
Lost in Reassembly:
Exploiting IP
Fragmentation in
Computer Networks
An Experimental Security Evaluation of
Fragmentation Handling, Detection Limitations, and
Attack Scenarios

Ioan-Cristian Oprea

Lost in Reassembly:
Exploiting IP

Fragmentation in
Computer Networks

An Experimental Security Evaluation of
Fragmentation Handling, Detection Limitations,

and Attack Scenarios

by

Ioan-Cristian Oprea

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Friday June 13, 2025 at 15:00.

Student number: 5214823
Project duration: October 14, 2024 – June 13, 2025
Thesis committee: Prof. dr. ir. G. Smaragdakis, TU Delft, supervisor

Dr. E. Bassetti, European Space Agency - TU Delft, co-supervisor
Dr. H. Griffioen, TU Delft
Dr. N. Mohan , TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

I would like to express my profound appreciation to my supervisor, Prof. dr. ir. G. Smaragdakis, for
his insightful guidance, constructive feedback, and constant encouragement throughout this research.
His expertise and support were instrumental in shaping both the direction and quality of this work. I am
equally grateful to my co-supervisor, Dr. E. Bassetti, for his valuable advice and critical review of my
experiments and for sharing his extensive knowledge of network security, which greatly enriched the
thesis.

I owe my deepest gratitude to my family, whose unwavering love and support have carried me through
every challenge. To my father, Florian Oprea, my mother, Iuliana Oprea, and my brother, Constantin-
Danut Oprea: thank you for standing by me not only during the writing of this master’s thesis but
throughout my life. Your encouragement has been my foundation.

I am also profoundly grateful to my partner, Ariadna Zara, for patiently listening to my late-night re-
flections and standing beside me through every frustration and breakthrough. Finally, I would like
to acknowledge my friends: Codrin Socol, Alexandru Dumitriu, David Peta, Razvan Popescu, Andru
Turcu, Ciprian Stanciu, Matei Galesanu, Sebastian Manda, and Teodor Oprescu, for their camaraderie
and invaluable help during both my bachelor’s and master’s studies. Your friendship and support have
meant the world to me.

Ioan-Cristian Oprea
Delft, June 2025

i

Abstract

IPv6 fragmentation remains a subtle yet impactful security concern in modern high-throughput, low-
latency networks, where packet inspection is constrained by performance requirements and out-of-path
monitoring architectures. This thesis investigates how discrepancies in IPv6 fragment reassembly be-
haviour between passive Intrusion Detection Systems (IDS) and endpoint hosts can lead to detection
gaps, misinterpretation, and even exploitable evasion opportunities. Using a permutation-based testing
model inspired by prior work, the study evaluates 720 overlapping fragment sequences across multiple
operating systems and analyses the detection behaviour of Suricata deployed inside a 5G-simulated
User Plane Function. The results reveal inconsistencies in reassembly policies, particularly under re-
transmission conditions, and demonstrate that alerts are not always semantically aligned with the pay-
load seen by the host. A proof-of-concept exfiltration attack further illustrates how timing-based frag-
ment delivery can bypass IDS inspection while reconstructing sensitive data at an attacker-controlled
receiver. To mitigate these risks, the thesis proposes temporal IP ID tracking, overlap enforcement, and
targeted traffic normalisation, especially in programmable or inline network functions. These findings
highlight fragmentation as a persistent and under-addressed attack surface and call for more context-
aware, timing-resilient detection strategies in next-generation networks.

ii

Contents

Preface i

Abstract ii

Abbreviations v

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Research Problem and Scope . 1
1.3 Research Questions . 2
1.4 Contributions . 2
1.5 Structure of the Thesis . 3

2 Background 4
2.1 Internet Protocol Fragmentation . 4
2.2 Security Concerns in IP Fragmentation . 5
2.3 Middleboxes . 6
2.4 5G Network Architecture . 7

2.4.1 Overview of 5G Network Functions . 7
2.4.2 Data Path and Encapsulation . 8
2.4.3 Performance Constraints in 5G . 8
2.4.4 Security Monitoring in 5G . 9

3 Related Work 10
3.1 Fragmentation-based evasion . 11
3.2 IPv6 fragmentation attacks . 11
3.3 Testing reassembly behaviour . 11
3.4 IPv6 Specific Reassembly Testing . 12
3.5 Suricata Performance Tuning . 12
3.6 IDS Deployment in 5G Core Networks . 13

4 Methodology 14
4.1 Experimental Design . 14
4.2 Necessary and Sufficient Conditions for Fragmentation Attacks 16
4.3 Metrics and Evaluation Criteria . 17

5 Experimental Results 19
5.1 Experimental Setup . 19

5.1.1 5G Testing Environment . 19
5.1.2 IDS Configuration . 20
5.1.3 Operating Systems Under Test . 20
5.1.4 Fragmentation Permutation Design . 21

5.2 Reassembly Behavior Across Systems . 22
5.2.1 No Retransmission Case . 22
5.2.2 Retransmission Case . 23

5.3 Evasion and Exploitability Analysis . 24
5.3.1 No Retranmission Case . 24
5.3.2 Retransmission Case . 25

5.4 Data Exfiltration through Reassembly Mismatch . 27
5.4.1 Timing Overlap Techniques for Silent Exfiltration 27
5.4.2 Attacker Strategy . 27
5.4.3 Payload Design and Execution . 28

iii

Contents iv

5.4.4 Proof-of-Concept Packet Trace Analysis . 28
5.5 Risk Analysis . 30

5.5.1 Ambiguity-Driven Attack Vectors . 30
5.5.2 Reassembly Divergence and Detection Blind Spots 30

6 Mitigation Strategies and Limitations 32
6.1 Mitigation Strategies . 32
6.2 Limitations of Research . 33

7 Conclusion 34
7.1 Summary of Findings . 34
7.2 Future Work . 35

References 36

A Repository 39

Abbreviations

Abbreviation Definition

5G Fifth Generation Mobile Network
AF_PACKET Linux kernel interface for high-performance packet

capture
C2 Command and Control (attacker-controlled endpoint

used for exfiltration or coordination)
DPI Deep Packet Inspection (technique for analyzing

packet payloads beyond headers)
EICAR European Institute for Computer Antivirus Research

(a standard non-malicious test string used to validate
antivirus and IDS detection)

GTP-U GPRS Tunneling Protocol - User Plane (carries user
data within 5G and LTE networks)

ICMPv6 Internet Control Message Protocol for IPv6 (used for
network diagnostics)

IDS Intrusion Detection System (passive security system
that monitors and alerts on traffic)

IPS Intrusion Prevention System (active security system
that can modify or block traffic)

IP ID IP Identification field used to associate fragments
with the same datagram

IPv6 Internet Protocol version 6
M=0 Fragmentation flag indicating the last fragment in an

IPv6 packet
NFV Network Function Virtualization (concept of imple-

menting network functions in software)
OS Operating System
PCAP Packet Capture file format (used to store captured

network traffic)
RFC Request for Comments (formal documents describ-

ing Internet protocols and standards)
SDN Software Defined Networking (approach that sepa-

rates control and data planes in networks)
SMF Session Management Function (a 5G core compo-

nent handling session context)
TCP Transmission Control Protocol (a reliable,

connection-oriented transport protocol)
UDP User Datagram Protocol (a lightweight, connection-

less transport protocol)
UPF User Plane Function (a 5G core network component)
UE User Equipment (client device in 5G networks)
XDP eXpress Data Path (a high-performance packet pro-

cessing framework in the Linux kernel)

v

1
Introduction

1.1. Context and Motivation
IP fragmentation is a long-established method designed to facilitate the transmission of packets across
networks with different Maximum Transmission Unit (MTU) sizes [1]. Despite improvements in protocol
design between IPv4 and IPv6, fragmentation remains a cause of complexity and inconsistency [2, 3,
4], especially when traffic flows through several devices that must reconstruct the original datagram. In
IPv6, fragment reassembly is generally performed at the receiving endpoint [1]. However, in security-
sensitive environments, middleboxes such as firewalls or IDS/IPS systems may try to reassemble or
inspect fragments mid-path. Because the RFCs leave the IP reassembly process underspecified and
many implementers diverge from them, subtle discrepancies arise that adversaries can exploit to evade
detection or inject malicious payloads.

In high-throughput, low-latency settings, such as 5G networks, where performance constraints limit the
possibility of deep inspection or full user-space reassembly, these risks become increasingly important.
To deal with increasing traffic rates and stricter latency requirements, current detection systems often
delegate packet processing tasks to kernel-level functions [5, 6, 7] or rely on simplified processing
pipelines. While these design decisions improve scalability, they may also introduce blind spots, par-
ticularly when fragmentation behaviour varies across operating systems, middleboxes and detection
engines [4].

This thesis investigates fragmentation handling in such performance-constrained environments, focus-
ing on the degree to which reassembly discrepancies can be exploited to avoid detection. While the
findings have broad applicability, the evaluation is done in a representative environment: a simulated
5G network, whose constraints match the high-performance characteristics examined in this thesis.

The study focuses on scenarios in which an out-of-path Intrusion Detection System (IDS) relying on
kernel-level IP defragmentation monitors fragmented traffic. This configuration is representative of
high-performance networks where reducing system overhead is critical. The thesis explores whether
discrepancies between kernel reassembly and endpoint behaviour can lead to attacks that remain
undetected by passive monitoring tools, even when the host accepts the traffic.

1.2. Research Problem and Scope
Despite the theoretical security improvements of IPv6 over IPv4, real-world implementations still differ
significantly in how fragmented packets are handled and reassembled. For example, even though
RFC 5722 [8] mandates that hosts must silently drop packets with overlapping fragments, empirical
studies show that most operating systems reconstruct these fragments instead [3], creating undesired
behaviour that can be exploited by attackers. Each operating system also has its own reassembly
policy, which could differ from that of middleboxes or security systems. Adversaries can use this lack of
consistency to bypass security measures or fingerprint systems based on their response to fragmented
traffic.

1

1.3. Research Questions 2

These inconsistencies are even more important in high-throughput, latency-sensitive environments
such as 5G networks, where performance constraints make in-line security solutions like Intrusion Pre-
vention Systems (IPS) impractical, unless correctly configured. Inline packet inspection can introduce
processing delays and can become a bottleneck under high traffic levels, making it unsuitable for satisfy-
ing strict latency (e.g., sub-millisecond) and availability requirements. Academic and industry research
has shown that IPS solutions risk adding unacceptable delay, particularly when deep inspection or re-
assembly is involved, and require extensive tuning or hardware acceleration to keep up with high traffic
rates [9, 10]. As a result, many production deployments instead use out-of-path IDS that passively
monitor traffic, which allows for non-intrusive, scalable traffic visibility without affecting live traffic flows
[11].

To further reduce system overhead and match detection behaviour with that of the host OS, Suricata
and similar IDS tools are usually run in AF_PACKET mode [12], configured with defrag: yes (default
settings) to delegate IP fragment reassembly to the kernel. Since the IDS sees exactly what the kernel
reconstructs and avoids user-space reassembly, this approach improves detection consistency as well
as efficiency. This configuration is recommended in high-performance environments and has become
a standard practice [5, 6, 7].

While this approach offers scalability, it also creates new attack surfaces: if an adversary can predict
or control the kernel’s reassembly behaviour, they may craft fragmented packets that evade detection
by the IDS while being interpreted differently at the target host.

1.3. Research Questions
This thesis explores how variations in IP fragmentation handling affect the security of high-performance
networks. It focuses on on the risks that arise when reassembly varies between systems in a passive
monitoring setup.

The study is guided by the following main research question:

Main Question
How do inconsistencies in IPv6 fragmentation handling impact the security of computer net-
works, and how can these vulnerabilities be exploited or mitigated in a high-throughput envi-
ronment (5G) using out-of-path Intrusion Detection Systems?

To answer this question, the following subquestions are explored:

1. What inconsistencies or vulnerabilities arise from IPv6 fragmentation and reassembly behaviour
in high-throughput, low-latency networks?

2. How do different 5G network components, including User Equipment (UE), and the 5G External
Data Network, handle fragmented IPv6 packets, and how does this affect packet reassembly
behaviour?

3. What are the detection limitations introduced by deploying an out-of-path IDS (e.g., Suricata) that
relies on kernel-level reassembly in high-throughput, low-latency environments?

4. Can fragmentation-based inconsistencies be exploited in practice for evasion, insertion, or exfil-
tration attacks, and under what conditions do they remain undetected by the IDS?

5. What configuration or architectural improvements can be made to reduce the risks posed by
fragmentation-based attacks in high-throughput, low-latency networks?

1.4. Contributions
This thesis presents a structured and in-depth analysis of how IPv6 fragmentation affects detection
visibility in high-performance networks. It presents a testing method based on permutation models of
overlapping fragments. This method is used to examine how both the host and the IDS reassemble
data in controlled and retransmission scenarios. Unlike previous research that focused only on endpoint
acceptance, this work examines reassembly outcomes between the IDS and several operating systems,
showing reassembly divergence.

1.5. Structure of the Thesis 3

An important contribution is the development and demonstration of a proof-of-concept exfiltration attack.
This attack uses timing-based fragment delivery to bypass detection. It does so by taking advantage
of the IDS’s early reassembly completion and the attacker’s ability to influence fragment reordering at
the receiving endpoint. The thesis suggests an IP ID lifespan tracking system to make sure that reused
fragment identifiers are no longer valid after reassembly. This lowers the possibility of late-arriving
fragment insertion.

The thesis also contributes with an updated security assessment of passive detection systems in high-
performance networks, highlighting the differences between alert presence and payload interpretation.
It showcases useful insights into how IDS positioning, reassembly logic, and detection timing affect se-
curity in modern networks by testing how different operating systems handle fragments and mimicking
high-throughput detection conditions.

