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1.11.11.11.1 MagneMagneMagneMagnetic Resonance Imagingtic Resonance Imagingtic Resonance Imagingtic Resonance Imaging    

Magnetic Resonance Imaging (MRI) is one of the most widely used imaging 

techniques in modern medicine. It is used to visualise the internal structures of 

patients and the functioning of organs in a three-dimensional, non-invasive 

manner. The contrast generating mechanism in MRI can be chosen from an 

extensive suite of imaging sequences, which results in images with a large variety of 

contrast in soft tissues. Nowadays, the MRI images are irreplaceable radiological 

tools for the detection of lesions, diagnosis, the assessment of the current status of 

diseases, monitoring the effect of medication and the planning of surgery. MRI 

operates without any harmful ionizing radiation, and can be used repeatedly for 

imaging any body part, in any desired direction.  

 

1.21.21.21.2 Dynamic Contrast Enhanced MRIDynamic Contrast Enhanced MRIDynamic Contrast Enhanced MRIDynamic Contrast Enhanced MRI    

Over the past decades, Dynamic Contrast Enhanced MRI (DCE-MRI) was 

developed for imaging tissues during an intravenous injection of a contrast agent 

(typically gadolinium-based). Here, the time-dependent change in the measured 

signal intensity effected by the contrast agent is used as an indicator for tissue 

integrity.  

With the advent of new, fast imaging techniques, the reduction in acquisition time 

of MRI images has allowed the acquisition of DCE-MRI with a time resolution in 

the order of seconds. With this technique, the response of tissues to the injection of 

a contrast-enhancing agent into the patient’s blood stream is monitored over time. 

The behaviour of the contrast agent in the tissues can then be then modelled by a 

pharmacokinetic model.  

Pharmacokinetic models describe how the concentration of contrast agent in a 

tissue changes in response to the presence of contrast agent in the blood, according 

to the local tissue properties. The pharmacokinetic model parameters therefore 

reflect the physiological properties of the tissue. In some pathologies, these 

physiological properties are different from the healthy case, and are therefore used 
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to visualize characteristics of the pathology. For example, diseases such as cancer or 

inflammatory diseases may increase the microvascular permeability of capillaries, a 

property that can be measured by some models. 

To be able to meaningfully compare the results of multiple pharmacokinetic 

analyses, the results of the analyses must be quantitative, accurate and precise. For 

this, the pharmacokinetic model requires knowledge of the actual concentrations of 

contrast agent in both the tissue of interest and in the blood plasma. This thesis 

aims to provide methods to accurately measure these quantities. 

 

1.31.31.31.3 ChallengesChallengesChallengesChallenges    

A range of quantitative pharmacokinetic models exists for the analysis of DCE-MRI 

data, ranging from generally applicable models to models for specific organs and 

specific contrast agents. The most reliable models require knowledge of the 

concentrations of contrast agent in the tissue of interest as input.  

However, in MRI, the relation between the concentration of contrast agent and the 

signal intensity is not straightforward, as the MRI signal is not generated by the 

contrast agent itself (contrary to other imaging modalities such as PET or CT). In 

MRI, the signal is generated by the nuclear spins of hydrogen atoms, which change 

their intrinsic properties in the presence of a paramagnetic contrast agent. More 

specifically, the tissue’s spin-lattice relaxation time T1 and the spin-spin relaxation 

times T2 and T2* are affected by the contrast agent. Knowledge of these relaxation 

times is essential for converting the MRI signal into the desired measure of contrast 

agent concentration.  

The conversion of signal to concentration is further hindered by the fact that the 

local B1 field (i.e., the magnetic component of the electromagnetic waves used to 

excite the spins) may be inhomogeneous. This results in inaccurate estimates of the 

intensity of the applied RF-pulse. The estimation of a reliable T1-map and B1-map 

is therefore a necessary step to correctly convert the measured MRI signals to 

concentration. Additionally, patient motion, such as breathing, is a significant 

problem when imaging the abdominal area, as it introduces imaging artifacts. This 
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means that the T1- or B1-maps must be obtained within breath-holds, posing an 

additional challenge. 

Many pharmacokinetic models use as input the contrast agent concentration in the 

blood of a feeding artery to the tissue of interest. This is often referred to as the 

arterial input function (AIF). Again, the MRI signal intensity depends on the 

concentration of contrast agent in the blood, the T1 of the blood, the sequence 

parameters, and, through the applied RF-pulse, also by the local B1 inhomogeneity. 

However, an additional complication of measuring the AIF is caused by the blood 

flow during the MRI scan. Blood that has just entered the field of view produces an 

increased signal intensity compared to blood which has already spent some time 

inside the field of view. More precisely, the MRI signal intensity depends on the 

number of radiofrequency pulses that the spins have received. The contrast agent 

concentration is computed from the ratio of the post-contrast signal and the pre-

contrast signal, and an enhancement of both these signals leads to a lower ratio. 

The inflow effect therefore causes an underestimation of the contrast agent 

concentration, if it is not accounted for. Additionally, the ambiguity between signal 

enhancement due to the inflow effect and signal enhancement due to the presence 

of contrast agent makes that neither the number of pulses nor the concentration 

can be computed directly. 

The research presented in this thesis was initiated by the VIGOR++ project. This 

project focused on the research and development of ICT tools for the analysis, 

modelling and simulation of human physiology and disease processes of the 

gastrointestinal tract (1). One objective was to create patient-specific instruments to 

quantitatively assess the status of Crohn’s Disease. The work presented in this thesis 

contributes to the VIGOR++ project by providing novel methods for the 

measurement  of pharmacokinetic parameters of diseased bowel tissues using DCE-

MRI. These pharmacokinetic measurements can then be used in conjunction with 

other measurements, such as the bowel wall thickness, to predict the severity of 

Crohn’s Disease. 

The work presented in this thesis can be summarized in the following objectives: 
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Objective 1Objective 1Objective 1Objective 1: We aim to estimate a reliable T1 map in the presence of B1 

inhomogeneities with scan sequences that can be acquired within breath-holds.  

Objective 2Objective 2Objective 2Objective 2: We aim to develop a method that estimates the arterial input function 

from DCE-MRI data, while correcting for the inflow effect. 

Objective 3:Objective 3:Objective 3:Objective 3: We aim to test the effectiveness of the above method in-vivo. We test 

the method in large arteries where the inflow effect poses a significant problem, and 

provide an automated version which uses the corrected AIF in pharmacokinetic 

modelling.  

 

1.41.41.41.4 Thesis OutlineThesis OutlineThesis OutlineThesis Outline    

Chapter 2Chapter 2Chapter 2Chapter 2 provides an overview of the principles of MRI and Dynamic Contrast 

Enhanced MRI. Essential background information, which is necessary to 

understand the following chapters, is consolidated in this chapter. It describes the 

physical principles of MRI, and then expands to the theory of DCE-MRI. 

Furthermore, an introduction to pharmacokinetic modelling is given.  

Chapter 3Chapter 3Chapter 3Chapter 3 focuses on the measurement of a T1-map in the presence of B1-

inhomogeneities. In order to correct for the B1-inhomogeneities, we use two 

separate MRI scans, which were required to be performed within periods of breath-

hold. One scan provided an accurate, but very noisy T1 map, while the other 

provided a biased T1-map due to the inhomogeneous B1-field. We present a 

method to combine these two scans to estimate the B1-inhomogeneities, which we 

then use to compute an accurate and precise T1-map. 

Chapter 4Chapter 4Chapter 4Chapter 4 focuses on the measurement of the contrast agent concentration in 

circulating arterial blood, taking the effects of blood flow on the MRI signal into 

account. We derive a theoretical relationship between the MRI signal intensity and 

the contrast agent concentration, which takes into account the number of pulses 

experienced by the spins during an MRI scan. We compare this theory to the 

outcome of a controlled flow phantom experiment, to verify the accuracy of our 

approach. Furthermore, we present a method that resolves the degeneracy between 



Chapter 1: Introduction 

6 

 

concentration and number of pulses by forcing the resulting AIF to carry some 

specific characteristics of  a population averaged AIF. We then verify this method 

by means of Monte Carlo simulations.  

Chapter 5Chapter 5Chapter 5Chapter 5 presents the application of the theory of Chapter 4 in-vivo, by applying 

the methods to two sets of patient data. In this work, we also present an automatic 

segmentation of the aorta. We then apply the proposed method to each segmented 

voxel separately, and combine the data from all voxels to create one AIF. We then 

use this AIF in a pharmacokinetic model. The first dataset was obtained with a 

variety of scan settings, which we use to assess the robustness of the method. With 

the second dataset, comprised of Crohn’s Disease patients (from the VIGOR++ 

project), we correlate the obtained pharmacokinetic parameters to the clinically 

relevant CDEIS score.  

Finally, Chapter 6Chapter 6Chapter 6Chapter 6 discusses and summarizes the benefits and limitations of the 

presented work, and looks ahead to further challenges. 

 

1.51.51.51.5 ReferencesReferencesReferencesReferences    

1. VIGOR++. Virtual Gastrointestinal Tract: Facts & Objectives, 

http://vigorpp.eu/facts.php, accessed 26 Aug 2016. 

 

 



 

7 

 

2222 Principles of Dynamic Contrast Principles of Dynamic Contrast Principles of Dynamic Contrast Principles of Dynamic Contrast 

Enhanced MRIEnhanced MRIEnhanced MRIEnhanced MRI    

 

 

 

 

 

 



Chapter 2: Principles of Dynamic Contrast Enhanced MRI 

8 

 

In this chapter, a brief overview of the principles behind MRI and Dynamic 

Contrast Enhanced MRI (DCE-MRI) is presented. The information in this chapter 

provides some essential background knowledge about the subjects covered in this 

thesis. Additional information can be found in (1). 

 

2.12.12.12.1 Magnetic ResonanceMagnetic ResonanceMagnetic ResonanceMagnetic Resonance    

2.1.1 Spin Dynamics 

The principle of MRI relies of the fact that the nuclear net spin magnetic moment 

of some atoms can generate a measureable signal under specific conditions. In most 

cases, hydrogen nuclei (1H) are chosen, since hydrogen is abundantly present in the 

human body, in the form of water. When placed into a strong external magnetic 

field, the spin magnetic moments of the hydrogen nuclei (commonly referred to as 

‘spins’) tend to align along this magnetic field. On a microscopic scale, thermal 

fluctuations cause the individual spins to be randomly distributed, with a slightly 

larger chance to point along the magnetic field. On a macroscopic scale, we can say 

that the material will have a net magnetization with an equilibrium position 

pointing along the magnetic field. The macroscopic magnetization M is related to 

the microscopic spins via Curie’s law: 

 C B
M

T

⋅= , (2.1) 

where B is the strength of the external magnetic field, T the temperature of the 

material, and C the material-dependent Curie constant, which is proportional to 

the density of spins.  

Spins in an external magnetic field experience a torque that causes them to precess 

around the magnetic field: the so-called Larmor precession. The Larmor precession 

frequency  ω is determined by the strength of the external magnetic field B and the 

particle-specific gyromagnetic ratio γ: 

 Bω γ= , (2.2) 
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which, for nuclear spins, lies in the radiofrequency (RF) range. When spins in a 

magnetic field are subjected to an oscillating electromagnetic field of the same 

frequency as their Larmor frequency, these spins will resonate. On a macroscopic 

scale, the magnetization vector will tip over by a certain flip angle α, where the 

time-integral of the amplitude of the RF-pulse determines the size of the flip angle.  

The transverse component of the precessing spins generate an oscillating 

electromagnetic field, which, according to Faraday’s law of induction, can induce 

an electromotive force in a receive coil placed a small distance away. Before the 

application of the RF-pulse, the transverse component of the spins have an arbitrary 

phase, the transverse component of the net magnetization is zero, and no signal is 

detected. After the application of RF-pulse, the net transverse magnetization 

becomes nonzero, and a signal can be detected.  

2.1.2 Relaxation 

After spins have been excited by an RF-pulse, they will gradually relax back to their 

equilibrium state. This happens through three independent mechanisms 

simultaneously. First, energy is exchanged between the hydrogen nuclei and their 

surroundings (a process called spin-lattice interaction). On a macroscopic scale, this 

causes the longitudinal component of the net magnetization Mz to recover to 

equilibrium in an exponential fashion. The relaxation time associated with this 

recovery is called the T1-time. That is: 

 ( ) ( ) ( ) ( )( )0 1 0 1cos exp 1 expzM t M t T M t Tα= − + − − .  (2.3) 

The typical T1-time for hydrogen lies in the order of a second. 

Second, the spins also exchange energy among each other (a process called spin-spin 

interaction). This causes the relative phase of individual nearby spins to disperse, 

which results in the transverse component of the net magnetization Mxy decaying to 

zero. This is again an exponential process, characterized by the T2-relaxation time  

Third, spins may experience static fluctuations in magnetic field strength, due to 

global variation in the B0 field, or susceptibility effects. As a consequence, these 

spins will precess with a slightly varying frequency. Similar to the spin-spin 
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interaction, this causes the individual spins to dephase, again resulting in an 

exponential decay of the transverse magnetization. This is characterized by the 

relaxation time 2T ′ . Since the T2 and 2T ′  effects both affect the transverse 

magnetization, they are often combined into one value known as *
2T : 

 ( ) ( ) ( ) ( ) ( ) ( )*
0 2 2 0 2sin exp exp sin expxyM t M t T t T M t Tα α′= − − = − , (2.4) 

with *
2 2 21 1 1T T T ′= + . The typical *

2T -time lies in the order of several tens of 

milliseconds. 

 

2.22.22.22.2 The MRI Scanner The MRI Scanner The MRI Scanner The MRI Scanner ––––    CCCCoilsoilsoilsoils    

A modern, clinical MRI scanner is a large cylindrical device with a hole through the 

centre, in which patients can be positioned through a movable table. A photograph 

of an MRI scanner is shown in Figure 2.1. 

 

Figure 2.1: MRI Scanner.  

Source: http://www.usa.philips.com/healthcare/product/HC781342/ingenia-30t-mr-system 

Inside the toroidal casing, several coils are housed. Particularly, a large, 

superconducting coil surrounds the bore, and is used to generate a strong magnetic 

field (typically several Tesla) inside the bore. The superconducting state is 

maintained by embedding the coil in liquid helium (4 Kelvin), which is shielded 

from the outside by layers of vacuum. The magnetic field generated by this coil is 

called the B0-field, and is used to magnetize the subject in the bore. 
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Inside the superconducting electromagnet, several smaller coils are placed, which 

are used to generate gradients in the B0-field (typically several mT/m). More 

specifically, the gradient coils cause the magnitude of the B0-field to increase 

linearly over distance, while keeping the direction mostly1 unchanged. Three sets of 

gradient coils are used to facilitate magnetic field gradients in each of the principal 

directions: Gx, Gy and Gz.  

Finally, so-called transmit and receive coils are placed inside the bore, inside the 

table, and also mounted in specialized, modular devices designed to fit on or 

around a specific body part. These coils can be used to transmit and/or receive 

electromagnetic waves in the radiofrequency range. The transmit coils are used to 

excite the spins, while the receive coils detect electromagnetic waves emitted by the 

excited spins. The alternating magnetic field generated by the transmit coil is called 

the B1-field. A schematic overview of the coils in an MRI machine is shown in 

Figure 2.2. 

 

Figure 2.2: Coils inside an MRI machine. 

Source: https://nationalmaglab.org/education/magnet-academy/learn-the-basics/stories/mri-a-guided-tour 

 

                                           

 

1 Gradient coils always introduce a small magnetic field perpendicular to the main magnetic field, to satisfy Maxwell’s 

equations. 
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2.32.32.32.3 Magnetic Resonance ImagingMagnetic Resonance ImagingMagnetic Resonance ImagingMagnetic Resonance Imaging    

2.3.1 Gradient Echo 

After the spins have been excited by an RF-pulse, their oscillating EM field is not 

measured immediately. Instead, a typical method of measuring the spins’ signal is 

by causing them to ‘echo’. This is can be done by applying a gradient field for a 

short period of time, followed by a gradient field in the opposite direction for twice 

the amount of time2. The first part of this sequence causes the spins to dephase 

rapidly, while the second part causes a rephasing followed again by dephasing. 

When the spins have rephased, the signal once again reaches a maximum, which is 

called an echo. The time at which the echo occurs is called the Echo Time, TE. 

