover layer (V¢) in A-C and OLa—c scenarios are similar. This observation
is supported by the standard deviations of MRMSE, which are within a
magnitude of 4 x 10~3m. Similar estimation performance is observed in
scenarios D-F and OLp_fr, where the standard deviations of MRMSE are
within a magnitude of 3 x 10~3m. The values of the standard deviations
of RMSE are in the uploaded output file. The similar behavior of cover
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Figure 3.3.: MRMSE of hidden states in different scenarios

layer water storage is mainly caused by the buffering effect of the
unsaturated soil model used to simulate V.. When saturation is high,
infiltration to the waste body will be high as well. If no model error or
forcing data errors were added, the V; starting with different values
would converge to a same value after a period of time. The random
model error added during data assimilation is the main source of the
uncertainty in V.

Total water storage in waste body

Scenarios A - C are initialized with high values for initial bulk water
storage. As shown in Figure 3.3, scenario B has similar waste body
water storage (Vyp) estimation results as scenario A because of the
same assimilation procedure for volume states.

As shown in Figure 3.4, the mean estimation shows no noticeable
improvement throughout the entire period in scenario A. However,
when the model is initialized with a lower value for the initial bulk
water storage in scenario D, the behavior differs significantly. The
assimilation of new measurements corrects the biases in total water
storage compared to the scenarios with large bulk water storage.
Scenarios D and E also exhibit better estimation performance than
open-loop simulations, unlike scenarios B and C, where only slight
improvement is observed, as illustrated in Figure 3.3.

The difference in assimilation performance between the two initial
values in water storage is due to the baseflow function. As discussed
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Figure 3.4.: Water storage in the waste body in scenarios A and D. The red line
represents the mean estimation of the particle filter. The green and yellow lines
represent the open loop results and synthetic truth, respectively. The individual
particles are shown as grey points. The two black arrows point to the wet
and dry period during the assimilation process, with corresponding probabilities
plotted. The black vertical lines in the probability histograms are the truth at
specific time steps.
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regarding the time lag issue, we can only estimate hidden states if
the measurements are sensitive to their variations. Figure 3.5 shows
the baseflow function, which links bulk water storage to the generated
baseflow volume. Bulk water storage constitutes a significant portion
of the total water storage in the waste body, making its estimation
crucial for accurate Vy,p estimation. As shown, baseflow is sensitive to
variations in bulk water storage only when it ranges between 0 and 2
meters. Additionally, Figure 3.6 illustrates the travel time distribution of
baseflow, indicating that almost all generated baseflow is allocated to
the oldest cell. This means any changes in bulk storage take five years
to be reflected in simulated leachate production rates.

Baseflow volume (qpr) [M3]

0 1 2 3 4 5
bulk water storage (Vpu) [m]

Figure 3.5.: Baseflow change with bulk water storage variation

According to the synthetic truth, the bulk water storage five years
before the last measurement in scenarios A-C is around 2.18m.
Obviously, the information in the measurements to quantify bulk water
storage is limited. Lower values of the bulk water storage allow the
baseflow to reduce during the simulation time span. As a consequence,
measured leachate production rates contain information on this reduced
water storage because of lower baseflow values. This improves the
estimate of bulk water storage and Vy,, leading to lower uncertainty.
It's worth noting that selecting different baseflow functions or baseflow
distribution functions from the MCMC results can lead to varying state
estimation outcomes. This chapter aims to investigate the feasibility
of using the coupled particle filter method in a synthetic experiment,
assuming our model parameters are accurate. Additionally, we will
explore the influence of parameter uncertainty in subsequent research.
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Figure 3.6.: Baseflow travel time distribution

Another influencing factor of the uncertainty quantification capacity
is the measurement error. While the measurement errors are small,
it can detect smaller baseflow changes. For example, the bulk water
content will still influence the baseflow when it varies between 2 and 3
meters. When the measurement error is relatively large compared to
the corresponding baseflow variation, most of the particle sets in this
range will have close weights as they all give similar baseflow output.
As shown in scenario A in Figure 3.4, only large and small particle sets
are discarded with assimilation.

In scenario A, the posterior distribution in wet periods is close to the
ones obtained during dry periods. This means that the estimation results
of Vyp are stable during the last wet-dry cycle. However, in scenario
D, the posterior distributions in dry periods still change compared with
wet periods. This indicates that the measurements in the last cycle still
contain new information content which are being assimilated to reduce
the uncertainty. To further quantify the uncertainty and correct the bias
in mean estimation, the time series of measured leachate production
rates should be long enough to capture the effect of reducing bulk water
storage values in the sensitive range.

Comparing scenarios assimilating different measurements, Figure 3.3
shows that when the information content of the measurements is
high, the concentration measurements can be used to estimate Vyyp
in scenario F. Compared with scenario D, the MRMSE in scenario F is
higher. It is because the weights in scenario F are calculated using
concentration measurements, which are also influenced by mass states.
The particles with the wrong volume and mass values but correct
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concentration values are also considered with high probability.

Average chloride concentration in waste body

Estimation of the average chloride concentration in the waste body is
another case where the "history" is required. All available measurements
are linked to the first cell only. Nevertheless, the estimation of the
average concentration becomes possible because of the "history"
connection between cells and bulk.

As shown in Figure 3.3, the MRMSE values in average concentration
are lower when concentration measurements are assimilated, compared
with the open-loop results. As shown in Figure 3.7, in both scenarios
A and D, the uncertainties are significantly reduced, and the synthetic
truth is covered by the particles. Regardless of the sensitivity of baseflow
to variations in bulk water storage, the chloride in the waste body bulk
serves as the source for chloride in the mobile cells, enabling us to
use concentration measurements to estimate the average concentration
effectively.

It is worth noting that when only concentration states are assimilated
in scenarios B and F, Figure 3.3 shows slightly higher MRMSE values
compared with scenarios A and D, where both concentration and
LPR measurements are assimilated. Similarly, the MRMSE of average
concentration in scenario E is slightly better than the open-loop group.
This indicates that the assimilation of LPR measurements helps improve
the estimation of concentration states. Although concentration states
are updated solely by concentration measurements, the updated volume
states influence the prediction of concentration states at the next time
step. This illustrates how weakly coupled data assimilation integrates
information from both domains. We did not observe this behavior in
waste body water storage estimation because our model is one-way
coupled. This effect is likely not very strong, probably because our
initial particles for volume states can generate good volume predictions
due to optimization by MCMC. Overall, the assimilation of concentration
states helps quantify the uncertainty in concentration states.

Total chloride mass in waste body
The total chloride mass in the waste body is calculated from the
estimated water volume and concentration states. The uncertainty
reduction in either volume states or concentration states reduces the
uncertainty of mass states. On the other hand, bias in the estimation
of volume or concentration states can result in bias in mass estimation,
even if the other estimation is perfect.

As shown in Figure 3.3, when initial bulk water storage is small,
all the synthetic experiments have better MRMSE results than open-
loop simulations. Assimilating both measurements achieves the best
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Figure 3.7.: Average concentration in the waste body in scenarios A and D.
Colors of lines as in Figure 3.3.

estimation results. In contrast, when the initial bulk storage is high, the
MRMSE decrease is relatively small after assimilation. This is because
the uncertainty in Vy is not sufficiently reduced in scenarios A, B, and
C. Scenario B's MRMSE result is unusually small because it yields a
higher estimation of water storage and a lower estimation of average
concentration states, leading to a better mean estimation of mass
states.

Following the conclusion from volume and concentration estimations,
solely assimilating LPR measurements is insufficient for emission
potential estimation. When the sensitivity of baseflow to bulk storage
is high, we can use concentration measurements solely to estimate the
Mwp. Assimilating both measurements achieves the best performance
in the sense of both mean estimation and uncertainty reduction.

PREDICTION PERFORMANCE

Leachate production rates

Figure 3.8 shows the metrics we use to quantify the quality of
the predicted states. All six scenarios have smaller MRMSE values
and greater n values compared with the corresponding open-loop
simulations. This indicates reduced prediction uncertainty and improved
accuracy. However, the n and NSE values of three scenarios with the
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Figure 3.8.: LPR prediction performance in different scenarios.

same initial bulk storage are very close.

As discussed in section 3.2.1.1, the estimation of cover layer water
storage has a relatively good consistency with the truth because of
the buffering effect, which guarantees the accuracy of LPR prediction,
especially in wet periods where infiltration from the cover layer takes
up most of the outflow. Additionally, when the bulk storage in the
waste body, vpuik, reduces below 1 m (see Figure 3.5), the baseflow
magnitude will reduce significantly. Under such conditions, baseflow will
show a large sensitivity to infiltration from the cover layer reaching the
bulk storage.

Although scenario D, as shown in Figure 3.3, provides a better
estimation of waste body water storage than scenario F, scenario F has
a higher n value compared to scenario D. This is likely because more
uncertainty remained in the posterior distribution of scenario F, which
is crucial for capturing the effect of changes in bulk storage on the
baseflow. Additionally, n is calculated using synthetic measurements
that include measurement errors. During the dry period, some values
are smaller than the true values, which can only be accounted for by
small vpyik values.

Chloride concentrations

As shown in Figure 3.9, when concentration measurements are
assimilated in scenarios A, C, D, and F, the values of prediction accuracy
n improve significantly compared with open-loop realizations. When
only LPR measurements are assimilated, we also observe the reduction
of MRMSE and improvement of n. Although the improvement is very
small compared with the scenarios assimilating concentrations, it shows
the improvement in flow estimation can help improve the concentration
prediction.
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Figure 3.9.: Concentration prediction performance in different scenarios.

3.4. SUMMARY AND CONCLUSIONS

This work presents a weakly coupled particle filter framework to
assimilate leachate production rates and chloride concentrations with
the aim of estimating the emission potential of landfill waste bodies.
The emission potential in this chapter is defined as the mass of
leachable chloride present in the waste body. A concentration-coupled
travel time distribution model was used as a forward model for data
assimilation. Synthetic experiments were performed to investigate the
feasibility of state estimation and improving prediction. Six scenarios
were developed to investigate the best assimilation strategy. Two
synthetic measurement data sets were generated with the same forward
model using different initial bulk water content values under identical
meteorological forcing conditions. On each synthetic data set, three
types of Data Assimilation were carried out: DA using both Leachate
Production Rate (LPR) and concentration measurements and DA using
only LPR or concentration measurements.

The results from the different scenarios show that the sensitivity of
baseflow to bulk water storage volume plays a vital role in controlling
the assimilation performance. When the bulk water storage is within the
range where its change has limited influence on baseflow, assimilating
measurements cannot reduce the uncertainties in waste body water
storage. This indicates that we need to record measurements over
a long enough period to capture the sensitive range. Additionally,
proactive measures should be implemented to stimulate the emission
of bulk water storage, allowing us to reach the sensitive range more
quickly.

The results also indicate that the improvement in the estimation
of cover layer water storage is limited, as the open-loop realizations
already have good consistency with the synthetic truth. Assimilating
concentration measurements improves the estimation of average
concentration states in the waste body. It also benefits the estimation of
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water storage states as the concentration states are coupled to the water
balance model. However, assimilation with concentration measurements
alone behaves worse in water storage estimation in comparison with
assimilating both LPR and concentration measurements under the
assumed measurement errors in this research. In contrast, assimilating
LPR helps quantify the uncertainty in water storage states in the waste
body, while it doesn’t reduce the uncertainties in concentration states.
The proposed coupled assimilation method leads to good estimation
results in both water storage and concentration states. More specifically,
better concentration estimation performance is observed in coupled
assimilation compared with assimilating concentration solely, which
indicates the benefit of information exchange in forecast steps.