1.5. Structure of the Thesis
The remainder of this thesis is structured as follows. Chapter 2 introduces the necessary background
on IP fragmentation, reassembly policies, and the impact of middleboxes and 5G network architec-
ture. Chapter 3 reviews related work on IDS evasion techniques, fragmentation-based attacks, and
reassembly behaviour across systems. Chapter 4 describes the experimental methodology, including
the design of the fragment permutation model and the classification criteria used in the analysis. Chap-
ter 5 presents the experimental results, covering reassembly consistency, detection gaps, exploitability
analysis, and a proof-of-concept exfiltration scenario. Chapter 6 proposesmitigation strategies, outlines
the limitations of the study, and offers practical recommendations. Chapter 7 concludes the thesis with
a summary of the findings and discusses directions for future work.

2
Background

This chapter provides the basic knowledge required to understand the problem of fragmentation-based
attacks in the context of high-throughput, low-latency networks like 5G. It presents key networking
concepts, analyses the evolution of packet fragmentation, and investigates the role of security devices
and network functions in reassembly.

2.1. Internet Protocol Fragmentation
All current network communication is centred around the Internet Protocol (IP). It is a connectionless,
stateless protocol that enables the transmission of packets between endpoints, abstracting away the
underlying physical links and topologies. As the most used protocol in Layer 3 of the OSI model, IP en-
ables heterogeneous networks to function as a unified internetwork by providing routing and addressing
capabilities [13].

Modern networks use both IPv4 and IPv6, often at the same time. Though the two protocols differ
in structure, such as in address size and header format, they both have the same basic duties: rout-
ing datagrams and managing packet lifetimes. However, an important difference is their approach to
fragmentation.

Packet fragmentation is a core mechanism within the Internet Protocol that allows large IP datagrams
to travel across networks with lower Maximum Transmission Units (MTUs). When a packet exceeds
the MTU of a network segment, it must be split into smaller fragments to guarantee delivery. Each
fragment is treated as a separate IP packet and contains metadata that indicates its position in the
original datagram and whether more fragments are expected. Fragments are then reassembled into
the original payload only at the destination host [14].

Fragmentation exists to ensure end-to-end delivery when different segments of the network impose
varying MTUs, but IPv4 and IPv6 handle it differently. In IPv4, both the source and intermediate routers
along the path can split datagrams, using header fields like Identification, Fragment Offset and the
“More Fragments” flag to help reconstruct the original datagram [14]. This flexibility, however, burdens
the core network with extra processing complexity [15], complicates error recovery [16] and opens the
door to denial-of-service [17] and evasion exploits [18] when maliciously manipulating fragments.

On the other hand, IPv6 eliminates fragmentation at intermediate routers. Using a separate Fragment
Extension header, IPv6 shifts the responsibility for fragmentation entirely to the sender. This header
contains fields similar to those in IPv4 but is an optional metadata attached to the packet as opposed to
being part of the base header. When routers come across oversized IPv6 packets, they must instead
send an ICMPv6 “Packet Too Big” message back to the source, requiring the sender to adjust its packet
size via Path MTU Discovery (PMTUD) [1].

The architecture’s emphasis on service-based design and IP-layer tunnelling makes IP a central com-
ponent in 5G networks. All user data in the 5G User Plane is encapsulated in GTP-U (GPRS Tunnelling

4

2.2. Security Concerns in IP Fragmentation 5

Protocol for User Data) packets that carry an inner IP payload. These IP packets may be further en-
capsulated or fragmented depending on MTU constraints between User Equipment (UE), gNB (next
generation NodeB) and the 5G Core Network (5GC). However, 5G architecture will be presented in a
subsequent section.

Fragmentation in 5G networks can take place at more than one point in the network. The IP payload
encapsulated in a GTP-U tunnel may be fragmented at the inner IP layer, at the outer transport layer,
or both [19]. Additionally, fragmentation could present poor interactions with tunnelling and security
systems. For example, packets can be silently discarded at in-path devices not supporting GTP-U
fragmentation, or it can bypass inspection when an IDS is not configured to reassemble fragments with
the proper reassembly context (e.g., across tunnel boundaries) [20].

2.2. Security Concerns in IP Fragmentation
Even though packet fragmentation is necessary for end-to-end connectivity over heterogeneous net-
works, it presents several security issues. These are not only due to the increased complexity of
reassembly but also due to ambiguities in implementation, lack of strict enforcement of protocol stan-
dards, and inconsistencies in how fragments are interpreted across different systems. In the past,
attackers have exploited these weaknesses to create evasion methods that reduce intrusion detection
and firewall policy enforcement [21, 22].

Fragment-Based Evasion and Insertion Attacks
The basis of most fragmentation-related exploits is the idea of interpretation disparity, where different
network hosts reconstruct the packet differently because of inconsistencies in fragment handling logic.
This leads to two methodologies [23].

Evasion is where the attacker constructs a series of fragments that the target host reconstructs into
a complete, valid payload while the middlebox does not reassemble them or reconstructs a benign
version. This allows malicious content to evade detection. For example, a signature may be divided
over two fragments the middlebox can’t match individually, but the host reconstructs it into an intact
attack payload.

Insertion involves sending packets that are accepted and processed by the middlebox but discarded
by the target system. This attack can be used to desynchronise the middlebox with the target system,
tricking the middlebox into thinking that it has effectively monitored all traffic, while in reality, the mali-
cious payload is hidden from the middlebox. This may involve exploiting variances in the middlebox or
target system’s protocol implementations or even different network stack behaviours.

Overlapping and Out-of-Order Fragments
When receiving fragments out of order, the order in which they are reassembled is important. The
original IP specification does not indicate a common behaviour in cases of overlapping fragments (i.e.,
when two fragments overlap in the byte range but have different data).

RFC 5722 [8] clarifies that any packet containing overlapping fragments should silently be discarded
to prevent ambiguity in reassembly. In reality, however, many systems ignore this requirement, do
not comply [3], and apply heuristics such as “first fragment wins” or “last fragment wins” to deal with
overlaps. These differences introduce a dangerous inconsistency: by carefully timing and crafting
overlapping fragments, an attacker can manipulate which data the IDS inspects versus what the end
host actually reconstructs.

Fragmentation Timeout and Reassembly Policy Discrepancies
Reassembling IP fragments requires keeping track of each flow’s fragments over time, so both hosts
and security systems must maintain per-flow state. That state is bounded by timeouts, finite buffer
space and protocol-specific heuristics [24]. For example:

• Timeout policies specify how long a system should wait for missing fragments before they get
discarded. If the timeout is short, the system might never process delayed fragments. If it is long,
the system is more vulnerable to resource exhaustion.

2.3. Middleboxes 6

• The maximum number of fragments per packet or buffer size per reassembly context is
implementation-based as well. Exhausting these resources can lead to fragmentation-based
Denial-of-Service attacks.

When different systems apply different policies, there are inconsistencies. For example, an IDS might
time out and drop the reassembly state before the last fragment is received, but the end host still
accepts it. Or a security system might enforce strict limits and drop the reassembly buffer, while the
host with more relaxed settings completes the reconstruction [25].

Performance-Driven Shortcuts in Detection Systems
In high-performance networks, like 5G networks, line-rate requirements tend to result in simplifica-
tions of how fragments are processed within security systems. IDS software can disable reassembly
completely for certain traffic types [26] or use kernel-level defragmentation rather than performing user-
space reassembly [5, 6, 7]. This will be explored further in Section 2.3.

While these optimisations improve throughput and reduce CPU overhead, they also open the door
to attackers who know how to manipulate fragment structure to remain undetected. When traffic is
mirrored to an out-of-path IDS that uses kernel defragmentation, the system inherits all the quirks and
limitations of the kernel’s IP stack, including its fragment overlap policy, timeout behaviour, and handling
of partial reassembly.

2.3. Middleboxes
In computer networks, middleboxes are intermediary devices that performmore than packet forwarding.
While routers and switches focus on routing traffic and handling link-layer delivery, middleboxes enforce
policies, inspect and filter data flows, and perform tasks like address translation. Common examples
include: Network Address Translators (NATs), load balancers, and Intrusion Detection or Prevention
Systems (IDS/IPS). In this section we will focus on the IDS/IPS category.

Middlebox Reassembly
When it comes to IP fragmentation, middleboxes play a crucial role. Since many of their security and
performance features run at or above the transport layer, they need to be able to correctly decode
and reconstruct fragmented packets before inspecting and enforcing any policies [24]. This creates a
reliance on fragment reassembly logic and, with it, a wide attack surface when reassembly behaviour
is inconsistent, simplified, or different than the one used in the endpoint device.

Unlike endpoints that typically depend on a specific operating system as well as a protocol stack to per-
form the reassembly of packets, middleboxes are usually implemented with a custom, proprietary logic
due to performance or architectural reasons [2]. This means that the way fragments are reassembled
can be different between multiple vendors as well as classes of devices.

Reassembling IP fragments at line rate is a resource-intensive task: each fragment must be matched
to its reassembly context, stored in memory until the entire datagram arrives or a timeout occurs, and
then checked for overlaps or malformed data before being reordered and reassembled into a complete
packet.

This process can be weaponised in several ways. An attacker might launch a fragmentation-based
denial-of-service by flooding themiddlebox with incomplete or delayed fragments, exhausting its buffers
and triggering connection drops or reassembly failures. They might also induce a state desynchronisa-
tion by crafting fragments that the middlebox accepts but the end host rejects (or vice versa), causing
the IDS to see a different payload than the target system. Finally, adversaries can bypass security poli-
cies by exploiting offset methods or creating overlapping, ambiguous fragments that evade standard
reassembly logic.

Middlebox Deployment Models
Another important aspect is the middlebox deployment model. Inline devices (e.g., IPS, firewall) sit
directly in the path of the traffic and can drop, modify, or redirect packets. Out-of-path devices (e.g.,
IDS) receive a copy of the traffic and monitor without affecting forwarding.

2.4. 5G Network Architecture 7

In today’s high-speed, low-latency networks, using in-line security tools like IPSes is not feasible unless
they’re carefully tuned. These systems inspect traffic as it flows, which becomes slowwhen they need to
perform deep inspection or reassemble packets. That kind of delay is not accepted in such performance-
heavy networks. Industry and academic research suggest that IPS solutions often struggle to keep up
without dedicated hardware or a lot of fine-tuning [9, 10]. Because of this, many real-world setups use
out-of-path IDS instead. These monitor traffic passively, usually through port mirroring or network taps,
giving analysts visibility into the network without disrupting the traffic flows [11].

To further handle high traffic loads efficiently, many deployments configure IDS solutions like Suricata to
operate in AF_PACKETmode [12], using the default defrag: yes setting to shift IP fragment reassembly
to the kernel. By allowing the operating system to manage reassembly, the IDS avoids extra processing
overhead in user space and evaluates packets exactly as the host sees them. This setup leads to faster
performance and more reliable detection and has become a widely adopted strategy in performance-
critical environments [5, 6, 7].

2.4. 5G Network Architecture
In this thesis, 5G serves as our evaluation environment, offering a timely case study for how IP fragmen-
tation behaves in today’s high-performance networks. Its modular design, encapsulated data plane and
strict latency requirements introduce challenges for fragment reassembly and continuous security mon-
itoring. In the following section, we’ll describe 5G’s core architecture, the flow of user traffic through the
system and discuss how these characteristics influence the placement and effectiveness of intrusion-
detection mechanisms.

2.4.1. Overview of 5G Network Functions
According to [27], fifth-generation (5G) networks adopt a modular, service-based architecture (SBA)
that withdraws from the vertically integrated, monolithic designs used in previous generations. In this
architecture, each logical element of the networks, known as a Network Function (NF), performs a
distinct role and interacts with others via defined interfaces, often implemented as RESTful APIs. This
division of tasks allows operators to deploy NFs as containerised or virtualised workloads across cloud,
edge and on-premise environments, improving scalability and flexibility.

Figure 2.1: Figure illustrating the 5G network architecture [28]

The 5G Core (5GC) is built around a split between the control plane and the user plane. The control
plane handles signalling, session establishment and subscriber management, while the user plane is
responsible for forwarding the actual user data. Such control plane functions are:

• The Access and Mobility Management Function (AMF), which manages User Equipment (e.g.,
mobile phones) registrations and mobility events

• The Session Management Function (SMF), responsible for allocating IP address and configur-
ing routing paths

2.4. 5G Network Architecture 8

• The Authentication Server Function (AUSF), which authenticates users via credentials or cer-
tificates

The primary component in the user plane is the User Plane Function (UPF). Acting as the gateway
between the Radio Access Network (RAN) and external data networks, the UPF routes packets based
on policies set by the control plane. As a performance-critical element, it must handle traffic at full line
rate, enforce quality-of-service rules, and perform GTP-U encapsulation and decapsulation, all while
avoiding any processing bottlenecks

The decoupling of the 5G architecture brings with it performance benefits, scaling capabilities, and
security isolation. However, it also means that packet processing is distributed across heterogeneous
platforms. Each function, including the UPF and surrounding network elements, may run different
operating systems, kernel versions and processing pipelines. This heterogeneity makes consistent
packet interpretation (especially for fragmented traffic) a non-trivial problem and forms the basis for
this thesis’ investigation.

2.4.2. Data Path and Encapsulation
In a standard 5G implementation, traffic from a mobile device (i.e., UE), is routed through multiple
components before reaching external networks. At the radio level, the UE connects to the gNodeB(the
RAN in Figure 2.1) , which serves as the access point to the core network. Data leaving the gNodeB is
encapsulated in aGPRSTunnelling Protocol – User Plane (GTP-U) tunnel. This encapsulation allows
the network to separate each user’s traffic, implement mobility management, and enforce isolation
policies [19].

In a GTP-U tunnel, each IP packet is wrapped in a GTP-U header plus a UDP/IP outer header and sent
through the core network to the UPF. There, it decapsulates the tunnel, retrieves the original IP packet
and forwards it to the appropriate destination (e.g., a public website or service provider). When data
returns to the user, the UPF re-encapsulates the packet in a new GTP-U tunnel, which carries it back
through the core to the gNodeB and ultimately to the UE.