Aside from generating an echo, the gradients also provide spatial encoding, which is 

described in the next section. See Figure 2.3 for a schematic overview of the 

gradient echo sequence.  

 

Figure 2.3: Spin dynamics during a gradient echo sequence. 

2.3.2 Spatial Encoding 

At the echo time, all excited spins generate an echo at the same frequency, and are 

therefore indistinguishable. Hence, a mechanism is needed to determine where each 

signal comes from, i.e., to generate an image through spatial encoding.  

                                           

 

2 The duration may be reduced by increasing the gradient field strength, as long as the time-integral of the gradient 

field strength of the second part is twice that of the first part. 
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There are two main methods for MR imaging: 2D and 3D imaging. In 2D 

imaging, a volume is imaged slice by slice, by exciting only the spins in a single slice 

at a time. This is done by applying a gradient field while applying a band-limited 

RF-pulse of a certain bandwidth. The gradient field causes the Larmor frequency to 

vary spatially, and only the spins with a Larmor frequency inside the bandwidth of 

the RF-pulse will resonate. Alternatively, in 3D imaging, the entire volume is 

excited simultaneously.  

Inside the 2D slices, or inside the 3D slab, spatial dependency is introduced via 

frequency and phase encoding. For the frequency encoding, a gradient in magnetic 

field strength is imposed in one direction during the echo, making spins at different 

locations precess at different Larmor frequencies. Applying a Fourier transform to 

the measured signal reveals the frequency components of the signal, and therefore 

indirectly where each signal came from in this one direction.  

For phase encoding, one (for 2D imaging) or two (for 3D imaging) additional 

gradients are applied for a short period of time before the echo, perpendicular to 

the frequency encoding direction. This causes the spins to accumulate a location 

dependent phase. Measuring echoes for different phase encoding gradient 

amplitudes, combined with the frequency encoding described above, provides a 

two- or three-dimensional image of the subject. The time it takes to execute one 

repetition of the sequence is called the Repetition Time, or TR. See Figure 2.4 for a 

schematic overview of the 2D gradient echo sequence with spatial encoding.  
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Figure 2.4: 2D gradient echo sequence diagram. From top to bottom: the RF-pulse emitted by 

the transmit coil, the slice select gradient, the phase encoding gradient, the read gradient, and the 

analogue/digital converter of the receive coil, as a function of time. The sequence is repeated for 

different phase encoding gradient strengths. For the 3D gradient echo sequence, the slice select 

gradient is not used, and a second phase encoding gradient is used instead. 

2.42.42.42.4 Common SequencesCommon SequencesCommon SequencesCommon Sequences    

In MRI, the timing and order of applying RF-pulses, applying gradient fields, and 

reading the MR signal, is called a sequence. The gradient echo sequence (described 

in the previous section) is one of the most basic sequences, and can provide images 

whose contrast depends on the local Proton Density (PD), T1 and T2*. The 

amount of T1 and T2* weighting can be chosen by simply tuning the repetition 

time and echo time of the sequence, respectively. While the gradient echo sequence 

is already quite versatile, more advanced sequences exist. In this section, two 

important sequences are addressed, which will also be used further in the thesis.   

2.4.1 Fast Spoiled Gradient Echo 

The Fast Spoiled Gradient Echo (FSPGR) sequence is a sequence that produces T1 

weighted images. The FSPGR sequence is a gradient echo sequence with very short 

TR and TE (in the order of several ms). However, before each RF-pulse, any 

transverse magnetization remaining from the previous repetition is removed, or 

‘spoiled’. This is done by either applying a gradient, which dephases the spins, or by 
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applying each successive RF-pulse in a randomized direction, which prevents build-

up of transverse magnetization.  

After a number of repetitions, the recovery of the longitudinal magnetization via 

the T1 relaxation process is exactly countered by the reduction of the longitudinal 

component caused by the application of the RF-pulse3. This is called the steady 

state case, during which the signal generated by the spins is given by: 

 ( ) ( )
( ) ( ) ( )1 *

2
1

1 exp /
sin exp /

1 cos exp /
R

E
R

T T
S N T T

T T
α

α
− −

= −
− −

 (2.5) 

This sequence has a very short repetition time, and therefore facilitates a high 

temporal resolution. For this reason, and for its T1-weighting, the FSPGR sequence 

is commonly used for Dynamic Contrast Enhanced MRI. 

Another common application of the FSPGR sequence is T1-mapping (i.e., to 

estimate the T1-value of a tissue). Normally, the MRI signal only depends indirectly 

on the tissue’s T1-value, and further processing is necessary to estimate the value of 

T1. T1-mapping is done by scanning the tissue several times with the FSPGR 

sequence, each time with a different flip angle. Then, the T1-value can be estimated 

in each voxel by fitting eq. (2.5) to the measured signal values. This method is 

called the Variable Flip Angle method. 

2.4.2 Inversion Recovery 

The Inversion Recovery (IR) sequence is another frequently used method for T1-

mapping. The IR sequence starts with an inversion pulse (180 degrees), followed by 

a wait time TI. During the wait time, the longitudinal magnetization begins to 

recover. Then, a 90 degrees pulse is applied, after which an echo is immediately 

acquired. Finally, the spins are allowed to relax back to equilibrium. The sequence 

is then repeated using different TIs. The amount of recovery during the wait time, 

and thus the signal amplitude, depends on the T1 value of the sample: 

                                           

 

3 The number of pulses depends on the flip angle and repetition time. This topic is addressed in detail in Chapter 4. 
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 ( )( )11 2exp /S M TI T= − −  (2.6) 

where M is a composite factor that reflects the proton density and the gain factor of 

the scanner. Fitting equation (2.6) to the measured signals in each voxel then gives 

an estimate of the T1 value.  

The IR method provides a very reliable T1-map, but the sequence is very slow (3 to 

4 minutes per TI). This means that it is not suitable for imaging moving objects, 

and it is also not viable in a clinical setting. 

 

2.52.52.52.5 Contrast AgentContrast AgentContrast AgentContrast Agentssss    

In MRI, contrast agents are intravenously delivered substances that increase 

contrast between different tissues. The most commonly used MRI contrast agents 

are gadolinium(III) chelates. Gadolinium(III) is used, as it is strongly paramagnetic, 

having seven unpaired electrons in the outer shell. Chelates are hydrophilic cage 

structures with the gadolinium(III) ion trapped inside, and are used to ensure that 

the toxic gadolinium is not metabolised by the body. The gadolinium(III) chelates 

interact with nearby hydrogen atoms in two ways (2). 

First, the chelates have one or more docking sites, where water molecules can reside. 

When one of the hydrogen atoms of a water molecule gets near the gadolinium(III) 

ion, the hydrogen nucleus will couple to unpaired electrons in the outer shell of the 

gadolinium ion. This allows the hydrogen nucleus to transition to the equilibrium 

state (aligned with the magnetic field) more quickly, thus decreasing the T1 time 

(3). Secondly, the contrast agent disturbs the local magnetic field slightly, causing 

the transverse components of the spins to disperse more quickly, thereby reducing 

the T2 and T2* times.  

The change in T1, T2, and T2* depends on the concentration of contrast agent, and 

on the relaxivity (R1, R2, R2*) of the contrast agent. For most contrast agents, this 

follows the inverse linear relationships: 
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with Tx0 the respective relaxation time in the absence of contrast agent, and C the 

contrast agent concentration. Contrast agents have the most influence on T1, and 

are thus mostly used for T1-weighted scans. This is because  *
10 20 20T T T> > , while the 

relaxivities are comparable. Because of this, contrast agents are commonly used to 

increase the image contrast of T1 weighted scans, such as in DCE-MRI. Note that 

both equations (2.5) and (2.7) are nonlinear. This nonlinearity must be taken into 

account when the contrast agent concentration is to be computed accurately from 

an FSPGR based MRI signal. 

 

2.62.62.62.6 DCEDCEDCEDCE----MRI and MRI and MRI and MRI and Pharmacokinetic ModellingPharmacokinetic ModellingPharmacokinetic ModellingPharmacokinetic Modelling    

Dynamic Contrast Enhanced MRI is a method to visualize dynamic, physiological 

properties of tissues, by monitoring the tissue’s response to an intravenous injection 

of contrast agent. It consists of a series of fast MRI scans that are aquired in a 

period of several minutes, during which a gadolinium-based contrast agent bolus is 

being injected. This results in the tissues changing their signal intensity in time, in a 

fashion which is dependent on the tissue microvascularization. The technique has 

proven to be valuable in the detection and staging of cancer (4), and the assessment 

of various inflammatory diseases (5). 

In principle, the diagnosis and staging can be done on the basis of the visual 

assessment of the series of DCE images, without further processing. However, with 

an appropriate analysis, DCE-MRI can provide quantitative parameters that are 

directly related to the intrinsic physiological properties of tissues. This is done by 

formulating a model which describes how the MRI signal changes as a result of the 

tissue’s reaction to the contrast agent, and then fitting this model to the measured 

DCE-MRI data. The complete model therefore includes a physiological 

(pharmacokinetic) component (e.g., how the contrast agent leaks out of the 

capillaries), and a physical component (i.e., how the contrast agent affects the MRI 

signal). Several pharmacokinetic models exist, to model various tissue types, 
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different organs, and types of contrast agent (6). This thesis focuses on tissues with 

simple characteristics (i.e., only concentration differences and diffusion drive the 

exchange of contrast agent between two compartments), which permits the use of 

the Tofts’ pharmacokinetic model. 

2.6.1 Tofts’ Model 

Tofts’ model is a pharmacokinetic model describing how tissues react to the 

presence of contrast agent in their feeding artery (7,8). It assumes that a voxel of 

tissue is comprised of three compartments: cells, plasma and interstitial space. The 

contrast agent arrives through the blood plasma, and it will diffuse into the 

interstitial space through pores in the capillary walls, driven by the difference in 

contrast agent concentration. Eventually, the contrast agent will diffuse out of the 

tissues again, finally to be excreted by the kidneys. See Figure 2.5 for a schematic 

overview of Tofts’ Model. 

 

Figure 2.5: Schematic overview of Tofts’ Model. 

It is assumed that the cells do not interact with the contrast agent, and that the 

contrast agent in the plasma is replenished quickly enough to not affect the contrast 

agent concentration. Furthermore, the rate of diffusion of contrast agent between 

the plasma and interstitial space is driven by the difference in concentration, and is 

expressed by a transfer constant Ktrans. In Tofts’ model, Ktrans depends on the type of 

contrast agent and the degree of vessel wall permeability. Under the condition of 

adequate flow of contrast agent and limited permeability, it is defined as the 

product of the capillary permeability, the capillary wall surface area, and the tissue 
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density. Hence, an increased Ktrans may indicate damage to the capillary wall, or 

swelling of the tissue, as the result of some pathology.  

For the entire voxel, the concentration is described by: 

 
( ) ( ) ( )

( ) ( ) ( )( )
t p p e e

e
e trans p e

C t v C t v C t

dC t
v K C t C t

dt

= ⋅ + ⋅

= −
  (2.8) 

where Cp, Ce and Ct are the contrast agent concentration in the plasma, interstitial 

space and the tissue respectively, and vp is the fractional volumes of the plasma 

compartment. The solution of this set of equations is: 

 ( ) ( ) ( ) ( )( )t p p trans p ep

0

exp
t

C t v C t K C tK dτ τ τ−= ⋅ + −∫ , (2.9) 

with ep trans eK K v= . Hence, with the knowledge of the contrast agent concentration 

in the tissue (Ct(t)) and the contrast agent concentration in the feeding artery 

(Cp(t)), the pharmacokinetic tissue properties (vp, ve, Kep and Ktrans) can be 

determined.  

The tissue properties can be determined on a voxel by voxel basis, in order to assess 

the tissue integrity locally, though the results may be susceptible to noise on the 

input concentrations. Alternatively, the tissue properties may be determined from 

the average tissue concentration of a larger region of interest, increasing the 

robustness, but at the cost of resolution. 

Importantly, the concentration of contrast agent in the tissue Ct(t) cannot be 

measured from the MRI signal directly, but needs to be inferred from the intrinsic 

T1-time of the tissue before and during contrast delivery, using equation (2.7). This 

makes the model not only dependent on the assumptions mentioned above, but 

also on the accuracy of the calculation of the T1-time. Moreover, the contrast agent 

concentration in the plasma (the arterial input function) also plays an essential role 

in the model (eq. (2.9)). The plasma concentration is difficult to measure, and any 

error in its calculation is propagated though the model and into the calculated 
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model parameters. For this reason, it is necessary that both the T1-time of the tissue 

and the arterial input function are determined accurately. 
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3333 FFFFeasibility of a Fast Method for Beasibility of a Fast Method for Beasibility of a Fast Method for Beasibility of a Fast Method for B1111----

Inhomogeneity Correction for Inhomogeneity Correction for Inhomogeneity Correction for Inhomogeneity Correction for 

FSPGR SequencesFSPGR SequencesFSPGR SequencesFSPGR Sequences    

 

AbstraAbstraAbstraAbstractctctct    

 

The Fast Spoiled Gradient Echo (FSPGR) sequence is often used in MRI to create 

T1-weighted images. The signal intensity generated by this sequence depends on the 

applied flip angle. Knowing the correct flip angle is essential for the determination of 

T1-maps by means of an FSPGR based Variable Flip Angle (VFA) approach. Also, 

quantitatively determining the concentration of contrast agent in case of Dynamic 

Contrast Enhanced MRI (DCE-MRI) requires knowledge of the applied flip angle. 

In both cases, the B1-field (in)homogeneity significantly affects the results. In this 

paper, we present a new method to obtain both the T1-map and B1-inhomogeneity 

map using scans that can each be acquired within a breath-hold. We combine two 

short sequences for T1 quantification: Variable Flip Angle and Look-Locker (LL). 

The T1-maps obtained from the LL data were used to estimate the B1-inhomogeneity 

inherently present in the VFA data, which was then used to correct for the VFA 

method’s inaccurate flip angles. This way, a reliable T1-map could be computed, 

which was validated using both in vitro and in vivo scans. The in vitro results show 

that the procedure yields a substantially smaller mean deviation in T1 from the T1 

measurement’s gold standard (the Inversion Recovery method), while the in vivo 

results show both a more accurate estimation of T1 and a reduction of the influence 

of the B1-inhomogeneity on the signal intensity. 

 

 

As published in: JJN van Schie et al., "Feasibility of a fast method for B1-

inhomogeneity correction for FSPGR sequences.", Magn Reson Imaging. 2015 

Apr;33(3):312-8. 
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3.13.13.13.1 IntroductionIntroductionIntroductionIntroduction    

The Fast Spoiled Gradient Echo sequence is a widely used MRI technique, able to 

produce T1-weighted images within seconds. It lies at the basis of the Variable Flip 

Angle (VFA) method, which is used to estimate a tissue's T1-value. It is also 

employed in Dynamic Contrast Enhanced MRI (DCE-MRI), a technique which 

visualizes the response of tissues to the inflow of a contrast agent. As the inflow and 

subsequent outflow of the contrast agent reflects the integrity of the tissue’s 

vascularization, DCE-MRI is especially useful for increasing the specificity in tissue 

characterization, staging of the local extent of disease and biopsy planning, 

monitoring preoperative chemotherapy and detection of recurrence (1-5). The 

signal intensity of an FSPGR sequence depends directly on the flip angle used. It is 

essential to know the exact flip angle in order to make quantitative measurements 

of the T1-value in an FSPGR based VFA method. For the case of pharmacokinetic 

modelling with DCE-MRI, it is needed in order to calculate the tissue contrast 

agent concentration reliably (6). Because of its dependence on the flip angle, the 

FSPGR sequence is inherently sensitive to B1-inhomogeneity effects. In this paper, 

a new method is proposed for simultaneous T1-mapping and B1-field correction by 

an advanced post-processing technique. The employed MRI sequences are each 

acquired within a breath-hold. 

3.1.1 Related Work 

A common method, and currently the gold standard, to estimate the longitudinal 

relaxation time (T1) of a tissue of interest is the Inversion Recovery method (IR) 

(7). Despite the fact that it produces T1-maps with high resolution and signal-to-

noise ratio (SNR), this method is impractical for some applications due to its long 

scan time. 

