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Abstract-An efficient a n d  accura te  finite-element 
m e t h o d  is presented for  comput ing  t ransient  electro- 
magnet ic  fields in  three-dimensional configurations 
containing arbitrarily inhomogeneous media  t h a t  
may be anisotropic. To obta in  accura te  resul ts  with 
an optimum computat ional  efficiency, b o t h  edge a n d  
Cartesian elements  are used for  approximating t h e  
spatial dis t r ibut ion of t h e  field. T h e  efficiency a n d  
the s torage  requirements of t h e  m e t h o d  are fur ther  
opt imized by choosing a n  irreducible implicit formu- 
lation, by solving the resulting system of algebraic 
equat ions in  terms of t h e  t ime-dependent  expansion 
coefficients i terat ively a n d  by using a n  incomplete  
LU-decomposition for preconditioning. A m e t h o d  is 
described for  imposing t h e  divergence condition in  
a weighted sense. 

I. INTRODUCTION 

In earlier papers [1,2] finite-element methods have been 
described for computing time-harmonic electromagnetic 
fields in three-dimensional configurations containing strong- 
ly inhomogeneous media. In [2] it was shown that using a 
combination of edge elements and Cartesian elements for the 
expansion of the electric and/or the magnetic field strength 
yields optimum computational results. By adding the diver- 
gence condition [3], the latter formulation was further im- 
proved, both as regards its computational efficiency (stor- 
age and time) and as regards its accuracy. In 141 it was 
shown that the numerically optimum combination of edge 
and Cartesian elements mentioned above can also be used for 
approximating the spatial distribution of the field in a mixed 
formulation of the three-dimensional time-domain form of 
Maxwell’s equations. In the latter paper, an explicit method 
was used for the integration of the system of coupled differ- 
ential equations along the time axis .  In the present paper, 
the mixed formulation presented in [4] is replaced by an ir- 
reducible one in terms of the electric field strength only, the 
media may be anisotropic. The irreducible formulation was 
chosen both to  make it easier to  implement implicit methods 
for carrying out the integration along the time a x i s  and to 
reduce the storage requirements. 

Comparing our approach with other valid methods 
for solving time-domain electromagnetic-field problems in 
three-dimensional inhomogeneous configurations, such as 

I 

the methods using potentials [5] and methods using edge 
elements that are divergence-free [6], we note that our ap- 
proach has a higher order of accuracy since it employs a con- 
sistently iinear approximation of the electric field strength. 
Potentials require a numerical differentiation because of 
which they yield only piecewise constant approximations for 
the electric field strength (assuming linear expansions for 
the potentials). Divergence-free edge elements yield approx- 
imations that are constants along the edges they refer to, 
because of this they also yield poor convergence properties 
[1,7]. In comparison with many methods that use poten- 
tials, our approach has the additional advantages that mul- 
tiply connected domains do not cause any difficulties, that 
(in)homogeneous Dirichlet as well as (in)homogeneous Neu- 
mann boundary conditions can be implemented straightfor- 
wardly and that, finally, no gauge is required for ensuring 
the uniqueness of the method [5]. 

Finally we mention that the linear edge elements we use 
are, apart from a constadt factor, identical to  the ”pyra- 
mid vector fields” used by McMahon [8] for computing lower 
bounds for the electrostatic capacity of a cube, McMahon’s 
paper seems to be the oldest reference using edge elements. 

11. THE CHOICE OF THE EXPANSION FUNCTIONS 

For topological reasons [9], the geometrical domain D 
in which the finite-element method is applied, is subdi- 
vided into a number of adjoining tetrahedra (simplices in 
IR3). This subdivision can either be done exactly, when 
V is a polyhedron, or approximately if V is not a poly- 
hedron. In each tetrahedron 7 the set of local (i.e. belong- 
ing to  a particular tetrahedron) Cartesian (nodal) expan- 
sion functions {WL:)(z)} is given by Wf:’(z) = d,(.);, 
(i = 0, ..., 3, j = 1,2,3), where i, are the base vectors with 
respect to the (background) Cartesian reference frame and 
where d,(z) are the barycentric coordinates 141. The set 
of local edge expansion functions {W,(z)(e))  is given by 

a,,, = lz, - E,/ denotes the length of the edge joining the 
vertices z, and z,. The factor al,, is introduced for making 
W$)( z) dimensionless and for normalizing it for improving 
the condition of the system of algebraic equations that con- 
stitute the system matrix. When z E 7, the electric field 
strength E(;e,t)  is expanded as 