Figure 2.2: Figure illustrating the high-level packet structure of GTP-U

Encapsulating user traffic in GTP-U tunnels has multiple advantages: it makes it possible to apply
per-user traffic control policies [19], enables mobility without disrupting end-to-end IP sessions [29],
and allows multiple services or network slices to share the same network infrastructure [27]. However,
encapsulation complicates deep packet inspection since any monitoring system must remove the outer
headers to inspect the actual user payload. This becomes more important when the inner IP packets
are fragmented, because each fragment is wrapped separately [30].

2.4.3. Performance Constraints in 5G
One of the main characteristics of 5G networks is their support for diverse use cases with strict per-
formance requirements [31, 32]. For example, Enhanced Mobile Broadband (eMBB) aims for high
data throughput (e.g., multi-gigabit connections), while Ultra-Reliable Low-Latency Communication
(URLLC) applications require end-to-end latency on the order of 1 millisecond. Additionally, Massive
Machine-Type Communications (mMTC) use cases need high scalability for sensor-rich environ-
ments such as smart cities or industrial automation.

Meeting these requirements puts considerable stress on the data plane, where every microsecond
counts. Processing packets through deep inspection layers, such as application-layer firewalls or tradi-
tional IPS, is not feasible when traffic is high [9, 10]. Any extra per-packet processing is likely to cause

2.4. 5G Network Architecture 9

delays that break SLAs and negatively affect the user experience.

To deal with this, 5G deployments increasingly depend on performance-optimised processing pipelines.
These may include:

• Kernel bypass technologies (e.g. DPDK, XDP) to accelerate packet I/O [6, 7]
• Offloading functions to SmartNICs or FPGAs to reduce CPU load [33]
• Delegating IP defragmentation to the kernel, rather than performing it in user space [5]

2.4.4. Security Monitoring in 5G
To secure 5G networks, we need monitoring tools that accommodate the modular design and high-
performance requirements [34]. In 5G, data is no longer routed through a single, central point instead,
it is split into modules and encapsulated in multiple layers. Therefore, traditional in-line inspection
tools are not suitable anymore. This means we need to adopt more adaptable and scalable intrusion-
detection methods that can handle 5G’s service-based architecture and massive data rates.

In a typical 5G system, we can deploy middleboxes at multiple network points. One common approach
is to place the middlebox near the gNodeB, the base station, where it can inspect traffic as it enters the
radio access network. This edge-based placement is especially useful in decentralised or mesh-style
networks, where having threat detection close to the user is key [35, 36].

Middleboxes can also be deployed between the gNodeB and the core network, for example, on the
N3 interface [37], or between the SMF and the UPF on the N4 interface [38]. This allows for partial
inspection of encapsulated traffic, such as the GTP-U tunnel, but they still don’t inspect the reassembled
content of the final payload. Other designs go a step further by integrating the middlebox directly into
core functions like the AUSF [39] or by running it as a separate network function that gathers and
analyses aggregated traffic [40].

In this thesis, we focus on the placement of the middlebox directly inside the UPF, at the point where
the user plane is decapsulated and forwarded to the external networks. This location brings three key
benefits. First, it gives useful visibility into both uplink and downlink flows since the UPF handles all user
data through the mobile core. Second, by being placed after GTP-U decapsulation, the IDS receives
raw IP packets and avoids the need to remove tunnel headers or perform recursive parsing. And third,
because the UPF sits at the border between the core network and external domains, it is the perfect
spot for detecting attacks coming from either side.

Several academic and industry sources support the feasibility and effectiveness of UPF-integrated
detection. For example, research has suggested placing IDS systems directly within or alongside
the UPF [41], while commercial solutions such as Cisco’s DPI-enabled UPF modules offer equivalent
capabilities [42]. These designs are driven by the same trade-offs examined in this thesis: maximising
packet visibility and detection accuracy without compromising processing efficiency.

Given the goal of examining how fragmentation impacts detection under high-throughput conditions,
embedding the IDS in the UPF is both realistic and technically sound. In this position, it captures
fragmented IP traffic immediately after GTP-U decapsulation, allows integration with kernel-level re-
assembly methods and reflects deployment patterns used in operational 5G core networks.

3
Related Work

IP fragmentation has long been recognised as a source of ambiguity in network security, especially
when fragment reassembly behaviour is different across endpoints, middleboxes, and detection sys-
tems. These inconsistencies can be exploited by attackers to evade detection, mislead security tools,
or bypass enforcement policies entirely. In this review, we’ll look at both foundational and recent re-
search on fragmentation-based evasion, methods for testing reassembly logic, and the specific chal-
lenges fragmentation poses for passive detection in high-performance environments such as 5G. A
summary of the related work explored in this chapter can be viewed in Table 3.1.

Reference Focus
Area

Key Contribution Relation to Thesis Summary of Findings
Related to Thesis

Ptacek &
Newsham
(1998)

Fragmentation-
based
evasion

Defined
insertion/evasion
model

Foundational Model
for IDS reassembly
mismatches

Showed attackers can
evade IDS by
exploiting fragment
interpretation gaps

Atlasis
(2012,
2014)

IPv6 frag-
mentation
attacks

Practical IPS evasion
via overlaps

Motivates
IPv6-specific attack
surface

Overlapping IPv6
fragments bypass
commercial detection

Shankar &
Paxson
(2013)

Testing re-
assembly
behaviour

Structured model for
probing fragment
policy

Methodological
foundation for later
automated testing

Demonstrated
reassembly policy is
measurable and
differs by OS

Di Paolo et
al. (2023)

IPv6 re-
assembly
testing

Permutatio-based
testing framework

Inspiration for test
design

Found inconsistencies
in OS reassembly

Pevma
(SEPTun)
(2016–
2024)

IDS perfor-
mance
tuning

Guidelines for
Suricata performance
tuning

Guidelines for
Suricata performance
tuning

Kernel
defragmentation
improves performance
but shifts trust to OS
behaviour

Table 3.1: Related Work Summary Table.

10

3.1. Fragmentation-based evasion 11

3.1. Fragmentation-based evasion
In their work on IDS evasion, Ptacek and Newsham present [23] an attacker model that exploited
ambiguities in the way packet fragments are interpreted by different network devices. They identify
two core evasion strategies: insertion and evasion. In insertion attacks, a detection system incorrectly
reassembles and analyses a packet that is ultimately discarded by the endpoint, resulting in a false alert.
On the other hand, evasion attacks occur when the IDS fails to reconstruct a packet that is correctly
accepted and processed by the target host, allowing malicious payloads to pass undetected.

Their experiment focused on TCP/IP traffic, particularly fragmented IP and out-of-order TCP segments,
and they showed how detection systems that did not mirror the exact reassembly logic of the host could
be easily evaded. The work emphasised that even minor implementation differences in how packets
are reassembled, timeouts are handled, or overlaps are resolved could be used by attackers to their
advantage.

This thesis extends Ptacek and Newsham’s framework by investigating whether the same kinds of
reassembly mismatches can be exploited in IPv6 fragmentation to bypass detection. While their orig-
inal work examined TCP/IP and generic IDS-host discrepancies, here we focus on high-performance
environments, where the demands of throughput and latency may increase the attack surface.

3.2. IPv6 fragmentation attacks
In his 2012 Black Hat Europe presentation [4], Atlasis demonstrated that, despite IPv6’s more rigorously
defined fragmentation model, many high-end IPS devices remain vulnerable to evasion via carefully
crafted overlapping fragments and extension-header manipulation. He showed that discrepancies in
how detection systems and operating systems resolve overlapping payloads create blind spots in deep
packet inspection, allowing malicious traffic to pass undetected.

In 2014, Atlasis and Rey [43] released a detailed paper demonstrating that by combining IPv6 Routing
Headers, Fragment Headers, and Destination Options, attackers could redirect packets or hide ma-
licious payloads. Their evaluation of commercial IPS and firewall products revealed that even those
configured to meet RFC standards were still vulnerable to fragmentation-based evasion. They high-
lighted that, in practice, vendors often implement only partial or divergent reassembly logic, especially
when it comes to handling IPv6 extension headers, creating persistent blind spots in network defences.

While their work was important in revealing the practical risks of IPv6 fragmentation, it did not model
reassembly behaviour across operating systems or test passive configuration. On the other hand, this
thesis investigates non-inline IDS deployments that depend on kernel-level reassembly, examining
whether such configurations remain vulnerable to overlapping-fragment attacks. Building on Atlasis’s
insights, we aim to show that even in modern, high-performance environments, fragmentation ambigu-
ities continue to create exploitable gaps in security visibility.

3.3. Testing reassembly behaviour
In 2003, Shankar and Paxson [44] introduced Active Mapping, an empirical technique for uncovering
exactly how a given host handles IP fragment reassembly. By sending carefully crafted probe fragments
and observing which ones the target accepts or rejects, their method allows an IDS to “learn” the host’s
reassembly policy. This host-aware approach ensures that the IDS’s own defragmentation logic mirrors
that of the protected system, closing the gap that attackers might otherwise exploit through mismatched
fragment handling.

Their methodology involved sending probe sequences of overlapping fragments to target systems and
analysing their responses. By varying fragment order, overlap type, and timing, they could deduce
whether a system followed a “first fragment wins” or “last fragment wins” strategy and how it dealt
with partially reassembled packets. This allowed them to build reassembly profiles of different operat-
ing systems, which could then be used to tune detection rules in a way that matched the endpoint’s
behaviour.

The key contribution of their work is that reassembly is not only variable but also measurable and
classifiable, enabling detection systems to adapt rather than rely on a fixed reassembly model. Their

3.4. IPv6 Specific Reassembly Testing 12

findings laid the groundwork for newer models, such as those of Di Paolo et al. [3].

This thesis adopts the same core assumption, that reassembly behaviour varies across systems, but
shifts evaluation from active probing of endpoints to passive observation within an IDS pipeline. Rather
than deriving custom fragment-handling rules as Shankar and Paxson did, it evaluates whether simply
relying on the operating system’s native, kernel-based reassembly is enough for the IDS to faithfully
match the host in complex fragmentation scenarios.

3.4. IPv6 Specific Reassembly Testing
In their recent work, Di Paolo, Bassetti, and Spognardi [3] introduced a framework for testing IPv6
fragment reassembly behaviour across operating systems. Their paper addresses the gap in empirical
methodologies by proposing a permutation-based model that generates all meaningful combinations of
IPv6 fragments under controlled assumptions. Their focus is on whether endpoint stacks reassemble
packets in the presence of overlaps, out-of-order delivery and fragment retransmission.

A key strength of their approach is its meticulous test generation model, which enumerates input cases
based on fragment metadata (offsets, lengths, overlaps). The authors built a testing pipeline capable of
injecting crafted IPv6 fragments into real hosts and observing whether a complete packet is accepted or
dropped. They applied this framework acrossmajor OS families (Linux, Windows, OpenBSD, FreeBSD)
and discovered different reassembly behaviours.

Their work is relevant for this thesis for two main reasons. First, their permutation-driven testing frame-
work, together with its binary “accept/reject” outcomes, is reused in the experiment architecture adopted
in this thesis. Second, by demonstrating that even standardised systems display different fragmenta-
tion behaviours, they fuel our concern that passive IDS solutions, which rely on kernel reassembly, may
not always reflect the true logic used by endpoints.

However, Di Paolo et al. focus only on endpoint reassembly, not detection systems or passive moni-
toring setups. This thesis extends their model into the IDS domain, applying similar permutation logic
but observing not only whether the host accepts the packet but also how it reassembles it and whether
an IDS detects it. It also considers traffic of high-performance networks, such as 5G networks.

3.5. Suricata Performance Tuning
Apart from academic research, real-world suggestions on deploying intrusion detection systems in high-
speed networks have also influenced this thesis. One of those suggestions is the SEPTun (Suricata
Extreme Performance Tuning) series by Manev (Pevma) [5, 6, 7]. These community-driven docu-
ments provide technical recommendations for configuring Suricata, a widely used open-source IDS,
for line-rate traffic monitoring in multi-gigabit environments.

The SEPTun guides suggest the need for zero-copy packet capture, parallel processing and kernel-
space optimisations. They recommend using AF_PACKET mode so that Suricata can tap directly into
the kernel’s memory-mapped ring buffers, cutting per-packet overhead and enabling multi-threaded
analysis with little performance penalty. However, this configuration comes with a trade-off: Suricata
must depend entirely on the kernel for IP defragmentation rather than using its own user-space re-
assembly engine.

This design choice introduces a dependency on the correctness and security of the kernel’s reassembly
logic. If the kernel reassembles fragments in a way that differs from the final destination host (due
to differing OS versions, patches, or kernel parameters), the IDS may interpret the packet stream
differently, recreating the exact interpretation gap that Ptacek and Newsham [23] warned about.

The performance-tuning setup recommended in SEPTun is exactly themodel used in this thesis’ testbed.
It reflects real deployment constraints and justifies the relevance of evaluating whether kernel-based
reassembly in passive IDS setups creates opportunities for evasion under fragmentation. Therefore,
this thesis examines the security implications of a method typically regarded as a best practice for
high-throughput detection environments.

3.6. IDS Deployment in 5G Core Networks 13

3.6. IDS Deployment in 5G Core Networks
The increasing modularity of 5G networks has led to new design opportunities for placing security
functions inside the core. Several studies have examined where intrusion detection systems can be
deployed for maximum visibility with minimal performance impact.

Radoglou-Grammatikis et al. [38] explored deploying an IDS at the N4 interface, which connects the
SMF to UPF. Their system used AI-based anomaly detection to monitor signalling traffic for suspicious
behaviour. The placement was chosen to avoid interfering with user traffic while still observing control-
plane interactions that might indicate compromise or misconfiguration. Although their work focused
on detecting anomalies in control messages, their results demonstrate that modular, real-time IDS
deployment within the 5G core is both practical and effective.

