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Abstract
This paper analyzes how flocking behavior in fish can be
used to develop target protection algorithms. This starts
from the hypothesis that fish aggregate into coordinated
flocks in order to protect themselves from predatory
attacks. In order to test the protection capabilities of fish,
a Prey-Predator instance is developed in which faults are
introduced. Prey fish try to protect their faulty flock-mates
and themselves from predatory attacks while Predators
hunt the fish in order to stay alive. The simulated fish are
developed using Boids that emerge in a 70 prey versus 7
predators ecosystem [4]. Results are then extracted using
multiple attacking and protection strategies as well as
different faulty Boid configurations.
The results initially show no improvement when flock-
ing around faulty prey but when a genetic approach is
introduced, the prey gains a clear advantage against the
predators. This implies that fish flocking (as opposed to
individualistic behavior) is an optimal protection strategy
against attacks and could be used in other instances such as
military operations or agriculture automation.

Keywords: Swarm Robotics, Multi-Robot System, Boids,
Flocking, Fault resilience, Flock Protection, Distributed
Learning

1 Introduction
Robot swarms have the potential to tackle real-life issues be-
cause of their ability to sense and perform actions over large
areas. They can be applied in house management systems,
agriculture automation, environmental monitoring and search
and rescue missions. However, because of the large number
of robots, swarms have the downside of losing individuals
due to faults which consequently could lead to unexpected
and unwanted behavior. For instance, in a search and rescue
scenario, faulty bots will slow down the foraging capabili-
ties of the swarm which could lead to delayed interventions
and possibly unsuccessful rescues altogether. As robots are
starting to be used more regularly, the issue of fault resiliency
and isolation becomes more and more visible. Because of
this, solutions and algorithms have already been developed.
Some fault resilience solutions include mathematical mod-
els, such as fault-tolerant path planning algorithms using an
artificial potential field (APF) module, bond-graph model-
ing, as well as Kalman filters[2][9][10]. Other approaches
are inspired from natural emerging behavior. Such solutions
take inspiration from cell cross-regulation to detect faults[15].
Others use a fire-fly inspired algorithm with pulse-coupled
oscillators[1]. More state of the art centralised and distributed
methods (such as distributed deep learning) are proposed in
[12].

This paper will use a fish flocking approach to creating
a fault resilient protection algorithm. The goal of develop-
ing such an algorithm is not only fault resilience but also to
protect stationary targets from incoming heat-seeking mis-
sile attacks. The study will correlate the protection capa-
bilities of fish flocking to a single point of interest or in-
dividual. In order to test both instances of protection, a

prey and predator instance inspired by fish behavior will be
used. This instance will use flocking algorithms inspired by
Craig Reynolds and individuals called Boids (generic simu-
lated flocking creatures)[4]. The Boids simulate fish or bird-
like flocking mechanisms. This model was chosen as it very
closely mimics a fish ecosystem where distributed protection
or attacking behavior can be added. These behaviors are im-
proved further by using a genetic learning approach. The
faults lead to the actual challenge of this research which im-
plies target protection through the action of flocking around
faulty prey when predators are attacking.

Some of the current state-of-the-art models are in three di-
mensions in order to make an in-depth study on the patterns
that emerge during predator attacks [5]. But since further re-
search shows that the dimensionality has a low impact on the
results and simulations, a two-dimensional model is sufficient
[6]. Many authors used the Boid model to prove and simulate
natural behavior within flocking. Moškon et al, for example,
used fuzzy logic to simulate the foraging behavior of artificial
birds [8]. There are also Boid models that implement preda-
tor behavior, most of them attacking the flock center[7]. This
is one of the functionalities that the predators in this research
will use alongside attacking the prey furthest from the flock.
This should create a realistic predator model based on the be-
havior of various fish(for example swordfish). Although there
is research on prey and predator behavior, the behavior of tar-
get protection has not been tested using such an approach.

This paper is organized as follows. In Sections 2 and 3
we first define the problem as well as the methodology. Sec-
tion 4 will show how the fault detection algorithm is imple-
mented. The simulation environment as well as the results
can be found in section 5. Section 6 reflects on the ethical
aspects of the problem. In sections 7 and 8 conclusions and
final notes are described.