Wr,J (E) (z) = ar,,dr(z)Vd,(z), ( i , j  = 0,-*,3,  i # j )  where 

3 

E ( z , t )  = c e%,,(t)wL:7E)(4, (1) 
:=o 3 Manuscript received July 7, 1991. 
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where {etJt)} denotes the local set of unknown time- 
dependent expansion coefficients. The local expan- 
sion functions are taken from the set {W!,:E)(~)} = 

{W$)(Z) ,  W::)(Z)} since, depending on the local degree 
of inhomogeneity [2], both edge and Cartesian expansion 
functions may be used in each tetrahedron. The summation 
index j in (1) runs over values that depend on the type of 
expansion used near node i .  

111. THE SYSTEM OF DIFFERENTIAL EQUATIONS 

Eliminating the magnetic field strength H from Maxwell's 
equations we obtain 

8 , 2 E . E $ d t u . E + V  x (p-1.  v x E )  = 

v x (p-' * Kexl 1. (2) -at JeXt - 

where Jeyt and KeXt denote external sources of electrical and 
magnetic current, and where E ,  U and p denote the permit- 
tivity, the conductivity and the permeability tensor, respec- 
tively. After substituting the expansion (1) for the electric 
field strength in (2), a system of equations in the expansion 
coefficients is obtained by applying the method of weighted 
residuals. The set of weighting functions {WfiE)(z ) }  that 
is used is the same as the set of expansion functions. Using 
an integration by parts and adding the resulting equations 
over all tetrahedra, we obtain a system of coupled ordinary 
differential equations for {e,,3} that can be written as 

where 8D denotes the outer boundary of the domain of com- 
putation V and n the unit vector along the outward normal 
to 8V. Note that, contrary to the summation in ( l ) ,  the 
summation indices i and j in (3) refer to the global number- 
ing of the expansion functions and that p and q refer to the 
global numbering of the weighting functions. For deriving 
(3) we have used the continuity of the tangential components 
of the magnetic field strength over all internal interfaces. 

Assuming the configuration to be free of electric charges, 
it follows from Maxwell's equations that the electric flux 
density I) = E . E should be free of divergence. The latter 
condition is not automatically enforced by either (2) or (3). 
To impose this freedom of divergence, the system uf differ- 
ential equations (3) is modified by adding the conditions 
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to it for all tetrahedra. Note that the validity of (4) fol- 
lows from the divergence condition and that it has the same 
dimension as the terms in (3). The norm in (4) has to be 
taken such that it reduces to  ~p for isotropic media. Using 
the above procedure, the divergence condition is imposed 
in a weighted sense. A numerical solution that is obtained 
using (4) will be free of divergence in the numerical sense, 
i.e. the divergence condition is satisfied to the same de- 
gree of accuracy as (2) is. In comparison with methods us- 
ing divergence-free (mixed) finite elements [lo], our method 
uses a consistently linear approximation of the field because 
of which it has superior convergence properties [1,7]. To 
summarize, using (4) is a numerically optimum method of 
imposing the divergence condition. 

Assuming the medium properties E , U  and p-' as well 
as the external magnetic field strength H and the external 
source distributions Jext and Kext to be constant, or to vary 
linearly, over each tetrahedron or triangle, all integrations 
implied in (3) and (4) can be carried out analytically [ll]. 

The system of coupled differential equations can, in ma- 
trix form, be written as 

M&e + M,dte + M,e = 8th - jext - lepxt. (5) 

Together with the appropriate initial and boundary condi- 
tions (5) constitutes a system of ordinary diffential equations 
from which theevolution in time of the expansion coefficients 
can be obtained. When the problem to be solved contains 
Dirichlet boundary conditions, some of the elements of the 
vector e will have prescribed, time-dependent, values, those 
elements should be eliminated from the vector of unknowns 
e and (5) has to be rewritten such that their contribution 
becomes a part of the right-hand side vector. 

IV. THE INTEGRATION OF THE SYSTEM OF 
DIFFERENTIAL EQUATIONS 

For the integration of the system of coupled differential 
equations (5) along the time axis the most obvious chio- 
ces are single and two-step time marching schemes [12,13]. 
We have used both methods with a number of different 
weighting functions in time. As regards computational ef- 
ficiency, two-step methods proved to be slightly more effi- 
cient for solving our type of problems than single-step meth- 
ods. Single-step methods, however, have the advantage that 
with them the step-size can be varied more easily. When 
the solution vector varies only slowly in time for certain in- 
tervals along the time a x i s ,  this may be used to improve 
the efficiency of the method. All results to be presented 
in the present paper have been obtained using the two-step 
scheme with the unconditionally stable "average accelera- 
tion" weighting function over the relevant time interval [13]. 

Using an incomplete LU-decomposition [14] of the sys- 
tem matrix for preconditioning, the iterative (conjugate- 
gradient) solution of the system of linear algebraic equations 
that has to be determined for each time-step has proved to 
be an extremely fast method, requiring only a few, usually 
2 to 5 (see Table l ) ,  iteration steps for each time step. 
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As regards explicit methods, such as the one reported 
in [4], we note that they have the disadvantage of be- 
ing only conditionally stable, which causes explicit finite- 
element methods for solving electromagnetic-field problems 
in inhomogeneous media to  be relatively inefficient. 

V. NUMERICAL RESULTS 

' Frequency RMS error in % NIT per 
He E1 I E2 1 E3 time step 

4 *  10' 24.0 I 25.7 I 8.1 3.41 

To demonstrate the accuracy and efficiency of our method, 
we have applied the FEMAXT code, in which the present 
theory was implemented, to a test problem for which the 
solution is known analytically. This test problem was solved 
under the condition that edge expansion functions are used 
when the relative contrast in the numerical value of E and/or 
U in two adjacent tetrahedra exceeds 10%; Cartesian ex- 
pansion functions are used for lower contrasts. The con- 
figuration used for testing is the cubic source-free region 2) 
(-0.5 < 2 1  < 0.5m,O < 2 2  < lm,O < 23 < lm} consisting 
of two homogeneous parts with different medium properties 
viz. V1 (-0.5 < 01 < Om,O < az < lm,O < z3 < lm} with 
the properties of a vacuum { E I  =: E O , ~ I  = p 0 , q  = 0) and 
'Dz = 2, \ D1 with the medium properties { E ~  = 10cO,p1 = 
po, ul = O.O1S/m) (this choice applies to  the realistic case of 
a plane interface between a vacuum and a lossy dielectric). 
The magnetic field strength is chosen as the time-harmonic 
plane wave in V1 polarized along the 23-axis. Because of the 
discontinuity a t  2 1  = 0 we also have a reflected wave in V1 
and a transmitted wave in 'Dz. Using complex arithmetic 
the field can be written as 

H = %(exp(jwt - y' . z) + Rexp(jwt + 7' . z)) i3  (6) 

when 2 1  < 0 and 

H = R(Texp(jwt - y t .  a3))i3 (7) 

when q 2 0. Writing y' = y 'd ,  where 8' denotes the unit 
vector in the direction of propagation of the incident wave, 
we have chosen si = si = 2-'/' and s j  = 0. With this choice, 
(6,") represents a plane wave in 'D1 travelling in the (z1,zz) 
plane and having an angle of incidence of 45", together with 
a reflected wave and a transmitted wave in Dz. Expres- 
sions for the unknown constants in (6) and (7) and for the 
electric field strength can be easily obtained. Because of the 
discontinuity in the properties of the medium, El will be dis- 
continuous at 2 1  = 0, the remaining field components being 
continuous throughout the domain of computation, E3 E 0. 
The field has a frequency f = 10' Hz (w = 2rf) .  In all com- 
putations V1 consists of 18 x 18 x 6 bricks of equal size and 
'Dz consists of 18 x 18 x 12 bricks of equal size, all bricks being 
subdivided into 6 tetrahedra. The computations are carried 
out for the time interval t o  = 0 5 t 5 w 7 S  = tend, using 
200 steps in time (At = 5 * lo-"%). The initial conditions 
at  t = -At and t = 0 as well as the boundary conditions 
are taken from the analytical expressions that are given in, 
or derived from, (6) or (7). The boundary conditions have 
been chosen as follows, a t  the parts of the outer boundary 
in the planes 23 = 0 and 23 = 1 the tangential component 

Table 1: Relative accuracies and average number of itera- 
tions NIT per time step as a function of the frequency. 

2 * 108 

of magnetic field strength is specified, the tangential com- 
ponent of the electric field strength is specified along the 
remaining part of the outer boundary. With these bound- 
ary conditions we have a total number of 24248 degrees of 
freedom, 2956 degrees of freedom being prescribed because 
of the boundary conditions. 

1 a contour plot is given of the local relative 
error in the solution for E 1 ( 2 1 , ~ 2 , ~ 3  = 0.5,t = t e n d ) .  The 
local relative error is defined as the value of the error at a 
given point and at a certain moment of time divided by the 
maximum absolute value of the exact solution, anywhere in 
the configuration and at the same instant of time. In Fig. 2 
the numerical value of Ez(q = 0 . 0 1 , ~ ~  = 0.49,23 = 0.49, t )  
as a function of time (0.75 * is plotted 
together with behaviour in time of the exact solution. 

To obtain insight into the convergence properties of the 
method, the RMS-error in the solution is given, in Table 
1, as a function of the frequency. All results are given for 
the same discretization of the domain of computation, for 
the same step-size in time and for the same medium prop- 
erties. Comparing the RMS errors for different frequencies, 
it can be concluded that the error in the results is approxi- 
mately O((h/A)') ,  where h denotes the maximum diameter 
of a tetrahedron and where X denotes the wavelength of the 
incident field. This behaviour is in accordance with the ex- 
pectations for linear expansion functions [15]. 

We have also solved the present time-harmonic problems 
and a number o l  other time-harmonic problems with all ini- 
tial values set to zero, letting the solution "develop" to its 
approximate time-harmonic value and filtering out all com- 
ponents not having the frequency f.  In this way, highly ac- 
curate solutions to time-harmonic problems can be obtained 
with a computational effort that is much less than the com- 
putational effort required for solving the complex system of 
equations one obtains, solving the problem in the frequency 
domain. 

All computations have been carried out at a VAXstation 
3100 M76, requiring about 1 minute of CPU time for each 
step in time and about lOMbytes for storing the matrices. 
The SEPRAN finite-element package [16] is used for car- 
rying out a number of tasks like generating the mesh and 
assembling the system matrices from the element matrices 
generated by FEMAXT. 

In Fig. 

5 t I: 

VI. CONCLUSION 

The theory discussed in the present paper was imple- 
mented in the FEMAXT code that was, apart from the time- 
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[17] G. Mur, "The FEMAX finite-element package for computing 

three-Dimensional electromagnetic fields in inhomogeneous me- 
dia," in: Advances in Electrical Engineering Software, Pmceed- 
ings of the First International Conference on Electrical Engi- 
neering Analysis and Design, pp. 83-94, Ed. P. P. Silvester, 
Lowell, Massachusetts, USA, 21-23 August 1990, Computational 
Mechanics Publications, Southampton. 

dependent aspects of it, developed along the same lines as 
its counterpart for time-harmonic problems, the FEMAXI 
package [17]. We have shown that our approach yields 
an efficient and very accurate method for computing tran- 
sient electromagnetic fields in strongly inhomogeneous me- 
dia. The present time-domain formulation can also be used 
for the efficient and accurate solution in the time-domain of 
problems involving time-harmonic fields and as such it is a 
very attractive alternative to a formulation in the frequency 
domain. 
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Fig. 1. Plot of the local relative error in El(al,z2, 0.5,te,d) 
in %. 

Fig. 2. Plot of E2(0.01, 0.49,0.49, t), x = numerical result, the 
second line gives analytical results. 