Le et al. [40] take a different track by virtualising the IDS as an independent network function within
the 5G core. Their deployment model involved virtualising the IDS and orchestrating it using service-
based management layers, ensuring flexibility, scalability, and NFV compatibility. This model supports
decoupled monitoring and aligns with the general 5G principle of dynamic function chaining.

Both studies validate the feasibility of embedding IDS modules within the 5G core, either adjacent to
or inside the UPF. However, they do not address fragmentation, reassembly behaviour, or packet-level
evasion techniques. This thesis differentiates itself by focusing on the fragmentation-specific risks that
arise when passive IDS systems are integrated into high-speed, encapsulated environments.

4
Methodology

In this chapter, we outline how we’ll test the impact of IP fragmentation handling inconsistencies on se-
curity visibility within a high-performance network (i.e., 5G) monitored by an out-of-path IDS relying on
kernel-level defragmentation. We start by generating carefully controlled sets of fragment sequences,
then send them through GTP-U tunnels to mimic real 5G traffic. As each fragmented packet is decapsu-
lated and reassembled by the kernel, we record both what the target system reconstructs and whether
the IDS raises any alarms. By varying fragment sizes, offsets, overlaps and timing in a controlled way,
we can map out where the IDS and the endpoint disagree in reassembly and thus how easy it is to
perform insertion or evasion attacks.

4.1. Experimental Design
This thesis introduces an experimental framework to evaluate how IP fragmentation affects security in
a high-performance network (i.e., 5G network) with an IDS built into the UPF. The framework uses a
pipeline that transforms fragmented packet permutations into test observations and abstracts from the
implementation-specific details. These specific details will be explored in Section 5.1

The focus is on identifying inconsistencies between packet reassembly at the monitoring IDS (which
relies on kernel-level defragmentation) and the target host.

Pipeline Overview
The high-level evaluation pipeline consists of five main stages: (1) generating fragmented packet per-
mutations, (2) transmitting the packets through a simulated 5G user-plane path using GTP-U encap-
sulation, (3) observing how the Linux kernel reassembles the fragments, (4) applying Suricata traffic
inspection on reassembled packets, (5) collecting the host responses, packet traces and IDS alerts
and (6) classifying the outcomes based on observed host behaviour and IDS alert generation. This
pipeline can also be seen in Figure 4.1.

Fragmented
Packet Permutations

Transmission
through GTP-U Tunnel

Linux Kernel
IP Reassembly
(af-packet)

Suricata IDS
Traffic Inspection

Observation of
Host Response
+ IDS Alerts

Classification
of Outcome

Possible Divergence
(Reassembly Error)

Possible Divergence
(Detection Error)

Figure 4.1: Pipeline Overview: Fragmented Packet Processing

Using the output of this pipeline, several real-life test scenarios were designed to test the security and
resiliency of the 5G system against IP fragmentation attacks. These scenarios are discussed in more
detail in Chapter 5.

14

4.1. Experimental Design 15

Generation: Fragment Permutations
The input to the experiment consists of systematically generated fragment permutations, representing
different fragmentation strategies. The permutations use a combination of the following variables:

• Fragment ordering: Fragments are transmitted out of sequence to test reassembly ordering
robustness.

• Overlap patterns: Fragments overlap partially or fully, creating ambiguity during reassembly.
• Retransmission: Fragments are retransmitted multiple times to test the reassembly synchroni-
sation between the IDS and end-host

• IP Identification manipulation: Fragment sets share or differ in IP ID fields to test context asso-
ciation.

Processing and Transmission
For each generated fragment permutation, we encapsulate the fragments within a GTP-U tunnel and
forward them through the 5G core towards our emulated end host, passing directly through the UPF.
This setup reproduces the user-plane behaviour of an operational 5G network, ensuring that every test
packet must be decapsulated and reassembled by the kernel before it reaches the server.

At the UPF, the IDS passively captures a copy of the traffic using AF_PACKET mode. As fragments
arrive, the Linux kernel performs IP reassembly, merging them into complete packets. Those re-
constructed packets are then forwarded to Suricata, which examines them for anomalies, signature
matches, and policy violations. Meanwhile, the UPF continues to forward the original traffic toward its
intended destination.

Observation and Classification
For every test case, we log how the target host handles the reassembled packet, whether it accepts
it and generates a response or rejects it. Additionally, we note any alerts raised by Suricata, such as
overlap warnings or rule matches. At the same time, we capture packet traces at critical points in the
path (the UPF, the end host, and the Linux bridge between containers or VMs) to support a detailed
comparison of what each component actually saw.

Afterwards, each permutation is analysed and classified based on the following outcomes:

• Exploitable and Undetectable: A reassembly discrepancy occurs between the UPF and the
end host, the end host accepts the packet, and the IDS does not generate any fragment overlap
or related alerts.

• Detectable Exploitation: A reassembly discrepancy occurs between the UPF and the end host,
the end host accepts the packet, but the IDS generates fragment overlap or related alerts.

• Non-Exploitable: There is no reassembly discrepancy between the UPF and the end host, the
end host rejects the packet, or reassembly fails.

Pseudocode for Experimental Evaluation
The overall logic of the experimental process can be expressed as pseudocode. This pseudocode ab-
stracts the experiment’s control flow and highlights the decision points used in analysing the outcomes.

4.2. Necessary and Sufficient Conditions for Fragmentation Attacks 16

Algorithm 1 Fragment Permutation Testing
1: Fragment_Permutations← 720 permutations representing all possible transmission orders of 6 fragments

2: for each permutation in Fragment_Permutations do
3: Create a fragmented ICMPv6 Echo Request
4: Encapsulate each fragment inside GTP-U

5: if test_1 then
6: Send each fragment once
7: else
8: Send each fragment 5 times with the same IP ID
9: end if

10: Monitor the target host:
11: if host reassembles and responds then
12: Host_Result← “Accepted”
13: Record how the host reassembled the packet (Host_Packet)
14: else
15: Host_Result← “Rejected”
16: end if

17: Monitor Suricata IDS alerts:
18: IDS_Result← “No Alert”
19: if an alert is triggered then
20: Store the alert and correlate it with the current permutation
21: IDS_Result← “Alert”
22: end if

23: Monitor and save the network traffic:
24: - At the UPF (UPF_Packet represents how the UPF reassembled the packet)
25: - At the Linux bridge
26: - At the end-host
27: Classify permutation outcome:

28: if Host_Result == “Accepted” and IDS_Result == “No Alert” and Host_Packet ̸= UPF_Packet then
29: Mark as “Exploitable and Undetectable”
30: else if Host_Result == “Accepted” and IDS_Result == “Alert” and Host_Packet ̸= UPF_Packet then
31: Mark as “Detectable Exploitation”
32: else
33: Mark as “Non-Exploitable”
34: end if
35: end for

4.2. Necessary and Sufficient Conditions for Fragmentation Attacks
In this section, we define the criteria that make fragmentation-based attacks possible by distinguishing
between two sets of conditions. Necessary conditions are the minimal preconditions for a potential
attack to be feasible. Sufficient conditions, on the other hand, are the observable outcomes that indicate
a successful attack.

Necessary Conditions
The following conditions must hold for a fragmentation-based attack to be possible:

1. Reassembly must occur at the host: The target system must successfully reassemble the
fragments into a valid payload and accept the packet at the network stack.

2. The attacker must control fragmentation behaviour: The attacker must be able to manipulate
fragmentation variables, including fragment offsets, ordering, overlap, and retransmission.

3. The IDSmust inspect reassembled packets: Detection uses a passive IDS that relies on kernel
defragmentation

4. Fragmentation must preserve transport-layer coherence: The fragments must be valid in
structure and not rejected due to protocol-level constraints (e.g., fragment length alignment, header
corruption).

4.3. Metrics and Evaluation Criteria 17

Sufficient Conditions
An attack is considered successful if, in addition to satisfying all necessary conditions, the following
hold:

1. Host accepts the reassembled packet: When the endpoint correctly reassembles and acts on
the payload, for example, replying to an ICMP echo or completing a TCP handshake, demonstrat-
ing that the fragmented data was interpreted exactly as intended.

2. IDS fails to detect the payload or anomaly: The IDS does not raise an alert for knownmalicious
signatures (e.g., EICAR) or for fragmentation policy violations (e.g., overlap), indicating that the
detection logic failed to trigger.

Together, these criteria establish whether a fragmentation-based exploit is truly feasible. An attack
succeeds only when the endpoint reassembles and acts on themalicious payload while the IDS remains
silent. If the host accepts the packet but Suricata raises an alert, the exploit could still reach its target
but would be detected. If the host rejects the reassembled packet, the attack cannot be exploited,
regardless of whether the IDS spots it.

4.3. Metrics and Evaluation Criteria
This section defines the evaluation criteria for each fragmentation test case, focusing on the visibility,
correctness, and exploitability of the fragmented traffic, as observed by both the IDS and the target
host. These metrics allow for measuring IDS effectiveness, understanding OS-specific reassembly
behaviour, and analysing fragmentation inconsistencies and their exploitability.

Reassembly Consistency
Definition: A binary indicator of whether the payload reconstructed by the IDS matches exactly the
payload reconstructed by the endpoint OS.

Purpose: By comparing IDS and host reassembly outputs, this metric reveals vulnerabilities from IP
fragmentation in high-throughput, low-latency networks (RQ1) and shows how different 5G components
perform reassembly. Consistency means detection gaps lie in signature coverage and are not because
of the reassembly behaviour of the systems, while inconsistency suggests an evasion surface. This
approach follows Ptacek & Newsham’s [23] insertion/evasion framework and Shankar & Paxson’s [44]
active mapping technique for quantifying host/IDS reassembly discrepancies.

Evaluation Metric: A binary metric indicating

• Consistent: Both host and IDS reconstruct identical payloads.
• Inconsistent: Different reassembly or silent packet rejection.

Detection Visibility
Definition: The percentage of all sent fragment permutations that trigger at least one IDS alert, either
for fragmentation anomalies (e.g., overlapping offsets) or for payload signatures (e.g., EICAR).

Purpose: Detection rate is a well-known metric in IDS evaluations [45], measuring the proportion of
malicious or anomalous events that generate alerts. Our Detection Visibility metric applies this concept
to fragmented traffic, directly addressing RQ3 by quantifying how often an IDS flags suspicious fragment
behaviour. A high alert rate on host-accepted permutations indicates good coverage, while a low rate
reveals blind spots where stealthy payloads may slip through.

Evaluation Metric:

Detection Rate =
Alerts Triggered

Total Permutations Tested
× 100%

Host Acceptance
Definition: The number of sent fragment permutations that the endpoint OS successfully reassembles
into a valid packet, as evidenced by a proper ICMPv6 Echo Reply.

4.3. Metrics and Evaluation Criteria 18

Purpose: Host Acceptance determines which fragment sequences can actually deliver payloads to the
host, directly addressing RQ1 by identifying real-world vulnerabilities from IP fragmentation and RQ2
by revealing how different 5G components influence reassembly outcomes. Only permutations that the
host accepts are exploitable, making this metric the essential first filter for both evasion and insertion
attacks. Measuring host acceptance is a standard practice in fragmentation-evasion research, as seen
in Di Paolo et al.’s [3] permutation-based evaluation of IPv6 fragmentation behaviour.

Evaluation Metric: Binary outcome

• Accepted: Host processed packet and responded.
• Rejected: No response, packet reassembly failed or was dropped.

Permutation Filtering and Classification
Definition: Permutations are classified based on the combined outcome of host acceptance and IDS
alerting.

Purpose: By filtering all tested permutations through this framework, we are able to find the “window”
in which an attacker can both deliver a payload to the host and evade detection, thus addressing RQ4
and guiding towards necessary solutions addressed in RQ5 .

Evaluation Metric:

Host Accepted IDS Alert Category
Yes No Exploitable and Undetectable
Yes Yes Detectable Exploitation
No Yes/No Non-Exploitable

Table 4.1: Classification of Exploitation Based on Host and IDS Response

Evaluation of Real-Life Fragmentation Scenarios
Definition: The evaluation of a separate subset of tests based on the classification outcome of the
previous step that tests the detection of malicious vectors used in real-life testing (i.e., EICAR test
string).

Purpose: By testing the practicality and effectiveness of the exploitable permutations with real-life ma-
licious vectors, we are directly addressing RQ4. Proof-of-concept attacks are a standard practice in
cybersecurity research, as seen, for example, in Atlasis’ work [4, 43].

Evaluation Metrics:

• Exploitable: The fragmented payload was accepted by the host and triggered an expected re-
sponse (e.g., ICMP reply, connection establishment).

• Detectable: The IDS generated an alert for the fragmented payload (e.g., signature match,
anomaly detection).

• Stealthy: The IDS did not generate an alert for the fragmented payload.

5
Experimental Results

This chapter presents the results of a set of tests that were created to evaluate how typical operating
systems and a passive IDS respond to IPv6 fragmentation under controlled experiment conditions.
By analysing detection behaviour, consistency of reassembly, and semantic interpretation of different
IPv6 fragments, the study discovered differences between what the IDS inspects and what the host
processes. It was found that reassembly policies, timing variances and fragment structure can allow
attackers to bypass detection. Moreover, the findings enable us to evaluate the risks and possible
exploitation in the real world.

5.1. Experimental Setup
This section describes the design and implementation of a controlled testing environment intended to
evaluate how IP fragmentation discrepancies impact detection accuracy in high-throughput networks.
We deployed a realistic 5G network using OpenAirInterface1, and employed passive monitoring with
kernel-level packet reassembly. Multiple endpoint operating systems were tested to compare their
respective reassembly behaviours. The overall setup is designed to reflect a real-world deployment
scenario where performance considerations motivate out-of-path monitoring and reassembly is dele-
gated to the Linux kernel.

