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“Nobody ever figures out what life is all about, and it doesn’t matter. Explore the world. Nearly
everything is really interesting if you go into it deeply enough.”

Richard P. Feynman
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Nanomechanical resonators with low dissipation rates are ideal tools in fundamental sci-
ence applications. They have been used in the field of cavity optomechanics for example
in ground-state cooling [1], [2], and in sensing applications, such as atomic resolution mass
sensors [3], [4]. Their great sensitivity is due to their high Q-factor, which is a metric that
shows how fast a system loses its energy [5]. In ultra-high Q nanomechanical resonators,
energy loss is limited to intrinsic and radiation losses, the latter is due to energy dissipa-
tion from the resonator into the substrate [6]. Experiments have shown that the Q-factor of
resonators with thin substrates are limited by radiation loss [7]. However, the precise role
of the substrate remains a topic that has not received much attention, but has significant
implications for how we design nanomechanical microchips. Here we show that the res-
onator mode can couple to nearby substrate modes, which reduces the Q-factor. We found
that the strength of this mode-coupling depends on the mode-shape of the substrate, with
stronger coupling at anti-nodes of the mode-shape and hardly any coupling at the nodes.
Furthermore, we show that clamping down the substrate with double-sided tape reduces
the Q-factor of the resonators, this is explained by a reduction in Q of substrate modes due
to the tape. Lastly, we found that in thin substrates, which have a higher density of modes,
the Q-factor can be limited due to mode-coupling with the substrate. Our results demon-
strate that the substrate choice, as it can strongly affect the Q-factor of resonators, should
become an integral part of the resonator design phase. These results can likely be used by
all types of nanomechanical resonators limited by radiation loss. We can use this knowledge
to design chips with resonators that have an even higher Q-factor.

HTTPS://WWW.TUDELFT.NL/EN/
https://www.tudelft.nl/3me/
https://www.tudelft.nl/en/3me/about/departments/precision-and-microsystems-engineering-pme/




v

Acknowledgements
I would like to thank Richard and Peter for the opportunity to do this project, and the intro-
duction to the interesting field of nanomechanical resonators with this project, they taught
me a lot about research in general as well. Their willingness to help and creative ways of
thinking was a nice addition to our weekly meetings. In this project, I could almost daily dis-
cuss progression and problems with Matthijs, which I am very thankful for. His enthusiasm
for guiding me in my research and always willing to answer my questions helped to deliver
these results. In addition, I would like to thank the members of the Norte lab for our weekly
meetings. Especially Andrea, Dongil, and Minxing for their feedback, input when solving
problems, and fabrication of samples. The weekly discussions were fun and intriguing. I
have learned a lot from your projects. Furthermore, I would like to thank my family and
friends for showing interest in a project I was doing for over a year, for showing support,
and for having great discussions. In particular, Wouter, Michiel, Bram, Thomas, Cedric, and
Brian, with whom I talked the most. Lastly, special thanks to my girlfriend, Soleine. It was a
difficult year, not only because of this project, but also because of Covid, and the loss of my
mother. Most of our time was spent in an apartment a little too small for two people. I am
grateful for your unending support, and your love for me.





vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Current research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theoretical background 7
2.1 Fundamentals of nanomechanical resonators . . . . . . . . . . . . . . . . . . . 7

2.1.1 Eigenfrequency analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Quality factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Loss mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.5 Fabrication process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Mode-coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Two coupled bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Hybridized Q-factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Frequency spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Methods 19
3.1 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 String model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Mode-shape dependence . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Film and substrate thickness . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.4 Substrate damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.5 Manipulating the resonance frequency . . . . . . . . . . . . . . . . . . 21

3.2 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Experimental measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Substrate characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Influence of clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.3 Influence of frequency spacing . . . . . . . . . . . . . . . . . . . . . . . 24

4 Results and discussion 25
4.1 Mode-shape dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Substrate characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Nodes and anti-nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Mode-coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.1 Influence film thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Influence substrate thickness . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.3 Influence of substrate damping . . . . . . . . . . . . . . . . . . . . . . . 29



viii

4.3 Experimental: Chip clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1 Influence of tape on Q-factor . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Analysis of the frequency response . . . . . . . . . . . . . . . . . . . . . 30
4.3.3 Clamping discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Experimental: frequency spacing . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.1 Crossing a substrate mode . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.2 Frequency spacing discussion . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Conclusion and Outlook 35
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Recommendations and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A Appendix 37
A.1 Nominal values for trampoline resonator . . . . . . . . . . . . . . . . . . . . . 37
A.2 Results of parameter sweep on resonance frequency . . . . . . . . . . . . . . . 37
A.3 Sample in vacuum chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.4 Substrate frequency comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.5 Gas damping limited Q-factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.6 Mode-shape of the PhC chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.7 Q-factors of the PhC chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography 43



ix

Dedicated to Friedel Filius,

may you rest in peace





1

1 Introduction

1.1 State of the art

In this thesis, we study very sensitive nanomechanical resonators. Resonators with very
low dissipation rates make ideal tools for use in fundamental science applications. They
have been used in the field of cavity optomechanics [8], for example in ground-state cool-
ing [1], [2] and detecting single electron spin [9]. They have also been used in sensing ap-
plications, being able to sense masses with atomic resolution (sub-zeptogram) [3], [4] and
sub-attonewton forces [10]. Their great sensitivity is due to their exceptionally high quality
factor, which is a metric that states how fast a system’s energy dissipates, or inversely, how
well the resonator is isolated from its surrounding thermal environment.

An important step to increase the quality (Q) factor was shown in ref. [11], where they
increased the stress of doubly clamped string resonators. This technique is now called dis-
sipation dilution [12]–[14] and makes use of the fact that the added tension in the resonator
is lossless while the overall energy increases, see equation 1.1. Currently, most of the very
sensitive resonators at room temperature are made of thin high-stress silicon nitride (Si3N4,
i.e. SiN) to reduce energy loss even further.

Qstr = 2p
Wtension + Wbending

DWbending
(1.1)

The highest Q-factors were achieved using a so-called soft clamped approach [15]–[17], ex-
amples shown in fig. 1.1. These resonators make use of a repeating pattern that creates a
phononic bandgap. With this technique, they are able to localize the mode in the center of
the resonator, see inset of fig. 1.1b, and reduce bending at the clamping points and thus
suppressing radiation loss. At room temperature, they achieve Q-factors >108, meaning

(A) Image adapted from [15] (B) Image adapted from [16]

FIGURE 1.1: Examples of (A) 1D and (B) 2D phononic shields.
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(A) Image adapted from [11] (B) Image adapted from [7]

FIGURE 1.2: Examples of doubly clamped string resonator (A), and trampo-
line membrane resonator (B).

sensitivities limited by thermomechanical force noise at the aN/
p

Hz level; and f ⇥ Q prod-
ucts of >1014 Hz, sufficient for quantum experiments at room temperature. However, they
have several disadvantages due to the nature of the principle used to achieve ’soft clamps’.
Firstly, they need a large number of repeating elements, making the system relatively large
(length scale of several millimeters for MHz frequencies [15]–[17]), making chip-scale inte-
gration difficult. Secondly, the fragile structure can have difficulties with dissipation of heat
accumulated from the detection laser, which is the main method of reading out the signal.
Thirdly, soft clamping can only be applied to higher-order modes [18], while in practical
sensing applications the fundamental mode is usually preferred because it has the lowest
stiffness and cleanest spectral background. Lastly, these large and thin structures are often
difficult to fabricate.

Alternative means of reaching these great sensitivities was shown using doubly clamped
string [12], [19], membrane [20], and trampoline resonators [7], [21], of which the latter has
achieved the highest Q-factors reaching 108, and f ⇥ Q products reaching 1013 Hz. These
devices are also limited by thermomechanical force noise at the aN/

p
Hz level and have

sufficient f ⇥ Q products to enter the optomechanical quantum regime at room temperature
[7], [20], [21]. Examples of these types of resonators are shown in fig. 1.2. Because these
types of resonators do not suffer from the disadvantages associated with the soft clamped
approach, they are easier to implement in real applications.

1.2 Current research

The highest Q-factors were achieved using the soft-clamped approach, being able to focus
on minimizing the intrinsic loss. But, as mentioned before, this comes with several disad-
vantages for practical use. There is motivation to avoid complicated repeating patterns and
to keep the length scales small. However, we also see a general trend that the Q-factor de-
creases with decreasing dimensions of the resonator (Q µ L/t), attributed to losses at the
resonator surface due to the increased surface-to-volume ratio [22]. The alternative ’trampo-
line’ resonators showed ultra-high Q-factors (reaching 108 at 150 kHz, with a length scale of
roughly 700 µm), without the disadvantages of the soft clamped approach. With these struc-
tures, it is not so clear which loss mechanism is limiting the Q-factor because it required a
more in-depth look into the interaction of nanomechanical resonators and the substrates
these resonators are fabricated on. While many experiments point to an important interplay
between the resonators and the substrate [7], [12], [20], [23]–[26], to date, the exact mecha-
nism of this coupling remains unknown.
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FIGURE 1.3: The effect of substrate and SiN thickness on the Q-factor in tram-
poline resonators. Adapted from [7].

Trampoline resonators can be considerd to be a combination of string and membrane res-
onators, for which significant research has been done. Studies say that for short string res-
onators radiation loss dominates, while for long strings (>100 µm) bending loss dominates
[15]. For membrane resonators (L=0.5-5 mm) the radiation losses were limiting the Q-factor
[20]. Another study found that in strings the high stress and increased string width in-
creased coupling to the substrate and therefore radiation losses dominate, and for narrow
low-stress strings, intrinsic material friction starts to limit the Q-factor [12]. The Q-factor for
fundamental modes of long, thin doubly clamped nanostrings dominated by bending loss
can be expressed as [12]

Qstr =

"
p2E
12s

✓ t f

L

◆2
+ 1.0887

r
E
s

✓ t f

L

◆#�1

Qbending, (1.2)

where E is the Young’s modulus of Si3N4, s is the stress in the string, t f is the film thickness,
L is the length of the nanostring, and Qbending is the Q-factor due to bending losses in a
relaxed string. If the resonator is dominated by bending loss we expect the Q-factor to
increase when decreasing the SiN film thickness t f . Furthermore, some enhancement in Q
was found with 30-50 nm thick square membranes when moving from 200 to 500 µm thick
substrates [27]. To test this on high-stress trampoline resonators, the SiN film thickness t f
and substrate thickness ts (see 1.2b) were varied in ref. [7]. In figure 1.3 the f ⇥ Q products
of trampoline resonators are shown. We assume that, within a given film thickness, the
resonance frequency f does not vary, and thus we can consider the graph to show a scaled
Q-factor.

From the graph, we see that with thick substrates (>500 µm) equation 1.2 holds and thus
the Q-factor is limited by intrinsic loss, but for thin substrates (<200 µm) the radiation loss
completely dominates (other loss mechanisms have been excluded, these will be explained
further in section 2.1.4). This is an important observation because the substrate is hardly ever
considered. The question remains, why is it only limiting thin substrates and not thicker
substrates?
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FIGURE 1.4: Spectrum of energy dissipation (top), and vibrations of the frame
measured close to the membrane (bottom). Adapted from [26].

Radiation loss is the loss of mechanical energy arising from the coupling to the supporting
substrate. Various treatments and models of radiation loss have been developed [23], [24],
[28]. For simulations a perfectly matched layer (PML), which is a perfectly absorbing artifi-
cial boundary, is often used to compute radiation loss [15], [29], [30] using FEM software.

Currently, radiation loss is often studied in the context of ’phonon tunneling’ [31], which
sets up a quantum model for the motion experienced by each resonance of the suspended
structure. The substrate is here considered as an elastic half-space, where the resonator
phonons that leak out can propagate into (scattering states). With this technique, it was
shown that anchor placement could limit the radiation loss in ’free-free’ resonators [32], and
that radiation loss was suppressed in higher harmonic modes using membrane resonators
[20], [25]. Most studies investigate resonator design, but with radiation loss, the substrate is
also important to investigate because it is the energy loss due to coupling with the substrate.

One would assume that with a thicker substrate, there would be less bending of the sub-
strate; therefore less energy can propagate into the low Q substrate, and less energy is lost.
There have only been a few studies on the influence of substrate thickness on Q-factor, in
particular [23], [24], [30]. They conclude that with increasing substrate thickness, the Q-
factor increases up to several orders of magnitude. Note that in these studies millimeter
size resonators were experimentally compared. However, their theory would also be ap-
plicable for µm and nm size resonators. The reason is that normally in nano-scale devices
other losses dominate, such as gas damping (which increases rapidly when the resonator’s
surface- to volume ratio increases [6]), but in ultra-high Q devices, this might not be the
case.

Another important observation was an increase in energy dissipation of more than two or-
ders of magnitude in membrane resonators due to coupling to modes of the frame [26],
see fig. 1.4. However, a lot of questions remain, particularly when comparing the increase
in dissipation to the relative frame amplitude. We notice that between 200 and 220 kHz the
frame amplitude is relatively large (⇠0.8 of max amplitude) compared to that at 250 kHz (0.2
of max amplitude), while the energy dissipation is approximately equal (1/Q= ⇠ 5 ⇥ 10�5)
in both points. How this can be explained has not yet been investigated.
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Lastly, the resonator is attached to the substrate, but this substrate is also connected to some-
thing (e.g. piezo, or sample holder). Studies have shown that any type of clamping or gluing
of the substrate to the experimental setup can reduce the Q-factor. The Q-factor of square
membrane resonators drops from 4 ⇥ 106 to <105 when using glue as clamping [27], and a
drop from 6 ⇥ 106 to 3 ⇥ 106 was observed in string resonators using tape as clamping [12].
Thus, radiation loss is increased by using any form of clamping, but the exact mechanism
behind this is still unknown.

1.3 Research objective

From the current research, we can conclude that radiation loss remains an important loss
mechanism, limiting the Q-factor in compact nanomechanical resonators. Most research
is dedicated to investigating resonator geometry, while the substrate is also important to
consider. Besides the thickness, the geometry of the substrate is generally ignored. To de-
sign ultra-high Q nanomechanical resonators we need to understand what is limiting the
Q-factor. Understanding the resonator’s mode-coupling to the substrate is crucial to this be-
cause energy dissipation can increase orders of magnitude when coupling to the substrate
[26].

In this thesis, we want to investigate the influence of substrate modes on the Q-factor. Thus
our research objective is "understanding the influence of substrate mode-coupling on Q-factor in
thin nanomechanical high-stress SiN resonators". Here we will shift our focus mostly on the
substrate rather than the resonator, and importantly consider discrete eigenmodes of the
substrate instead of a continuum of scattering states. The hypothesis is that the Q-factor can
be limited due to mode-coupling with the substrate. Different aspects of the substrate will
be analyzed.

First, in chapter 2 the reader will be introduced to the theoretical background information.
Here we cover the basics of resonators, the Q-factor, different loss mechanisms, and the con-
cept of mode-coupling. A simple 2 DOF analytical model is used to calculate the hybridized
Q-factor of a resonator stacked on top of a heavy and relatively strongly damped substrate.
As far as we know, this approach has not been presented in the literature.

Then, in chapter 3 the methods to numerically and experimentally test the hypothesis are
presented. Here we look at numerical models with which we can test mode-coupling with a
more complex geometry. We consider the mode-shape, substrate thickness, and damping of
the substrate, and see how this changes the coupling behavior. Furthermore, we show the
measurement setup and explain the different experiments that will be performed.

Next, in chapter 4 the results of the simulations and experiments are presented and dis-
cussed. Ring-down measurements are used to measure the Q-factor of fabricated resonators.
Furthermore, the frequency response is analyzed and we spatially resolve the mode-shape
of the substrate.

Lastly, this thesis finalizes with the conclusion and outlook for this study in chapter 5. Here
we discuss the importance of the substrate. We have found that considering the substrate
and designing the resonator optimally, implying minimized mode-coupling to the substrate,
can improve the Q-factor of resonators limited by radiation loss.
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2 Theoretical background

In this chapter, the theoretical basis of the topics in this thesis is described. We start with the
fundamentals of the mechanical resonator in section 2.1. Then we present a simple analytical
model for two coupled bodies in section 2.2, here we analyze the influence of mode-coupling
on the Q-factor in a two-body system.

2.1 Fundamentals of nanomechanical resonators

A resonator is a system that oscillates with greater amplitude at certain resonance frequen-
cies. Here we discuss a mechanical resonator, and thus the oscillations are mechanical exci-
tations, i.e. phonons.

2.1.1 Eigenfrequency analysis

When we want to characterize the dynamics of a system we can look at the resonance fre-
quencies and normal modes (or mode-shape). The resonance frequency is the frequency at
which a system tends to oscillate in the absence of a force. When a system is vibrating at a
certain resonance frequency, it deforms into a specific shape, the so-called normal mode. A
normal mode is a sinusoidal motion of the system at a specific (resonance) frequency with
a fixed phase relation. The motion of a system can be described by a superposition of the
normal modes (from now on, mode). Let us look at a simple model of a 1 degree of freedom
(DOF) resonator, see top right in figure 2.1, a mass-spring-damper system. The equation of
motion (EOM) for the mass m1 with spring constant k1 and damping coefficient c1 is

m1 ẍ1 + c1(ẋ1 � ẋ0) + k1(x1 � x0) = 0. (2.1)

We divide the equation by m1, and define w0 =
p

k1/m1 and g = c1/m1. In the absence of a
force (x0 = 0), it simplified to

ẍ1 + gẋ1 + w2
0x1 = 0. (2.2)

Since we expect oscillatory motion we try

x1(t) = Re(X1eiwt), (2.3)

with amplitude of the motion X1, frequency w, and time t. Substituting 2.3 into 2.2 we get

�w2X1eiwt + iwgX1eiwt + w2
0X1eiwt = 0. (2.4)

After simplifying and collecting terms we get
⇥�

w2
0 � w2�+ iwg1

⇤
X1 = 0. (2.5)
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FIGURE 2.1: Frequency response of a 1 DOF mass spring damper system.

Here we have the classic eigenvalue problem (in non-matrix form), with a complex eigen-
value w (resonance frequency) and eigenvector X1 (mode-shape). Therefore, this analysis
is also called the eigenfrequency analysis. Note that the amplitude of this motion can not be
extracted from this analysis, only the direction it moves (defined by x1 and x0), which in this
case is up and down motion (in multi-DOF we call this the mode-shape). When damping is
very low, i.e. c ⌧

p
mk, we can approximate the resonance frequency is w0, corrected by

wr = w0

q
1 � 2z2

z =
c1

2
p

m1k1
.

(2.6)

2.1.2 Frequency response

Now we want to analyze how the system responds to a vibration input by looking at the
frequency response of the system. This is a measure of the magnitude and phase of the
output of a system as a function of frequency, in comparison to the input. Let us look at
the same 1 DOF example, see figure 2.1, with m1 = 1, k1 = 158, and c1 = 0 and 1.25 for
undamped and damped response respectively. Here the input is an oscillatory motion x0 of
the base (x0(t) = X0eiwt), thus we look at the transmissibility of the system. We start with
the EOM

m1 ẍ1 + c1 ẋ1 + k1x1 = k1x0 + c1 ẋ0. (2.7)

After substituting oscillatory motion, and collecting terms we get
⇥�

w2
0 � w2�+ iwg

⇤
X1eiwt =

⇥
w2

0 + iwg
⇤

X0eiwt. (2.8)

We divide output by input and calculate the frequency response X(w) as

X(w) =
X1

X0
=

w2
0 + iwg�

w2
0 � w2

�
+ iwg

. (2.9)
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To get the frequency response, we plot X(w), with magnitude kX(w)k and phase f(w) =

arctan
⇣

Im X(w)
Re X(w)

⌘
, see figure 2.1. We see that the resonator follows the input 1:1 until there

is a large increase in magnitude at 2 Hz, the resonance frequency w0. The more damping
the system has, the lower this peak amplitude is, and the lower the Q-factor is. After the
resonance, the magnitude starts to decrease (with a slope of 20 dB/decade).

2.1.3 Quality factor

The quality (Q) factor is a metric that states how fast a system loses energy [5], and is defined
as

Q = 2p
W

DW
, (2.10)

With W the total energy stored in the system and DW being the energy lost per cycle. This
means, that if the system loses relatively little energy, it has a high Q-factor. The great
sensitivity of the resonators mentioned in section 1.1 is because of their exceptionally high
Q-factor. The Q-factor is an important parameter in the context of sensors because it is
inversely proportional to the thermomechanical force noise SFF [16], [21], [33], which can be
written as

SFF = 2me f f
2p f

Q
kbT, (2.11)

with the effective mass of the resonator me f f , the resonance frequency f , the Boltzmann con-
stant kb, and temperature T. To give an intuitive sense of why a high Q-factor decreases the
noise of a resonator, we think of what happens when a resonator is very well isolated from
its (noisy) environment. If the system is very well isolated from its environment, not much
energy is lost out of the system; this also means that not much energy, or noise, can enter the
system. Isolation from outside noise is also of great importance to quantum technologies,
which are extremely sensitive to outside environmental noise. This noise gets worse at room
temperature.

FIGURE 2.2: Frequency response of a 1 DOF resonator for different Q-factors.
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FIGURE 2.3: Example of a ring-down measurement performed on one of our
experimental samples.

In figure 2.2 the frequency response of a 1 DOF resonator is plotted for different energy
losses, with more energy loss meaning a lower Q-factor. When the Q-factor decreases, we
see a reduction in peak amplitude, and the bandwidth of the mode gets wider (making it
hard to determine which frequency the mode is exactly, which is useful for measurements).
To determine the Q-factor of a system, multiple approaches can be taken. When the energy
terms are known, equation 2.10 can be used. When the system becomes more complex this
is not always a viable approach, since there might not be a known analytical solution for the
EOM. In this case, we can extract the Q-factor from the complex-valued eigenfrequency w0
of the system [34], using

Q =
Re(w0)

2 Im(w0)
. (2.12)

This value can be determined either analytically or, in the case of more complex geometry,
numerically. In real samples, the Q-factor can be measured in two ways. Firstly, equation
2.13 is used to determine the Q-factor. Here, Dw is the full width at half maximum of the res-
onance frequency w peak in the frequency response. In figure 2.2 the higher Q-factors have a
more narrow bandwidth. When the width gets too thin, the second method is used, namely
a ring-down measurement. Here, the resonator is driven on resonance until a steady-state
amplitude, then the input is stopped and the amplitude is measured over time and it ’rings
down’. The data is fitted to an exponential function, which allows for the calculation of the
Q-factor [35], see fig. 2.3 for an example of a ring-down fit.

Q =
wr

Dw
. (2.13)
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There is a well-known trade-off between the Q-factor and resonance frequency (f). When
increasing Q, most of the time f decreases. For opto-mechanical quantum experiments, the
f ⇥ Q product is a parameter, which plays an important role in the phase noise performance
of oscillators [8]. It quantifies the decoupling of the mechanical resonator from a thermal
environment. Specifically,

Wm

n̄thGm
= Qm fm ⇥

✓
h

kBT

◆
(2.14)

denotes the number of coherent oscillations (n̄th) in the presence of thermal decoherence
and evidently scales with f ⇥ Q [8]. With the frequency Wm, the damping rate Gm, Planck’s
constant h, Boltzmann constant kB, and the temperature of the environment T. It denotes
the number of oscillations the resonator makes as a quantum object before one phonon of
environmental noise enters the system and destroys its coherent quantum nature.

2.1.4 Loss mechanisms

The Q-factor depends on the energy lost per cycle, as seen in section 2.1.3. A system can
lose its energy through different loss mechanisms. Here we discuss the most important
loss mechanisms for nanomechanical resonators. These loss mechanisms have extensively
been investigated and reviewed [6], [8], [36], [37]. There are different conventions used in
regards to naming the loss mechanisms, it is therefore important to clarify how we interpret
them. We divide the loss mechanisms into three groups: 1) viscous damping, 2) intrinsic
dissipation mechanisms, and 3) radiation losses.

FIGURE 2.4: Examples of the three groups of loss mechanisms. A) gas damp-
ing, adapted from [38] B) intrinsic loss mechanism (TED), adapted from [39],
and 3) radiation loss where we can see the elastic waves propagate into the

substrate, adapted from [30].

• Viscous damping, which is caused by interactions with the surrounding gas atoms or by
compression of thin fluidic layers. Air damping increases rapidly as the resonator’s
surface- to volume ratio increases [6], and is, therefore, important in nanomechanical
resonators. Viscous damping depends on pressure and can be divided into three re-
gions [6], [40]: viscous, molecular, and intrinsic region. Where in the latter region air
pressure is so low, it becomes negligible.
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• Intrinsic losses, where we consider: 1) bending loss, or material loss, which is caused by
the relaxation of defect states in the bulk or surface of the resonator. These losses are
described by a complex-valued Young’s-modulus Ẽ = (1+ ih)E, where h is defined as
the intrinsic loss factor [41]. And 2) thermoelastic dissipation (TED) which is mechanical
loss due to heat conduction. It is attributed to an oscillating transversal heat flow in the
beam. During vibration, one side of the beam is under compression while the other
is under tension. Stress induces a change of temperature in the beam, with tension
producing temperature decrease and compression producing temperature increase [6].

• Radiation loss, or clamping/anchor/acoustic loss, is energy dissipation due to the ra-
diation of elastic waves into the substrate through the supports of the resonator. The
behavior of the resonator is affected by the boundary conditions, i.e. the substrate or
the clamping. The substrate is not infinitely rigid, therefore some of the energy is lost
into the substrate. Radiation losses can be modeled with a perfectly matched layer
(PML) [15], [36], which absorbs incoming waves from all angles without reflections.

1
Qtotal

=
1

Qviscous
+

1
Qbending

+
1

QTED
+

1
Qradiation

(2.15)

Loss mechanisms contribute independently to the total Q-factor. From equation 2.15, we can
conclude that not all loss mechanisms are as important, with some being more dominant
and some being negligible (in literature sometimes energy dissipation 1

Q is given instead of
Q). For example, if Qviscous would be 10, and all others 109, then the resulting Qtotal would
be 10, thus being completely dominated by the viscous damping. In this research we are
focusing on resonators with certain criteria such that the following applies: 1) In the case
that the resonator is put in a sufficiently high vacuum, the viscous damping starts to be
negligible [6], [19]. This can easily be tested by measuring the Q-factor while decreasing the
pressure. When further decreasing the pressure does not influence the Q-factor anymore, we
can assume that the viscous damping is negligible at that point. 2) Thermoelastic dissipation
can be analytically calculated. By using thin high-stress SiN resonators, the thermoelastic
loss is negligible [27], [42]–[44]. That leaves bending and radiation loss. Radiation loss can
be limited by using a phononic shield, as in the soft-clamped designs, but this came with
several disadvantages, see section 1.1.

Regarding the resonators we use in this thesis, it is important to investigate which loss mech-
anism(s) is (are) dominating. The reason is that in this project we study mode-coupling with
the substrate, which is part of radiation loss. If another loss mechanism is much higher, e.g.
limited by gas damping due to high pressure, we cannot see the effect of mode-coupling.

2.1.5 Fabrication process

Nanomechanical resonators are fabricated in different ways (e.g. [15], [16], [21]). Here the
fabrication process of the trampoline resonator used in the experiments is presented, ex-
ample shown in fig. 2.6. We start with a Si h100i wafer with a thickness of ranging from
200 µm-1 mm on which a layer of 50-100 nm SiN is deposited with low pressure chemical
vapor deposition (LPCVD) at a temperature of 800 °C (fig. 2.5a). Due to the difference in
the coefficient of thermal expansion, as the chips cool down, the SiN contacts more than Si,
resulting in a net tensile stress (⇠1 GPa) of the SiN film at room temperature. Then, a pos-
itive electron beam resist (ARP6200) is spun on the chip (fig. 2.5b). This layer is patterned
using a Raith electron beam pattern generation (EBPG) 5200 lithography system. The pat-
tern is an array of 3x3 or 5x5 trampoline resonators on a single chip, with this we can sweep
parameters to change the behavior of the resonators, but keep the substrate the same. The
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FIGURE 2.5: Fabrication process for the nanomechanical resonators used in
this thesis, image adapted from [45].

resist, exposed to the electron beam, is developed using pentyl acetate (fig. 2.5c). Next, the
pattern is etched in the SiN using reactive ion etch (ICP-RIE pseudo-Bosch) with a plasma of
CHF3 at 20 °C (fig. 2.5d). The electron beam resist is removed and the chip is cleaned with
an O2 plasma and a piranha (H2SO4/H2O2) solution before being dipped in hydrofluoric
acid to remove any oxidation (fig. 2.5e). Lastly, the SiN layer needs to be released from the
Si substrate, which is done with a fluorine-based dry release (fig. 2.5f). This step does not
require a mask given the high selectivity of the chosen chemical against SiN, avoiding any
additional cleaning step.

FIGURE 2.6: Example of one of the resulting chips (10 mm ⇥ 10 mm) with 25
trampoline resonators.

2.2 Mode-coupling

One way to understand energy loss is to see how much energy dissipates from the resonator
into the substrate due to them being coupled (radiation loss). Until now we considered the
resonator to be connected to an infinitely stiff and heavy base. However, in reality, the res-
onator is fabricated on a substrate with finite mass and stiffness. It, therefore, has resonance
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frequencies, with mode-shapes, and losses. These two bodies are coupled to each other. Due
to coupling, the modes of these bodies hybridize, and some energy radiates into the substrate.
Now assume the resonator has a relatively high Q mode, and the substrate a low Q mode.
The leaked energy is lost more quickly in the substrate because of the higher damping (low
Q-factor). In this section, we create an intuitive analytical model to investigate what hap-
pens when a high Q resonator mode couples to a low Q substrate mode. This interaction
and energy exchange between the two modes is called mode-coupling.

2.2.1 Two coupled bodies

First, let us set up an analytical model to study the physics. We have a simplified and
theoretical substrate and resonators with masses m1 = 1 ⇥ 10�4 kg and m2 = 5 ⇥ 10�11 kg,
respectively (which is a reasonable mass ratio for substrate and nanomechanical resonators).
The resonator has a spring constant k2 = 177.65 N m�1 and damping coefficient
c2 = 9.4 ⇥ 10�13 N s m�1, and is stacked on top of the substrate.

We compare two substrates: Firstly, a weakly coupled substrate where there is little energy
exchange and interaction between the two modes, with spring constant k1 = 4.8 ⇥ 107 N m�1

and damping coefficient c1 = 0.7 N s m�1. Secondly, a strongly coupled substrate, where
there is interaction and energy exchange between the two modes, with k1 = 3 ⇥ 108 N m�1

and damping coefficient c1 = 1.73 N s m�1. The aforementioned values result in a resonance
frequency at ⇠ 110 ⇥ 103 and 275 ⇥ 103 Hz for the weakly and strongly coupled substrates
respectively, and to realize a large difference in Q-factor between resonator and substrate
mode. The resonator and substrate coupled to each other, thus the EOM of the two bodies
are


(k1 � w2m1) + iwc1 �w2m2

�(k2 + iwc2) (k2 � w2m2) + iwc2

� 
X1
X2

�
=


(k1 + iwc1)

0

�
X0. (2.16)

First, we can look at the driven case (steady-state). To get the frequency response we cal-
culate

���X1
X0

���, and
���X2

X0

��� as a function of frequency w. The 2 DOF responses of the resonator
coupled to the two substrates are plotted in fig. 2.7. We can identify the substrate mode in
the frequency response of the resonator. A 2 DOF system, as seen from the figure, has two
modes (in this case 1 substrate and 1 resonator mode). These two modes do not necessarily
have the same Q-factor. Now we want to investigate how the substrate mode influences the
resonator mode.

2.2.2 Hybridized Q-factor

Due to the low Q-factor of the substrate, its resonance peak is relatively wide compared to
the very sharp peak of the resonator mode (Q = wr/Dw), as can be seen in figure 2.7. We
want to investigate the influence of mode-coupling on the Q-factor. Let us first determine
the uncoupled Q-factor of the resonator, using equation 2.10. The total stored energy W can
be calculated using W = max( 1

2 m2 ẋ2
2), with x = Re(X2eiwt). Solving the equation results

in W = 1
2 m2X2

2w2. As for energy lost per cycle, we have the dissipation term c2, giving us
the equation DW =

R 2p/w0
0 c2 ẋ2

2dt = pc2X2
2w. Thus the expected (uncoupled) Q-factor can

be calculated using Q = 2p W
DW = m2w

c2
=

p
m2k2
c2

. In this case, with the values of the example
above, the expected (uncoupled) Q-factor is Q2 = 1 ⇥ 108.
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FIGURE 2.7: Frequency response of resonator (x2) in a 2 DOF system, dis-
placement amplitude [dB] vs frequency. In the weakly coupled response, the
substrate and resonator do not exchange much energy, while in the strongly
coupled response they do. This can be observed by the fact that the Q-factor
is decreased. Inset: zoom-in of the resonance peak, the width of the peak is

wider in the strongly coupled case.

Now we can look at the effective Q-factor for the coupled system, because they are coupled
the two modes exchange energy and thus the Q-factor is hybridized. In section 2.1.3 we
presented methods to determine the Q-factor of a system. Here we use equation 2.12, thus
we need to calculate the eigenfrequencies wn of the system. We start with the EOM of the
system using equation 2.16, but in the undriven case


(k1 � w2m1) + iwc1 �m2w2

�(k2 + iwc2) (k2 � w2m2) + iwc2

� 
X1
X2

�
= F̄X = 0. (2.17)

For the non-trivial solution, we need to solve for which eigenfrequencies wn det (F̄) = 0.
We can use a numerical tool, like Matlab, to find the complex-valued roots wn of this 4th

order complex polynomial. For the solution we only look at positive real roots, then we
calculate the Q-factor use equation 2.12. When doing the calculations for the values from the
example above, we get hybridized Q-factor of Qhyb

2 = 8 ⇥ 107 in the weakly coupled case,
we see that the coupling is weak because the Q-factor only drops from 1 ⇥ 108 to 8 ⇥ 107.
When calculating the Q-factor of the strongly coupled case we get Qhyb

2 = 5 ⇥ 106. They are
strongly coupled because the Q-factor has a reduction of more than an order of magnitude,
thus more energy is lost into the substrate per cycle. We can also see this visually because
the width of the resonance peak is wider, see inset of fig. 2.7.

Thus, we see that the Q-factor of the resonator decreased from 8 ⇥ 107 to 5 ⇥ 106 when a sub-
strate mode is nearby (note that the theoretical uncoupled Q-factor is even higher reaching
1 ⇥ 108). This decrease in Q-factor is caused by the fact that it is coupled to a low-Qsubstrate,
i.e. energy dissipates in the substrate.

2.2.3 Frequency spacing

In the previous section, we calculated the hybridized Q-factor of a resonator with two differ-
ent substrates, of which one had a substrate mode nearby. The Q-factor dropped with more
than 1 order of magnitude when the substrate mode was closer to the resonator mode. Here
we evaluate the hybridized Q-factors as a function of the frequency spacing w2/w1, where
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FIGURE 2.8: Comparison of the analytical solutions of the hybridized Q-factor
of a light and relatively highly damped substrate (blue) with a heavy and
less damped substrate (orange). Every cross is a solution for a resonator with

different resonance frequency (10 kHz to 1 MHz).

w1 and w2 are the resonance frequency of the substrate, and resonator respectively. The res-
onance frequencies can be changed by adding or subtracting some mass or by changing the
stiffness.

Studies found that the Q-factor of the resonator decreases with decreasing substrate thick-
ness (in the radiation loss dominated regime) [7], [23], [24], [30], see section 1.2. The effect
of decreasing the thickness t of the substrate is threefold: First, it decreases the mass, since
m µ t, to investigate this effect we also compare different masses m1 in the analysis. Sec-
ondly, it decreases the stiffness, since k µ t3. Thirdly, it changes the resonance frequencies,

since w µ
q

k
m , thus w µ t. This means there are twice as many modes when the thickness

of the substrate is halved.

Furthermore, when taping a substrate down, the vibrational energy gets dissipated into the
tape. Studies found that taping (or gluing) the substrate decreased the Q-factor of resonators
[12], [27]. Therefore we compare different energy dissipation c1 in the substrate.

Here we use mass m1 = 5 ⇥ 10�5 kg and 2 ⇥ 10�4 kg which is roughly the mass of a Si
10 ⇥ 10mm2 substrate of 200 µm and 1 mm thick respectively, and m2 = 5 ⇥ 10�11 kg, which
is roughly the mass of a suspended SiN trampoline resonator. For the substrate losses c1 we
define an uncoupled Q-factor of Q1 = 102 and 104, which are reasonable values for substrate
modes in different clamping conditions (i.e. taping the sample down or resting freely). Then
we calculate the loss as c1 =

p
m1k1
Q1

(see section 2.2.2). For the resonator loss c2 we also define
an uncoupled Q-factor of Q1 = 108 (this would be its intrinsic limit), and calculate the loss
the same way as c1. The substrate mode is located at w1 = 100 kHz, by using the relation
w1 =

p
k1/m1 .

From the analysis we find 1) that the hybridized Q-factor of the resonator drops dramatically
when the resonances overlap, and importantly 2) that the ’region of influence’ is larger when
the substrate has a lower mass, and/or the substrate mode has a lower Q-factor. We have
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plotted the extremes in fig. 2.8. The shape of the graph is very similar to that observed
by [26], see figure 1.4 (note that the inverse, 1/Q i.e. dissipation, is plotted). We see that
with a thick substrate with low damping, the Q-factor is almost constantly at its intrinsic
limit. However, with a thin highly damped substrate, the hybridized Q-factor is decreased
significantly over a large region. For example, a resonator mode at w2 = 350 kHz drops
to ⇠ 7.5 ⇥ 107. This means that the resonator mode 250 kHz removed from the substrate
mode (at 100 kHz), can drop by more than 25 %. If the resonator mode is even closer, this
effect is even stronger. This is an important observation because in this model there is only
1 substrate mode that can affect the resonator, while a real substrate has more modes which
can deteriorate the Q-factor.

2.3 Conclusion

To conclude, resonant frequencies of mechanical resonators can be determined by either
calculating the eigenfrequencies or from the peaks in the frequency response, each with a
specific mode-shape. In a damped system, the magnitude at a mode is lower with higher
damping, which means that that mode loses more energy. Minimizing energy loss increases
the Q-factor, which in turn decreases the thermomechanical force noise of a resonator used
as a sensor. Resonators made of thin high-stress SiN that are placed in high vacuum, are
dominated by bending and radiation loss. The fundamental (geometric and material) limit
is bending loss, but in some cases, radiation loss is dominating. Limiting mode-coupling
with the substrate is one method of reducing radiation losses, and getting closer to the fun-
damental limit.

Mode-coupling is the interaction (energy exchange) between modes of a system. In this
chapter, we assumed that a 1 DOF resonator is placed on a 1 DOF substrate, and analyzed
the influence of mode-coupling on the Q-factor. Although this two mass-spring-damper
model has been widely considered in many mechanics text-books, this is used for the first
time to calculate the effects on the Q-factor in hybridized systems, and also relates it to
behavior of (nano)mechanical resonators on a microchip.

We have found that mode-coupling can decrease the Q-factor significantly. In this simpli-
fied analytical model the Q-factor could decrease up to 25%, even when the mode of the
resonator is 250 kHz removed from the substrate mode located at 100 kHz. When the res-
onator mode is even closer, it can even decrease up to several orders of magnitude. We can
reduce the ’region of influence’ of this mode-coupling by increasing the mass of the sub-
strate or by decreasing the damping of the substrate. In this analytical model, there is only
1 substrate mode. To investigate the effect of multiple substrate modes we use numerical
models, see section 3.1, where we can analyze more complex geometry.
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3 Methods

In the previous chapter, we introduced a simple mathematical model of a resonator coupled
to a substrate. However, that model is, of course, overly simplified. The 2 DOF model
used in section 2.2 only has two modes while a real system has infinitely many. We want
to affirm this mode-coupling effect both numerically and experimentally. In this chapter,
we introduce the finite element method (FEM) to simulate resonator models with complex
geometry, and the measurement setup with the experiments.

3.1 Numerical simulations

The simulations are done in COMSOL multiphysics. We use a variety of different models
because for some simulations we want to sweep a multitude of parameter combinations,
which, in the case of a very high fidelity model, can easily take a day of run time. This is
of course not always practical and necessary. We, therefore, design models that are able to
produce results for the specific case.

3.1.1 String model

FIGURE 3.1: String resonator model with isotropic loss factor hs = 1 ⇥ 10�3

in the substrate and hs = 1 ⇥ 10�10 in the SiN resonator.

We start with a string resonator with nominal parameters as presented in table 3.1, of which
we know that radiation losses are the dominating damping mechanism [12]. The model
consists of a 3D structure of silicon, which acts as the substrate, and a 2D shell structure of
SiN which includes the resonator (the resonator has a large aspect ratio typically >100 µm
in length and <200 nm in thickness [7], [12], [21]). These two parts are connected using a
thin-solid structure connection. An ’isotropic loss factor’ hs is added to the material, this sim-
ulates the intrinsic loss of resonator (see section 2.1.4). With hs = 1 ⇥ 10�3 in the substrate
and hs = 1 ⇥ 10�10 in the SiN resonator. We use this parameter as a fit parameter to achieve
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Parameter value
Si chip thickness 500 µm

SiN film thickness 50 nm
String width 10 µm
Fillet radius 20 µm
Initial stress 1 GPa

Overhang size 10 µm
Resonator length 700 µm
Substrate width 10 mm ⇥ 10 mm

TABLE 3.1: Nominal values for string resonator design parameter.

a large difference in the Q-factor between the resonator and substrate. The 2D SiN shell is
under high initial tensile stress of 1 GPa, therefore we first simulate the static equilibrium
(stationary study). This step computes the stresses and strains in the model and deforms
the model accordingly. Afterward, the eigenfrequency analysis is performed, used to com-
pute the eigenmodes and eigenfrequencies. Here we are able to plot the mode shape of the
resonator and calculate the corresponding Q-factor at the computed eigenfrequencies.

3.1.2 Mode-shape dependence

In the analytical model both degrees of freedom, and thus motion, were in the same direction
(x1 and x2). If one DOF was orthogonal to the other, it would imply that they would be
uncoupled, that is, the motion of body 2 would not be affected by the motion of body 1
because the motion amplitude would not be in that direction. In numerical simulations,
we consider in the order of 105 DOF. The result is distinct mode-shapes at the resonance
frequencies. If we consider the two bodies to be the resonator and the substrate, some of the
substrate-modes will have a large motion amplitude at the location of the resonator, while
others do not. We suspect that resonator modes only couple to substrate modes where there
is motion amplitude (in the same direction) in these modes.

Here we test this hypothesis by changing the location of the resonator such that it lies on
a node / anti-node of a substrate mode and analyze if and how the location influences
the mode-coupling. First, we model a 10x10 mm2 by 500 µm thick silicon substrate with a
100 nm thin high-stress SiN film. We do not model the resonator, since that will not change
the eigenfrequencies of the substrate significantly and reduces computation time. We use
this to get an idea of the substrate mode-shape and compare it to experimental data to see
if we can accurately predict the location of the substrate modes, and their shape. Then, to
check the hypothesis, we use the string resonator model and simulate the resonator in two
locations. The mass density of the center pad of the resonator is changed by multiplying the
density of the material with a parameter. This is done to change the mass of the resonator
and thereby changing the resonance frequency, as done in the analytical study, see section
2.2.3. By sweeping this parameter we can numerically verify the analytical results. We
compare the calculated Q-factors of the node design with those of the anti-node location.

3.1.3 Film and substrate thickness

The results found in ref. [7] showed that in thin substrates the Q-factor is limited by ra-
diation loss, see figure 1.3. Here we want to investigate the idea of mode-coupling in the
context of that study. We do this by varying the film and substrate thickness of the string
model w.r.t. nominal values, then sweep the mass of the center pad of the string (changing
its resonance frequency) and thereby crossing different substrate modes.



3.1. Numerical simulations 21

FIGURE 3.2: Trampoline resonator model created by [46]. It is used to deter-
mine a parameter to sweep the resonance frequency, and to design the chips

for the experimental phase.

From equation 1.2, we expect the Q-factor to increase with thinner SiN films. We simulate
for different film thicknesses (t f ), and plot the calculated Q-factor for each eigenfrequency
of the resonator (different masses) and substrates. The goal is to 1) verify if decreasing the
film thickness increases the Q-factor in this numerical model as the theory suggests, and 2)
investigate if the film thickness has an influence on mode-coupling.

Next, it could be argued that with thinner substrates there is more bending of the substrate,
and therefore more radiation loss. From our analytical models, it can be seen that thinner
(lower mass) substrates, the ’region of influence’ is larger. Furthermore, because thinner
substrates are less stiff, the frequency spacing between modes is lower, that is, there is a
higher density of modes. The aforementioned reasons could explain why resonators on thin
substrates are dominated by radiation loss. We repeat the previous simulations, but now
for different substrate thicknesses. The goal is to 1) verify if thinner substrates have a larger
region of influence of mode-coupling, and 2) if mode-coupling can be limiting the Q-factor.

3.1.4 Substrate damping

When two modes couple, the Q-factor of the higher Q mode decreases, and that of the lower
Q mode very slightly increases (heavily favoring the supporting body, see fig. 2.8). Previous
studies showed that any form of clamping reduces the Q-factor of high Q resonators [12],
[27]. Here we want to investigate if this can be explained due to mode-coupling. The idea is
that if tape were to be used as a clamping method, as done in ref. [12], the added damping
of the tape could reduce the Q-factors of substrate modes.

For this simulation, we compute the Q-factor of the string resonator, similar to the previous
section, and compare differently damped (hs) substrates. The expected result is that when a
resonator mode couples to a relatively low Q substrate mode, the reduction in the Q-factor
is higher, compared to when the resonator mode couples to a relatively high Q substrate
mode.

3.1.5 Manipulating the resonance frequency

To experimentally see the influence of mode-coupling on the Q-factor, we want to apply the
same technique used in the numerical simulations, i.e. changing the resonance frequency
spacing between a substrate mode and resonator mode. Since a substrate parameter can
not be changed in one sample (we compare Q-factors within one chip, to limit the variance



22 Chapter 3. Methods

due to fabrication), we look at the resonator design parameters. We want to control the
resonance frequency of the resonator, without changing the overall behavior too much.

We model a trampoline resonator (see fig. 3.2), as used in the experiments. Again, it is
a 2D SiN shell structure (incl. trampoline resonator) on top of a 3D Si substrate. No loss
mechanism is added, because 1) the exact values are still unknown, 2) to limit computation
time, and 3) it does not change the resonance frequencies significantly. A custom mesh
setting is used to achieve a high fidelity at the small length-scale resonator while keeping
the total number of nodes limited. The SiN film is under a high initial of 1 GPa, thus we
first simulate the static equilibrium and then compute the eigenfrequencies. We decided
to sweep the outer fillet, membrane size, tether width, and PhC ratio (=how much of the
membrane is used as a photonic crystal, i.e holes) w.r.t. nominal values, see table A.1 in the
appendix. Varying these parameters would be easy to fabricate in one chip.

The results are shown in appendix A.2. The first three parameters have also been measured
in ref. [7], and received similar results with a slightly different design. The outer fillet also
seems like a good parameter, but there is some debate about the influence of outer fillet on
radiation loss [18], [47], and we want to carefully control what is happening. The same argu-
ment can be made for the tether width, since the tether width is closely linked to radiation
loss, as Qclamp µ L

w [7], [12]. Therefore those two were not chosen. Increasing the membrane
size increases the amount of material that bends, creating more bending losses. Further-
more, the f ⇥ Q product changes, as found by [7]. As said before we want the minimum
change in design because we only want to change the resonance frequency. Therefore, we
chose to use the PhC ratio because it is easy to control (small increments), and it does not
affect the other important parameters as much.

3.2 Measurement setup

In order to experimentally determine the influence of mode-coupling on the Q-factor, we use
the setup outlined in fig. 3.3. With this setup, we can measure the frequency response, deter-
mine the Q-factor, and we can study the mode-shapes of both the substrate and resonator.
Especially looking at the mode-shape of the measured geometry is a powerful technique
not often used in the literature. It is useful to convincingly say which modes are substrate
modes and which are resonator modes. Furthermore, it shows where the (anti)nodes of the
scanned geometry are when looking at the mode-shape of the substrate.

The trampoline resonators are characterized in the frequency domain with a fiber optic in-
terferometer (MSA-400 Polytec GmbH) at room temperature in a high vacuum (pressure 
1 ⇥ 10�5 mbar) to minimize viscous damping. The resonator motion was actuated in the lin-
ear regime with a piezoelectric shaker (using a pseudo-random signal) and detected with a
laser Doppler vibrometer (He-Ne l = 633 nm) with a microscope objective of 3x, 5x, and 20x
magnification. The signal is decoded by the OFV-5000 vibrometer controller in real-time.
The data management system (DMS) is connected to the controller through the junction
box, which also provides excitation signals for the piezoelectric shaker. The whole system is
placed on a pneumatic damping table (TMC CleanBench), to isolate it from vibrations. The
mode-shape can be analyzed with the DMS using the Polytec ScanViewer (PSV).

Furthermore, ring-down measurement (see 2.1.3) in the time-domain to determine the Q-
factor can be performed using the same system. First, in the frequency domain, using a
pseudo-random signal, the resonance frequency is determined. Then, the resonator is ac-
tuated using a sine signal at resonance. The signal is turned off when the steady-state is
reached, and in the time domain, the displacement amplitude is measured.
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(A) Schematic of the setup. (B) Photo of the setup.

FIGURE 3.3: Measurement setup: fiber optic interferometer, the MSA-400
from Polytec GmbH.

3.3 Experimental measurements

To experimentally investigate the influence of mode-coupling on the Q-factor, multiple ex-
periments are done. These experiments are compared to the numerical simulations to see if
this model can be used for the design of other resonators. For all experiments, we use high-
stress SiN trampoline resonators on top of a silicon substrate, similar to those used in ref.
[7]. These structures are easy to measure, and there is a lot of experience within the research
group of making these kinds of resonators. Multiple trampoline resonators are fabricated
on a single chip, using the fabrication process as discussed in section 2.1.5. This is done to
1) increase the amount of data gathered from one chip and 2) decrease variance between
resonators (due to chip thickness, film thickness, etc).

3.3.1 Substrate characterization

The substrate needs to be well characterized in order to do some of the experiments. We
have already simulated the substrate to numerically get the eigenfrequencies and mode-
shapes. To verify if these numerical simulations represent the reality, we compare them to
measured data to check how well the data matches. If the data matches well, we can use this
information to design and fabricate chips for other experiments. We fabricate a chip with the
same dimensions as in the simulations, and measure the frequency response to determine
the eigenfrequency, and resolve the mode-shape to compare this to the simulated data.

3.3.2 Influence of clamping

For now, we expect the resonator to couple to substrate modes. In this experiment we want
to investigate the effect of placing the chip on the piezo with different methods, namely: 1)
under its own weight, and 2) using double-sided tape, see figure 3.4. We do this to show
that we can engineer the Q-factor of resonators by engineering the substrate, in this case
reducing the Q-factor of the substrate by taping it down. We can compare the substrate
and resonator Q-factors for the two clamping methods. We expect the substrate modes to



24 Chapter 3. Methods

be much more damped in the case of using double-sided tape and therefore decreasing the
Q-factor of the resonator.

FIGURE 3.4: Placing the chip on the piezo using two clamping methods: 1)
under its own weight (left) and 2) using double-sided tape (right).

To investigate this, we fabricate nine trampoline resonators (3x3) on a 10⇥ 10mm2 substrate
of 500 µm thick. The trampolines are designed to have a resonant frequency of ⇠328 kHz.
The chip is placed on a piezoelectric shaker to drive the resonator. We will measure the
frequency response of the resonator and substrate with the two clamping methods, and
perform ring-down measurements to determine the Q-factor.

3.3.3 Influence of frequency spacing

In this experiment, we want to combine the gathered information and experimentally mea-
sure the influence of frequency spacing on mode-coupling and thereby on the Q-factor. We
have characterized a 500 µm thick chip, on which we want to cross one of the substrate
modes with the resonator mode. To investigate this, we have fabricated 25 trampoline res-
onators, see fig. 3.5, in a 5x5 array on a 500 µm thick chip. The trampoline resonators are de-
signed such that each row has a slightly different resonance frequency (± 2.5 kHz), achieved
by varying the photonic crystal ratio, see inset fig. 3.5. Our aim is that the middle row will
overlap with a substrate mode at 120 kHz. We have identified the substrate mode, and lo-
cated the nodes and anti-nodes. Since we use a 5x5 array, which spans a large area of the
substrate, we can also experimentally verify the mode-shape dependence. We expect that
the experimental results show the same behavior as the numerical simulations, that is, res-
onators which modes are closer to the substrate mode in frequency will show a decrease
in Q-factor, and the resonators that lie on a node of the substrate mode-shape will not be
affected as much.

FIGURE 3.5: Example of the trampoline resonator. Inset: Zoom-in of the pho-
tonic crystal.
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4 Results and discussion

In this chapter, the results of the numerical simulations and experimental measurements
are presented. Here we discuss the mode-shape dependence of the coupling between the
resonator and substrate modes, furthermore, we look at the influence of substrate thickness
and Q-factor of substrate modes on mode-coupling. Next, the results of the experimental
measurements are discussed. Two different experiments are done, 1) the chip clamping and
2) the crossing of a substrate mode. The experimental results are compared to those of the
simulations to see if the model predicts the behavior of the Q-factor due to mode-coupling.

4.1 Mode-shape dependence

Before we can investigate the mode-coupling to the substrate, we first need to discuss the
shape of the substrate modes. In this section, we discuss the results of the mode-shape
dependence. First, we characterize the substrate, and then we present the results of the
influence of resonator location on the substrate.

4.1.1 Substrate characterization

FIGURE 4.1: Simulated (green) eigenfrequencies and measured (blue) fre-
quency response of a 500 µm thick 10x10mm2 substrate.

In fig. 4.1 we plot the experimental data (blue graph) and the simulated resonance frequen-
cies (green lines) in the frequency range between 140 kHz - 330 kHz (the whole spectrum can
be found in the appendix in fig. A.2). The simulations match well with the measured data.
We find the correct number of modes, but there are some discrepancies in frequency, which
is expected due to the boundary conditions (i.e. chip placement) and fabrication tolerances.
The largest frequency mismatch is 15 kHz, which means that, with help of the numerical
simulations, we can predict the substrate modes with 90% accuracy. The frequency of the
substrate mode is not the only important parameter. All these modes have different shapes,
thus we have to check if the mode-shape of the simulated data matches with that of the
measured data. We find that the shapes of the different modes match well, three examples
are shown in fig. 4.2.
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FIGURE 4.2: Measured (top) and simulated (bottom) mode-shapes of the
500 µm thick substrate. Note that the measured mode shape is not the whole
substrate, only the center part with the 3x3 array, see fig. A.1 in the appendix.

4.1.2 Nodes and anti-nodes

To investigate the influence of mode-shape on Q-factor we have selected the substrate mode
simulated at 292 kHz. This mode has a node at the center of the substrate, and anti-nodes
in the four corners (1.8 mm in x and y direction w.r.t. the center). We have plotted the
results in fig. 4.3. Each data points represent a simulation with a slightly different mass
to sweep the resonance frequency of the resonator. When the resonator is located at an
anti-node (fig. 4.3 orange crosses), the resonator mode couples strongly to the substrate
mode, which decreases the resonator’s Q-factor by several orders of magnitude when the
frequency spacing between the two modes is close. On the other hand, when the resonator
is located at a node (fig. 4.3 blue crosses), the resonator does not couple (nearly as strong)
to this particular mode and only has a minimal effect on the Q-factor when the modes are
close in frequency.

FIGURE 4.3: We simulate the Q-factor of resonators at two locations and find
that the mode-shapes of substrate modes are important to consider. This is
because when the resonator is located at a node (blue) the mode-coupling and
thus effect on the Q-factor is minimal, while at an anti-node (orange) it couples

strongly, and the Q-factor decreases several orders of magnitude.
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FIGURE 4.4: Frequency response of a corner resonator (orange) and the center
resonator (blue). The substrate mode at 282 kHz is only visible in the corner

resonator response. Inset: mode-shape of the substrate at 282 kHz.

Thus, we find that when the resonator lies on a node of the mode-shape, it does not couple
(as strongly) to that mode, and when it lies on an anti-node, it couples strongly to that mode.
This is an important observation because in experiments of high Q resonators it is often the
case that multiple resonators are measured on the same chip (i.e. with different locations).
This could in general explain many of the variances that many experiments measure with
resonators on a chip. If the resonators are located unfavorable with certain modes, there will
always be variance in the Q-factor, even if the resonators are designed and made perfectly.
This means that correct placement on the chip matters a lot. Furthermore, it can explain
why in ref. [26] while crossing substrate modes, the dissipation is not proportional to the
measured frame amplitude.

We tested this experimentally by measuring the frequency response of two resonators at
the center and corner location of the clamping experiment. In the experiment, the substrate
mode is located at 282 kHz instead of 292 kHz, but from the mode-shape measurement, see
inset in fig. 4.4, we can see that the corner resonators are located at the anti-nodes of the
mode-shape, while the center resonator is located at a node. The frequency response is plot-
ted in fig. 4.4. When we compare the top right corner resonator (orange) with the center
(blue) resonator we see that the substrate mode is only visible in the resonator response of
the top right, because there is motion amplitude here. Therefore only these (corner) res-
onators can couple to this mode and experience a decrease in the Q-factor when the modes
are close in frequency. For the center resonator, the substrate feels like a fixed boundary.

4.2 Mode-coupling

In this section, we discuss the results of numerical simulations where we try to explain why
radiation loss dominates in the findings of ref. [7] and [12]. We investigate the influence
of mode-coupling on Q-factor in resonators with different film and substrate thickness, and
we also consider differently damped substrates.

4.2.1 Influence film thickness

The results of the simulation for SiN film thickness comparison are plotted in fig. 4.5. The
substrate modes are easily recognizable because they have a Q-factor of 103. We find that the
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20 nm films have roughly a factor five higher Q-factors (⇠ 7.5 ⇥ 108) than those of 100 nm (⇠
1.5 ⇥ 108), which agrees well with the expected results (considering the first part of equation
1.2 with nominal values and comparing the film thickness t f ).

FIGURE 4.5: The simulated Q-factors for substrate and resonator modes with
different SiN film thickness.

The resonator is intrinsic loss limited over a wide range of resonance frequencies and in
all cases it couples to the substrate mode at 240 kHz, decreasing the Q-factor up to several
orders of magnitude. We can thus accept that different film thickness does not affect mode-
coupling. Mode-coupling should be visible experimentally in resonators no matter the film
thickness (100 nm). The effect of mode-coupling is stronger when the difference in the
Q-factor is higher (achievable by using very thin resonators). This means that ultra-high Q
resonators are much more susceptible for a decrease in the Q-factor due to mode-coupling.
It is, therefore, useful to fabricate chips with thin SiN films for experiments, however, very
thin films are often difficult to fabricate. Furthermore, with a 5 order difference in the Q-
factor between the two modes, the decrease in the Q-factor due to coupling of a resonator
mode 20 kHz removed from the substrate mode is negligible.

4.2.2 Influence substrate thickness

The results of the substrate thickness comparison are plotted in fig. 4.6. We have normalized
the frequency for the coupled substrate mode to better compare the results. Firstly we find
that the thinner substrates couple to the resonator at a larger range of frequencies, i.e. the
effect nearby is stronger and the curve is wider. This agrees well with what was found in
the analytical calculations, see figure 2.8.

Another important observation is that the resonator on a 200 µm substrate does not reach
its intrinsic limit, and is thus limited by radiation loss due to mode-coupling (at least for
the simulated frequencies). This is because the resonator couples to multiple modes, which
are closer together in frequency spacing with thin substrates (w µ t). Since we concluded
that mode-coupling happens with all film thickness, this might explain why [7] found that
in thin substrates with thin SiN films did not increase in the Q-factor as expected.
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FIGURE 4.6: The simulated Q-factors for substrate and resonator modes with
substrates of different thicknesses.

4.2.3 Influence of substrate damping

The results of the differently damped substrates are plotted in fig. 4.7. We have used the
values hs = 10�2, 10�3, and 10�4. Those result in substrate modes with Q-factors of 102,
103, and 104, respectively, which are reasonable values for substrate modes under different
clamping conditions (e.g. free standing and tape the substrate down). From the results, it
can be seen that the resonator is limited at a Q-factor of 108 and that when the substrate
mode has a lower Q-factor, the reduction in the Q-factor is greater compared to the higher
Q substrate. This agrees well with our expected results.

FIGURE 4.7: The simulated Q-factors for substrate and resonator modes with
differently damped substrates.
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4.3 Experimental: Chip clamping

4.3.1 Influence of tape on Q-factor

(A) Q-factors of the PhC chip. (B) Q-factors of the original clamping chip.

FIGURE 4.8: The Q-factors of chips resting under its own weight (blue) and
taping the chip down (orange).

We have taped down both chips, that is, the original chip for the clamping experiment and
the chip for the frequency spacing (we call this the PhC chip). The Q-factors, determined
by the ring-down measurements, are plotted in fig. 4.8. When we compare the Q-factors
of the PhC chip, see fig. 4.8a, we can see a clear trend that the Q-factors are reduced by
taping it down. The Q-factors of the free chip are approximately 1.8 ⇥ 106, while those of
the taped down are limited to approximately 1 ⇥ 106. Thus we see a decrease of a factor 2
in the Q-factor when the chip is taped down. A decrease in the Q-factor is predicted by the
simulations, see section 4.2.3.

However, when we compare the Q-factor of the original chip, see fig. 4.8b, we find that
there is no clear trend. We attribute this due to the fact that other loss mechanisms dominate
here. These measurements were done in a different vacuum chamber, reaching pressures of
just below 1 ⇥ 10�5 mbar. Gas damping might limit the Q-factors instead of radiation loss,
which will be discussed further in appendix A.5. Furthermore, the substrate mode might be
too far away, we will analyze this in the next section.

4.3.2 Analysis of the frequency response

When we compare the taped chip and the chip resting on its own weight, we can see a big
difference in the frequency response. We have plotted the results of this experiment in fig.
4.9. The top figure shows the substrate response and the bottom figure shows the resonator
response under its own weight (blue), and clamped down with tape (orange), respectively.

The difference in the frequency response is especially noticeable in the original chip, see
fig. 4.9b. We find that when the sample is clamped down with double-sided tape, the
added losses from the tape drastically reduce the Q-factor of the substrate modes. When
we compare this to the expected analytical results we see that it matches well. In the case
where the chip rests under its own weight, the substrate modes are visible in the resonator
response, while the resonator mode is not visible in the substrate response. When looking
at the taped down chip, the substrate modes are reduced to broad peaks, as a result, we also
do not see these modes in the resonator response, as expected from the analytical models.
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(A) Frequency response of PhC chip. (B) Frequency response of the clamping chip.

FIGURE 4.9: Frequency response of the substrate (top) and resonator (bottom).
We compare the chip resting under its own weight (blue) and taping the chip

down (orange).

In the other chip, see fig. 4.9a, the substrates modes are completely buried in the noise
floor. This is most likely due to the use of the different vacuum chamber, while it can reach
a greater vacuum, the chip driving is very inefficient. Furthermore, because this chip is
1 mm, there are fewer substrate modes compared to the 500 µm thick chip (twice as dense
in modes). Therefore, the influence of the tape on the substrate is much more visible in the
500 µm thick chip.

4.3.3 Clamping discussion

The frequency spacing between the resonator mode and the nearest substrate mode in the
original clamping chip is 15 kHz, see fig. 4.9b. In the simulations, there is still a decrease
in the Q-factor when the modes are 15 kHz removed, but it is not as strong. Furthermore,
the uncoupled Q-factor is also 2 orders of magnitude higher (108 instead of 106). The reason
why we did not see a decrease in the Q-factor in this chip can be explained by the fact that
the modes are to far apart in combination with the small difference in the Q-factor of the two
modes. When we compare this to the PhC chip, which was specially designed to have the
modes overlap, there is only 3 kHz between the resonator and substrate mode, and we can
clearly see the decrease in the Q-factor. As mentioned before, another explanation might be
that we did not have a high enough vacuum, and thus that the resonator is gas damping
limited.

In ref. [12] tape was used as clamping and a general trend of a decrease in the Q by a factor
of two was found for different width string resonators (w = 5 � 30 µm). This result agrees
well with our findings in the taping of the PhC chip, see fig. 4.8a. In their study, a 350 µm
thick substrate was used, which results in lots of substrate modes to which the resonator
can couple. An experiment that can verify this is, using a 1 mm thick substrate and design a
resonator such that it is far away from a substrate mode. When comparing the taped down
with a free-standing chip, no difference in the Q-factor would be expected. Lastly, a general
trend in a decrease in resonance frequency in the taped down chips was found. This result
has not been reported by [12].
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4.4 Experimental: frequency spacing

4.4.1 Crossing a substrate mode

From the 25 resonators, 17 were usable, the other 7 either broke or had dust on them. The
frequency response of one trampoline resonator for each of the five rows are plotted in fig.
4.10. We can clearly identify the substrate mode at 118.4 kHz, and five different frequencies
for the trampoline modes between 116.3 kHz and 121.2 kHz. We note here that each row
should have a decrease in resonance frequency of about 2.5 kHz, this was unfortunately not
the case. We will discuss this in more detail in the next section.

FIGURE 4.10: Frequency response of the substrate (top) and resonators (bot-
tom).

In fig. 4.11a we have plotted the Q-factor from three ring-down measurements for each of
the trampolines against the frequency (with the black line being the substrate mode) at the
highest available vacuum. The red data points indicate pressures just below 1 ⇥ 10�5 mbar,
and might still be dominated by gas damping. In fig. 4.11b we present the location data for
each of the Q-factors. The bottom row, which all have resonance frequencies lower than that
of the substrate mode (<118.4 kHz), have the lowest Q-factors and seem to be limited to ⇠
1.3 ⇥ 106. Furthermore, resonators with frequencies further away seem to first increase in
the Q-factor, but then decrease again after ⇠120 kHz. This is not the expected result, reasons
for this will be discussed in the next section..

4.4.2 Frequency spacing discussion

We see a decrease in the Q-factor when the resonator mode is lower in frequency than the
substrate mode. The chip was designed such that the trampolines on every row of the 5x5
array had a different resonance frequency, where the third row would overlap with the sub-
strate mode. The data shows that this was not the case. The frequency spacing between the
membranes was less than expected. Because of this, only data of -2.1 to +2.8 kHz around the
substrate mode could be gathered. We can clearly see a difference in the Q-factor between
the bottom row (all resonance frequencies lower in frequency w.r.t. substrate mode) and the
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(A) Q-factor vs frequency. (B) Q-factor vs location (numbers inside squares repre-
sent resonance frequency).

FIGURE 4.11: Results of the PhC sweep.

other four rows. Getting the fabrication right for this experiment is something we can still
improve on to really see this v-shape seen in the simulations.

Unfortunately, there were some fabrication issues. First of all, a 1 mm thick silicon substrate
was used, instead of the designed 500 µm. From the simulations, we have found that with
thicker substrates, the effect of mode-coupling on Q-factor is less strong compared to thinner
substrates. The increased thickness of the Si substrate in combination with a 100 nm thick
SiN film (going much smaller is difficult) might just not be a good enough combination to
see the influence of mode-coupling.

Furthermore, due to an issue with the alignment of the dicer, the chip was diced in a trape-
zoid shape, instead of a square shape. This caused the substrate modes to differ from simu-
lations, fortunately, one substrate mode was still usable to test our hypothesis. We measured
the frequency response and mode-shape of the substrate, and simulated a 1 mm thick sub-
strate with approximate dimensions. The mode-shape of the simulation is shown in fig.
4.12, and matches well with the experimental data, see appendix A.6. We can see that there
are not really any nodes, thus we can also not compare this.

FIGURE 4.12: Simulated mode-shape at 126 kHz.
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At least three ring-down measurements were performed for each resonator. Some of the data
was measured above 1 ⇥ 10�5 mbar, this data was excluded because in this pressure regime
the resonators were gas damping limited (all data points can be found in appendix A.7).
This can be supported further by the data, where a large increase in the Q-factor was found
in general when decreasing the pressure from >20 ⇥ 10�6 mbar to 7.3 ⇥ 10�6 mbar. When
looking at more specific pressures, we find no increase in the Q-factor of resonator 20 when
decreasing the pressure from 9.3 ⇥ 10�6 mbar to 7.0 ⇥ 10�6 mbar, while we do see a slight
increase in the Q-factor for resonator 22 when decreasing the pressure from 13 ⇥ 10�6 mbar
to 7.3 ⇥ 10�6 mbar.We note here that we were only able to measure up to 7.0 ⇥ 10�6 mbar.
Thus, even though the total Q-factor is not dominated by gas damping, it could still play
a large role for the higher Q resonators. It is therefore interesting to repeat the experiment
in a higher vacuum, i.e. <1 ⇥ 10�6 mbar. Furthermore, the membrane with a Q-factor of ⇠
0.5 ⇥ 106 was most likely driven at the wrong frequency or had small imperfections causing
it to have such low values.
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5 Conclusion and Outlook

5.1 Conclusion

In this thesis, we studied the influence of mode-coupling with the substrate on the Q-factor
of high-stress SiN resonators. The hypothesis is that the Q-factor can be limited due to
mode-coupling with the substrate. This was investigated by analyzing different aspects of
the substrate. We can conclude that a resonator mode can couple to a nearby substrate mode
and drastically reduce the Q-factor.

The mode-shape of the substrate mode is important to consider, because coupling with the
substrate mode only happens at anti-node locations, where the relative motion amplitude
of the mode is high, that is, motion in the same direction. On the other hand, nodes of the
mode-shape do not couple with the resonator. Experimentally this has been shown to be the
case because substrate modes do not appear in the response of resonators located at nodes.

