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ABSTRACT

Recent work on retrieving the Green’s function with the
Marchenko equation shows how these functions for a virtual
source in the subsurface can be obtained from reflection
data. The response to the virtual source is the Green’s func-
tion from the location of the virtual source to the surface.
The Green’s function is retrieved using only the reflection
response of the medium and an estimate of the first arrival at
the surface from the virtual source. Current techniques, how-
ever, only include primaries and internal multiples. There-
fore, all surface-related multiples must be removed from
the reflection response prior to Green’s function retrieval.
We have extended the Marchenko equation to retrieve the
Green’s function that includes primaries, internal multiples,
and free-surface multiples. In other words, we have retrieved
the Green’s function in the presence of a free surface. The
information needed for the retrieval is the same as the current
techniques, with the only difference being that the reflection
response now also includes free-surface multiples. The in-
clusion of these multiples makes it possible to include them
in the imaging operator, and it obviates the need for surface-
related multiple elimination. This type of imaging with
Green’s functions is called Marchenko imaging.

INTRODUCTION

To focus a wavefield at a point in a medium only requires surface
reflection data and an estimate of the first-arriving wave at the sur-

face from a point source at the focusing location (Broggini et al.,
2012; Broggini and Snieder, 2012; Wapenaar et al., 2013a). Unlike
in seismic interferometry (Bakulin and Calvert, 2006; Wapenaar
and Fokkema, 2006), no receiver is required at the desired focusing
location, i.e., the virtual source location and single-sided illumina-
tion suffices. Significantly, the detailed medium parameters need
not be known to focus the wavefield as opposed to the time-reversal
method, which requires the knowledge of detailed medium param-
eters and enclosing boundaries for correct focusing. However, the
traveltime of the direct arrival of the virtual source to the surface is
required for Green’s function retrieval. To obtain an estimate of this
traveltime, one only needs a macromodel of the velocity.
The focusing scheme of Broggini et al. (2012), Broggini and

Snieder (2012), and Wapenaar et al. (2013a) is an extension of
the algorithm of Rose (2002a, 2002b), who shows an iterative
scheme that solves the Marchenko equation for wavefield focusing
in 1D. The focused events in the wavefield for the virtual source
consist of primaries and internal multiples (Wapenaar et al.,
2013a) but not free-surface multiples. Importantly, Rose (2002a,
2002b) derives the focusing method for single-sided illumination
with sources and receivers on one side of the medium, similar to
current geophysical acquisition methods.
Wapenaar et al. (2011) illustrate imaging with the Green’s func-

tion in 1D and also discuss how to image in multidimensions (2D
and 3D). Similarly, Behura et al. (2012) introduce a correlation-im-
aging algorithm based on the Green’s function retrieval scheme that
images not only primaries but also internal multiples. Broggini et al.
(2014) extend the work of Behura et al. (2012) by using multidi-
mensional deconvolution (MDD) as the imaging condition in place
of conventional crosscorrelation or deconvolution, which further re-
duces the artifacts. Central in these methods is the retrieval of the
Green’s function from the acquisition surface to any point in the
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medium. This Green’s function is essentially a redatuming or down-
ward continuation operator. Because this Green’s function includes
primaries and internal multiples, we expect improved subsurface
images compared with using primaries alone.
We summarize our work in Figure 1. In this paper, any variable

with a subscript zero (e.g., R0) indicates that no free surface is
present. As shown in Figure 1, prior to the algorithm of Broggini
et al. (2012), one must remove the free-surface multiples from the
reflection response of the medium (solid upgoing arrow) to retrieve
the Green’s function. The removal of the free-surface multiples can
be achieved by surface-related multiple elimination (SRME) (Ver-
schuur et al., 1992). In our study, we modify the earlier focusing
algorithms (Rose, 2002a; Broggini et al., 2012; Wapenaar et al.,
2013a) to focus not only primaries and internal multiples but also
the free-surface multiples; this is labeled “Our work” in Figure 1.
We achieve such focusing using the reflection response R in the
presence of a free surface and an estimate of the first arrival from
the focus location to the surface. Notably, our proposed Green’s
function retrieval scheme obviates the need for SRME (see Figure 1)
to construct the Green’s function.
The free surface is the strongest reflector in the system; therefore,

in general, the free-surface multiples are stronger than internal mul-
tiples. In addition, free-surface multiples can be used to provide bet-
ter illumination, higher fold, and better vertical resolution of the
subsurface (Schuster et al., 2003; Jiang et al., 2007; Muijs et al.,
2007a, 2007b). For these reasons, by retrieving the Green’s func-
tion, which includes primaries and all multiples (including free-sur-
face multiples), and using the imaging condition proposed by
Behura et al. (2012) and by Broggini et al. (2014), we expect better
imaging of the subsurface.

THEORY

In this section, we derive the main equations for the retrieval of
the Green’s function in the presence of a free surface, with the de-
tailed derivations in Appendix A. We first summarize the existing
theory that this paper is building on.
The theory of focusing the wavefield without a free surface, i.e.,

retrieving the Green’s function G0 from R0, is covered by Rose

(2002a), Broggini et al. (2012), and Wapenaar et al. (2013a). As
summarized in Figure 1, we have to remove the free-surface multi-
ples from the reflection response R (for instance, by SRME) to get
R0 and then compute G0, the Green’s function in the absence of the
free surface.
Wapenaar et al. (2004) show that we can relate the transmission

operators for media with and without the free surface. Similarly, we
can retrieve G (the Green’s function in the presence of the free sur-
face) from G0 in the frequency domain with the expression

Gðx 0
i ; x0;ωÞ ¼ G0ðx 0

i ; x0;ωÞ

−
Z
∂D0

G0ðx 0
i ; x;ωÞRðx; x0;ωÞdx; (1)

where ∂D0 is the acquisition surface, x0 and x 0
i are spatial positions

along ∂D0 and ∂Di (an arbitrary depth level, below ∂D0), and R is
the reflection response for a downgoing incident wavefield at ∂D0.
The arbitrary depth levels are defined in the sameway as in the work
of Wapenaar et al. (2004). In our case, we replace the transmission
responses (in equation 22 of Wapenaar et al., 2004) with the cor-
responding Green’s functionsG orG0 because the Green’s function
is the total transmitted wavefield from the focusing point to the sur-
face. Note that this approach, R → R0 → G0 → G, follows the tor-
tuous path shown in Figure 1. We can, however, retrieve the Green’s
function in the presence of the free surface directly from the mea-
sured reflection data R → G (Figure 1, black dashed arrow). There-
fore, R → G avoids SRME and the retrieval of G0. We generalize
the formulation of Wapenaar et al. (2013a) (R0 → G0) to include
free-surface multiples (R → G); the detailed mathematics of this
retrieval is documented in Appendix A. The reflections from the
free surface are included in the focusing scheme, similar to the treat-
ment by Wapenaar et al. (2004) of free-surface multiples.
We define our spatial coordinates by their horizontal and depth

components, for instance, x0 ¼ ðxH; x3;0Þ, where xH denotes the
horizontal coordinates (x1; x2) at a depth x3;0. We define solutions
of the wave equation that focus at a point in a medium, and we refer
to these as the focusing functions f1 and f2. The f1 function in-
volves waves that focus at x 0

i at a defined depth level (∂Di) for in-
coming and outgoing waves at the acquisition surface (∂D0) at x0
(Figure 2a). The function f2 is a solution for waves that focus just
above ∂D0 at x 0 0

0 for incoming and outgoing waves at ∂Di

(Figure 2b).
The focusing functions are auxiliary wavefields, which exist in a

reference medium that has the same material properties as the actual
inhomogeneous medium between ∂D0 and ∂Di and that is homo-
geneous above ∂D0 and reflection-free below ∂Di (Slob et al.,
2014). Therefore, the boundary conditions on ∂D0 and ∂Di in
the reference medium, where the focusing function exists, are re-
flection free.
Note that this boundary condition need not be the same as the

actual medium. The focusing functions can be separated into up-
and downgoing waves; the first focusing function in the frequency
domain reads

f1ðx; x 0
i ;ωÞ ¼ fþ1 ðx; x 0

i ;ωÞ þ f−1 ðx; x 0
i ;ωÞ; (2)

whereas the second focusing function reads

f2ðx; x 0 0
0 ;ωÞ ¼ fþ2 ðx; x 0 0

0 ;ωÞ þ f−2 ðx; x 0 0
0 ;ωÞ: (3)

Broggini et al. (2012)

Equation (1)

Equation (6)

Figure 1. Overview of the methods to focus the wavefield using an
iterative approach. The R denotes reflected waves recorded at the
surface in the presence of a free surface, and R0 is the reflection
response for a medium without a free surface. The G is the Green’s
function at the surface for a virtual source located at a point in the
medium in the presence of a free surface, and G0 is the Green’s
function in the absence of a free surface. The two dashed arrows
indicate separate iterative schemes.
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In this paper, the superscript þ refers to downgoing waves and −
refers to upgoing waves at the observation point x.
Table 1 and Figure 2a show the one-way wavefields for the f1

function at the depth levels ∂D0 and ∂Di, which we define in wave
state A. We call these waves one way because locally these fields are
strictly up- or downgoing at the observation point; however, their
coda will include the up- and downgoing waves.
The focusing function fþ1 ðx; x 0

i ; tÞ is shaped such that f1ðx; x 0
i ; tÞ

focuses at xi 0 at t ¼ 0. At the focusing depth level ∂Di of f1, we
define f1ðx; x 0

i ; tÞ as δðxH − x 0
HÞδðtÞ, a 2D and 1D Dirac delta func-

tion in space and time, respectively (see Figure 2b and Table 1).
Below the focusing depth level, f1ðx; x 0

i ; tÞ continues to diverge
as a downgoing field fþ1 ðx; x 0

i ; tÞ into the reflection-free reference
half-space.
Similarly, Table 2 and Figure 2b show the one-way wavefields for

the f2 function at the depth levels ∂D0 and ∂Di.
In this case, f−2 ðx; x 0 0

0 ; tÞ is shaped such that the function
f2ðx; x 0 0

0 ; tÞ focuses at x0 0 0 at t ¼ 0. At the focusing depth level
∂D0 of f2, we define f2ðx; x 0 0

0 ; tÞ as δðxH − x 0 0
H ÞδðtÞ (see Figure 2b

and Table 2). After focusing, f2ðx; x 0 0
0 ; tÞ continues to diverge as an

upgoing field f−2 ðx; x 0 0
0 ; tÞ into the homogeneous upper half-space.

The focusing functions are independent of the surface boundary
condition of the actual medium because these functions reside only
in the reference medium. If the media were homogeneous, the fo-
cusing function f2 would consist of the time-reversed direct wave
between the focal point and ∂Di. However, in an inhomogeneous
medium, the focusing function f2 consists of the time-reversed di-
rect wave and the coda M following the time-reversed direct wave.
The coda M consists of the scattered waves that result when the
time-reversed direct wave transmits through the medium to the fo-
cus point.

In the frequency domain, the focusing function f2 is related to the
Green’s function G0 of the actual inhomogeneous medium without
a free surface by (Wapenaar et al., 2013a)

G0ðx 0
i ;x

0 0
0 ;ωÞ ¼ f2ðx 0

i ;x
0 0
0 ;ωÞ�

þ
Z
∂D0

f2ðx 0
i ;x0;ωÞR0ðx0;x 0 0

0 ;ωÞdx0; (4)

where * represents the complex conjugate. In a situation without the
free surface, we ignore the downward-reflected waves at the acquis-
ition level, i.e., the free surface multiples. In the actual inhomo-
geneous medium, in the presence of a free surface, we account
for the waves reflecting from the free surface (details are given
in Appendix A, as shown in equation A-5). For this situation,
the one-way wavefields are shown in Table 3 and Figure 3. We de-
fine wave state B as the acoustic state with the wavefields of the
actual medium (Wapenaar et al., 2013a).
We can use the one-way reciprocity theorems of the convolu-

tion and correlation type for flux-normalized one-way wavefields
(Wapenaar and Grimbergen, 1996):

a)

b)

Figure 2. (a) Focusing function f1 that focuses at x 0
i and (b) focus-

ing function f2 that focuses at x 0 0
0 .

Table 1. One-way wavefields of the focusing function f 1 at
the acquisition surface ∂D0 and the level where f 1 focuses
∂Di. The symbol p�A represents one-way wavefields in the
frequency domain, at arbitrary depth levels in the reference
medium (see Figure 2a).

On ∂D0: pþ
A ¼ fþ1 ðx0; x 0

i ;ωÞ
p−
A ¼ f−1 ðx0; x 0

i ;ωÞ
On ∂Di: pþ

A ¼ fþ1 ðxi; x 0
i ;ωÞ ¼ δðxH − x 0

HÞ
p−
A ¼ f−1 ðxi; x 0

i ;ωÞ ¼ 0

Table 2. One-way wavefields of the focusing function f 2 at
the depth level ∂D0 and ∂Di. The symbol p�A represents one-
way wavefields in the frequency domain, at arbitrary depth
levels in the reference medium (see Figure 2b).

On ∂D0: pþ
A ¼ fþ2 ðx0; x 0 0

0 ;ωÞ ¼ 0

p−
A ¼ f−2 ðx0; x 0 0

0 ;ωÞ ¼ δðxH − x 0 0
H Þ

On ∂Di: pþ
A ¼ fþ2 ðxi; x 0 0

0 ;ωÞ
p−
A ¼ f−2 ðxi; x 0 0

0 ;ωÞ

Table 3. One-way wavefields in the actual inhomogeneous
medium in the presence of a free surface at the depth level
∂D0 and ∂Di. The symbol p�B represents one-way wavefields
at arbitrary depth levels in the inhomogeneous medium,
whereas r is the reflection coefficient of the free surface (see
Figure 3).

On ∂D0: pþ
B ¼ Gþðx0; x 0 0

0 ;ωÞ ¼ δðxH − x 0 0
H Þ þ rRðx0; x 0 0

0 ;ωÞ
p−
B ¼ G−ðx0; x 0 0

0 ;ωÞ ¼ Rðx0; x 0 0
0 ;ωÞ

On ∂Di: pþ
B ¼ Gþðxi; x 0 0

0 ;ωÞ
p−
B ¼ G−ðxi; x 0 0

0 ;ωÞ
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Z
∂D0

½pþ
Ap

−
B−p−

Ap
þ
B �dx0¼

Z
∂Di

½pþ
Ap

−
B−p−

Ap
þ
B �dxi;

Z
∂D0

½ðpþ
A Þ�pþ

B−ðp−
AÞ�p−

B�dx0¼
Z
∂Di

½ðpþ
A Þ�pþ

B−ðp−
AÞ�p−

B�dxi;

(5)

respectively, to relate the one-way wavefields between the two fo-
cusing functions (f1 and f2) and the one-way wavefields between
the focusing functions and the actual medium. Here, p�

A and p�
B are

the one-way wavefields of the focusing functions and the actual
medium, respectively, in the frequency domain. As shown in Ap-
pendix A, the corresponding two-way Green’s function in the pres-
ence of the free surface is related to the focusing function f2 by

Gðx 0
i ; x

0 0
0 ;ωÞ ¼ f2ðx 0

i ; x
0 0
0 ;ωÞ�

þ
Z
∂D0

f2ðx 0
i ; x0;ωÞRðx0; x 0 0

0 ;ωÞdx0

þ r
Z
∂D0

f2ðx 0
i ; x0;ωÞ�Rðx0; x 0 0

0 ;ωÞdx0; (6)

where, for simplicity, we assume that the reflection coefficient of
the free surface satisfies r ¼ −1. The two-way Green’s function
is defined as the superposition of the down- and upgoing fields,
according to

Gðx; x 0 0
0 ;ωÞ ¼ Gþðx; x 0 0

0 ;ωÞ þ G−ðx; x 0 0
0 ;ωÞ: (7)

Using reciprocity, the Green’s functions on the left side of equa-
tions 4 and 6 can be interpreted as the response to a virtual source
at x 0

i for the situation without and with a free surface, respectively.
To yield equations 4 and 6, we use the one-way reciprocity rela-
tions (details are given in Appendix A for the retrieval of G,
equation A-5). Note that the upgoing Green’s function G− in the
actual inhomogeneous medium at ∂D0 is the reflection response
R for a downward-radiating source at ∂D0.
Equation 6 differs from equation 4 in two ways: First, the last

term on the right side of equation 6 accounts for the waves that
are reflected off the free surface. Second, equation 6 contains

the reflection response R for a medium with a free surface, whereas
expression 4 contains the reflection response R0 for a medium with-
out a free surface.
Similar to our treatment of the focusing function f2, we can de-

fine another focusing function g2, such that

g2ðx; x 0 0
0 ;ωÞ ¼ fþ2 ðx; x 0 0

0 ;ωÞ − f−2 ðx; x 0 0
0 ;ωÞ: (8)

We use g2 to obtain a difference Green’s function ~G, which is
similar to expression 6:

~Gðx 0
i ; x

0 0
0 ;ωÞ ¼ −g2ðx 0

i ; x
0 0
0 ;ωÞ�

þ
Z
∂D0

g2ðx 0
i ; x0;ωÞRðx0; x 0 0

0 ;ωÞdx0

− r
Z
∂D0

g2ðx 0
i ; x0;ωÞ�Rðx0; x 0 0

0 ;ωÞdx0: (9)

We call ~G the difference Green’s function because

~Gðx 0
i ; x

0 0
0 ;ωÞ ¼ Gþðx 0

i ; x
0 0
0 ;ωÞ − G−ðx 0

i ; x
0 0
0 ;ωÞ; (10)

and it is used to obtain the up- and downgoing Green’s functions by
combining it with G in equation 7.
To yield the upgoing Green’s function, we subtract equations 7

and 10:

G−ðx 0
i ; x

0 0
0 ;ωÞ ¼

1

2
½Gðx 0

i ; x
0 0
0 ;ωÞ − ~Gðx 0

i ; x
0 0
0 ;ωÞ�: (11)

Similarly, we obtain the downgoing Green’s function by adding
equations 6 and 10

Gþðx 0
i ; x

0 0
0 ;ωÞ ¼

1

2
½Gðx 0

i ; x
0 0
0 ;ωÞ þ ~Gðx 0

i ; x
0 0
0 ;ωÞ�: (12)

These up- and downgoing (G− and Gþ) Green’s functions at the
focal point are used for imaging (Marchenko imaging) and include
primaries and all multiples. Up- and downgoing Green’s functions
have been used for imaging the subsurface (Wapenaar et al., 2011;
Behura et al., 2012; Broggini et al., 2012, 2014). However, their
Green’s functions contain only primaries and internal multiples.
In this paper, the up- and downgoing Green’s functions also include
free-surface multiples.
The use of up- and downgoing wavefields for imaging is not a

new principle. Claerbout (1971), Wapenaar et al. (2000), and
Amundsen (2001) show that one can get the reflection response be-
low an arbitrary depth level once the up- and downgoing wavefields
are available. The governing equation that relates the up- and down-
going Green’s function is

G−ðx 0
i ; x

0 0
0 ; tÞ

¼
Z
∂Di

dxi

Z
∞

−∞
Gþðxi; x 0 0

0 ; t − t 0ÞR0ðx 0
i ; xi; t

0Þdt 0; (13)

where ∂Di is an arbitrary depth level and R0 is the reflection re-
sponse of the medium below ∂Di. In addition, R0 at ∂Di contains
no reflections from above this depth level. We can think of R0 as the
reflection response of a truncated medium, where the truncated

Figure 3. One-way Green’s functions in the actual inhomogeneous
medium in the presence of a free surface at the acquisition surface
∂D0 and the arbitrary surface ∂Di. These are the quantities that are
used in the reciprocity theorems. The tree indicates the presence of
the free surface.
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medium is the same as the true medium below ∂Di and reflection
free above. Equation 13 states that G− is represented by the con-
volution of Gþ with R0 and integration along all source positions x 0

of R0.
We solve for R0 by MDD (Van der Neut et al., 2011) because the

time integral is a convolution. The subsurface image is subsequently
obtained by taking the zero lag of R0, i.e., taking t ¼ 0 at each depth
level in the model and at zero offset, xi ¼ x 0

i (for each ∂Di); this is
called the zero-offset imaging condition. Alternatively, once we ob-
tain R0 at an arbitrary ∂Di, we can also apply a standard imaging
procedure, for instance, downward continuation, to image below
∂Di. This is because R0 is the reflection response of the truncated
medium below ∂Di for sources and receivers at ∂Di.

NUMERICAL EXAMPLES

We use three numerical examples that show the retrieval of the
Green’s functions and imaging using the associated Green’s
functions.
We first consider a 1D model that has a high impedance layer

generic to salt models as shown in Figure 4. A receiver at the surface
records the reflected waves. To retrieve the Green’s function in 1D,
one needs the traveltime of the first arriving wave from the virtual
source to the surface. The traveltime of the first arriving wave is
used to temporally separate the Green’s function from the focusing
solution f2 in the time-domain representation of equation 6. To ob-
tain the focusing function f2, we evaluate expression 6 for a time
earlier than the first arriving wave and setting the left side of equa-
tion 6 to zero. The remaining expression is an equation for f2,
which is solved iteratively (details are given in Appendix A, equa-
tions A-6–A-10).
Once the focusing solution has been found (see Figure 5), it is

substituted in equation 6 to retrieve the Green’s function (for this
example, the Green’s function is the response to the virtual source at
a depth of 2.75 km, [dot in Figure 4], recorded at the surface; Fig-
ure 6). This Green’s function G, arbitrarily scaled to its maximum
amplitude (see Figure 6), is the response at the surface ∂D0 to the
virtual source.
We also model the Green’s function using finite differences to

verify that the Green’s function retrieved from our algorithm is ac-
curate, and we superimposed this result on Figure 6. The vertical
scale of Figure 6 is enlarged to better illustrate the model and re-
trieved Green’s function. For this reason, the first arrival at time

1.0 s is clipped. The difference between the modeled and the re-
trieved Green’s function is negligible relative to the average ampli-
tude of the Green’s function, as seen in Figure 6. The arrivals caused
by the free surface are shown in Figure 7 compared with the arrivals
in the absence of a free surface.
The corresponding image of the model in Figure 4 shown in

Figure 8 illustrates the correct location of the reflectors, as well
as the correct scaled reflection coefficient. In 1D, the image we ob-
tain is the deconvolution of the up- and downgoing Green’s func-
tion for t ¼ 0 at each image point (Claerbout, 1985). There are some
anomalous amplitudes in the Marchenko image (especially at ap-
proximately 200 m), but they are small compared with the actual
reflectors’ amplitude and are attributed to the deconvolution imag-
ing condition.
The model for the next example is taken from Weglein and

Dragoset (2007), where the second primary event cancels with
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Figure 4. Velocity model with high impedance layer at 1.5 km; the
dot is the position of the virtual source.
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Figure 5. Focusing function f2 at depth 2.75 km for the velocity
model in Figure 4.
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Figure 6. Retrieved Green’s function (normalized by maximum
amplitude) G from a depth of 2.75 km to the surface (white).
The modeled Green’s function is displayed (in black) in the back-
ground. The Green’s functions are associated to the model in
Figure 4.
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the free-surface multiple from the first reflector. We demonstrate
with this numerical example the retrieval of the Green’s function
(as well as its associated up- and downgoing Green’s function)

at depth 1000 m for the model shown in Figure 9. Figure 10 illus-
trates some of the reflected events corresponding to this model. The
associated reflected waves at the acquisition level, shown in Fig-
ure 11, are recorded 5 m below the free surface. As is shown in
Figures 11 and 10, the second primary event P2 is canceled by
the free-surface multiple F1 at 1.0 s, and the other events (internal
multiples and free surface multiples) interfere destructively with
each other at later times.
The Green’s function for a source at depth 1000 m is shown in

Figure 12. The corresponding up- and downgoing Green’s function
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Figure 7. Impact of the free surface. The black line shows the
Green’s function in a medium without a free surface G0, and the
white line is the difference between G and G0; therefore, the white
line shows events that are caused by the presence of the free surface.

0 1 2 3 4−0.4

−0.2

0

0.2

0.4

Depth (km)

R
el

at
iv

e 
am

p
lit

u
d

e

Figure 8. Marchenko imaging of Figure 4 in white, with the true
reflectivity (in black) in the background.
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Figure 9. Simple velocity model, where the dot indicates the posi-
tion of one virtual source at depth 1000 m.

Figure 10. Sketch of some events that occur in the velocity model
in Figure 9.
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Figure 11. Reflection response with the direct waves removed (the
events are scaled by the direct wave magnitude); the labels are ref-
erenced to in Figure 10.
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at depth 1000 m is illustrated in Figures 13 and 14, respectively. The
computed traveltimes for this simple model of the up- and down-
going Green’s function in Figure 15 correspond to the traveltimes of
the events in the retrieved up- and downgoing Green’s functions,
hence confirming our decomposition of the Green’s function into
its associated up- and downgoing wavefields.
Figure 12 has an event at 0.6 s, which is the reflection of the

virtual source field from the second layer recorded at the surface.
Hence, the Green’s function retrieval algorithm correctly detects the
missing reflector in the recorded waves. In the 1D model considered
here, equation 13, reduces to the deconvolution of the upgoing
Green’s function with the downgoing Green’s function at every
point in the velocity model yielding the correct positioning of
the reflectors (see Figure 16), as well as the correct scaled reflection
coefficient. Furthermore, the image is free of artifacts originating
from surface-related and internal multiples. Importantly, the differ-

ence between the analysis of Weglein and Dragoset (2007) and our
work is that they remove the multiples at the surface, whereas we
derive the Green’s function for a virtual source in the subsurface
and, subsequently, a multiple-free image.

DISCUSSION

The new feature of our Green’s function retrieval scheme com-
pared with the earlier presented schemes is that we include the free-
surface multiples in our Green’s function. Hence, we do not need to
remove the free-surface multiples from our reflection response. For
our 1D numerical examples, we can identify the events that are
caused by the presence of the free surface (the black line in Figure 7)
by computing the difference of G and G0.
The arrivals that are caused by the free surface (black line in Fig-

ure 7) have higher amplitude and greater waveform complexity
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Figure 12. Green’s function with virtual source at depth 1000 m
and recording at the surface. The black thicker line is the modeled
Green’s function; superimposed on it is the retrieved Green’s func-
tion. The plot limits are chosen between 0.5 and −0.5 normalized
amplitude to better visualize the smaller amplitude events.
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Figure 13. The Green’s function for upgoing waves at the virtual
source location (1000 m) and recording at the surface for the veloc-
ity in model in Figure 9.
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Figure 14. The Green’s function for downgoing waves at the virtual
source location (1000 m) and recording at the surface for the veloc-
ity in model in Figure 9.

Figure 15. Sketch of some events that are present in the Green’s
function from the virtual source (gray dot) at 1000 m and recorded
at the surface for the velocity in model in Figure 9.
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compared with the events in the response without a free surface G0

(white line in 7). This supports our conjecture that using the addi-
tional events and energy that free-surface reflections provide can
benefit imaging of the subsurface, i.e., imaging using G rather
than G0.
In our scheme to retrieve the Green’s function, we require that the

wavelet is removed from the reflection response (which can be done
by deconvolution). In addition, we assume that the reflection re-
sponse is due to a downgoing source. However, in the marine case,
the source is generally placed a few meters below the surface; there-
fore, there is not only a downgoing component of the source, but
also an upgoing component. In such situations, we consider the
source wavelet to also include the upgoing component of the source.
Consequently, the wavelet with which we deconvolve the reflection
response at the surface is no longer that of a monopole source but of
a dipole source.
Although we show 1D examples, all equations are multidimen-

sional. In 2D or 3D media, a smooth version of the slowness
(1/velocity) can be used to get an estimate of the direct arriving
wave from the virtual source to the surface, but the small-scale de-
tails of the velocity and density need not be known. The direct ar-
riving wave can be obtained using finite-difference modeling of the
waveforms. In 1D, a velocity model is not necessary, unless we
want a depth image as in the examples we show in this paper.
We have also briefly investigate Marchenko imaging when the

reflection response is corrupted with noise. In such noisy cases,
the noise level in the reflection response and the Marchenko image
is similar although our Green’s function retrieval algorithm is non-
linear. However, further investigation is needed to properly under-
stand the accuracy of Marchenko imaging when the reflection
response is corrupted with noise.

CONCLUSION

We have extended the retrieval of the Green’s function to include
the presence of a free surface. This function includes primaries, in-
ternal multiples, and now also free-surface multiples. Significantly,
our proposed method does not require any surface-related multiple
removal of the reflection response. The resulting images of the sub-
surface are free of any artifacts of the free surface multiples and

internal multiples; this is because Marchenko imaging is a natural
way to use primaries and multiples in imaging.
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APPENDIX A

GREEN’S FUNCTION RETRIEVAL IN THE
PRESENCE OF THE FREE SURFACE

We discuss our adaptation of the method of Wapenaar et al.
(2013b) to account for the free-surface reflections. The focusing
functions are the wavefields that focus, in time and space, at a point
in the medium or at the surface (Figure 2a and 2b). These focusing
functions exist in the reference medium, which is homogeneous
above the depth level ∂D0 and reflection free below ∂Di.
The reciprocity theorems for one-way (up- and downgoing)

wavefields are derived by Wapenaar and Grimbergen (1996) (see
equations A-3 and A-4). We use the convolution-type and correla-
tion-type reciprocity theorems to find relationships between our up-
and downgoing wavefields. As discussed byWapenaar et al. (2014),
we obtain a relationship between the focusing functions f1 and f2
by using their respective up- and downgoing waves at each depth
level ∂D0 and ∂Di with the convolution reciprocity theorem

fþ1 ðx 0 0
0 ; x

0
i ;ωÞ ¼ f−2 ðx 0

i ; x
0 0
0 ;ωÞ; (A-1)

and correlation reciprocity theorem

−f−1 ðx 0 0
0 ; x

0
i ;ωÞ� ¼ fþ2 ðx 0

i ; x
0 0
0 ;ωÞ: (A-2)

Our actual inhomogeneous model with a free surface above ∂D0 is
shown in Figure 3. As opposed to the model in Wapenaar et al.
(2013a), which does not have a free surface, we consider the reflec-
tions from the free surface for a downgoing source similar to the
work of Wapenaar et al. (2004). In Figure 3, we describe the wave-
field in its up- and downgoing components. The downward-propa-
gating component of the wavefield (Green’s function) at ∂D0 is
Gþðx0; x 0 0

0 ;ωÞ ¼ δðxH − x 0 0
H Þ þ rRðx0; x 0 0

0 ;ωÞ, which includes (in
the right side) the downward-going impulsive source and the reflec-
tion from the free surface. The downgoing source δðxH − x 0 0

H Þ is a
2D Dirac delta, where x 0 0

H is the lateral position of the focal point
of f2.
Note Gþ is the component of the Green’s function that is propa-

gating downward at x0 for a downward radiating source at x 0 0
0 . In

the case without the free surface, there are no reflections from the
free surface; hence, Gþ

0 ðx0; x 0 0
0 ;ωÞ ¼ δðxH − x 0 0

H Þ because r ¼ 0.
The upward-going propagating part of the Green’s function G−

at ∂D0 is the reflection response Rðx0; x 0 0
0 ;ωÞ. We consider the

up- and downgoing components of the Green’s function at ∂Di.
The downgoing component is Gþðxi; x 0 0

0 ;ωÞ, whereas the upgoing
component is G−ðxi; x 0 0

0 ;ωÞ (Gþ and G−, respectively, Figure ). We
use the convolution and correlation reciprocity theorems to find re-
lationships for the one-way wavefields of f1 as shown in Figure 2a,
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Figure 16. Image of the velocity model (Figure 9) after Marchenko
imaging with the reflectivity overlain (in black).
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and the one-way wavefields of the Green’s function in the actual
medium are shown in Figure 3:

G−ðx 0
i ; x

0 0
0 ;ωÞ ¼

Z
∂D0

½fþ1 ðx0; x 0
i ;ωÞRðx0; x 0 0

0 ;ωÞ

− rf−1 ðx0; x 0
i ;ωÞRðx0; x 0 0

0 ;ωÞ�dx
− f−1 ðx 0 0

0 ; x
0
i ;ωÞ; (A-3)

and

Gþðx 0
i ; x

0 0
0 ;ωÞ ¼ −

Z
∂D0

½f−1 ðx0; x 0
i ;ωÞ�Rðx0; x 0 0

0 ;ωÞ

− rfþ1 ðx0; x 0
i ;ωÞ�Rðx0; x 0 0

0 ;ωÞ�dx
þ fþ1 ðx 0 0

0 ; x
0
i ;ωÞ�: (A-4)

Equations A-3 and A-4 are similar to the relation for the up- and
downgoing Green’s function in Wapenaar et al. (2014); however,
equations A-3 and A-4 also account for the reflected waves from
the free surface. These free-surface reflections are the expressions
in equations A-3 and A-4 that are multiplied by r. The two-way
Green’s function is obtained by adding equations A-3 and A-4,
as well as using equations 2, 3, A-1, and A-2:

Gðx 0
i ;x

0 0
0 ;ωÞ ¼ f2ðx 0

i ;x
0 0
0 ;ωÞ�

þ
Z
∂D0

f2ðx 0
i ;x0;ωÞRðx0;x 0 0

0 ;ωÞdx0

þ r
Z
∂D0

f2ðx 0
i ;x0;ωÞ�Rðx0;x 0 0

0 ;ωÞdx0: (A-5)

We consider equation A-5, in time, for the interval t < tdðx 0
i ; x

0 0
0 Þ,

where td is the traveltime for the first arrival of G. No waves arrive
before tdðx 0

i ; x
0 0
0 Þ because td is the time for the first-arriving event.

Therefore, Gðx 0
i ; x

0 0
0 ;ωÞ vanishes for t < tdðx 0

i ; x
0 0
0 Þ, and as a result,

0¼ f2ðx 0
i ;x

0 0
0 ;−tÞ

þ
Z
∂D0

dx0

Z
t

−∞
f2ðx 0

i ;x0; t
0ÞRðx0;x 0 0

0 ; t− t 0Þdt 0

þ r
Z
∂D0

dx0

Z
∞

−t
f2ðx 0

i ;x0; t
0ÞRðx0;x 0 0

0 ; tþ t 0Þdt 0: (A-6)

We use the same ansatz for f2 as Wapenaar et al. (2013a) because
we are using the same reference medium, i.e., the model where the
focusing functions exist. The ansatz is given by

f2ðxi; x 0 0
0 ; tÞ ¼ ½Tdðxi; x 0 0

0 ; tÞ�inv þMðxi; x 0 0
0 ; tÞ; (A-7)

where [Tdðxi; x 0 0
0 ; tÞ�inv, defined as the inverse of the direct arrival of

the transmission response, is the first-arriving event of f2ðxi; x 0 0
0 ; tÞ

and Mðxi; x 0 0
0 ; tÞ is the scattering coda of f2 following the first

arrival as shown by Wapenaar et al. (2013a). The substitution of
expression A-7 in equation A-6 yields

0¼Mðx 0
i ;x

0 0
0 ;−tÞ

þ
Z
∂D0

dx0

Z
−tϵdðxi 0;x0Þ

−∞
½Tdðx 0

i ;x0; t
0Þ�invRðx0;x 0 0

0 ; t− t 0Þdt 0

þ
Z
∂D0

dx0

Z
t

−tϵdðx 0i ;x0Þ
Mðx 0

i ;x0; t
0ÞRðx0;x 0 0

0 ; t− t 0Þdt 0

þ r
Z
∂D0

dx0

Z
∞

−tϵdðx 0i ;x0Þ
Mðx 0

i ;x0; t
0ÞRðx0;x 0 0

0 ; tþ t 0Þdt 0

þ r
Z
∂D0

dx0

Z
−tϵdðx 0i ;x0Þ

−t
½Tdðx 0

i ;x0; t
0Þ�invRðx0;x 0 0

0 ; tþ t 0Þdt 0;

(A-8)

for t < tdðx 0
i ; x

0 0
0 Þ with tϵdðx 0

i ; x
0 0
0 Þ ¼ tdðx 0

i ; x
0 0
0 Þ − ϵ, where ϵ is a

small positive constant to include the direct arrival in the integral.
Equation A-8 is a Fredholm integral of the second kind and can be
solved iteratively as follows:

Mkðx 0
i ; x

0 0
0 ;−tÞ

¼ M0ðx 0
i ; x

0 0
0 ;−tÞ

−
Z
∂D0

dx0

Z
∞

−tϵdðx 0
i ;x0Þ

Mk−1ðx 0
i ; x0; t

0ÞRðx0; x 0 0
0 ; t − t 0Þdt 0

− r
Z
∂D0

dx0

Z
∞

−tϵdðx 0
i ;x0Þ

Mk−1ðx 0
i ; x0; t

0ÞRðx0; x 0 0
0 ; tþ t 0Þdt 0;

(A-9)

where

M0ðx 0
i ;x

0 0
0 ;−tÞ

¼−
Z
∂D0

dx0

Z
−tϵdðx 0

i ;x0Þ

−∞
½Tdðx 0

i ;x0; t
0Þ�invRðx0;x 0 0

0 ; t− t 0Þdt 0

− r
Z
∂D0

dx0

Z
−tϵdðx 0

i ;x0Þ

−t
½Tdðx 0

i ;x0; t
0Þ�invRðx0;x 0 0

0 ; tþ t 0Þdt 0;

(A-10)

for t < tdðx 0
i ; x

0 0
0 Þ and Mkðx 0

i ; x
0 0
0 ;−tÞ ¼ 0 for t ≥ tdðx 0

i ; x
0 0
0 Þ. In

contrast to the algorithm of Wapenaar et al. (2013a), we use R in-
stead of R0, and we also include the reflection from the free surface
(the last term in equation A-9). After convergence, we substitute the
coda M into equation A-7 to yield the focusing function f2. The f2
solution is then used in equation A-5 to obtain the two-way Green’s
function.
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