5.1.1. 5G Testing Environment
The testing environment consists of four logical nodes: a User Equipment simulator, a virtualised gN-
odeB, a UPF node where Suricata is deployed as the IDS, and a target host. All the subsystems are
deployed inside separate Linux containers or virtual machines and connected via Docker networks and
virtual bridges.

The User Equipment was implemented using a Docker container based on the official Docker image
oaisoftwarealliance/oai-nr-ue:develop. This container was configured with custom packet generation
scripts written in Python 3.102 using scapy3 to craft and send specific IPv6 fragments. The scripts
support full control over fragment offset, ordering, payload content, and retransmission logic. Traffic
from this container is routed through a common Docker bridge that connects it to the gNodeB

The gNodeB was simulated using the official Docker image oaisoftwarealliance/oai-gnb:develop, con-
figured in standalonemode. While not a full radio layer simulation, the container provides the necessary
encapsulation and GTP-U setup to forward user-plane packets from the UE to the core. The gNodeB
is also connected to the common Docker bridge and forwards packets between the User Equipment
and the User Plane Function.

The User Plane Function was deployed on a Docker container based on the official Docker image
1https://openairinterface.org/
2https://www.python.org/
3https://scapy.net/

19

5.1. Experimental Setup 20

Figure 5.1: Test Environment Architecture

oaisoftwarealliance/oai-upf:develop. Inside the UPF, Suricata4 was deployed in AF_PACKET mode
using version 6.0.9, with kernel-based defragmentation enabled via defrag: yes. This UPF hosts the
IDS, which inspects the traffic after GTP-U decapsulation. The gNodeB is also connected to the com-
mon Docker bridge and forwards packets between the gNodeB and the destination host.

The final component, the destination host, acted as the endpoint responsible for replying to ICMPv6
Echo Requests. This node was virtualised with Vagrant by HashiCorp5, and it provided the “ground
truth” for determining which reassembled packets the OS accepted and processed. This component
uses the same common Docker bridge to receive and send packets. ICMPv6 Echo Replies were used
to confirm packet acceptance.

5.1.2. IDS Configuration
The IDS was deployed inside the UPF node using Suricata version 6.0.9. Suricata was configured in
AF_PACKET mode to capture traffic via memory-mapped ring buffers with kernel-level zero-copy. The
interface receiving mirrored post-decapsulation traffic was explicitly bound to Suricata, and traffic from
the GTP-U output was tapped directly.

Suricata was configured with kernel-level defragmentation enabled (defrag: yes). This ensures that
the IDS inspects packets that the Linux kernel has already reassembled. While efficient, this design
introduces a dependency on the kernel’s interpretation of fragmented data, an assumption tested in
this thesis. Suricata’s rule set was kept minimal and focused on three criteria: detection of the EICAR
test string6 as a known benign signature trigger, identification of generic ICMPv6 traffic for validation
purposes, and logging of any fragmentation-related errors (such as invalid offsets or overlapping frag-
ments).

5.1.3. Operating Systems Under Test
To examine how different operating systems interpret fragmented traffic, four target platforms were
selected: Windows 10, Ubuntu Linux, FreeBSD, and OpenBSD. These were chosen for their known
differences in RFC compliance [3]. On each system, we ran tcpdump to record both incoming frag-
ments and outgoing Echo Replies. These packet traces enabled us to verify exactly which fragments
arrived and whether the host responded, providing a clear “ground truth” for each operating system’s

4https://suricata.io/
5https://developer.hashicorp.com/vagrant
6https://www.eicar.org/download-anti-malware-testfile/

5.1. Experimental Setup 21

reassembly behaviour.

Operating Systems Kernel Version Vagrant box version
GNU/ Linux Ubuntu 22.04 6.8.0-59-generic -

OpenBSD 7.4 GENERIC.MP#1397 4.3.12
FreeBSD 14.0-RELEASE 4.3.12

Microsoft Windows 10 10.0.20348.2113 2102.0.2409

Table 5.1: Operating system, kernel versions and Vagrant box versions used for generating the test results.

5.1.4. Fragmentation Permutation Design
The input model used for this experiment is adopted from the permutation framework proposed by Di
Paolo et al. [3], developed to test how IPv6 implementations handle incomplete or ambiguous frag-
ment reassembly. We constructed a consistent set of fragments, each defined by its offset, length,
and payload, and then varied the order in which they arrived. By observing how each target system
handles these permutations, we can compare reassembly policies (for example, first-fragment-wins,
last-fragment-wins, or strict RFC 8200 [1] compliant rejection) when dealing with incomplete or conflict-
ing fragment data.

Each test case consists of a permutation of six fragments, labelled A through F (Figure 5.2). Each
fragment contributes a slice of payload data and includes a fixed offset and length. Certain combina-
tions (mainly, ABCF or ABEF) align perfectly to cover the entire payload without any gaps or overlaps,
resulting in an unambiguous reconstruction. Other fragment combinations leave gaps in the byte range
and are not accepted.

Figure 5.2: Testing model presented in paper [3]. The packet consists of 6 overlapping fragments used to uncover reassembly
inconsistencies.

Each fragment in our test suite carries two different payloads (Table 5.2), selected dynamically to pre-
vent checksum errors while maximising variation in reassembly behaviour. Specifically, if a fragment
appears at an even index, it uses one version of the data. If it appears at an odd index, it uses the alter-
nate version. Both variants are created such that, regardless of which fragments and in what order they
arrive, the final ICMPv6 checksum remains valid. By eliminating checksum errors as a confounding
factor, this scheme lets us focus on how different kernel and OS reassembly policies drive divergent
outcomes.

All fragments within a permutation share the same IPv6 Fragment Header, including a common IP
Identification value. The headers are individually valid and adhere to RFC 8200 [1], but the full set of
fragments often does not reassemble into a complete, unambiguous packet. This is by design: the
goal is to reveal whether the receiving system attempts to reassemble such ambiguous combinations

5.2. Reassembly Behavior Across Systems 22

and, if so, how it resolves them, or whether it follows the stricter behaviour recommended by RFC 5722
[8] (i.e., discarding all fragments on detection of overlap).

Fragment Odd packet Even packet
A 11223344 44113322
B 11332244 44331122
C 22113344 44332211
D 22331144 11224433
E 33112244 11334422
F 33221144 22114433

Table 5.2: Payload data for each fragment and index [3]

Each permutation is transmitted sequentially using Scapy7, and all permutations are logged and eval-
uated independently. In a second set of experiments, the same permutation set is used, but with
fragment retransmissions enabled: each fragment is sent five times, using the same offset and IP ID,
simulating lossy or unstable network conditions. This tests whether repeated delivery of fragments
influences the reassembly strategy, for instance, by overwriting existing fragments or triggering early
timeouts.

This design enables classification of system behaviour according to reassembly success, IDS alerting,
and policy enforcement. It also reflects realistic evasion scenarios in which an attacker may send
incomplete or deliberately ambiguous fragment sets to manipulate how detection systems and endpoint
hosts reconstruct packets. The results allow for a direct comparison between kernel-level reassembly
in the IDS and user-level reassembly in the host, under a diverse range of input conditions.

5.2. Reassembly Behavior Across Systems
This section explores Sub-Research Questions 1 and 2 by comparing how different endpoint operat-
ing systems and the passive IDS within the UPF reconstruct IPv6 fragments. It begins by detailing
each system’s approach to handling overlapping fragments and identifying whether they follow a “First-
In” or “Last-In” policy. Next, it highlights any inconsistencies between the host’s native reassembly
and the kernel-based process used by the IDS. We ran two experiments, first without any fragment
retransmissions to observe deterministic behaviour in an ideal, low-noise environment, and then with
retransmissions to determine how fragment timing or redundancy affects reassembly logic and align-
ment between IDS and host.

5.2.1. No Retransmission Case
In the first series of tests, each of the 720 permutations was sent exactly once, with no retransmissions
and consistent timing across fragments. By design, every permutation included overlapping fragments
that, under strict RFC 5722 [8] compliance, should cause the entire packet to be dropped. This RFC
mandates that any detection of overlapping fragment offsets should lead to complete reassembly failure
and packet discard. However, the results from this baseline experiment show that many widely used
operating systems, including the Linux kernel used by Suricata, deviate from this policy.

OpenBSD demonstrated the most conservative behaviour, accepting only 94 permutations. This
strongly suggests that OpenBSD enforces strict drop-on-overlap logic, as defined by RFC 5722 [8].
Fragments with conflicting offsets appear to be detected early in the reassembly process and result
in packet discard. FreeBSD and Windows 10, by contrast, accepted 168 and 240 permutations, re-
spectively, a clear indication that they implement a more permissive reassembly strategy that tolerates
some degree of offset reuse or overlap.

On the IDS side, the Suricata deployment reassembled all 720 permutations. Moreover, a significant
number of these (120) were reconstructed using “Last-In” behaviour, meaning that the most recently
received fragment for a given offset was used in the final reassembled payload. The remaining 600

7https://scapy.net/

5.2. Reassembly Behavior Across Systems 23

permutations were reassembled with “First-In” behaviour, similar to the defragmentation strategy of
the other operating systems.

Figure 5.3: Fragment reassembly acceptance across platforms. OpenBSD’s strict drop-on-overlap accepts 94/720
permutations. FreeBSD and Windows 10 accept 168 and 240, respectively. Suricata on Linux’s AF_PACKET reassembles all

720 (600 first-in, 120 last-in).

This divergence shows an inconsistency in how fragmented IPv6 traffic is interpreted. Within the IDS,
Suricata delegates reassembly to the Linux kernel, choosing performance over strict compliance, which
allows later fragments to overwrite earlier data and complete the packet. Endpoint operating systems,
on the other hand, apply stricter policies or default to “First-In” logic, effectively locking out any subse-
quent fragments once the reassembly buffer has been populated. As a result, the IDS and the host
could potentially analyse different “final” payloads, thus affecting the reliability of out-of-path monitoring
in security-sensitive environments.

Although no explicit alert bypass was observed in this baseline test (explored in Section 5.3), the incon-
sistency in reassembly behaviour is itself a cause for concern. It demonstrates that even in low-noise
conditions, a passive IDS cannot be assumed to share a common packet view with the endpoint.

5.2.2. Retransmission Case
In the second test group, each permutation was transmitted five times, maintaining identical fragment
offsets and IP IDs across each retransmission. This scenario simulates real-world conditions such
as packet loss or link-layer retries. The goal was to examine how each system resolves duplicate
fragments and whether reassembly strategies remain stable under lossy networks.

Figure 5.4: Accepted fragment permutations and “Last-In” defragmentation cases by system. OpenBSD: 372 accepted (148
Last-In), FreeBSD: 1,608 accepted (480 Last-In), Windows 10: 1,800 accepted (512 Last-In), IDS: 615 Last-In cases.

5.3. Evasion and Exploitability Analysis 24

The results showed a dramatic shift across all tested systems. OpenBSD, which had previously ac-
cepted only 94 permutations, now accepted 372, a 4 times increase. FreeBSD accepted 1,608 per-
mutations (up from 168), andWindows 10 accepted 1,800 permutations across all test runs.

Across all endpoints, the “Last-In” policy became far more common: OpenBSD applied this strategy
to 148 cases, FreeBSD to 480, and Windows 10 to 512. Similarly, the IDS followed the same trend,
with 615 of its defragmentations using the most recently received fragment when conflicts arose.

These results indicate that retransmissions weaken the determinism of reassembly behaviour, likely
due to factors such as fragment cache replacement, buffer invalidation, or race conditions in timeout
management. When the same fragments are resent, the reassembly engine desynchronises, and what
was supposed to be a “First-In” behaviour by design, in reality becomes a “Last-In” behaviour due to
the desynchronisation.

From a detection point of view, this is highly problematic. The more permissive or inconsistent a system
becomes under retransmission, the more likely it is that host and IDS views of the packet will be differ-
ent. Additionally, if the IDS completes reassembly based on early fragments and discards late-arriving
overlapping ones, it may never see the data that the host ultimately processes. This issue is especially
problematic in high-throughput or noisy environments, such as 5G networks, where retransmissions
are frequent.

5.3. Evasion and Exploitability Analysis
This section addresses Sub-Research Question 3 by evaluating whether mismatches in fragment re-
assembly and IDS detection can be exploited to craft stealthy or misleading traffic. Specifically, we
investigate whether any fragment permutations are accepted by the endpoint yet go unnoticed by the
IDS, whether the IDS and host reconstruct divergent payloads, and whether those cases trigger alerts
or remain silent under both no-retransmission and retransmission conditions. By applying our three-
category classification framework to each permutation, we analyse detection outcomes, reassembly
divergence, and their practical exploitability.

5.3.1. No Retranmission Case
In the baseline experiment, the number of reassembly discrepancies between IDS and the host was
low. Only 18 permutations, all observed onWindows 10, showed a mismatch in reassembly strategy,
that is, the IDS used a “First-In” policy while the host used “Last-In”, or vice versa. This definition of
exploitability reflects a condition in which the two systems reconstruct different payloads from the same
fragment set. These permutations are thus labelled exploitable, since an attacker could leverage them
to embed content that the IDS either ignores or misinterprets.

However, while these 18 cases represent reassembly divergence, they did not go undetected. Each of
them triggered an alert in Suricata for overlapping fragments. These alerts do not reflect the content
of the packet. Suricata may have seen only a benign reassembly, but the alert is still triggered on the
packet. Therefore, the 18 exploitable permutations observed here are detectable, but only because
they trigger an overlapping fragment alert. The permutations that did not trigger alerts are a different
concern. Suricata failed to generate alerts for 96 permutations out of 720, which we will further
explore in Section 5.4. The alert rate can be seen in Figure 5.5.