2 Problem Description
The objective of this study is to implement cutting-edge
swarming and platooning algorithms for collaborative
operations. The swarming algorithms will be based on de-
centralized/distributed sensing and control (Imagine a flock
of birds or a school of fish swarming together). Moreover,
the questions related to this work come in the form of how
can we develop protection algorithms using the flocking
capabilities of fish. The aim of this research is to develop
protection algorithms based on the behavior that emerges
from fish flocking as a response to predatory attacks. To
achieve this, a deep learning approach will be taken. The
protection algorithm is tested in a custom-made simulation
environment where the flocking behavior of Boids is ranked
based on a Prey-Predator and a Missile-Target instance, both
described in Section 4.

3 Methodology
In order to test the efficiency of the protection algorithm, an
ecosystem instance was developed where faults can be in-
jected and learning capabilities for the agents are easy to train.
The agents are described as artificial life programs developed



Figure 1: Boid Flocking rules

by Craig Reynolds called Boids [4]. Boids give a simple
but reliable bird-like flocking behavior using three main rules
(Figure 1) :

• Separation: steer to avoid crowding local flock-mates.

• Alignment: steer towards the average heading of local
flock-mates.

• Cohesion: steer to move towards the average position
(center of mass) of local flock-mates.

The steering behavior of the Boids is based on the work of
Craig W. Reynolds who states “The physics of the simple ve-
hicle model is based on forwarding Euler integration. At each
simulation step, behaviorally determined steering forces (as
limited by max force) are applied to the vehicle’s point mass.
This produces an acceleration equal to the steering force di-
vided by the vehicle’s mass.“[17]. The acceleration is then
added to the current velocity in order to reach the desired ve-
locity force(algorithm 1). The position of the Boid is then
updated with the new force and its angle(Figure 2).

Algorithm 1 Steering Algorithm

function UPDATE
position← position+ velocity
velocity ← velocity + acceleration
velocity.limit(max speed)
angle← velocity.heading + π

2
end function

The Boids are then placed in a predator and prey scenario.
The scenario follows a game approach where the predators
try to hunt in order to survive whereas the prey runs until the
attackers starve. Actuator faults are then introduced in both
teams which are then mitigated by the fault-resilience algo-
rithm. Both teams collect data in terms of lost/won rounds,
time per round, and the ratio of survivors over total Boids.
Furthermore, a custom-made efficiency function takes the ex-
perimental data and estimates how well fault resilience was
done. The main reason for doing this game-inspired setup
was to test the efficiency of fish flocking mechanisms as well
as their capabilities of protection and flock resilience when it
comes to weak individuals. Besides this, the game approach
has a clear advantage when it comes to deep learning algo-
rithms. This is because the two teams can train while com-
peting with each other endlessly. This should produce a good
learning model without the need for data gathering and engi-
neering. The model will then be tested using a Missile-target
instance in order to rank the performance in a more realistic
scenario.

Figure 2: Boid steering behaviour

Figure 3: Instance of 70 prey and 7 predator Boids.

4 Attacking and Protection Algorithms
This section describes the behavior and interactions between
Boids as well as the learning setup that maximizes the re-
sponse of these behaviors. The section contains three parts.
The first part describes the protection algorithms used by the
prey Boids. The second part introduces the attack algorithms
of the Predators. And finally, the last part shows how these
algorithms are optimized using genetic learning.

4.1 Prey Boids Algorithms
The fault resilience algorithm described in this section aims
to improve the flock lifespan (predators or prey) by imple-
menting attacking and protection behavior inspired by nature.
Based on the experiments done by Miller on crab aggrega-
tion and predators, it was shown that there exists collective
response behavior in flocks: prey individuals move toward
the center of the flock and the flock curves away from the
predator’s attack [16]. With this behavior in mind, the pro-
tection algorithm enforces that prey Boids protect their faulty
flock-mates by aggregating around them. This is defined by
steering towards the faulty Boid, considering it the center of
mass inside the flock. This can also be seen with the steering
equation 1 that is enforced on Boids when they sense faulty
teammates. Besides this, prey Boids try to evade predator at-
tacks using the evasion law from equation 2. When a predator



Figure 4: Target-Missile instance with 10 protective Boids

attacks, the functional Boids flee, hoping to lure it away from
the faulty prey.

acccurr = posfty − poscurr (1)

acccurr = pospred + vel2pred − poscurr
1 (2)

4.2 Predator Boids Algorithms
On the contrary, the predator attack model is based on killer
whale attacks, which makes the Boids target the prey that
is the farthest from the flock(the most isolated prey) [11].
This translates to hunting the prey furthest from the center
of mass(equation 3) which is chosen using equation 4. Be-
sides this, predators will try to attack the prey that is closest
to them in hopes of refreshing their hunger value quicker. For
all the types of selected prey, predators have the same attack
law, trying to intercept the prey position(equation 5).

centr =
1

n

n∑
i=0

posc prey(i) (3)

prey = max(getDistance(listprey, centr)) (4)

acccurr = posprey + vel2prey − poscurr
1 (5)

4.3 Genetic Learning Algorithm for Weight
Optimisation

The Boid moving laws as well as the fault resilience laws are
influenced by weights. This makes the Boids favor certain
behaviors over others. Because of this, each behavior label
can be tweaked in order to reach a balance between flocking,
protecting, fleeing, and attacking. A genetic algorithm is used
in order to optimize these weights. The algorithm starts by
including genes in the Boid definition. Based on their type,
Boids can have two gene definitions:

• Prey: DNA = {”flee”: random(0, 1), ”protect”: ran-
dom(0, 1)}

• Predator: DNA = {”attack furthest”: random(0, 1), ”at-
tack closest”: random(0, 1)}

1The description of equation terms can be found in section A.1

The gene values are at first randomly initiated. After the gene
creation, a scenario similar to the one in Section 5 is built,
the difference being that each Boid now has the ability to re-
produce. Having a 1% chance(or double if close to a faulty
flock-mate), Boids can produce an offspring that inherits their
DNA and mutates it. The mutation rate is defined using algo-
rithm 2:

Algorithm 2 Mutation Algorithm

function MUTATE(DNA)
for gene← DNA do

DNA[gene]+ = random.uniform(−0.1, 0.1)
DNA[gene] = max(min(DNA[gene], 1), 0)

end for
return DNA

end function

With the mutation algorithm in mind, the ecosystem contin-
ues to run until only one team remains. This is considered as
one round. After the round ends, the top 10 best performing
genes are selected for the next round. The algorithm is then
run for several rounds(around 50) until convergence which
produces the following approximated weights:

• Prey:{’flee’: 0.791, ’protect’: 0.576}
• Predator:{’attack furthest’: 0.754, ’attack closest’:

0.548}
After the 50-round mark, the algorithm is over-sampled and
produces under-performing results, thus in the experiments,
the weights for the trained agents will be the ones above.

5 Experimental Setup and Results
The experiments are set up in a custom environment devel-
oped in python and consist of two separate instances. In the
first instance, the predatory and flocking behavior of fish is
observed. In the second one, this flocking behavior is applied
in a more realistic scenario of anti-missile defense, where
Boids are used as defensive decoys.

5.1 Prey-Predator Instance
The Prey-Predator instance features a 1920x1080 arena
where 70 prey Boids and 7 predators are dropped randomly
(Figure 3). The Boids then proceed to attack and protect each
other. After 100 game ticks and until 600 all faults are in-
jected randomly into the Boids. Faults can have two strate-
gies: full stop or corrupted movement, which are also chosen
randomly. Each game is won by either of the teams and it
gets a score based on time, Boids left and faulty Boids left,
defined by the scoring function 9. The simulation is then run
with all possible configurations in terms of faulty prey and
predators.

tScore =
50 ∗ fps− fT ime

45 ∗ fps
(6)

fScore =
fBoidrem
fBoidtot

(7)



Figure 5: Instance of 70 prey and 7 predator Boids with
baseline rules for Prey and improved rules for Preda-
tors. Weights: flee: 0.6, protect: 0, attack furthest:0.2,
attack closest: 0.4

Figure 6: Instance of 70 prey and 7 predator Boids with
improved rules for both parties. Weights: flee: 0.6, pro-
tect: 0.4, attack furthest:0.4, attack closest: 0.4

Figure 7: Instance of 70 prey and 7 predator Boids with improved
rules for both parties and genetically trained Prey

aScore =
boidrem
boidtot

(8)

score = max(min((0.5∗tScore+0.5∗aScore+fScore), 1), 0)1

(9)
The results of each game are then plotted using heat maps.

The color of each measurement shows which team is likely
to win (red = predators; green = prey) or if the match is bal-
anced(yellow). The configurations tested are:

• Baseline prey(Figure 5). It does not use any protection
algorithm.

• Improved protection prey(Figure 6). It uses both protec-
tive and evasive behaviors with weights based on heuris-
tics.

• Genetically enhanced prey(Figure 7). It uses both pro-
tective and evasive behaviors with weights established
by the genetic algorithm.

1The description of equation terms can be found in section A.1

Figure 8: Target-Missile instance with different weight combina-
tions for the protection Boids

All configurations face the improved predator agent, which
uses weights based on heuristics, and are run 5 times in order
to reduce randomness within the data.

5.2 Target-Missile Instance
The Target-Missile instance features a smaller arena of
1600x900 pixels where 10 defensive Boids have to protect
a stationary target from an incoming missile attack (Figure
4). The missile uses the same attack strategies as the preda-
tory Boids, thus attacking the closest as well as the furthest
prey from the flock’s center of mass. The defensive Boids
then disperse the missile away from the target using the same
protection strategies as the prey Boids. This means that, in
order to protect the target, the Boids flock as close as possi-
ble to each other and then disperse quickly enough such that
the missile is lured away. Each game instance ends when the
target is hit by the missile and is scored based on how much
time the target survives.
The results are plotted in a similar fashion to the previous
section, again using heat maps. The plot in Figure 8 shows



the scores for the defensive Boids using all possible weights.
The scores range from 4000 to 14000 (red to green) millisec-
onds and are computed by running each measurement 5 times
and using the mean. This is done in order to reduce variance
within the data and create more realistic results.

6 Discussion and Result Interpretation
Based on the first two experiments tested in the first instance
of section 5, it can be reasoned that the improved prey con-
figuration is not very different in terms of performance from
the baseline one, but after the genetic algorithm, a clear im-
provement can be seen. The baseline configuration(Figure
5) has a balanced ratio of wins between the prey and preda-
tors, the exception being the extremes where the multitude
of faults hinder the capabilities of the teams. For instance,
at the measurement of 7 faulty predators and 0 faulty prey,
the prey wins by default because the predators cannot move
and attack properly. The predators in the improved configu-
ration(Figure 6) have an overall win against the prey (most
squares on the blue line are yellow or red). This happens
because their rules counter the prey’s rules. As presented
in section 4 prey Boids try to flock around faulty members
in order to protect them by dispersing and luring predators
away. This behavior not only protects the prey but paradox-
ically also attracts predators. Because their weights are not
optimized they give predators enough time to find an open-
ing. This results in the predators overrunning the protection
behavior of the prey, which gives them the opportunity to dis-
perse the flock long enough such that isolated Boids can be
attacked. This attack style beats the prey defensive as faulty
Boids are eaten right away and the ones that were luring get
captured easily because they are isolated from other flock-
mates. The third configuration(Figure 7) however, behaves
as expected. With optimized weights, the Boids are able to
evade the predators in time, thus increasing their win rate
when faults appear. This can be seen especially in Figure
7 were between the 10 and 30 Faulty prey mark where prey
Boids have more wins with better results than the previous
configurations. You could also argue that the prey Boids have
an overall win over the predators as all results on and above
the diagonal line are either green or yellow. This concludes
that as the number of faults increases, the prey Boids have a
better chance of survival which means that the flocking and
protection behaviors enable them to survive as a flock rather
than individually fending off for themselves.
The second instance should give more insight into the protec-
tion of a single individual as well as an analysis of the pro-
tection and evasion algorithms and their weights. Based on
the results in Figure 8, firstly, it can be argued that there is no
protection without a good evasion tactic. This can be noticed
by looking at the nonperforming results which appear only
when the protection weight is higher than the fleeing weight.
This is expected behavior as Boids that are inclined to only
flock rather than also evade when attacked will be of no use
in any kind of protection. This happens because they not only
fail to defend but also attract other threats by flocking close
together. Secondly, it can be noticed that the best perform-
ing weights are {0.6, 0.2}, {0.9, 0.1} and {0.8, 0.4}. Even

though the protection strategies for the first two results have
good performances, their protection algorithm has a very low
impact in their behavior (0.2 and 0.1). It can be argued that
this happens because very high fleeing weights and very low
protection weights create the behavior of evading missiles by
never returning back to the target for further protection. In
the case of multiple attacks and low protection resources, the
third set of weights is the best performer as it gives the best
results when defensive Boids have the ability to return back
to defend for consecutive attacks. It is also important to men-
tion that these weights are very close to the ones extracted
using the genetic algorithm, which means that the same fish
flocking behavior from the previous experiments is used in
order to achieve missile defense. Nevertheless, both the low
protection-high evasion and the genetic fish prey strategies
are good performers and a combination of the two should be
used in order to achieve resilient and efficient missile protec-
tion.

7 Ethical Aspects
This section will reflect on the ethical aspects of the research
as well as the reproducibility of the simulations and meth-
ods used to derive the results. In terms of ethics in swarm
robotics, the most relevant disadvantage is the lack of cen-
tralized control over the swarm. “Swarms may not be pre-
dictable to the enemy, but neither are they exactly control-
lable or predictable for the side using them, which can lead
to unexpected results: (. . . ) a swarm takes action on its own
(. . . )“[14]. This puts a big responsibility on the distributed
AI algorithm controlling the swarm robots as it has to miti-
gate unexpected actions. A solution to this is mentioned in
[18], where the swarm chooses to compromise its integrity
in order to mitigate unwanted behavior: “A robot can some-
times choose actions that compromise its own safety in order
to prevent a second robot from coming to harm. An imple-
mentation with both e-puck and NAO mobile robots provides
a proof of principle by showing that a robot can, in real-time,
model and act upon the consequences of both its own and
another robot‘s actions.“ Regarding reproducibility, the sim-
ulation environment, as well as the tools for result extraction,
will be shared on GitHub. Alongside these, instructions on
how to derive the results and remarks for future development
will be added.

8 Conclusions and Future Work
The experimental study shows that the action of flocking is
indeed a protection mechanism against predation. Not only
does this apply to healthy flock individuals but also faulty
ones. This results in a good protection mechanism where sim-
ilar escape patterns to those that emerge in nature can be used
[13]. This can help by luring enemies away from vulnerable
targets. For example, heat-seeking missile defense.
As mentioned by Demsar and Bajec, the results show that
flocking is a paradoxical action because even though it pro-
vides the protection it invites predatory attacks(in nature at
least)[3]. This suggests that even if flocking can benefit the
individuals as a whole, it does not provide absolute protec-
tion. However, this does not influence real-life implementa-



tions where the algorithm would be used to protect points of
interest rather than escaping predatory attacks. This sifts the
interest of protection from the whole flock to a single individ-
ual, which is more feasible.
Regarding the continuation of this study, a first step would be
to improve the hunting capabilities of the predators as well as
the faulty prey protection. Furthermore, an extrapolation of
the simulation to a three-dimensional space should be added.
This, combined with the advanced hunting and evasion tac-
tics should give a more realistic scenario as well as a better
understanding of the Boid movements. The Missile-Target
scenario could be extended to multiple missile attacks and
configurations. This should make a clearer classification of
the protection strategies.

A Appendix
A.1 Equation terms description

Eq no. Term Description

1
acccurr current boid acceleration
posfty faulty boid position
poscurr current boid position

2
acccurr current boid acceleration
pospred predator position
velpred predator velocity
poscurr current boid position

3
centr center of mass

posc prey nearby prey position

4
prey selected prey to hunt

getDistance get the distance from two points
listprey list containing nearby prey
centr center of mass

5
acccurr current boid acceleration
posprey prey boid position
velprey prey boid velocity
poscurr current boid position

6
tScore time score

fps frames per second
fTime finishing time

7
fScore fault score

fBoidrem remaining faulty boids
fBoidtot total faulty boids

8
aScore alive score

boidrem remaining boids
boidtot total boids

9
score total scoring
tScore time score
aScore alive score
fScore fault score
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