A modification of IR is the Look-Locker (LL) method (8). It uses an inversion 

pulse similar to that of IR, followed by quickly repeated small flip angle pulses. The 

signal is acquired after each pulse, thus sampling the spins’ longitudinal 

magnetization as it relaxes back to equilibrium. The longitudinal relaxation rate is 

slightly perturbed by the pulse train, which is accounted for in the final T1 
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calculation. The Look-Locker method has a much shorter acquisition time than IR 

and is, just like IR, almost insensitive to space-variant B1-attenuation effects (less 

than 5% deviation of T1 for realistic settings (9)). The downside, however, is that if 

a short acquisition time per volume is needed, both the SNR and the resolution can 

be quite low. 

Another method to estimate the T1-map is the Variable Flip Angle (VFA) method 

(10). VFA acquires images using a series of FSPGR sequences with varying flip 

angles. The theoretical signal relation is then fitted to the acquired signal, providing 

a T1-map. However, the applied flip angle strongly depends on the exact strength of 

the B1-field, making the technique very sensitive to any B1-field inhomogeneity, 

which, if present, can result in a biased estimation of T1. The inherently 

inhomogeneous nature of the B1-field complicates automatic correction of the flip 

angle. 

A method to compute a B1-inhomogeneity map independently of T1 is to use VFA 

with flip angles around 180 degrees (11). Since a signal null should occur at 180 

degrees, any deviation from 180 degrees can be attributed to B1-inhomogeneity 

effects. This method is not easily applicable in clinical practice, due to the high 

energy deposition associated with high flip angle FSPGR sequences (the energy 

deposition increases quadratically with the flip angle). Alternatively, the B1-

inhomogeneity can be calculated with the Double Angle method (12). This method 

uses two FSPGR sequences, the second using double the flip angle of the first, and 

employs trigonometric relations to estimate the B1-inhomogeneity. The latter 

method requires a long scan time, which can be undesirable in clinical practice, 

especially when the scan must be acquired during a breath-hold. Furthermore, 

specialized methods such as the Actual Flip Angle Imaging (AFI) method (13) and 

the DREAM method (14) exist. They make use of specially tailored pulse 

sequences, designed such that a B1-inhomogeneity map can be calculated from the 

acquired signal. The AFI method again requires a long scan time, and thus cannot 

be done within a breath-hold. The DREAM approach is much faster, and produces 

good B1-inhomogeneity maps, but this has only been tested on a 3T scanner. 
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Generally, such specialized methods are less often available on clinical scanners 

without a research mode or sequence-developing capabilities. 

3.1.2 Objective 

This article aims to study the feasibility of a fast method to simultaneously obtain 

an accurate pre-contrast T1-map as well as a B1-inhomogeneity map. This is done 

by combining two short scans: (1) a coarse Look-Locker based T1-scan, and (2) a 

VFA based T1 quantification. In fact, a low resolution T1-map, acquired with the 

LL method, serves to correct the flip angle inaccuracies in a high resolution VFA 

T1-map. As a result, the T1-map and the corrected flip angle can be used together, 

for example in computing accurate contrast agent concentration profiles from 

DCE-MRI data, for quantitative pharmacokinetic analysis. 

 

3.23.23.23.2 MethodsMethodsMethodsMethods    

The presented technique to compute the T1- and B1-inhomogeneity maps involves 

two MRI scans: one series of FSPGR sequences for the VFA method, and one LL 

sequence. All scans were made with a 1.5 T MRI scanner (Siemens Avanto). 

3.2.1 Experimental Material 

The method was first applied in vitro to a home-built phantom consisting of ten 

vials, each having a diameter of 3 cm. All but one vial contained an aqueous 

solution with varying concentrations of Gd-DTPA (Magnevist, Bayer Schering 

Pharma, Berlin, Germany) as well as a gelling agent (agar) to suppress free water 

movement. The remaining vial contained air. All vials were mounted in a plastic 

box filled with water doped with copper sulphate to reduce its T1- and T2-times. 

For reference, the ten vials are labelled 1 to 10 column-wise, starting at the top-left 

corner (see Figure 3.1, left). Second, the same method was employed in vivo, on a 

healthy human male volunteer. The pelvic region was selected as the region of 

interest. In this region, the body movement due to breathing is minimal, while 

several different types of tissue (muscle, fat, bone) are present. The absence of 
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movement allowed to obtain a reference T1-map by means of the Inversion 

Recovery method (see below), which is not easily achievable in moving body parts 

(e.g., in the upper parts of the abdomen). Third and last, the method was employed 

on a second healthy human male volunteer, with the central abdominal region 

selected as the region of interest. Since this region is affected by breathing motion, 

each scan was made during a period of breath-hold. As a pre-processing step, all 

breath-hold volumes were registered to each other using an in-house registration 

algorithm based on the autocorrelation of local structures (15). 

 

Figure 3.1: Left column: positioning and labelling of the ROIs in the 10 vials. Middle column: 

positioning and labelling of the ROIs in the first human volunteer. Right column: positioning of 

ROIs in the second human volunteer, for IR (top) and VFA/LL (bottom). Red contains fat tissue, 

green contains muscle tissue. 

3.2.2 Look-Locker T1-map 

The first step in the proposed method was to obtain a low-resolution T1-map. The 

subjects were scanned with a 2D Look-Locker sequence: an inversion pulse 

followed by eight small flip angle pulses of α = 8 degrees each, spaced by intervals of 
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τ = 98 ms (phantom and first volunteer), or τ = 80 ms (second volunteer), and a 

repetition time of 3000 ms. The phantom and first volunteer were scanned with a 

matrix size of 128 × 104 pixels, seven slices (FOV: 400 × 325 × 30 mm3, slice 

thickness = 2.5 mm), for a scan duration of 20 seconds per slice. The second 

volunteer was scanned with a matrix size of 128 × 128 pixels, six slices (FOV: 450 × 

450 × 24 mm3, slice thickness = 4 mm), for a scan duration of 18 seconds per slice. 

The signal strength of a LL scan follows the theoretical relation: 

 ( )( )*
11 expS A B Tτ= − − , (3.1) 

with 

 
( )( )

*
1 1

ln cos1 1
T T

α
τ

= − . (3.2) 

This relation was fitted to the measured signal, using a maximum likelihood 

estimation algorithm, based on a Rician noise model. This results in estimates for 

A, B, and in particular, T1. This algorithm is part of an in-house software package 

(16) implemented in Matlab (MathWorks, Massachusetts, USA). 

3.2.3 Variable Flip Angle T1-map 

Next, the subjects were scanned with a Variable Flip Angle protocol. This protocol 

consisted of five FSPGR sequences using flip angles α of 1, 3, 5, 7 and 9 degrees 

respectively, with TR = 4.74 ms and TE = 2.38 ms. The phantom and first 

volunteer were scanned with a matrix size of 256 × 184 × 36 voxels (FOV: 400 × 

288 × 90 mm3, scan duration: 7 s per volume), the second volunteer was scanned 

with a matrix size of 256 × 256 × 36 voxels (FOV: 450 × 450 × 144 mm3, scan 

duration: 7 s per volume). The repetition time was chosen to keep the total scan 

duration short, while the range of flip angles was chosen to ensure that the tissue’s 

expected Ernst angle would likely fall inside this range. The theoretical relation for 

the signal strength S in FSPGR imaging, including a B1-inhomogeneity factor ζ, is 

given by (10): 
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The VFA T1-map was obtained by fitting eq. (3.3) to the five FSPGR images while 

assuming absence of inhomogeneities (ζ = 1). 

3.2.4 B1-inhomogeneity map and VFA T1-map 

Observe that the flip angle α is assumed to be linearly dependent on the B1 

variation (9). In order to determine ζ, eq. (3.3) was fitted to the acquired VFA 

images (voxel by voxel), using the T1-map obtained with the LL method for T1, and 

ζ and N as free parameters. In other words, the amount of B1-variation was 

estimated by checking how much the flip angles needed to be adjusted in order for 

the VFA method to produce the same T1 as the LL method. 

The initial ζ-map thus obtained is noisy due to the involvement of the LL T1-map. 

The real ζ-map is, based on principles of physics, expected to be smoothly varying. 

Hence, we fitted a low-order polynomial to the data: a second order polynomial to 

the vials, a fourth order polynomial in the first volunteer study, and a sixth order 

polynomial in the second volunteer study, to match the expected amount of 

structure in the region of interest within the FOV in each case. Essentially this 

extracts the global trend. This trend derived from the initial ζ-map is not affected 

by the local signal fluctuations, since the latter cancel out while fitting a global 

function. The fitting was performed by means of weighted least squares regression, 

reinforcing the robustness by excluding outliers based on the confidence in the 

corresponding ζ factor. Essentially, the weights determined which points were taken 

into account in the fitting.  

In the in vitro case, the area outside the vials was manually segmented and its 

confidence weight was set to 0. In this way, artifacts (points residing in the air and 

water outside the vials) were discarded. In the in vivo cases, the background was 

segmented by thresholding the amplitude factors of the LL scan (A in eq. (3.1)) and 

the VFA scan (N in eq. (3.3)), and the weight set to 0. Subsequently, the 
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confidence was determined based on statistical grounds and prior knowledge. 

Particularly, if ζ fell outside the range of a factor of two geometric standard 

deviations from its geometric mean, or if the corresponding T1 fell outside a 

physically expected range of 10 to 2000 ms, the weight was set to 0; otherwise it 

was set to 1. A geometric metric (instead of a ‘regular’ arithmetic one) was used, 

since the B1-inhomogeneity is assumed to have a multiplicative effect (9). The 

former condition served to exclude statistically unreliable points due to extreme 

noise on the LL data; the latter condition aimed to discard physically infeasible 

measurements. The resulting ζ-map after fitting served as the final B1-

inhomogeneity map. 

Finally, equation (3.3) was fitted to the measured VFA data using the fitted B1-

inhomogeneity map as fixed ζ, with T1 and N as free parameters. Essentially, the 

fitted ζ-map compensated for the B1-effects normally present when using the VFA 

method. Herewith, the corrected VFA T1-map was obtained. 

Note that the larger pixel sizes in the LL data make that pixels contain multiple 

tissues. These so-called partial volume effects occur predominantly at boundaries 

between tissues, and produce erroneous values for ζ: too high for one tissue, and 

too low for the other. Such voxels are discarded as outliers. Generally, the number 

of voxels near boundaries is small compared to the total number of included voxels. 

Hence, the effect they have on the final outcome after regression with a low-order 

polynomial is negligible. 

3.2.5 Inversion Recovery, reference T1-mapping 

For the phantom and first volunteer, a reference T1-map was acquired using an 

Inversion Recovery scan. The region of interest was scanned six times, each with a 

repetition time of 7000 ms, inversion times of 50, 150, 300, 600, 1500 and 2000 

ms respectively, and a matrix size of 256 × 184 × 18 voxels (FOV: 400 × 288 × 85 

mm3, slice thickness: 2.5 mm). The duration of each scan was 275 s, bringing the 

total IR scan time to 27.5 minutes. A mono-exponential recovery curve was fitted 

to the measured intensities, providing a T1-map to be used as gold standard. The 

theoretical relationship between the IR signal and T1 is similar to equation (3.1), 
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but with a fixed � = 2 and with ��
∗
= ��. For the second volunteer, breathing 

motion made the use of a lengthy Inversion Recovery scan infeasible in the upper 

abdominal region. Instead, a scan of the lower abdomen was performed to get the 

IR reference T1-map, using the same inversion times. In this case, the repetition 

time was 6700 ms, and the matrix size was set to 256 × 256 × 18 voxels (FOV: 450 

× 450 × 136 mm3, slice thickness: 4 mm). 

3.2.6 Statistical Analysis 

A circular ROI, 20 mm in diameter, was manually positioned inside each of the 

vials in the reference IR scan (see Figure 3.1, left column). Likewise, ten circular 

regions, 20 mm in diameter, were drawn at representative, homogeneous positions 

in the IR scan of the first volunteer (see Figure 3.1, middle column). The data from 

these in vitro and in vivo experiments were separately analysed. The average T1-

values from the uncorrected VFA, the corrected VFA and the LL scans in each 

region were compared to the average T1-values estimated from the IR scan by 

means of a two-tailed, paired t-test. Subsequently, the pooled variance of the ROIs 

was calculated. The pooled variances from the uncorrected VFA, the corrected VFA 

and the LL scans were compared to the pooled variance from the IR scan by means 

of an F-test. For the second volunteer study, regions of fat and muscle tissue were 

manually segmented in the VFA T1-map of the upper abdomen, and the IR T1-

map of the lower abdomen. The regions were chosen to lie in the overlapping area. 

The mean T1-values of these regions were then compared to each other with a z-

test. In all cases, a p-value < 0.05 was considered to indicate a significant difference.  

 

3.33.33.33.3 ResultsResultsResultsResults    

3.3.1 In vitro T1-maps 

The T1-maps made using IR, LL, uncorrected and corrected VFA are shown in 

Figure 3.2a-d respectively. Notice the lower resolution (larger pixel sizes) and 

increased noise (e.g., vials 3, 6, 10) of the LL T1-map (Figure 3.2b). Additionally, 
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observe that the uncorrected VFA T1-map shows an underestimation of the T1-

values compared to the IR T1-map (e.g., compare vial 6 in Figure 3.2a and c). 

 

Figure 3.2: T1-maps of the phantom obtained with: (a) Inversion Recovery; (b) Look-Locker; (c) 

uncorrected Variable Flip Angle; (d) corrected Variable Flip Angle. Units are [ms]. FOV: 400 × 

288 mm2. 

 

Figure 3.3: Comparison of T1 estimation methods in vitro. The data points denote the mean T1 

inside circular ROIs (6 pixel radius, 1 slice thick) in the centres of each vial. The error bars denote 

one standard deviation. The data points (from left to right) correspond to vials: 9, 8, 3, 2, 1, 7, 4, 

10 and 6. For clarity, the data points from the LL method have been shifted slightly to the left, as 

to prevent occlusion by other data points. 
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A comparison of the T1 values in the ROIs estimated by the four methods is shown 

in Figure 3.3, using the T1 values found with Inversion Recovery as reference 

standard. Estimating the T1-value of vial 5 (containing air) failed with each 

method. Therefore, a meaningful comparison could not be made, and vial 5 was 

excluded from further analysis. 

The mean difference from IR and the root mean (pooled) variance of each method, 

both averaged over the vials, are shown in Table 3.1. The average T1-values from 

the proposed method did not differ significantly from the IR values (p = 0.099). 

The estimated T1-values of the uncorrected VFA scan differed significantly from IR 

(p = 0.003). Comparing the four methods’ variances, averaged over the nine 

included vials, all differed significantly from each other (p < 0.05), with the 

exception of the variances of the uncorrected and corrected VFA (p = 0.18).  

Table 3.1: Comparison of the four used methods for T1 quantification in vitro showing the mean 

difference (MD) from the reference method (IR),  as well as each method’s root mean variance 

(RMV), both averaged over the vials. 

MethodMethodMethodMethod    MD (ms)MD (ms)MD (ms)MD (ms)    RMV (ms)RMV (ms)RMV (ms)RMV (ms)    

IR 0.000 7.005 

LL 46.98 183.0 

VFA (uncorrected) -155.5 23.53 

VFA (corrected) 32.61 37.54 

3.3.2 In vitro B1-inhomogeneity maps 

The initial ζ map obtained by fitting eq. (3.3) in each pixel is shown in Figure 3.4a. 

The mean value for ζ inside the regions of interest was 79.3%, with a standard 

deviation of 10.7%. The binary weights that were used in the fitting of the low-

order polynomial are shown in figure 4b. Observe that several points considered 

unreliable occur within the vials. These points are discarded due to noise on the LL 

data. After fitting the low order polynomial to the B1-inhomogeneity map (Figure 

3.4c), the mean value for ζ inside the vials is almost the same as before 77.4%), but 

the standard deviation has decreased to 0.7%. 
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Figure 3.4: B1-inhomogeneity map of the phantom. FOV: 400 × 288 mm2. (b) Binary weight 

map used for fitting (black = 0, white = 1). (c) Fitted B1-inhomogeneity map. Images (b) and (c) 

are zoomed in to the rectangular area displayed in (a); FOV: 200 × 144 mm2. 

3.3.3 In vivo T1-maps 

The T1-maps made using IR, LL, uncorrected and corrected VFA of the first 

volunteer study are shown in Figure 3.5. Notice that the uncorrected VFA T1-map 

shows a spatially varying value for T1, i.e. the values increase from the image border 

inwards (indicated by the arrows), which is not seen on the IR T1-map. This 

reflects the location dependency of the ζ-factor. Also, there is a global 

underestimation of the T1-value obtained with the uncorrected VFA method, as the 

colours are generally darker (lower T1-values).  

 

Figure 3.5: T1-maps of a human male pelvis obtained with: (a) Inversion Recovery; (b) Look-

Locker; (c) uncorrected Variable Flip Angle; (d) corrected Variable Flip Angle. FOV: 450 × 450 

mm2. 
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Figure 3.6: Comparison of T1 estimation methods in vivo. The data points denote the mean T1 

inside circular ROIs (6 pixel radius, 1 slice thick). Error bars have been omitted for clarity; an 

indication of the variance per method is shown in Table 3.2. 

Table 3.2: Comparison of the four used methods for T1 quantification in vivo, showing the mean 

difference (MD) from the reference method (IR), as well as each method’s root mean variance 

(RMV), both averaged over the ROIs. 

MethodMethodMethodMethod    MD (ms)MD (ms)MD (ms)MD (ms)    RMV (ms)RMV (ms)RMV (ms)RMV (ms)    

IR 0.000 57.09 

LL 150.8 438.7 

VFA (uncorrected) -199.0 95.08 

VFA (corrected) -37.33 127.6 

 

A comparison of the T1-values in the ROIs estimated by the four methods is shown 

in Figure 3.6, again using the T1 values from IR as the reference standard. The 

mean difference from IR and the root mean (pooled) variance of each method, both 

averaged over the vials, are collated in Table 3.2. The average T1-values from the 

proposed method did not differ significantly from the IR values (p > 0.084). The 

estimated T1-values of the uncorrected VFA as well as the LL scan did differ 
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significantly from IR (p = 0.0016, p = 0.0017 respectively). The four methods’ 

variances, averaged over the 10 ROIs, all differed significantly from each other (p < 

0.05), with the exception of the variances of the uncorrected and corrected VFA (p 

= 0.37), and the variances of the uncorrected VFA and IR (p = 0.12). 

For the second volunteer study, the reference T1-map of the lower abdomen is 

shown in Figure 3.7a. The T1-maps of the upper abdomen, obtained with the other 

three methods, are shown in Figure 3.7b-d. The location of the IR T1-map was 

chosen to be different from the other three methods, because the presence of 

breathing motion makes a lengthy IR scan infeasible in the upper abdomen. The 

mean T1, standard deviation, and median T1 of both muscle tissue and fat tissue are 

shown in Table 3.3. 

 

Figure 3.7: T1-maps of a human male lower and upper abdomen, obtained with: (a) Inversion 

recovery (lower abdomen); (b) Look-Locker (upper abdomen); (c) uncorrected Variable Flip 

Angle (upper abdomen); (d) corrected Variable Flip Angle (upper abdomen). Note that the T1-

map in (a) is shifted downwards to match the anatomy of the other three T1-maps. FOV: 450 × 

450 mm2. 
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Table 3.3: Comparison of T1 values estimated by IR, LL, uncorrected and corrected VFA, for 

muscle and fat tissue. 

    Muscle tissue TMuscle tissue TMuscle tissue TMuscle tissue T1111    (ms)(ms)(ms)(ms)    Fat tissue TFat tissue TFat tissue TFat tissue T1111    (ms)(ms)(ms)(ms)    

MethodMethodMethodMethod    MeanMeanMeanMean    St.St.St.St.Dev.Dev.Dev.Dev.    MedianMedianMedianMedian    MeanMeanMeanMean    St.St.St.St.Dev.Dev.Dev.Dev.    MedianMedianMedianMedian    

IR 695.2 100.5 687.2 269.4 26.8 268.9 

LL 1357 2155 666.5 265.7 171.9 247.6 

VFA (uncorrected) 1100 151 1102 210.0 65.3 209.5 

VFA (corrected) 735.8 96.6 732.7 199.8 55.6 197.0 

 

For muscle tissue, the values of T1 estimated by the proposed method did not differ 

significantly from IR (p = 0.77), while the uncorrected VFA did differ significantly 

from IR (p = 0.026). For fat tissue, none of the values of T1 differ significantly from 

each other. A minor decrease of T1 can be observed between IR and corrected VFA 

methods, however, this decrease is not significant (p = 0.26). 

3.3.4 In vivo B1-inhomogeneity maps 

The initial ζ-map computed in the first volunteer study is shown in Figure 3.8a. 

The corresponding binary weights for the polynomial regression are shown in figure 

8b. Most of the discarded points (black in Figure 3.8) were rejected based on the 

geometric distance criterion (see above), i.e., considered to emanate from noise on 

the LL data. The black spot at the bottom left emanates from sheer signal loss. The 

B1-inhomogeneity map obtained using weighted polynomial regression is shown in 

Figure 3.8c. In the fitted B1-inhomogeneity map, the inhomogeneous nature of the 

B1 field becomes clear: the value for ζ in the center has a value of 105%, while it 

decreases to 70% near the top and bottom following a bell-shaped profile. 

For the second volunteer study, the initial ζ-map, the binary weights, and the fitted 

ζ-map are shown in Figure 3.9. As before, the location dependency of the B1-field is 

visible. However, in this case, an increase in field strength is observed, with the 

value for ζ reaching 130% near the center. This is also reflected in the uncorrected 

VFA T1-map (Figure 3.7c): the T1-values in muscle tissue are higher than expected.  
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Figure 3.8: (a) B1-inhomogeneity map of a human male pelvis. (b) Binary weight map used for 

fitting (black = 0, white = 1). (c) Fitted B1-inhomogeneity map. FOV: 450 × 450 mm2. 

 

 

Figure 3.9: (a) B1-inhomogeneity map of a human male upper abdomen. (b) Binary weight map 

used for fitting (black = 0, white = 1). (c) Fitted B1-inhomogeneity map. FOV: 450 × 450 mm2. 

 

3.43.43.43.4 DiscussionDiscussionDiscussionDiscussion    

3.4.1 In vitro experiments 

Comparing the four methods’ estimated T1-values inside the vials, one observes that 

the corrected VFA method yields a smaller systematic error than both the LL and 

the uncorrected VFA, while maintaining an acceptable variance level. The 

difference between the T1-values of the corrected VFA technique and IR was not 

significant (p = 0.099), whereas the pooled variance of the corrected VFA technique 

was significantly lower than the pooled variance of the LL approach (p = 0.0001). 

As such, the B1-inhomogeneity map corrected for the attenuation in the applied flip 

angles. 
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The averages of the estimated values for T1 inside the vials obtained with the Look-

Locker method and those obtained from the gold standard (IR) were not 

significantly different (p = 0.22). The significantly higher variance of the estimated 

LL T1-values (p < 0.0001) was expected, because of its lower SNR. This is a result 

of the short acquisition time per volume, which is required to keep the total 

scanning time within one breath-hold.  

The B1-inhomogeneity map shows a smooth field near the vials, while it diverges 

towards the edges. The consequence of this effect can also be seen near the edges in 

the corrected T1-map. This divergence is a direct result of the weights used for the 

polynomial fit: there are no reliable data points in the surrounding water that can 

guide the polynomial, so the values for ζ are solely based on extrapolation. Clearly, 

this behaviour does not affect the correction inside the ROIs.  

3.4.2 In vivo experiments 

An insignificant difference between corrected VFA and IR measurements of T1 was 

observed in the first in vivo experiment (p = 0.084), and likewise in the second in 

vivo experiment for fat tissue (p = 0.26) and for muscle tissue (p = 0.77). As such, 

both the systematic error and the bell-shaped profile were removed in the corrected 

VFA T1-maps. What is more, for the first volunteer study, the pooled variance of 

the corrected VFA T1-map was significantly lower than the pooled variance of the 

LL T1-map (p = 0.0006). 

Furthermore, the results of both in vivo studies show an increase of T1 from LL 

compared to IR, which is caused by outliers in T1 emanating from the noise on the 

raw LL data. However, the median T1 from LL appears to remain unchanged. The 

LL T1-map is used in the calculation of the B1-inhomogeneity map, and since 

outliers in T1 are likely to cause outliers in ζ, these points will be rejected. This 

makes that the corrected VFA map accurately corresponds to the IR T1-map, 

despite the significant difference between the T1 values of LL and IR. 

In both in vivo studies, a bell-shaped profile from top to bottom (indicated by the 

arrows in Figure 3.5c) can be observed when comparing the uncorrected VFA T1-
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maps with IR. This bell-shaped profile was not visible in the in vitro results, which 

may be due to the compactly clustered arrangement of the vials in the center of the 

field of view, or due to the reduced generation of standing electromagnetic waves 

inside the phantom as a result of the rf-pulses (17). Observe that the bell-shaped 

profiles were removed in the corrected VFA T1-maps. 

3.4.3 Limitations 

A limitation of our work is that the scanning parameters used in the LL and VFA 

scans were optimized for the range of T1 values that is expected to occur in our 

application: from approximately 100 to 1000 ms (at 1.5T). For the LL scans, the 

timing of the small flip angle pulses was chosen such that the theoretical zero-

crossing of the signal would occur during acquisition, whereas for the VFA scans, 

the range of flip angles was chosen such that the expected Ernst angle would fall 

within this range. If a local T1-value falls outside this range, which is the case for 

free water, fitting the data fails, resulting in an erroneous T1 estimate. This effect 

can be seen in the water surrounding the vials in the phantom scan, but is not an 

issue for our application. 

Second, our method works under the assumption that the B1-field is smoothly 

varying. If this is not the case, for example when the magnetic susceptibility 

changes rapidly, the smoothing inherent to a low order polynomial fit will result in 

a B1-inhomogeneity map that does not account for this behaviour. This means that 

in these regions, the T1-value will be incorrect. This effect can be mitigated by 

tuning the order of the polynomial fit: higher orders will allow more rapid changes, 

but may also cause tissue dependent behaviour, fitting to noise artifacts, and 

erroneous interpolation or extrapolation. Practically, we have found that a 4th or 6th 

order polynomial matched well in several subjects. 

Last, we did not explicitly assess the accuracy of the B1-inhomogeneity map (ζ). 

However, the value of ζ determines the value of T1 produced by the corrected VFA 

method in a one-to-one relation. This one-to-one property results from the fact 

that the value of ζ uniquely defines the apparent Ernst angle. In turn, the apparent 

Ernst angle is uniquely associated with the value of T1. Therefore, the fact that the 
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differences between the T1-values obtained by IR (gold standard) and the corrected 

VFA are insignificant indicates that the correct value of ζ has been obtained. 

 

3.53.53.53.5 ConclusionConclusionConclusionConclusion    

We proposed a fast method for estimation and correction of the B1-inhomogeneity 

in FSPGR sequences that requires only two relatively short MRI scans. The data 

from the two scans (LL and VFA) is combined to produce a T1-map of comparable 

quality as a T1-map obtained using the conventional VFA method, while correcting 

for possible attenuation of the B1-field. In addition, the B1-attenuation itself is 

estimated, which can be used to correct the flip angle of other scans based on the 

FSPGR sequence (e.g., a DCE-MRI scan). Essentially, the proposed method 

combines the best of two worlds: the high resolution of the VFA method, and the 

B1 stability of the LL technique. 
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AbstractAbstractAbstractAbstract    

    

PurposePurposePurposePurpose: To develop a novel method for estimating the Arterial Input Function 

(AIF) from Dynamic Contrast Enhanced (DCE-) MRI data, while compensating for 

flow enhancement. 

Materials and MethodsMaterials and MethodsMaterials and MethodsMaterials and Methods: The proposed method first estimates the number of pulses 

that spins have received since entering the field of view, and then uses this knowledge 

to accurately estimate the contrast agent (CA) concentration. The number of pulses is 

estimated while assuming that the AIF’s profile follows Orton’s AIF model. The 

method is evaluated by means of simulations and a phantom experiment. 

ResultsResultsResultsResults: In the simulations, we found that the method can accurately estimate the 

number of pulses n (no significant difference between estimated and true n (p = 

0.65)). Furthermore, the method accurately estimated concentrations C for a relevant 

range of number of pulses and concentrations (no significant difference between true 

and estimated C for 40 ≤ n ≤ 220 and 0 ≤ C ≤ 8 mmol/L, (p > 0.28)). The phantom 

experiment demonstrated that spins in transient state produce the signal intensity 

expected by the model. 

ConclusionConclusionConclusionConclusion: The proposed approach accurately corrects the MRI signal affected by 

the inflow effect.  
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4.14.14.14.1 IntroductionIntroductionIntroductionIntroduction    

The Arterial Input Function (AIF) represents the time-dependent arterial contrast 

agent (CA) concentration, that is used in pharmacokinetic (PK) modelling of 

dynamic imaging data. Obtaining an accurate AIF is essential for accurate 

estimation of the PK model parameters. Dynamic Contrast Enhanced MRI often 

uses a Fast Spoiled Gradient Echo (FSPGR) sequence, for which a theoretic 

relationship exists between the CA concentration and the signal enhancement 

assuming that the magnetization resulting from the repeated application of RF-

pulses is in a steady state (1,2). Therefore, the AIF is often directly computed from 

the signal measured in an artery  close to the tissue of interest (3).  

This assumption does not hold, however, for spins in flowing blood, as they have 

not spent enough time in the field of view to reach the steady state. Neglecting this 

can cause a biased estimate of contrast agent concentration, which is detrimental to 

the estimation of PK parameters (4). The effect manifests itself as a reduction of the 

signal enhancement, especially at high CA concentrations or for a low number of 

received pulses. In addition, T2* decay also has a nonlinear effect on the relation 

between concentration and signal. While this effect can be reduced by choosing a 

very short echo time, it always causes a bias in the AIF, if not corrected for (5,6). 

This is the first of two strongly related articles, in which we focus on the theory, 

simulations and phantom experiments supporting the proposed methodology for 

estimating the AIF from DCE-MRI data, in the presence of flow enhancement. 

The second article deals with automatic procedures applying the new method to 

patient data and the validation thereof, using clinical data.  

4.1.1 Related Work 

The AIF can be obtained in several ways. The easiest approach is to use a 

population-averaged parametrized model (e.g. (7)). Despite its simple 

implementation, this model ignores inter-subject variations, and is therefore not 

accurate. It has been shown that the use of a subject-specific AIF improves the 

robustness of pharmacokinetic analysis (8).  
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When deriving a subject-specific AIF from the DCE-MRI data, the measured 

arterial signal needs to be converted to CA concentration. It was proposed that the 

relation between the concentration and signal intensity could be calibrated with a 

flow phantom before performing the DCE-MRI scan (9). This produces an 

unbiased AIF, but needs to be recalibrated for each imaging sequence, and is 

sensitive to susceptibility differences. It is therefore quite unpractical. 

Various authors derive the CA concentration assuming a linear relation between 

signal intensity and CA concentration (10-12). This is valid for low concentrations 

and becomes less accurate with higher concentrations, leading to less accurate 

estimation of PK parameters. Other researchers use the full nonlinear relation 

between signal intensity and CA concentration, which provides a better estimate of 

the AIF (13,14), and in turn improves the accuracy of the PK parameter estimates 

(15). Such nonlinear conversion requires prior knowledge of the T1 time of blood, 

which can either be measured in a separate scan, or acquired from literature (16). 

Both the linear and the nonlinear conversion methods assume that the measured 

magnetization is in a steady state, which may not be a valid assumption. The error 

introduced by this assumption depends on the number of excitation pulses that the 

spins have received. Although measuring at a downstream location can minimize 

this effect, this may still be insufficient (17).  

4.1.2 Objective 

In this work, we present a novel method to correct the CA concentration 

measurement in flowing blood. This method takes into account the spin dynamics 

during the transient state of an FSPGR sequence, including a correction for T2* 

decay. In order to estimate the AIF, the amount of enhancement due to the inflow 

effect is estimated first, by constraining the AIF’s area under the bolus peak to a 

fixed value. Subsequently, the estimated amount of enhancement due to flow is 

compensated as the signal intensity is converted into concentration. We first 

demonstrate that the method accurately corrects for the inflow effects on computer 

generated AIFs. Secondly, we test this method in a phantom with a constant flow 
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velocity and demonstrate that the correction method can accurately estimate the 

flow velocity.  

 

4.24.24.24.2 Materials and MethodsMaterials and MethodsMaterials and MethodsMaterials and Methods    

4.2.1 Theory 

FSPGR Magnetization in Transient and Steady State 

DCE-MRI is generally performed with a Fast Spoiled Gradient Echo (FSPGR) 

sequence. This sequence combines a small flip angle excitation of the magnetization 

with a short repetition time and minimal echo time to obtain images at a high 

temporal resolution. A spoiler gradient is used to avoid signal contamination by 

remaining transverse magnetization, thereby achieving T1-weighting. The spins’ 

longitudinal magnetization zM  immediately preceding the n+1th  excitation can be 

expressed as a function of the longitudinal magnetization right before the previous 

excitation ( )zM n : 

 ( ) ( ) ( ) 0
1 1

1 cos exp 1 expR R
z z

T T
M n M n M

T T
α

    
+ = − + − −    

    
 (4.1) 

where α is the applied flip angle, TR the repetition time, T1 the longitudinal 

relaxation time, and M0 the net magnetization in equilibrium. Briefly, this equation 

states that the longitudinal magnetization does not return to the initial state, but 

instead becomes smaller after each pulse. In the steady state (i.e., after application of 

a sufficiently large number of RF-pulses), ( ) ( )1z zM n M n+ = , and equation (4.1) is 

commonly rewritten as: 

 
( )

( )
0 1

1

1

1 cosz

M E
M

Eα
−

=
−

 (4.2) 

with ( )1 1exp /RE T T= − . 
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While the spins are in the transient state (i.e., before reaching the steady state), the 

longitudinal magnetization (expressed recursively in eq. (4.1)) can also be written 

explicitly in the form of a decaying exponential: 

 ( ) ( )exp with 0zM n a b n c b= ⋅ + <  (4.3) 

Using the boundary condition ( ) 00zM n M= = , and solving for a, b and c, gives: 

 
( ) ( )( ) ( )

( )
0 11

0 1
1 1

11
1 , ln cos ,

1 cos 1 cos

M EE
a M b E c

E E
α

α α
  −−= − = =  − − 

 (4.4) 

and thus: 

 ( ) ( ) ( )( ) ( )
1 1

0 1
1 1

1 1
1 cos

1 cos 1 cos

n

z

E E
M n M E

E Eα α
α

  − −= − +    − −  
 (4.5) 

A detailed derivation of this expression can be found in Appendix A. Note that in 

the limit where n → ∞ , eq. (4.5) reduces to eq. (4.2), i.e., the case of steady state. 

The MR signal obtained with the FSPGR sequence, measured in the transverse 

plane after application of an RF-pulse, and taking T2* decay into account, is then: 

 ( ) ( ) ( ) ( )*
2sin exp /z ES n M n T Tα= −  (4.6) 

in which TE is the echo time. 

In practice, the steady state may not be reached due to flow, in which case not-

excited spins entering the field of view perceive an insufficient number of 

excitations. Consequently, a larger signal can be measured from spins in transient 

state than from spins in steady state, resulting in flow enhancement. 

Signal Intensity Ratio 

Gadolinium-based contrast agents enhance the MRI signal by simultaneously 

reducing the local T1 and T2* times (2): 

 
1 10 1

* * *
2 20 2

1/ 1/

1/ 1/

T T R C

T T R C

= +

= +
, (4.7) 



Chapter 4: Estimating the AIF from DCE-MRI Data with Compensation for Flow 

Enhancement (I): Theory, Method and Phantom Experiments 

48 

 

in which T10 and T20* are the pre-contrast longitudinal and transverse relaxation 

times respectively, R1 and R2* are the longitudinal and transverse relaxivities of the 

contrast agent respectively, and C is the contrast agent concentration. As such, the 

longitudinal magnetization Mz and the measured signal S become functions of the 

CA concentration: ( ),zM C n  and ( ),S C n . 

The signal ratio D, defined as the ratio of the post-contrast and pre-contrast MR 

signal intensities, taking into account the number of excitations (n) and T2* decay, 

for the FSPGR sequence, is given by: 

 ( ) ( )
( )

( )
( ) ( )*

2

, ,
, exp

0, 0,
z

z

S C n M C n
D C n TE r C

S n M n
= = −  (4.8) 

Note that in this equation, both M0 and T20* have disappeared. The sequence 

parameters (α, TR and TE), the contrast agent properties (r1 and r2*), and the T1 of 

blood are (assumed to be) known. However, equation (4.8) is still 

underdetermined: the concentration C and the number of pulses n cannot be 

determined uniquely without additional information. 

AIF model 

To resolve the ambiguity between concentration and the number of pulses, we 

propose to impose prior knowledge on the CA concentration profile. More 

specifically, we assume that the profile should follow a slightly modified AIF model 

described by Orton et al. (18). This model parametrizes the AIF as a sum of two 

functions, one describing the first passage of the bolus peak, and the other 

describing wash-out of CA in the tail of the AIF.  

The bolus peak ( )BC t  is described by: 

 ( ) ( ) ( )2 expB B B BC t a t t u tµ µ= −  (4.9) 

with u(t) the unit step function. The function has been slightly rewritten compared 

to the one described by Orton et al. (18), such that the area under the curve of 

( )BC t  is given by the parameter Ba , while Bµ  only affects the decay rate.  
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The tail of the AIF is expressed as a convolution between the bolus peak and a body 

transfer function ( )G t , which is modelled as: 

 ( ) ( ) ( )expG GG t a t u tµ−=  (4.10) 

in which Ga  determines the starting level of this decay function and Gµ  governs the 

decay rate, which may reflect kidney functioning. Note that if Gµ  goes to infinity 

(i.e., the CA is not removed from the blood), the AIF will level off at GBa a⋅ . 

Thus, the complete AIF is described as: 

 ( ) ( ) ( ) ( )Orton 0 0, B BC t C t t C t t G t= − + − ∗θ  (4.11) 

with 0t  a time delay indicating the injection of the bolus and θ  the vector 

containing all model parameters: 

 [ ]0, , , ,B B G Ga ta µ µ=θ  (4.12) 

The shape of the actual AIF may vary per subject, depending on injection rate, 

concentration of the contrast agent, vascular structure and measurement location. 

However, the area under the bolus peak of the concentration curve ( Ba , unit: 

mol∙L-1∙s) is related to the total CA dose (unit: mol) and a subject’s average cardiac 

output (CO, unit: L∙s-1) by (9): 

 Dose
CO Ba=  (4.13) 

Since both the total administered dose and the cardiac output in adults are 

generally proportional to the subject’s body mass (19), Ba  can be expected to be 

constant among individuals. Hence, we make the assumption that the parameter 

,Orton
2

,Orton

B
B

B

a
a

µ
=  is identical for each subject, with ,OrtonBa  and ,OrtonBµ  as reported by 

Orton et al. (18). For a dose per body mass of 0.1 mmol/kg, Ba  is set to:  

 -150.58 mm ·Lol ·sBa =  (4.14) 

which scales linearly with the dose per body mass. 
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Correction Method 

When fitting the aforementioned model to arterial data, the free model parameters 

of equations (4.8) and (4.11) are estimated first by minimizing 

 ( ) ( )( )meas Orton 2,

ˆ ˆ, arg min , ,
n

n D t D C t n= −
θ

θ θ , (4.15) 

in which Dmeas is a measured signal-ratio curve, and the parameters to be estimated 

are 

 0̂ˆ ˆ, , , ,ˆ ˆ ˆ ˆ, B G Ga tn nµ µ   =   θ . (4.16) 

The parameters are constrained so that they are always positive, and are estimated 

by means of a nonlinear least squares regression algorithm implemented in Matlab 

(version R2014b; Mathworks, Natick, USA). In other words, the shape parameters 

of the modelled concentration curve are adjusted in such a way that the time-ratio 

curve matches the measured data. Since the area under the bolus peak remains 

fixed, any discrepancy between the heights of the modelled and measured signal-

ratio curves is attributed to flow enhancement, which is accounted for by n.  

Essentially, n is estimated by comparing an entire time-series of measured data to 

Orton’s model, instead of considering each time-point separately. However, not all 

information present in the original data is captured in the model (e.g., the presence 

of a second peak). Therefore, we re-estimate the concentration at each time point 

using equation (4.8), which is no longer underdetermined after inserting n̂  for the 

number of pulses the spins have received. This is again done using nonlinear least-

squares regression: 

 ( )meas 2
ˆ ˆargmin ,

C
C D D C n= − . (4.17) 

Doing this for every time point in the signal-ratio curve then provides an AIF 

which takes both flow enhancement and T2* decay into account. Note that in this 

step, the preliminary estimates for the model parameters θ̂  are not used.  
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Cramér-Rao Analysis 

The Cramér-Rao lower bound is the theoretical lower bound on the (co-)variance 

of any unbiased estimator of parameters. As such, the CRLB matrix can be used to 

reveal high correlations between model parameters, by computing Pearson’s 

correlation coefficient matrix. Assuming Orton’s population-averaged parameters 

for θ , n = 100 pulses, and not imposing any constraint on Ba , this correlation 

coefficient matrix is shown in Figure 4.1a. The high correlations between n and the 

other parameters are clearly visible, confirming that these parameters cannot be 

estimated independently. Alternatively, the proposed constraint on Ba  markedly 

reduces the correlations between n and the other parameters (see Figure 4.1b). 

Essentially, the figure demonstrates that the mere constraint on Ba  allows for 

precise estimation of n. 

 

Figure 4.1: Correlation coefficient matrices (a) without; and (b) with imposing a constraint on 

the Ba  parameter. 

Experimental Design 

Two experiments were performed to assess the proposed method’s ability to 

accurately and precisely estimate an AIF from DCE-MRI data. (I) The method was 

tested on simulated data, in order to quantify its accuracy and precision in 

estimating the number of pulses (eq. (4.15)), and the CA concentration (eq. 

(4.17)). (II) The theoretical behaviour of spin dynamics in transient state (eq. (4.6)) 

was verified in a controlled phantom experiment.  
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4.2.2 Simulation 

Estimating the Number of Pulses 

To assess the proposed method’s accuracy and precision in estimating the number 

of pulses n, it was applied to a simulated set of signal-ratio curves. These signal-

ratio curves were created by generating a time-concentration curve (TCC) by means 

of eq. (4.11), with parameters θ  describing the population-averaged TCC, as in 

Orton et al. (18). The TCCs were generated for a duration of 373 seconds and 

sampled at intervals of 1.247 seconds (300 time points). Next, the TCC was 

converted into time-intensity curves (TICs) through eq. (4.6). These TICs were 

generated for different values of n ranging from 10 to 200 in steps of 10. Thereby, 

the repetition time and echo time were set to 2.9 and 1.8 ms respectively, the flip 

angle α was set to 15 degrees, and the T1 value of blood was assumed to be 1.779 s 

(16). The simulated contrast agent was gadobutrol, of which a longitudinal 

relaxivity R1 = 4.1 L/mmol/s and a transverse relaxivity R2* = 6.5 L/mmol/s was 

asserted at 3 Tesla (2). All MRI settings were identical to the settings of a patient 

study, which is described in the adjoined twin paper (REF). Subsequently, 

Gaussian white noise with an SNR of 20 was added. The TICs were then divided 

by their average pre-contrast signal to obtain signal-ratio curves. This was repeated 

500 times for each value of n, each time with different noise realizations. Each 

signal-ratio curve was then processed by the proposed method. See Figure 4.2 for a 

schematic overview of the simulations. The difference between the median of the 

estimated values for n and the true value was considered a measure of the method’s 

accuracy. The interquartile range of the estimated values of n was taken as a 

measure of the precision. A two-tailed sign test was applied to determine whether 

the difference between the medians and each true value was significant, and Fisher’s 

method was used to combine the results into a single p-value. A p-value < 0.05 was 

considered to indicate significance. 

Estimating the Concentration 

Similarly, eq. (4.17) was applied to a known set of concentrations to quantify the 

influence of an error in the estimated value of n on the subsequently estimated 
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concentrations. Therefore, a set of concentrations ranging from 0 to 8 mmol/L, in 

steps of 0.5 mmol/L, was converted to signal ratio by means of eq. (4.8), using a 

fixed number of pulses n. The same MRI settings were used as described in the 

previous subsection. Next, 200 perturbed values nest were generated around the true 

n through the method described in the previous paragraph. Finally, the 

concentrations were estimated by solving eq. (4.17) for each of the combinations of 

true concentration and generated nest. A new set of nest was generated for each 

concentration, to ensure statistical independence. This procedure was performed 

eight times, with n set to 10, 40, 70, 100, 130, 160, 190 and 220 respectively. Also 

see Figure 4.2 for an overview of the simulation. The error in the estimated 

concentrations was assessed in the same manner as indicated in the previous 

paragraph. 

 

Figure 4.2: Flowchart of the simulations. The left column describes the procedure to estimate the 

number of pulses n, while the right column describes the procedure to estimate the concentration 

C.  

4.2.3 Phantom experiment 

In order to test the validity of the model describing the signal generated by spins in 

transient state, i.e., eq. (4.6), a phantom experiment was performed. A liquid was 

passed through a straight tube, at constant flow velocity v, while being scanned. 

This should ensure a linear relation between the distance along the tube d and the 
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number of pulses perceived by the spins: ( )/n d v TR= ⋅ . The velocity could be 

estimated by substituting this expression into eq. (4.6) and fitting it to the signal 

values measured along the tube. Validation of the model was achieved by 

comparison of the estimated velocity to a reference measurement. 

Specifically, the phantom consisted of a flexible plastic tube (4 mm inner diameter) 

passing through two small, rigid braces of PVC (each 300 mm long), forming a U-

tube. The PVC braces were mounted onto the lid of a larger PVC pipe (125 mm 

inner diameter), with the flexible plastic tube ends extending through the lid. The 

remaining space inside the larger PVC pipe was filled with agar gel doped with 

copper sulphate (20g/kg agar powder, 2 mmol/L CuSO4) to reduce discontinuities 

in magnetic susceptibility, essentially mimicking tissue surrounding a blood vessel. 

See Figure 4.3. 

 

Figure 4.3, Left: Photograph of the flow phantom. Right: Schematic overview of the internal 

structure of the flow phantom (top view). The arrows at the top indicate flow direction. 

A fluid was created by adding copper sulphate to a 0.9% saline solution (1 mmol/L 

CuSO4). Despite the differences in viscosity between blood and water, the plastic 

tube’s small inner diameter was expected to ensure laminar flow with a Reynolds 

number similar to that of blood flowing through the abdominal aorta. An empty 

IV-bag was filled with 500 ml of this fluid. 
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First, the IV-bag was scanned with an Inversion Recovery (IR) sequence, allowing 

to determine the T1 value of the fluid (TI = 50, 100, 300, 1000, 1500 ms, TR = 

7000 ms, TE = 5.3 ms, FOV = 167 × 167 × 25 mm3, matrix size = 336 × 336 × 10 

voxels). This T1 value is required to reliably estimate the velocity by fitting equation 

(4.6) to the tubes’ signal profiles. The T1-value of the fluid was determined by 

fitting the theoretical relationship between the IR signal intensity and T1 to the 

measured IR data, using a nonlinear least-squares regression algorithm 

implemented in Matlab (version R2014b; Mathworks, Natick, USA).  

Subsequently, the IV-bag was connected to the inlet tube of the phantom, and 

suspended 1.20 m above the outlet tube. The tubes inside the phantom were filled 

with fluid, and the flow was stopped. The phantom was then scanned with a 

dynamic FSPGR sequence (α = 15 degrees; TR = 2.9 ms; TE = 1.8 ms; FOV = 200 

× 200 × 75 mm3; matrix size = 128 × 128 × 30 voxels; scan time = 250 s; 100 time 

points). The phantom was scanned axially, so that the tubes were positioned along 

the slice’s phase encoding direction. This was done to ensure that no spins outside 

the field of view would be excited. After approximately 30 seconds of scanning the 

stationary fluid, the flow restriction was removed and the fluid was allowed to flow 

freely under the influence of gravity. During this period, the discharge of fluid was 

measured using a stopwatch and a graduated beaker, providing a reference estimate 

of the average flow velocity in the tubes. 

The left and right segments of the U-tube were manually segmented from the 

dynamic series, by selecting two points on the centreline towards the ends of both 

segments. Subsequently, all voxels with a radial distance smaller than 2 mm to the 

lines between the points were taken to represent the tube content, and the distance 

d of the included voxels along the tube was computed. The intensity profile along 

the tubes was extracted for three different time intervals: before flow, during flow, 

and after flow. Then, the theoretical signal relation for spins in transient state (eq. 