When we combine alert status with exploitability, we can construct a filtering pipeline that quantifies how
many fragment permutations could trigger a “silent” attack on the end host. Figure 5.6 visualises this as
a Sankey diagram: all permutations first branch on whether Suricata raised an alert, then each branch
splits on whether the remaining permutations are exploitable. As previously presented, in the “alerted”
branch, only 18 of the Windows 10 permutations remain exploitable. In the “unalerted” branch, 96
permutations triggered no alerts, and, in this scenario, none proved exploitable. Nevertheless, as we
show in Section 5.4, those same 96 silent permutations can enable an attack under a different attacking
setup.

5.3. Evasion and Exploitability Analysis 25

Figure 5.5: Impact of retransmission on alert delivery success: the alert rate increases from 86.7% without retransmission to
100% when retransmission is enabled.

Figure 5.6: Sankey diagram of the no-retransmission permutation analysis. Out of 720 total permutations, 624 generated
alerts (leading to 18 Windows 10-exploitable and 614 non-exploitable cases) while 96 produced no alerts (all deemed not

exploitable and undetectable).

5.3.2. Retransmission Case
The retransmission experiment introduced a more aggressive scenario. Under these conditions, the
number of reassembly mismatches between IDS and hosts increased drastically. Windows 10 and
FreeBSD each showed around 140 permutations where the IDS used a different reassembly policy
than the host. OpenBSD, while stricter, still showed such cases. In each of these, the reconstructed
payloads differed, creating the potential for evasion: the IDS sees one benign payload and does not
raise an alert, while the host sees and processes a malicious payload.

Thankfully, every permutation in the retransmission case triggered at least one alert in Suricata, as seen
in Figure 5.5. In all cases, the alerts were related to fragment overlap or duplicate detection. These
alerts are superficial: they flag the structure of the packet, but not the content. The important takeaway
is that while detection is complete in quantity, it may be incomplete in meaning. Alerts exist, but they
don’t always reflect the final packet seen by the host.

5.3. Evasion and Exploitability Analysis 26

Figure 5.7: Distribution of accepted packet permutations by exploitability under retransmission: OpenBSD saw 18 exploitable
versus 112 non-exploitable packets, FreeBSD had 147 exploitable versus 573 non-exploitable, and Windows 10 showed 132

exploitable against 588 non-exploitable packets.

Figure 5.8: Sankey diagram of the retransmission permutation analysis: all 720 total permutations generated alerts, and after
mismatch checks, 559 were not exploitable in any OS, 147 were FreeBSD-exploitable, 132 OpenBSD-exploitable, and 18

Windows 10-exploitable.

When combining both the alert rate and exploitability, we get the Sankey diagram in Figure 5.8. Unlike
the baseline case, there are no permutations without alerts. Every path leads through Suricata detec-
tion, but from there, the permutation may be exploitable or not, depending on how the host reassembled
it.

This diagram presents an important point: in the retransmission scenario, the attacker no longer has a
stealth channel to conduct an attack, but they now have multiple divergent interpretations that they can
use to manipulate the visibility of the IDS. While every permutation is flagged, the alert content may
be generic, and the host may still reconstruct a payload that the IDS didn’t actually see. As a result,
retransmissions become a powerful tool for obfuscating payloads, splitting signatures, or delivering
content selectively, all while out-of-path monitoring remains active.

Combing back to the first 3 research questions, both the baseline and retransmission tests underscore
the same key finding: overlapping fragments can generate reassembly inconsistencies, creating sce-

5.4. Data Exfiltration through Reassembly Mismatch 27

narios where the endpoint reconstructs a packet the IDS never actually inspected. In our experiments,
a correctly configured IDS, one that flags overlapping fragments, still catches these cases. However,
if an IDS were improperly configured and lacked signatures for overlapping fragments, the security im-
plications would be severe. The next section explores an even more covert attack technique, one that
remains invisible to the IDS under any signature configuration, not just those with misconfigurations.

5.4. Data Exfiltration through Reassembly Mismatch
This section presents a realistic and undetectable data exfiltration technique that exploits the asyn-
chronous handling of overlapping IPv6 fragments by a passive IDS, thus addressing research ques-
tion 4. It builds upon the prior analysis of detection gaps and “No Alert” permutations by shifting the
threat model: rather than bypassing detection from an external position, the attacker is already present
inside the network and aims to exfiltrate sensitive data from the compromised target host to a con-
trolled Command-and-Control (C2) server, typically positioned as a UE in the simulated environment.
Crucially, because the attacker controls the receiver, they can define the reassembly policy used to
interpret ambiguous fragment sequences, which allows them to reconstruct payloads undetected by
the IDS, as described in this section.

5.4.1. Timing Overlap Techniques for Silent Exfiltration
As shown in Section 5.3, there were 96 permutations in the baseline dataset that did not trigger any
alerts in Suricata, despite containing overlapping fragments. Upon closer inspection, many of these
permutations were structured in such a way that the overlapping fragments arrived after the kernel had
completed reassembly. This phenomenon is illustrated in Figure 5.9, which depicts the packet timeline
and reassembly window.

When a fragment marked as the final fragment arrives and completes the byte coverage of a datagram,
the kernel delivers the reassembled packet to Suricata and terminates the associated reassembly state.
Any additional fragments that arrive afterwards, even if they overlap with previously buffered offsets,
are not associated with the already processed datagram. Instead, they are either dropped or treated
as unrelated. This behaviour comes from performance-orientated reassembly implementations that
prioritise quick forwarding over full defragmentation delay windows.

An important consequence of this behaviour is that any fragments carrying sensitive or malicious pay-
loads can evade IDS inspection if they arrive after the kernel has already completed reassembly. As
a result, the packet viewed by the IDS appears entirely benign, while the host’s own reconstruction of
the same fragment stream may reveal the hidden content.

Figure 5.9: Packet arrival timeline showing that once the final fragment completes byte coverage, the kernel immediately
reassembles and delivers the datagram to Suricata, purging its reassembly state and causing any later-overlapping fragments

to be dropped (and thus bypass IDS inspection).

5.4.2. Attacker Strategy
Given this behaviour, an attacker can explicitly exploit the timing of fragment delivery to control what
content is seen by the IDS versus what is reconstructed at the receiver. In this scenario, the attacker
has already compromised the target host and wants to leak information to an external C2 node, which
they fully control. This control extends to the reassembly logic at the receiver, allowing the attacker to
ignore the M=0 completion rule and reconstruct any desired permutation of fragments.

5.4. Data Exfiltration through Reassembly Mismatch 28

The attacker constructs overlapping fragments such that an early subset of fragments (e.g., A, B, C, F)
forms a syntactically correct, benign packet. This subset is designed to reach the IDS first, forcing early
reassembly and preventing later fragments from being associated with the same datagram. The later-
arriving fragments (e.g., D, E), which overlap with existing offsets, contain sensitive content. These
are ignored by the kernel but preserved and used by the C2 node, which instead reconstructs ABEF,
producing a different payload that may include sensitive data. In our test case, the sensitive data is an
EICAR test string which is used as a known benign signature trigger.

The effectiveness of this strategy depends not on reassembly divergence between host and IDS but
on the split in timing and reassembly ownership. The IDS’s first-in-first-out behaviour is weaponised
to exclude meaningful data from analysis, while the attacker ensures correct reconstruction at the
destination.

5.4.3. Payload Design and Execution
To demonstrate this attack, a permutation from the 96 “No Alert” cases, specifically ABCFDE, was
selected. The fragments were crafted using the position-dependent model described in Section 5.1.4.
In this permutation, fragments A, B, C, and F together formed a benign ICMPv6 Echo Request, which
was successfully reassembled and passed to Suricata without triggering any alert. Fragments D and E,
which carried part of the sensitive content, were sent shortly after the final fragment (F), ensuring that
they arrived outside the active reassembly window. In reality, the C2 server reassembles the packet
as ABEF, which results in the sensitive payload the attacker wanted to transmit.

This ensured that Suricata completed reassembly based only on the early fragments and excluded the
critical data embedded in the later ones. The attack’s success depended on precise fragment timing
and the exploitability of kernel behaviour, not on malformed headers or protocol violations.

To confirm that Suricata was capable of detecting the EICAR string under normal conditions, an un-
fragmented ICMPv6 Echo Request containing the complete EICAR string was also sent as a control.
As expected, Suricata generated two alerts: one for the outgoing Echo Request and another for
the inbound Echo Reply from the target. This validated that the detection rule was active, functional,
and capable of matching the EICAR string in ICMPv6 traffic. Therefore, the lack of detection in the
fragmented exfiltration case was not due to a faulty signature, obfuscation, or payload formatting issue,
it was purely the result of the fragmentation structure and timing.

5.4.4. Proof-of-Concept Packet Trace Analysis
Figures 5.11 and 5.12 provide a detailed packet capture comparison between the IDS and the attacker-
controlled receiver. The first two packets captured in both traces represent the control scenario, an
unfragmented ICMPv6 Echo Request containing the EICAR string and the corresponding Echo Reply.
These packets were successfully flagged by Suricata, generating the expected alerts and confirming
baseline detection capability, which can be seen in Figure 5.10.

Figure 5.10: Suricata console output displaying two CUSTOM EICAR ICMPv6 Detected alerts for the unfragmented Echo
Request (first line) and its corresponding Echo Reply (second line).

In the UPF-side trace (Figure 5.11), packets 3 and 6 carry the control Echo Request and its correspond-
ing Echo Reply. Next, fragments A (packet 4), B (5), C (7) and F (8) arrive and are reassembled with
the same payload as packet 10 (highlighted blue packet). This reassembled packet, whose payload
Suricata inspects for signature matching, contains the inserted “FILLER” text (red circle on the bot-
tom), which disrupts the EICAR signature and prevents any alert from being triggered. Subsequently,
fragments D (packet 9) and E (11) arrive too late to be merged with the reassembled datagram and
therefore are never inspected alongside the earlier fragments. Notably, fragment E holds the final bytes
that would complete the EICAR test string if it had been combined with fragments A, B and F, but by
then the inspection window has already closed.

5.4. Data Exfiltration through Reassembly Mismatch 29

Figure 5.11: UPF-side Wireshark trace showing IPv6 fragments A (pkt 4), B (5), C (7) and F (8) reassembled into the
highlighted reply: the injected “FILLER” text (circled) breaks the EICAR signature and evades Suricata inspection. Late arrivals

D (9) and E (11), with the remaining EICAR tail, come after reassembly and are never checked.

Figure 5.12: UE-side Wireshark trace showing all six fragments (A–F, pkts 3–9) arriving at the attacker’s C2 server. Although
not performed here, substituting fragment E for fragment C during reassembly would restore the full EICAR string (highlighted),

undoing the “FILLER” disruption seen by Suricata and enabling undetected exfiltration via the semantic split.

In the UE-side trace (Figure 5.12), all six fragments, A (packet 3), B (4), C (5), F (6), D (8) and E (9), are
delivered intact to the attacker’s C2 server. By changing its reassembly logic to swap in fragment E for
fragment C, the server reconstructs the full EICAR byte sequence, effectively removing the “FILLER”

5.5. Risk Analysis 30

disruption that Suricata saw. Because the IDS’s data-loss-prevention signatures only inspect the origi-
nal reassembly, this manipulated payload slips past undetected, demonstrating a clean semantic split
and a reliable exfiltration channel for sensitive data (with the EICAR string as the payload and its signa-
ture match as the DLP rule). Note that we did not perform this fragment swap in our proof of concept,
as it is trivial to implement.

5.5. Risk Analysis
The experimental results presented in this chapter reveal several risks in how passive IDS systems
handle fragmented IPv6 traffic, especially in high-throughput, low-latency environments like 5G. These
vulnerabilities do not come from strongly malformed packets or protocol violations but rather from the
unexpected behaviours of the network under load, timing fluctuations, and optimisations made for per-
formance reasons. This section combines the findings from reassembly behaviour and exploitability to
assess the real-world implications of those gaps.

5.5.1. Ambiguity-Driven Attack Vectors
One of the most important findings of the experiments is that ambiguity in fragment reassembly creates
an exploitable attack surface. The test environment revealed multiple permutations that led to incon-
sistent payload interpretation between the IDS and the host. On the upside, they were all detectable
by the IDS, as they all triggered an overlapping alert.

The fact that these results came from valid IPv6 headers, using standard fragmentation extension
headers, well-formed checksums, and legal lengths, underscores the severity of the risk. While the
overlapping offsets technically violate RFC 5722 [8] and should trigger reassembly rejection, in practice,
many systems do not enforce this policy strictly, leading to inconsistent handling of what should be
considered malformed input.

The results show that even mainstream, updated systems like Windows 10, FreeBSD, and OpenBSD
diverge under certain fragmentation patterns, especially when retransmission is involved. These differ-
ences in how fragment buffers are managed and completed create opportunities for attackers to craft
packets that are not misrouted or dropped, but misinterpreted.

Another key finding is that alert presence does not imply alert correctness. In the retransmission test,
Suricata raised alerts for 100% of permutations, yet many of those alerts were structural, triggered
on duplicate fragment offsets or overlaps. These alerts do not reflect what was actually reassembled,
nor do they always correlate to whether the payload was malicious. Therefore, in misconfigured IDS
scenarios, these permutations could lead to an attack because the IDS alerts do not get triggered on
the content but rather on the structure of the packet.

5.5.2. Reassembly Divergence and Detection Blind Spots
In scenarios where an IDS and a host reconstruct different payloads from the same fragments, detection
becomes inconsistent. The IDS may flag a benign-looking payload while the host processes something
else entirely, or vice versa. This gap undermines the core security goal of an IDS: to reflect what the
host is seeing and prevent malicious data from slipping through.

The risk becomes more dangerous in high-performance deployments, such as 5G user planes, where
low latency and high throughput constrain how much time an IDS can afford to spend reassembling
traffic. In such environments, packet analysis may prioritise speed over completeness, causing the
system to commit to a reassembly decision prematurely and ignore fragments that arrive later, as
shown in Section 5.4.

This behaviour creates blind spots that are hard to detect and even harder to reason about. If an
attacker understands the reassembly cutoff, for example, by knowing that the final fragment triggers
reassembly, they can deliberately send benign fragments first, followed by overlapping malicious ones
that are ignored by the IDS. At the host or attacker-controlled endpoint, where timing is fully under the
attacker’s control, the full payload can be reconstructed correctly.

This is not a parsing bug or a memory corruption vulnerability. It is a gap in interpretive context, and
one that traditional IDS tools are not well-equipped to reason about, especially when visibility is limited

5.5. Risk Analysis 31

to a single passive tap.

Lastly, while this thesis focuses on ICMPv6, the results can be generalised to any protocol that permits
large payloads or fragmented delivery. This is because IP fragmentation, and as such the detected
vulnerabilities, happen below the transport layer. Moreover, many cloud-native workloads and edge-
deployed services operate on virtualised stacks with fragmented internal communication. If an IDS is
not positioned to match every point where reassembly occurs, those payloads can change in structure
as they travel, effectively bypassing detection.

6
Mitigation Strategies and Limitations

This chapter outlines practical mitigation strategies and limitations encountered during the research,
in the process answering research question 5. Although the experiments were done in a 5G testing
environment, the results can be used in any high-throughput, low-latency environment where fragmen-
tation reassembly is sensitive to timing, buffer policies, or detection system visibility constraints. The
goal of this thesis is to close the gaps in detection and help design intrusion detection systems that are
more reliable and consistent in fragment reassembly.

6.1. Mitigation Strategies
The biggest problem this thesis uncovered is that there are semantic differences between what a pas-
sive IDS analyses and what the host actually reassembles. These inconsistencies happen even with
structurally legitimate but overlapping IPv6 fragments. These fragments are theoretically not compliant
with RFC 5722 [8]. However, many operating systems still accept them. Chapter 5 showed that these
differences in reassembly can be used to avoid detection, especially in passive monitoring setups.

One of the main ways to reduce the risk is to introduce temporal statefulness in IP ID handling. In
the stealth exfiltration scenario in Section 5.4, overlapping fragments were injected after the IDS had
already finished reassembly and cleared its buffer. IP ID should usually be random, but in this case,
the IP ID had to stay the same such that the destination could correctly reassemble the data. Despite
this, the IDS still had no context left to associate these new fragments with the completed datagram,
and no alert was raised. To prevent this from happening, the IDS or even an operating system may
add a stateful mechanism that labels IP IDs as recently used after a reassembly is done and keeps that
identification in a cache for a short window. Any other fragments that arrive with the same IP ID within
that time should be dropped or flagged as suspicious. This would prevent post-reassembly overwrite
attempts from being silently ignored and protect against the scenario highlighted in Section 5.4. The
cost of keeping such a short-term cache is quite low relative to how much it helps the detection pipeline.

Another mitigation includes enforcing stricter policies on overlapping fragment acceptance. RFC 5722
[8] says that overlapping fragments should be dropped at the kernel level. Therefore, none of the per-
mutations should have been accepted by the operating systems under test if they were RFC compliant.
This is a prevalent issue, and unless addressed and patched in future kernel versions, we recommend
overwriting the kernel rule and silently dropping overlapping packets as mandated by the RFCs.

Although not a general solution for high-performance networks, placing inline security systems like IPS
devices at low-bandwidth choke points in the network can completely eliminate reassembly ambiguity.
Inline deployments have the benefit of actively reassembling packets and then re-fragmenting them
before sending them to their final destination. Since only the fragments used in the initial reassembly
are ever transmitted onwards, any delayed or overlapping fragments sent by an attacker are effectively
discarded. This ensures that both the endpoint and the IPS will interpret the same packet, therefore
eliminating reassembly discrepancies.

32

6.2. Limitations of Research 33

For high-throughput mobile networks like 5G, a different alternative is to normalise traffic at strategic
network functions, for example, at the gNB or UPF. This means reconstructing fragmented packets
early in the pipeline, getting rid of any overlaps or ambiguities, and then, if necessary, re-fragmenting
the payload again, similar to what the previous solutions did. This method adds extra processing time
and may lower the maximum throughput. However, in the networks that allow for this reduction in
performance, it has security benefits because it makes sure that only clean traffic reaches the 5G core.
This trade-off might be acceptable in this context because the UPF might already be programmed to
have deep packet inspection features.

In the end, mitigation strategies must align with the network’s architectural limitations and security
posture. Not every environment can afford deep normalisation, and inline devices cannot always be
deployed at scale. However, by combining reassembly context tracking using the IP ID, targeted de-
ployment of inline defences, and packet normalisation in critical network functions, it is possible to
reduce the risk surface exposed by fragmentation-based evasion and misinterpretation.

6.2. Limitations of Research
The research in this thesis was conducted in a controlled setting, using a virtualised testing environment
that followed the behaviour of real systems. Even though we tried to make the deployment models as
close to real life as possible, there are some limitations that need to be addressed.

First, all tests used ICMPv6 Echo Requests as the transport mechanism. We chose this protocol
because of its simplicity and transparency. It guarantees a response if the reassembly is successful
and has limited processing variability. However, in higher-layer protocols such as TCP or UDP, the
fragment configuration and attack execution could differ or be more complicated, possibly resulting in
different outcomes.

Second, the thesis only evaluated reassembly behaviour on three operating systems: Windows 10,
FreeBSD, and OpenBSD. These systems show different implementation strategies and policy compli-
ance levels, but they do not represent all the hosts that can be found in real networks. Embedded Linux
variants, mobile OSes, container runtimes, and network middleboxes may handle fragments differently,
especially when using custom stacks or legacy kernel versions. Therefore, more testing is needed to
find out if the reassembly differences and exploitability generalise for a wide range of devices.

Third, the experiments were performed on a virtualised open-source 5G simulation platform instead
of a real 5G network or dedicated hardware deployment. This gave us precise control over traffic
timing, interface visibility, and component placement, but it did not fully recreate the concurrency, timing
variability, and performance limits that are present in real-world deployments.

Finally, the tests in this thesis did not include any situations where encrypted transport or application-
layer protocols were used. Encryption might make it more difficult for an attacker to craft valid overlap-
ping fragments that preserve semantic correctness. For overlapping fragments to work, their content
and structure must match, and encryption makes byte locations and cryptographic consistency closely
linked. Changes or a reordering of small parts of the encrypted payload might cause authentication
problems or dropped packets at the endpoint. Therefore, the attack surface demonstrated in this thesis
may be less effective in fully encrypted environments, where attackers have limited control over how
fragments are decrypted and reassembled. More research is needed to discover whether reassembly-
based evasion is successful in these situations.

Even with these problems, the experimental framework is still solid and reproducible. The data strongly
supports the identified risks, especially reassembly mismatches and stealth exfiltration. These risks
provide a strong basis for more research in both academic and operational settings.

7
Conclusion

7.1. Summary of Findings
This thesis looked into the security risks of IPv6 fragmentation in high-throughput, low-latency networks,
focusing on passive intrusion detection systems that operate in environments with performance con-
straints. While the experimental environment was based on a simulated 5G network, the findings apply
more broadly to any network where traffic inspection must operate at line rate and reassembly decisions
are delegated to the kernel or other time-sensitive subsystems.

The thesis revealed that even syntactically correct fragment sequences that follow baseline IPv6 stan-
dards can cause reassembly conflicts between the IDS and end host. This can happen depending on
the reassembly strategy, the timing of the fragments and the methodologies used to resolve overlaps.
Using a permutation-based testing model inspired by earlier work, the experiments showed a class of
fragment sequences that are either silently accepted by the host but ignored by the IDS or interpreted
differently by the two systems due to differences in reassmbly policies.

The results show that these kinds of inconsistencies are not just rare events, but they are behaviours
that can be observed and reproduced. In the retransmission scenario, where fragments were duplicated
to simulate noisy networks, the number of permutations displaying reassembly divergence increased
drastically across all tested operating systems. It was even more concerning that some of these permu-
tations, while triggering alerts in the IDS, were interpreted semantically differently than what the host
actually processed. In other words, alerts were present, but the accuracy of detection was not as good.

Building on this insight, the thesis provided a proof-of-concept stealth exfiltration scenario in which a
compromised host sent overlapping fragments to an attacker-controlled receiver. The attacker could
bypass inspection without breaking protocol rules by making sure that only benign fragments arrive to
the IDS in time to be reassembled. The actual sensitive payload was reconstructed at the C2 endpoint
using fragments that arrived later. This confirmed that the combination of kernel-level reassembly,
fragment timing, and passive monitoring can be leveraged to create packets that have two meanings.

The thesis suggested a number of mitigation strategies to deal with these concerning results. These in-
cluded tracking IP Identification fields after reassembly, enforcing correct handling of fragment overlaps
and placing inline analysis systems at choke points where bandwidth constraints allow. Additionally,
in 5G environments, normalisation at programmable network functions like the gNB or UPF is a useful
solution to clean up fragmented traffic early in the processing pipeline. These countermeasures are
meant to reduce reassembly ambiguity, block late-arriving overwrite attempts, and restore alignment
between detection systems and endpoint behaviour.

34

7.2. Future Work 35

7.2. Future Work
A key area for future research will be to investigate a larger range of operating systems and network
stacks. This thesis looked at three platforms: Windows 10, FreeBSD, and OpenBSD. However, it did
not look into embedded devices or mobile operating systems, which could handle fragments differently
because of differences in kernel versions or buffer management.

Another important area to investigate is how encryption affects fragmented traffic. This thesis did not
include encryption because it makes it harder to see fragments and reconstruct a semantically sound
payload. Encryption can also reduce the attack surface bymaking it harder for an adversary to construct
fragments with predictable offsets or valid ciphertext. It is still an ongoing and important research
subject to discover if and how reassembly mismatches manifest in protocols like IPsec or TLS.

More work is also needed to see how well the proposed mitigation strategies perform and how they
affect operations. Testing IP ID lifetime enforcement, overlap drop policies, and fragment normalisation
on real-world networks with real traffic would help understand how useful and expensive they are.
Also, monitoring how these changes affect detection performance, such as false positive rates and
throughput reduction, will help people decide when to use them in real-world situations.

Finally, some detection engines also have user-space reassembly modes that try to mimic host-specific
behaviour. However, most of the time, these implementations are based on outdated studies or legacy
RFC interpretations. As operating systems change how they handle overlapping fragments, host-based
reassembly models should be re-evaluated and updated to reflect modern endpoint behaviour more
accurately.

In summary, this thesis demonstrates that fragmentation remains a subtle but important security issue in
high-performance networks. It shows how reassembly inconsistencies can be exploited and it provides
both a guide for future study and a call of action to design detection systems that are more aware of
reassembly inconsistencies and more resistant to timing issues.

References

[1] Dr. Steve E. Deering and Bob Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC
8200. July 2017. DOI: 10.17487/RFC8200. URL: https://www.rfc-editor.org/info/rfc8200.

[2] Ron Bonica et al. IP Fragmentation Considered Fragile. RFC 8900. Sept. 2020. DOI: 10.17487/
RFC8900. URL: https://www.rfc-editor.org/info/rfc8900.

[3] Edoardo Di Paolo, Enrico Bassetti, and Angelo Spognardi. “A newmodel for testing IPv6 fragment
handling”. In: European Symposium on Research in Computer Security. Springer. 2023, pp. 277–
294.

[4] Antonios Atlasis. “Attacking ipv6 implementation using fragmentation”. In:Blackhat europe (2012),
pp. 14–16.

[5] Pevma. Suricata Extreme Performance Tuning: SepTun Mark I. https://github.com/pevma/
SEPTun. Accessed: 2025-04-15. 2016.

[6] Pevma. Suricata Extreme Performance Tuning: SepTun Mark II. https://github.com/pevma/
SEPTun-Mark-II. Accessed: 2025-04-15. 2018.

[7] Peter Manev and Andreas Herz. Suricata Extreme Performance Tuning: SepTun Mark III. Pre-
sented at SuriCon 2024. Available at https://suricon.net/wp-content/uploads/2024/12/
SuriCon2024-Peter-Manev_Andreas-Herz_Suricata-Extreme-Performance-Tuning-SepTun-
Mark-III.pdf, Accessed: 2025-04-15. 2024.

[8] Suresh Krishnan. Handling of Overlapping IPv6 Fragments. RFC 5722. Dec. 2009. DOI: 10 .
17487/RFC5722. URL: https://www.rfc-editor.org/info/rfc5722.

[9] Sebastian Gallenmüller et al. “5G URLLC: A case study on low-latency intrusion prevention”. In:
IEEE Communications Magazine 58.10 (2020), pp. 35–41.

[10] Joshua S White, Thomas Fitzsimmons, and Jeanna N Matthews. “Quantitative analysis of in-
trusion detection systems: Snort and Suricata”. In: Cyber sensing 2013. Vol. 8757. SPIE. 2013,
pp. 10–21.

[11] Razvan Bocu and Maksim Iavich. “Real-time intrusion detection and prevention system for 5G
and beyond software-defined networks”. In: Symmetry 15.1 (2022), p. 110.

[12] Qinwen Hu, Se-Young Yu, and Muhammad Rizwan Asghar. “Analysing performance issues of
open-source intrusion detection systems in high-speed networks”. In: Journal of Information Se-
curity and Applications 51 (2020), p. 102426. ISSN: 2214-2126. DOI: https://doi.org/10.
1016/j.jisa.2019.102426. URL: https://www.sciencedirect.com/science/article/pii/
S2214212619306003.

[13] Michael A. Gallo and William M. Hancock. “Chapter 3 - The Internet and TCP/IP”. In: Networking
Explained (Second Edition). Ed. by Michael A. Gallo and William M. Hancock. Second Edition.
Woburn: Digital Press, 2002, pp. 55–138. ISBN: 978-1-55558-252-4. DOI: https://doi.org/
10.1016/B978- 155558252- 4/50029- 8. URL: https://www.sciencedirect.com/science/
article/pii/B9781555582524500298.