Furthermore, the frequency spacing between the resonator and substrate mode is important,
because substrate modes close in frequency w.r.t. the resonator mode can couple and ex-
change energy. Since the substrate modes have a relatively low Q-factor, energy is lost faster
in these modes. This means that if a resonator mode couples to a substrate mode, energy is
lost through the substrate and, therefore, reduces the Q-factor. The closer these modes are
in frequency, the stronger the coupling and a greater reduction in the Q-factor. When the
modes overlap, the Q-factor of the hybridized mode is significantly reduced. Thinner sub-
strates have a higher density of modes, this means that there are more potential substrate
modes to couple with, and can even limit the Q-factor in ultra-high Q resonators.

Lastly, we have investigated the influence of clamping the substrate down with tape. We
conclude that tape drastically reduces the Q-factor of substrate modes. As a result, resonator
modes that couple have a decreased Q-factor. This means that using any form of clamping
is not recommended, but instead use the chip free standing.

Our results demonstrate that the substrate choice, as it can strongly affect the Q-factor of
resonators, should become an integral part of the resonator design phase. In most real ap-
plications we need to clamp down the chip in some way. This theoretical framework allows
us the possibility to design our resonators so that we get minimal influence from substrates
that realistically need to be clamped down for stability in real sensor applications. Also, it
allows us to understand that, even if our resonator fabrication is perfect, we can still get
variance in their performance just by where the resonators are placed on a substrate.

This research is important for ultra-high Q resonators because these are very sensitive to
extra energy loss. In this study, we used resonators with a Q-factor of order 106, while the
state of the art achieve Q-factors of over 108. With these ultra-high Q-factors, the substrate
becomes more and more important to consider, because it can be the limiting factor. Eventu-
ally, resonators that do not use a phononic shield, have to consider the substrate when radi-
ation loss starts to dominate. When using thick and freestanding substrates, the influence of
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mode-coupling can be decreased. Furthermore, when taking into account the resonance fre-
quencies and mode-shape of the substrate, this effect can be further reduced. These results
can be used with minimal changes in the fabrications method, and can enhance the Q-factor
of devices without increase in device size.

5.2 Recommendations and outlook

For further research, it would be an added value to look further into the mode-coupling
while crossing a substrate mode. In this project, we were not completely successful in
achieving the range of frequencies we had planned. Using the photonic crystal to achieve
the frequency range looks promising, but the correct method for fabrication needs to be in-
vestigated. Repeating the experiment with the new knowledge of mode-shape dependence,
a greater understanding can be formed. This can be combined with a comparison of placing
resonators on both nodes and anti-nodes.

The model presented in this thesis explains the behavior well, but further research needs to
be done to find the correct parameters to accurately predict Q-factors. In our model, we have
fitted the structural loss parameters such that a Q-factor of approximately 108 was achieved
when the modes did not couple, however, how to accurately model this loss mechanism is
unknown. To calculate the Q-factor for intrinsic loss, the energy in tension and bending can
be computed using FEM software, but this does not take into account the substrate. We have
thought of ways to expand this to include the substrate, but have not succeeded as of yet
and could be valuable future research.

Furthermore, some time was spend on investigating the influence of the overhang on the
Q-factor. In some studies, the overhang can be quite significant and can be regarded as
an intermediate substrate. The overhang can have its own set of resonance frequencies,
and the Q-factor will have dropped since it is not under the high stress that the resonator
experiences. The exact role it plays remains unknown.



37

A Appendix

A.1 Nominal values for trampoline resonator

In table A.1 the nominal values for the trampoline resonator are presented.

Parameter value
Si chip thickness 500 µm

SiN film thickness 50 nm
Tether width 10 µm

Outer fillet radius 20 µm
Inner fillet radius 100 µm
membrane width 200 µm

Initial stress 1 GPa
Overhang size 10 µm
Window width 700 µm
Substrate width 10 mm ⇥ 10 mm

PhC Ratio 0.4

TABLE A.1: Nominal values for trampoline resonator design parameter.

A.2 Results of parameter sweep on resonance frequency

In table A.2 the results of the resonance frequencies from the parameter sweep are presented.

Outer Membrane Tether
fillet freq size freq width freq PhC freq⇥

10�6 m
⇤

[kHz]
⇥
10�6 m

⇤
[kHz]

⇥
10�6 m

⇤
[kHz] ratio [kHz]

5 159 60 220 10 151 0.4 161
10 162 80 190 15 179 0.45 155
15 165 100 169 20 202 0.5 150
20 169 120 150 25 220 0.55 145
25 172 140 135 30 233 0.6 141
30 176 160 125 35 246 0.65 137
35 180 180 116 40 256 0.7 133
40 185 200 108 45 265 0.75 130
45 189 220 102 50 275 0.8 127
50 194 240 98 55 281 0.85 125

250 95 60 290 0.9 121

TABLE A.2: Different parameter sweeps and their effect on the resonance fre-
quency.
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A.3 Sample in vacuum chamber

In fig. A.1, a photo of the vacuum chamber with a chip is shown. The chip was used to com-
pare the mode-shape of the simulations with experimental data. Even lowest magnification
could not capture the whole chip. In this figure we show the ratio between measured data
and the whole chip (see section 4.1.1).

FIGURE A.1: The polytec is not able to capture the whole chip in one measure-
ment due to the magnification of the lens. When looking at the mode-shape

the placement of the 3x3 array can be used to estimate the scale.

A.4 Substrate frequency comparison

We compared the simulated and measured resonance frequencies. In fig. A.2 we show the
data from 0 to 500 kHz. Furthermore, we also show a zoom-in of two modes very close in
frequency, to show that these are predicted as well, see fig. A.3.

FIGURE A.2: Total measured spectrum (blue) of a 500 µm thick substrate. The
green lines are the eigenfrequencies of a simulated 500 µm thick substrate.
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FIGURE A.3: A zoom-in of the measured spectrum (blue) of a 500 µm thick
substrate, where we measure two modes, which is also predicted by simula-

tions (green lines).

A.5 Gas damping limited Q-factor

FIGURE A.4: Q-factors limited by pressure.

We know that the total Q-factor is calculated as 1
Qtotal

= 1
Qviscous

+ 1
Qbending

+ 1
QTED

+ 1
Qradiation

were TED was negligible by using high-stress SiN and gas damping was negligible by us-
ing a high enough vacuum. Before we can conclude if the other dissipation mechanisms
dominate the Q-factor needs to be measured while decreasing the pressure, when decreas-
ing the pressure does not change the Q-factor anymore we can accept that gas damping is
negligible.

In the molecular region, meaning the damping is caused by independent collisions of non-
interacting air molecules with the moving surface of the resonator, the Q-factor is given by
[19]

Qviscous =
rtw

4

r
p

2

r
RT
M

1
P

(A.1)
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where w is the resonance frequency, t is the resonator thickness, r is the density of the res-
onator, P is the pressure, R is the gas constant, T is the temperatureM is molar mass of the
gas. At a pressure of 1 ⇥ 10�5 mbar the Q-factor should be >108, which is greater than the
intrinsic limit of our resonators, and thus this pressure should satisfy.

The results of this experiment are plotted in fig. A.4. We find that the Q-factor increases until
a pressure of roughly 1 ⇥ 10�5 mbar, after which it stabilizes around a Q-factor of 1.4 ⇥ 106.
Our vacuum pump was able to reach this pressure after half a day of pumping. This limited
the time we could do reliable experiments.We note here that at a pressure of 1 ⇥ 10�4 mbar
the Q-factor considering only gas damping is >107, while we can clearly see it is still increas-
ing in the Q-factor. Our pressure sensor was directly attached to the vacuum chamber, so
it is unlikely it was giving a very different value. Therefore, we suspect that this equation
cannot be directly used for trampoline structures.

A.6 Mode-shape of the PhC chip

In fig. A.5 we plot the maximal substrate amplitude on the location of the resonators. The
diagonal shape is also seen in the simulated mode-shape (see section 4.4.2) and the measured
mode-shape, see fig. A.6.

FIGURE A.5: Magnitude of the substrate response per resonator.
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FIGURE A.6: Measured mode-shape of the 1 mm thick substrate.

A.7 Q-factors of the PhC chip

all Q-factors of the ring-down measurement from the PhC Sweep experiment.

FIGURE A.7: All Q-factors from the ring-down measurement in the frequency
spacing chip. The red crosses are measured at a pressure >1 ⇥ 10�5 mbar





43

Bibliography

[1] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M.
Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its
quantum ground state,” Nature, vol. 478, no. 89–92, 7367 2011, ISSN: 1476-4687. DOI:
10.1038/nature10461.

[2] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D.
Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechan-
ical motion to the quantum ground state,” Nature, vol. 475, pp. 359–363, 7356 2011,
ISSN: 1476-4687. DOI: 10.1038/nature10261.

[3] K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,”
Nature Nanotechnology, vol. 3, pp. 533–537, 9 2008, ISSN: 1748-3395. DOI: 10.1038/
nnano.2008.200.

[4] B. Ilic, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober, and P. Neuzil, “Attogram
detection using nanoelectromechanical oscillators,” Journal of Applied Physics, vol. 95,
no. 7, pp. 3694–3703, 2004. DOI: 10.1063/1.1650542.

[5] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics. 1964.
[6] Jinling Yang, T. Ono, and M. Esashi, “Energy dissipation in submicrometer thick single-

crystal silicon cantilevers,” Journal of Microelectromechanical Systems, vol. 11, no. 6, pp. 775–
783, 2002.

[7] R. A. Norte, J. P. Moura, and S. Gröblacher, “Mechanical resonators for quantum op-
tomechanics experiments at room temperature,” Phys. Rev. Lett., vol. 116, p. 147 202,
14 2016. DOI: 10.1103/PhysRevLett.116.147202.

[8] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev.
Mod. Phys., vol. 86, pp. 1391–1452, 4 2014. DOI: 10.1103/RevModPhys.86.1391.

[9] D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by mag-
netic resonance force microscopy,” Nature, vol. 430, pp. 329–332, 6997 2004, ISSN: 1476-
4687. DOI: 10.1038/nature02658.

[10] H. J. Mamin and D. Rugar, “Sub-attonewton force detection at millikelvin tempera-
tures,” Applied Physics Letters, vol. 79, no. 20, pp. 3358–3360, 2001. DOI: 10.1063/1.
1418256.

[11] S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead,
“High quality factor resonance at room temperature with nanostrings under high ten-
sile stress,” Journal of Applied Physics, vol. 99, no. 12, p. 124 304, 2006. DOI: 10.1063/1.
2204829.

[12] S. Schmid, K. D. Jensen, K. H. Nielsen, and A. Boisen, “Damping mechanisms in high-
q micro and nanomechanical string resonators,” Phys. Rev. B, vol. 84, p. 165 307, 16
2011. DOI: 10.1103/PhysRevB.84.165307.

[13] S. A. Fedorov, N. J. Engelsen, A. H. Ghadimi, M. J. Bereyhi, R. Schilling, D. J. Wilson,
and T. J. Kippenberg, “Generalized dissipation dilution in strained mechanical res-
onators,” Phys. Rev. B, vol. 99, p. 054 107, 5 2019. DOI: 10.1103/PhysRevB.99.054107.

[14] A. H. Ghadimi, S. A. Fedorov, N. J. Engelsen, M. J. Bereyhi, R. Schilling, D. J. Wil-
son, and T. J. Kippenberg, Strain engineering for ultra-coherent nanomechanical oscillators,
2017. arXiv: 1711.06247 [cond-mat.mes-hall].

https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nnano.2008.200
https://doi.org/10.1038/nnano.2008.200
https://doi.org/10.1063/1.1650542
https://doi.org/10.1103/PhysRevLett.116.147202
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1038/nature02658
https://doi.org/10.1063/1.1418256
https://doi.org/10.1063/1.1418256
https://doi.org/10.1063/1.2204829
https://doi.org/10.1063/1.2204829
https://doi.org/10.1103/PhysRevB.84.165307
https://doi.org/10.1103/PhysRevB.99.054107
https://arxiv.org/abs/1711.06247


44 Bibliography

[15] A. H. Ghadimi, D. J. Wilson, and T. J. Kippenberg, “Radiation and internal loss engi-
neering of high-stress silicon nitride nanobeams,” Nano Letters, vol. 17, no. 6, pp. 3501–
3505, 2017. DOI: 10.1021/acs.nanolett.7b00573.