(4.6), substituting ( )/n d v TR= ⋅ ) was fitted to each of these profiles. One minor 

change was made to this signal relation, in that the behaviour of spins outside the 

field of view was also included in the model. This was done by assuming that a 

single additional flip angle pulse αpre preceded the sequence. This would account for 
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any partial saturation the spins may have before entering the field of view. 

Particularly, the initial condition used for deriving eq. (4.5) was changed to 

( ) ( )00 cosz preM n M α= = , resulting in: 

 ( ) ( )
1

0
1

1
cos

1 cospre

E
a M

E
α

α
 −= −  − 

. (4.18) 

The inclusion of this effective pre-pulse should only be necessary for the second 

(right) tube segment, where the spins’ longitudinal magnetization may not have 

relaxed back to equilibrium after being excited in the first (left) tube segment. After 

the effective pre-pulse, the spins flow through the field of view with velocity v, 

producing exponentially decaying signal intensity along the tube. Fitting the model 

to the signal measured in both tube segments gave an estimate for v (as well as M0 

and αpre). This estimate was compared to the reference velocity. 

 

4.34.34.34.3 ResultsResultsResultsResults    

4.3.1 Simulation Results 

The results of the Monte Carlo simulations estimating the number of pulses n by 

means of eq. (4.15) is shown in Figure 4.4a. Furthermore, the outcome of the 

experiments estimating the concentrations through eq. (4.17), for five settings of n, 

is shown in Figure 4.4b-i. For reference, the estimated concentration assuming 

n = ∞  is also shown in Figure 4.4b-i. 
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Figure 4.4: Simulation results. (a) Estimated number of pulses n for true n ranging from 10 to 

200. (b-i) Estimated concentrations for true C ranging from 0 to 8 mmol/L, for n = 10 to 220 in 

steps of 30, respectively. In all plots, boxes indicate 25/50/75th percentile, whiskers extend to 1.5 

times the interquartile range, red crosses show outliers. The magenta line indicates unity. The 

black line shows the estimated concentration when assuming n = ∞. 

The medians of the estimated number of pulses were not significantly different 

from the true values, assessed using Fisher’s method (p = 0.65). Also, the medians 

of the estimated concentrations were not significantly different from the true values 

(p = <0.001, 0.28, 0.92, 0.82, 0.91, 0.97, 0.35, 0.60 for n = 10, 40, 70, 100, 130, 

160, 190, 220 respectively). Furthermore, it is clearly visible that estimating the 

concentration while wrongfully assuming n = ∞  results in a significant 

underestimation of the concentration, especially at lower values of n and at higher 

concentrations. 

The interquartile ranges of the estimations of the concentrations are plotted 

separately in Figure 4.5. Clearly, the estimation uncertainty increases when the true 

concentration increases, though the relation between the uncertainty and the 

number of pulses is more complicated.  
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Figure 4.5: Interquartile ranges in estimated concentrations, (a) for different number of pulses n, 

(b) for different concentrations. 

4.3.2 Phantom Experiment Results 

The average velocity of the fluid passing through the phantom, as measured with a 

graduated beaker and stopwatch, was found to be 21 cm / s. 

The T1-value of the fluid, estimated in a manually selected region of interest in a 

T1-map produced using an Inversion recovery sequence, was 1071.8 +/- 9.4 ms.  

False coloured images acquired with the dynamic FSPGR sequence before, during 

and after flow are shown in Figure 4.6. The enhanced signal intensity due to flow is 

clearly visible in the middle row, especially in the left tube segment. The intensity 

profiles along the tube segments for each time interval are shown in Figure 4.7. The 

decaying exponential behaviour of the signal during flow (cf. eq. (4.6)) is clearly 

visible. Additionally, the signal shows marked enhancement on the inflow sides of 

the tubes. Reversely, there is a reduced signal intensity further downstream 

(compared to the stationary case), which we attribute to the mixing of spins with 

different velocities. These spins will have different phase encodings within a voxel, 

and therefore slightly cancel each other out. Furthermore, the signal intensity on 

the inflow side in the right tube is lower than on the inflow side of the left tube, 

because the spins have not fully relaxed to equilibrium after being excited in the left 

tube.  
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Figure 4.7 also shows the result of fitting the theoretical model for the physical 

behaviour of the spins (eq. (4.6)) to the measured data. For the left tube, the 

estimated velocity was 191.5 mm/s, while the effective pre-pulse was negligibly 

small. For the right tube, the estimated velocity was 189.9 mm/s, and the effective 

pre-pulse 10.64 degrees. Observe that both estimated velocities are within 10% of 

the reference value.  

 

Figure 4.6: Acquisitions of the phantom before flow (top row), during flow (middle row) and 

after flow (bottom row), at two slice positions through the phantom. Fluid flows downwards in 

the left tube (middle left) and upwards in the right tube (middle right), showing the inflow effect. 

 

 

Figure 4.7: Solid lines: intensity profiles along both tube segments, for time intervals before, 

during and after flow. Dashed lines: theoretical model fitted to the measured signal during flow. 
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4.44.44.44.4 DiscussionDiscussionDiscussionDiscussion    

The results presented in the previous section show that our flow correction method 

is accurate (i.e., able to reproduce the true number of pulses and concentration) and 

precise (i.e., robust in the presence of noise) when applied to the phantom and 

simulated data. 

4.4.1 Simulation 

The Monte Carlo simulations with varying number of pulses n (Figure 4.4a) show 

that the estimates of n by our method remain unbiased over a wide range of 

reference values. However, the spread in the estimations increases with larger true n. 

This is expected, since increasing the number of pulses brings the MR signal closer 

to the steady state. This hinders the estimation, as the signal intensity no longer 

depends on n. 

Similarly, the Monte Carlo simulations for varying CA concentrations demonstrate 

that our method also yields unbiased concentration estimates (Figure 4.4b-i) in all 

cases, except for very low n. The spread in the estimated concentrations increases 

with increasing C, due to the MR signal levelling off at higher concentrations. 

Therefore, the signal intensity no longer relates to the CA concentration, which 

decreases the precision of the estimates. The spread in the estimated concentration 

as a function of number of pulses is more complicated. For very low true values of 

n, the effect of CA on the MRI signal is very small, so noise has a large effect on the 

estimation of C. At medium true values of n (around 80 pulses), the derivative of 

the signal ratio w.r.t. n is large, which translates to a low spread in C. Then, at 

higher true values of n (around 150 pulses), the spread in the estimated values of n, 

and thereby the spread in C, increases. Finally, when the spins reach steady state, 

the effect of errors in the estimated values of n have less influence on the estimation 

of C, and the spread decreases again. 

Thus, the proposed method requires moderate levels of CA (within the 

physiologically expected range), as is the case with any method for deriving the 

concentration from the signal intensity. Furthermore, the method is appropriate 
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when the number of pulses is below the level of steady state. Reversely, wrongly 

assuming that the spins are always in steady state yields a marked underestimation 

of the concentration, as demonstrated by the black lines in Figure 4.4b-f. This 

signifies that the inflow effect should be taken into account when computing the 

CA concentration  

4.4.2 Phantom Experiments 

From the MR acquisitions of the flow phantom (Figure 4.7), it becomes apparent 

that the inflow of fresh spins into the field of view can have a large effect on the 

signal intensity. Simultaneously, the measured intensities behave according to the 

presented theory of spin dynamics in transient state. Particularly, the estimated 

velocities in the two tube segments are in agreement with each other, as well as with 

the reference measurement.  

4.4.3 Limitations 

A limitation of the proposed method follows from constraining the area under the 

bolus peak to a fixed value. This might introduce a bias in the estimation of n, and 

therefore in the estimation of C. However, it was reported by Parker et al. that the 

relative standard error in the model parameter corresponding to the area under the 

bolus peak is only 5.4% (7). This suggests that there is indeed little deviation in aB 

among people.  

Another limitation of the method is that noise on the MR signal can introduce 

errors in the estimation of C. It is therefore beneficial if the method is applied to 

the signal from several voxels simultaneously, so that a median AIF can be 

computed. Clearly, this may require alignment of the data.  

Finally, the MR signal becomes a function not only of the number of pulses, but 

also of the amplitude of the perceived excitation pulse, in the case that the exciting 

B1-field is inhomogeneous. This effect can be included easily in the proposed 

model, if the B1-field is calibrated.  
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4.54.54.54.5 ConclusionConclusionConclusionConclusion    

We have presented a method to estimate and correct for flow enhancement that can 

affect the estimation of the AIF. The simulations show that the proposed method 

(1) sustains accurate estimation of the perceived number of pulses by flowing spins; 

(2) uses this information to accurately quantify the concentration of contrast agent. 

Furthermore, the flow phantom experiment demonstrates that spins in transient 

state indeed produce the expected signal intensity: decaying exponentially with 

increased number of pulses. It confirms that the proposed approach is fully in 

agreement with the theory.  
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4.74.74.74.7 AppendixAppendixAppendixAppendix    

4.7.1 Appendix A: Derivation of the Formula for Mz in Explicit Form 

The recursive expression for zM  follows from the Bloch equations for an FSPGR 

sequence: 

 ( ) ( ) ( ) ( )1 0 11 cos 1z zM n n EM M Eα+ + −= . (4.19) 

To make this expression explicit, we try a generic decaying exponential with offset: 

 ( ) ( )expzM n a b n c= ⋅ ⋅ +  (4.20) 

for some parameters a, b < 0, and c. Substituting n+1 for n in eq. (4.20), and 

rearranging the terms, gives: 
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 ( ) ( )( ) ( )1 exp expzM n a b n c c b c+ = ⋅ ⋅ + − + . (4.21) 

Now ( )zM n  (eq. (4.20)) can be substituted in the right-hand side of eq. (4.21). 

After substitution and more rearrangement of terms, we get: 

 ( ) ( ) ( ) ( )( )1 exp 1 expz zM n M n b c b+ = + − . (4.22) 

Equating the right-hand sides of eq. (4.19) and eq. (4.22), and solving for b and c, 

gives: 

 ( )( ) ( )
( )

0 1
1

1

1
ln cos and

1 cos

M E
b E c

E
α

α
−

= =
−

. (4.23) 

Then, substituting the boundary condition ( ) 00zM n M= =  to eq. (4.20), and 

solving for a, gives: 

 
( )

1
0

1

1
1

1 cos

E
a M

Eα
 −= −  − 

. (4.24) 

Finally, combining equations (4.20), (4.23) and (4.24) gives: 

 ( ) ( ) ( )( ) ( )
1 1

0 1
1 1

1 1
1 cos

1 cos 1 cos

n

z

E E
M n M E

E E
α

α α
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 (4.25) 

Note that the assumption b < 0 only holds if ( ) 10 cos 1Eα< < . The latter inequality 

always holds, but the former may be violated for flip angles larger than 90 degrees. 

In this case Mz cannot be described by a decaying exponential function.  
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Materials and MethodsMaterials and MethodsMaterials and MethodsMaterials and Methods: The AIFs obtained with the new method were compared to 

AIFs obtained from distally placed ROIs, as well as to a population-averaged AIF. 

The AIFs were used with Tofts’ extended two-compartment pharmacokinetic (PK) 

model. The methods were applied to two DCE-MRI patient studies: a study 

concerning the spine, acquired with a variety of scan settings, and a study concerning 

Crohn’s Disease patients, acquired with identical scan settings. The Crohn’s Disease 

Index of Severity (CDEIS) was determined for the latter group, which was correlated 

to the estimated Ktrans parameters. 

ResultsResultsResultsResults: Both the medians and the variances in vp were significantly larger when 

using the distal ROI approach, compared to the other methods. Furthermore, the 

distal ROI method yielded unrealistic parameter estimations in several cases. There 

were no significant differences between the medians or variances of the Ktrans 

parameter of the proposed method and the population-average approach. In the 

Crohn’s Disease study, the estimated Ktrans parameter correlated better with the 

CDEIS when the proposed AIF was used, compared to AIFs from the distal ROI 

method or the population-averaged AIF. 

ConclusionConclusionConclusionConclusion: The proposed method yielded realistic PK model parameters while 

applying a range of scan settings, and improved the correlation of the Ktrans parameter 

with CDEIS, compared to a population-average AIF. 
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5.15.15.15.1 IntroductionIntroductionIntroductionIntroduction    

Dynamic Contrast Enhanced MRI (DCE-MRI) is an important radiological 

technique with a wide range of applications. It is used to study physiological 

processes involving tissue perfusion in qualitative (1,2) and quantitative (3,4) ways. 

Several pharmacokinetic (PK) models are available to quantitatively estimate 

parameters describing microvascular density and integrity (5). An essential 

component of PK models is the Arterial Input Function (AIF). The AIF represents 

the time-dependent concentration of contrast agent (CA) in the blood plasma 

supplied to the tissue of interest. A correct representation of the AIF is essential for 

accurate estimation of the PK model parameters.  

The AIF is usually obtained by either measuring the concentration from the DCE-

MRI data directly, or by using a population-averaged, parametrized model from 

literature (e.g., (6)). When measuring the AIF from the DCE-MRI data, either the 

full nonlinear relationship between the CA concentration and the MRI signal in an 

artery close to the tissue of interest is used (7), or a simplified linear approximation 

is adopted (3,8). Generally speaking, a more accurate AIF leads to a more accurate 

PK analysis (9,10).  

DCE-MRI often uses a Fast Spoiled Gradient Echo (FSPGR) sequence, for which a 

theoretic relationship exists between the CA concentration and the signal 

enhancement, under the assumption that the magnetization after the repeated 

application of RF-pulses is in a steady state (11,12). In the case of flowing spins, 

such as in arterial blood, the assumption of steady state may not hold, as freshly 

inflowing spins have not received sufficient RF-pulses to reach steady state. This 

effect is particularly evident upstream in larger arteries, where it manifests by a 

diminished enhancement. This inflow effect introduces a significant bias in the 

estimation of the AIF, if not accounted for (13). The influence of flow may be 

reduced by estimating the AIF in a region distal from the entry point of an artery 

into the field of view, yet this may not be sufficient. 

This paper is the second of two related papers. In the first paper, we presented a 

novel method of estimating the AIF from DCE-MRI data, which corrects for signal 
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enhancement as a result of inflow effects. The objective of the current paper is to 

evaluate this novel algorithm in vivo, and to verify the necessity of correcting for 

the inflow effect. We assess the robustness of this technique by applying it to DCE-

MRI scans obtained with different scanning protocols. We then use the estimated 

AIF for pharmacokinetic modelling.  

    

5.25.25.25.2 Materials and MethodsMaterials and MethodsMaterials and MethodsMaterials and Methods    

5.2.1 Theory 

The AIF estimation method models the spin dynamics during the transient state of 

an FSPGR sequence after contrast agent injection. Specifically, an analytic 

expression was found for the signal ratio D between post- and pre-contrast signal 

intensities in an artery as a function of the CA concentration C and the number of 

excitation pulses n perceived by the spins: 

 ( ) ( )( ) ( ) ( )( ) ( )
( )( ) ( ) ( )( ) ( )

( )1 *
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1 0 cos 0 0
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Unfortunately, this equation is underdetermined: C and n cannot be determined 

uniquely from a given signal ratio without additional information. In other words, 

a given MRI signal may be increased due to a higher concentration of contrast 

agent, or due to a reduced number of pulses. 

We solved this ambiguity by assuming that the CA concentration should follow a 

specific pattern over time. As such, we adopted the second AIF model described by 

Orton et al. (14). The shape of Orton’s AIF model was allowed to vary per subject, 

e.g., due to varying injection rate, concentration of the contrast agent, vascular 

structure, excretion rate and measurement location. However, the area under bolus 
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peak of the concentration curve (AUC) was assumed to be constant among 

individuals. This is a reasonable assumption, since the AUC can be expressed as the 

ratio between the dosage of contrast agent and the subject’s cardiac output (15), 

which both scale linearly with body mass (16). 

Inserting Orton’s parameterized model into the analytic expression for the signal 

ratio models the signal ratio over time. The number of RF-pulses n experienced by 

the flowing spins in a voxel is estimated by fitting the modelled ratio over time to a 

measured signal-ratio curve. Essentially, the parameters of the modelled 

concentration curve are adjusted in such a way that the curve matches the measured 

data. Because the area under the bolus peak is constrained, any discrepancy between 

the heights of the modelled and measured signal-ratio curves is attributed to flow 

enhancement, which is accounted for by the number of excitation pulses. In this 

way, the number of pulses n can be estimated.  