[14] Internet Protocol. RFC 791. Sept. 1981. DOI: 10.17487/RFC0791. URL: https://www.rfc-
editor.org/info/rfc791.

[15] Christopher A Kent and Jeffrey C Mogul. Fragmentation considered harmful. Vol. 17. 5. Citeseer,
1987.

[16] IP datagram reassembly algorithms. RFC 815. July 1982. DOI: 10.17487/RFC0815. URL: https:
//www.rfc-editor.org/info/rfc815.

[17] Amir Herzberg and Haya Shulman. “Fragmentation considered poisonous, or: One-domain-to-
rule-them-all. org”. In: 2013 IEEE Conference on Communications and Network Security (CNS).
IEEE. 2013, pp. 224–232.

36

https://doi.org/10.17487/RFC8200
https://www.rfc-editor.org/info/rfc8200
https://doi.org/10.17487/RFC8900
https://doi.org/10.17487/RFC8900
https://www.rfc-editor.org/info/rfc8900
https://github.com/pevma/SEPTun
https://github.com/pevma/SEPTun
https://github.com/pevma/SEPTun-Mark-II
https://github.com/pevma/SEPTun-Mark-II
https://suricon.net/wp-content/uploads/2024/12/SuriCon2024-Peter-Manev_Andreas-Herz_Suricata-Extreme-Performance-Tuning-SepTun-Mark-III.pdf
https://suricon.net/wp-content/uploads/2024/12/SuriCon2024-Peter-Manev_Andreas-Herz_Suricata-Extreme-Performance-Tuning-SepTun-Mark-III.pdf
https://suricon.net/wp-content/uploads/2024/12/SuriCon2024-Peter-Manev_Andreas-Herz_Suricata-Extreme-Performance-Tuning-SepTun-Mark-III.pdf
https://doi.org/10.17487/RFC5722
https://doi.org/10.17487/RFC5722
https://www.rfc-editor.org/info/rfc5722
https://doi.org/https://doi.org/10.1016/j.jisa.2019.102426
https://doi.org/https://doi.org/10.1016/j.jisa.2019.102426
https://www.sciencedirect.com/science/article/pii/S2214212619306003
https://www.sciencedirect.com/science/article/pii/S2214212619306003
https://doi.org/https://doi.org/10.1016/B978-155558252-4/50029-8
https://doi.org/https://doi.org/10.1016/B978-155558252-4/50029-8
https://www.sciencedirect.com/science/article/pii/B9781555582524500298
https://www.sciencedirect.com/science/article/pii/B9781555582524500298
https://doi.org/10.17487/RFC0791
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc791
https://doi.org/10.17487/RFC0815
https://www.rfc-editor.org/info/rfc815
https://www.rfc-editor.org/info/rfc815

References 37

[18] Darren Reed, Paul S. Traina, and Paul Ziemba. Security Considerations for IP Fragment Filtering.
RFC 1858. Oct. 1995. DOI: 10.17487/RFC1858. URL: https://www.rfc-editor.org/info/
rfc1858.

[19] 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals;
GPRS Tunnelling Protocol User Plane (GTPv1-U); (Release 19). Tech. rep. TS 29.281. Ver-
sion 19.1.0. Available from 3GPP: https://www.3gpp.org/ftp/Specs/. 3rd Generation Partnership
Project (3GPP), Dec. 2024. URL: https://www.3gpp.org/ftp/Specs/archive/29_series/29.
281/29281-j10.zip.

[20] CVE-2021-45462: Open5GS 2.4.0 crafted packet from UE can crash SGW-U/UPF. https://
nvd.nist.gov/vuln/detail/CVE-2021-45462. National Vulnerability Database, NIST. 2021.
(Visited on 04/23/2025).

[21] Tsung-Huan Cheng et al. “Evasion techniques: Sneaking through your intrusion detection/pre-
vention systems”. In: IEEE Communications Surveys & Tutorials 14.4 (2011), pp. 1011–1020.

[22] Jonathan AP Marpaung, Mangal Sain, and Hoon-Jae Lee. “Survey on malware evasion tech-
niques: State of the art and challenges”. In: 2012 14th International Conference on Advanced
Communication Technology (ICACT). IEEE. 2012, pp. 744–749.

[23] Thomas H Ptacek and Timothy N Newsham. Insertion, evasion, and denial of service: Eluding
network intrusion detection. Tech. rep. Technical report, Secure Networks, Inc, 1998.

[24] Fernando Gont. Security Assessment of the Internet Protocol Version 4. RFC 6274. July 2011.
DOI: 10.17487/RFC6274. URL: https://www.rfc-editor.org/info/rfc6274.

[25] Sumit Siddharth. “Evading NIDS, revisited”. In: Symantec Connect Community (2005), pp. 1–5.
[26] George Varghese, J Andrew Fingerhut, and Flavio Bonomi. “Detecting evasion attacks at high

speeds without reassembly”. In: Proceedings of the 2006 conference on Applications, technolo-
gies, architectures, and protocols for computer communications. 2006, pp. 327–338.

[27] 3GPP. System architecture for the 5G System (5GS). Tech. rep. TS 23.501, V17.7.0, Release 17.
3rd Generation Partnership Project (3GPP), Jan. 2023. URL: https://www.etsi.org/deliver/
etsi_ts/123500_123599/123501/17.07.00_60/ts_123501v170700p.pdf.

[28] GeeksforGeeks. 5G Network Architecture. Diagram (Fig. 1) from GeeksforGeeks. 2025. URL:
https://www.geeksforgeeks.org/5g-network-architecture/ (visited on 05/08/2025).

[29] David B. Johnson, Jari Arkko, and Charles E. Perkins. Mobility Support in IPv6. RFC 6275. July
2011. DOI: 10.17487/RFC6275. URL: https://www.rfc-editor.org/info/rfc6275.

[30] Dr. Steve E. Deering and Alex Conta. Generic Packet Tunneling in IPv6 Specification. RFC 2473.
Dec. 1998. DOI: 10.17487/RFC2473. URL: https://www.rfc-editor.org/info/rfc2473.

[31] Mansoor Shafi et al. “5G: A tutorial overview of standards, trials, challenges, deployment, and
practice”. In: IEEE journal on selected areas in communications 35.6 (2017), pp. 1201–1221.

[32] Russell Ford et al. “Achieving ultra-low latency in 5G millimeter wave cellular networks”. In: IEEE
Communications Magazine 55.3 (2017), pp. 196–203.

[33] Elie F Kfoury et al. “A comprehensive survey on smartnics: Architectures, development models,
applications, and research directions”. In: IEEE Access (2024).

[34] Ijaz Ahmad et al. “Security for 5G and Beyond”. In: IEEE Communications Surveys & Tutorials
21.4 (2019), pp. 3682–3722. DOI: 10.1109/COMST.2019.2916180.

[35] Badre Bousalem et al. “DDoS attacks detection and mitigation in 5G and beyond networks: A
deep learning-based approach”. In: GLOBECOM 2022-2022 IEEE Global Communications Con-
ference. IEEE. 2022, pp. 1259–1264.

[36] Lorenzo Fernández Maimó et al. “A Self-Adaptive Deep Learning-Based System for Anomaly
Detection in 5G Networks”. In: IEEE Access 6 (2018), pp. 7700–7712. DOI: 10.1109/ACCESS.
2018.2803446.

[37] Ye-Eun Kim, Yea-Sul Kim, and Hwankuk Kim. “Effective feature selection methods to detect IoT
DDoS attack in 5G core network”. In: Sensors 22.10 (2022), p. 3819.

https://doi.org/10.17487/RFC1858
https://www.rfc-editor.org/info/rfc1858
https://www.rfc-editor.org/info/rfc1858
https://www.3gpp.org/ftp/Specs/archive/29_series/29.281/29281-j10.zip
https://www.3gpp.org/ftp/Specs/archive/29_series/29.281/29281-j10.zip
https://nvd.nist.gov/vuln/detail/CVE-2021-45462
https://nvd.nist.gov/vuln/detail/CVE-2021-45462
https://doi.org/10.17487/RFC6274
https://www.rfc-editor.org/info/rfc6274
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/17.07.00_60/ts_123501v170700p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/17.07.00_60/ts_123501v170700p.pdf
https://www.geeksforgeeks.org/5g-network-architecture/
https://doi.org/10.17487/RFC6275
https://www.rfc-editor.org/info/rfc6275
https://doi.org/10.17487/RFC2473
https://www.rfc-editor.org/info/rfc2473
https://doi.org/10.1109/COMST.2019.2916180
https://doi.org/10.1109/ACCESS.2018.2803446
https://doi.org/10.1109/ACCESS.2018.2803446

References 38

[38] Panagiotis Radoglou-Grammatikis et al. “5GCIDS: An Intrusion Detection System for 5G Core
with AI and Explainability Mechanisms”. In: 2023 IEEE Globecom Workshops (GC Wkshps).
2023, pp. 353–358. DOI: 10.1109/GCWkshps58843.2023.10464667.

[39] Keshav Sood et al. “Intrusion Detection Scheme With Dimensionality Reduction in Next Genera-
tion Networks”. In: IEEE Transactions on Information Forensics and Security 18 (2023), pp. 965–
979. DOI: 10.1109/TIFS.2022.3233777.

[40] Tan Nhat Linh Le et al. “5G-IoT-IDS: Intrusion Detection System for CIoT as Network Function
in 5G Core Network”. In: GLOBECOM 2023 - 2023 IEEE Global Communications Conference.
2023, pp. 4773–4778. DOI: 10.1109/GLOBECOM54140.2023.10437158.

[41] Aristide Tanyi-Jong AkemandMarco Fiore. “Towards Real-Time Intrusion Detection in P4-Programmable
5G User Plane Functions”. In: 2024 IEEE 32nd International Conference on Network Protocols
(ICNP). 2024, pp. 1–6. DOI: 10.1109/ICNP61940.2024.10858543.

[42] Cisco Systems, Inc. Cisco UCC 5G-UPF Configuration and Administration Guide, Chapter: 5G-
UPF Overview. 2022-01. Cisco Systems, Inc. 2022. URL: https://www.cisco.com/c/en/us/
td/docs/wireless/ucc/upf/2022- 01/config- and- admin/b_ucc- 5g- upf- config- and-
admin-guide_2022-01/m_upf-overview.pdf.

[43] Antonios Atlasis and Enno Rey. “Evasion of high-end IPS devices in the age of IPv6”. In: BlackHat
EU 2015 (2014).

[44] Umesh Shankar and Vern Paxson. “Active mapping: Resisting NIDS evasion without altering
traffic”. In: 2003 Symposium on Security and Privacy, 2003. IEEE. 2003, pp. 44–61.

[45] Richard P Lippmann et al. “Evaluating intrusion detection systems: The 1998 DARPA off-line
intrusion detection evaluation”. In: Proceedings DARPA Information survivability conference and
exposition. DISCEX’00. Vol. 2. IEEE. 2000, pp. 12–26.

https://doi.org/10.1109/GCWkshps58843.2023.10464667
https://doi.org/10.1109/TIFS.2022.3233777
https://doi.org/10.1109/GLOBECOM54140.2023.10437158
https://doi.org/10.1109/ICNP61940.2024.10858543
https://www.cisco.com/c/en/us/td/docs/wireless/ucc/upf/2022-01/config-and-admin/b_ucc-5g-upf-config-and-admin-guide_2022-01/m_upf-overview.pdf
https://www.cisco.com/c/en/us/td/docs/wireless/ucc/upf/2022-01/config-and-admin/b_ucc-5g-upf-config-and-admin-guide_2022-01/m_upf-overview.pdf
https://www.cisco.com/c/en/us/td/docs/wireless/ucc/upf/2022-01/config-and-admin/b_ucc-5g-upf-config-and-admin-guide_2022-01/m_upf-overview.pdf

A
Repository

The full source code and supplementary materials for this thesis are available at:

https://github.com/OpreaCristian2002/reassembly-policies-5g-using-ipv6

39

https://github.com/OpreaCristian2002/reassembly-policies-5g-using-ipv6

	Preface
	Abstract
	Abbreviations
	Introduction
	Context and Motivation
	Research Problem and Scope
	Research Questions
	Contributions
	Structure of the Thesis

	Background
	Internet Protocol Fragmentation
	Security Concerns in IP Fragmentation
	Middleboxes
	5G Network Architecture
	Overview of 5G Network Functions
	Data Path and Encapsulation
	Performance Constraints in 5G
	Security Monitoring in 5G

	Related Work
	Fragmentation-based evasion
	IPv6 fragmentation attacks
	Testing reassembly behaviour
	 IPv6 Specific Reassembly Testing
	Suricata Performance Tuning
	IDS Deployment in 5G Core Networks

	Methodology
	Experimental Design
	Necessary and Sufficient Conditions for Fragmentation Attacks
	Metrics and Evaluation Criteria

	Experimental Results
	Experimental Setup
	5G Testing Environment
	IDS Configuration
	Operating Systems Under Test
	Fragmentation Permutation Design

	Reassembly Behavior Across Systems
	No Retransmission Case
	Retransmission Case

	Evasion and Exploitability Analysis
	No Retranmission Case
	Retransmission Case

	Data Exfiltration through Reassembly Mismatch
	Timing Overlap Techniques for Silent Exfiltration
	Attacker Strategy
	Payload Design and Execution
	Proof-of-Concept Packet Trace Analysis

	Risk Analysis
	Ambiguity-Driven Attack Vectors
	Reassembly Divergence and Detection Blind Spots

	Mitigation Strategies and Limitations
	Mitigation Strategies
	Limitations of Research

	Conclusion
	Summary of Findings
	Future Work

	References
	Repository

