Digital Earthen Shelters

Additively Manufacturing Mass Customized Refugee Shelters Using On-Site Earthen Materials

Student Fawzi Bata - 5117739

Mentors Dr. Serdar Asut Dr. Ir. Fred Veer

Examiner Ir. Robert Nottrot

Source: UNHCR 2020

Source: US Department of State

INADEQUATE HOUSING

Source: NRC 2017

SELF-ORGANIZATION

Source: Madi 2017

MASS CUSTOMIZATION?

Source: Designboom / Ronald Rael

BUILDING MATERIAL?

BUILDING MATERIAL? EARTH!

Research Question

How can additive manufacturing be employed in creating mass-customized refugee shelters using on-site earthen materials?

Secondary Research Questions

What are earthen materials? How are they used in construction?

What is the composition of earth found on site in the cases of Zaatari and Azraq refugee camps?

What additives need to be incorporated into the material mixture in order to create printable structures using earth?

How do the different earth mixtures perform in terms of extrudability, shrinkage, cracking, ... etc.?

Secondary Research Questions

What are the user needs of refugee families for shelter designs?

How can shelters be designed to accommodate user needs?

How can user needs be translated into masscustomized designs using computation methods?

How can these designs be optimized for fabrication using additive manufacturing?

Secondary Research Questions

Which printing methods and machines allow for quick deployment and low cost execution of the proposed shelter designs?

What does the printing process look like from extracting the material until producing the prototype?

Objectives

Investigate material properties of earth found on-site (earth samples from camp location)

Experiment with Additives and optimize mixture for printability and strength

Identify refugee and shelter needs to influence design parameters

Develop a generative dwelling design tool for refugee shelters that can produce customized designs in-situ and create printing toolpaths

Produce prototypes for iterations generated by design tool (PLA)

Identify most suitable additive manufacturing process and machine

Generate printing toolpaths and test with generated designs

Produce prototype for small part of example dwelling wall as a proof of concept using earth mixture

Methodology

Material

Properties of Earth

Source: USDA 2017

Earth in Construction

Historic Precedents

Corbelled Dome Villages in Syria

Communal Building

Transition from Square to Dome

Cultural Reference

Similar Material Composition

No Formwork

Source: Mecca & Dipasquale, 2009

Historic Precedents

Stranglehm Technique

Extrusion Method

Plasticity

Precedent to 3D Printing Earth

Source: Minke, 2012

Historic Precedents

Nubian Vaults and Domes

No Formwork

Compression Only Forms

Structures Still Standing for Centuries

Source: Minke, 2012

Fawzi Bata - Digital Earthen Shelters - P5 Presentation

20

Benifits & Circularity

Biodegradable & Recyclable

No Transport

Minimal Processing

Passive Climate Control

Balances Humidity

Source: Schroeder, 2016

Challenges

Weather Resistance

Shrinkage

Consistency

Source: Schroeder, 2016

Aggregates

Improve Physical Properties

Increase Tensile Strength

Decrease Erosion

Source: Schroeder, 2016

Decrease Shrinkage

Additives

Improve Chemical Properties

Increase Compressive Strength

Reducing Swelling & Shrinkage

Water Resistance Source: Schroeder, 2016

TECLA - WASP

Printing Robot: TECLA Crane

Mixture: Local Soil, Rice Husk, Binder

Roof Type: Glass Panels Location: Lombardo, Italy

Print Time: 200 Hours

Height: 4.2 m

Openings: Self-Supported

Area: -

TECLA - GAIA

Printing Robot: TECLA Crane

Mixture: Local Soil, Rice Husk, Straw, Lime

Roof Type: Timber

Location: Lombardo, Italy

Print Time: 10 Days Height: approx.. 3.5m

Openings: Supported by Roof

Area: 30 m²

Source: WASP, 2021

MUD Frontiers

Printing Robot: SCARA 3D Printer

Mixture: Local Soil, Straw, Water

Roof Type: -

Location: New Mexico

Print Time: -

Height: approx. 4m

Openings: Supported by Wood Beams

Area: 21 m2

Source: Rael 2020

Marsha - Al Spacefactory

Printing Robot: Industrial Robot

Mixture: Basalt Composite, Corn, Sugar Cane

Roof Type: Aluminum & Plexiglass

Location: Mars (Prototype Made Indoors)

Print Time: 30 Hours

Height: 4.5 m

Openings: Aluminum Supports

Area: -

Source: Al Spacefactory 2020

IAAC OTF

3D Printed House - Ronald Rael

Source: IAAC / Rael

Syrian Refugee Crisis

Source: UNHCR

Refugee Camps

Azraq Refugee Camp

Opened 2014

37,000 People

Rigid

Zaatari Refugee Camp

Opened 2012

80,000 People

Self Re-Organized

Syrian Refugee Crisis

Source: Slater 2014, Madi 2017

Permanent Impermenance

Source: Madi 2017

Self-Organization

Privacy Gradient	Bedrooms	yard	Inner Lavatories	
	Family Living Room	Inner Courtyard or Dividor Space	Kitchen	
	Guest Room Majlis	Inne or D	Outer Lavatories	
	Outer Courtyard			
	Dwelling Entrance			
	Neighborhood & Street			
olic	The Pu	ıblic I	Realm	

Source: Madi 2017

Self-Organization

Source: Madi 2017

Refugee Design Needs

Safety and Security	Comfort	Shelter comfort	Social context	
 Fear protection Fire safety Structure protection Hygiene of shelter spaces On-site sewage system Size of camp's block Close distance between shelters and travelling time Maintain shelter 	 9. Air temperature 10. Humidity in interior air 11. Wind direction 12. Air speed 13. Sun radiation 14. Precipitation 15. Planning of suitable plot 16. Determination 17. Wind sound 18. Sound permeability 19. Acoustic insulation 20. Air quality 21. Glare, Illumination and color 	 22. Settlement 23. Land characteristics 24. Shelter elements weight 25. Shelter height 26. Shelter lifting 27. Considering disabled users 28. Shelter wall 29. Shelter floor 30. Foundation appropriate 31. Window size 32. Glazing 33. Cross ventilation 34. Roof characteristics 35. Shelter's water drainage channel 36. Preventing dust 37. Providing shaded areas 38. Insect screen 	39. Accessibility and integration 40. Adding portable elements 41. Involving refugees in the construction of shelters 42. Ability to repair 43. Productivity-small scale commercial activities 44. Intimacy between people 45. Oriented shelters and streets in the same community 46. Community road organization 47. Access to shelter 48. Visual boundaries 49. Protection 50. Participation	
Stability	Being Demountable	Flexibility and Modularity	Independent constant energy	
51. A pattern of independent existence/stability52. Structure stability53. Dignity- with new community connectivity	58. Light material 59. Build efficiently to minimize temperature variation 60. Structure elements 61. Joint connection-details 62. Considering fixed base of shelter 63. Considering time of erecting shelter 64. Ability to repair-usability	65. Separate technical system / Coding 66. Enabling mechanical system 67. System complexity 68. Ability to extend 69. Less cutting- consider the frequency of replacing and building shelters (affordability)	70. Addressing shelter 71. Energy produced for local grid 72. Collecting solar radiation/ adding elements 73. Material storage / Cooling and Heating capacity 74. Rain harvest	
Durability/Adaptability	04. Ability to repair-usability		75. Grey water system	
54. Available local sources55. Robust strong material56. Shelter skin57. Mechanical ventilation system				

Source: Aburamadan & Trillo, 2018

Soil Collection

Azraq Sample 1: 31°54′55.6″N 36°34′42.8″E **Azraq Sample 2:** 31°54′53.9″N 36°35′47.4″E

Zaatari Sample 1: 32°17′51.9″N 36°18′18.9″E **Zaatari Sample 2:** 32°17′48.7″N 36°18′33.8″E

Source: Adapted from Ababsa, Lucke, Ziadat, & Taimeh, 2013

Soil Collection

Jar Test

Jar Test Results

	Azraq 1	Azraq 2	Zaatari 1	Zaatari 2
Sand	40.8%	30.5%	49.3%	39,8%
Silt	22.5%	19.3%	18.1%	22.2%
Clay	36.7%	50.2%	32.5%	37.9%

Jar Test Results

	Azraq 1	Azraq 2	Zaatari 1	Zaatari 2	Average
Sand	40.8%	30.5%	49.3%	39,8%	40.1%
Silt	22.5%	19.3%	18.1%	22.2%	20.5%
Clay	36.7%	50.2%	32.5%	37.9%	39.3%

40% Sand 60% Clay

By-Products as Additives

Expected Benefits of Additives

	CHAMOTTE	LIME	ASH	MEDIUM SAWDUS,	MILLED WHEAT	STRAW	HEMP FIBERS
Lighter Weight			•	•		•	•
Less Cracking	•	•	•			•	•
Less Shrinkage	•	•	•	•	•	•	•
Faster Drying	•			•		•	•
Surface Hardening	•	•	•				
Increased Tensile Strength				•		•	•
Increased Binding		•			•		
Insulation				•		•	•
Water Resistance		•	•				

Additives

Additive	Mix	x 1	Mi	x 2	Mi	x 3	Mi	x 4	Mi	x 5	Mi	x 6	Mi	x 7	Mi	x 8	Mi	x 9	Mix	(10	Mix	11	Міх	12
	Vol. %	Wt.%	Vol. %	Wt.%	Vol. %	Wt.%																		
Clay	100	100	60*	-	60	46	45	34	45	38	45	40	45	43	45	44	45	45	45	39	45	44	45	44
Sand	-	-	40*	-	40	54	30	40	30	45	30	48	30	52	30	53	30	53	30	47	30	53	30	53
Sampled Soil	_	-	100	100	-	_	-	-	-	-	-	-	-	_	-	-	-	-	-	1	-	_	-	-
Chamotte	-	-	-	-	_	-	25	26	ı	-	ı	-	ı	-	-	-	-	-	-	-	-	-	-	-
Lime	-	-	-	-	-	-	-	-	25	17	ı	-	ı	-	-	1	ı	1	-	1	ı	-	-	-
Ash	-	-	-	-	-	-	-	-	ı	1	25	11	ı	-	-	1	ı	1	-	1	ı	-	-	-
Fine Sawdust	-	-	-	-	-	-	-	-	ı	ı	ı	-	25	5	-	ı	ı	ı	-	1	ı	-	-	-
Medium Sawdust	-	-	-	-	-	-	-	-	ı	1	ı	-	ı	-	25	3	ı	1	-	1	ı	-	-	-
Wood Chips	-	-	-	-	-	-	_	-	ı	-	1	-	1	-	-	-	25	2	-	-	ı	-	-	-
Milled Wheat	-	-	-	-	-	-	-	1	ı	ı	ı	-	ı	-	-	1	ı	1	25	14	ı	-	-	-
Straw	-	-	-	-	-	-	-	-	ı	-	ı	-	ı	-	-	-	ı	-	-	-	25	3	-	-
Hemp																							25	3
Water	25	34	20	17	20	18	20	18	25	24	20	21	22	24	20	22	20	22	27	27	20	22	20	22

Mixture Design

Evaluation Criterea

Critereon	Evaluation Method	Rating	Ke	y (1-5)
Shrinkage	Measuring length at 0h & 48h	1=High	\rightarrow	5 =Low
Deformation	Visual inspection after 48h	1=High	\rightarrow	5 =Low
Weight Loss	Measuring weight at 0h & 48h	1=High	\rightarrow	5 =Low
Interlayer Bonding	Visual inspection of dry cut layers	1=Low	\rightarrow	5 =High
Extrudability	Ease of extruding wet mixture	1=Low	\rightarrow	5 =High
Cracking	Visual inspection after 48h	1=High	\rightarrow	5 =Low
Water Needed	Amount of water needed to be workable	1=High	\rightarrow	5 =Low
Drying Speed	Measured weight loss difference (0, 12, 24, 36, & 48h)	1=Slow	\rightarrow	5 =Fast
Surface Hardness	Difficulty to break sample by hand	1=Low	\rightarrow	5 =High
Lightness	Density of mixture	1=High	\rightarrow	5 =Low

: Dry Mixture %Vol.	····: : Wet Mixture %Vol. ·····:
100% CLAY	25% WATER
Shrinkage	• (8.9%)
Deformation	•
Weight Loss	• (28.4%)
Interlayer Bonding	• •
Extrudability	• • • •
Cracking	• • •
Water Needed	• • • • (25.0%)
Drying Speed	• •
Surface Hardness	•
Lightness	• •

	21, 1111/10110 701011		
	100% SAMPLED SOIL		
Shrinkage		• •	(7.2%)
Deformation		•	
Weight Loss		• • •	(19.3%)
Interlayer Bonding		• • •	•
Extrudability		• • •	
Cracking		• •	
Water Needed		• • •	(20.0%)
Drying Speed		• • •	
Surface Hardness		• • •	
Lightness		•	

:	Dry Mixture %Vol.	Wet Mixture %Vol.
60% CLAY	40°	
	3 7	
Shrinkage		• • • • (3.2%)
Deformation		• •
Weight Loss		• • • (17.8%)
Interlayer Bonding		• • •
Extrudability		• • •
Cracking		• •
Water Needed		• • • (20.0%)
Drying Speed		• • •
Surface Hardness		• •
Lightness		•

Fawzi Bata - Digital Earthen Shelters - P5 Presentation

48

: Dry Mix	Dry Mixture %Vol.		
45% CLAY	30% SAND	25% CHAMOTTE	
Shrinkage		• •	• • • (0.8%)
Deformation		• •	• • •
Weight Loss		• •	• (18.2%)
Interlayer Bonding		• •	•
Extrudability		• •	
Cracking		• •	• •
Water Needed		• •	• (20.0%)
Drying Speed		• •	• •
Surface Hardness		• •	•
Lightness		•	

Dry Mixtu	Dry Mixture %Vol.			
1-04	0.004	0.704		
45% CLAY	30% SAND	25% LIME		
Shrinkage			• • • •	(1.5%)
Deformation			• • • •	(11070)
Weight Loss			• •	(23.8%)
Interlayer Bonding			• • • •	
Extrudability			• • • •	
Cracking			• • • •	
Water Needed			• •	(25.0%)
Drying Speed			• • • •	
Surface Hardness			• • • •	
Lightness			• •	

Dry Mix	Dry Mixture %Vol.			: Wet Mixture %Vol			
45% CLAY	30% SAND	25% ASH					
Shrinkage		•	• • •	(2.0%)			
Deformation		•	• •				
Weight Loss		•	• •	(21.0%)			
Interlayer Bonding		•	• • •				
Extrudability		•	• • •				
Cracking		•	• • • •				
Water Needed		•	• •	(20.0%)			
Drying Speed		•	• • • •				
Surface Hardness		•	• • • •				
Lightness		•	• • •				

: Dry Mix	Dry Mixture %Vol.				
45% CLAY	30% SAND	25% FINE SAWDUST			
Shrinkage			• • • •	(1.6%)	
Deformation			• • •		
Weight Loss			• •	(25.4%)	
Interlayer Bonding			• • •		
Extrudability			• • • •		
Cracking			• • • •		
Water Needed			• • •	(22.0%)	
Drying Speed			• • • •		
Surface Hardness			• • • •		
Lightness			• • • •		

Dry Mixture C	%Vol		vvet wixture 70 voi.
45% CLAY	30% SAND	25% MEDIUM SAWDUST	
Shrinkage		• • •	• • (0.8%)
Deformation		• • •	
Weight Loss		• •	(23.1%)
Interlayer Bonding		• • •	
Extrudability		• •	
Cracking		• • •	• •
Water Needed		• • •	• (20.0%)
Drying Speed		• • •	• •
Surface Hardness		• •	
Lightness		• • •	•

Dry N	/lixture %Vol.		Wet Mixture %Vol.
45% CLAY	30% SAND	25% wood chips	
Shrinkage		• •	• (4.5%)
Deformation		• •	•
Weight Loss		•	(36.8%)
Interlayer Bonding		-	
Extrudability		•	
Cracking		• •	• • •
Water Needed		• •	• • (20.0%)
Drying Speed		• •	
Surface Hardness		• •	
Lightness		• •	• • •

Dry Mixture %Vol.		: Wet Mixture %Vol.		
45% CLAY	30% SAND	25% WHEAT		
Shrinkage			•	(6.0%)
Deformation			• • • •	
Weight Loss			•	(28.6%)
Interlayer Bonding			• •	
Extrudability			• • •	
Cracking			• •	
Water Needed			•	(27.0%)
Drying Speed			•	
Surface Hardness			• • • •	
Lightness			• • •	

Dry M	ixture %Vol.		Wet Mixture %Vol:
45% CLAY	30% SAND	25% STRAW	
<u> </u>	0		
Shrinkage		• • •	(1.7%)
Deformation		• • •	
Weight Loss		• •	(25.8%)
Interlayer Bonding		-	
Extrudability		•	
Cracking		• •	
Water Needed		• • •	(20.0%)
Drying Speed		• • •	• •
Surface Hardness		•	
Lightness		• • •	• •

Dry Mixture %Vol.			··· Wet Mixture %Vol. ·····:
45% CLAY	30% SAND	25% HEMP	
Shrinkage		• •	• • (0.9%)
Deformation		• •	•
Weight Loss		• •	(23.6%)
Interlayer Bonding		-	
Extrudability		•	
Cracking		• •	• •
Water Needed		• •	(20.0%)
Drying Speed		• •	• •
Surface Hardness		• •	
Lightness		• •	• • •

Fawzi Bata - Digital Earthen Shelters - P5 Presentation

51

Mixture Design

Refined Mixtures

Strength Tests

Strength Tests

2133 N 0.59 MPa

1708 N 0.47 MPa

1652 N 0.46 MPa

Chosen Mixture

Variables for Customization

Family S	Size
----------	------

Size of Rooms

Number of Rooms

Courtyard Size

Communal Potentials

Extended Family

Expansion

Privacy

Degree of Openings

Courtyard

Layout

Entrance Privacy

Orientation

Enclosure Degree

Additional Functions

Commercial Space

Garden

Shared Spaces

Water Storage

Guest Areas

Working Space

Aesthetics

Printing Patterns

Window Shapes

Door Shapes

Furniture

Finishings

User Input

Computational Model Flowchart

Base Shape

Base Shape

Wall Profiles

Inclined

Curved

Wall Profiles

Roof Type

Hybrid

Skylight

Roof Type

Opening Shape

Opening Shape

Wall Patterns

Wave Horizontal + Vertical

Fawzi Bata - Digital Earthen Shelters - P5 Presentation

Horizontal

Wall Patterns

No. Units

No. Units

Openings Privacy

Low Privacy

Medium Privacy

High **Privacy**

Openings Privacy

Layout

Open

Semi-Enclosed

Enclosed

Layout

Wall Infills

Wall Infills

Resulting Design Iterations

Export Options

79

End Users

Occupants (Refugee Families)

Humanitarian Agencies

Govermental Agencies

Construction Personnel Architects/Designers

Robot Choice and Design Limitations

3D Potter
Potterbot Scara HD

3 - Axis
41 kg weight
~115 kg payload
2.75 m print height
~\$23,000
Setup Difficulty: Easy
Software Use: Easy
Rotation: Infinite
Can be Mobile (Track)
Modular
3DPE Specialized

6-Axis Industrial Robot w/ Industrial Printing Head

6 - Axis
~1500 kg weight
up to 500 kg payload
3.00 m print height
up to \$150,000
Setup Difficulty: Advanced
Software Use: Advanced
Rotation: Limited
Fixed / Mobile
Not Modular
Not Specialized

WASP Wasp Crane

3 - Axis
150 kg weight +structure
NA kg payload
3.00 m print height
~\$150,000
Setup Difficulty: Medium
Software Use: Advanced
Rotation: Infinite
Fixed
Modular
3DPE Specialized

COBOD Bod2

3 - Axis

NA kg weight

~30 kg payload

10.00 m print height

\$180,000 - \$950,000

Setup Difficulty: Difficult

Software Use: Easy

Rotation: Infinite

Fixed

Modular

3DPC Specialized

Robot Choice and Design Limitations

103

PLA Models

PLA Models

Earth Prototype

Tools

Printing Workflow

Printing Simulation

Extruder Calibration

3D Printed Earth Prototypes

3D Printed Earth Prototypes

Reflection

Scale

Material

Building Performance

Structural Optimization

Social Impact

Internal Layouts

Dwellings