Finally, the CA concentration is re-estimated from the signal-ratio expression at 

each time point separately, using the previously estimated number of pulses. This 

step is necessary to ensure that any additional information, which may be present in 

the original data, but was not included in the modelled concentration profile (e.g. 

the presence of a recirculation peak), is retained. Since the signal-ratio expression 

(eq. (4.26)) is no longer underdetermined, the concentration can be determined in 

the artery as a function of time, and the AIF is obtained.  

Further details about the derivation can be found in Chapter 4. 

5.2.2 Patients 

Two separate datasets were used for evaluation purposes. The first dataset was 

obtained from 13 clinical patients who were referred for an MRI using contrast 

agent for variety of spine related complaints. All these patients were consecutively 

included in the frame of a DCE-MRI protocol optimization study. The second 

dataset was from 21 consecutive patients from a recently concluded prospective 

study into luminal Crohn’s Disease (publication in preparation). Ileocolonoscopy 

was performed within two weeks of the MRI scan by a gastroenterologist. The 
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endoscopist applied the Crohn’s Disease Endoscopic Index of Severity (CDEIS) to 

assess endoscopic disease activity. The local Medical Ethics Committee approved 

both studies. All patients had given informed consent to usage of their data. 

5.2.3 MRI Acquisition Protocols 

DCE-MR imaging was performed with FSPGR sequences on two 3.0 Tesla 

scanners in two different medical centres (VUMC Amsterdam and AMC 

Amsterdam): Philips Ingenuity for the spine patients and Philips Ingenia for the 

Crohn’s patients (both scanners were from Philips, Best, The Netherlands). Care 

was taken that the descending aorta was clearly visible in all acquired data.  

In the first dataset, the scans were made with a range of settings, to explore the 

method’s ability to obtain an AIF under various conditions. The scan parameters 

were: sagittal orientation, matrix size: 256 × 256 × [4 - 6] voxels, FOV: 320 × 320 

× [16.0 – 22.5] mm3, TR = [3.2 – 4.3] ms, TE = [1.4 – 2.7] ms, α = [10 – 15] 

degrees, with temporal resolutions of [4.26 – 7.51] s, for a total scan time of [213 – 

376] s ([50 – 70] volumes). After approximately 30 seconds, a bolus injection of 

gadoterate meglumine (Dotarem 0.5 mmol/ml; Guerbet; Roissy; France) was 

administered intravenously, at a rate of 3 ml/s, for a total dose of 0.1 mmol/kg 

body mass. 

In the second dataset, all scans were made with identical settings (coronal 

orientation, matrix size: 224 × 224 × 20 voxels, FOV: 400 × 400 × 50 mm3, TR = 

2.86 ms, TE = 1.80 ms, α = 15°) with a temporal resolution of 1.27 s, for a total 

scan time of 381 seconds (300 volumes). After approximately one minute, a bolus 

injection of gadobutrol (Gadovist 1.0 mmol/ml; Schering AG, Berlin, Germany) 

was administered intravenously, at a rate of 5 ml/s, for a total dose of 0.1 mmol/kg 

body mass. 

5.2.4 Artery Selection and AIF Estimation 

The first step in estimating the AIF from a DCE-MRI dataset was to segment the 

aorta and iliac arteries. In the first dataset, the lower temporal resolution and higher 

degree of noise necessitated a manual segmentation. This was done by selecting 
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voxels inside manually drawn polygons. In the second dataset, an automatic 

segmentation method was applied. This automatic segmentation method was based 

on an empiric approach relying on two properties of the data: the time to peak is 

relatively short, and there is a marked change in intensity. The segmentation 

method is described in detail in appendix A.  

Next, a signal-ratio curve was computed in each voxel from the segmented region, 

by dividing the measured signal by the average pre-contrast signal (see appendix A). 

From each signal-ratio curve, the corresponding number of pulses n was computed, 

and, with the number of pulses known, time-concentration curves (TCCs) were 

computed. (See the theory section above, or section 4.2.1 on page 46.) 

After all the TCCs were computed, they were aligned to each other based on the 

estimated time shift (see appendix A), while using linear interpolation. Since the 

distribution of the estimated concentrations at a given time point is skewed, the 

mode of the data at each time point was chosen as the best estimate for the 

concentration. The mode was computed using a mean-shift procedure with a 

Gaussian kernel (17). Furthermore, the full width at half the maximum was chosen 

as the measure of uncertainty. A schematic overview of the entire procedure is 

shown in Figure 5.1. 

The proposed method was compared to an approach in which a TCC was 

computed from a small, manually drawn ROI in the iliac artery, distal from the 

entry point of the aorta into the field of view. The concentration was computed 

from the MRI signal in these ROIs while assuming an infinite number of pulses, as 

is done traditionally (13). Furthermore, the AIF from the proposed method was 

compared to the population averaged, parameterized AIF presented by Orton et al. 

(14). 
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Figure 5.1: Schematic overview of the procedure of estimating the AIF from DCE-MRI data. 

5.2.5 Pharmacokinetic Analysis 

For each DCE-MRI acquisition of the first dataset, a region of interest was 

manually drawn inside vertebra considered healthy by an experienced radiologist 

(IP). From these ROIs, TICs were extracted and averaged. These TICs were then 

converted to TCCs, using the same method as described above, but setting the 

number of pulses to infinity. This is allowed, since the ROIs were constantly inside 

the field of view, and the magnetization was therefore in the steady state. The T10 

time of the bone tissue was set to 586 ms (18).  

For each acquisition of the second dataset, the volumes at each time point were 

registered to each other using the method of Li et al. (19), to compensate for 

motion of the tissue. Subsequently, regions presenting active Crohn’s Disease were 

identified by an expert abdominal radiologist (JS). The presence of active Crohn’s 

Disease was based on other available MRI sequences. A research fellow delineated 

each such region as instructed by the radiologist. TICs were extracted from these 

ROIs, averaged, and converted to TCCs. In the absence of a literature value for the 

T10-time of bowel tissue, the T10-time was set to 700 ms.  

The pharmacokinetic properties of the investigated tissues were determined using 

Tofts’ extended two-compartment PK model (5). Here, the tissue concentration is 

modelled as a function of the plasma concentration ( )1pC AIF Hct= − , as well as 
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the volume fractions of plasma (vp), interstitial space (ve), and the transfer rate 

coefficient (Kep). These factors were estimated numerically by fitting Tofts’ model 

to the measured time-concentration curve in the tissue, using least-squares 

regression. The haematocrit value Hct was set to 0.42. The procedure was 

performed for the patients of both datasets, with AIFs obtained with the three 

methods described. The root mean square errors (RMSE) of the fits averaged over 

all patients were compared to assess the appropriateness of the methods. This was 

done using the student’s t-test. The median values of the pharmacokinetic model 

parameters obtained with the three methods were compared using a Mann-

Whitney U test. The associated variances were statistically assessed by the Brown-

Forsythe test. Finally, the volume transfer coefficients trans e epK v K= ⋅  were computed 

for the patients of the second dataset, and compared to the CDEIS score of each 

patient. Spearman’s rank correlation coefficient was computed for each AIF 

extraction method, as an indirect, quantitative measure of the usefulness of the 

methods. A value of p < 0.05 was considered statistically significant in all the 

statistical assessments.  

    

5.35.35.35.3 ResultsResultsResultsResults    

5.3.1 Results from the Spine Data 

In the dataset of the 13 spine patients, the quality of the arterial signal was very 

heterogeneous, ranging from TICs with a pronounced peak to others with an 

almost invisible peak. These acquisitions were processed according to the proposed 

method (also see Figure 5.1). The estimated number of pulses in each segmented 

voxel was mapped back into a volume to produce an ‘n-map’ of each dataset. 

Maximum intensity projections along the sagittal direction of two representative n-

maps are shown in Figure 5.2. Note that the number of pulses increases from top to 

bottom, corresponding to the direction of the blood flow. 
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Figure 5.2: Maximum intensity projections of n-maps in the sagittal direction of two subjects 

from the spine study. The arteries  were segmented manually. 

Two representative modal AIFs, estimated using the two n-maps of Figure 5.2, are 

shown in Figure 5.3. Also, the AIFs estimated using the ROI method (assuming 

infinite pulses), as well as Orton’s population-averaged AIF is shown in the same 

graphs. Notice that the proposed method can correct for the almost completely 

absent initial peak in the original AIFs (magenta lines). 

 

 

Figure 5.3a, b: AIFs of two subjects of the spine study, obtained with the proposed method (red), 

also showing the associated full-width at half-maximum intervals (yellow). AIFs obtained with the 

distal ROI method (magenta) and Orton’s population-averaged AIF (green) are plotted for 

comparison.  
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The AIFs were used in the fitting of Tofts’ model to the time-concentration curves 

in the bone marrow. The results of using the AIFs of the three methods as input is 

shown in Figure 5.4. No significant differences were found between the average 

RMSEs of the three AIF estimation methods (p > 0.05). The distributions of the 

estimated PK parameters of all subjects in this dataset is shown as a boxplot in 

Figure 5.5. There was a significantly larger variance in the estimations of all four 

parameters by means of the distal ROI method, compared to the other methods (p 

< 0.05 for all comparisons). Furthermore, the distal ROI approach yielded 

unrealistic estimations (e.g., ve > 1) in several cases. 

 

 

Figure 5.4: Fits of modelled time-concentration curves (red) to the measured time-concentration 

curves (blue) in vertebra of subjects of the spine study. Results of two subjects are shown 

columnwise. AIFs obtained with the proposed method (top row), distal ROI method (middle 

row) and population-average method (bottom row) were used as input to the PK model.  



Chapter 5: Estimating the AIF from DCE-MRI Data with Compensation for Flow 

Enhancement (II): Applications in Spine Diagnostics and Assessment of Crohn’s Disease 

77 

 

 

Figure 5.5: Boxplots showing the distributions of estimated PK parameters. The red lines 

represent the medians while the blue boxes reflect the 25th to 75th percentile ranges; whiskers 

extend to the most extreme value inside 1.5 times the interquartile range; values outside these 

ranges are indicated as individual points.  

5.3.2 Results from the Crohn’s Disease data 

Maximum intensity projections in the coronal direction of the computed n-maps of 

two representative patients are shown in Figure 5.6.  

 

Figure 5.6: Crohn’s patients study, coronal acquisition. Maximum intensity projections of n-

maps of two representative datasets, showing the estimated number pulses in the segmented 

voxels. The segmentations were done automatically. 

The modal AIFs corresponding to the n-maps of Figure 5.6 are shown in Figure 

5.7. The AIFs estimated with the distal ROI method and the population-averaged 

AIF are also shown for comparison. 
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Figure 5.7: Two estimated AIFs determined for the same patients as in Figure 5.6. Red: Modal 

estimated AIF; Yellow: Full-width at half-maximum; Green: Orton’s population-average AIF; 

Magenta: AIF estimated with the distal ROI method. 

Fitting of Tofts’ model to the time-concentration curves of bowel tissue in two 

subjects of the Crohn’s Disease data, using AIFs obtained with each of the three 

methods, is shown in Figure 5.8. The difference in average RMSE between the 

three methods are not significant (p > 0.49). The distributions of the estimated PK 

parameters of all subjects in this dataset is shown as a boxplot in Figure 5.9. There 

was a significantly higher median and larger variance in the estimations of vp by 

means of the distal ROI method, compared to the other methods (p < 0.05 in all 

comparisons).  
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Figure 5.8: Tofts’ model fitted to the measured time-concentration curves of two subjects of the 

Crohn’s Disease study. Measured (blue) and modelled (red) time concentration curves in bowel 

tissue, using AIFs from the proposed (top), distal ROI (middle) and population-averaged 

(bottom) methods.    

 

Figure 5.9: Boxplots showing the distributions of estimated PK parameters. The red lines 

represent the medians while the blue boxes reflect the 25th to 75th percentile ranges; whiskers 

extend to the most extreme value inside 1.5 times the interquartile range; values outside these 

ranges are indicated as individual points. 

Further results of the PK analysis are shown in Figure 5.10. Here, the estimated 

Ktrans parameters are plotted against the CDEIS scores, for each of the three 

methods. Linear fits are drawn with red lines. CDEIS scores were unavailable for 

two subjects, because the affected area could not be inspected by the 

gastroenterologist due to strictures in the bowel. Hence, the Spearman’s rank 
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correlation coefficients were computed for N = 19 subjects. A strong correlation of r 

= 0.733 (p < 0.001) was found when using the proposed method using an inflow-

corrected AIF, while moderate correlations were found for the method using an 

AIF from a manually drawn ROI (r = 0.429, p = 0.067) and the population 

averaged AIF  (r = 0.567, p = 0.011). 

 

Figure 5.10: Result of the pharmacokinetic analyses of the second dataset. Ktrans is plotted against 

the CDEIS score. Left: proposed method. Middle: ROI method. Right: population average 

method. The red lines are linear fits. 

 

5.45.45.45.4 DiscussionDiscussionDiscussionDiscussion    

5.4.1 The Spine Data 

The results of the first patient study show that the proposed method can estimate 

AIFs from DCE-MRI scans with a variety of scan settings, even when inflow effects 

are severe. The reconstructed bolus peaks are clearly visible, and resemble those of 

the population-averaged AIF. This resemblance is expected, since the estimation of 

the number of pulses in each voxel relies on the area under the bolus peak, which is 

constrained to that of the population average.  

The fit errors of Tofts’ model using AIFs from the three methods are comparable. 

However, the AIF from the ROI method yields unrealistic PK model parameters 

despite the good fit. We did not observe significant differences between the 

medians and the associated variances in Ktrans of the proposed method and the 
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population-average method. We did however observe differences in estimated 

model parameters in several cases. However, it is not possible to interpret this, for 

the lack of a reference standard. 

5.4.2 The Crohn’s Disease Data 

An AIF could be estimated in each of the 21 subjects. Due to the increased 

temporal resolution (compared to the spine data), the second pass of the bolus was 

recognizable. As with the spine study data, the bolus peaks of the AIFs are in the 

same order of magnitude as that of the population-averaged model. The RMSE 

resulting from fitting Tofts’ model is similar for each of the three methods. Again, 

the AIF from the ROI method yields unrealistic PK model parameters despite the 

good fit. We did not observe significant differences between the medians and the 

associated variances in Ktrans of the proposed method and the population-average 

method. 

For the 19 subjects for whom a CDEIS score was determined, a significant 

correlation of 0.733 (p < 0.001) was found between the CDEIS score and the 

estimated Ktrans parameter when using the proposed method. On the other hand, 

when using either of the other two AIF methods, lower correlations were found. 

This points to the fact that the estimation of Ktrans using the AIF of the proposed 

method provides a better assessment of the severity of Crohn’s Disease than when 

using the alternative methods. 

5.4.3 AIF Tail Offset 

In both patient studies, the concentration in the slowly decaying part of the AIFs 

(the “tails”), as estimated with the proposed method are slightly higher than those 

estimated with the other two methods. This is a result of the constraint imposed on 

the area under the bolus peak in the estimation of the number of pulses. This effect 

manifests in signal-ratio curves presenting a low bolus peak. Implicitly, this is 

assumed to be caused by the inflow effect, and accordingly, the estimated number 

of pulses will be low. This leads to a higher estimated concentration in both the 

peak and the tail. 
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The accuracy of our results is substantiated by considering the signal at two 

different time points of all segmented voxels in a subject from the Crohn’s Disease 

dataset: the time point of maximum signal enhancement (i.e. at the bolus peak), 

and an arbitrary time point in the tail. See Figure 5.11. At both these time points, 

the concentration should be approximately the same in all segmented voxels. 

However, the signal ratio differs across these voxels, as a variable number of pulses 

is experienced by the spins. Figure 5.11 shows that the theoretical signal ratio for 

the estimated concentrations match the measured signal ratios in the artery, which 

means that the estimated concentration is accurate. 

 

Figure 5.11: Signal ratio versus number of pulses. Blue and red dots: measured signal ratio in each 

segmented voxel at one time point during the bolus peak phase and tail phase respectively, 

plotted against the estimated number of pulses in that voxel. Green and black lines: theoretical 

signal ratios corresponding to the estimated concentration at said time points. 

5.4.4 Limitations 

A limitation of the proposed method is its dependence on the presence of a bolus 

peak. If the bolus peak is entirely not visible in the original DCE-MRI data, the 

number of pulses, and therefore the AIF, cannot be estimated reliably. In that case, 

it becomes impossible to precisely estimate the model parameters, such as the 

position of the bolus peak. This may occur, for example, when the temporal 

resolution is too low, and the bolus peak occurs between two time points.  

Furthermore, the method relies on a proper segmentation of the artery. If the 

automated segmentation method wrongly includes regions outside the artery, the 
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estimated time-concentration curves at these locations may be unreliable. This is 

because the bolus peak becomes less well visible while a constant signal is mixed 

with the true AIF signal. A manual segmentation could be helpful in some cases, 

although this might not be desirable. 

Some limitations of our experiment in the Crohn’s Disease data relate to the 

limited number of patients and the annotation by merely one radiologist. As such, 

the outcome should be considered an indication of the improved reliability of our 

method compared to the conventional approaches. 

Finally, the most important limitation is the lack of a reference standard. Obtaining 

a true time-concentration curve of contrast agent in flowing blood under realistic 

measurement circumstances is a highly complex, still unsolved issue.  

 

5.55.55.55.5 ConclusionConclusionConclusionConclusion    

We applied a new subject-specific AIF estimation method to two patient cohorts, in 

order to study the merit of correcting for flow enhancement. With the spine 

dataset, we demonstrated that our approach resulted in realistic PK model 

parameters, while applying a range of scan settings. Using the Crohn’s Disease 

dataset, we showed that our method facilitates significant correlation of Ktrans with 

CDEIS. What is more, our subject specific approach yielded significantly higher 

correlation than a method relying on a population-average AIF. Other applications 

of pharmacokinetic modelling may also benefit from our method, since it is 

generally applicable. 
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5.75.75.75.7 AppendixAppendixAppendixAppendix    

5.7.1 Aorta segmentation from the Crohn’s Disease data 

The aorta was segmented from the background based on two properties: the time-

to-peak is the shortest of all tissue voxels, and the voxels react to the injection of 

contrast agent. This was accomplished by sorting all TICs of a dataset by the time 

point at which the maximum signal occurred (the time-to-peak). Subsequently, all 

TICs with the same time-to-peak were averaged, and each such average TIC was 

converted to a signal-ratio curve by dividing by its intensity at the first time point. 

An example is shown in Figure 5.12. Here, the transition from left to right 

indicates the arrival of contrast agent, while the transition from top to bottom 

shows whether or not voxels enhance due to contrast agent. The area near the top 

mainly consists of non-tissue voxels, which happen to have their maximum signal 

ratio before the arrival of contrast agent, due to noise. The minimum valid time to 

peak and the average time of contrast onset were determined by fitting the product 

of two error functions to Figure 5.12, and only the voxels within a small range (2 

time points) around the minimum valid time to peak were retained. Next, the 

relative contrast enhancement (RCE) of the remaining voxels was computed 

individually, using the computed minimum time to peak as boundary between pre-

contrast and post-contrast. Discarding any voxels with RCE < 1 served to remove 

more unreliable voxels. Finally, voxels that were not part of a larger cluster of voxels 

were assumed to be noise, and were discarded. The remaining voxels were then 

assumed to compose the aorta. 
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Figure 5.12: Signal-ratio curves sorted by the time to peak, and averaged. The arrival of contrast 

agent is seen from left to right, while the top-bottom transition shows whether or not a voxel 

reacts to contrast agent. 
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This thesis presents two important methods to improve quantitative 

pharmacokinetic analysis of Dynamic Contrast Enhanced MRI. We have 

introduced a new method for accurately estimating the T1-value of tissues in the 

presence of B1-inhomogeneities. We then created a novel method for estimating the 

concentration of contrast agent in flowing blood, i.e., the arterial input function 

(AIF). In this chapter, we highlight the conclusions of the presented work, and 

recommend future work. 

 

6.16.16.16.1 Simultaneous TSimultaneous TSimultaneous TSimultaneous T1111----    and Band Band Band B1111----mappingmappingmappingmapping    

In the third chapter, we studied the feasibility of a method to simultaneously obtain 

a pre-contrast T1-map, as well as a B1-inhomogeneity map. This proved to be 

challenging, particularly due to the low signal-to-noise ratio arising from imaging 

within tight time constraints. We used two different MRI scans, namely a Look-

Locker (LL) scan and a Variable Flip Angle (VFA) scan, both of which could be 

obtained within breath holds. Both scans can be used separately to compute a T1-

map, but the LL method yields a noisy, low-resolution T1-map (especially on 

1.5T), while the VFA method is very susceptible to B1-imhomogeneities.  

We combined the information of the two scans, in order to produce a T1-map of 

comparable quality as a T1-map obtained using the conventional VFA method, 

while correcting for possible attenuation of the B1-field. Furthermore, we estimated 

the B1-attenuation itself, which can be used to correct the flip angle of other scans 

(e.g., the FSPGR sequence used in DCE-MRI).  

We found that a reliable T1-map could be computed, which was validated using 

both a phantom study and a study on human volunteers. The phantom study 

showed that the procedure yields a substantially smaller mean deviation in T1 from 

the reference standard (Inversion Recovery) than an uncorrected VFA approach. 

The volunteer study showed both a more accurate estimation of T1 and a reduced 

influence of the B1-inhomogeneity on the signal intensity. 

In short, the proposed method combines the high resolution of the VFA method 

with the B1 stability of the LL method. 
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6.26.26.26.2 EstimatinEstimatinEstimatinEstimating the g the g the g the AIFAIFAIFAIF    with Compensation for Flow Enhancementwith Compensation for Flow Enhancementwith Compensation for Flow Enhancementwith Compensation for Flow Enhancement    

In Chapters 4 and 5, we presented a new method to estimate the AIF from DCE-

MRI data that compensates for the inflow effect, and tested the method on two 

patient datasets. The inflow effect is present when new spins flow into the field of 

view during acquisition, and complicates a reliable estimation of the contrast agent 

concentration. Our method takes the spin dynamics during the transient state of an 

FSPGR sequence into account, including the T2* decay.  

In order to estimate the AIF, the proposed method resolves the ambiguity between 

signal enhancement due to the presence of contrast agent and signal enhancement 

due to the inflow effect. Specifically, the number of RF-pulses that spins have 

received is estimated first, using a population averaged AIF as prior information. 

Then, the flow enhancement is compensated as the signal intensity is converted 

into concentration. 

In the theoretical part (Chapter 4), we found that the proposed method accurately 

corrects for the inflow effects on computer generated AIFs. The simulations showed 

that the proposed method sustains accurate estimation of the number of pulses that 

flowing spins received, and that the concentration of contrast agent could be 

quantified accurately. Furthermore, we found that the method could correctly 

estimate the flow velocity in a controlled flow phantom experiment, which 

confirms that the proposed method is in agreement with the theory. 

In the application part (Chapter 5), we found that the proposed AIF estimation 

method is applicable to DCE-MRI data acquired with varying scan settings. We 

found that the compensation for the inflow effect is indeed necessary: the AIF was 

severely underestimated when estimating the AIF in a distal region of interest that is 

assumed to not suffer from inflow effects. Also, using data from Crohn’s Disease 

patients, we found that the Ktrans parameter of Tofts’ pharmacokinetic model 

correlated better with the clinically relevant CDEIS score when using the AIF from 

the proposed method, compared to the alternatives. 
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6.36.36.36.3 Future WorkFuture WorkFuture WorkFuture Work    

The following topics may be expanded upon in the future. 

Methodology – The current method for estimating the AIF relies on the magnitude 

of the MRI signal. It is well known that the phase component also contains 

information about the concentration. The AIF might be further improved by 

integrating phase information in the estimation of the contrast agent concentration. 

Refinement – A challenging issue, which we did not study, is the estimation of the 

T1 value of blood. In our work (Chapter 5), we adopted a value from the literature 

in order to perform pharmacokinetic analyses. The T1 value might be estimated 

using the methodology of Chapter 3, while taking into account the flow effects 

estimated by an independent method.  

Validation – In medical image analysis, it is often difficult or impossible to obtain a 

gold standard with which to compare results. Still, it is important that new 

methods are accurate. In the case of estimating an AIF from flowing blood, a 

ground truth is hard to establish, but some insight might be obtained by means of 

other imaging modalities, such as CT or PET (with different contrast agents). Also, 

the estimation of PK parameters would benefit from validation using a gold 

standard. 

Application – The methods presented in this thesis are applied to a limited number 

of cases: healthy volunteers for the T1-mapping, and patients with spine related 

injuries or Crohn’s Disease for the AIF estimation. Clearly, the methods can be 

used in many other applications, to improve the measurement of physical or 

physiological properties of tissues. 

Integration – Pharmacokinetic analysis using DCE-MRI is only a link in a longer 

chain of assessing pathology. The complete pipeline includes automatic registration 

of MRI images, measuring image features (pharmacokinetic or otherwise), and 

consolidating these measurements into beneficial information for medical doctors. 

The VIGOR++ project initiated a framework for this process, for the assessment of 

Crohn’s Disease severity, and the methods presented in this thesis could be 

integrated readily. 
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SummarySummarySummarySummary    

 

Dynamic Contrast Enhanced MRI is an important technique to assess the 

pharmacokinetic properties of tissues. This thesis addresses two major steps 

necessary for quantitative DCE-MRI: the estimation of the tissue’s T1-time and 

local B1-field strength, and the estimation of the time-dependent concentration of 

contrast agent in the blood supply to the tissue of interest. 

In quantitative pharmacokinetic analysis, the perfusion and vascularization of 

tissues are estimated by measuring the response to an intravenous injection of 

contrast agent. This analysis relies on knowledge of the concentrations of contrast 

agent in both the tissue and in the blood perfusing the tissue. The contrast agent 

affects the T1 relaxation time of the tissue, and if the T1-time of a tissue is known, 

the concentration profile can be computed. However, local B1-inhomogeneities can 

affect the MRI signal strength, complicating the measurement of T1 using 

conventional methods. Furthermore, the inflow of fresh blood into the field of view 

causes an additional, location dependent signal enhancement in the blood, which 

makes a direct measurement of the T1-time (and thus the concentration) in blood 

impossible.  

This thesis introduces a new method to estimate a T1-map of tissues in the presence 

of B1-inhomogeneities. We do this by combining two MRI scans that can each be 

acquired within breath-holds: one that yields a precise T1-map, though biased by 

the inhomogeneous B1-field; and one that delivers an unbiased, but imprecise 

estimate. Combining the information of these two scans yields an estimate of the 

B1-field, which is then used to correct the T1-map. We validate our method in a 

phantom study, and in an in vivo study. We found that the proposed method 

successfully merges the high resolution of the first method with the insensitivity to 

B1-inhomogeneities of the second. 

This thesis also introduces a new method to estimate the time-dependent 

concentration of contrast agent in blood (i.e., the arterial input function (AIF)), 
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which is affected by signal enhancement due to the inflow effect. We do this by 

first estimating the number of RF-pulses by incorporating knowledge about the 

average AIF in a population. We then use the number of pulses to re-estimate the 

concentration from the measured MRI signal, thereby correcting for the inflow 

effect. We validate our method by means of Monte Carlo simulations and with a 

controlled flow phantom experiment. We then apply our method to two patient 

datasets, and use the estimated arterial input function for pharmacokinetic 

modelling. The first dataset consisted of patients with spine related injuries, and 

was acquired under a variety of scan settings to assess the method’s robustness. The 

second dataset consisted of patients with Crohn’s Disease which had a clinically 

relevant CDEIS score available. In both datasets, we found that our method yields 

realistic pharmacokinetic model parameters. Instead, estimating the AIF from a 

distally placed region of interest, as is often done in literature, led to large variation 

and unrealistic parameters. Furthermore, in the Crohn’s patients we found a better 

correlation between the estimated pharmacokinetic parameter Ktrans and the CDEIS 

score, compared to traditional methods.  

Though the rationale for developing these methods were the presence of B1-

inhomogeneities, and pronounced inflow effects in the aorta, other applications of 

pharmacokinetic modelling (e.g., in other parts of the body) may benefit from our 

methods, since they are generally applicable. 

 

Jeroen J.N. van Schie 
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SamenvattingSamenvattingSamenvattingSamenvatting    

 

Dynamisch Contrastversterkt MRI is een belangrijke techniek om de 

farmacokinetische eigenschappen van weefsels te bepalen. Dit proefschrift richt zich 

op twee belangrijke onderdelen voor kwantitatieve DCE-MRI: het schatten van de 

T1-tijd en lokale B1-veldsterkte van een weefsel, en het schatten van de 

tijdafhankelijke concentratie van contrastmiddel in de bloedtoevoer van het weefsel. 

Bij kwantitatieve farmacokinetische analyse worden de perfusie en vascularisatie van 

weefsels geschat door de reactie van dat weefsel op een intraveneuze injectie van 

contrastmiddel te meten. De analyse vereist dat de concentratie van het 

contrastmiddel bekend is in zowel het weefsel als in de bloedtoevoer. Het 

contrastmiddel beïnvloedt de T1 relaxatietijd van het weefsel, en het 

concentratieprofiel kan worden berekend als de T1-tijd bekend is. Echter, lokale B1-

inhomogeniteiten kunnen het MRI signaal beïnvloeden, wat het schatten van de 

T1-tijd met conventionele methoden bemoeilijkt. Daarnaast veroorzaakt de 

instroom van nieuw bloed in het field of view een extra, locatieafhankelijke 

versterking van het MRI signaal, wat een directe meting van de T1-tijd (en dus de 

concentratie) in bloed onmogelijk maakt.  

Dit proefschrift introduceert een nieuwe methode om de T1-tijd van weefsels in 

kaart te brengen, ondanks de aanwezigheid van B1-inhomogeniteiten. We doen dit 

door twee verschillende MRI scans, die elk binnen periodes van ademstilstand 

kunnen worden verkregen, te combineren. De ene scan geeft een precieze T1-kaart, 

maar wordt sterk beïnvloed door het inhomogene B1-veld; de andere scan geeft wel 

een zuivere schatting, maar is niet erg precies. Door deze twee scans te combineren, 

wordt de sterkte van het B1-veld geschat, wat vervolgens wordt gebruikt om de T1-

kaart te corrigeren. We hebben deze methode gevalideerd met behulp van een 

fantoom, en met een in vivo studie. We bevonden dat de door ons voorgestelde 

methode de hoge resolutie van de eerste methode goed kon samenvoegen met de 

ongevoeligheid voor B1-inhomogeniteiten van de tweede methode. 
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Dit proefschrift introduceert ook een nieuwe methode om de tijdsafhankelijke 

concentratie van contrastmiddel in bloed (de arteriële input functie (AIF)) te 

schatten, waarvan het MRI signaal werd beïnvloed door het instroomeffect. We 

doen dit door eerst het aantal RF-pulsen te schatten, door kennis van de 

gemiddelde AIF in een populatie als referentie te gebruiken. Daarna gebruiken we 

het berekende aantal pulsen om de concentratie te schatten uit het MRI signaal, 

waarmee we dus corrigeren voor het instroomeffect. We hebben onze methode 

gevalideerd met Monte Carlo simulaties, en met een fantoomexperiment. Daarna 

hebben we onze methode toegepast op data van twee groepen patiënten, waarna we 

de geschatte arteriële input functies hebben gebruikt voor farmacokinetische 

analyses. De data van de eerste groep kwam van patiënten met klachten gerelateerd 

aan de wervelkolom, en was gescand met een reeks van verschillende instellingen 

om de robuustheid van de methode te testen. De tweede groep data kwam van 

patiënten met de ziekte van Crohn, en waarvan ook een klinisch relevante CDEIS 

score beschikbaar was. In beide groepen bevonden we dat onze methode realistische 

farmacokinetische parameters opleverde. Omgekeerd, de AIF schatten uit een 

distaal geplaatst gebied, zoals vaak in de literatuur wordt gedaan, levert een grote 

spreiding en onrealistische parameters op. Verder, bij de patiënten met de ziekte 

van Crohn bevonden we een betere correlatie tussen de farmacokinetische 

parameter Ktrans en de CDEIS score, vergeleken met de traditionele methoden. 

De motivering voor het ontwikkelen van deze methoden kwam oorspronkelijk uit 

de aanwezigheid van B1-inhomogeniteiten, en van sterke instroomeffecten in de 

aorta. Echter, andere farmacokinetische toepassingen kunnen ook gebruikmaken 

van onze methoden (bijvoorbeeld in andere delen van het lichaam), aangezien ze 

algemeen toepasbaar zijn. 

 

Jeroen J.N. van Schie 
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