[16] Y. Tsaturyan, A. Barg, E. Polzik, and A. Schliesser, “Ultracoherent nanomechanical res-
onators via soft clamping and dissipation dilution,” Nature Nanotech, vol. 12, 776–783,
2017. DOI: https://doi-org.tudelft.idm.oclc.org/10.1038/nnano.2017.101.

[17] A. H. Ghadimi, S. A. Fedorov, N. J. Engelsen, M. J. Bereyhi, R. Schilling, D. J. Wilson,
and T. J. Kippenberg, “Elastic strain engineering for ultralow mechanical dissipation,”
Science, vol. 360, no. 6390, pp. 764–768, 2018, ISSN: 0036-8075. DOI: 10.1126/science.
aar6939.

[18] M. J. Bereyhi, A. Beccari, S. A. Fedorov, A. H. Ghadimi, R. Schilling, D. J. Wilson,
N. J. Engelsen, and T. J. Kippenberg, “Clamp-tapering increases the quality factor of
stressed nanobeams,” Nano Letters, vol. 19, no. 4, pp. 2329–2333, 2019. DOI: 10.1021/
acs.nanolett.8b04942.

[19] S. S. Verbridge, H. G. Craighead, and J. M. Parpia, “A megahertz nanomechanical
resonator with room temperature quality factor over a million,” Applied Physics Letters,
vol. 92, no. 1, p. 013 112, 2008. DOI: 10.1063/1.2822406.

[20] S. Chakram, Y. S. Patil, L. Chang, and M. Vengalattore, “Dissipation in ultrahigh qual-
ity factor sin membrane resonators,” Phys. Rev. Lett., vol. 112, p. 127 201, 12 2014. DOI:
10.1103/PhysRevLett.112.127201.

[21] C. Reinhardt, T. Müller, A. Bourassa, and J. C. Sankey, “Ultralow-noise sin trampoline
resonators for sensing and optomechanics,” Phys. Rev. X, vol. 6, p. 021 001, 2 2016. DOI:
10.1103/PhysRevX.6.021001.

[22] D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, “Measurement
of mechanical resonance and losses in nanometer scale silicon wires,” Applied Physics
Letters, vol. 75, no. 7, pp. 920–922, 1999. DOI: 10.1063/1.124554.

[23] D. M. Photiadis and J. A. Judge, “Attachment losses of high q oscillators,” Applied
Physics Letters, vol. 85, no. 3, pp. 482–484, 2004. DOI: 10.1063/1.1773928.

[24] J. A. Judge, D. M. Photiadis, J. F. Vignola, B. H. Houston, and J. Jarzynski, “Attachment
loss of micromechanical and nanomechanical resonators in the limits of thick and thin
support structures,” Journal of Applied Physics, vol. 101, no. 1, p. 013 521, 2007. DOI:
10.1063/1.2401271.

[25] I. Wilson-Rae, R. A. Barton, S. S. Verbridge, D. R. Southworth, B. Ilic, H. G. Craig-
head, and J. M. Parpia, “High-q nanomechanics via destructive interference of elastic
waves,” Phys. Rev. Lett., vol. 106, p. 047 205, 4 2011. DOI: 10.1103/PhysRevLett.106.
047205.

[26] A. Jöckel, M. T. Rakher, M. Korppi, S. Camerer, D. Hunger, M. Mader, and P. Treutlein,
“Spectroscopy of mechanical dissipation in micro-mechanical membranes,” Applied
Physics Letters, vol. 99, no. 14, p. 143 109, 2011. DOI: 10.1063/1.3646914.

[27] D. J. Wilson, “Cavity optomechanics with high stress silicon nitride films,” Ph.D. Cal-
ifornia Institute of Technology, 2012. DOI: 10.7907/VB3C-1G76.

[28] Y.-H. Park and K. Park, “High-fidelity modeling of mems resonators. part i. anchor
loss mechanisms through substrate,” Journal of Microelectromechanical Systems, vol. 13,
no. 2, pp. 238–247, 2004. DOI: 10.1109/JMEMS.2004.825300.

[29] D. S. Bindel and S. Govindjee, “Elastic pmls for resonator anchor loss simulation,”
International Journal for Numerical Methods in Engineering, vol. 64, no. 6, pp. 789–818,
2005. DOI: https://doi.org/10.1002/nme.1394.

[30] A. Darvishian, B. Shiari, G. He, and K. Najafi, “Effect of substrate thickness on qual-
ity factor of mechanical resonators,” in 2015 IEEE International Symposium on Inertial
Sensors and Systems (ISISS) Proceedings, 2015, pp. 1–4.

https://doi.org/10.1021/acs.nanolett.7b00573
https://doi.org/https://doi-org.tudelft.idm.oclc.org/10.1038/nnano.2017.101
https://doi.org/10.1126/science.aar6939
https://doi.org/10.1126/science.aar6939
https://doi.org/10.1021/acs.nanolett.8b04942
https://doi.org/10.1021/acs.nanolett.8b04942
https://doi.org/10.1063/1.2822406
https://doi.org/10.1103/PhysRevLett.112.127201
https://doi.org/10.1103/PhysRevX.6.021001
https://doi.org/10.1063/1.124554
https://doi.org/10.1063/1.1773928
https://doi.org/10.1063/1.2401271
https://doi.org/10.1103/PhysRevLett.106.047205
https://doi.org/10.1103/PhysRevLett.106.047205
https://doi.org/10.1063/1.3646914
https://doi.org/10.7907/VB3C-1G76
https://doi.org/10.1109/JMEMS.2004.825300
https://doi.org/https://doi.org/10.1002/nme.1394


Bibliography 45

[31] I. Wilson-Rae, “Intrinsic dissipation in nanomechanical resonators due to phonon tun-
neling,” Phys. Rev. B, vol. 77, p. 245 418, 24 2008. DOI: 10.1103/PhysRevB.77.245418.

[32] G. D. Cole, I. Wilson-Rae, K. Werbach, M. R. Vanner, and M. Aspelmeyer, “Phonon-
tunnelling dissipation in mechanical resonators,” Nature Communications, vol. 2, 1 2011.
DOI: 10.1038/ncomms1212.

[33] A. N. Cleland and M. L. Roukes, “Noise processes in nanomechanical resonators,”
Journal of Applied Physics, vol. 92, no. 5, pp. 2758–2769, 2002. DOI: 10.1063/1.1499745.

[34] P. Steeneken, J. Ruigrok, S Kang, J. van Beek, J Bontemps, and J.-J. Koning, “Param-
eter extraction and support-loss in mems resonators,” Proc. Comsol conference 2007,
https://arxiv.org/abs/1304.7953, p. 725, Oct. 2007.

[35] K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and
D. Rugar, “Quality factors in micron- and submicron-thick cantilevers,” Journal of Mi-
croelectromechanical Systems, vol. 9, no. 1, pp. 117–125, 2000. DOI: 10.1109/84.825786.

[36] M. Weinberg, R. Candler, S. Chandorkar, J. Varsanik, T. Kenny, and A. Duwel1, “En-
ergy loss in mems resonators and the impact on inertial and rf devices,” in TRANS-
DUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Con-
ference, 2009, pp. 688–695.

[37] S. Joshi, S. Hung, and S. Vengallatore, “Design strategies for controlling damping in
micromechanical and nanomechanical resonators,” EPJ Techniques and Instrumentation,
vol. 1, pp. 5–19, 1 2014, ISSN: 2195-7045. DOI: 10.1186/epjti5.

[38] (). “Nanomechanical resonator,” [Online]. Available: https://www.wikiwand.com/
en/Nanomechanical_resonator.

[39] R. N. Candler, A. Duwel, M. Varghese, S. A. Chandorkar, M. A. Hopcroft, Woo-Tae
Park, Bongsang Kim, G. Yama, A. Partridge, M. Lutz, and T. W. Kenny, “Impact of
geometry on thermoelastic dissipation in micromechanical resonant beams,” Journal
of Microelectromechanical Systems, vol. 15, no. 4, pp. 927–934, 2006. DOI: 10.1109/JMEMS.
2006.879374.

[40] F. R. Blom, S. Bouwstra, M. Elwenspoek, and J. H. J. Fluitman, “Dependence of the
quality factor of micromachined silicon beam resonators on pressure and geometry,”
Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Pro-
cessing, Measurement, and Phenomena, vol. 10, no. 1, pp. 19–26, 1992. DOI: 10.1116/1.
586300.

[41] W. Gao, F. Wang, and O. Sigmund, “Systematic design of high-q prestressed micro
membrane resonators,” Computer Methods in Applied Mechanics and Engineering, vol. 361,
p. 112 692, 2020, ISSN: 0045-7825. DOI: https://doi.org/10.1016/j.cma.2019.
112692.

[42] D. Chang, “Thermoelastic damping in thin plates and membranes,” 2010.
[43] S. C. Sundar, “Dissipation and nonlinear mechanics in ultrahigh quality factor mem-

brane resonators,” Doctor of Philosophy, Cornell University, 2015.
[44] E. Romero Sanchez, “Phononics: Engineering and control of acoustic

fields on a chip,” Doctor of Philosophy, The University of Queensland, May 10, 2019.
[45] C. markus Gartner, “Advanced membrane architectures for multimode opto-mechanics,”

Dpctoral thesis, Wien University.
[46] M. de Jong, Private communication with ir. m.h.j. de jong about the comsol model, 2020.
[47] P. Sadeghi, M. Tanzer, S. L. Christensen, and S. Schmid, “Influence of clamp-widening

on the quality factor of nanomechanical silicon nitride resonators,” Journal of Applied
Physics, vol. 126, no. 16, p. 165 108, 2019. DOI: 10.1063/1.5111712.

https://doi.org/10.1103/PhysRevB.77.245418
https://doi.org/10.1038/ncomms1212
https://doi.org/10.1063/1.1499745
https://doi.org/10.1109/84.825786
https://doi.org/10.1186/epjti5
https://www.wikiwand.com/en/Nanomechanical_resonator
https://www.wikiwand.com/en/Nanomechanical_resonator
https://doi.org/10.1109/JMEMS.2006.879374
https://doi.org/10.1109/JMEMS.2006.879374
https://doi.org/10.1116/1.586300
https://doi.org/10.1116/1.586300
https://doi.org/https://doi.org/10.1016/j.cma.2019.112692
https://doi.org/https://doi.org/10.1016/j.cma.2019.112692
https://doi.org/10.1063/1.5111712

	Abstract
	Acknowledgements
	Introduction
	State of the art
	Current research
	Research objective

	Theoretical background
	Fundamentals of nanomechanical resonators
	Eigenfrequency analysis
	Frequency response
	Quality factor
	Loss mechanisms
	Fabrication process

	Mode-coupling
	Two coupled bodies
	Hybridized Q-factor
	Frequency spacing

	Conclusion

	Methods
	Numerical simulations
	String model
	Mode-shape dependence
	Film and substrate thickness
	Substrate damping
	Manipulating the resonance frequency

	Measurement setup
	Experimental measurements
	Substrate characterization
	Influence of clamping
	Influence of frequency spacing


	Results and discussion
	Mode-shape dependence
	Substrate characterization
	Nodes and anti-nodes

	Mode-coupling
	Influence film thickness
	Influence substrate thickness
	Influence of substrate damping

	Experimental: Chip clamping
	Influence of tape on Q-factor
	Analysis of the frequency response
	Clamping discussion

	Experimental: frequency spacing
	Crossing a substrate mode
	Frequency spacing discussion


	Conclusion and Outlook
	Conclusion
	Recommendations and outlook

	Appendix
	Nominal values for trampoline resonator
	Results of parameter sweep on resonance frequency
	Sample in vacuum chamber
	Substrate frequency comparison
	Gas damping limited Q-factor
	Mode-shape of the PhC chip
	Q-factors of the PhC chip

	Bibliography