The estimation of emission potential heavily relies on an accurate
estimation of the total water storage and concentration states within the
waste body. Reducing uncertainties in volume or concentration states
leads to a corresponding reduction in uncertainties associated with
emission potential. Therefore, improving the estimation of volume and
concentration states directly contributes to minimizing uncertainties in
emission potential. The results show the uncertainty is reduced in all the
tested scenarios where the baseflow is sensitive to bulk storage change.
The LPR prediction improvement after assimilation is insignificant, as
the open-loop realizations also have good predictions. In contrast,
the concentration predictions improved considerably when the chloride
concentration measurements were assimilated.

Overall, the results of this study indicate that the proposed coupled
assimilation procedure can be used to estimate total water storage
and chloride mass in the waste body. As such, Data Assimilation is
demonstrated to be a viable approach for quantifying the emission
potential of landfill waste bodies. The assimilation of LPR rates helped
improve the accuracy of the estimation of total water storage, Vs,
compared to assimilating concentrations alone. The gap between
volume states and mass states is filled by concentration assimilation.
Although the coupled assimilation was performed at the same time
steps, this method can easily be expanded to assimilate different types
of measurements at different time steps. This synthetic experiment
assumes a perfect model so that the time lag issue can be solved by
adding daily model errors to cover layer states. In a real case study,
we must combine the state and parameter estimation to account for
the parameter uncertainty. We may also need to independently add
model errors to all states if we consider the model conceptual error.
Extra measurements, such as hydrogeophysical observations for the
whole waste body, may be required to further quantify the uncertainty
without suffering the time lag problem. Future studies will focus on
quantifying the uncertainty caused by model parameters, which, for
example, determine the sensitivity of baseflow to bulk water storage
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UNDERSTANDING HIDDEN
PROCESSESIN LANDFILLS BY
APPLYING PF-MCMCINA
COUPLED TRAVEL TIME
DISTRIBUTION MODEL

This study introduces a novel approach using Particle Filter coupled with
Markov Chain Monte Carlo (PF-MCMC) in a weakly coupled data assimi-
lation framework, applied within a travel time distribution-based landfill
leachate emission model. The proposed method integrates sequential
observations of leachate production rate (LPR) and chloride concen-
trations to estimate hidden model states, parameters, and underlying
processes. Synthetic experiments demonstrated the effectiveness of the
PF-MCMC method in significantly reducing uncertainty and improving
predictions compared to open-loop simulations. Real-world application
to data from Braambergen landfill in the Netherlands further confirmed
these advantages, notably improving concentration predictions while
offering insights into hidden landfill processes like baseflow dynamics
and preferential flow distributions. The study highlights the potential of
PF-MCMC as a predictive tool and an analytical instrument to diagnose
model limitations and dynamically track changes in landfill behavior,
thereby enhancing long-term aftercare strategies.

Parts of this chapter appear in Wang and Heimovaara (2025b)
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4.1. INTRODUCTION

M odern sanitary engineered landfills, as well as legacy landfills,
produce leachate even under impermeable cover layers if organic
wastes are degraded. Leachate is the liquid leaving the waste body
through the bottom liner or drainage system. It causes environmental
concern because it may be contaminated with compounds dissolved
from the waste, which may have a negative impact on human health
and the environment (Fatoba et al., 2021; Gworek et al., 2016; Pal et al.,
2010). Impermeable cover layers are not only very expensive but also
unsustainable as they require eternal after-care. In the Netherlands,
regulations require replacement of the cover layer after 75 to 100 years.

Instead of passing the risk to former generations, we believe
that long-term after-care of landfills can be improved with a better
understanding of long-term developments in both leachate quantity
as well as quality, and how these values vary over time (Kattenberg
et al., 2013). An important measure for managing long-term after-care
is the concept of leachate emission potential, which is the amount of
releasable contaminant mass that will leave the landfill with leachate
in combination with a prediction of how concentrations vary over time
(Barlaz et al., 2002; Heimovaara & Wang, 2025; Laner et al., 2012).

The emission potential of a landfill depends on the initial releasable
mass of leachable pollutants and the reduction over time due to leachate
outflow. Accurately quantifying this potential requires robust modeling
tools to simulate the complex dynamics of leachate movement. Research
indicates that leachate typically flows along preferential pathways within
the waste body (Fellner & Brunner, 2010; Malmstrom et al., 2004;
Rosqvist & Destouni, 2000; Zhang & Yuan, 2019b). Fellner and
Brunner (2010) developed a model with a fast flow in a channel
domain and a slow flow in a matrix domain to simulate the leachate
behavior. However, the authors acknowledge that the model cannot
estimate the heterogeneity of leachate flow, which is only possible if
the solute transport is integrated into the simulation. Zhang and Yuan
(2019b) developed and applied a bimodal probability density model to
experimentally characterize and quantify preferential flow in municipal
solid waste using dye tracer and solute breakthrough tests. In our
recent work, we proposed a travel time distribution-based stochastic
model to simulate the leachate hydrodynamics in field-scale landfills,
where chloride concentration is also incorporated. The parameters were
optimized using the Markov Chain Monte Carlo (MCMC) method with
leachate production rate and chloride concentration data (Heimovaara
& Wang, 2025). The leachate emission potential was then quantified
using this model. However, the uncertainty in estimation is a challenge.

History matching methods, such as normal MCMC, are adept at
obtaining the parameter set that gives a best-fit approximation of
measurements over the time they are available (Vrugt, 2016). However,
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these methods cannot recursively incorporate new measurement data
or account for various sources of uncertainty that can change with time
(Liu & Gupta, 2007). An alternative to MCMC is data assimilation, known
for accommodating errors in the model and recursively assimilating new
measurements to improve estimates (Wikle & Berliner, 2007). In recent
years, data assimilation has gained widespread use for prediction in
hydrology (Ercolani, 2017; Tran et al., 2020; Yan & Moradkhani, 2016),
and estimation of state and parameters in a wide range of models
(Abbaszadeh et al., 2019; Eryigit, 2021; Zhang et al., 2017).

Among the various data assimilation methods, the Particle Filter (PF) is
particularly useful with non-Gaussian state space models (van Leeuwen
et al., 2019). Our previous work confirmed that a sequential importance
resampling (SIR) framework can effectively improve the predictions of
leachate volume and quality, assuming a correct travel-time distribution
model. However, this assumption of an accurate parameter set is very
strong, as the parameters in landfill models can be biased or exhibit
significant temporal variation (Grugnaletti et al., 2016). From this
perspective, treating these parameters as special, time-varying states
within the model is more pragmatic.

When particle filters are applied, two main challenges must be
overcome: degeneracy and sample impoverishment (van Leeuwen
et al., 2019). While the resampling step in SIR can mitigate degeneracy,
it often leads to particle impoverishment, which is characterized by
many particles with identical values and high weights. This lack of
particle diversity can lead to biased estimation results. This problem
is particularly pronounced in the parameter space, as parameters are
not adjusted in forward simulations. To address this issue, Moradkhani
et al. (2005) suggested perturbing parameters after resampling to
preserve parameter diversity. Subsequently, an integration of Markov
Chain Monte Carlo (MCMC) methods into particle filters was proposed
to improve the efficiency of parameter search. In this approach, the
parameters are perturbed and a Metropolis acceptance ratio is used
to avoid excessive perturbation (Moradkhani et al., 2012). Yan et al.
(2015) demonstrated enhanced estimation performance in hydrological
modeling using the PF-MCMC method.

When using a PF-MCMC approach to estimate parameters, it is
important to maintain mass balance in the models. The PF-MCMC
method developed by Vrugt et al. (2013) cannot be used for our purposes
since it involves adjusting the model states after forward simulation
during the MCMC step, potentially disrupting the conservation of the
water balance. Similarly, methods based on the Ensemble Kalman
Filter (EnKF) (Gharamti et al., 2013), which directly update the states
in the model using measurements, are also not utilized. The PF-MCMC
approach proposed by (Moradkhani et al., 2012) maintains mass balance
by generating all states in the model through forward simulation with
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perturbed parameters.

The assimilation of leachate production rates and leachate quality
dynamics represents a coupled data assimilation(CDA) challenge.
Coupled data assimilation can generally be separated into two
categories: weakly coupled data assimilation(WCDA) and strongly
coupled assimilation(SCDA) (Zhang et al., 2020). The state analysis
step is performed separately in WCDA, and the information exchange
between domains only happens in the forecast step. In SCDA, the
analysis step also updates the coupled domains as a whole. Although
SCDA shows potential to make full use of the measurement information,
the successful application of SCDA is limited because of the large
sampling error in cross-domain error covariance. Similarly, joint state
and parameter estimation in SCDA remains ongoing research owing to
the uncertain state-parameter covariance (Zhang et al., 2020).

Consequently, we choose to use the WCDA for state and parameter
estimation in this study. WCDA has seen many successful applications
using ensemble-based methods like the Kalman filter (Liu et al., 2014b,
2014a). However, the number of reported studies using particle filter
methods with WCDA for state and parameter estimation is quite limited.

In this chapter, we propose to use a PF-based state and parameter
estimation method in the coupled travel time distribution model
developed by Heimovaara and Wang (2025). Using PF-MCMC, our aim
is to estimate hidden model states and parameters, thereby gaining
insights into the hidden processes in the model controlling landfill
emissions. By ‘hidden’, we refer to model states and processes
that cannot be directly measured. We initially tested the proposed
method in a synthetic experiment to investigate the assimilation effect.
Subsequently, the method was applied to real data monitored at cell
11Z of Braambergen landfill in the Netherlands (Stichting Duurzaam
Storten, 2017). With this approach, we aim to quantify the dynamics
in leachate production and the impact preferential flow has on the
concentration dynamics. In addition, we will be able to quantify the
releasable mass (emission potential) present in the waste body. This
information is essential for making informed decisions about long-term
aftercare of landfills.

4.2. METHODS

In this section, we give a summary of the methods used in this
chapter. We start with the travel time distribution model, which
is the forward model used to simulate leachate volume and quality
as a function of time. We then describe the PF-MCMC method that
is used in the coupled WCDA assimilation framework. We apply the
approach to two case studies related to the same field site. The first,
to test the performance of the PF-MCMC method, is a synthetic case
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based on stochastically perturbed simulations of leachate volume and
leachate chloride concentrations, using a model with known (optimized)
parameters. The second case is based on real measurements and
aims to see how the approach works in practice when both states and
parameters are estimated using available measurements.

4.2.1. TRAVEL TIME DISTRIBUTION MODEL

The TTD model is a one-way coupled model that predicts leachate
production rate and chloride concentration. The model is driven by its
inputs, rainfall, and evapotranspiration at the surface of the landfill.
Infiltration, being the net result of rainfall and evapotranspiration, is
distributed into the waste body through a travel time distribution of
life-expectancies (Figure 4.1). The small red cells within the waste body
represent water parcels with varying life-expectancy, which indicate the
remaining time before these parcels exit the waste body.

A second source for water in the life-expectancy cells comes from the
flow from the bulk waste, which we call base flow and which is loaded
with solutes present in the waste body. This study considers chloride as
the target solute, and rainwater is assumed to be chloride-free; base flow
is therefore the sole source of chloride in the model. The solution present
in the life-expectancy cells is diluted by the accumulated infiltration of
water from the cover layer before flowing out into the drainage system.
A detailed description of the original version of this coupled travel time
distribution model can be found in Heimovaara and Wang (2025). In the
version used in this chapter, the travel time distribution for base flow
is simplified by adding the base flow to the water parcel that infiltrates
into the drainage system directly. This simplification makes the model
more suitable for parameter estimation by avoiding the time lag issue
of base flow identified in Wang and Heimovaara (2025a).

4.2.2. PF-MCMC

The core idea of data assimilation is assimilating information from
measurements to better understand unknown states and parameters.
Considering x¢—1 as the state vector containing all model states at the
previous time step t—1, and 8:—1 as the parameter vector, the forward
simulation is given by:

Xt = M¢(Xt—1, 0t—1) + Emodel; (4.1)

where M¢(-) denotes the forward model, and &model, represents the
model error.

By applying a measurement operator H¢, we predict measurable
states, which we can compare with actual measurements y: at time t as
shown in equation 4.2:

yt = Ht(Xt) + Emea; (4.2)
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Forcing data:

¢ Rainfall,

Cover layer: V; NS »
vapotranspiration

Infiltration
i . \

‘ / Drainage system

Observations:
Leachate production rate: Q
Chloride concentration: C

Figure 4.1.: A schematic overview of the travel time distribution model. Model
states that are estimated in the PF-MCMC are the water volume in the cover
layer (V¢(), the water volumes in the waste body with a specific life expectancy
(Vwnp,7;) and the water volume and solute mass in the bulk of the waste body
(Vwb,butk and Cwp,bulk)-

where g€mea, denotes the measurement error vector.

The task of state estimation involves estimating the probability
density function (pdf) of immeasurable states based on a series of
measurements at discrete time steps. We use the subscript 1:t to
represent the time range from the initial step to step t. Thus, yi1:¢
represents all available measurements until the current time step t,
and p(xg, ¢ | y1:t) represents the pdf of the current state vector x and
parameter vector @ given y1.:. Bayes’ theorem calculates the posterior
pdf, p(x¢, B¢ | y1:t), by combining the prior pdf from the last time step,
p(xt, O¢ | y1.t—1), with the likelihood pdf p(y: | X¢, 0¢):

p(yt | xt, @¢)p(xt, Ot | Y1:t-1)
p(xt, Ot | y1:t) = (4.3)
p(ye | y1:t—1)

The likelihood pdf is a quantification of how well the parameters 8¢ and
states x: describe the measurements y:. If the posterior pdf of state
and parameter p(x;—1, 0t—1 | y1.t—1) at the previous assimilation step is
known, the prior pdf at time step t, p(xt, 0: | y1::—1) can be calculated
as:

p(xt, 8t | y1:t-1) = f p(xt, Ot | Xt—1, Ot—1)p(Xt—1, Ot—1 | y1:t—1) d(Xt—1, Or—1)
(4.4)
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The posterior pdf, p(x, 0| y1:t), is then obtained from:

p(yt | xt, 6¢)

p(xt, 0t | y1:t) = ————
p(yt | y1:t—1)

X f p(xt, Ot | Xt—1, Ot—1)p(Xt—1, Ot—1 | Y1:t—1) d(X¢t—1, Ot—1)
(4.5)

When using particle filtering, the desired pdf is approximated using
the distribution of N independent discrete particles, each with weight
w;. Specifically, sampling from p(xt—1, @:—1 | ¥1:t—1) means taking state
and parameter particles from the previous time step. The propagation
of these particles through the forward model (equation 4.1) is denoted
by p(xt, 0t | X¢—1,0¢—1). The 6 is also included in the equation in a
parameter estimation problem, although the parameter values are not
changed in forward propagation. The p(y:| ¥1.t—1) can be seen as a
normalization factor ensuring that the sum of the pdf is 1. Thus, the
posterior pdf p(x:, 8: | y1:t) can be approximated as:

N
p(xt, Oc | y1:0) = Y wis([xt, 0:]1—[x., 61]) (4.6)
i=1

In this, & represents the Dirac delta function. The weights wé are
recursively calculated from:

i wl_ p(y: | x., 6))
C (wi_ip(yt | x, 81))
The likelihood term p(y: | xt, 8:) can be computed as:

p(yt | xt, 0r) = exp {—0.5[yt — He(x)ITR [ y: — He(xD1}  (4.8)

where R is the measurement error covariance matrix.

The SIR method then resamples the particle sets with high likelihood
values from the posterior distribution to avoid sample degeneracy. The
implementation procedure follows Wang and Heimovaara (2025a). After
the resampling step, all the particle weights are set to be 1/N. Unlike
the model states, model parameters are not changed during forward
propagation, which causes sample impoverishment. We follow the
approach of Moradkhani et al. (2005) where we add a perturbation term
to parameters after resampling as:

(4.7)

6% =0t + €, & ~N[0,sVar(6:)] 4-9)

The 9‘? means parameters after resampling, Gé_ are the parameters
before analysis step and elt’p represents the proposed new parameters.
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Larger parameter adjustments are preferred as they enable a more
comprehensive parameter space exploration. However, excessive
modifications must be avoided to prevent unrealistic predictions in the
subsequent time step. To address this issue, Moradkhani et al. (2012)
and Vrugt et al. (2013) have proposed the addition of a Markov Chain
Monte Carlo (MCMC) step following resampling. A Metropolis acceptance
ratio o determines whether to accept the proposed parameters.

pO<;P, 6:Ply1:t)

a=min |1, Fr——
p(x¢™, 677 |y1:t)

(4.10)

where p(x.?, 6%"ly1.r) is the proposed joint probability distribution.
Roberts and Rosenthal (2001) suggested choosing optimal jump rates

for a Gaussian proposal distribution as follows:

2.38 (4.11)
J2d
Notably, the PF-MCMC method developed by Moradkhani et al. (2012)
is adopted in our application case, as it maintains mass balance by
not adjusting model states during the MCMC step. We refer readers to
that paper for a detailed description of the implementation procedure.
In summary, the perturbed parameters that yield more accurate
predictions are accepted, while the others are kept the same as the
resampled parameters without perturbation. The generated parameters
are then used in the next forecasting step.

4.2.3. COUPLED ASSIMILATION FRAMEWORK

The idea of WCDA is straightforward: using the corresponding
measurements to estimate and update model states accordingly. This
approach extends similarly to parameter inclusion. The parameters
related to volume states are estimated and resampled based on LPR
measurements. Meanwhile, parameters pertaining to concentration
dynamics are updated using concentration measurements. In our
specific case, the TTD model is one-way coupled, where all the model
parameters are related to volume states and the concentration states
are controlled by volume states and initial concentration values. Hence,
we update parameters and volume states based on LPR observations,
update concentration states by concentration measurements, and
calculate mass states based on both volume and concentration states.

4.2.4. CASE STUDY AREA AND AVAILABLE DATA

The research project is based on the Braambergen landfill in the
Netherlands. Daily meteorological forcing data (same as model
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resolution) are obtained from the Lelystad weather station affiliated
with KNMI (2022). The leachate is collected from a landfill drainage
system, and cumulative outflow volumes are automatically measured
when leachate is pumped toward the water treatment plant. Chloride
concentration is measured in a commercial laboratory on samples
obtained from the drainage layer every two weeks (with some larger
intervals up to 28 days). Gaussian measurement errors of 10% are
assumed for the concentration measurements and 30% for the LPR
measurements. These errors are intentionally set at lower values
than the model prediction residuals because model prediction residuals
account for both errors in the model structure and inaccuracies in
measurements.

The values of the measured cumulative leachate production are a
result of the leachate production from the waste body, but also depend
on choices made by the landfill operator in managing the leachate
pump system. There are periods when no outflow can be measured
because no leachate is being pumped. This occurs during maintenance
of the pump hardware, power failures, or problems downstream in
the water treatment plant. In these cases, the observed leachate
production volume is measured to be zero, and leachate is buffered in
the drainage system. When pumping is restored, this excess leachate
is pumped out at higher pumping rates. To limit the effect of these
operational irregularities, weekly average leachate production rates
were calculated from the cumulative leachate measurements and used
as measurements for data assimilation. The measurement equations for
leachate production rate and chloride concentration are:

Z.t__ Veelly.
LPR; = %‘” + ELPRye (4.12)

Ct = Ccelly, + €Crea (4.13)

4.2.5. IMPLEMENTATION PROCEDURE
PRIOR GENERATION

The model was initialized in 2003 to simulate the warm-up period
(Wang & Heimovaara, 2025a). To provide physically consistent priors
for both parameters and state variables at the start of assimilation,
we carried out a separate, offline Bayesian calibration. All leachate
production and chloride concentration observations available were fitted
with a DREAM(ZS) Markov-chain Monte Carlo algorithm, yielding a
converged posterior ensemble. This posterior ensemble was taken as
the initial particle cloud in the PF-MCMC experiment. This ensures the
particle filter starts in a high-probability, physically consistent region
of parameter space, reducing early particle degeneracy and improving
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assimilation stability. The full set of posterior samples is archived and
openly accessible; see the Data Availability section.

MODEL ERROR OPTIMIZATION

The model error in equation 4.1 should be tuned to generate enough
spread in predicted particles during the data assimilation process.
Following a similar procedure as in the Wang and Heimovaara (2025a),
the ensemble spread (enspt), the mean square error (mset), and the
ensemble skill (enskt) are calculated. According to De Lannoy et al.
(2006), the following requirements should be considered to ensure the
statistical accuracy of generated predictions,

< ensk >
—  =x~1 (4.14)
< ensp >

<> means the average over the simulation time range. More
specifically, a value larger than 1 indicates insufficient ensemble spread,
while a value smaller than 1 indicates excessive spread. If the truth
is indistinguishable from a member of the ensemble, the following
equation should be true (De Lannoy et al., 2006):

< Jensk > N+1
~ (4.15)
< J/mse > 2N

To get sufficient ensemble spread for LPR predictions, we tuned
the Gaussian random error added to v first. As the concentration
predictions are influenced by water volume states in the coupled TTD
model, the error in v also introduces errors to concentration states.
If the ensemble spread of concentration predictions is insufficient, a
Gaussian error will perturb the initial bulk concentration samples in
2003. The tuned Gaussian errors and the corresponding ensemble
spread values for both synthetic and real tests are presented in Table
4.1. 10240 particles were used in all the following experiments.

Table 4.1.: Ensemble generation performance

. <ensk> <+ensk> <ensk> <+vensk>
Scenario € Chuik €V <ensp>|pr <4Jmse> |pRr _ <ensp>c <J/mse> ¢
Synthetic test 0.160 0.027 1.038 0.639 1.032 0.591
Real test 0.140 0.039 1.002 0.612 1.014 0.596

cBulkin; and v¢ represent the initial bulk concentration and cover layer water storage separately.
The means of Gaussian distributions are zero.
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ASSIMILATION PERFORMANCE ESTIMATION

In addition to the evolution of hidden states, the accuracy of state
estimation results is evaluated using the temporal mean root-mean-
square error (MRMSE), as described in Equation 4.16. Here, L denotes
the number of assimilation time steps. This metric provides a robust
measure of the deviation between the estimated and true states over
the assimilation period, thereby offering a quantitative assessment of
the model’'s performance.

14 |y,
MRMSE = — Dl D whxE — xtruthy2 (4.16)
t=1 \ i=1

where L is the total number of assimilation time steps, N represents the
number of particles, x; denotes the estimated particle at time ¢, xir““’

represents the true state variable at time ¢, wi is the weight for the
particle.

The prediction accuracy is also evaluated using a logarithmic form(n)
proposed by (Ercolani, 2017):

n=—In(1—NSE) (4.17)
where NSE is the Nash-Sutcliffe efficiency calculated as:

ZtT:l(Yt — Ymear)?

=1 Ymea; — Ymea)?

NSE=1-— (4.18)

where ymeq, are the measurements at time step t, y: represents
the model prediction, and the overbar means the average over time.
The logarithmic scale allows dealing with high NSE values(close to 1).
It tends to infinity when the observations and predictions achieve a
perfect match. The reliability of ensemble prediction is not considered
here because the model error is optimized to get reliable predictions.

4.2.6. SYNTHETIC TRUTH GENERATION

The synthetic truth was generated by running the forward model using a
single randomly selected parameter set from the converged distribution
of MCMC samples. Random Gaussian noises were added to the forcing
data from 2003 onward in order to account for the possible accumulation
of uncertainties. The standard deviation of random rainfall error was
set to be 15% x Rt. The perturbation of evapotranspiration followed
Plaza Guingla et al. (2013) where a 30% x Pev; standard deviation was
used. Finally, Gaussian measurement errors of 10% are added to the
concentration predictions, and Gaussian measurement errors of 20% are
added to LPR predictions to generate the synthetic measurements. We
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use a smaller measurement error for LPR measurements to investigate
the performance of the method under ideal measurement accuracy
conditions.

4.2.7. APPLICATION TO DATA FROM THE CASE STUDY

Similarly to synthetic truth generation, we directly sampled from the
MCMC results to get N particle sets. Also, we chose to sample the
parameter set as a whole instead of sampling independently because
we wanted to use information from MCMC to get more reliable prior
samples. To achieve the initial particles on the 19th of June 2012, a
time step 7 days earlier than the first measurement date, we performed
a warm-up simulation starting from 2003. The same forcing error was
introduced as the synthetic truth generation process.

4.3. RESULTS AND DISCUSSION

The weakly coupled PF-MCMC method was first applied in a synthetic
experiment to evaluate its performance in hidden state and parameter
estimation and how it improves the prediction of LPR and concentrations.

Then, the method was used in a real case dataset from the Braambergen
landfill.

4.3.1. SYNTHETIC EXPERIMENT
STATES

The estimation performance matrices calculated by equation 4.16 are
shown in Table 4.2. The estimation evolution with time is presented in
Figure 4.2.

Table 4.2.: MRMSE of estimated model states

State Valml — Vwp[m]  Coukl[g/m31 Myp[g/m?]
Open loop 6.421e-3  0.325 589.072 1038.556
Particle filter 6.286e-3 0.109 127.846 286.223

The estimation performance of cover layer water storage using a
particle filter shows minimal improvement over open-loop results. Both
approaches demonstrate a good fit with the synthetic truth. This limited
difference is mainly attributed to the buffering effect of the unsaturated
soil model, in which different initial conditions converge to similar water
storage levels when no additional errors are introduced.

The estimation of releasable water storage in the waste body is
improved compared with open-loop results. The uncertainty is reduced
with time, and the mean estimation converges to the synthetic truth. The
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Figure 4.2.: Hidden states estimation in the synthetic experiment. The red line
represents the mean estimation of the particle filter. The green and yellow lines
represent the mean of open-loop results and the synthetic truth. The light grey
areas represent 95% confidence intervals.
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estimation of bulk chloride concentration shows a larger improvement,
where the incorrect open-loop simulation is dropped, and the particle
filter estimation converges to the synthetic truth. As shown in Table 4.2,
the decrease in MRMSE value of bulk concentration is also greater than
the one in total releasable water storage. We see a larger improvement
in bulk concentration estimation because the bulk concentration states
strongly correlate with concentration measurements in the outflow. At
the start of the simulation, the mean estimations of both waste body
water storage and bulk concentration are biased, and it takes some
assimilation steps for the mean estimations to converge to the synthetic
truths. This is because the model error in the cover layer water storage
limits the model errors added to bulk concentration and total releasable
water storage in the waste body. It avoids unrealistic perturbation of
bulk concentration states but also constrains the capacity to correct
the particles while some initial bias in the estimation exists. As the
total chloride mass is controlled by the chloride concentration and water
storage of the waste body, we also see the decreased MRMSE of My, in
Table 4.2 and the mean estimation converges to the truth in Figure 4.2.
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Figure 4.3.: Prediction performance in the synthetic experiment. The red line
represents the predicted values of the particle filter. The green and yellow
lines represent the mean of open-loop results and the synthetic truth. The grey
points represent all the particles.

As shown in Figure 4.3, the predictions of LPR with data assimilation
show no significant improvement over the open-loop results. The
performance metrics in Table 4.3 indicate a slight decrease in prediction
accuracy, although the reduced MRMSE values suggest decreased
uncertainty. This is likely because the open-loop simulations already
align well with the observations, owing to the MCMC optimization.
Additionally, biased estimation during the initial phase of the particle
filter may have contributed to the decline in prediction performance.
In contrast, the concentration predictions show improved performance
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compared to the open-loop predictions. Table 4.3 shows both reduced
MRMSE values and increased n values with data assimilation.

Table 4.3.: Prediction performance in synthetic experiment

Scenario oL PF
MRMSE[ m3] 2.935  2.377
LPR NSE 0.952  0.946
n 3.043  2.916
MRMSE[g/m3] 273.874 94.352
c NSE 0.629  0.673
n 0.993  1.118

PARAMETERS AND HIDDEN PROCESSES

As shown in Figure 4.4, the mean estimations of most model parameters
can converge to the synthetic truth, which indicates good estimation
performance. The particle diversity in parameters is well-maintained,
which shows the successful application of the MCMC step during
resampling. Some parameters like b keep high uncertainty after data
assimilation, although the mean estimation is improved. It means the
information in the observation of these parameters is limited, or there is
some correlation between parameters.

Instead of looking into each parameter, we are more interested in
the hidden processes in the model controlled by multiple parameters.
Figure 4.5 shows the evolution of baseflow with time. The mean
estimation of the particle filter aligns well with the synthetic truth, and
its uncertainty decreases over time. Figure 4.6 illustrates the percentage
of infiltration from the cover layer distributed to mobile cells and bulk,
respectively. This reveals the behavior of the travel time distribution in
the model. The uncertainties are reduced, and the synthetic truth is
within the 95% confidence interval. These results show that we get good
estimation results of the hidden processes in the landfill by updating
both parameters and states.

4.3.2. REAL CASE STUDY
STATES

As shown in Figure 4.7, the estimation of water storage in the cover layer
exhibits behavior similar to the synthetic test, with the mean estimation
closely matching the values from open-loop simulations. However, the
uncertainty in releasable water storage within the waste body has not
significantly decreased compared to its initial status, likely due to large
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Figure 4.4.: parameter estimation in the synthetic experiment. The red line
represents the predicted values of the particle filter. The green and yellow
circles represent the mean of open-loop results and synthetic truth. The light
grey areas represent 95% confidence intervals.
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Figure 4.6.: Infiltration distribution estimation in the synthetic experiment. The
values indicate the percentage of infiltration water from the cover layer that is
distributed to the mobile cells and the bulk of the waste body, respectively. The
red lines represent the mean estimations generated by the particle filter. The
light orange and blue areas denote the 95% confidence intervals. The yellow
circle and cross represent the synthetic truth.

measurement errors. Many initial water storage values in the waste body
yield acceptable LPR predictions. The uncertainty in bulk concentration
has notably decreased, and the mean estimation shows no significant
difference from open-loop results. Similarly, the uncertainty in total
releasable chloride mass has been reduced compared to the initial
stage, but it remains relatively high due to the substantial uncertainty
in water storage estimation.

Since no synthetic truth for hidden states is available in the real
case study, we calculate only the performance metrics for predictions.
As shown in Table 4.4, the prediction performance of LPR with data
assimilation is similar to that of the open-loop predictions, while the
concentration predictions show noticeable improvement. Figure 4.8
shows that incorporating data assimilation yields substantially more
accurate chloride-concentration forecasts than the open-loop run. As
with the synthetic experiment, this is likely because the open-loop
simulations already provide accurate predictions for LPR but perform
poorly for concentration predictions.

PARAMETERS AND HIDDEN PROCESSES

As shown in Figure 4.9, most parameters exhibit uncertainty ranges simi-
lar to their initial distributions, indicating that the current measurements
do not significantly reduce these uncertainties. Given that parameter
uncertainties were considerably reduced in the synthetic experiment,
we believe the remaining uncertainty in the real case study is due to
larger measurement errors. Since the parameters are updated based
on LPR measurements, this suggests that improving the accuracy of
these measurements is necessary to further quantify the uncertainties
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behavior of open-loop simulations. The grey points represent all the particles.
The blue crosses represent all the measurements.
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Table 4.4.: Prediction performance in real case study

Scenario OL PF
MRMSE[ m3] 10.833 9.445
LPR NSE 0.753 0.714
n 1.399 1.254
MRMSE[g/m3] 361.177 241.729
C NSE -0.039  0.337
n -0.039 0.412

in the model parameters. We observe more fluctuations in parameter
estimations in the real case study compared with the synthetic case
experiment. It underlines an emerging consensus that time-varying (or
“evolving”) parameters are often required to compensate for structural
errors in long-term landfill models.
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Figure 4.9.: parameter estimation in the real case study. The red line represents
the predicted values of the particle filter. The green circles represent the mean
of initial parameter distributions in the open-loop scenario. The light grey areas
represent 95% confidence intervals.

The estimated behavior of baseflow, illustrated in Figure 4.10, exhibits
greater fluctuation compared to the open-loop simulation. This suggests
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that the baseflow function in the forward model may be too simplistic
to fully capture the system’s dynamics. However, the open-loop
simulation consistently remains within the estimated 95% confidence
interval, indicating that the forward model provides a reasonable
average estimate over the entire time period. Based on bulk data,
baseflow likely ranges between 10 and 15 m3/day. Furthermore, a clear
and continuous decreasing trend is observed in the baseflow pattern,
suggesting a reduced risk of pollution driven by baseflow.
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Figure 4.10.: Baseflow estimation in the real case experiment. The red line
represents the predicted values of the particle filter. The green line represents
the mean of open-loop results. The light grey areas represent 95% confidence
intervals.

Figure 4.11 indicates that approximately 90% of water from the cover
layer is distributed to the waste body’s mobile cells, with around 10%
being distributed to the bulk. The uncertainty range in the final stage
is significantly narrower than in the prior distributions, primarily due to
reduced uncertainty in key parameters of the travel time distribution
function. Although there is some fluctuation in the mean estimation,
the variation over time is much slower compared to that of baseflow,
suggesting that the travel time distribution in the model remains
relatively stable over time.

As shown in Flgure 4.12, around 60% of the infiltration from the cover
layer goes outside the landfill within 50 days, which lies close to the
results from a lab tracer experiment, where between 55 and 70% of
the total solute was transported through large pores (Zhang & Yuan,
2019a). It reinforces the view that preferential flow dominates young
and mid-aged municipal solid waste bodies, while diffuse pore flow, and
thus baseflow, controls pollutant release (Fellner & Brunner, 2010).

4.4. CONCLUSION

his study has introduced and evaluated a PF-MCMC-based weakly
coupled data assimilation method to enhance the prediction and
estimation of landfill leachate dynamics. Through synthetic and real
case experiments, we demonstrated the capability of the proposed
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method in uncertainty quantification and gained knowledge about
hidden processes in landfills.

Results from the synthetic experiments demonstrated that the
PF-MCMC method significantly reduces uncertainty in hidden states,
especially in estimating bulk chloride concentrations and solute mass,
outperforming open-loop simulations. The method also successfully
retrieved the synthetic “truth” for key model parameters and hidden
processes such as baseflow and infiltration distribution, illustrating its
robustness and reliability under ideal measurement conditions.

In the real case study, the PF-MCMC approach continued to show
promising results, particularly in improving concentration predictions
and providing plausible ranges for hidden process dynamics, such as
baseflow fluctuations and preferential flow behavior. While parameter
uncertainties remained relatively wide due to higher measurement
errors, the framework demonstrated a unique ability to dynamically
adjust parameter estimates over time. This adaptability highlights a key
strength of the method: its potential to serve not just as an estimator,
but as a diagnostic tool that can identify and correct for conceptual
model shortcomings in real time.

Rather than viewing variability in parameter estimates as a weakness,
we interpret these fluctuations as valuable information about changes
in system behavior or model inadequacy. The PF-MCMC method allows
us to monitor and track these changes across time, opening new
possibilities for diagnosing and refining conceptual models as more
data becomes available. The question that arises is not whether the
parameters change, but how robust and meaningful these changes are
in relation to the underlying system. This is a central issue that deserves
further exploration, both in the present context and more broadly within
environmental modeling.

In this light, PF-MCMC emerges not only as a tool for reducing
uncertainty but also as a mechanism for enhancing our understanding
of complex, dynamic systems. Future work should improve the
measurement accuracy and investigate the robustness of temporal
parameter changes, explore strategies to extract insights from them,
and further develop the framework’s potential for adaptive model
learning and refinement.
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QUANTIFYINGWATERCONTENT
OF ALANDfILL WITH ERT DATA
BY BAYESIAN EVIDENTIAL
LEARNING

Accurate water-content estimates in landfills are essential for leachate
management, but conventional ERT inversions are ill-posed and uncer-
tain. We present a Bayesian Evidential Learning (BEL) approach that
links ERT measurements directly to total water storage (TWS) without
explicit inversion. A semi-parametric forward model stochastically sam-
ples key parameters (e.q., water-retention and Archie’s law coefficients)
to generate paired ERT signals and TWS. After validating synthetic
data via PCA and one-class SVM falsification, we train a Bayesian
Neural Network with Monte Carlo dropout on dimension-reduced ERT
features. The BEL framework accurately predicts mid-range TWS with
quantified uncertainty but underestimates high-TWS scenarios due to
parameter variability. Fixing parameters to deterministic means restores
high-end accuracy, demonstrating the critical need to constrain hydro-
geophysical parameters. This method provides a robust alternative for
landfill moisture monitoring and highlights areas for targeted parameter
calibration.

Parts of this chapter appear in Wang and Heimovaara (2025b)
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5.1. INTRODUCTION

M odern sanitary engineered landfills are an increasingly important
component of waste management strategies in Europe, offering
enhanced waste stabilization and energy recovery. However, their
effective design, operation, and long-term aftercare are essential to
minimize environmental pollution, particularly the risk of groundwater
contamination. A critical aspect of landfill management is the prediction
of leachate transport within the waste body, which depends heavily on
accurately estimating water storage capacity. Water storage influences
both leachate generation and contaminant transport, making it a key
factor in environmental risk assessment. To address this, researchers
have developed a range of numerical models that simulate moisture
flow and solute transport in landfill environments (Hu et al., 2020; Li
et al., 2021; Lu et al.,, 2019, 2021). Among these models, dynamic
water storage within the waste matrix has emerged as a key parameter
for evaluating environmental risks and optimizing waste treatment
efficiency.

In previous work, we employed a Travel-Time-Distribution (TTD)
model combined with data assimilation techniques to estimate water
storage within the landfill (Heimovaara & Wang, 2025; Wang &
Heimovaara, 2025a). By conceptualizing water storage as a zero-
dimensional state—representing bulk storage without accounting for
spatial variability—we avoided the complexities associated with spatially
distributed modeling. However, this approach relied exclusively on
indirect observations of leachate outflow, making the accuracy of
the storage estimates highly dependent on the model's structural
assumptions and parameterization. To reduce uncertainty and enhance
the robustness of these estimates, we integrate independent, direct
measurements of water storage into the modeling framework.

Hydrogeophysical methods have become essential tools for charac-
terizing subsurface hydraulic properties in complex environments such
as landfills. Among these, Electrical Resistivity Tomography (ERT) is
particularly valuable due to its capacity to infer water content by
measuring subsurface electrical resistivity, which correlates with water
saturation through Archie’s Law. ERT has been widely applied in landfill
settings to detect moisture content and monitor the spatial distribution
of leachate and gas (Feng et al., 2017; Hu et al., 2019; Neyamadpour,
2019). For instance, Zhan et al. (2019) demonstrated the use of
ERT to delineate leachate distribution within a controlled landfill cell,
while Hu et al. (2019) successfully applied time-lapse ERT surveys to
monitor landfill dewatering. These studies highlight ERT’s potential
as a non-invasive, spatially resolved method for tracking hydrological
processes within waste bodies.

Another approach involves hydrogeophysical joint inversion, in
which water content and related parameters (such as saturation and
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petrophysical properties) are estimated directly from ERT measurement
data, bypassing the explicit inversion of electrical resistivity (Linde
& Doetsch, 2016). This method integrates ERT data into a coupled
hydrogeophysical model, employing petrophysical relationships such as
Archie’s Law to link resistivity to moisture content. By circumventing
the traditional resistivity inversion step, joint inversion can reduce
uncertainty arising from inversion artifacts and enhance the accuracy
of water content estimates. However, its application in landfill settings
remains challenging, as it often relies on assumptions, such as a
well-defined water table, which rarely holds in the heterogeneous
conditions typical of waste bodies.

Since our objective is to estimate the total water storage within the
waste body—rather than its spatial distribution—bypassing the ill-posed
inversion process allows for a more direct and robust estimation. To
achieve this, we introduce a novel approach based on the Bayesian
Evidential Learning (BEL) framework (Scheidt et al.,, 2018), which
estimates landfill water storage from ERT measurements without
performing conventional inversion. BEL employs a forward model to
generate prior samples of both the target variable (water storage) and
the observable variable (ERT signals), enabling the statistical learning
of their relationship (Thibaut et al., 2021). Unlike traditional inversion
techniques, BEL avoids the challenges associated with ill-posedness and
regularization artifacts by focusing on learning from ensembles of model
realizations. The BEL framework has demonstrated effectiveness across
various applications, including seismic data interpretation (Pradhan &
Mukerji, 2020), geophysical parameter estimation (Hermans et al.,
2019), and experimental design optimization (Thibaut et al., 2021).

In this study, we adapt the Bayesian Evidential Learning (BEL)
framework for landfill water storage estimation by developing a semi-
parametric forward model that simulates ERT signals as a function of
water storage. We then apply a neural network to learn a direct
statistical relationship between the simulated ERT measurements and
total water storage, effectively bypassing the traditional inversion
process. This approach offers a robust alternative for estimating
water storage, reducing uncertainties associated with model structural
assumptions, ill-posed inversion artifacts, and measurement noise.

5.2. METHODS

5.2.1. BAYESIAN EVIDENTIAL LEARNING

The general objective of data-driven estimation is to obtain the posterior
distribution of the target property p(h|dobs), where h represents the
target variable (e.g., water content) and dops represents the available
observations (e.g., ERT data). In traditional model-driven approaches,
the measured data dops are used to optimize the model parameters
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m, which include empirical coefficients and subsurface properties used
in the forward model. Once the model is optimized, it predicts the
target variable h. In the context of ERT data analysis, this process
involves using dops to estimate a resistivity map m of the subsurface.
A key limitation of this approach is the dimensionality mismatch: the
number of unknown model parameters np, is typically much larger than
the number of available observations ngy, making the inversion process
ill-posed and prone to uncertainty.

The BEL framework reorganizes this relationship differently by avoiding
direct optimization of model parameters. Instead, prior distributions of
the model parameters m are first defined based on available knowledge.
The target variable h is computed using a forward model h = f;(m),
while the observable variable d is generated using another forward
model d = f,(m). This approach enables BEL to learn a direct statistical
relationship between the observations d and the target variable h
without explicitly solving an inverse problem, thereby bypassing the
need for resistivity inversion.

The conceptual differences between the traditional method and the
BEL framework are illustrated in Figure 5.1. Figure 5.2 provides an

Water storage h Water storage h

1. Data-driven inversion 1. Model to data

ERT data dgps Forward model m RT data dops Forward model m

Figure 5.1.: Two paradigms for posterior estimation. The figure is slightly
adjusted based on Scheidt et al. (2018)

overview of the BEL method as applied in this study, including the
generation of prior samples, forward modeling of both observable and
target variables, and the statistical learning process. In the following
sections, we describe these components in detail.

5.2.2. FORWARD MODEL

Forward models are essential in the BEL framework for simulating both
ERT data and water storage. Given the high spatial heterogeneity of
moisture distribution in landfills, we approximate the three-dimensional
waste body with a two-dimensional moisture map. This simplification
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Figure 5.2.: Diagram for BEL method in this study

enables the use of a 2D mesh composed of rectangular grid cells.
To further reduce model complexity, we assume hydrostatic conditions
within the waste body. Under this assumption, the volumetric water
content can be determined if the positions of saturated zones are known.
The volumetric water content in the landfill cover layer is represented
by the variable 6.

To simulate the presence of saturation within the waste body, we
developed a stochastic procedure that randomly assigns saturated cells
within the 2D mesh. Each cell is treated as a binary variable—either
saturated or unsaturated. The generation process begins by sampling
a fraction value k, which defines the proportion of saturated cells
relative to the total number of cells. This value is drawn from a
uniform distribution, kK ~ U(0.01, 0.7), with bounds selected based on
the minimum and maximum water level measurements observed in the
field.

Once the saturated cells are defined, the volumetric water content 6
for each grid cell is calculated on a column-wise basis using the water
retention curve described by Eqgs. (5.1) and (5.2).

1 if hy =20
= 1
e {(1 +(alhul)"Y™ i by <0 &

where Sefr is the effective saturation, hy is the pressure head, o
is the inverse of the air entry suction (units: L~1), 6, is the residual
water content, 65 is the saturated water content, 6 is the volumetric
water content, and n and m =1—1/n are empirical water retention
parameters.

The volumetric water content 6 is computed as:

0 = 0r + Seff(6s— 6r) (5.2)
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In cases where a column contains no saturated cells, we assume
the water table is just below the column due to the presence of a
drainage layer. When multiple saturated cells occur in a column, each
disconnected saturated region is treated as a localized bottom boundary
condition for the unsaturated cells positioned above it. This approach
enables a more realistic representation of heterogeneous saturation
patterns within the landfill. Figure 5.3 shows an example of a generated
water distribution map.

0.20 0.25 0.30 0.35 0.40
Volumatric water content

Figure 5.3.: An example of randomly generated volumetric water content
distribution map

The total water storage is computed by summing the volumetric water
content across all grid cells within the waste body. Because the top cover
layer is composed of soil, a separate set of Archie’s Law parameters is
used to account for its distinct hydrogeophysical properties. The height
of the cover layer is set equal to the height of the first layer in the
computational mesh. As a simplification, the water retention curve is not
applied within the cover layer. Instead, each cell in this layer is assigned
a uniform volumetric water content, denoted as 6;. During the sample
generation process, 6 is randomly sampled from a uniform distribution,
with its lower and upper bounds derived from the cover layer saturation
estimates v¢ presented in Heimovaara and Wang (2025). Because
ERT measurements are most sensitive to resistivity changes near the
surface, our choice of a spatially constant 6., effectively treats the entire
cover as a single “effective soil” whose moisture state controls the
shallow resistivity response. Sampling 6. from a narrow prior (based on
model estimation obtained from Heimovaara and Wang (2025)) ensures
that the cover-layer sensitivity is realistic, so that the BEL model can
focus on learning the deeper relationship between resistivity and water
storage in the waste body. At this stage, the forward model f1(-) for
computing total water storage is fully defined.

Following the water storage calculation, the electrical resistivity of
each cell is determined using Archie’s Law, as described in Eq. 5.3.

p= aarcpwq)—marcsgff}arc (5.3)
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where p is bulk resistivity of the waste, aqrc is tortuosity factor, pw is
resistivity of the leachate, ¢ is porosity, mqrc is cementation exponent,
Seff is water saturation, nqrc is saturation exponent. Subsequently,
the observable ERT signal is simulated using a numerical simulator
implemented in PyGIMLi (Rucker et al., 2017). This process defines our
model to data f2(:). Figure 5.4 shows an example of the generated
resistivity map using the forward model.

Resistivity Map Derived from Water Saturation Map

10m
0

0 20 40 60 80 100 120 140

200 400 600 800 1000 1200
Resistivity (Ohm-m) ﬂ

Figure 5.4.: One example of randomly generated resistivity distribution map

5.2.3. PRIORS AND PRIOR FALSIFICATION

The BEL framework aims to directly learn the relationship between
observations and target variables by performing statistical regression
between h (e.g., water storage) and dyps (e.g., ERT measurements).
Training such a model requires a sufficiently large dataset of paired
samples (h, dops).

In most real-world applications, however, only a single set of
observations dgps is available, and the corresponding target variable h
is either unknown or cannot be measured directly. This lack of labeled
data renders direct regression based solely on field data impractical. To
overcome this, we generate synthetic training samples using the forward
models f1(-) and f2(-), enabling the construction of a representative
statistical relationship between observations and the target variable.

In the standard BEL approach, training samples are generated by
running forward simulations f1(m) and f,(m) using prior distributions of
model parameters m. These prior distributions are typically informed
by laboratory and field studies reported in previous research (Saneiyan
et al., 2024; Zeng et al., 2017; Zhang et al., 2021).

A key innovation of this study lies in the way moisture distributions
within the waste body are generated. Rather than relying on ex-
plicit parametric models with fixed equations, we employ a stochastic
sampling algorithm to produce diverse training samples. Hyperpa-
rameters—such as the fraction of saturated zones—are drawn from
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defined probability distributions. Due to the inherent randomness of the
sampling process, different spatial saturation patterns can be generated
even when hyperparameters remain constant. This non-deterministic
approach extends the BEL framework to more complex systems where
system states cannot be described by closed-form relationships.

Building a statistical regression model from a limited training set
requires caution, as there is no guarantee that the resulting predictions
will be statistically or physically feasible. In Bayesian frameworks, the
posterior distribution must lie within the support of the prior (Hou &
Rubin, 2005; Scheidt et al.,, 2018). In other words, if the observed
data fall outside the range covered by the prior, the prior is considered
falsified. While ad-hoc adjustments can be made to broaden the prior
distribution, such modifications may result in inaccurate or misleading
posterior estimates.

To ensure the validity of regression results, it is essential to verify that
the observed measurement data are consistent with the assumed priors
and the outputs of the forward models. If inconsistencies are detected,
the priors must be revised to more accurately reflect the plausible range
of system states.

This verification step, known as falsification, is performed in BEL
before any regression or prediction step (Hermans et al., 2018; Michel
et al., 2020; Pradhan & Mukeriji, 2020; Thibaut et al., 2021). It involves
comparing the predicted data d, generated via forward modeling, with
the observed data dgps. In low-dimensional cases, this comparison can
often be made visually. However, due to the high dimensionality of
the ERT data in this study, we first apply a dimensionality reduction
technique. The resulting lower-dimensional representation is then used
in a classification-based falsification method to assess whether the
observed data are statistically consistent with the prior samples. The
dimension reduction method is detailed in the following section.

Assuming that all generated samples of d are drawn from a common
underlying distribution, the observed measurement dgps is expected
to belong to the same distribution. If it is classified as an outlier,
the prior is considered falsified. We perform this classification using a
one-class Support Vector Machine (SVM) (Bounsiar & Madden, 2014).
The parameter v = 0.05 is chosen to allow up to 5% of synthetic
samples to be treated as potential outliers, forming a robust boundary
around the dominant structure of the prior distribution.

The prior distributions of the model parameters are iteratively adjusted
until the observed measurements are identified as inliers. This ensures
that the prior adequately spans the region of observation space where
plausible system states exist.
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5.2.4. DIMENSION REDUCTION

Regression models are most effective when the number of training
samples significantly exceeds the number of unknown parameters. In
the context of Bayesian Evidential Learning (BEL), a dimension reduction
step is commonly introduced to mitigate the challenges associated
with high-dimensional regression. This approach assumes that the
high-dimensional observational data or model predictions reflect a set of
underlying low-dimensional features that cannot be directly measured.

In this study, where the ERT data are high-dimensional, we apply
dimension reduction prior to regression to enhance model efficiency
and generalization. We employ Principal Component Analysis (PCA)
to extract key features—referred to as principal components—from
the dataset by identifying the directions of greatest variance. These
components are ordered according to the amount of variance they
explain, and the leading components are retained to capture the
dominant structure of the data. For instance, in our application, the
first 10 principal components explain approximately 98% of the total
variance in the dataset. A comprehensive explanation of PCA can be
found in Jolliffe and Cadima (2016).

5.2.5. REGRESSION WITH A NEURAL NETWORK

After performing dimension reduction and falsification, we can model the
statistical relationship between the dimension-reduced target variable
h* and the observed data d*. Since dimension reduction was not
performed on the target variable in our case, h* is equivalent to h. We
used a deep learning method, specifically a Bayesian Neural Network
(BNN) with Monte Carlo Dropout, to model this relationship and estimate
prediction uncertainty.

BNN is a widely used deep learning method suitable for nonlinear
regression problems (Jospin et al., 2022). It is a type of neural network
where the weights and biases are probability distributions instead of
fixed values. This allows the model to quantify uncertainty in its
predictions. We refer readers to (Jospin et al.,, 2022) for a detailed
explanation of the theory. Since it is a well-developed method, we will
only describe the model implementation and hyperparameters in the
following part.

The input data consists of Dipole-Dipole (DD) and Schlumberger (SLM)
apparent resistivity values, which undergo preprocessing via standard
scaling and Principal Component Analysis (PCA), retaining 95% of
variance for dimensionality reduction. The dataset is split into training
(70%), validation (15%), and test (15%) sets.

The network adopts a “last-layer only” Bayesian approach in which
the first three layers are deterministic, while the final output layer is
modeled probabilistically to capture predictive uncertainty. Only the
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final layer is implemented as a Bayesian linear layer with a prior mean
of zero and a prior standard deviation of 0.25. This design choice
significantly reduces the computational overhead associated with fully
Bayesian networks while still enabling uncertainty quantification in the
predictions. In detail, the architecture comprises an input layer that
receives features transformed by PCA (retaining 98% of the variance),
followed by three fully connected layers with 128, 64, and 32 neurons,
respectively. Each of these layers is equipped with Batch Normalization
and dropout (with rates of 0.05, 0.03, and 0.02, respectively) to ensure
robust feature learning and regularization.

The network is trained using a composite loss function that combines
the mean squared error (MSE) between predicted and observed total
water storage values with a Kullback-Leibler (KL) divergence penalty
that regularizes the Bayesian parameters. A KL weight of 1 x 107>
is used to balance the trade-off between model fit and uncertainty
quantification. The total number of generated samples is 5000, and the
batch size to train the model is 128. Training is conducted using the
Adam optimizer with a learning rate of 3 x 10~> and a weight decay of
1 x 1075, along with a Cosine Annealing learning rate scheduler over
3000 epochs.

For uncertainty estimation, we perform Monte Carlo sampling with
1000 stochastic forward passes during inference, thereby obtaining an
empirical predictive distribution. The mean and standard deviation
computed from these samples are then used to construct uncertainty
intervals for the predicted total water storage. This “last-layer only”
Bayesian framework thus provides robust point estimates alongside
meaningful uncertainty quantification, which is critical for risk-informed
decision-making in geophysical applications. The final results are
visualized with confidence intervals to illustrate uncertainty-aware
predictions. These hyperparameters are tuned by trial-and-error tests.

5.3. RESULTS

5.3.1. FALSIFICATION

The final selected prior ranges for all model parameters are presented
in Table 5.1. Figure 5.5 presents the boxplot of the first five principal
components (PCs) derived from the training data, along with the
observed test samples overlaid as distinct markers. The boxplots
represent the interquartile range (IQR, 25th-75th percentile) of the
training data, with whiskers extending to the 5th and 95th percentiles.
Black dots beyond the whiskers indicate outliers within the training
distribution.

The test samples exhibit strong alignment with the training data
distribution. Specifically, all four real samples fall within or very close to
the IQR across all principal components, suggesting that their statistical
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properties are consistent with the training set. No test sample appears
in the extreme outlier region beyond the whiskers, reinforcing the
observation that the measured resistivity values are well captured by
the simulated dataset. Furthermore, the real samples cluster around the
median, indicating that their distributional characteristics are within the
expected variability of the training data.

To quantitatively evaluate the similarity between field observations
and synthetic simulations, we computed decision function scores from
the trained one-class SVM model. The decision function returns the
signed distance of each test sample to the learned decision boundary
that encloses the distribution of the synthetic data in the PCA-reduced
feature space. Positive values indicate that a sample lies inside the
learned boundary (classified as an inlier), while negative values suggest
an outlier. In our case, all four test samples yielded positive scores:
0.4832, 0.4843, 0.4687, and 0.4735, respectively. These consistently
high values indicate that each observed resistivity profile is well within
the range of variability represented by the synthetic training data. This
strongly supports the validity of the underlying physical model used to
generate the synthetic data, as it captures the essential features of the
observed resistivity response in the field.

Table 5.1.: Prior distributions of model parameters used in the simulation.

Parameter (Description) Range / Distribution

Global parameters (common layers)
¢ (Porosity) U[0.3, 0.5]
Pw (Pore-water resistivity) Ul1, 3]

Qqre (Tortuosity factor) uU[0.5, 1.0]
mqre (Cementation exponent) U[1l.6, 2.0]
Narc (Saturation exponent) N(2.0, 10%)
6, (Residual water content) U[0.15, 0.25]
0 (Saturated water content) Same as ¢

a (VG inverse air-entry suction) U[5.0, 10.0]
n (VG pore-size index) U[l1.2, 1.8]

Soil-specific overrides (cover layer only)

Qsoil (Soil tortuosity) u[o0.5, 1.5]
Meoil (Soil cementation) U[1.5, 2.5]
Nsoil (Soil saturation exponent) uU[1.0, 2.0]
Pw,soil (Soil water resistivity) uU[5, 15]

05 soil (Saturated content)
Or,s0il (Residual content)

N(0.3437, 5%)
N(002472 X 65150“, 5%)

Note: All random draws are assumed independent. U[a,b] denotes a uniform distribution
on [a,b], and N is a normal distribution with mean u and standard deviation 0. In rows
with N (u, percentage), the second argument indicates o = (percentage) x u.



5. Quantifying water content of a landfill with ERT data by Bayesian
124 evidential learning

Test Samples

BB11Z_05
200 BB11Z_06
BB11Z_07
i BB11Z_02
100 1 f

Component Value
o

—100

—200 4

PC1 PC2 PC3 PC4 PC5
Principal Component

Figure 5.5.: Boxplot of principal components (PC1-PC5) from the training data,
with test samples overlaid as distinct markers. The boxes represent the
interquartile range (IQR), from the 25th percentile (Ql) to the 75th percentile
(Q3). The horizontal line inside each box denotes the median (50th percentile).
The whiskers extend to 1.5 times the IQR from Q1 and Q3, respectively,
capturing the bulk of the data. Outliers beyond this range are shown as
individual points. The four test samples represent real datasets from cell 11Z
of Braambergen Landfill measured in different months. The alignment of test
samples with the IQR suggests that no significant falsification is detected.
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5.3.2. REGRESSION AND PREDICTION
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Figure 5.6.: Training and validation loss over 3000 epochs using a Bayesian
neural network (BNN). Solid lines show smoothed loss curves, while faded lines
show raw epoch-wise losses.

Figure 5.6 shows the evolution of training and validation losses over
3000 epochs for the Bayesian Neural Network (BNN). The loss function
combines a mean squared error (MSE) term with a Kullback-Leibler
(KL) divergence term, the latter applied only to the final Bayesian
layer. Smoothed curves (solid lines) illustrate overall trends, while the
faded lines depict raw epoch-wise losses. The steady decrease and
convergence of both losses suggest effective learning without significant
overfitting.

Figure 5.7 demonstrates the BNN’'s performance on unseen test
samples by comparing its predictive distribution to the sorted ground-
truth TWS values. Overall, most of the true TWS values lie within the
estimated 95% confidence intervals, indicating that the BNN can capture
prediction uncertainties to a reasonable degree. However, the model
consistently underestimates TWS in the higher range (e.g., values above
5), suggesting that the network has learned a relatively conservative
bias and struggles to extrapolate to these extremes.

Several factors may contribute to this limitation. First, the training
dataset contains fewer samples at the upper end of the total water
storage (TWS) range. As a result, the Bayesian Neural Network (BNN)
learns a distribution that is narrower and biased toward mid-range
values. Second, the mesh cells exhibit varying sensitivity to changes
in resistivity signals. Some regions may be poorly constrained or even
undetectable, given the available ERT data. Third, variations in water
retention characteristics and Archie’s law parameters can cause similar
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Figure 5.7.: Bayesian neural network predictions with uncertainty on the test
dataset. The red curve shows the ground truth total water storage (TWS),
sorted in ascending order. The dashed blue line represents the mean prediction
from 1000 Monte Carlo samples, and the shaded area shows the predictive
uncertainty (95% confidence interval).

resistivity signals to emerge from fundamentally different TWS values
during forward simulations.

To isolate the impact of each factor, we conducted a series of targeted
experiments. To address the data imbalance, we manually selected
samples across a broader range of TWS values to approximate a
uniform distribution. For the spatial sensitivity issue, we computed the
Jacobian matrix for each cell to quantify its sensitivity, then removed
cells with very low sensitivity from the mesh. Both methods are
implemented in the provided script. However, preliminary results
showed that these adjustments had little effect on prediction accuracy,
suggesting that these factors are not the primary sources of the
observed underestimation.

Our final experiment focused on parameter variability. We fixed
all parameters in Archie’'s law and the water retention curve to
their respective mean values, making them deterministic rather than
sampled. The model’s resulting performance is shown in Figure 5.8.

Figure 5.8 shows that when trained with deterministic parameters, the
BNN more accurately captures high TWS values. With fixed parameters,
the relationship between resistivity and TWS becomes more consistent,
allowing the model to distinguish truly high TWS scenarios from
moderate ones. This reduces the ambiguity seen in the stochastic case,
where different parameter realizations can lead to similar resistivity
responses.

Together, Figures 5.7 and 5.8 demonstrate the importance of
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Figure 5.8.: Bayesian neural network predictions with deterministic parameter
set. The red curve shows the ground truth total water storage (TWS), sorted
in ascending order. The dashed blue line represents the mean prediction
from 1000 Monte Carlo samples, and the shaded area shows the predictive
uncertainty (95% confidence interval).

parameter variability in shaping model performance. These results
highlight the need for better constraints on key subsurface parameters.
Additional data collection, particularly aimed at narrowing the plausible
range of water retention and Archie’s law parameters, would likely
reduce predictive uncertainty and improve performance in high-TWS
regimes.

Parameter non-uniqueness is a well-recognized limitation in hydrogeo-
physics, particularly in the interpretation of petrophysical relationships
that link electrical resistivity to hydrological state variables (Linde &
Doetsch, 2016). This ambiguity arises because multiple combinations
of subsurface properties (e.g., porosity, saturation, tortuosity) can yield
similar geophysical responses, making it difficult to isolate the true
system state from measurements alone (Tso et al., 2019). In our
study, we probed this issue by repeating the BEL workflow using fixed
(deterministic) values for the Archie and van Genuchten parameters.
This experiment effectively removed epistemic parameter uncertainty,
allowing us to disentangle its influence from aleatory heterogeneity in
the spatial distribution of water content. The improvement in high-TWS
prediction accuracy (Fig. 5.8) highlights how parameter variability can
mask true differences in total water content by producing overlapping
ERT signatures. These findings are consistent with the robustness
analysis by Ahmed et al. (2024), who demonstrated that constraining
petrophysical priors in BEL significantly narrows posterior variance.
Together, these results support the view that targeted laboratory
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measurements of key parameters (e.g., site-specific Archie exponents)
can play a decisive role in reducing predictive uncertainty and improving
interpretability in geoelectrical moisture estimation.

In Figure 5.9, we show boxplots of the Bayesian Neural Network’s
predictive distributions for four field datasets (BB11Z 05, BB11Z 06,
BB11Z 07, and BB11Z 02). Each dataset exhibits a spread of Monte
Carlo predictions between approximately 3.5 and 6 m3/m?2, with the
median (red line) generally near 5 m3/m2. Although there are some
fluctuations in the mean values for these real measurements, the
variation can be neglected compared with its prediction uncertainty.
These patterns mirror our synthetic tests (cf. Figures 5.7 and 5.8), where
parameter variability can cause ambiguous resistivity signals and lead
the network to adopt a conservative bias.

The results clearly show that the real ERT data can be used to quantify
the uncertainty of total water storage in the waste body, while its
capacity to quantify the water storage change is constrained by the high
uncertainty in the model parameters.
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Figure 5.9.: Boxplot of the Bayesian neural network’s Monte Carlo predictions
for the four real datasets (BB11Z 05, BB11Z 06, BB11Z 07, BB11Z 02). Each
box extends from the first quartile (Q1) to the third quartile (Q3), with the red
horizontal line indicating the median. The whiskers represent a conventional
range of £1.5 x IQR from the quartiles, and any samples outside this range are
shown as circular outliers. The yellow diamond within each box denotes the
mean of the distribution. The light blue shading of the boxes helps visualize the
spread and central tendency of the Monte Carlo predictions.
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5.4. CONCLUSIONS

This study presents a novel approach to quantify the water content
of landfill waste bodies using Electrical Resistivity Tomography (ERT)
data within the Bayesian Evidential Learning (BEL) framework. Unlike
traditional inversion-based approaches, the BEL method directly learns
statistical relationships between resistivity measurements and total
water storage (TWS), bypassing the ill-posed resistivity inversion
process. This approach significantly reduces model-related uncertainties
and offers robust quantification of TWS, accompanied by meaningful
uncertainty estimates.

Our results show that the BEL framework successfully incorporates
complex hydrogeophysical relationships to provide reliable estimations
of landfill water storage. The forward modeling procedure, incorporating
stochastic generation of saturation distributions, demonstrated its
capability to encompass the observed ERT responses. The falsification
tests validated that the prior model and generated synthetic datasets
were representative of the actual landfill conditions, as all observed ERT
datasets aligned closely with the simulated data distribution.

The Bayesian Neural Network (BNN) predictions demonstrated high
accuracy and reliable uncertainty quantification for moderate TWS
ranges. However, the BNN tended to underestimate higher TWS
values, especially under conditions of parameter uncertainty. Numerical
experiments showed that this underestimation primarily arises from
uncertainties in hydrogeophysical parameters (e.qg., parameters in
Archie’s law and water retention curves). When these parameters
were held deterministic, the prediction accuracy improved substantially,
highlighting the critical role parameter uncertainties play in shaping
predictive performance.

These insights emphasize that parameter uncertainty poses a
significant challenge for accurate quantitative interpretation of ERT data
in heterogeneous landfill environments. Reducing uncertainties through
targeted experiments or additional complementary measurements would
enhance the predictive performance and reliability of the BEL-based
approach.

The developed BEL methodology represents a significant step
forward in landfill moisture monitoring, providing robust uncertainty
quantification and avoiding the inherent challenges associated with
traditional inversion methods. Future research should focus on
constraining critical hydrogeophysical parameters to further enhance
prediction accuracy, particularly in high-water-storage scenarios, thus
strengthening its application in environmental risk assessment and
landfill management.
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6.1. CONCLUSIONS

his thesis set out to enhance our understanding and quantification of

landfill emission potential by combining stochastic flow and transport
modeling, data assimilation, and hydrogeophysical methods. Drawing
on four key chapters, we pursued a progression from model develop-
ment and validation to advanced data assimilation and finally leveraging
hydrogeophysical measurements for water-storage estimation. Below is
a concise synthesis of the chief findings in this research.

In the first part of this research, we developed a stochastic travel-time
model, based on water life expectancies, to capture the heterogeneous
flow pathways within landfill waste bodies. By formulating the emission
potential for conservative solutes (e.g., chloride), we demonstrated that
long-term leachate flux and composition measurements can be used to
determine how preferential inflows from the cover layer and a bulk “stag-
nant” zone both drive outflow concentration. Results showed that pref-
erential flow exerts a dominant influence on leachate release, whereas
the staghant zone significantly affects contaminant discharge during low-
flow periods.

Building on that model, we then introduced a weakly coupled Particle
Filter approach to reduce uncertainties in both water-storage states and
the solute mass. By simultaneously assimilating leachate flow (LPR) and
concentration data, this method effectively refines estimates of bulk wa-
ter volume and pollutant mass over time. It emerged that the model’s
baseflow can only be used to estimate bulk storage if it's sensitive to
the bulk storage variations, highlighting the importance of monitoring
over sufficiently long time-spans to capture the sensitive range in the
baseflow function.

Subsequently, we presented a PF-MCMC assimilation method that jointly
updates model parameters and states. Synthetic experiments confirmed
that this hybrid approach yields lower uncertainties than open-loop simu-
lations, especially regarding bulk chloride concentration and water travel
times. It also validates the feasibility of combining several parameters
to estimate the hidden processes in the landfill. Real case study in PF-
MCMC chapter at the Braambergen landfill reinforced these benefits,
while revealing the limitations imposed by measurement error and pos-
sible model simplifications. Ensuring accurate parameter estimation and
incorporating finer-scale heterogeneity remain key challenges for future
refinement.

Finally, we applied a Bayesian Evidential Learning (BEL) framework to
use Electrical Resistivity Tomography (ERT) data for landfill water-storage
estimation. By bypassing conventional inversion in favor of a direct sta-
tistical mapping between simulated resistivity signatures and water con-
tent, we produced reliable total water storage predictions while quanti-
fying uncertainties. However, uncertainty in the parameter values, like
Archie’s law exponents, can lead to an underestimation of higher water
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contents. Fixing these parameters at deterministic values greatly im-
proved predictive accuracy, underscoring the importance of well-constrained
subsurface properties in hydrogeophysical models.

Collectively, this thesis demonstrates that combining Lagrangian-based
transport models, advanced data assimilation, and hydrogeophysical sur-
veys can significantly enhance landfill emission potential assessments.

6.2. CONTRIBUTIONS AND IMPLICATIONS
The research presented in this thesis offers several key contributions:

e Emission Potential Formalization: By formalizing the term emis-
sion potential within a stochastic framework, this work provides
landfill operators and regulators with a clearer, quantitatively de-
fined metric to support aftercare decisions. Chapter 5 demonstrates
that the total water storage estimated from ERT data likely exceeds
5m3/m?2, whereas the water content estimated by the PF-MCMC
method in Chapter 4 is lower than 1m3/m2. Assuming a volumetric
residual water content of 0.2, the total residual water in the waste
body (with a height of 14m) is approximately 2.8m3/m2. These
findings suggest that more than 1m3/m?2 of water is stored in iso-
lated zones within the waste body. Considering the average con-
centration for leachable is probably lower than the isolated water,
the defined emission potential is substantially smaller than the to-
tal pollutant mass, underscoring the importance of distinguishing
between leachable and non-leachable water in emission potential
assessments.

e Integrated Assimilation Approaches: Combining PF-MCMC with a
flexible, Lagrangian-based travel time model has proven both tractable
and capable of incorporating multiple data streams (e.qg., flow rates,
concentrations).

e Reduced Data Requirements: Stochastic modeling avoids explicit
high-resolution characterization of landfill heterogeneity, relying in-
stead on probabilistic distributions of travel times and site-specific
data. This reduces the need for large-scale field campaigns, while
still capturing the principal controls on leachate generation and pol-
lutant release.

e Practical Guidance for Landfill Aftercare: By demonstrating how
real-time data assimilation can update model states, the methods
developed here can serve as valuable decision-support tools, aiding
in the optimization of leachate management, irrigation strategies,
and risk assessments.




136 6. Conclusions and Recommendations

6.3. RECOMMENDATIONS FOR FUTURE WORK

While this thesis advances the state of the art, several limitations re-
main. We will discuss these issues and also give suggestions for future
research.

e The methods largely focus on conservative solutes (e.g., chloride).
Additional complexities arise for reactive species, where chemical
transformations and microbial degradation must be considered. Ex-
tending the modeling framework to handle reactive and multi-component
transport in an integrated manner could give a more comprehen-
sive view of landfill emissions, particularly for ammonium, organic
contaminants, or other compounds.

o Data assimilation performance depends heavily on the conceptual
model. Structural errors inevitably arise since no model can per-
fectly capture all real-world processes. In practice, the data assim-
ilation methods used here treat the model’s structure as correct
so that any missing processes may be artificially compensated for
by adjustments to parameters or states. This compensation can
introduce estimation bias, reflecting a broader risk in approaches
that assume complete and accurate model formulations. Future re-
search could leverage the existing data assimilation framework to
understand parameter behaviors and hidden states better, thereby
diagnosing and quantifying missing processes. Additionally, we can
combine multiple model variants through model averaging or Bayesian
model selection instead of relying on a single conceptual model.

e Current research mainly relies on literature-based parameter ranges
for the water retention curve and Archie’s law. Because these pri-
ors can be unnecessarily broad, this will lead to underestimating
higher water contents. Moreover, the resulting predictive uncer-
tainty is larger than typical month-to-month fluctuations in landfill
water storage, thereby reducing the model’s ability to detect real
changes over time. To address this, future studies could collect
samples from the cover layer and multiple zones within the waste
body for laboratory experiments, not to pinpoint deterministic pa-
rameter values but to establish more informative prior distributions.
Additionally, the ERT measurement array should be deliberately de-
signed to increase sensitivity to water storage variations within the
waste mass, for example, by extending current surface-based sur-
veys into deeper landfill regions.

e ERT surveys were intended to reduce uncertainties in landfill wa-
ter storage. However, the water storage estimated from ERT is of-
ten larger than that derived from water balance models, because
ERT captures total water, including isolated zones that do not af-
fect leachate outflow. By contrast, the hydraulic model focuses on
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the leachable water fraction. Consequently, we cannot simply treat
the ERT-based storage as a direct observation in the water balance
model. Nevertheless, if the ERT measurements can reliably track
changes in storage (rather than just absolute magnitudes), they
could serve as an external observation source to further constrain
the model’s uncertainty. The current relationship between ERT data
and total water storage, built by a Bayesian neural network, could
be seen as the observation operator in a data assimilation frame-
work. Hence, once issues of accuracy and parameterization are
addressed, future work should focus on integrating ERT data into a
data assimilation framework to enhance landfill water storage pre-
dictions.

6.4. FINAL REMARKS

In closing, this thesis highlights the benefits of combining stochastic
modeling, advanced data assimilation, and hydrogeophysical surveys to
enhance the quantification of landfill emission potential. By integrating
these tools, researchers and practitioners can better address the uncer-
tainties inherent in waste heterogeneity, leading to more robust predic-
tions of leachate and pollutant release and, consequently, improved af-
tercare strategies.

Yet, several challenges remain. Increased focus on reactive trans-
port processes, more precise parameter constraints (e.g., via laboratory
experiments), and greater measurement coverage in hydrogeophysical
campaigns are all vital next steps. Refining how ERT-based estimates
of total water storage align with hydraulic models, especially regarding
non-leachable water fractions, will further improve modeling consistency.
Data assimilation methods can be more confidently applied as these
technical refinements progress, ultimately reducing both financial and
environmental risks associated with long-term landfill management.
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Tortuosity factor in Archie’s Law for soil cover

Shape parameter of the gamma distribution for base flow life ex-
pectancy (dimensionless)

Surface area of the landfill [m?]
Inverse air entry suction parameter in van Genuchten model (L™1)

An independently and identically distributed random error with
zero mean and unit standard deviation, described by a skew ex-
ponential power (SEP)

An empirical shape factor for the non-linear flow term of the cover
layer [-]

Kurtosis parameter for the error distribution in the generalized
likelihood function
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Br The fraction of fast flow in the waste body [-]
cg Nuisance parameter which is calculated as a function of £ and .

Ccl The solute concentration in the water present in the cover layer
[kgm—3].

Cr An empirical crop-factor to compensate for different types of crops
in order to close the water balance [—]

Ccwp The solute concentration in the water present in the waste body
[kgm—3]

DD Dipole-Dipole configuration in ERT measurement

Epot The potential evapotranspiration at the boundary of the cover
layer [md 1]

f(t) A system function describing how the waste body transforms the
infiltration flux to the leachate flux [-]

frea  Empirical reduction factor to reduce evpo-transpiration when the
cover layer gets too dry [-]

Swuwp.min Residual volumetric water content in the bulk storage of the
waste body [-].

fwe,min Fraction of the maxmum volumetric water content in the cover
layer used for parameterization of the minimum storage of the
cover layer [-].

Hy  Total height of the landfill [m].

He The thickness of the cover layer [m].

Hwp The height of the waste body [m].

k Fraction of saturated cells in the landfill grid

Kei The saturated hydraulic conductivity of the cover layer [md 1]

L(¢t, 1;, 0)) The log-normal probability density function as a function of
time which is characterised by geometric mean travel time t; and
variance o, where i stands for either the fast flow fraction or the
slow flow fraction

Liot Sum of the three likelihood functions
mgre Cementation exponent in Archie’s Law

mseii Cementation exponent in Archie’s Law for soil cover
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Mc
Mci
MbF
Mwb
Mwb
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Nsoil
Vv
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The mass of solute in the cover layer [kg/m?]

The solute mass in the cover layer [kgm—2].

scale factor for the base flow function [m].

The mass of solute in the waste body [kg/m?]

The solute mass in the waste body [kg m—2]

Number of observations in a measurement data set [-]
Pore-size distribution index in van Genuchten model
Subscript indication time n [-]

Saturation exponent in Archie’s Law

Saturation exponent in Archie’s Law for soil cover
Parameter setting the fraction of outliers in one-class SVM

Nuisance parameter which is calculated as a function of £ and .

pb:(Te) Time invariant probability distribution function of life expectan-

¢

cies of water entering the waste body as base flow.

Porosity

Pqirs(TE) Time invariant probability distribution function of life expectan-

cies of water infiltrating from the cover layer at time t.

pPv..,(Te, t) Probability distribution function of waste body water storage

abF

qbFo

Qdrain

qinf

Qleach

am

Vwp as a function of life-expectancy Tg at time t.

The 'base’ flow from the bulk storage in to the mobile cells. This a
function of bulk storage [m/d].

Maximum value for the 'base’ flow from the bulk storage into the
mobile cells. This is a function of bulk storage [m/d].

The leachate flux leaving the drainge system [md—1]

The water flux infiltrating from the cover layer into the waste body
[md1]

The leachate flux from the waste body to the drainage system
[md 1]

The solute mass flux [kgm—2d 1]

Bulk electrical resistivity of the waste
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Pw Resistivity of pore water (leachate)

Pw,soil Resistivity of pore water in soil layer

Vel The water storage in the cover layer [m]

Ve The maximum storage in the cover layer before by pass flow oc-
curs [m]

Vel The minimum storage in the cover layer that allows infiltration [m]

Serr  Effective saturation

Seff The effective saturation of the cover layer [-]

Osiow Standard deviation of the travel time in the slow lognormal travel
time distribution [d]

Og Nuisance parameter which is calculated as a function of £ and .

opr  shape factor for the base flow function [m].

SLM Schlumberger configuration in ERT measurement

Viotat Water storage in the landfill. Volume water per unit area landfill.
[m]

Vwp Water storage in the waste body. [m]

T '[I'(ijr]ne of infiltration in to the waste body (integration parameter)

Tfast EXpected value of the fast travel time in the log-normal travel time
distribution [d]

Tsiow Expected value of the slow travel time in the log-normal travel
time distribution [d]

Te Remaining life expectancy time of a water parcel in the waste
body [d].

e Vector containing all parameters in the model

2] Volumetric water content

L(6]y) Likelihood of the model assuming model vector @ and measured
datay

B¢l Volumetric water content of the cover layer

o, Residual volumetric water content

er,soil

Residual volumetric water content in soil
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s
es,soil

QWCI

Saturated volumetric water content
Saturated volumetric water content in soil

The volumetric water content in the cover layer [-].

Ow.,max The maximum volumetric water content in the cover layer used

ewwb
Tr
Tr

MbF

for parameterization of the model [-].

The volumetric water content in the waste body [-].
Residence time of a water parcel in the waste body [d].
Total life time of a water parcel in the waste body [d].

Scaling factor for the bulk storage in the base flow function [m]

Vbuik,min Minimal storage in the bulk of the waste body where baseflow

Vif
Stotal

Xdi

g

Ymin

will be zero
Total volume of the landfill [m3]
Volume of water in the landfill [m3]

path along with a water particle travels through the waste body
(m]

Skewness parameter for the error distribution in the generalized
likelihood function

Vector containing measurement data related to simulated output

parameter allowing the heteroscedastic part of the measurement
error to be zero at a minimum value of the measurement







SUPPORTING INFORMATION
FOR CHAPTER 2

The main paper applies the model to data from the 11Z cell of the
Braambergen landfill near Almere in the Netherlands. In this supporting
information, similar results are shown for applying the model to three
other landfill cells: Braambergen 11N, Braambergen 12, and cell 6 of the
Wieringermeer landfill near Medemblik.

The motivation for providing these results is to demonstrate the gen-
eral applicability of the Landfill Emission Modelling concept and corre-
sponding estimates of the emission potential for these three additional
landfill cells. And strengthen the conclusions drawn in the main paper.
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