
Taxi ride scheduling and pricing using
historical data

Martijn denHoedt

Taxi ride scheduling and pricing using
historical data

by

Martijn den Hoedt

born in Rotterdam, The Netherlands

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Thursday August 25, 2016 at 9:30 AM.

Student number: 4143760
Project duration: November 9, 2015 – July 1, 2016
Thesis committee: dr. M.M. de Weerdt, TU Delft, supervisor

prof. dr. C. Witteveen, TU Delft
dr. ir. A. Bozzon, TU Delft
drs. P. Pietersen, Gogido

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

Taxis often bring people to airports and drive back to their area of operation without a passenger. This is
considered as a gap in a taxi driver’s schedule and could be filled up by giving customers extra incentive to
book a taxi ride by asking a reduced price. A reduced price is justified when the costs of when the rides
are combined is lower than when the rides are carried out separately. This thesis work describes two steps
towards computing the cost of performing a taxi ride while taking into account the time and fuel needed for
driving empty between rides. The first method responds to a request of a customer and composes offers that
are related to the customer’s taxi ride request from different companies, while taking the already booked rides
into account. A good offer has both the price and the offset to the requested departure time minimized. The
second method learns the cost for driving empty by taking into account the probability of taxi rides that will
be booked in the future.

This thesis has been submitted to obtain the degree of Master of Science in Computer Science at Delft Uni-
versity of Technology. I would like to thank Mathijs de Weerdt and Paul Pietersen, which are the university
supervisor and company supervisor respectively, for their ideas and supervision. Additionally, I would like to
thank both Cees Witteveen and Alessandro Bozzon for taking part as chair and member of the thesis commit-
tee, respectively. Finally I would like to mention that I am thankful for the support of family and friends.

Martijn den Hoedt
Delft, August 16, 2016

iii

Contents

1 Introduction 1
2 Problem definition & research questions 3
3 Relatedwork 5

3.1 Vehicle Routing Problems . 5
3.2 Scheduling algorithms for DARP . 6

3.2.1 Exact methods . 6
3.2.2 Heuristics . 6
3.2.3 Metaheuristics . 7

3.3 Multi-objective optimization . 7
3.3.1 Algorithms . 8
3.3.2 Metrics for performance evaluation . 8

3.4 Taxi demand prediction . 9
3.5 Methods for clustering data . 9

3.5.1 Methods for computing similarity . 10
3.5.2 Hierarchical clustering . 10
3.5.3 Squared error-based clustering . 11
3.5.4 Fuzzy clustering . 11
3.5.5 Density based clustering . 11
3.5.6 Choosing the number of clusters. 12

3.6 Regression Analysis . 12
3.7 Interpolation Methods . 13

4 Finding the best offers 15
4.1 Cost for inserting a taxi ride . 15
4.2 Naive algorithm . 17
4.3 Parallel algorithm . 19
4.4 Algorithm with precomputed routes . 19
4.5 Niching methods . 22

5 Expected cost of a taxi ride 23
5.1 Cost evaluation . 23
5.2 Expected taxi ride cost algorithm . 24
5.3 Risk aversion . 26

6 Empirical evaluation 29
6.1 Taxi ride datasets . 29

6.1.1 New York City . 29
6.1.2 The Netherlands . 30

6.2 Naive algorithm . 31
6.3 Parallel algorithm . 32
6.4 Quality of route approximation . 33
6.5 Algorithm with precomputed routes . 34
6.6 Expected cost . 36

6.6.1 Time feature . 36
6.6.2 Spatial feature . 38

6.7 Risk aversion . 40

7 Futurework & conclusion 43
Bibliography 45

v

1

Introduction

In The Netherlands, transport by taxi can be divided into two categories, namely street taxis and contracted
transportation. The latter includes the transportation of school students, disabled people and elderly people
who cannot use public transportation or drive a car by themselves, this is regulated by the government. Tra-
ditionally, street taxis can be hailed on the street or requested via telephone by anyone. The latter falls under
regulations for ‘hired car with driver’, but in contrast to other countries Dutch laws make as little distinction
as possible between a street taxi and a ‘hired car with driver’ [63]. Therefore this thesis will use ‘taxi’ while
referring to a street taxi or a ‘hired car with driver’. Another characteristic of the Dutch taxi market is that it
is uncommon for taxis to browse around a city looking for new customers and uncommon for a customer
to hail an empty driving taxi, though this is not prohibited. In The Netherlands, most people order a taxi by
phone or pick up a taxi on a taxi stand, which roughly corresponds with a two-thirds and one-third of the
total revenue of the whole taxi market [51]. Taxi companies and drivers determine fares by themselves, but
they should meet with the maximum fares determined by the government [56]. The maximum fares are not
obligatory when customer and driver agree on a pre-arranged price. Extra fees can be agreed upon for extra
services, such as a bottle of water or WiFi access. Recently new initiatives were launched that allow people to
request a taxi via a smartphone application or a website, but this is essentially the same as by phone call.

In the year 2008 roughly a third of The Netherlands did not travel with a taxi in the year 2008 and roughly a
quarter of the surveyed used a taxi only one to three times that year [51]. Taxis in The Netherlands have one of
the most expensive tariffs in the world and 76% of the same surveyed think that travelling by taxi is expensive
or very expensive in The Netherlands [69]. A poor availability of public transport and alcohol usage are the
two most important reasons for people to use a taxi [51]. Gogido, a platform to compare prices between taxi
companies and book taxi rides, is interested in reducing the prices of taxi rides. This will enlarge the taxi
market and increase the profit of both taxi companies and Gogido. One way of reducing the average price for
a taxi ride is to let customers share a taxi when they have an overlapping part during their trip. However this
has some disadvantages as well, it will cost the customer more time and he will be less flexible to reschedule
the ride, because he is now dependent on other customers. Another way of reducing the price for a taxi ride
is to help companies to operate more efficient by driving less with an empty taxi. Nowadays taxis often drive
empty to and from their usual area of operation to bring and pick up customers to locations outside this area.
These gaps in the schedule could be offered for a reduced price to customers. Thus combining taxi rides
means, in this thesis, that shortly after dropping of a customer a new customer is picked up.

In order to be able to offer a reduced price to a customer the cost of executing the customer’s taxi ride for
the taxi company should be determined. This can be done by comparing the total cost of a schedule with
and without this new ride. Note that most taxi companies do not have a schedule such that every taxi ride
is assigned to a taxi, but just a list of rides that should be done, because a lot can happen during the day
that will make the schedule invalid or suboptimal. Examples of this kind of events are car breakdowns, new
customers who require a taxi as soon as possible, customers that cancel a ride and customers with a meeting
that runs in overtime. Sometimes a company accepts more taxi rides than it has capacity, these rides are then
sold to a friendly competitor. When a new ride perfectly matches the other rides, the cost of this new ride
could be near zero. However this will happen with very low probability and there can also be multiple ‘good’

1

2 1. Introduction

ways of scheduling the new ride. Generally either of two possible scenarios can occur, namely the taxi driver
has to wait for the customer, or the other way around. In the first case the cost for the ride increases and in
the second case the customer inconvenience will rise. Thus the matching is a multi-objective optimization
problem, which will be formally defined in chapter 2. Other factors that might influence the customer’s choice
are the reputation of the company and the type of vehicle that will be used. The reputation of a company
can be measured by rating given by customers, but this is not done for all companies in The Netherlands.
However Gogido enables their customers to give the company a rating based on punctuality, kindness of the
drivers and other evaluation criteria. The types of vehicles a taxi company can include, but are not limited
to a standard car, a luxurious car and a small bus for eight passengers. In this thesis the multi-objective
optimization problem does only consider the taxi’s cost and the waiting time for the customer and not vehicle
type and rating, because these are fixed parameters.

Multiple problems arise when computing the cost of a taxi ride. The first one is a scalability problem, because
an enormous number of taxi rides are driven nationally it seems infeasible to recompute an optimal schedule
every time whenever a customer would like an offer on his taxi ride request. A second problem will arise when
a customer reschedules or cancels his taxi ride after that ride was combined with another taxi ride. Because
this could mean that taxi companies have to ride below cost price. This could be compensated with a fixed
price increase to cover the risk, but this could also be a variable price increase to cover the risk for a specific
situation. For the latter a model for the risk could be learned by using historical data from taxi companies as
training set. A third problem will arise when multiple customer would like to book a similar ride, at the same
moment and with the same company. Because this will influence the cost of both rides, but at the time the
offer is made no information is known about a second customer requesting a similar ride.

When a company is having trouble to acquire taxi ride requests, because the prices are too high compared
to competitors, the company should lower its price where possible. This could be done by not only offering
customers a discount on a taxi ride that have already a matching ride, but also by offering discounts when it
is likely that, in the future, a matching taxi ride request will come. Although past performance does not guar-
antee future results, historical data of the company could be very useful while reasoning about the likelihood
of future taxi rides. The cost of a taxi ride matched with likely taxi ride requests will be called the expected
cost. The formal problem definition regarding the expected cost of a taxi ride is stated in the next chapter.

The rest of this thesis is structured in the following way. Firstly, the next chapter describes the problem in
a formal and more detailed way. Then in chapter 3 the related work is divided in seven sections, each de-
scribing different topics that are relevant for solving the problems this report treats. These sections give an
overview on related scheduling problems, vehicle routing scheduling algorithms, multi-objective optimiza-
tion algorithms and methods evaluating them, literature about taxi demand prediction, methods for cluster-
ing datasets, regression analysis and interpolation methods. Then in chapter 4 three methods for exploring
the solution space are introduced. In addition a method that discards similar solutions, which can be used
when one does not want to overload the customer with many possibilities, is described in chapter 4. Chapter
5 describes methods to calculate the expected cost of a taxi ride based on historical data from a taxi company.
The methods described in chapters 4 and 5 are evaluated in chapter 6. Finally in chapter 7, a discussion of
the assumptions is stated, possible future work is listed and conclusions are drawn.

2

Problem definition & research questions

In this chapter, a formal problem description and the research questions are stated. In addition the con-
straints and the scope of this research is defined.

Customers come to the Gogido website with a certain taxi ride Ri in mind. Each taxi ride Ri has a pickup time
t p

i ∈N, a drop off time t d
i ∈N, a pickup location pp

i = (φp
i ,λp

i) and a drop off location pd
i = (φd

i ,λd
i). A location

is denoted by a pair (φ,λ), withφ ∈R the latitude and λ ∈R the longitude. The customer can book this ride for
a normal fare or look into the situational offers. An offer can be made to the customer when we know what the
increase in cost is for a taxi company C , where C = {T1,T2, ...,T|C |} and every taxi T j = 〈R1,R2, ...,R|T j |〉. Besides,
every taxi that drives for company C costs Cd per kilometre and Ct per minute. This offer x = (C ,Ri , tw) is a
possible solution the customer can choose for, where C is the selected taxi company, Ri the initially requested
taxi ride and tw ∈N the offset with the requested departure time. The offer x as reaction to a taxi ride request
Ri always has the same pickup and drop off location. A negative offset means that the customer has to depart
earlier than the requested time, and thus a positive offset means that the customer has to depart later than
the requested time. From now on the offset to the requested departure time will be called ‘waiting time’. The
cost of solution x is denoted by fc (x) and the waiting time tw as fw (x). A solution x is strictly better than x ′ if
x dominates x ′, which is denoted by x Â x ′. A solution can only dominate another solution when they both
point out that the customer departs either later or earlier than the requested time. In addition one of the two
objectives of x is strictly than x ′ and the other objective is for not worse. This means if one of the following
two statements holds, the solution x dominates x ′:

• fc (x) ≤ fc (x ′) and | fw (x)| < | fw (x ′)| and sign(fw (x)) = sign(fw (x ′))

• fc (x) < fc (x ′) and | fw (x)| ≤ | fw (x ′)| and sign(fw (x)) = sign(fw (x ′))

Since taxi companies only exchange rides when a taxi ride is infeasible to do by them, every company can be
considered separately. A taxi ride is infeasible when no taxi is available to do this ride. Since taxi companies
do not use a schedule for days in advance, we do not need the computed schedule, but only the computed
cost and assigned waiting time. The cost a taxi ride is not only dependent on the route the customer wants
to travel, but also the time and fuel needed to drive to the pickup location from the taxi’s previous location.
Therefore a schedule has to be made to be able to calculate the cost and present an offer to the customer.

The aforementioned cost increase for a company C , caused by a taxi ride R requested by a customer, can be
computed by solving a Static Multi-Vehicle Dial-A-Ride Problem with Time Windows (MVDARPTW) twice.
Once with and once without the new ride R and in both cases with all previously booked rides of company C .
The optimal solution to a MVDARPTW is an assignment for every ride to a vehicle such that the cost function
fcost (C) is minimized. In our model we assume that every taxi company has an infinite number of taxis
available, because a taxi company can sell infeasible rides to friendly competitors. The time window of a ride
defines the flexibility of the departure time, since a customer wants his taxi right on time the time windows are
very tight. However the time window for taxi ride R is very loose allowing solutions with a different departure
time a customer might be interested in. The cost of a company’s schedule fcost (C) defined in equation 2.2
sums up the cost of the routes of the taxis will drive. The cost of a taxi’s route consists of two parts the distance

3

4 2. Problem definition & research questions

of the complete route fr oute (T) and the time the taxi is needed. The time a taxi is needed includes the waiting
time for a taxi driver before every ride. The route fr oute (T) always starts and ends at the home base of the taxi
company and is denoted by pC = (φC ,λC). Note that in practice not every taxi from the same company will
use the same location. The functions fd (L) and ft (L) return the distance in kilometres and time in minutes
required to visit all locations (φ,λ) ∈ L = 〈p1, p2, ...〉 in the specified order. This can be implemented using the
Google Maps Routing API [17] or the OpenStreetMap variant called OpenStreetMap Routing Machine (OSRM)
[35]. Only OSRM is a viable option to use for this thesis, because Google limits the number of requests on their
API.

fr oute (T) = 〈
pC

〉∪(⋃
Ri∈T

〈
pp

i , pd
i

〉)
∪〈

pC
〉

(2.1)

fcost (C) = ∑
T∈C

(
Ct ·

(
ft (〈pC , pp

1 〉)+ ft (〈pd
|T |, pC 〉)+ t d

|T |− t p
1

)
+Cd · fd (fr oute (T))

)
(2.2)

Thus the remaining problem is to match customer requests with one or multiple matching taxi rides in the
list of scheduled taxi rides. Based on these best matching taxi rides an offer can be presented to the customer.
An offer includes a price and an actual departure time which can differ with the requested departure time.
Therefore the first question we define is:

How can an online algorithm efficiently compute a non-dominated set of offers in reaction to a taxi
ride request, given a large list of already accepted taxi rides, within a small enough period of time?

A small enough period of time is defined to be one second, since the list of offers will be made available to the
customer via a web interface and literature states that humans will notice a one second interruption, but the
user’s flow of thought stays uninterrupted [41]. Additionally the number of solutions presented on this web
interface should not be boundless. The following subquestions can be identified:

1. How can the cost of a taxi ride be defined such that it can be efficiently computed?

2. How well does the algorithm scale? In other words how many already accepted taxi rides can
be evaluated?

3. How can the list of non-dominated solutions be reduced to a specific size, such that similar
solutions are discarded?

However, if a company only offers discounts based on already booked taxi rides, it will never offer a discount
to the first customer. On popular routes a discount can be given, because in the future a matching taxi ride
request is likely to come in. This will increase the volume of rides and revenue even more. Therefore the
second question we define is:

How can an online algorithm efficiently compute the expected cost of a taxi ride, given the historical
data of a taxi company, within a small enough period of time?

Again the small enough period of time is defined to be one second. To answer this question we also need
to know how to define the expected cost of a taxi ride. When no good match can be found in the future the
company will suffer a loss. Therefore it is interesting to see what could be done to reduce the risk of a loss.
For the second research question we have identified the following subquestions:

1. Which features can be extracted from the historical data that influence the expected cost of a
taxi ride?

2. How could the expected cost of a taxi ride be defined?

3. What are good methods to reduce the probability of a loss?

This thesis only discusses the cost of a taxi and not the price of a taxi that will be presented to the customer,
because the latter is a strategic decision and competitors’ and customers’ behaviour should be taken into
account. During analysis only one type of vehicle is considered, but other types of vehicles could be taken
into account without major adjustments of the methods proposed. However when considering more than
one type of vehicle could introduce issues this is discussed.

3

Related work

This chapter, which describes the related literature, is divided into seven sections. The first section briefly
explains some related problems and variants of the Dial-A-Ride Problem (DARP). In the second section dif-
ferent algorithms that can solve these variants of DARP. The third section describes problems that arise when
dealing with multi-objective optimization problems. Section 3.4 describes the techniques used to predict taxi
demand in various cities. Section 3.5 surveys clustering methods. Sections 3.6 and 3.7 describe regression and
interpolation methods.

3.1. Vehicle Routing Problems

The class of Vehicle Routing Problems (VRP) consists of many different problems with many different appli-
cations. However they all share a common goal, namely given a set of transportation requests and a fleet of
vehicles, determine for all vehicles a route such that all (or some) requests are served at minimum cost [66].
This section describes some subclasses and problems that are contained in these subclasses and concludes
with a formal problem description found in literature accompanied with the different variants, which are
closely related to the problem relevant for this thesis.

The Vehicle Routing Problems with Pickups and Deliveries (VRPPD) class consist of problems where goods
or people have to be transported from a pickup locations to a delivery or drop off location. This class can be
divided in problems that have paired or unpaired pickup and delivery locations. An example of the unpaired
case is the Pickup and Delivery Vehicle Routing Problem (PDVRP). With PDVRP every customer at a delivery
location can be served with the goods from any pickup location [47]. In the paired case every pickup location
is paired with one delivery location. Two examples of this are the Pickup and Delivery Problem and the Dial-
A-Ride Problem, which is about goods and people respectively. The scheduling of taxi rides or another form
of transportation of people is a special case, because not only the cost should be minimized, but the customer
convenience should be maximized as well. The cost is mostly measured with the fleet size and the distance
travelled, while the customer inconvenience is mostly expressed as the time travelled or the deviation from
the desired drop off time. DARP is proven to be NP-hard [6], and generally all VRPs can be generalized to the
well-known NP-hard Traveling Salesman Problem (TSP) [22].

The problems mentioned in this section come in different flavours, a number of flavours that are applicable
to DARP consists of, but are not limited to: static versus dynamic, single-vehicle versus multi-vehicle and
with time windows versus no time windows. In the static variant of DARP the requests are known beforehand
and in the dynamic variant the requests come in by an online fashion. The multi-vehicle variant of DARP has
much larger solution space than the single-vehicle variant and the algorithms for the former a usually easier
to understand and implement. Finally, there is a time window (DARPTW) variant, which allows customers to
specify a desired pick-up time window.

The problem most related to the problem this thesis is trying to solve is the multi-vehicle DARPTW problem
and can be defined as follows: Construct one route for every vehicle in the fleet of m vehicles, which together
serve n customers. The road network is defined by a complete graph G = (V ,E), where V = {v0, v1, ..., v2n}

5

6 3. Related work

and E = {(vi , v j) : vi , v j ∈ V } and for every (vi , v j) ∈ E the cost is defined by 0 ≤ ci j and the travel time by
0 ≤ ti j . Vertex v0 represents the depot of all m vehicles. Vertices vi and vi+n represent the pick and drop off
location of customer i respectively and must be visited by the same vehicle in the order of mentioning. Note
that multiple pickup locations can be visited consecutively, which means that customers may share a vehicle
on (parts of) their ride. Additionally for each customer a time window [ei , li] is defined, which means that
both the pickup and the delivery should fall within this interval. Every route should start and end at depot
v0 and the total cost of these routes is minimized. Depending on the application various extra constraints
can be defined, for example to ensure that the capacity of the vehicle is satisfied, that the convenience of
the customer is above a certain threshold or that the length of one ride does not exceed a predefined upper
bound.

The problem we consider in this thesis is only slightly different compared to the problem just defined. After
a customer has booked the ride, the time window for this ride is such that ei = li , which means there is no
flexibility. However while computing the offer there is a time window, which could be a few hours.

3.2. Scheduling algorithms for DARP

This section describes algorithms and their performance that solve variants of DARP, which is defined at
the end of the previous section. These algorithms are divided into three categories, namely exact methods,
heuristics and metaheuristics. These state of the art methods could possibly also be used to solve our prob-
lem.

3.2.1. Exact methods

An exact dynamic programming solution for the Single-Vehicle DARP which runs in O(n2 ·3n) time and needs
O(n ·3n) space, was introduced by Psaraftis [52]. The algorithm minimizes a single-objective function, which
is the weighted sum of total ride time and customer dissatisfactions, which is expressed as the weighted sum
of customer waiting and riding time. This algorithm uses a state vector that keeps track of the vehicle’s po-
sition and for each customer one of the three states, namely not been pickup yet, currently in the vehicle
and already dropped off. Before a state’s objective function is evaluated constraints like vehicle capacity
are checked. Experimental results show that the runtime increased with the capacity of the vehicle. Only
problems up to nine customers were solved, which took about ten minutes. Later Psaraftis [54] proposed an
algorithm for Single-Vehicle DARPTW that is based on the previously mentioned algorithm and has the same
time and space complexity.

Cordeau [13] proposed a Branch-and-Cut algorithm for Multi-Vehicle DARPTW that outperformed CPLEX
[3] and solved problems with up to 30 customers. The authors claim that the algorithm is fast enough to
optimize routes found by heuristic methods containing hundreds or thousands of customers. The Branch-
and-Cut algorithm used several preprocessing techniques and new inequalities. During preprocessing the
time windows are tightened, directed edges from the complete graph are removed when they can’t be used in
an optimal solution and some variables are fixed to reduce the search space. Examples of directed edges that
can be removed include, but are not limited to: edges from pickup locations to the base location and edges
from drop off locations to their corresponding pickup location. Some customers are assigned to specific
vehicles after incompatible customer pairs are identified.

3.2.2. Heuristics

For the Single-Vehicle DARP Psaraftis introduced a 4-approximation algorithm [53] that runs in O(n2) time
and assumes an undirected graph as input. This means that the algorithm always finds a solution with a
total cost not more than four times away of the optimal solution. The algorithm starts with computing a
Travelling Salesman tour on the graph with 2n vertices without the depot vertex. For computing a Travelling
Salesman tour T0 any heuristic [24, 31] can be used, therefore the algorithm could be easily changed to a 3-
approximation algorithm that runs in O(n3) time. In the second step of the algorithm, a DARP solution T1 is
constructed by starting at any of the n pickup locations pi and going clockwise over T0 and adding a vertex
v j if v j is not added to T1 and in the case v j is a drop off location its corresponding pickup location should
already be in T1. The next three operations can find a better T1 by one swapping any two locations in T1 that

3.3. Multi-objective optimization 7

does not violate the constraints defined by DARP, by two constructing a new T1 by going counter-clockwise
over T0 and three starting with a different vertex pi Experiments show that the average performance is well
within the performance guarantee, no experiments have been conducted on the version with an approxima-
tion ratio of 3.

For the Static Multi-Vehicle DARPTW an insertion algorithm is proposed by Jaw [28], which sorts the rides
either on earliest pickup time or latest arrival time. Another insertion algorithm was proposed by Madsen
[37], which first sorts all jobs according to expected difficulty to schedule. This difficulty is based on the size
of the time window, maximal allowable travel time and special wishes (e.g. number of seats or accessible with
a wheelchair). Moreover the algorithm of Madsen is capable of inserting the drivers’ breaks into the schedule
and solving the dynamic version of the problem, such that it can be used in an online setting. Coslovich [15]
introduced another insertion algorithm for the Dynamic Multi-Vehicle DARPTW. The algorithm starts with
scheduling all requests known in advance. Whenever a new request comes in during the online phase the al-
gorithm checks if it is possible to add this request to every vehicle. Only if it is possible for a vehicle to do this
ride the request is accepted. After this new request is inserted in the schedule, the algorithm tries to improve
the schedule until a new request comes in by using a variable neighbourhood search. The neighbourhood is
explored by removing two or more edges from the tour and reconnecting the parts in the best way. After a bet-
ter tour is found the specified constraints, such as customer dissatisfaction, are checked. The experimental
results show that the online runtime with up to 50 customers is negligible.

3.2.3. Metaheuristics

Metaheuristics are a popular field of research and have been applied to a wide variety of optimization prob-
lems which includes variants of DARP. The term metaheuristic has been defined in various ways by different
authors [8, 46, 62, 68]. In short, a metaheuristic is a high level strategy for exploring the solution space, that is
not problem specific.

For the Static Multi-Vehicle DARPTW a Tabu Search algorithm (TS) is described by Cordeau [14]. This method
is flexible in the sense that it can be easily adapted to deal with more sophisticated objective functions and
can be adapted to handle multiple vehicle types and depots. The TS is allowed to explore infeasible solutions
and uses a diversification strategy to prevent getting stuck in local optima.

Other metaheuristics have been combined with a heuristic called cluster-first route-second, which has been
applied to many routing problems [9, 45]. This approach first clusters jobs based on location and time win-
dow and creates for each cluster a route. Once the jobs have been clustered the routing problem has become
significantly smaller and easier to solve. Every cluster of jobs is assigned to one vehicle. A similar and less
popular approach called route-first cluster-second creates one route and breaks this route down to satisfy
constraints like time windows and capacities. Baugh et al. used a Simulated Annealing Algorithm for the clus-
tering part and a space-time nearest neighbour heuristic for the routing part. Other better routing heuristic
exists, such as the Lin-Kernighan algorithm, but cost more computation time which is not worth for routing
10 or 20 jobs [6]. Jorgensen et al. used a Genetic Algorithm (GA) for the clustering part and a modified version
of the space-time nearest-neighbour heuristic [55]. Every individual in the population is a boolean matrix,
with a column for every customer and depot and a row for every vehicle. The typical phases for a GA are
defined is such a way that feasible solutions can be found. The steps of a GA include the selection phase, the
recombination phase with a crossover operator, the mutation phase and fitness evaluation.

Only the methods for the dynamic setting seem to be applicable for our problem. These methods only include
an insertion heuristic combined or not combined with an offline improvement phase in between incoming
requests.

3.3. Multi-objective optimization

The solutions of our problem defined in chapter 2 have two features, namely the cost of the taxi ride and
the offset to the requested departure time. These two features need to be minimized in dementedly, so it
is a multi-objective optimization (MOO) problem. With MOO the goal is to minimize or maximize multiple
conflicting objective functions. Problems with these conflicting objective functions appear natural in the
decision making and design processes. In this section we assume, without loss of generality, to minimize all

8 3. Related work

m ≥ 2 objective functions fi (x) with i ∈ {1,2, ...,m}. Since there are multiple competing objective functions
there is often no single best solution but a set of optimal solutions or non-dominated set. A solution x is
said to dominate another solution x ′ (denoted by x Â x ′), when fi (x) ≤ fi (x ′) holds for all i ∈ {1,2, ...,m} and
fi (x) < fi (x ′) holds at least once. A solution x is called optimal or non-dominated, when there is no other
solution x ′ such that x ′ Â x. Goldberg [23] introduced the notion of non-dominated levels, to sort n solutions
and group them in 1 to n sets of solutions. For each two levels i and j (i < j) the corresponding sets of
solutions Li and L j have the following property: ∀x ∈ Li , x ′ ∈ L j : x Â x ′. The remainder of this section
describes algorithms for solving MOO problems and methods of comparing the quality of solutions of MOO
problems.

3.3.1. Algorithms

MOO problems are often solved with population based metaheuristics, such as evolutionary algorithms [21,
72] and particle swarm optimization algorithms [4, 12], but can also be solved with other types of metaheuris-
tics, for example tabu search [25]. With population based algorithms it is important to maintain diversity in
the population. For genetic algorithms this can be done with parameter-space and function-space niching,
depending on the problem one performs better than the other [16]. Parameter-space niching results in a lot
of different parameters, but can have similar objective values, because solutions with similar parameters are
more likely to get removed from the population. On the contrary, function-space niching results in a lot of
different objective values, but can have similar parameters. The latter seems more promising in the use case
of selecting solutions to present to the customer.

3.3.2. Metrics for performance evaluation

In contrast to the evaluation of single-objective optimization (SOO) algorithms, it is not straightforward to
evaluate the performance of MOO algorithms. Moreover, literature does not describe one single best method
to do such an evaluation. This evaluation is not an easy task, because we have to measure the quality of a set
of solutions instead of just one solution. A non-dominated set itself has multiple characteristics that should
be optimized. Namely, the distance to the optimal non-dominated set should be minimized, the solutions
should be well distributed (for example uniform) and for each objective function a wide variety of values
should be covered.

Esben and Kuh [19] defined a metric that computes a single value for any given set of non-dominated solu-
tions, which makes it just as easy to compare algorithms as it would be for an SOO problem. Note that this
only captures the distance to the optimal non-dominated set and does nothing with the other two charac-
teristics described earlier. The quality metric Q(X) for non-dominated set X is formally defined in equation
3.1, where f ′

i (x) is a normalized objective function fi (x), wi ∈ [0,1] is the weighting factor, E is the expected
value over all possible user preference configurations w ∈W . Note that computing this metric could become
computationally intensive for MOO problems with a high number of objective functions and that in theory
W should be infinitely large.

Q(X) = E
w∈W

[
min
x∈X

{
m∑

i=1
wi · f ′

i (x)

}]
(3.1)

In order to capture all three characteristics into metrics Zitzler et al. defined three metrics M1, M2 and M3,
that measure the average distance to the optimal solution with a distance metric d , the distribution and the
extent of set X respectively and are defined in equation 3.2 [72]. Where X̄ is the non-dominated set found by
an optimal algorithm,σ the size of a neighbourhood. ForM1 ≥ 0 it holds that smaller is better, forM2 ∈ [0, |X |]
it holds that larger is better distributed and M3 should also be as large as possible.

M1(X , X̄) = 1

|X |
∑

x∈X
min
x̄∈X̄

{d(x, x̄)} (3.2a)

M2(X ,σ) = 1

|X |−1

∑
x∈X

∣∣{x ′ ∈ X | d(x, x ′) >σ}∣∣ (3.2b)

M3(X) =
√

m∑
i=1

max
x,x′∈X

{
d(xi , x ′

i)
}

(3.2c)

3.4. Taxi demand prediction 9

Zitzler et al. [72] also defined two other metrics to compare the performance of MOO algorithms for the
multi-objective knapsack problem. Note that with this problem all objective functions are maximized and all
fi (x) ≥ 0. The first metric S(X) measures the space covered by a non-dominated set X . For the 2-dimensional
case one solution x covers the rectangular area between points (0,0) and (f1(x), f2(x)), this works well because
of the structure of the problem. However this metric can easily be adapted to be useful for minimization
problems. The second metric C(X , X ′) ∈ [0,1] compares two non-dominated sets X and X ′ by counting the
number of times X ′ gets dominated by a solution in X , which is defined in equation 3.3. When all solutions
in X ′ are dominated by a solution in X , then C(X , X ′) = 1. Note that in general the statement C(X , X ′) =
1−C(X ′, X) is false, therefore both values are interesting while comparing two algorithms.

C(X , X ′) =
∣∣{x ′ ∈ X ′ | ∃x ∈ X : x º x ′}

∣∣
|X ′| (3.3)

The multi-objective algorithms described in literature are mainly evolutionary algorithms which are not use-
ful for a real-time setting. On the contrary the metrics used to evaluate these algorithms are useful to evaluate
the non-exact algorithm we propose in the next chapter.

3.4. Taxi demand prediction
This section gives an overview of the working of methods developed for taxi demand prediction and the use
cases for these methods. The authors of multiple papers had a common goal, namely to prevent taxi divers
from roaming for new customers to save cost. Thus this thesis and these authors have as goal to increase the
effective utilization of taxis.

Phithakkitnukoon et al. [49] described a method to predict the number of vacant taxis based on historical
data for 1×1 kilometre cells in the city of Lisbon, Portugal. The predictive model uses the time of the day, the
day of the week and the weather condition as help to predict more accurately. The conditional probability of
y vacant taxis given the time of the day T , the day of the week D and the weather condition W is stated in
equation 3.4.

P (Y = y | T,D,W) = P (Y = y) ·P (T,D,W | Y = y)

P (T,D,W)
(3.4)

Also Chang et al. [11] used time of the day, the day of the week and the weather condition in their algorithm
to predict taxi demand hotspots. However they concluded that these features are not enough, because events
like a musical performance, affect the distribution of taxi requests significantly. The authors also compared
three clustering algorithms, namely k-means, agglomerative hierarchical clustering and DBSCAN (see section
3.5), to cluster the customer’s pickup and drop off locations in six cities in the northern part of Taiwan. They
cluster these locations, such that they can map coordinates to buildings or city blocks. However the authors
did not draw a conclusion, because none of them were the absolute best and all three algorithms had their
advantages and disadvantages.

Moreira-Matias discussed several models [43] to predict taxi demand with an online algorithm. One of them
assumed the probability to have n taxi requests within a determined time period to be a Poisson distribution
with a time dependent rate λ(t). The calculation of λ(t) was based on historical data and recent information
gathered during the execution of the algorithm. The weighted variant of this model attached more weight
to recent information, in this case λ(t) is calculated by the exponential moving average of the last α obser-
vations. Another model Moreira-Matias proposed for taxi demand prediction is the ARIMA model, which is
able to update itself and makes less assumptions such as periodicity.

The same features discussed in this section can also be used with the calculation of the expected cost of a taxi
ride. However the methods to predict taxi demand are not applicable to predict taxi demand.

3.5. Methods for clustering data
Since both scheduling and taxi demand prediction algorithms heavily depend on various clustering methods,
this section describes a few of them. In the world of data analysis clustering algorithms are used to do un-
supervised classification of observations into groups (clusters) [27]. In this section n denotes the number of

10 3. Related work

observations that will be divided in clusters. Each observation is represented as p dimensional feature vector
x. There are different kinds of cluster algorithms used for different kinds of datasets. To be able to learn how
taxi rides are distributed over the year a cluster algorithm is needed. The available features of a taxi ride are:
pick up location, a drop off location, a pick-up time and a drop off time. Note that a location itself consists of
two features namely the longitude and the latitude.

Some algorithms are only capable of dealing with two dimensional data, e.g. a location. Other algorithms
are capable of dealing with higher dimensional data, e.g. multiple locations with a time and a date. The
survey of Xu and Wunsch [70] lists for different kinds of clustering algorithms some examples. For numerous
algorithms the number of clusters need to be defined before hand, e.g. k-means. This section describes
clustering algorithms that have been used to predict taxi demand in the past or seems promising. Methods for
choosing a useful number of clusters are described in subsection 3.5.6. Methods for computing the similarity
between two objects are described in subsection 3.5.1. Clustering sequential data, e.g. sound waves, is not
discussed since this method cannot be applied to taxi rides.

3.5.1. Methods for computing similarity

Before we can divide data data in clusters we should be able to say something about the similarity of obser-
vations. Different metrics have been defined for computing the distance or similarity of observations, the
most popular metric for numerical features is the Euclidean distance, which is defined in equation 3.5. Other
well-known metrics include the Manhatten distance and cosine similarity, which are defined in equation 3.6
and 3.7 respectively. The Manhatten distance, also known as the city block distance, and Euclidean distance
are sensitive to overweight the largest-scaled feature [27]. To overcome this drawback the data could be nor-
malized first. The cosine similarity naturally has the property that it ignores the length of the feature vectors,
because it computes the angle between feature vectors. Cosine similarity is useful when one would like to
classify texts while ignoring the length of the text. When dealing with coordinates the haversine distance
could be used. This metric accounts for the spherical property of the earth and is defined in equation 3.8,
where φa the latitude of location a, λa the longitude of location a and r the radius of the earth.

d(a,b) =
√∑p

i=1 (ai −bi)2 (3.5)

d(a,b) =
p∑

i=1
|ai −bi | (3.6)

d(a,b) = cos(θ) = a ·b

‖a‖‖b‖ =
∑p

i=1 ai bi√∑p
i=1 a2

i

√∑p
i=1 b2

i

(3.7)

d(a,b) = 2r ·arcsin

√
sin2

(
φa −φb

2

)
+cos

(
φa

)
cos

(
φb

)
sin2

(
λa −λb

2

)
(3.8)

3.5.2. Hierarchical clustering

Hierarchical cluster algorithms organize the data in a tree structure, called a dendrogram, where the nodes
represents subsets of the whole dataset and the leafs represent an observation. This tree structure can be
build bottom-up (agglomerative) or top-down (divisive). Different clustering assignments can be retrieved
from this tree by cutting it at a certain height. The divisive approach is not commonly used in practice [70],
therefore only the agglomerative approach is described in more detail. A simple agglomerative hierarchical
clustering algorithm can be described with the pseudo code in algorithm 1. This algorithm cost O(n2 log(n))
time and O(n2) space, if a sorted data structure for the distances is used.

All agglomerative hierarchical cluster algorithms require to compute distance between two clusters. Com-
puting the distance between a newly formed cluster C1 ∪C2 and another cluster C3. This could be done in
several ways [44], e.g. the single link method which uses equation 3.9.

d(C1 ∪C2,C3) = min(d(C1,C3),d(C2,C3)) (3.9)

3.5. Methods for clustering data 11

Algorithm 1: General agglomerative hierarchical clustering algorithm [44].

Create n clusters with each one observation
Compute all pair-wise distances between the clusters
repeat

Merge the two closest clusters
Recompute distances between clusters

until one cluster remains

3.5.3. Squared error-based clustering

The goal of the k-means clustering problem is find a clustering assignment {C1,C2, ...,Ck } such that each x j

for 1 ≤ j ≤ n is in exactly one cluster and the sum of the squared error over all 1 < k < n clusters is minimal
[26]. In equation 3.10 the objective function for the k-means clustering problem is stated formally. In this
equation µi is a p dimensional vector that represents the mean of cluster Ci . This clustering problem has
been proven to be NP-hard [18, 38].

f ({C1,C2, ...,Ck },µ) =
k∑

i=1

∑
x∈Ci

∥∥x −µi
∥∥2 (3.10)

The k-means heuristic algorithm [36] is a well-known and easy to understand algorithm with a time complex-
ity of O(nkp). The algorithm starts with clustering the data in k clusters based on randomly chosen means.
Then the centroid of each cluster is computed, which becomes the new mean. Finally clustering based on
the new means and computing new means is repeated a few times until the algorithm converged to a local
optimum and the data points do not switch cluster. A major disadvantage of the k-means algorithm is that it
is sensitive to outliers.

3.5.4. Fuzzy clustering

With fuzzy clustering, in contrast to hierarchical clustering and squared error-based clustering, can an obser-
vation be partially assigned to multiple clusters. When J (U ,µ) in equation 3.11 is minimal an optimal fuzzy
clustering with c clusters is found. A fuzzy clustering can be described by a membership matrix U of size c×n
where ui j ∈ [0,1] describes the degree of membership of x j in Ci . The distance measurement function d , the
number of clusters 1 < c < n and the weighting exponent 1 ≤ m should be selected beforehand. Selecting m
can be done experimentally, but for most data 1.5 ≤ m ≤ 3.0 gives good results [7].

J (U ,µ) =
c∑

i=1

n∑
j=1

(ui j)md(x j ,µi) (3.11)

The fuzzy c-means (FCM) algorithm [7] starts by fixing c, m, d(·) and a small positive number ε. In the first
round the means µ0 are selected randomly. In each next round t ≥ 0 of the algorithm the membership matrix
U (t) is computed with 3.12 and new means µ(t+1) are computed with equation 3.13 and the stop condition∥∥µ(t+1) −µ(t)

∥∥< ε is checked [70]. Just as k-means is FCM sensitive to outliers.

ui j =
(

c∑
k=1

(
d(x j ,µi)

d(x j ,µk)

)2/(m−1)
)−1

(3.12)

µi =
n∑

k=1
(ui k)m · xk

/
n∑

k=1
(ui k)m (3.13)

3.5.5. Density based clustering

Density based clustering algorithms tend to ignore outliers and are therefore able to cope well with data
sets with outliers. DBSCAN [20] is able to find clusters of arbitrary shape and relies on the density based
notion of clusters. This algorithm iterates over a list of unclassified points and tries to find neighbours that

12 3. Related work

are reachable without violating the density constraint. Efficiently finding neighbours is done by using a R∗-
tree. DBSCAN costs O(n log(n)) time and space and can produce clusters of any shape, which is depending
on the application a advantage or a disadvantage.

3.5.6. Choosing the number of clusters

Numerous algorithms have as parameter the desired number of clusters k, which greatly influences the
meaningfulness of the outcome. For some applications a person can, because of his domain knowledge,
manually determine a k. If this is not an option we should look for methods that can automatically deter-
mine a useful number of clusters. A simple rule of thumb k ≈p

n/2 [39] could be used, but more advanced
methods usually work better. This section describes a few methods that find a good balance between a com-
plicated model and loss of information, which corresponds with too many and too few clusters respectively.

Salvador and Chan proposed an efficient algorithm that is called the L Method which finds the point of maxi-
mum curvature in the graph of ’number of clusters’ versus ’a clustering evaluation metric’ [57]. The L Method
tries to fit two straight lines on this graph. Using only a part of this graph usually works better, the best part is
found in an iterative process by applying the L Method. This method is can be efficiently be combined with a
hierarchical clustering algorithm, because with the dendrogram different clusterings with different number
of clusters can be easily generated.

It turned out that clustering algorihms were not needed to calculate the expected cost of a taxi ride. However
the similarity functions defined in this section are needed with regression analysis and some interpolation
methods which are needed to compute this expected cost in chapter 5.

3.6. Regression Analysis

The purpose of regression analysis is to construct mathematical models which describe the relationship be-
tween variables [58]. This is exactly what is needed to compute the expected cost of a taxi ride, because
this based on the relationship between the various features, such as time and location, and the cost of the
ride. This section first describes the most simple form of regression analysis, continues with more advanced
methods and concludes with the favourable and unfavourable properties of the methods described.

A simple linear regression model fits a straight line through a set of data points. To define the best fit the mean
squared error (MSE) is often used, but also other loss functions can be used. When the relation between the
predictor, also called independent variable, and the predictive, also called dependent variable, does not de-
scribe a linear relation other methods should be used. Polynomial regression, a special case of multiple linear
regression which allows more predictive variables, considers the terms of the polynomial independent. Such
a polynomial is stated in 3.14, where the problem is to find the parameters α, α1, α2 and α3 that describes
the relation between the dependent variable y and the predictors x, x2 and x3 best. The best parameters can
be found by minimizing the loss function with an optimization algorithm. Examples of popular optimization
algorithms used for regression analysis include several non-exact algorithms, such as Gradient descent and
Levenberg-Marquardt algorithm [32]. Most of these algorithms need to be initialized with a guess such that
it can find a nearby local minimum.

ŷ =α0 +α1x +α2x2 +α3x3 (3.14)

A new problem arises while using polynomial regression, namely what degree of polynomial is used to fit the
data. A too low degree polynomial can cause underfitting and a too high degree polynomial can cause overfit-
ting. Both underfitting and overfitting is undesirable, because the true relation between the variables remains
unclear. With underfitting the regression function is not able to fit the data and the loss value computed by
the loss function stays relatively high. With overfitting the loss value is extremely low and fits the data well,
but an overfitted function fails to generalize to other data sets. Cross-validation is a popular way to check
if the model generalizes well to other data sets. With cross-validation the data set is divided in a training
and a validation set. The training set is used to learn the parameters and the validation set is used to vali-
date the selected hyperparameters. The degree of the regression function is an example of a hyperparameter.
Different forms of cross-validation have different ways of splitting up the data. For example leave-one-out
cross-validation uses only one observation for validation and the rest of the data is used for training. The
average over all possible ways of splitting up the data can be evaluated. Another well-known form is k-fold

3.7. Interpolation Methods 13

cross-validation which randomly partitions the data in k subsets, then 1 subset is used for evaluation and
the remaining k −1 subsets are used for training. Another approach to prevent overfitting is to use Tikhonov
regularization, also known as ridge regression, which favours solutions with smaller values for α j . This is
done by using another loss function, for example the one stated in equation 3.15, where each measurement
yi is compared with the predicted value ŷi . The parameter λ can be selected empirically in combination with
cross-validation. Note that with λ= 0 the loss function in equation 3.15 is the same as MSE.

n∑
i=1

(ŷi − yi)2 +λ||α|| (3.15)

When its hard to select a regression function one can use a Multilayer Perceptron (MLP), which is directed
graph where each layer is fully connected with the next. The first layer is fed the features, the last layer outputs
the predicted value(s) and in between one or more hidden layers connect the two. Each node receives a
number of weighted values, sums them up, feed that to an activation function and passes on the value to all
connected nodes. Learning a neural network comes down to learning the weights which minimizes a loss
function. This is done by backpropogation in combination with an optimization algorithm which is usually
Stochastic Gradient Descent, Adam [30] or L-BFGS [33]. The so-called hyperparameters of the MLP are the
number of hidden layers, the number of nodes within each layer, the loss function, the activation function,
the initialization of the weights and the learning rate of the algorithm. Selecting the hyperparameters is a non-
trivial task and can be done manually or with coordinate descent, grid search, random search and Bayesian
optimization [61].

Nonparametric regression can also be used when its hard to select a regression function, this type of regres-
sion does not use a predefined global model. Kernel regression is a nonparametric regression which estimates
a continuous dependent variable by convolving a kernel function for each of the data points’ locations. An-
other example is nonparametric multiplicative regression (NPMR). NPMR comes in different flavours, but
they have in common that they all use a predefined local model and a kernel function which is used to define
how local is local, i.e. it sets a weight for the measurements before optimizing the local model. This local
model can be a weighted average, linear regression or logistic regression [40].

Although some methods are easier to use than other, all regression analysis methods described in this section
are potentially methods useful for the cost prediction of rides. In addition cross-validation is used to validate
and evaluate the methods in chapter 6.

3.7. Interpolation Methods

Regression analysis makes it possible to construct a model that describes the relationship between variables,
which generalizes well over similar data sets. Most methods require a predefined model and the algorithm
must find the parameters or weights of this model. As seen in the previous section, selecting a model is
sometimes difficult. With interpolation one tries to accurately predict the value of an unsampled point by a
set of sampled points in d-dimensional space. Most interpolation methods are easier to apply than regression
analysis, but can still give a prediction of the complete feature space if enough data is provided. Interpolation
for multiple dimensions becomes harder especially for an irregular grid, but methods do exist. Since only
spatial interpolation methods are used in this thesis only this kind of interpolation methods are discussed
in the rest of this section. These are nearest neighbours, natural neighbours, inverse distance weighting,
linear interpolation, polynomial interpolation. More interpolation methods used for spatial analysis, such as
Kriging and spline interpolation, are discussed with examples and applications by Mitas and Mitasova [42].

Nearest neighbours interpolation is arguably the most simple interpolation method. When the value at some
point needs to be predicted it simply predicts the value for the nearest point the value is known. This has a
worst case time complexity of O(n), but an average time complexity of O(logn) for n known points with for
example a k-d tree. The nearest neighbours interpolation method results in Voronoi tessellation. A related
method is the natural neighbours interpolation [60], which make use of Voronoi tessellation of the observa-
tions. The prediction u(x) for the unsampled point x is a weighted average of m neighbouring observations.
The weights wi is the area stolen from observation xi after inserting x in the Voronoi tessellation. Note that

14 3. Related work

ui is the value at point xi .

u(x) =
m∑

i=1
wi ui

/
m∑

i=1
wi (3.16)

Inverse Distance Weighting (IDW) [59], defined in equation 3.17, is a weighted average over all N observa-
tions to predict the value u(x) at an unsampled point x. It is assumed that all points have an influence on the
value of unsampled points, but this decays with an increasing distance. When x is being predicted, the weight
wi (x) of observation xi is defined by equation 3.18, which makes use of distance metric d(·, ·) and a decaying
parameter p. A higher value for p weights nearby samples even more, than distant observations. The param-
eter p is usually set to a value between 1 and 5, but this depends on the application of IDW and should be
selected empirically. The runtime complexity for predicting one value is O(n), which can be computationally
to intensive for some applications. This can be reduced to an average time complexity of O(m logn) if only m
nearby observations are considered and a efficient spatial search algorithm like k-d tree is used.

u(x) =
n∑

i=1
wi (x)ui

/
n∑

i=1
wi (x) (3.17)

wi (x) = 1

d(x, xi)p (3.18)

More recently, Lu and Wong [34] proposed the Adaptive Inverse Distance Weighting (AIDW) method. This
method, in contrast to IDW, does not select a value for p a priori, but computes one based on the density of
samples near the unsampled point. The authors show that their method performs better on two examples
compared to IDW.

Linear interpolation for multiple dimensions uses a triangulated irregular network and computes for each
triangle a bivariate function [42]. This method will clearly not produce a smooth landscape, but this is some-
times desirable. Polynomial interpolation methods for multiple dimensions use first-order or both first- and
second-order derivatives. Akima [5] proposed a method to use a fifth-degree polynomial as interpolating
function for each triangle.

All interpolation methods described in this section are applicable for cost prediction. However the question
is whether or not the smoothing some methods apply is favourable, which is answered in chapter 6.

4

Finding the best offers

The algorithms in this chapter provide an answer to the question: “How can an online algorithm efficiently
compute a non-dominated set of offers in reaction to a taxi ride request, given a large list of already accepted
taxi rides, within a small enough period of time?” By combining the newly requested taxi ride with one or
multiple already accepted taxi rides we can reduce the cost of the new taxi ride request. This cost reduction
can be passed on to the customer in a nice offer. A list of the best offers could, for example, be presented to
the customer via a website or mobile phone application.

Recall from chapter 2, that the cost for a new incoming taxi ride request is defined by the cost for perform-
ing all taxi rides with the new taxi ride minus the cost for doing all taxi rides without the new taxi ride. An
optimal algorithm should compute an optimal schedule for both scenarios. As stated in the problem de-
scription the algorithm should be able to produce an answer within a second for as large as possible problem
sizes and an even quicker result will be favourable, because of the application of the algorithm. As stated
in chapter 3, solving a MVDARPTW is proven to be NP-hard. Due to this NP-hardness of the problem, the
available computation time and the way companies do their scheduling it is justified to limit ourselves to an
insertion heuristic. Generally these kind of heuristics give poor results on scheduling problems, especially
when applied on many jobs in succession. However the scheduling is used for an estimation of the costs and
a conservative cost estimation is even a positive property. Additionally it is inconvenient for the customer
to constantly reschedule the ride therefore these rides may only be exchanged between taxis from the same
company. Both the real world and the insertion heuristic imply that whenever a taxi ride is sold to a customer
it is fixed in the schedule.

The first section gives a mathematical explanation how to obtain the objective values, that is the cost and the
waiting time, when a taxi ride is inserted in a certain place in the schedule. The second section describes
a naive algorithm that evaluates all possibilities. The two subsequent sections each describe an algorithm
that is an improvement upon the naive algorithm with regard to the runtime. This chapter concludes with a
section about niching methods, which can be used to reduce the number of solutions.

4.1. Cost for inserting a taxi ride

This section describes how to compute the cost for a taxi ride and the waiting time for the customer. Recall
from chapter 2 that the waiting time is defined as the offset to the requested departure time. Since we limit
ourselves to an insertion heuristic, it is not needed to evaluate the cost of the complete schedule and only
evaluating this local change is a lot more efficient. This section describes examples and formulas to evaluate
the local change in the schedule. This provides good insight into what is required to implement any algorithm
to find the list of best offers.

Recall from chapter 2 the notation to denote the location of the home depot pC of a taxi company C and the
pickup location pp

i , the drop off location pd
i , the pickup time t p

i and the drop off time t d
i for a taxi ride Ri . In

figure 4.1 all four possible scenarios are visualized, namely the new ride is either the first for a taxi in figure
4.1a, scheduled before all other rides in figure 4.1b, scheduled after all other rides in figure 4.1c or scheduled

15

16 4. Finding the best offers

between two other rides in 4.1d. In these figures a thick line indicates a part of a route where the taxi seats a
passenger, a dashed line indicates a part of the route the taxi would have driven when ride R j was not inserted
and a normal line indicates a part of the route the taxi is empty. In the example illustrated by figure 4.1a the
cost of R j is the cost of driving parts a, b and c. In the example illustrated by figures 4.1b, 4.1c and 4.1d the
cost of R j is the cost of driving parts a, b and c minus part d . Note that if the taxi driver has to wait at location
pp

j the cost for R j does not increase, because the taxi driver is already paid for this time by the customer of

ride Ri+1. However a customer must pay for the waiting time when this ride is appended at the beginning or
end of an existing schedule.

pC

ppj pdj

a

b

c

(a) T = 〈R j 〉

pCppj

pdj ppi

a

b

c

d

(b) T = 〈R j ,Ri , ...〉

pC

pdi ppj

pdj

a

b

c

d

(c) T = 〈...,Ri ,R j 〉

pdi

ppj pdj

ppi+1

a
b

c

d

(d) T = 〈...,Ri ,R j ,Ri+1, ...〉
Figure 4.1: Insertion of a taxi ride R j in an existing schedule T ′ = T \ {R j }

Equation 4.1 defines f ′
cost (C ,T,R j) and expresses the cost of a new taxi ride R j driven by taxi T working for

company C with T the taxi’s new schedule already including R j . The equation evaluates the increase in
time and the increase in distance separately. The increase of distance, defined by f ′d

cost (C ,T,R j), subtracts
the length of the old route from the length of the new route. The increase of time, defined by f ′t

cost (C ,T,R j),
subtracts the time needed for the old route from the time needed for the new route and adds the waiting
time for the driver. Recall that Cd denotes the cost per driven kilometre and Ct denotes the cost per minute.
Note that T is sorted on ascending order of pickup time. Given a schedule T = 〈R1,R2, ...,R|T |〉 the inequality
t p

1 < t d
1 < t p

2 < t d
2 < ... < t p

|T | < t d
|T | should hold, else the schedule is infeasible. The schedule is also infeasible

when a taxi cannot drive from a drop off location to the next pickup location in time, thus there exists an
1 ≤ i < |T | such that the inequality t d

i + ft (〈pd
i , pp

i+1〉) > t p
i+1 holds.

f ′
cost (C ,T,R j) =

{
∞ if T is infeasible

Cd · f ′d
cost (C ,T,R j)+Ct · f ′t

cost (C ,T,R j) otherwise
(4.1)

f ′d
cost (C ,T,R j) =

fd (〈pC , pp

j , pd
j , pC 〉) if T = 〈R j 〉

fd (〈pC , pp
j , pd

j , pp
i 〉)− fd (〈pC , pp

i 〉) if T = 〈R j ,Ri , ...〉
fd (〈pd

i , pp
j , pd

j , pC 〉)− fd (〈pd
i , pC 〉) if T = 〈...,Ri ,R j 〉

fd (〈pd
i , pp

j , pd
j , pp

i+1〉)− fd (〈pd
i , pp

i+1〉) if T = 〈...,Ri ,R j ,Ri+1, ...〉

(4.2)

f ′t
cost (C ,T,R j) =

ft (〈pC , pp

j , pd
j , pC 〉) if T = 〈R j 〉

ft (〈pC , pp
j 〉− ft (〈pC , pp

i 〉)+ t p
i − t p

j if T = 〈R j ,Ri , ...〉
ft (〈pd

j , pC 〉)− ft (〈pd
i , pC 〉)+ t d

j − t d
i if T = 〈...,Ri ,R j 〉

0 if T = 〈...,Ri ,R j ,Ri+1, ...〉

(4.3)

Sometimes an infeasible schedule can be made feasible again by changing the departure time of the newly
requested taxi ride. This relaxation of the departure time constraint leads to more possible solutions, and thus
more offers a customer can choose from. In some scenarios a lower cost can also be achieved by changing
the departure time of a ride. For example it might be that if the same ride, but a year later is less costly than it
would be today. Thus if we completely remove the departure time constraint we must evaluate possibilities
in the distant future. The chance a customer is interested in an offer, with a large waiting time, is virtually nil.
Thus we should define some time window to limit the search space.

4.2. Naive algorithm 17

We need to allow the customer to change the departure time of his taxi ride to influence the cost of it. A time
window in which this departure time can be moved is denoted by t̂w = [t−w , t+w]. With t−w and t+w the offset to
the requested departure time. Since customers are not interested in offers where both the cost and the time
between the requested and actual departure time is higher than another offer we also introduce t̂ ′w ⊆ t̂w . The
interval t̂ ′w contains all waiting times for which one offer is not strictly better, i.e. there exists no t1, t2 ∈ t ′w
such that (C ,R j , t1) Â (C ,R j , t2). Figure 4.2 shows all possible scenarios when a ride R j is assigned to a certain
taxi T . In all the listed examples tp (R j) = 0, which is not feasible in figures 4.2b, 4.2d, 4.2f and 4.2h. The
interval t̂w for a taxi ride R j when assigned to a taxi T , is denoted by fw ai t (T,R j) and is defined in equation
4.4. The function f ′

w ai t (T,R j) is defined in equation 4.5 and computes t̂ ′w .

Rj Ri

0 t+wt−w = −∞
(a) T = 〈R j ,Ri , ...〉 and f ′w ai t (T,R j) = [0, t+w]

Rj Ri

0t+wt−w = −∞
(b) T = 〈R j ,Ri , ...〉 and f ′w ai t (T,R j) = [t+w , t+w]

Ri Rj

0t−w t+w = −∞
(c) T = 〈...,Ri ,R j 〉 and f ′w ai t (T,R j) = [t−w ,0]

Ri Rj

t−w0 t+w = −∞
(d) T = 〈...,Ri ,R〉 and f ′w ai t (T,R j) = [t−w , t−w]

RjRi Ri+1

t−w 0 t+w

(e) T = 〈...,Ri ,R j ,Ri+1, ...〉 and f ′w ai t (T,R j) = [0,0]

RjRi Ri+1

t−w 0t+w

(f) T = 〈...,Ri ,R j ,Ri+1, ...〉 and f ′w ai t (T,R j) = [t+w , t+w]

Rj

0t−w = −∞ t+w = −∞
(g) T = 〈R j 〉 and f ′w ai t (T,R j) = [0,0]

RjRi Ri+1

t−w0 t+w

(h) T = 〈...,Ri ,R j ,Ri+1, ...〉 and f ′w ai t (T,R j) = [t−w , t−w]

Figure 4.2: All possible scenarios to schedule R j in T

fw ai t (T,R j) =

(−∞;+∞) if T = 〈R j 〉
(−∞; t p

i − ft (〈pp
j , pd

j , pp
i 〉)] if T = 〈R j ,Ri , ...〉

[t d
i + ft (〈pd

i , pp
j 〉);+∞) if T = 〈...,Ri ,R j 〉

[t d
i + ft (〈pd

i , pp
j 〉); t p

i+1 − ft (〈pp
j , pd

j , pp
i+1〉)] if T = 〈...,Ri ,R j ,Ri+1, ...〉

(4.4)

f ′
w ai t (T,R j) =

; if fw ai t (T,R) =; (when T infeasible)

[0,0] if T = 〈R j 〉
[min(0, t+w); t+w] if T = 〈R j ,Ri , ...〉∧ fw ai t (T,R j) = [t−w , t+w]

[t−w ;max(0, t−w)] if T = 〈...,Ri ,R j 〉∧ fw ai t (T,R j) = [t−w , t+w]

[max(0, t−w);max(0, t−w)] if T = 〈...,Ri ,R j ,Ri+1, ...〉∧ fw ai t (T,R j) = [t−w , t+w]∧0 < t+w
[min(0, t+w);min(0, t+w)] if T = 〈...,Ri ,R j ,Ri+1, ...〉∧ fw ai t (T,R j) = [t−w , t+w]∧0 > t−w

(4.5)

4.2. Naive algorithm

This section describes a straightforward algorithm, which is a good starting point and useful when comparing
runtime and the quality of solutions of other algorithms. This naive algorithm uses an insertion heuristic that
uses the objective functions f ′

w ai t and f ′
cost defined in section 4.1.

18 4. Finding the best offers

This naive algorithm tries to add the new taxi ride to every taxi possible and computes the non-dominated
set. An example of such a non-dominated set is illustrated in figure 4.3, where the non-dominated solutions
are marked blue and the rest of the feasible solutions are marked in grey.

waiting time0
p
ri
ce

non-dominated solutions

feasible solutions

Figure 4.3: Representation of search space

The pseudocode is stated in algorithm 2, where S is the current schedule and R is the taxi ride for which a
set of solutions is needed. Schedule S is nothing more than a set of companies that are registered to compete
for the best offer. Recall from chapter 2, that a company C = {T1,T2, ...,T|C |} is a set of taxis and a taxi Ti =
〈R1,R2, ...,R|T |〉 is a list of rides in order of pickup time. When R is scheduled to a certain taxi T it can result
in an infinite number of solutions, because if f ′

w ai t (T,R) = [t−w , t+w] with t−w 6= t+w a customer could be offered
every waiting time tw ∈ [t−w , t+w]. We assume that the customer is only interested in one of the extremes. In
this way every gap in the schedule can result in zero, one or two feasible solutions. In the pseudocode the
set of feasible solutions is denoted with X , where 0 ≤ |X | ≤ 2(|T |+1). Then every x ∈ X is added to the non-
dominated set Σ if and only if x is not being dominated by one of the solutions in Σ. Next, all solutions x∗ ∈Σ
that are dominated by x are removed from Σ. Note that solutions with a waiting time tw < 0 cannot dominate
solutions with a waiting time t ′w > 0 and vice versa. If n is the number of taxi rides, the time complexity of
the FINDOFFERS procedure is O(n2), because in the worst-case scenario all n solutions are non-dominated
and O(n2) comparisons are needed to verify this. However in practice, the algorithm’s runtime scales linear
with the number of taxi rides, because computing the routes takes far out the most time. In section 6.2 the
runtime of the algorithm is evaluated empirically.

Algorithm 2: Pseudo code of naive algorithm

input : A schedule S and a taxi ride R
output: A non-dominated set Σ
procedure FINDOFFERS(S , R)

Σ←; /* non-dominated set */
foreach Ci ∈ S do

foreach T j ∈Ci do
X ← schedule R in T j

foreach x ∈ X do
if ∀x∗ ∈Σ : x º x∗ then

Σ← {x ′ | x ′ ∈Σ∧x � x ′}
Σ←Σ∪ {x}

end
end

end
end
return Σ

end

4.3. Parallel algorithm 19

4.3. Parallel algorithm

Suppose the number of taxi companies and taxis is too large for the naive algorithm to handle in a given
amount of time. One way to decrease the computation time is to use a faster computer. However a sequential
algorithm like the one described in the previous section cannot benefit from multiple cores, but a parallel
algorithm like the one described in this section can. The algorithm introduced in this section is based on the
naive algorithm.

The parallel algorithm consists of four main steps. First all n solutions must be computed and stored, which
can be done in parallel, because these solutions are completely independent. The second step is to initialize
a list D , which stores for every solution whether or not it is dominated by another. In the third step, for every
pair of solutions Xi and X j it is checked if X j is dominated by Xi and if so D j is set to 1. In the last step
the output list can be composed, because all non-dominated solutions Xi ∈ Σ have Di = 0. This algorithm
requires W (n) =O(n2) work and T (n) =O(n2/p) time for p processors. Thus we need p = n2 processors for a
constant time algorithm.

Algorithm 3: Pseudo code of naive parallel algorithm

input : A schedule S and a taxi ride R
output: A non-dominated set Σ
procedure FINDOFFERS(S , R)

T← {T | T ∈C ∧C ∈ S}
parallel foreach Ti ∈T do

xi ← schedule R in Ti

end
initialize D with Di ← 0 for each 1 ≤ i ≤ |x|
parallel foreach 1 ≤ i , j ≤ |x| do

if xi Â x j then D j ← 1
end
Σ← {xi | Di = 0}

end

4.4. Algorithm with precomputed routes

The previous section showed a constant time algorithm exists if enough processors are available. It is not
practical to spend a fortune on a powerful computer and use the parallel algorithm to solve the problem
within the desired amount of time. This section introduces an algorithm that tries to achieve good perfor-
mance on a regular household computer.

The computation of a route between two locations with a routing API such as OSRM [35] is relatively time
consuming in the naive method. It roughly costs 10 milliseconds per API call, depending on the computer, API
interface and type of call. To overcome this bottleneck the distance and travel time between many locations
can be precomputed and stored in a giant lookup table. However this comes with a downside, because when
using the precomputed routes the cost for travelling between two locations can only be approximated. To
compensate for this the algorithm of section 4.2 is slightly adjusted and the pseudo code of the new version
is stated in algorithm 4. Just as the naive algorithm one should provide a schedule and a taxi ride, and the
algorithm will give a set of non-dominated solutions. Please note that with only little adjustments a parallel
version of the algorithm with precomputed routes can be made.

The algorithm first computes for every possibility an estimate for fw (x) and fc (x) and stores this in non-
dominated levels. The UPDATELEVELS procedure is used to update this data structure. For two solutions x
and x ′, the operator x Â(δc ,δw) x ′ is defined in the same way as x Â x ′, thus one of the following must hold:

• fc (x)+δc ≤ fc (x ′) and | fw (x)|+δw < | fw (x ′)| and sign(fw (x)) = sign(fw (x ′))

• fc (x)+δc < fc (x ′) and | fw (x)|+δw ≤ | fw (x ′)| and sign(fw (x)) = sign(fw (x ′))

Thus when two solutions are not more than δc and δw away from each other, they are considered equally

20 4. Finding the best offers

good and therefore they should be in the same non-dominated level. This buffer is needed, because the fc (x)
and fw (x) initially computed are inaccurate and should be recomputed with the routing API, this is only done
for the best non-dominated level. However if it turns out that the first non-dominated level does not contain
any feasible solution the next non-dominated level is used, and so on. This will happen more often for a low
δc and δw , because in that case less solutions are considered equally good and less solutions are in the same
non-dominated level. The algorithm is more efficient when only the non-dominated solutions are stored
and all other solutions are discarded completely. However this will decrease the performance, because more
often the solutions kept for reevaluation turn out to be infeasible. Note that no performance guarantee for
this algorithm can be given, because a solution that should be in the non-dominated set could be marked
infeasible when computing an approximation of the objective functions.

Algorithm 4: Pseudo code of the algorithm with precomputed routes

input : A schedule S and a taxi ride R
output: A non-dominated set Σ
procedure FINDOFFERS(S,R)

Γ← {;}; Σ←;
foreach Ci ∈ S do

foreach T j ∈Ci do
X ← schedule R in T j using cached routes
foreach x ∈ X do UPDATELEVELS(Γ, x,0)

end
end
foreach Γl ∈ Γ do

foreach x ∈ Γl do
recompute x with routing API
if x is infeasible then continue
if ∀x∗ ∈Σ : x º x∗ then

Σ← {x ′ | x ′ ∈Σ∧x � x ′}
Σ←Σ∪ {x}

end
end
if |Σ| > 0 then break

end
return Σ

end

input : Non-dominated levels Γ, solution x
and level l

output: and updated Γ
procedure UPDATELEVELS(Γ, x, l)

if |Γ| = l then
Γ← Γ∪ {{x}}
return

end
dominated ← false
foreach x ′ ∈ Γl do

if x Â(δc ,δw) x ′ then
Γl ← Γl \ {x ′}
UPDATELEVELS(Γ, x ′, l +1)

else if x ′ Â(δc ,δw) x then
dominated ← true
break

end
end
if dominated then UPDATELEVELS(Γl , x)
else Γl ← {x}

end

Figure 4.4 shows a simplified image of the working of the approximation of the distance and travel time.
The solid line indicates the route stored in the lookup table. The dotted lines indicate the error introduced
by the approximation and the two rectangles indicate the size of the cell used for the selection of locations.
This figure shows that the larger the cell is, the more the queried location could be away from the reference
location, the larger the error in approximation is. The image also shows the position of the reference location
within the cell is important.

Figure 4.4: Approximation of routing

4.4. Algorithm with precomputed routes 21

The lookup table should give an accurate approximation of the distance and travel time for a route, but it
must also fit into the memory of the computer. Another constraint is the time required to collect the data
to fill the lookup table. Several methods for selecting the locations that will be used as reference can be
used. For every pair of locations the route is computed by a routing API and stored on disk, such that our
algorithm can load this file into memory in the initialization phase. The first selection method loops over
the longitude and latitude with predefined steps. However this results in many useless locations that are for
example located in the sea. The second one uses a list of ZIP codes accompanied with latitude and longitude.
Because the complete list of ZIP codes is too large a few methods of reducing the size of this list are explored.
These methods are listed in table 4.1 together with the number of locations and the time to compute the
distance/duration matrix. The abbreviations ‘PC4’, ‘PC5’ and ‘PC6’ indicate that only the first four, five and
six characters are considered of the Dutch ZIP code, which starts with four digits and ends with two letters.

In figure 4.5 an estimation of the computation time for the distance/duration matrix given the number of
locations is plotted. The storage required for the distance/duration matrix grows just as for the computation
time quadratically with the number of locations, because for n locations there are O(n2) pairs of locations.
Only half of the distance/duration matrix is filled, thus for every pair of locations (p1, p2) either the distance
and travel time is computed from p1 to p2 or from p2 to p1. This reduces the time to collect the data and the
memory to store it significantly.

0 5 10 15 20

number of locations (×103)

0

5

10

15

20

25

30

35

ti
m

e
 (
d
a
ys

)

Figure 4.5: Estimated computation time for dis-
tance matrix

method # locs. est. time cell dia. (m)
PC6 471993 53 years –
PC5 35138 107 days –
PC4 4766 47 hours –
PC6�2 11073 11 days 2624
PC6�3 5407 62.1 hours 3926
PC6�4 3185 21.6 hours 5248
PC6�8 900 1.7 hours 10495

Table 4.1: Estimated computation time for distance
matrix with different selection methods

For the method called “PC6�2” a grid with cells of size 0.02×0.02 degrees longitude/latitude is used. This
roughly corresponds with cells of size 2.2×1.4 kilometres. For each of these cells one of the selected locations
is randomly selected. This resulted in a list of evenly distributed locations, this is plotted in figure 4.6. For
every group of ZIP codes with the same numbers one is selected randomly and plotted in figure 4.7. For the
selection methods called “PC6�3”, “PC6�4” and “PC6�8” larger cells are used and the approximations will
have a larger error. In table 4.1 the cell diameters are listed, which will gives an indication of the error. The
error with different selection methods is evaluated empirically in section 6.4.

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
longitude

51.0

51.5

52.0

52.5

53.0

53.5

la
ti

tu
d
e

Figure 4.6: selection method “PC6�2”

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
longitude

51.0

51.5

52.0

52.5

53.0

53.5

la
ti

tu
d
e

Figure 4.7: selection method “PC4”

22 4. Finding the best offers

4.5. Niching methods
Preliminary experiments with randomly generated problem instances often showed that solutions in the
non-dominated set are similar to other solutions in the same non-dominated set. This section will intro-
duce methods to reduce the number of solutions by omitting similar solutions, which answers the following
subquestion: “How can the list of non-dominated solutions be reduced to a specific size, such that similar
solutions are discarded?” This is useful when for example only limited space is available on a website.

After applying the niching method to the non-dominated set, the remaining solutions should still be dis-
tributed over a large extent, because only then a customer has large variety of options he or she could be
interested in. The metrics for distribution and extent are defined as M2 and M3 in section 3.3.2. The extent
can be kept the same simply by keeping the two solutions with the largest distance. A straightforward niching
approach is to use a grid and whenever multiple solutions are in the same cell all but one must be discarded.
However two solutions in neighbouring cells can still be very close together, so this does not ensure that
no solution is in another’s neighbourhood. Moreover selecting the grid size, such that enough solutions are
discarded, is a non-trivial task.

One arguably better approach is to keep discarding solutions until M2(X ′) = |X ′|, with X ′ ⊆ X and X the
original set. This could be done by evaluating the non-dominated set sorted on x-coordinate, and discard
the next solution if it is less than σ away from the previous solution and σ could be chosen depending on
the number of solutions someone needs in the resulting set. Note that it might be needed to tweak σ to
distinguish the quality of two possible resulting sets. Therefore we might conclude that M2 is not the best
metric to measure the distribution of the solutions in the non-dominated set.

Therefore we propose a new metric M4 for the distribution of a set of solutions, which is defined in equation
4.6. The advantage of this metric is that it needs no additional parameters. It is also more expressive in the
sense that in general with two different subsets X ′, X ′′ ⊆ X where |X ′| = |X ′′| the inequality M4(X ′) 6=M4(X ′′)
holds. In contrast to the other metric where M2(X ′) =M2(X ′′) is often the case. Therefore M4 is likely to work
better in combination with a local search algorithm.

M4(X) = 1

|X |
∑

x∈X

(
min

x′∈X ,x′ 6=x

{
d(x, x ′)

})
(4.6)

The problem introduced in this section could also be formulated as: Find X ′ ⊆ X , such that |X ′| = m, M4(X ′)
is maximal and M1(X) =M1(X ′). Again the latter can only be done by keeping the outer two solutions. In any
case someone might find it unfair to discard solutions solely on metricM4, because a lot of solutions could be
discarded from the same company. This could be fixed by considering the solutions of companies separately
and give each company Ci its own number of solutions in the resulting set mi < m. A method for choosing a
value for each mi is to compute the ratio of the number of solutions of company Ci in X with respect to the
other companies.

5

Expected cost of a taxi ride

In the previous chapter methods for finding offers were described, which can give large discounts to cus-
tomers. However the first customer will never get a discount, because no previously booked rides exist. This
chapter tries to define a method that can also give a discount to the first customer. Therefore the question
we try to answer is: “How can an online algorithm efficiently compute the expected cost of a taxi ride given
the historical data of a taxi company, within a small enough period of time?” As described in chapter 2 and
4, companies combine taxi rides to reduce cost and this reduction could be forwarded to the customer in a
discount. This chapter tries to introduce a method to evenly distribute this discount over all customers. By
combining the newly ordered ride with expected future taxi ride requests also the first customer can profit
from a discount. This chapter continues with section 5.1, which describes the information needed to calcu-
late the expected cost of a taxi ride, and concludes with section 5.2, which explains two methods to compute
this expected cost.

5.1. Cost evaluation

The method to calculate the expected cost described in this section assumes that one knows the cost of op-
erating a taxi. That means one should know what the cost is to drive a certain distance with a vehicle and
what does it cost to use a vehicle for a certain amount of time. With this information you can easily obtain
the constant cost of a taxi ride, that is the time needed to load and unload baggage, the time needed by a
dispatcher to make sure the customer is served, etc. This startup cost can also reflect other types of fixed
costs, but the customer should always pay the startup cost and is therefore ignored in the rest of this chapter.
The cost per kilometre and cost per minute should cover for the cost for hiring the driver, insurance, fuel,
maintaining the vehicle, maintaining the headquarters building, marketing, etc. With this information the
total cost of a schedule with a list of rides for one day can be computed. The expected cost of ride R j given
expected rides R is defined by the difference between the total cost of R and R∪ {R j }. However computing
this is very computationally intensive, because of computing these schedules. The rest of this section will
describe an alternative approach that is feasible in a real-time setting.

To compute the expected cost of each taxi ride we split up the route in three segments and argue that the cost
of these parts should be computed in a different way. The first segment is driving from the company’s base
or current location to the pickup location of the customer. Secondly, the taxi drives with the customer from
the pickup location to the drop off location. Lastly, the taxi has to drive from the drop off location back to
its base or another important location. For the cost of the segment the customer is in the taxi the standard
fares should be used, because this segment cannot be sold to another customer. The first and last segment
could have the same fares as the second segment, unless another customer can be served during this time.
Therefore we should be able to say something about the average size of the part of the segment which can be
filled up by other taxi rides. The relative size of the part of the segment that is not filled up will be called the
ratio to pay. If for example half of a segment can be filled up by another taxi ride, the cost for this segment is
half the normal cost and thus the ratio to pay is 0.5.

23

24 5. Expected cost of a taxi ride

To come up with the expected ratio to pay for each possible segment, a number of historic days will be eval-
uated. How the historic data is used is discussed in the next section in more detail. It is important that all
customers are served at the appointed time, this will cause a waiting time for taxi drivers. Therefore the ratio
to pay can differ between cost per minute and cost per kilometre. When the volume of rides is higher the
probability a good match can be found will be higher, and the ratio to pay lower. The number of rides can be
influenced by many causes, for example the pickup location, the drop off location, the time of the day, the
day of the week, the season, the weather, holidays and local events, such as concerts. Thus we try to find a
function that maps all these features to the ratio to pay for both minutes and kilometres.

Since there are many features, we limit ourselves to the three most important ones, namely pickup location,
drop off location and time of the day. Thus we need to learn a function f f ar e : (R,R,N, {0,1}) 7→ (R,R). Which
maps a quadruple with latitude, longitude, time of the day and a boolean to a pair that indicates the expected
cost per kilometre and the expected cost per minute. The boolean indicates if false the first segment and if
true the last segment of the route. Computing the cost per minute for the first segment works slightly different
than for the last segment. Note that we assume one fixed base location, which is therefore not a parameter of
this function.

5.2. Expected taxi ride cost algorithm

As the previous section describes we are looking for an algorithm that can find the function that maps the
location and time to the expected cost per kilometre and minute given a base location and a history of taxi
rides.

The algorithm is given a large list of locations L, it will learn how much of the route between the company’s
base pC and each location, in both directions, can be filled up by other rides. These other rides come from a
history of taxi rides H . The list L should be constructed such that it covers the area customers will book rides
to. The route segments from pC to pi ∈ L and pi ∈ L to pC are learned separately, because the latter route
could be more popular than the former. The function days(H) gives a set of all days a customer is picked up
for taxi ride for all rides R ∈ H . The function rides(H ,d) denotes the set of all rides R ∈ H performed on day d .

If the first segment of ride R j can be partially filled up with ride Ri , then the cost of the first segment of R j

is defined by Cd · f d
seg ment (pC , pp

j ,Ri)+Ct · f t
seg ment (pC , pp

j ,Ri , t p
j , FORTH). If the last segment of ride R j can

be partially filled up with Ri , then the cost of the first segment of R j is defined by Cd · f d
seg ment (pd

j , pC ,Ri)+
Ct · f t

seg ment (pd
j , pC ,Ri , t d

j , BACK). Please recall that Cd and Ct denote the cost per kilometre and cost per
minute. See equations 5.1 and 5.2 for the definition of function f d

seg ment and f t
seg ment . The functions fd and

ft denote the travel distance in kilometres and the travel time in minutes, which were first defined in chapter
2.

f d
seg ment (p1, p2,Ri) = fd (〈p1, pp

i 〉)+ fd (〈pd
i , p2〉) (5.1)

f t
seg ment (p1, p2,Ri , t ,dir) =

∞ if infeasible

ft (〈pd
i , p2〉)+ t p

i − t if dir = BACK

ft (〈p1, pp
i 〉)+ t − t d

i if dir = FORTH

(5.2)

The LEARNROUTE procedure, stated in algorithm 5, simply iterates over all locations and stores for each lo-
cation and direction two polynomials, one for the minute fare and one for the kilometre fare, these functions
map the time of the day to the ratio to pay. These polynomials are computed by the LEARNSEGMENT pro-
cedure, stated in algorithm 6. A high degree polynomial to model the fare for each time of the day costs
significant less memory than storing a value for every minute of the day. The two methods are compared
with each other in section 6.6.1.For each historic day the best match is found by exhaustive search. The best
match is the one with the lowest cost, therefore the standard cost per minute and kilometre is needed. This
is used to compute the part the taxi drives empty, which results in the ratio to pay. Only the ratio to pay is
stored and not the match itself and the average of all ratios over all days is computed. This is done for every
minute of the day which results in a lot of data. To reduce the amount of data the relation between time and
cost to pay is expressed with a high degree polynomial, that is fitted with the Levenberg-Marquardt algorithm
(LMA). This polynomial also expresses the factor to pay in a much smoother way, which gives less surprising
results for customers. Note that all of this is done separately for travelling time and distance, because in the

5.2. Expected taxi ride cost algorithm 25

travelling time also the waiting time of the taxi is incorporated. By adding the waiting time to the travelling
time the two ratios are different. For each location and direction of driving the two polynomials are stored in
model M .

Algorithm 5: The main expected cost learn procedure

input : a base location pC of taxi company C
a list of interesting locations L
a history of taxi rides H normal cost per minute cm and per kilometre cd

output: a model M company C can use
procedure LEARNROUTE(pC ,L, H)

foreach pi ∈ L do
M [i ,FORTH] ← LEARNSEGMENT(pC , pi , FORTH, cd ,cm)
M [i ,BACK] ← LEARNSEGMENT(pi , pC , BACK, cd ,cm)

end
end

When a customer requests the price for a taxi ride R the procedure PRICE, stated in algorithm 7, can compute
the cost for this ride by making use of model M . For the first and last segment the factor to pay is calculated by
interpolating the polynomials of the nearby locations in list L. The interpolation needs to be done separately
for the kilometre and minute factor to pay. The number of polynomials considered during the interpolation
depends on the chosen interpolation method. In section 3.7 different interpolations methods that can handle
spatial data in an irregular grid are discussed. A few of them are compared in chapter 6. Another approach
to this problem is to make four functions from all the data collected by procedure LEARNSEGMENT, instead
of storing the polynomials for each location separately. We need four functions, because we need one for the
minutes and one for the kilometres for both directions. This could be done with a Multilayer Perceptron, ker-
nel regression or multiple regression, both discussed in section 3.6. These methods are compared in chapter
6.

Algorithm 6: The expected cost learn procedure for one route segment

input : two locations p1 and p2

a direction of the route dir indicating if the departure time or arrival time is a hard constraint
normal cost per minute cm and per kilometre cd

output: two functions f :N 7→R that maps the time to the cost factor for time and distance
procedure LEARNSEGMENT(p1, p2,di r ∈ {BACK,FORTH},cd ,cm)

normal ← fd/m(〈p1, p2〉) /* (distance,duration) for traveling from p1 to p2 */
sum ← {(0,0) | t ∈ {1,2,3, ...,24 ·60}
foreach d ∈days(H) do

best ← {(1,1) | t ∈ {1,2,3, ...,24 ·60}
foreach Ri ∈rides(H ,d) do

foreach minute t ∈ {1,2,3, ...,24 ·60} do
other ← (cd · f d

seg ment (p1, p2,Ri),cm · f m
seg ment (p1, p2,Ri , t ,dir))

alt ← other / normal /* element wise operations */
if cd ·altd + cm ·altm < cd ·best(t)d + cm ·best(t)m then

best(t) ← alt
end

end
end
sum ← sum + best /* element wise addition */

end
avg ← sum / |days(H)| /* convert sum to average */
fd ← LMA({1,2,3, ...,24 ·60}, avgd)
fm ← LMA({1,2,3, ...,24 ·60}, avgm)
return (fd , fm)

end

26 5. Expected cost of a taxi ride

Algorithm 7: The compute expected price procedure

input : a list of locations L used to train model M
a taxi ride Ri

normal cost per minute cm and per kilometre cd

base location of taxi company
output: the expected cost of the taxi ride c ∈R
procedure PRICE(L, M ,Ri ,cm ,cd , pC)

c ← cost for driving from pp
i to pd

i

interpolate M for locations pp
i and pd

i
part1 ← M [pp

i ,FORTH]d (t p
i) · fd (〈pc , pp

i 〉)+M [pp
i ,FORTH]m(t p

i) · fd (〈pc , pp
i 〉)

part3 ← M [pd
i ,BACK]d (t d

i) · fd (〈pd
i , pC 〉)+M [pd

i ,BACK]m(t d
i) · fm(〈pd

i , pC 〉)
c ← c + part1 + part3
return c

end

5.3. Risk aversion
The previous section describes a method for a risk neutral cost assignment of taxi rides. Risk aversion is
human behaviour studied by both economists and psychologists and three types of attitudes towards risk can
be identified. Firstly, with risk neutral behaviour one is insensitive to a guaranteed payment or an expected
payment of the same amount. Secondly, with risk seeking behaviour a person, e.g. a lottery participant,
is willing to accept an expected loss. Lastly, a risk averse or risk avoiding behaviour a person is willing to
pay money to reduce risk. The latter is the reason why insurance companies exist. This section proposes
four possible modifications to the method described in the previous section, such that a risk averse setting is
possible.

Only one possible way to reduce the risk of loss on a taxi ride is to increase the price, but the real question is:
“By how much should the price be increased such that the risk on a loss is acceptable for the company?” Note
that one can favour a large probability on a small loss over a small probability on a large loss. If we increase
every price by a fixed amount or a fixed percentage of the price, the whole idea of doing something with the
likelihood of future taxi rides is lost. This is because the price could exceed the initial way of computing the
cost of a taxi ride. Besides too little or too much risk could be avoided in different scenarios. Therefore we
need a function that can compute a price that is not lower than the expected cost and not higher than the
standard price, i.e. without any discount. It is favourable that the function also has a parameter α, a taxi
company can use to scale the risk it is willing to take. The price should be computed with the best matches
on the evaluated historic days, which will be referred to as observations. Assume we have n observations xi

sorted in ascending order, that is x1 ≤ x2 ≤ ... ≤ xn , where each xi indicates the amount of money needed to
break even divided by the standard price on a given route segment, historic day and time of the day. Note with
a more risk averse behaviour the probability a customer will look for a competitor increases. This lowers the
number of future taxi rides, increase the expected cost and therefore also the risk of having a loss. Modelling
customer behaviour and finding an equilibrium between avoiding risk and attracting many customers with a
low price is outside the scope of this thesis. However the following methods are easy to comprehend for the
company’s owner or sales manager.

Arguably the most simple possible method is to use the weighted average of the mean and the worst case
scenario. The function g1(x,α1) is equation 5.3 describes this method, where x̄ is the unweighted average
over all n observations and α1 ∈ [0,1] models risk neutral behaviour with α1 = 0 and extremely risk averse
behaviour with α1 = 1. Another option is to limit a maximum allowable loss with α2 ≥ 0. Function g2(x,α2)
defined in equation 5.4 assures the price is at least the expected cost. The parameter α2 could be set with a
percentage of the standard price. Note that α2 = 0 models the most risk averse behaviour.

g1(x,α1) = (1−α1) · x̄ +α1 · xn (5.3)

g2(x,α2) = max(x̄, xn −α2) (5.4)

Though the functions g1(x,α1) and g2(x,α2) are easy to understand it does not fully exploit knowledge about
the distribution of observations. The (100 ·α)th percentile could used as price but this method has the un-

5.3. Risk aversion 27

wanted property that it can give values below the expected cost. For example if a company uses the 60th

percentile, then with a probability of only 40% a taxi ride costs money, but the expected revenue could still
be below zero. However if first all observations below the mean are discarded this will work. This method is
defined by function g3(x,α3) in equation 5.5, where α3 ∈ [0,1] models the risk attitude. Where the probability
of a loss is reduced by a factor of α3, so a (near) risk neutral behaviour is modelled with α3 = 0 and the most
risk averse behaviour is modelled with α3 = 1.

g3(x,α3) = {xi | xi ≥ x̄}bα3·(|{xi | xi≥x̄}|−1)c+1 (5.5)

Using a weighted average of all observations instead is another possible method, which uses the complete
distribution of observations. The observation where more money is required to make break even on a ride
should be weighted more. The weighted average x̄w of all xi , where each observation xi has weight wi is
defined in equation 5.6. This only works if the weights are non-negative and in a non-decreasing order 0 ≤
w1 ≤ w2 ≤ ... ≤ wn , because then the weighted average exceeds the unweighted average. Note that with
weights w1 = w2 = ... = wn an unweighted average and risk neutral behaviour is simulated. The weighted
average is easy to compute and only one parameter is needed namely a non-decreasing weighting function,
for example wi = i could be used. A weighted average is, with a non-decreasing weighting function, higher
for a set of observations with a high variance than for one with the same mean, but with a lower variance.
For example sets X1 = {4,5,6} and X2 = {1,5,9} both have a mean of 5, but the weighted averages with wi = i
are 5 1

3 and 6 1
3 , respectively. If the weights wi = α4

i
n + 1−α4 are used, then with parameter α4 ∈ [0,1] the

magnitude of risk aversion can be scaled. For α4 = 1 the maximum risk aversion is obtained and with α4 = 0
a risk neutral behaviour is simulated. Note that with a non-linear weighting function more risk aversion can
be achieved.

x̄w =
n∑

i=1
wi · xi

/
n∑

i=1
wi (5.6)

The last method is possibly less suitable compared to the other methods prosed in this section, because it is
harder to explain to the director of a taxi company and for example the linear weighting function does not
allow to model a completely risk averse behaviour, but some companies could find this unnecessary. Various
weighting functions are experimented with in section 6.7 as well as the methods described by the functions
g1, g2 and g3.

6

Empirical evaluation

This chapter describes the empirical evaluation of the algorithms described in chapter 4. This section finds
for each algorithm the maximum number of taxi rides that can be considered while respecting the one second
computation time constraint. For this evaluation a dataset is constructed in section 6.1. This dataset makes
it possible to analyse the performance of the algorithms in a real-life setting. For the naive algorithm we
evaluate the runtime, in section 6.2, to create a baseline for the other algorithms. In section 6.3 the speedup
achieved by the parallel algorithm is analysed with various number of processor cores. The quality of ap-
proximation of distance and travel time with the precomputed routes is analysed separately in section 6.4,
before the solution quality and runtime of the algorithm with precomputed routes is evaluated in section
6.5. Section 6.6 describes a comparison of the methods needed for the algorithm proposed in chapter 5. The
methods to avoid risk proposed in section 5.3 are compared in section 6.7. For these comparisons another
dataset is used, which is also considered in section 6.1.

6.1. Taxi ride datasets

This section describes the datasets used for the experiments, namely two large datasets from New York City
described in section 6.1.1 and an artificial dataset for The Netherlands described in section 6.1.2. The latter
is artificial, because no real-world datasets exist that include all taxi rides driven in The Netherlands. The
Dutch dataset is used for the empirical evaluation of the algorithms described in chapter 4. The New York
City dataset is used for the empirical evaluations of the algorithms described in section 6.6. This evaluation
required a real-world dataset of at least two successive months. Other datasets exists for Porto in Portugal
[67], Rome in Italy [10] and San Francisco in the USA [50] do exists, but they only include a subset of the
vehicles or are hard to parse.

6.1.1. New York City

In New York City, USA the taxis come into two flavours, namely canary yellow and apple green. Both flavours
are coordinated by the NYC Taxi & Limousine Commission and drive for the same fares. The canary yellow
taxis, also called medallion taxis, mainly pickup passengers in Lower Manhattan, Midtown Manhattan, La-
Guardia Airport and JFK airport, because in these parts of the city the most money can be earned by the taxi
drivers. The apple green taxis, normally called Boro Taxis, drive in all 5 boroughs, except they are legally not
allowed to pickup passengers in Lower Manhattan and at the airports. The datasets are from now on called
‘yellow taxi data’ [65] and ‘green taxi data’ [64]. The yellow taxi data contain over 173 million taxi rides that
were driven in 2013. The green taxi data contain over 8 million taxi rides that were driven between August
2013 and June 2014. The pickup and drop off locations of a subset of both datasets are plotted in figure 6.1
and 6.2. These subsets were randomly selected and both contain 10,000 taxi rides. Note that in figure 6.2 the
drop off location of the Boro taxis are partially covered by the medallion taxis.

Figure 6.3 shows preliminary research on the yellow taxi data. The plot shows the distribution of taxi rides
over the time of the day for all days in the week. Time windows of 5 minutes are used. One can see that

29

30 6. Empirical evaluation

Figure 6.1: Pick up locations of yellow and green
taxis in NYC

Figure 6.2: Drop off locations of yellow and green
taxis in NYC

Fridays and Saturdays are the most popular and Mondays and Sundays are the least popular days of the week
to travel with a taxi. One can also see two dips per day this is caused by driver switches [71] and caused by the
fact that most people sleep at night.

Mon. Tue. Wed. Thu. Fri. Sat. Sun.0.0

0.5

1.0

1.5

2.0

2.5

nu
m

be
r o

f t
ax

i r
id

es
 (
×1

05
)

Figure 6.3: Distribution of taxi rides over 5 minute time windows

6.1.2. The Netherlands

There is no significantly sized dataset available for The Netherlands, therefore one is generated by a model of
the population density of The Netherlands. In order to generate taxi rides based upon the population density
the area and number of residents for every Dutch municipality is needed. This information is extracted from
Wikipedia [1]. A taxi ride can be generated to randomly select two locations and two date and a random
pickup time. The day of the week and the pickup time are drawn independently with the same distribution
as the New York City dataset has. To generate a random location one of the 393 municipalities is randomly
selected. The municipalities with more residents have a higher probability to be selected. Then based on the
area A the values ∆x and ∆y are computed and added to the location of the municipality.

6.2. Naive algorithm 31

α= 2π ·X (6.1a)

r =
p

A/π ·Y (6.1b)

∆x = r ·cos(α) (6.1c)

∆y = r · sin(α) (6.1d)

For figure 6.4 10,000,000 locations were randomly generated. In figure 6.5 the density of zip codes [2] in The
Netherlands are shown, which also indicates the more populated areas in The Netherlands. The list of zip
codes in not used for generating the dataset, because the number of resident per zip code is unknown and
the model would be more memory consuming.

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
longitude

51.0

51.5

52.0

52.5

53.0

53.5

la
ti

tu
d
e

Population density The Netherlands

100

101

102

103

104

Figure 6.4: The simulated population density in The
Netherlands

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
longitude

51.0

51.5

52.0

52.5

53.0

53.5

la
ti

tu
d
e

100

101

102

Figure 6.5: Density of zip codes in The Netherlands

6.2. Naive algorithm

Recall from chapter 2 that the OpenStreetMap Routing Machine (OSRM) [35] is used to compute the distance
and travel time of a route. This subsection describes a runtime analysis of two versions of the naive algorithm
implemented in C++11. The first version uses the HTTP API of OSRM and the other version uses the C++
API of OSRM. The C++ API is expected to be faster, because it does not have a network overhead which the
HTTP API does have. The runtime analysis will also give insight into the maximum problem size that is still
feasible to solve in one second of computation time. Although the algorithm has a runtime complexity of
O(n2) the runtime is expected to grow linearly with the number of taxi rides, because the calculation of routes
will dominate the runtime, especially for small instances. All experiments are conducted on a Intel(R)
Core(TM) i7-2600K CPU running at 3.40GHz.

All test data was randomly generated based on the model described in section 6.1.2. This dataset was used,
because we are most interested on the performance of the algorithn with the Dutch use case. The fact the data
is not real is less important, because only the run time is analysed. First for each problem size n taxi rides
are generated and assigned to n taxi companies. Thus each of these taxi companies has one taxi ride sched-
uled and has their own base location generated with the model for the population density in The Netherlands.
The problem instances constructed in this way have the largest number of feasible solutions with the smallest
number of already schedules taxi rides and are therefore considered the worst-case instances. All taxi com-
panies have the same cost per kilometre and cost per minute, which is for the runtime analysis unimportant.
After n taxi rides are generated and assigned to taxis, a new ride is generated either from or to Schiphol with
50% probability, because many rides are to or from Schiphol. Then the runtime is measured for calculating
the best solutions for this new taxi ride. This is done for a problem sizes ranging between 0 and 40 and for
every problem size the experiment is repeated 40 times. The averages and the 80% confidence intervals are

32 6. Empirical evaluation

reported, in figure 6.6 as a curve and a filled area respectively. In this figure a dotted line is drawn at one
second, which indicates the maximum runtime for a real-time algorithm. From this figure we can conclude
that a schedule can only contain 20 taxi rides at any given time, if the C++ API of OSRM is used. Other the
naive algorithm would take too long in a real-time setting. As expected algorithm that uses the HTTP API of
OSRM performed worse and could only deal with 15 taxi rides.

0 5 10 15 20 25 30 35 40
problem size

0.0

0.5

1.0

1.5

2.0

ru
nt

im
e

(s
)

HTTP
C++

Figure 6.6: Runtime analysis of naive method

6.3. Parallel algorithm

This section describes the empirical evaluation of the parallel algorithm and the latter is described in section
4.3. The evaluation tries to find three answers, namely the runtime for various problem sizes, the speedup
with various number of threads and the efficiency obtained with various number of threads. With the first
we can determine the maximum problem size feasible to solve in one second. The metrics speedup and
efficiency show the usefulness of the parallel algorithm. The speedup obtained with p processors or threads
Sp (n) for a problem size n is defined in equation 6.2, which is the runtime complexity of the best sequential
algorithm divided by the runtime complexity of the algorithm that uses p processors. The efficiency Ep (n)
of a parallel algorithm is a performance measure that can give insight into the effective utilization of the
processors, this metric is defined in equation 6.3.

Sp (n) = T ∗(n)

Tp (n)
(6.2)

Ep (n) = T1(n)

p ·Tp (n)
(6.3)

Theoretically Sp (n) = p, but we do not expect that to be true in practice, because the creation of threads will
cause overhead. However we expect the speedup to be near the number of processors and the efficiency
above 90%. Additional overhead is caused by OSRM, because it locks certain resources. The overhead caused
by OSRM can be resolved by giving each thread its own OSRM object, however this will significantly increase
memory consumption. Namely by roughly 250 MB per thread for The Netherlands, which can be even more
for larger countries. The evaluation described in this section is only done with the C++ API of OSRM. The
parallel algorithm is implemented with the use of the std::thread provided by C++11. The experiments
conducted, are again done on the Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz, which has 4 physical
cores and 8 logical cores. Intel’s Hyper-Threading Technology (HTT) is turned on, because this resulted in a
better performance. Unfortunately this makes it a bit harder, but not impossible to interpret the speedup and
efficiency metrics.

The analysis on the speedup and efficiency are conducted on problem instances with 500 taxi companies
with each one taxi and one already scheduled taxi ride. The values reported in the plots are averages of 40
random problem instances, but the same are used for different number of threads allowing a fair comparison.
The instances are generated in the same way as done for the evaluation performed in section 6.2. In figure 6.7

6.4. Quality of route approximation 33

the speedup obtained with a different number of threads is plotted. For the memory efficient version of the
parallel algorithm a speedup of 3.7 and 3.8 were achieved with 8 and 16 threads respectively. For the memory
inefficient version a speedup of 3.8 and 3.9 were achieved with 8 and 16 threads respectively. However after
doing a t-test with a p-value of 0.05, the observation of the memory inefficient algorithm being faster than
the memory efficient one, turned out to be insignificant. Unfortunately we have to conclude that in practice
Sp (n) 6= p, but it did come relatively close. Figure 6.7 also shows that the speedup scales linearly with the
number of threads used until 8 threads.

Figure 6.8 shows the efficiency of the threads utilization, but note that this is a misleading due to HTT. There-
fore we repeated the experiment with HTT turned off for 1 and 4 processors. The results and the computation
of the effiency is stated in 6.4 for a problem size of n = 500.

E4(500) = T1(500)

4 ·T4(500)
≈ 17843

4 ·5866
≈ 0.760 (6.4)

0 2 4 6 8 10 12 14 16
number of threads

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sp
e
e
d
u
p

memory efficient
memory inefficient

Figure 6.7: Speedup obtained with different number
of threads and n = 500

0 2 4 6 8 10 12 14 16
number of threads

0.0

0.2

0.4

0.6

0.8

1.0

e
ff

ie
n
cy

memory efficient
memory inefficient

Figure 6.8: Efficiency obtained with different num-
ber of threads and n = 500

The analysis on the runtime is conducted by comparing the naive algorithm with the memory efficient paral-
lel algorithm using either 1, 2, 4 or 8 threads. The problem sizes ranges from n = 0 to n = 250 in steps of 5. The
results of this experiment are plotted in figure 6.9, where each value is an average obtained by performing
the experiment of 40 different random problem instances. Note that for each algorithm the same problem
instances are used. From this experiment we can conclude that the runtime of the parallel algorithm, just as
for the naive algorithm, appears to scale linearly with the problem size. Which means that the calculation of
the routes by OSRM still dominates the runtime of the algorithm. The figure also indicates the performance
decrease for the parallel algorithm with 1 thread compared to the naive algorithm. Additionally the sequential
algorithm also suffers a performance loss due to HTT.

6.4. Quality of route approximation
This section evaluates the quality of the approximation of the cost for travelling between two locations. This
gives insight into how well the route approximation works and how much it can be improved. This informa-
tion is also a good basis for the evaluation of the algorithm that makes use of these precomputed routes.

To measure the quality of the approximation of routes, a pair of random locations is generated and the dis-
tance and travel time computed by the OpenStreetMap Routing Machine is compared to the approximation
done with the precomputed routes. This is done for the four selection methods that make use of grid stated
in table 4.1. The other methods are either infeasible, because of the time required to collect all the necessary
data, or turned out to be very bad in preliminary experiments. The cost is calculated by adding e0.50 for
every minute ande0.10 for every kilometre.

In figure 6.10 the distribution of 500.000 measurements has been plotted for four different selection methods.
On the x-axis of this figure the difference in euro between the approximated and the actual cost for each route.

34 6. Empirical evaluation

0 50 100 150 200 250
problem size

0.0

0.5

1.0

1.5

2.0

ru
n
ti

m
e
 (

s)
naive
1 thread
2 threads
4 threads
8 threads

Figure 6.9: Runtime for different problem sizes

Less than a percentage of the data falls outside this figure. As expected the selection method “PC6�2” gave
the most accurate approximation of the travel time and distance between two locations, but also the other se-
lection methods could be a good basis for the algorithm that makes use of precomputed routes. The standard
deviations of the distributions in figure 6.10 are plotted in figure 6.11. This figure shows a strong correlation
between the standard deviation in euro and the cell diameter in kilometres of each selection method. The fit-
ted line y = 0.20·x+0.95 is computed by using the MSE as metric for the goodness of the regression. However
we do expect a near zero standard deviation when the diameter is also near zero, but more experiments are
required to see this relationship for small grid cells.

−10 −8 −6 −4 −2 0 2 4 6 8

difference (EUR)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

pr
ob

ab
ili

ty
de

ns
ity

PC6�2
PC6�3
PC6�4
PC6�8

Figure 6.10: Quality of different selection methods

0 2 4 6 8 10 12

diameter of cell (km)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

st
an

da
rd

de
vi

at
io

n
(E

U
R

)

y = 0.20 · x + 0.95

Figure 6.11: Correlation of standard deviation and
cell diameter

6.5. Algorithm with precomputed routes

This section describes the empirical evaluation on the algorithm with precomputed routes, which is de-
scribed in section 4.4. With this empirical evaluation we want to outline the trade-off that should be made
while selecting the parameters δc and δw . Recall from section 4.4 that these parameters ensure that more
solutions can be kept for reevaluation, which result in more computation time and better solution quality. In
addition the runtime for various problem sizes is evaluated.

The first experiment considers a single objective variant of the problem, where the waiting time must be 0 and
fc (x) is the only objective function. This first experiment is conducted with 500 taxi rides each assigned to a
unique taxi company that has only one taxi. The experiment is repeated 200 times and the results are showed
in figure 6.12. In this plot the average performance ratio is plotted for the various δc . The performance ratio

6.5. Algorithm with precomputed routes 35

r is defined by equation 6.5, where A(P) is the best solution found for problem P by algorithm A and OPT (P)
is the optimal solution found for problem P . Figure 6.12 shows that for all lookup tables the performance
ratio converges to a certain value and on average the largest lookup table, which is denoted as “PC6�2” gave
the best results. One should note that these results are a bit misleading, because one measurement can have
a very big impact on the average performance ratio. This experiment shows that in very few cases a better
solution can be found by using δc = 50 instead of δc = 10.

r = A(P)

OPT (P)
(6.5)

The runtime analysis on the algorithm with precomputed routes is performed in the same way as the evalua-
tion described in section 6.2, but only the C++API of OSRM is used. So once more, a problem size of n means
that there are n companies with each its own random base and one taxi. This time we also have to compare
different settings of the algorithm. Since we now know what the range of useful values for δc is, namely from
0 trough 10, only δc ∈ {0,2,5,10} are used. The results of this analysis on the multi-objective variant of the
problem is stated in figure 6.13. This shows that the runtime of the algorithm tends to increase linear with
the number of already scheduled taxi rides, but at a much slower rate than the naive algorithm. For small
problems the runtime increases quicker than for large ones, this is caused by the way the number of reevalu-
ated solutions increases. The computation of travel time and distance still dominates the total runtime of the
algorithm.

0 10 20 30 40 50
price buffer (EUR)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

p
e
rf

o
rm

a
n
ce

 r
a
ti

o

0.08×0.08

0.04×0.04

0.03×0.03

0.02×0.02

Figure 6.12: Performance ratio for various δc

0 500 1000 1500 2000 2500
problem size

0.0

0.5

1.0

1.5

2.0

2.5
ru

nt
im

e
(s

)
PC6�2 δc = 0
PC6�2 δc = 2
PC6�2 δc = 5
PC6�2 δc = 10
PC6�8 δc = 0
PC6�8 δc = 2
PC6�8 δc = 5
PC6�8 δc = 10

Figure 6.13: Runtime for various δc

The third experiment conducted on the algorithm is to measure the quality of the non-dominated set X pro-
duced by this algorithm with various δc . The quality is measured by two metrics, which both use the optimal
non-dominated set X̄ computed by the naive algorithm. The first metric expresses the number of solutions
in X that are dominated by a solution in X̄ . This metric defined by C(X , X̄) is explained in more detail in sub-
section 3.3.2. The second metrics expresses the expected performance ratio of the algorithm for a customer
with a random preference and this metric is defined by Q(X)/Q(X̄). Note that also metric Q(X) is defined and
explained in subsection 3.3.2. The expected performance ratio is computed by taking the average over 10000
random customer preferences, which consists of three weights one for the price and two for the offset to the
requested departure time, because positive and negative offset is considered separately. The three weights
are generated by drawing three numbers from a standard uniform distribution. For each problem instance
new customer preferences are randomly generated.

The results for various δc , fixed δw = 0 and 500 taxi rides each assigned to a unique taxi company that has only
one taxi is stated in figures 6.14 and 6.15. These two figures show the averages over 200 randomly generated
problems. From this experiment we can conclude that if we use the selection method PC6�2 and set δc =
0 and δw = 0 on average 0.3% of the solutions in the non-dominated set, produced by the algorithm with
precomputed routes, is dominated by a solution from the optimal non-dominated set and for PC5�8 this is
3%.

36 6. Empirical evaluation

The figures in this section show that more runtime cannot compensate for a smaller lookup tables with pre-
computed routes. This means that a larger lookup table is always worth it if accuracy is important and avail-
able memory allows this. The parameter δc should be set to relatively small values, for example to δc = 1
should work well. However increasing δc comes with a price, because the computation time rapidly increases
with higher values for δc . Note that the individual measurements of runtime varies a lot per instance. There-
fore a runtime analysis on this algorithm gives more insight if the experiment is repeated more than just 40
times.

0 2 4 6 8 10
δc (EUR)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

C(
X
,X̄

)

PC6�2
PC6�8

Figure 6.14: Metric C(X , X̄) for various δc and fixed
δw = 0

0 2 4 6 8 10
δc (EUR)

1.000

1.002

1.004

1.006

1.008

1.010

1.012

1.014

1.016

Q
(X

)/
Q

(X̄
)

PC6�2
PC6�8

Figure 6.15: Approximated compared to optimal so-
lution with metric Q for various δc and fixed δw = 0

6.6. Expected cost
Recall from chapter 5 that a route consists of three segments, we are mostly interested in the expected cost
of the first and last segment, and the customer is only during the second segment in the taxi. This section
will describe the empirical evaluation done on the methods described in chapter 5. The experiments are only
conducted on the first segment, because we can assume that the same results will apply for the last segment
of a route.

First polynomial regression and just using the averages of the data are compared for the time feature for a
fixed location, in subsection 6.6.1. Then four interpolation methods are compared for the spatial feature in
subsection 6.6.2. All trained models have the same company base location, which is the Bay Plaza Shopping
Center located at 40◦52'01.2"N 73◦49'49.8"W. Two sets of locations have been selected one containing 7629
locations, which are spread out as much as possible and are selected based on the locations in the green and
yellow taxi data. The 1303 locations present in the second set are selected in the same way as the large set.
Note that the intersection of both sets is empty. Gathering the data for all 7629 locations with the 1.4 million
rides from May 2014 took roughly 60 hours using all four cores of the Intel(R) Core(TM) i7-2600K CPU
running at 3.40GHz. The same amount of time is needed for the last segment and fitting the polynomials for
all locations took less than 3 hours, which makes this setting applicable in the real world. For the small set of
locations the taxi rides from May 2014 and the rides from June 2014 are used for validation.

6.6.1. Time feature

Recall from algorithm 6 stated in section 5.2 that first the averages of the lowest factors to pay of multiple
days is computed before it is fed to the Levenberg-Marquardt algorithm (LMA). Preliminary research showed
that this worked better than feeding all the data to LMA. The data itself is very scattered and because of that
it is hard to find the best degree of polynomial to find the relationship between time of the day and factor
to pay. Polynomial regression is compared with simply using the averages as model. Using only averages
also speeds up computing the MSE during the execution of LMA. The degree of the polynomial is chosen
separately per location. This is done by trying all degrees from 0 up to and including 14 and selecting the
one with the lowest mean squared error. This was first done on a subset of the data and allowing degrees

6.6. Expected cost 37

up to 20, but often a degree lower than 15 was selected. Often LMA was unable to find a fit at all with such
a large number of parameters, which also significantly slowed down the whole experiment. Therefore the
search space is limited to degrees below 15. The implementation of LMA from the SciPy library [29] is used.
Note that overfitting, i.e. selecting a too high degree polynomial which will not generalize to similar data
sets, is not likely to happen, because of the abundance of data points. Both models are evaluated in two
experiments ways each with a different data set. First the leave-one-out cross-validation is used on the small
set of locations with rides from May 2014. Second, a model is learned on the green taxi data from May 2014
with the small set of locations and evaluated with the green taxi data with rides from June 2014. The Boro taxis
collectively conducted on average roughly 45900 and 44600 taxi rides per day in May and June, respectively.

Figures 6.16 and 6.17 show the average factor to pay over time for both the cost per minute and the cost per
kilometre. The data points in the plot indicate averages of the factor to pay for the best match of the days
May 1, 2014 until May 30, 2014 for the routes from the company’s base to the intersection Wallstreet with
Broadway (at 40◦42'28.1"N 74◦00'42.1"W) and to Terminal 1 of the John F. Kennedy International Airport (at
40◦38'35.9"N 73◦47'22.9"W). How a best match is found and defined is stated in section 5.2. This data is fitted
with 8th degree polynomials, which is indicated with a solid line in the same figures.

0 5 10 15 20
time of the day

0.0

0.2

0.4

0.6

0.8

1.0

fa
ct

o
r

to
 p

a
y

minutes
kilometres

Figure 6.16: Factor to pay to the intersection Wall-
street with Broadway

0 5 10 15 20
time of the day

0.0

0.2

0.4

0.6

0.8

1.0

fa
ct

o
r

to
 p

a
y

minutes
kilometres

Figure 6.17: Factor to pay to Terminal 1 of the JFK
Airport

The first experiment is to see if the model is able to generalize to other data in general. This experiment
is done with data from May and the leave-on-out cross-validation method, which means that the average
computed over all days except one and the excluded day is kept for validation. For the two models the MSE
per day to the validation day is computed. The latter is repeated for each of the 1303 locations, which results
in 1303×31 MSEs, because May consists of 31 days. The differences between the MSEs of both models, i.e.
the MSE of the averages as model minus the MSE of the polynomial as model, are plotted in the histogram
displayed by figure 6.18. Thus negative values are in favour of the polynomial as model and positive values are
in favour of the averages as model. The second experiment is one that is closer to the real-world application
and shows whether or not the model learned on data from one month can be used to predict the ratios to pay
in the next month. This is done by using the data from May as training set and the days in June for validation.
Again the MSE per day to the validation day is computed and repeated for all 1303 locations. Since there are
30 days in the month June this results in 1303×30 MSEs and again the differences between the MSEs of both
models are plotted in a histogram. This histogram is showed in figure 6.19 and once more the negative values
are in favour of the polynomial as model.

Please keep in mind that the domain of the two histograms is narrowed to make the figures more appealing,
which caused very few measurements to be omitted from the histogram. Additionally all the values were
multiplied with 100 before computing the MSE, which also made the histogram easier to comprehend. Both
histograms show the worthiness of computing a high degree polynomial that fits the averages of the factor
to pay. Note that an additional advantage of using polynomials as model is that it does not require much
memory to store, in contrast to using the averages as model. The high degree polynomial did work better,
due to noise reduction obtained by computing the polynomial.

38 6. Empirical evaluation

20 15 10 5 0 5
difference of MSEs

0

1000

2000

3000

4000

5000

6000
o
cc

u
rr

e
n
ce

s

Figure 6.18: Differences of MSEs for May

20 15 10 5 0 5
difference of MSEs

0

1000

2000

3000

4000

5000

6000

o
cc

u
rr

e
n
ce

s

Figure 6.19: Differences of MSEs for June

6.6.2. Spatial feature

The previous section compared methods to predict the ratio to pay for a given time at a sampled location
based. This section will compare methods to predict the ratio to pay for an unsampled location. The best
method can be used for the implementation of algorithm 7 stated in section 5.2. We only consider the in-
terpolation methods nearest-neighbour, linear, cubic and inverse distance weighting interpolation (IDW) for
the experiments described in this section. Other interpolation methods such as Kriging, spline interpolation
and adaptive inverse distance weighting, but also regression techniques are harder to implement and to ap-
ply, because they require tuning multiple hyperparameters. We did try to tune these hyperparameters for
multiple regression, kernel regression and multilayer perceptron with the implementations from the scikit-
learn library [48]. However the best models obtained not even came the interpolation methods listed in this
section. Therefore regression is omitted from the comparison and left open for future work.

The factor to pay to each destination at 15:00 for different interpolation methods is plotted in figures 6.20,
6.21, 6.22 and 6.23. This time was chosen for the example, because then the most diversity between locations
can be observed. The grey coloured area indicates unknown values. There are unknown values, because lin-
ear and cubic interpolation cannot extrapolate. The cyan coloured area indicates water, but note that not all
rivers are indicated. The cubic interpolation method uses only first-order derivatives and the curvature of
the interpolating surface is minimized. For both linear interpolation and cubic interpolation the implemen-
tation from the SciPy library [29] is used. For the implementation of IDW and nearest-neighbour the k-d tree
implementation from the same library is used, because only the nearest eight measurements are evaluated
while interpolating. For the example in figure 6.21 the IDW decay parameter p = 3 is chosen. The data for
the plots are obtained by computing the average factor to pay for kilometres at 15:00 on all days in May 2014
for every location in the large set of locations. Then for each interpolation method a grid of 500 by 500 tiny
rectangles is coloured based on the predicted value. These plots show a complex relation between location
and expected cost, which indicates that applying regression is non-trivial. Additionally the non-smooth plot
with nearest-neighbour Interpolation suggests that this method will not give accurate predictions. Since IDW
has only one hyperparameter, namely the decaying parameter p, that allows tuning the model we expect that
this method works the best.

For the performance evaluation of IDW multiple values for decaying parameter p are assessed, namely p ∈
[0,15]. For each day of the month and every 15 minutes of the day the squared error between the predicted
and actual value is computed for all 1303 locations. The MSE is for IDW with various values for p is reported
in figure 6.24. This shows that for p →∞ the best results will be obtained, but already p = 8 is good enough
to compare with the other three interpolation methods. The same experiment is done for these other three
and the results are stated in the bar chart in figure 6.25. From this bar chart we have to conclude nearest-
neighbour interpolation had the best predictive power. This is supported by the fact that higher values for p
worked better and will be more similar to nearest-neighbour interpolation than linear and cubic interpola-
tion.

6.6. Expected cost 39

Figure 6.20: Nearest-neighbours Interpolation Figure 6.21: Inverse Distance Weighting (p = 8)

Figure 6.22: Linear Interpolation Figure 6.23: Cubic Interpolation

0 2 4 6 8 10 12 14 16
p

0

5

10

15

20

25

30

35

M
S
E
 (

ra
ti

o
)

Figure 6.24: MSE for different parameters p for IDW

lin
ea

r

cu
bic nn

idw
8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
S

E
(r

at
io

)

Figure 6.25: MSE of different interpolation methods

40 6. Empirical evaluation

6.7. Risk aversion
This section will demonstrate the working of the adjustment proposed in section 5.3 by using two examples.
The two examples are the two segments from company’s base to JFK Airport and to the intersection Wallstreet
with Broadway, which we will refer to as ‘JFK segment’ and ‘Wallstreet segment’, respectively. This section
demonstrates a simulation of various risk attitudes with the four methods that are described in section 5.3.

The histograms in figures 6.26 and 6.27 show, for the JFK segment and the Wallstreet segment, the cost distri-
bution when only roughly 50% of the 45900 rides is carried out by the taxi company. These are measurements
with all 31 days of May 2014 repeated 20 times, each time with a different random subset of the rides, where
each taxi ride had a 50% probability to be in the subset. The black and yellow dashed line indicates the un-
weighted average of the observations. These figures will help to better understand the other plots in this
section.

0 2 4 6 8 10 12 14 16
cost (EUR)

0

50

100

150

200

250

300

350

o
cc

u
rr

e
n
ce

s

Figure 6.26: Cost distribution to JFK

0 2 4 6 8 10 12 14 16
cost (EUR)

0

20

40

60

80

100

o
cc

u
rr

e
n
ce

s

Figure 6.27: Cost distribution to Wallstreet

Figures 6.28 and 6.29 show for each of the four methods the relation between the risk attitude parameter
α and the price for the example with 50% of the rides in May, 2014. Please recall that the second method
limits the maximum allowable loss, which is set to α times the standard price in this example. The black
dotted lines indicate both the expected cost and the worst case scenario. For the fourth method, which is the
weighted average x̄w , the weight function wi =α i

n +1−α is used. Although method g1 is very simple it has a
nice property too, because its behaviour is very predictable and easy to understand. However it is vulnerable
to outliers, because it depends a lot on scenario xn . Also g2 is vulnerable to outliers and also selecting the
maximum allowable loss is a non-trivial task. This is showed by figures 6.28 and 6.29, because the price scales
a bit weird.

Figures 6.30 and 6.31 show the prices for the four methods with α = 1
2 and for a different percentages of the

total number of taxi rides. Again the black dotted lines indicate both the expected cost and the worst case
scenario. Note that α= 1

2 indicates that the price should be somewhere in the middle between the expected
cost and worst case scenario, but method g2 always asks the expected cost as price in the two examples. Our
opinion is that method g3 is the best of the four, because it scales nicely with α and uses the distribution of
the measurements.

Figures 6.32 and 6.33 linear and nonlinear weighting functions attitudes are compared for the weighted av-
erage method. The setting wi = 1 is the same as the unweighted average and thus the unmodified version of
the algorithm described in chapter 5. This shows that using nonlinear weight functions makes it possible to
simulate more risk averse behaviour, than the easier to understand function wi =α i

n +1−α. However these
functions still do not scale towards a complete risk averse behaviour. Therefore we would not recommend
using this method to averse risk.

6.7. Risk aversion 41

0.0 0.2 0.4 0.6 0.8 1.0
α

13.0

13.5

14.0

14.5

15.0
co

st
(E

U
R

)
g1

g2

g3

x̄w

Figure 6.28: Risk attitude comparison for various α
for the JFK segment

0.0 0.2 0.4 0.6 0.8 1.0
α

11

12

13

14

15

co
st

(E
U

R
) g1

g2

g3

x̄w

Figure 6.29: Risk attitude comparison for various α
for the Wallstreet segment

0 20 40 60 80 100

percentage of rides

11

12

13

14

15

co
st

(E
U

R
)

g1(x, 0.5)
g2(x, 0.5)
g3(x, 0.5)
x̄w

Figure 6.30: Risk attitude comparison for various
number of rides for the JFK segment

0 20 40 60 80 100

percentage of rides

11

12

13

14

15

co
st

(E
U

R
)

g1(x, 0.5)
g2(x, 0.5)
g3(x, 0.5)
x̄w

Figure 6.31: Risk attitude comparison for various
number of rides for the Wallstreet segment

0 20 40 60 80 100

percentage of rides

11

12

13

14

15

co
st

(E
U

R
)

wi = i
wi = i2

wi = i4

wi = i8

wi =
√
i

Figure 6.32: Nonlinear weighted average risk atti-
tude comparison for the JFK segment

0 20 40 60 80 100

percentage of rides

11

12

13

14

15

co
st

(E
U

R
)

wi = i
wi = i2

wi = i4

wi = i8

wi =
√
i

Figure 6.33: Nonlinear weighted average risk atti-
tude comparison for the Wallstreet segment

7
Future work & conclusion

In this chapter future work is described, which gives insight into how this thesis could have been improved.
In addition some of the assumptions and conclusions are discussed.

Chapters 1 and 2 described the need for an algorithm that can compose offers based upon previously booked
taxi rides within one second. Chapter 4 described three algorithms, namely the naive algorithm, the paral-
lel algorithm and the algorithm with precomputed routes. If the one second computation time constraint
is respected, the naive algorithm can only deal with a maximum of 20 taxi rides in the worst-case scenario,
which is in practice too little. The parallel algorithm has a speedup nearly the same as the number of pro-
cessors. The computation of the routes has a large impact on the runtime of the three algorithms. Therefore
the algorithm with precomputed routes was proposed and was able to deal with up to 3200 pre-existing taxi
rides. In addition a speedup of nearly the number of processors can be expected for a parallel version of the
algorithm with precomputed routes. The solutions were only slightly worse than the solutions computed by
the naive algorithm, thus this algorithm is good enough for a real-world setting. However this algorithm also
comes with a few disadvantages, namely a large lookup table that costs a lot of computation time to build
and a significant amount of memory to store. Accounting the uncertainty of travel time, caused by traffic
jams, during the cost calculation becomes harder when making use of a lookup table to approximate route
distances. Another improvement of these algorithms can possibly be obtained by an unfinished feature of
the OpenStreetMap Routing API, which makes it possible to group certain API requests. However this cur-
rently only computes the distance between two locations and not the travel time. By grouping API requests
the overhead could be reduced, but it is uncertain how much this will effect the runtime.

The parallel algorithm is a great improvement upon the naive algorithm, but most likely an even greater
speedup can be achieved when decentralizing the system, because these systems tend to have more comput-
ing power. Decentralizing the system means that every taxi company has its own computer trying to match
incoming taxi ride requests with their existing pool of rides and respond with an offer to the customer via the
Gogido platform. A decentralized system comes with a significant advantage, because when each company
has its own computer the complete distributed system has a lot of computing power that can be used effi-
ciently. Only little overhead caused by networking is expected. A decentralized system has more significant
advantages, because the companies’ critical information can be kept secret and every company can have his
own way of bidding on a taxi ride. Thus in the perfect world each company has its own system that com-
municates with the Gogido platform and automatically bid on incoming taxi ride requests. In this way each
company can choose a strategy that is used by their system. Also each company should have at any time a
schedule, which can be improved by local search procedures in between bookings as described in literature
[15].

In the current problem setting it is assumed that every taxi company has only one base location. This could be
easily extended to multiple base locations, but this also introduces new research questions. When always the
best base location is selected, the customer can be offered the largest discount. However, one base location
could be become very popular and the company’s taxis become poorly distributed over the area of operation.

43

44 7. Future work & conclusion

At the end of chapter 4 the problem of many similar offers is discussed. This could be a problem, because
a customer could find it hard to digest a large number of offers and make a choice between them. A new
metric is proposed that should make it easier for an algorithm to find the most distributed subset of offers
with a given number of elements. How a list of non-dominated solutions can be reduced to a specific size,
such that similar solutions are discarded, is still an open problem. However we did build a foundation for
a solution with a new metric in section 4.5. This metric can be used in a local search algorithm that starts
with a random subset and swaps solutions to improve the quality of the subset. Another non-exact algorithm
that could also work very well, repeatedly removes one solution until the desired size is reached. Note that an
exact solution is infeasible due to exponential number of subsets. In addition any algorithm should be very
quick, because not only the non-dominated set, but also the reduced version must be computed within one
second. It might therefore be better to discard solutions already before reevaluation by the algorithm with
precomputed routes.

Chapters 1 and 2 also described the need for a method to calculate the expected cost of a taxi ride. This can
be used to acquire even lower prices, more customers and more revenue. The method proposed in chapter
5 simulates the past month per day to predict for each minute of the day the expected cost for a number of
selected locations by computed the cost for the best match that day. Using the best match as prediction might
be to optimistic especially when multiple similar rides come in, because of this low price. For each location
a high degree polynomial is computed which maps the time of the day to the ratio of the standard price
that needs to be paid. By using a high degree polynomial the amount of memory needed is reduced and the
predictions become more accurate, because noise is removed. In section 6.6 four interpolation methods were
compared which make it possible to predict the cost for unsampled locations. To our surprise the nearest-
neighbour interpolation was the best method and inverse distance weighting interpolation was second best.
This shows promise for the adaptive inverse distance weighting interpolation method. This method together
with other regression methods such as multiple regression and multilayer perceptron is left open for future
work. With the latter two it could be possible to build one model in theory, so it is not needed to compute the
high degree polynomials for the time and price relation.

Since the expected cost could be lower than the actual cost, this introduces a risk for the companies. Section
5.3 described methods that make it possible for a company to increase or lower the risk it is willing to take with
one simple parameter. The extra money earned by this price increase could be used to combine chapters 4
and 5, which means that both the concept of asking the customer the expected cost and offering the customer
an extra discount when its taxi ride request can be matched by already accepted rides. However the price
increase as suggested in section 5.3 does not take into account the behaviour of the customer, because he
could choose for another taxi company if the price is too high. Less customers leads to a higher expected cost
and thus less risk is avoided than initially indented. This suggests the need for a method that can increase the
price to partly cover risk and at the same time takes both the behaviour of a competing taxi company and the
customer into account.

All of the methods described in chapter 5 can be easily used for other countries and cities, thus also for The
Netherlands. No simulation has been done with the constructed dataset for The Netherlands to see what this
would mean for the Dutch taxi market. This is partly due to the reasons described earlier, but also because
this generated dataset has some flaws as well. Firstly in the real world it is not likely that people want to
travel from anywhere to anywhere, some nonpopulated areas such as Schiphol are very popular locations for
taxis as well. The model could also be extended with information about income, car ownership and public
transport accessibility, but it is unknown how much this will influence the use of taxis. If the method for
computing the expected cost is also extended with the other features listed in section 5.1 where necessary
and the problems discussed in this chapter are solved, it can play an important role in the Dutch taxi market.

The methods proposed in this thesis can be applied to other transport sectors such as freight transportation
and possibly in the future shared self-driving vehicles. However we did not see other possible applications
for the proposed methods outside transport businesses.

Bibliography

[1] Tabel van nederlandse gemeenten. URL
https://nl.wikipedia.org/wiki/Tabel_van_Nederlandse_gemeenten.

[2] Postcode data. URL http://www.postcodedata.nl.

[3] IBM ILOG CPLEX Optimizer.
urlhttp://www-01.ibm.com/software/integration/optimization/cplex-optimizer/, Last 2010.

[4] MA Abido. Multiobjective particle swarm optimization for environmental/economic dispatch problem.
Electric Power Systems Research, 79(7):1105–1113, 2009.

[5] Hiroshi Akima. A method of bivariate interpolation and smooth surface fitting for irregularly
distributed data points. ACM Transactions on Mathematical Software (TOMS), 4(2):148–159, 1978.

[6] John W Baugh JR, Gopala Krishna Reddy Kakivaya, and John R Stone. Intractability of the dial-a-ride
problem and a multiobjective solution using simulated annealing. Engineering Optimization, 30(2):
91–123, 1998.

[7] James C Bezdek, Robert Ehrlich, and William Full. Fcm: The fuzzy c-means clustering algorithm.
Computers & Geosciences, 10(2):191–203, 1984.

[8] Christian Blum and Max Manfrin. Metaheuristics network.
http://www.metaheuristics.net/index.php%3Fmain=1.html. Accessed: 2010-09-12.

[9] Lawrence D Bodin and Samuel J Kursh. A computer-assisted system for the routing and scheduling of
street sweepers. Operations Research, 26(4):525–537, 1978.

[10] Lorenzo Bracciale, Marco Bonola, Pierpaolo Loreti, Giuseppe Bianchi, Raul Amici, and Antonello
Rabuffi. CRAWDAD dataset roma/taxi (v. 2014-07-17). Downloaded from
http://crawdad.org/roma/taxi/20140717, July 2014.

[11] Han-wen Chang, Yu-chin Tai, and Jane Yung-jen Hsu. Context-aware taxi demand hotspots prediction.
International Journal of Business Intelligence and Data Mining, 5(1):3–18, 2009.

[12] Carlos A Coello Coello, Gregorio Toscano Pulido, and M Salazar Lechuga. Handling multiple objectives
with particle swarm optimization. Evolutionary Computation, IEEE Transactions on, 8(3):256–279,
2004.

[13] Jean-Francois Cordeau. A branch-and-cut algorithm for the dial-a-ride problem. Operations Research,
54(3):573–586, 2006.

[14] Jean-François Cordeau and Gilbert Laporte. A tabu search heuristic for the static multi-vehicle
dial-a-ride problem. Transportation Research Part B: Methodological, 37(6):579–594, 2003.

[15] Luca Coslovich, Raffaele Pesenti, and Walter Ukovich. A two-phase insertion technique of unexpected
customers for a dynamic dial-a-ride problem. European Journal of Operational Research, 175(3):
1605–1615, 2006.

[16] Kalyanmoy Deb. Multi-objective genetic algorithms: Problem difficulties and construction of test
problems. Evolutionary computation, 7(3):205–230, 1999.

[17] Google Developers. Google Maps Directions API. URL
https://developers.google.com/maps/documentation/directions. Accessed: 2016-03-28.

[18] Petros Drineas, Alan Frieze, Ravi Kannan, Santosh Vempala, and V Vinay. Clustering large graphs via
the singular value decomposition. Machine learning, 56(1-3):9–33, 2004.

45

https://nl.wikipedia.org/wiki/Tabel_van_Nederlandse_gemeenten
http://www.postcodedata.nl
http://www.metaheuristics.net/index.php%3Fmain=1.html
https://developers.google.com/maps/documentation/directions

46 Bibliography

[19] Henrdk Esbensen and Ernest S Kuh. Design space exploration using the genetic algorithm. In Circuits
and Systems, 1996. ISCAS’96., Connecting the World., 1996 IEEE International Symposium on, volume 4,
pages 500–503. IEEE, 1996.

[20] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages 226–231, 1996.

[21] Carlos M Fonseca and Peter J Fleming. An overview of evolutionary algorithms in multiobjective
optimization. Evolutionary computation, 3(1):1–16, 1995.

[22] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990. ISBN 0716710455.

[23] David E Goldberg et al. Genetic algorithms in search optimization and machine learning, volume 412.
Addison-wesley Reading Menlo Park, 1989.

[24] Bruce Golden, Lawrence Bodin, T Doyle, and W Stewart Jr. Approximate traveling salesman algorithms.
Operations research, 28(3-part-ii):694–711, 1980.

[25] Michael Pilegaard Hansen. Tabu search for multiobjective optimization: Mots. In Proceedings of the
13th International Conference on Multiple Criteria Decision Making, pages 574–586. Citeseer, 1997.

[26] Anil K Jain. Data clustering: 50 years beyond k-means. Pattern recognition letters, 31(8):651–666, 2010.

[27] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering: a review. ACM computing surveys
(CSUR), 31(3):264–323, 1999.

[28] Jang-Jei Jaw, Amedeo R Odoni, Harilaos N Psaraftis, and Nigel HM Wilson. A heuristic algorithm for the
multi-vehicle advance request dial-a-ride problem with time windows. Transportation Research Part B:
Methodological, 20(3):243–257, 1986.

[29] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python, 2001–.
URL http://www.scipy.org/. [Online; accessed 2016-06-12].

[30] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[31] Gilbert Laporte. The traveling salesman problem: An overview of exact and approximate algorithms.
European Journal of Operational Research, 59(2):231–247, 1992.

[32] Kenneth Levenberg. A method for the solution of certain non–linear problems in least squares. 1944.

[33] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503–528, 1989.

[34] George Y Lu and David W Wong. An adaptive inverse-distance weighting spatial interpolation
technique. Computers & Geosciences, 34(9):1044–1055, 2008.

[35] Dennis Luxen and Christian Vetter. Real-time routing with openstreetmap data. In Proceedings of the
19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS
’11, pages 513–516, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-1031-4. doi:
10.1145/2093973.2094062. URL http://doi.acm.org/10.1145/2093973.2094062.

[36] James MacQueen et al. Some methods for classification and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pages
281–297. Oakland, CA, USA., 1967.

[37] Oli BG Madsen, Hans F Ravn, and Jens Moberg Rygaard. A heuristic algorithm for a dial-a-ride problem
with time windows, multiple capacities, and multiple objectives. Annals of operations Research, 60(1):
193–208, 1995.

[38] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means problem is
np-hard. In WALCOM: Algorithms and Computation, pages 274–285. Springer, 2009.

http://www.scipy.org/
http://doi.acm.org/10.1145/2093973.2094062

Bibliography 47

[39] Kantilal Varichand Mardia, John T Kent, and John M Bibby. Multivariate analysis. Academic press, 1979.

[40] Bruce McCune. Nonparametric multiplicative regression for habitat modeling. MjM Software,
Gleneden Beach, Oregon, USA. Online at http://www. pcord. com/NPMRintro. pdf, 2004.

[41] Robert B Miller. Response time in man-computer conversational transactions. In Proceedings of the
December 9-11, 1968, fall joint computer conference, part I, pages 267–277. ACM, 1968.

[42] Lubos Mitas and Helena Mitasova. Spatial interpolation. Geographical information systems: principles,
techniques, management and applications, 1:481–492, 1999.

[43] Luis Moreira-Matias, João Gama, Michel Ferreira, and Luis Damas. A predictive model for the
passenger demand on a taxi network. In Intelligent Transportation Systems (ITSC), 2012 15th
International IEEE Conference on, pages 1014–1019. IEEE, 2012.

[44] Fionn Murtagh. A survey of recent advances in hierarchical clustering algorithms. The Computer
Journal, 26(4):354–359, 1983.

[45] Marialisa Nigro, Livia Mannini, and Marta Flamini. A clustering first–route second method for the
solution of many-to-many dial a ride problem. Proceedings of the 5th International Conference on
Applied Economics, Business and Development (AEBD ’13), pages 464–468, 2013.

[46] Ibrahim H Osman and Gilbert Laporte. Metaheuristics: A bibliography. Annals of Operations research,
63(5):511–623, 1996.

[47] Sophie N Parragh, K Doerner, and Richard F Hartl. A survey on pickup and delivery models part ii:
Transportation between pickup and delivery locations. Technical report, 2006.

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[49] Santi Phithakkitnukoon, Marco Veloso, Carlos Bento, Assaf Biderman, and Carlo Ratti. Taxi-aware map:
Identifying and predicting vacant taxis in the city. In Ambient Intelligence, pages 86–95. Springer, 2010.

[50] Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Grossglauser. CRAWDAD dataset
epfl/mobility (v. 2009-02-24). Downloaded from http://crawdad.org/epfl/mobility/20090224, February
2009.

[51] Weda Jarst Poort Joost. Toekomst voor de taxi. Technical report, SEO Economisch Onderzoek, 2008.

[52] Harilaos N Psaraftis. A dynamic programming solution to the single vehicle many-to-many immediate
request dial-a-ride problem. Transportation Science, 14(2):130–154, 1980.

[53] Harilaos N Psaraftis. Analysis of an O(N 2) heuristic for the single vehicle many-to-many euclidean
dial-a-ride problem. Transportation Research Part B: Methodological, 17(2):133–145, 1983.

[54] Harilaos N Psaraftis. An exact algorithm for the single vehicle many-to-many dial-a-ride problem with
time windows. Transportation Science, 17(3):351–357, 1983.

[55] K. B. Bergvinsdottir R. M. Jorgensen, J. Larsen. Solving the dial-a-ride problem using genetic
algorithms. The Journal of the Operational Research Society, 58(10):1321–1331, 2007.

[56] Rijksoverheid.nl. Wat zijn de tarieven voor een taxi? URL https://www.rijksoverheid.nl/
onderwerpen/taxi/vraag-en-antwoord/wat-zijn-de-kosten-voor-een-taxi. Accessed:
March 27, 2015.

[57] Stan Salvador and Philip Chan. Determining the number of clusters/segments in hierarchical
clustering/segmentation algorithms. In Tools with Artificial Intelligence, 2004. ICTAI 2004. 16th IEEE
International Conference on, pages 576–584. IEEE, 2004.

[58] George AF Seber and Alan J Lee. Linear regression analysis, volume 936. John Wiley & Sons, 2012.

https://www.rijksoverheid.nl/onderwerpen/taxi/vraag-en-antwoord/wat-zijn-de-kosten-voor-een-taxi
https://www.rijksoverheid.nl/onderwerpen/taxi/vraag-en-antwoord/wat-zijn-de-kosten-voor-een-taxi

48 Bibliography

[59] Donald Shepard. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings
of the 1968 23rd ACM national conference, pages 517–524. ACM, 1968.

[60] Robin Sibson et al. A brief description of natural neighbour interpolation. Interpreting multivariate
data, 21:21–36, 1981.

[61] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in neural information processing systems, pages 2951–2959, 2012.

[62] Thomas G Stützle. Local search algorithms for combinatorial problems: analysis, improvements, and
new applications, volume 220. Infix Sankt Augustin, