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Cardiopulmonary coupling indices 
to assess weaning readiness 
from mechanical ventilation
Pablo Armañac‑Julián1,2*, David Hernando1,2, Jesús Lázaro1,2, Candelaria de Haro3,4, 
Rudys Magrans5, John Morales6, Jonathan Moeyersons6, Leonardo Sarlabous3, 
Josefina López‑Aguilar3,4, Carles Subirà7, Rafael Fernández4,7, Michele Orini8,9, 
Pablo Laguna1,2, Carolina Varon6,10, Eduardo Gil1,2, Raquel Bailón1,2 & Lluís Blanch3,4

The ideal moment to withdraw respiratory supply of patients under Mechanical Ventilation at 
Intensive Care Units (ICU), is not easy to be determined for clinicians. Although the Spontaneous 
Breathing Trial (SBT) provides a measure of the patients’ readiness, there is still around 15–20% of 
predictive failure rate. This work is a proof of concept focused on adding new value to the prediction 
of the weaning outcome. Heart Rate Variability (HRV) and Cardiopulmonary Coupling (CPC) methods 
are evaluated as new complementary estimates to assess weaning readiness. The CPC is related to 
how the mechanisms regulating respiration and cardiac pumping are working simultaneously, and it is 
defined from HRV in combination with respiratory information. Three different techniques are used to 
estimate the CPC, including Time‑Frequency Coherence, Dynamic Mutual Information and Orthogonal 
Subspace Projections. The cohort study includes 22 patients in pressure support ventilation, ready to 
undergo the SBT, analysed in the 24 h previous to the SBT. Of these, 13 had a successful weaning and 
9 failed the SBT or needed reintubation –being both considered as failed weaning. Results illustrate 
that traditional variables such as heart rate, respiratory frequency, and the parameters derived from 
HRV do not differ in patients with successful or failed weaning. Results revealed that HRV parameters 
can vary considerably depending on the time at which they are measured. This fact could be attributed 
to circadian rhythms, having a strong influence on HRV values. On the contrary, significant statistical 
differences are found in the proposed CPC parameters when comparing the values of the two groups, 
and throughout the whole recordings. In addition, differences are greater at night, probably because 
patients with failed weaning might be experiencing more respiratory episodes, e.g. apneas during the 
night, which is directly related to a reduced respiratory sinus arrhythmia. Therefore, results suggest 
that the traditional measures could be used in combination with the proposed CPC biomarkers to 
improve weaning readiness.

Most patients admitted to Intensive Care Units (ICU) present symptoms of respiratory failure and need the sup-
port of Mechanical Ventilation (MV). MV is a procedure of artificial respiration that supplies or collaborates 
with a patient’s respiratory function, in order to have an efficient gas exchange and reduce the respiratory effort. 
As the respiratory muscles and the nervous system recover, patients are prepared to maintain normal breathing 
autonomously, making the respiratory support unnecessary. This process of withdrawing MV is known as “Wean-
ing” and is a challenging and very delicate procedure. The American Thoracic Society (ATS) and the American 
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College of Chest Physicians (CHEST) identify weaning as an investigation  priority1. The international consensus 
conference in  20072, recommends that weaning should be considered as soon as possible. However, weaning 
failure and reintubation due to premature liberation can lead to an increased risk of severe respiratory complica-
tions causing dyspnoea and hypoxaemia, such as ventilator induced lung injury (VILI)3, ventilator-associated 
pneumonia (VAP)4, or ventilator induced diaphragmatic  dysfunction5. These complications are significantly 
associated with increased mortality, reported to range from 25–50%6–8.

Once a patient is deemed ready for  weaning9–11, the Spontaneous Breathing Trial (SBT) assesses their ability 
to breathe  independently2. It is carried out for nearly 30 min, by a low-level inspiratory pressure support –with 
minimal MV support– or a T-tube test –with no MV  support9–11. Currently, the SBT is the best diagnostic test 
to determine more accurately if the weaning attempt will be successful or not. However, literature shows that 
about 20% of patients fail the SBT or, even worse, pass the SBT but do not respond to weaning, needing reintu-
bation within the next 48  hours8. This causes patient suffering and abruptly increases the risk of complications 
and  comorbidities12,13. Therefore, there is a need to improve weaning readiness criteria in order to reduce the 
number of patients undergoing SBT who are not ready to breathe spontaneously.

Recent clinical and electrophysiological studies revealed a high incidence of Autonomic Nervous System 
(ANS) dysfunction in patients admitted to the  ICU14,15, which has a negative impact on clinical prognosis and 
mortality  rates16. The ANS is responsible for cardiovascular control between heart, lungs and brain, to dynami-
cally couple and regulate blood pressure, HR and  respiration17,18. Therefore, some works studied the ANS recovery 
in order to better define the SBT outcome. Heart rate variability (HRV) is a non-invasive measurement of the ANS 
function, and it has been proven as a tool to evaluate the SBT outcome. Patients who failed SBT were observed 
to have reduced HRV during SBT compared to after  weaning19,20. The study  in21 demonstrates the added value 
of HRV and respiration rate variability, comparing the SBT outcome in the 30 min during the SBT. They found 
that altered HRV and respiration rate variability during the SBT are associated with weaning failure. Other 
works also found that comparing the HRV parameters before, during and after the SBT, the decision of weaning 
 improved22,23. Based on these previous observational studies, in which HRV and respiratory parameters during 
SBT have been shown to differ between success and failure of SBT, we wanted to investigate if ANS dynamics 
could provide valuable information for weaning success prediction, before the SBT.

In addition to HRV, another important mechanism known as Cardiopulmonary Coupling (CPC) can be 
derived if HRV is combined with respiratory  information24. The CPC is mainly expressed through the Respira-
tory Sinus Arrhythmia (RSA), which is the acceleration and deceleration of the heart driven by  respiration25. 
The physiological role of the RSA is still a matter of debate, but it is widely accepted that RSA helps to match 
perfusion and ventilation during the respiratory cycle, enhancing pulmonary gas exchange and improving car-
diac  efficiency25,26. Correspondingly, although a lot of discussion exists on which mechanism is responsible 
for  RSA27–29, studies suggest that the ANS, via the vagus nerve, plays the major role in it, together with some 
mechanical effects and the baroreflex. In fact, despite the limited understanding of the RSA function, some 
studies found the CPC as an effective ambulatory biomarker of sleep  quality30,31, predictor for early treatment 
response in depressed  patients32, or for asthma evolution monitoring in  children33. Therefore, in this work, it is 
hypothesized that estimators of the CPC could also respond to the multi-factorial nature of the weaning process.

Different methods exist to quantify the strength of the RSA for CPC assessment, among which the following 
stand  out34: analysis of the HRV in the High Frequency (HF)  band35, Time Frequency Coherence (TFC)36, Infor-
mation Dynamics (ID)37, Orthogonal Subspace Projections (OSP)38, Bivariate Phase Rectified Signal  Averaging39, 
Pole Specific Spectral  Causality40, and Cardiopulmonary Phase  Synchronization41. The performance of these 
estimators of CPC is studied  in34, and the indices derived from TFC, ID and OSP outperformed the others, 
which are the ones also used in this work.

This study is a proof of concept, aimed at finding new biomarkers that can help clinicians better predict 
whether a patient is ready to be weaned. As a matter of fact, no previous work investigated the heart-lung inter-
actions or studied the usefulness of CPC indices in this context. The essential and fundamental innovations of 
this study are also the prospective design and that the measurements are blind to the process of SBT. Then, dif-
ferences are sought only the 24 h before SBT, pursuing an improvement in the prediction of weaning readiness. 
The present paper evaluates the reliability of HRV and, especially, of CPC estimators as predictors of weaning 
outcome. Finally, the influence of the timing of the analysis is also evaluated, both throughout the day and in 
relation to the timing of SBT.

Materials
Database. The database was constructed prospectively at two hospitals in Spain, in the Hospital Universitari 
Parc Taulí and the Fundació Althaia, using the connectivity platform Better Care (Better Care, Barcelona, Spain. 
US patent No. 12/538,940).

This database was aimed to establish a new model for the prediction of successful weaning (ClinicalTrial.
gov, NCT03451461). The Institutional Review Boards of Comitè d’Ética d’Investigació amb medicaments at the 
Corporació Sanitària Parc Taulí and the Clinical Research Ethics Committee of Fundació Unió Catalana d’Hospitals 
approved the database and the study protocol. The requirement for informed consent was waived as part of the 
study approval, since the current study was an ancillary analysis. Therefore, all the signals were anonymous and 
encrypted to ensure privacy. The guidelines followed in this study were according to the applicable Spanish 
regulations (Biomedical Research Law 14/2007).

The original dataset included 60 patients screened at the time of implementing the present study. Patients with 
neurological disorder, dementia or focal brain injury at ICU admission were excluded. Patients with arrhythmias, 
such as atrial fibrillation, were also excluded from the analysis, since HRV cannot be used as an estimate of the 
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ANS function. In addition, only those patients ventilated with assist/support ventilation modes were considered, 
i.e., excluding patients that were in controlled ventilation modes in the 24 h previous to the SBT.

Then, the study cohort consists of 22 patients with heterogeneous clinical pictures, and data during the 24 h 
prior to the SBT were obtained. After SBT, patients were distributed into two groups, those with successful wean-
ing and those without. For this subset, the most common MV mode was Pressure Support Ventilation (PSV), 
but also some patients spent some time in Continuous Positive Airway Pressure (CPAP). An example of the 
respiratory pattern in PSV mode is shown in Fig. 1.

Patient classification and demographics. When the health condition of a patient improved enough, 
they are deemed ready for weaning (supplementary Criteria C1). However, at this time, these patients must per-
form the SBT. Patients presenting at least one item of the intolerance criteria for successful SBT (supplementary 
Criteria C2), were not ready for discontinuation and weaning failure was considered. These patients belong to 
the F-group. Patients who passed SBT, belong to the S-group. However, 2 patients that passed the SBT required 
orotracheal intubation or reconnection to non-invasive MV within 48 hours after SBT. These 2 patients were 
reclassified in the F-group. See Fig. 2 for the patient classification scheme.

With all these premises, there are 13 patients in the S-group and 9 in the F-group. According to the literature, 
for the analysed subset, actual weaning readiness is for the 54% of patients, and the SBT was incorrect for the 
13% of the tests that passed.

The demographics of patients are summarized in Table 1. The variables available include: age, gender, Acute 
Physiology and Chronic Health Evaluation II (APACHE II), Sequential Organ Failure Assessment (SOFA), reason 
for MV, MV duration, ICU length of stay, ICU mortality and in-hospital mortality.

Data acquisition and data analysis. Physiological signals were continuously recorded using the connec-
tivity platform Better  Care42. The Better Care system (Better Care, Barcelona, Spain. US patent No. 12/538,940), 
is a proprietary system for data collection designed to interact with output signals from mechanical ventilators 
and bedside monitors rather than directly with patients. It was firstly developed to interoperate signals from 
different ventilators and monitors, and subsequently compute algorithms for diagnosing patient-ventilator asyn-
chronies.

Better Care standardizes, synchronizes and stores the signals of all the bedside monitors and ventilators at 
200 samples per second, from intubation in the ICU to liberation from MV. Different biomedical signals were 
recorded, including the three bipolar leads of the electrocardiogram (ECG), as well as the respiratory signals: 
airflow and airway pressure. In addition, pulse photoplethysmography, blood pressure via invasive catheter, and 
SpO2 were also recorded.

05:31:6004:31:6003:31:60
0

200

400

600

-40
-20
0

20
40

ExpirationInspiration

Figure 1.  Example of respiration in PSV mode. The airflow signal is plotted at (top) and the derived tidal 
volume signal at (bottom). The onset of inspiration, delineated by Better Care, is marked with asterisks.
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Figure 2.  Algorithm for the definition of the weaning success. Patients are classified into the S-group or F-group 
after the Spontaneous Breathing Trial (SBT). The S-group stands for the group of patients successfully weaned 
(successful SBT and no need of reintubation). F-group stands for the group of patients with SBT failure and 
patients with SBT success but with the need of reintubation after 48 h of weaning. Numbers in parentheses 
represent the number of patients according to the respective criteria.
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The onset of inspiration for each breath was delineated using the algorithms implemented in the Better Care 
platform. For each respiratory cycle, information on the type of ventilation mode, the trigger of respiration and 
the appearance or absence of asynchronies, such as ineffective efforts or double cycling, were also  given42,43. It is 
possible that a patient is in PSV mode and the machine automatically triggers a breath, e.g. due to low respiratory 
rate. However, all breathing cycles are delineated by Better Care, considering the characteristic morphologies of 
the airway pressure and  airflow42. Then, these automated breathing cycles are labelled as ‘controlled’ and they 
are omitted for the analysis of the respiratory signal.

Methods
The methods are established using ECG and respiratory signal processing techniques. First, the tidal volume and 
HRV signals are estimated. Afterwards, three different techniques are used to compute the CPC indices, with the 
objective of obtaining an estimate of the RSA. These indices are computed based on TFC, ID and OSP. However, 
although these three CPC estimates rely on different techniques, the underlying idea is the same: to measure and 
characterize the RSA function, i.e., respiratory-circulatory interactions, in patients ready for weaning the 24 h 
before the SBT. Table 2 summarizes all the terms and indices computed in this work.

As mentioned, the algorithms do not extract the information in the same way, and the indices have different 
temporal resolution. For this reason, the average value in consecutive 30-min periods is considered for each index 
calculated in this work, in order to be able to compare all the indices through the 24 h recordings.

Table 1.  Demographics. Data are presented as median [IQR 25–75] and percentages. APACHE: Acute 
Physiology and Chronic Health Evaluation; SOFA: Sequential Organ Failure Assessment; MV: Mechanical 
Ventilation; ICU: Intensive Care Unit. ARDS: Acute Respiratory Distress Syndrome

S-group F-group

(N = 13) (N = 9)

Age (years) 65 [60–72] 69 [59–72]

Gender (% female) 15% 33%

APACHE II at admission 18 [14–23] 16 [10–20]

SOFA at admission 7 [6–8] 6 [3–10]

Reason for MV :

   • Acute Respiratory Failure 30.7% 22.2%

   • Sepsis 38.5% 33.3%

   • Sepsis + ARDS 7.7% 11.1%

   • Neurologic 15.4% 11.1%

   • Cardio-Respiratory Arrest – 11.1%

   • Acute Pancreatitis 7.7% 11.1%

MV duration (days) 6 [4–10] 12 [8–16]

ICU length of stay (days) 8 [6–12] 18 [13–23]

ICU mortality 7.69% 22.22%

In-hospital mortality 7.69% 22.22%

Table 2.  Summary of terms and indices computed.

Fr Respiratory Frequency

HR Heart Rate

HRV Heart Rate Variability

SDNN Standard Deviation of Normal-to-Normal intervals

RMSSD Root-Mean Square of Successive intervals Differences

P VLF Power in the VLF band

P HF Power in the modified HF band, centred to respiration

P n
LF Normalized Power P LF/(P LF+P HF ), with P HF centred to respiration

CPC Cardio-Pulmonary Coupling Framework

C
T

HF

Amount of spectral coherence between HRV and respiration, averaged in time where 
coherence is significant

TFC
Time-Frequency Coherence

C E
r↔m

Cross entropy, amount of information shared between HRV and respiration ID
Information Dynamics

Pmr
Relative power of the respiratory component embedded in HRV OSP

Orthogonal Subspace Projections
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HRV and respiratory information estimation. The baseline-corrected tidal volume signal, r(t), is 
obtained integrating the instantaneous airflow signal followed by baseline subtraction. The baseline is estimated 
by modified Akima piecewise cubic Hermite interpolation at the onsets of inspiration. This ensures that each 
tidal volume breath begins and ends with zero litres, as depicted in Fig. 1. The respiratory frequency signal, 
Fr(t) , is derived from the estimation in each breath by computing the inverse of the instantaneous inspiration-
to-inspiration difference, F r  . After that, r(t) and Fr(t) are resampled at 4 Hz, to obtain the tidal volume signal, 
r(n), and the respiratory frequency signal, Fr(n) , respectively.

The lead II of the ECG is upsampled at 1000 Hz with cubic spline interpolation, to ensure that HRV analysis 
is not compromised by the effect of low sampling  frequency35. Then, the QRS-complexes are detected by means 
of a wavelet-based  method44. The time between two successive R waves defines the RR interval. Ectopic beats 
and miss-detections are corrected as described  in45. The exclusion of non-normal RR intervals, which do not 
represent the ANS function, results in the normal-to-normal (NN) interval series. The temporal indices of HRV 
are calculated from the NN  series35: Standard Deviation of the NN intervals (SDNN), and Root Mean-Square of 
Successive Differences of adjacent NN intervals (RMSSD).

For frequency domain analysis, the HRV signal is estimated using the Time-Varying Integral Pulse Fre-
quency Modulation model (TVIPFM)46. The resulting modulating signal, m(t), is assumed to contain the 
ANS modulation of the sinoatrial node. Essentially, given a particular beat time occurrence, m(t) is defined as: 
m(t) = (dHR(t)− dHRM(t))/dHRM(t) , where dHR(t) represents the instantaneous HR signal obtained from the 
TVIPFM model, and dHRM(t) is obtained by low-pass filtering dHR(t) at 0.03 Hz. Finally, the evenly sampled 
version of the modulating signal, m(n), is obtained by resampling m(t) at 4 Hz.

Previous studies found that HRV analysis guided by respiration improved the ability of HRV to discriminate 
cognitive stress in healthy  subjects47,48. In the same way in this work, the HF band is redefined to be time-varying 
and centred at the respiratory frequency: �r

HF(t) = [Fr(t)− 0.15, Fr(t)+ 0.15]Hz . HF power, P HF , is defined as 
the power within this �r

HF band. The use of the modified HF band is also specifically encouraged by the increased 
F r  observed in some mechanically ventilated patients, who had a respiratory frequency higher than 24 rpm, i.e., 
0.4 Hz. Therefore, the need to center the HF band to the respiratory frequency is crucial to perform a proper 
and more powerful interpretation of the results in the frequency domain, in order to avoid an underestimation 
of the HF power using the classical HF band. Low Frequency (LF) power, P LF , is defined as the power in the 
classic LF  band35: �LF = [0.04, 0.15] Hz.

The sympathovagal balance is represented by the power normalized in the LF  band35: 
P n

LF = P LF/( P LF + P HF) . In addition, the Very Low Frequency (VLF) power, P VLF , is also quantified since 
most of the power of HRV in 24 h recording resides in the frequencies below HF and LF power. The P VLF is 
accounted for by fluctuations in NN intervals that have a period larger than 25 s: �VLF = (0, 0.04] Hz. The 
physiological role of P VLF is still not clear, but it is believed to be related to the circadian rhythms and core 
body  temperature49. The frequency domain parameters are calculated using a Time-Frequency (TF) distribution 
belonging to the Cohen’s  class36. A time and frequency resolution of 11.25 s and 0.039 Hz is used, respectively.

Time‑frequency coherence. The respiratory influences on HRV can be captured based on TFC, which is 
given by:

where γ̂ (t, f ) ∈ [0, 1] . Ŝr(t, f ) and Ŝm(t, f ) are the auto-power spectral densities calculated by means of the Cohen’s 
Class Wigner Ville  Distribution36 of respiration, here represented by its surrogate tidal volume r(n), and HRV, 
represented by m(n), respectively. Ŝr,m(t, f ) is the cross-power spectral density. To obtain Ŝr(t, f ) , Ŝm(t, f ) and 
Ŝr,m(t, f ) , the same TF maps are used as those used for the estimation of the HRV frequency domain  parameters36 
(see previous section). An illustrative example of the TFC performance can be seen in supplementary Figure F1.

A significant coherence level of coupling between HRV and respiration is set by the signal-independent 
threshold, γTH(t, f ;α) . It is established based on a surrogate data  analysis36, with α = 5% risk that both sig-
nals are coupled when real coupling does not exists γTH(t, f ; 0.05) = γ0 . The region �r,c

HF(t, f ) , from which the 
coherence is estimated, is identified as the region where the TFC is significant within the HF band centred at 
the respiratory frequency, �r

HF(t):

To characterize the temporal evolution of the local coupling between the spectral components of the signals, 
the index CHF(t) is defined as:

This index takes into account the magnitude of the local coupling, averaged in the HF band. Now, if the mean 
significant coherence, CHF(t) , is averaged in a period of time, it yields to the definition of CHF:

(1)γ̂ (t, f ) =

∣

∣

∣
Ŝr,m(t, f )

∣

∣

∣

√

Ŝr(t, f )Ŝm(t, f )

,

(2)�
r,c
HF(t, f ) =

{

(t, f ) ∈ (R+
×�r

HF(t)) | γ̂ (t, f ) > γ0
}

.

(3)CHF(t) =

∫

�
r,c
HF

γ̂ (t, f )df

/
∫

�
r,c
HF

1 df .

(4)CHF =

∫

CHF(t)dt

/
∫

1 dt.
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Finally, for all the time course, the existence of significant coupling at any frequency in the whole band �r
HF(t) 

is identified as:

Once the “mask” THF(t) is defined, the percentage where TFC is significant in a period of time, THF , can be 
defined as:

The index of CPC used from this framework is calculated using Eqs. (3) and (5). This index is denoted as C T
HF  

and is composed taking into account the mean significant coherence averaged in a period of time, CHF , with the 
percentage of time where TFC is significant in that same period, THF:

Dynamic mutual information. It is known that the RSA defines a causal relationship from respiration to 
HRV, since respiration drives acceleration/deceleration in the HR. This relationship implies that the uncertainty 
about HRV, can be resolved not only by knowing itself, but also by taking into account the information trans-
ferred from respiration. This resolution of entropy, or uncertainty, can be quantified using measures of predictive 
 information37.

Let’s denote rn and mn as the scalar random values obtained by sampling the process r(n) and m(n), respec-
tively, at the present time, n. The vectors r− = [r(n− 1), . . . , r(n−M)]T , and m−

= [m(n− 1), . . . ,m(n−M)]T , 
are defined to describe the whole past of each process, with M the model order. If the information carried by the 
HRV is split into components related to respiration and others, the predictive information leads to the definition 
of the Cross Entropy term, C E

r↔m
 . This term quantifies the amount of information shared at a certain time, 

n, between the present value of HRV, mn , and the past of respiration, r−:

where I(·; ·) quantifies the mutual information, H(mn) expresses the amount of information carried by the process 
in terms of the average uncertainty about mn , the so-called Shannon entropy. H

(

mn|r
−

)

 denotes the conditional 
entropy and it quantifies the average uncertainty that remains about mn when r− is  known37. The model order, 
M, is defined as the minimum amount of delays obtained using both the Minimum Description Length principle 
and the Akaike Information Criterion. The maximum possible delay is set to 10 s in order to avoid over-fitting. 
The minimum possible delay is set to the period equivalent to the lowest frequency of the respiration bandwidth 
in order to avoid a too-simple model.

HRV decomposition. By using subspace projections, the HRV can be decomposed into two different 
 components38. First, the component describing all variations of HRV linearly related to respiration is derived. 
After that, the remainder, namely residual component, describes all dynamics modulated by other mechanisms 
different from respiration, such as the sympathetic modulations or other vagal modulators unrelated to respira-
tion, plus the possible non-linear influences of respiration.

Given are the respiratory signal, r(n), and the HRV estimated from the modulating signal, m(n). The vec-
tors r = [r(0), r(1), . . . , r(N −M + 1)]T and m = [m(0),m(1), . . . ,m(N −M + 1)]T are defined to construct 
a respiratory subspace, with N the number of samples in a computational period and M the number of delays. 
The model order, M, is the same used for the C E

r↔m
 computation (see previous section). The OSP projects 

m onto the subspace V , which is the subspace defined by all variations in r . The matrix V spans the subspace V , 
and it is constructed as a time-delay embedding of r , using M delays. Once the matrix V is constructed, the HRV 
can be projected onto the respiratory subspace V , by means of the projection matrix P:

with the projection matrix, P , obtained from the respiratory subspace as:

As a result, all dynamics of HRV linearly related to respiration are described in mr . The orthogonal component, 
m⊥ , computed as the residual, m⊥ = m−mr , is explained by all other HR modulators not linearly related to 
respiration. An example of the HRV decomposition can be seen in supplementary Figure F2. After decompos-
ing the HRV, the relative power of the respiratory component, Pmr

 , is computed as an estimate of the  CPC38:

(5)THF(t) =

{

1, if �r,c
HF(t, f ) �= ∅

0, if �r,c
HF(t, f ) = ∅

(6)THF =

∫

THF(t)dt

/
∫

1 dt.

(7)C
T

HF = CHF ·THF.

(8)C E
r↔m

= I
(

mn; r
−
)

= H(mn)−H
(

mn|r
−
)

,

(9)mr = P m,

(10)P = V

(

V
T
V

)

−1

V
T .

(11)Pmr
=

m
T
r mr

mT m
.
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Long‑term assessment and statistical analysis. Due to the long-term basis of this work, handling 
missing data is an important issue. First, artefacts, bad detections or ectopic beats appear in the ECG signal. 
To this end, any NN interval greater than 2.5 s is removed from the series, and the corresponding interpolated 
segment is also suppressed from the m(t) signal. Second, regarding the respiratory signal, support MV modes 
include a backup frequency, and if the patient falls below, the breath cycle is triggered by the ventilator similarly 
to controlled ventilation. In the cohort study, breathing cycles were labelled as controlled for the 2,11% of them, 
and were omitted for the analysis. Then, gaps exist in the estimated signals for the CPC calculations. However, 
results are analysed in 30-min averaged periods for 24 hours, and these gaps or missing data do not affect the 
results, since they are omitted for the calculation of the average.

At this point, since SDNN is the state-of-art index for medical stratification of cardiac risk in long-term 
analysis, the SDNN is calculated for the whole period of 24 h before the SBT. The Mann-Whitney U-test is also 
used to compare the value for the S-group vs. F-group.

After that, the evolution of the common clinical parameters, HRV and CPC indices, through the 24 h before 
SBT are analysed, in order to determine if circadian rhythms could be affecting the regulatory mechanisms and 
the interpretation of the results. However, it must be considered that the SBT’s are generally performed in the 
morning, but not at the same exact time for all patients. For this reason, all the recordings are segmented from 
08:00 p.m. to 10:30 a.m. of the SBT day, so that the same time interval is considered for all patients. This means 
that it is being considered only some part of the circadian rhythm.

The average value in consecutive 30-min periods is considered, for the representation of the evolution through 
the day and for the statistical analysis. Table 2 summarizes all the parameters computed to this end. Then, each 
HRV and CPC indices are calculated separately using different temporal resolutions:

• The parameters F r  and HR are unevenly sampled at the inspiration onset and heart beats occurrence, respec-
tively. Therefore, the mean value in each half hour is computed.

• For the computation of C E
r↔m

 , Pmr
 , and the temporal HRV parameters –SDNN and RMSSD–, sliding 

windows of 3-min-length with 75% of overlap are used. For these, there is a sample each 45 s and a total of 
1920 samples in 24 h. So, the mean of 40 overlapped windows in each 30-min period is computed, for each 
parameter and for each patient.

• The C T
HF  and the frequency domain parameters of HRV – P VLF , P HF and P n

LF – are calculated using the TF 
maps. Therefore, these indices are calculated at the resampling frequency, Fs = 4 Hz, and thus the average 
value of 7200 samples, i.e., 30 min, is obtained.

Finally, the averaged values for the S-group vs. F-group are compared with the non-parametric unpaired Mann-
Whitney U-test, for all the parameters. Differences are considered significant for a level of p ≤ 0.05 . The effect 
size Cohen’s d, for an acceptable level of statistical power, was also reported. For data where the assumptions of 
the parametric tests cannot be satisfied, the non-parametric Cohen’s d is  recommended50:

where Z is the standardized U-value, and nS and nF are the number of patients of the S-group and F-group, 
respectively. A commonly used interpretation is to refer to effect sizes as small ( d = 0.2 ), medium ( d = 0.5 ) 
and large ( d = 0.8).

Results
Table 3 shows the median and quartiles 1 and 3 of the SDNN, calculated in the whole recordings of 24 h. Higher 
SDNN is visible for the S-group patients, and although the difference is not significant, the p-value approaches 
0.05. As expected, the SDNN values are higher considering the 24 h recordings (see Table 3), than considering 
the averaged 3-min windows (see Fig. 4), for the same group of patients. The evolution of the patients throughout 
the day before SBT, from 08:00 p.m. to 10:30 a.m., are illustrated in the Figs. 3, 4 and 5. The commonly-used 
clinical variables respiratory frequency, F r  , and heart rate, HR—Fig. 3–, can be compared to the parameters of 
HRV—Fig. 4– and the CPC estimators—Fig. 5.

Looking at Fig. 3, both F r  and HR rely within the limits of criteria for weaning readiness (Supplementary 
Criteria C1) the whole day. In general, patients of the F-group have little higher HR and F r  . The F r  is significantly 
higher only at 9:00, moment when HR differences are larger between both groups. However, no big differences 
throughout the recordings, during night or day, are appreciable.

Figure 4 shows the evolution of the HRV parameters. The RMSSD is higher in the S-group during the entire 
recording since midnight, apparently the moment when patients fall asleep. In particular, after waking up, at 
around 7:00 a.m., significant differences are found. Correspondingly, looking at the P n

LF , an increment can be 

(12)d =

Z
√

(nS + nF)
,

Table 3.  SDNN calculated for the 24 h recordings. Values shown are the inter-subject median and quartiles 
[ Q1 , Q3].

S-group F-group p

SDNN [ms] 57 [46–108] 38 [30–58] 0.07
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Figure 3.  Evolution of the common clinical indices for weaning readiness before SBT. The mean respiratory 
frequency, F r  , and mean HR, are represented. Green and Red boxplots represent the patients of the S-group and 
the F-group, respectively. The p-value comparing each half hour is represented in the right axis, from 0 to 1, and 
the dotted line represents the p = 0.05 threshold. Black asterisks indicate statistical significance with p ≤ 0.05 . 
Blue stars above p-values indicate medium effect size with Cohen’s d ∈ [0.5, 0.8) , and blue crosses indicate small 
effect size with Cohen’s d ∈ [0.2, 0.5).
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Figure 4.  Evolution of the HRV indices before SBT. The temporal parameters SDNN and RMSSD, and the 
frequency parameters, P VLF , P HF and P n

LF are represented. Green and Red boxplots represent the patients of 
the S-group and the F-group, respectively. The p-value comparing each half hour is represented in the right axis, 
from 0 to 1, and the dotted line represents the p = 0.05 threshold. Black asterisks indicate statistical significance 
with p ≤ 0.05 . Blue stars above p-values indicate medium effect size with Cohen’s d ∈ [0.5, 0.8) , and blue crosses 
indicate small effect size with Cohen’s d ∈ [0.2, 0.5).
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seen for the F-group, starting at 00:00, compared to the slight decrease for the S-group. This increment for the 
F-group can be associated with a sympathetic activation, in view of the sudden increase of the P HF and P VLF at 
the very same time.

Curiously, sudden changes can sometimes be found on the P VLF , especially for the F-group. However, much 
variability exists for the P VLF power, and neither significant differences nor appreciable patterns on the P VLF 
evolution can be found.

The evolution of the CPC estimates is illustrated in Fig. 5. As said, CPC estimators are computed considering 
respiration to be the system driving changes in the HRV. Clear differences exist in the CPC mechanism compar-
ing the patients that were successfully weaned, S-group, and the patients reintubated or that still needed time 
in MV, F-group.

The C T
HF  index is higher when HRV and respiration have components at the same frequencies, taking into 

account that these components have different physiological origin. Differences are significantly higher, particu-
larly at night. The C E

r↔m
 is higher during the night than in the morning before the SBT, especially for the 

S-group. The Pmr
 is also higher for the S-group than for the F-group. Remark that the p-values since 9:00 a.m. 

approximately, right before the SBT, increases abruptly for the three CPC indices. This shows that the differ-
ences between the two groups are less substantial at the time right before performing the SBT. Medium effect 
size ( d = 0.5 ) is only present for some comparisons of the CPC parameters (Fig. 5). For the other parameters 
(Figs. 3, 4), small effect sizes ( d = 0.2 ) or no effect sizes are observed.

Discussion
First of all, it should be noted that all patients in the cohort study were deemed ready for weaning. Then, as 
the SBT determined, some of them were ready, some of them were not, and some of them needed reintubation 
despite being determined ready by the SBT. Therefore, the prediction of patients ready to undergo SBT has to be 
improved, in this work for 9 patients: the 2 patients who passed SBT and needed reintubation plus the 7 patients 
who failed SBT. This suggests that there is some hidden information (e.g., CPC indices) that is not yet taken into 
account in assessing weaning readiness before SBT.

HRV and CPC have been analysed for a total of 22 patients presumably ready for weaning, in the 24 h before 
the SBT. Statistical differences have been found comparing patients who needed reintubation or required more 
time in MV, the so-called F-group, and patients with a successful weaning process, S-group. These differences 
are especially appreciable for the parameters estimating the CPC.

The fact that the CPC changes so much with respect to the S-group can be related to a more unstable regulatory 
system. By monitoring this at night, or continuously, clinicians can obtain additional insight of this stability that 
can help in making the decision to wean a patient from MV. Then, considering the outcome of the SBT, here it is 
evaluated if the weaning outcome can be predicted before performing the SBT. Nevertheless, this proposal does 
not pretend to eliminate the SBT, since SBT is necessary. CPC indices are intended to be used in combination 
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Figure 5.  Evolution of the CPC estimators before SBT. The CPC parameters C T
HF ,C E

r↔m
 and Pmr

 , are 
represented. Green and Red boxplots represent the patients of the S-group and the F-group, respectively. The 
p-value comparing each half hour is represented in the right axis, from 0 to 1, and the dotted line represents 
the p = 0.05 threshold. Black asterisks indicate statistical significance with p ≤ 0.05 . Blue stars above p-values 
indicate medium effect size with Cohen’s d ∈ [0.5, 0.8) , and blue crosses indicate small effect size with Cohen’s 
d ∈ [0.2, 0.5).
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with the current weaning readiness criteria (supplementary Criteria C1), to improve the predictive rate of patients 
ready to undergo the SBT.

Patients of the S-group have higher values of SDNN, calculated over 24 h (see Table 3). A major component 
of SDNN is due to a higher variability and day-night difference of the HR. This shows a better adaptability of the 
heart to changes, for patients actually ready for weaning, S-group.

Remark that the SBT is not performed at the same time for all patients. Hence, in order to have all record-
ings of the patients aligned in time, some segments had to be omitted at the start and end of the recordings for 
some patients. The mean respiratory frequency, F r  , was always above 9 rpm, i.e., 0.15 Hz. However, for some 
patients, it was above 24 rpm, i.e., 0.4 Hz (see Fig. 3). The evolution of the currently-used clinical variables, HR 
and F r  , is very similar for both groups. It is clear that these parameters are not giving useful information to 
predict weaning readiness.

On the contrary, some HRV parameters seem to better discern both groups. The temporal parameter RMSSD 
has higher values for the S-group, in accordance with the fact that this index quantifies parasympathetic modu-
lation of NN intervals driven by respiration and vagal  modulations49. These modulations of the vagal activity 
are also quantified by P HF . Notice that the P HF is much higher for some patients of the F-group, around 11 
p.m., and around 8:00 a.m. The rest of the time, mainly during sleep at night, P HF is higher for the S-group, in 
agreement with the results  of20. The time when P HF is higher for the F-group, occurs before going to sleep and 
waking up. However, the P VLF and P n

LF are also higher, so strong vagal modulations are in conflict with strong 
sympathetic activations.

Nevertheless, Fig. 4 is striking and summarizes the uncertainty related to the HRV parameters. From these 
results, the question arises as to what is the validity of HRV indices, since depending on the time of day at which 
they are measured the results can be totally different. This fact could be attributed to circadian rhythms, having 
a strong influence on HRV measurements. For example, the P n

LF
 , commonly used as the standard measure of the 

sympathovagal balance, is not convenient as a reliable weaning readiness predictor. In fact, it has already been 
proven that P n

LF
 is not an appropriate measure of the vagal and sympathetic  modulations38,51. On the contrary, 

and this is favourable, CPC indices seem more appropriate since measurements are quite stable throughout the 
24-hour record.

The sudden increase in the P HF for the F-group, that could be interpreted as an increase of the vagal activity, is 
not present in the CPC parameters. These patients are under MV, and for them the frequency content in the HF 
band may not contain only respiratory information (see supplementary Figure F2). These HF components can be 
a consequence of the non-linear effects of respiration transferred to the HR. These non-linear influences could be 
mediated by the respiratory pacemaker in the central nervous  system52 through sympathetic  modulations53, and 
the CPC estimates used in this work are unable to detect them. Further investigation is required using techniques 
able to take both linear and non-linear effects into  account54,55.

At this point, results based on the heart-lung interactions, as measured by CPC indices, were encouraging. 
First, the TFC exhibited illustrative results. The C T

HF  , is the CPC estimator which exhibits larger differences 
between S-group and F-group patients. These results are also in agreement with those obtained using mutual 
information, where higher C E

r↔m
 values were found in the S-group than in the F-group. Finally, there are 

also visible differences looking at the relative power of respiration, Pmr
 , inserted into the HRV: patients of the 

S-group had a relative power around the 25% of respiration, but those of the F-group had it around 5%. Larger 
effect sizes are obtained for these CPC indices, and most comparisons result in, at least, small effect sizes. These 
low values of effect size may be associated with the reduced number of patients. Altogether, this illustrates that 
those patients who are actually ready for weaning, have good levels of CPC and that their ANS is ready to work, 
in contrast with the patients who did not pass SBT or needed reintubation. Therefore, these CPC estimators are 
promising as additional indexes to improve the weaning readiness criteria.

Moreover, these differences in the CPC parameters are more evident during sleep than right before the SBT, 
what could be due to the loop gain. In other words, patients with failed weaning may be experiencing more 
apnoea events at night, which is directly related to a reduced RSA and higher cardiovascular  risk31,56. In fact, the 
parasympathetic activity is well known to be predominant during sleep at night and, consequently, it is in this 
moment when the CPC mechanism is stronger.

At this moment, clinicians assess whether patients can perform SBT when they are awake in the morning 
and conscious. Results suggest that probably, it would be better to check patients’ status at night. In fact, less 
clear differences are found in the morning right before SBT. Maybe, patients generate high levels of stress and 
anxiety as SBT approaches, and this may alter their biomarkers toward more alert-related values, introducing 
some physiological bias for interpretation. However, one limitation is that patients in the ICU may not keep 
similar sleep patterns.

Other works compare the values of the indices obtained right before SBT with the values obtained during 
and right after SBT and all of them found differences in the respiratory patterns and respiratory variability 
 parameters57,58, or in the HRV  parameters19,20,22,59. Remark that the SBT lasts 30 min, a really stressing stage 
for the patient, when they are proved to spontaneous breathing. This protocol represents a challenge, and some 
parameters could show greater statistical differences in that situation than in “basal” or “resting” conditions. That 
is the very important difference of the present study with the state-of-the-art; here, the indices and evolution of 
the patients are obtained only before the SBT. The fact that the prediction of weaning readiness can be improved, 
could only have been revealed by long-term analysis.

From previous data in the literature, variability may be more discriminant when measured during SBT. In fact, 
it would have been interesting to add values during SBT, although it is a different approach than the proposed. 
However, the main limitation is that CPC indices cannot be calculated during SBT since patients are discon-
nected from the ventilator and the respiratory airflow signal is not available. Instead, a surrogate signal such as 
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impedance pneumography, diaphragmatic effort or even an ECG-derived respiratory signal could be used, but 
this work needs to be developed.

In60, they stress the importance of the P VLF power in the weaning scenario. The P VLF power, partially related 
with the circadian  rhythms49, could provide useful information of the neurohumoral regulatory  mechanism61. On 
the contrary, here it is illustrated that the P VLF power is not so relevant in the analysis of the 24 h prior to SBT. 
Nevertheless, some patients in this MV and ICU context showed strong characteristic VLF oscillations, possibly 
also related with sleep disorders, that must be further studied. These sudden changes cause non-stationarity, and 
this is the reason why 3-min sliding windows and TF analysis are used to calculate the indices.

It should be noted that the estimation of CPC is a new technique, and even less any previous studies have 
investigated CPC during automated ventilation. Further studies should be performed including controlled MV 
modes, since this would include the whole amount of patients in MV, and it could be obtained a complete 
knowledge of the CPC regulation mechanisms. Perhaps, in controlled MV modes, it is the ventilator the one 
controlling respiration –not the ANS–, and the HRV would be the driving system, since the ventilator would be 
the one regulating respiration externally.

In this work, the CPC is computed to measure and characterize the RSA function. However, the mechanisms 
responsible for RSA are still a matter of debate, but it is known to be affected by direct parasympathetic modu-
lation, different reflexes such as baroreflex and chemoreflex, as well as mechanical effect of respiration. Then, 
there is a clear connection between blood volume and RSA and other predictors could also give estimates of the 
ANS status. Previous works analysed predictors of fluid responsiveness in mechanically ventilated  adults62, that 
could be helpful in this context. In fact, a previous study of us was published analysing the baroreflex for the 
patients of the cohort study with the blood pressure signal  available63. Two methods were used to the analyse the 
baroreflex the hour prior to SBT, and it was found that the capacity of the baroreflex sensitivity was also stronger 
for patients who were ready for weaning.

The computational cost for obtaining the CPC indices is low, and it may be obtained in real time in the same 
way as the standard clinical parameters. Therefore, these algorithms can be implemented in the ICU monitors, 
and the CPC status could be assessed continuously, together with the well-known clinical variables. Addition-
ally, other CPC estimators were also explored in a preliminary analysis of the study. However, the indices with 
best performance were the ones also computed here, namely Pmr

 , C E
r↔m

 and C T
HF  . Interestingly, the study 

 in34 analyses the best methods for CPC estimation in a simulation study, and concludes that the same three 
parameters used in this work are the best estimators for CPC assessment.

The clinical utility of this work, and future studies, is that if the CPC is actually proven to predict weaning 
failure, it might be incorporated as screening guidance of patients ready to undergo SBT. Certainly, there is future 
work to state how much these CPC indices can improve prediction of weaning readiness. However, this is a 
preliminary study, which needs to be prospectively validated with a larger cohort. In fact, we still need to report 
specificity and sensitivity to obtain the thresholds of CPC for which an improvement in accuracy is defined.

In other words, CPC could be assessed before SBT, in a multimodal index combined with current parameters 
to reinforce the prediction of patients ready to undergo SBT. CPC indices may be of clinical interest since they 
could help to reduce weaning failure rates and the very adverse effects associated with reintubation, to thereby 
result in better clinical outcomes.

Finally, it must be kept in mind that patients in the ICU are admitted from very diverse diagnostics. Taking 
this into account, two patients with the same characteristics and similar evolution may get different outcomes. 
Hence, sometimes, a patient who does not meet the readiness criteria can be also successfully weaned, and 
 viceversa64. This is why clinicians take the criteria for weaning readiness and SBT performance as one among 
several considerations rather than rigid requirements. In fact, the screening criteria for weaning readiness and 
SBT are not homogeneous in all sites, and this is a limitation. Such uncertainty can be reduced by implementing 
new research and technologies to daily clinical  practice65,66, and this study is other step forward in the field of 
predictive precision medicine, that exploits the capabilities of the CPC estimates.

Conclusions
This study analysed the evolution of patients undergoing weaning from MV in the 24 h before SBT, consider-
ing that all patients were deemed “ready” for discontinuation from MV. Furthermore, this evaluation was done 
looking only at the biomarkers before performing the SBT but, because of this, it was needed a long-term analy-
sis. None of the parametric measures currently used as clinical criteria for weaning readiness showed notable 
differences between patients actually ready for weaning and patients who did not pass the SBT or that needed 
reintubation. However, it was revealed that patients successfully weaned exhibited relevant higher CPC values, 
assessed with the variables C T

HF  , C E
r↔m

 and Pmr
 . In addition, differences were more evident at night. Thanks 

to the long-term basis of this work, it was also revealed that HRV parameters can be totally different depending 
on the hour they are measured, and their reliability is questionable to predict weaning readiness.

As stated, the information that clinicians handle in the ICU at the moment is not enough to decide weaning 
readiness, since there are 15–20% of patients that failed SBT or needed reintubation. By way of conclusion, it 
was found that the prediction of these failed weaning attempts could be improved if CPC indices were included 
in the weaning readiness criteria. Then, fewer patients who were not ready for weaning would perform SBT. The 
potential predictive power of these CPC indices should be considered and further studied, in order to implement 
this technology into the daily clinical practice. This will help to reduce weaning failure rates, the very adverse 
effects associated with the reintubation process and thereby result in better clinical outcomes.
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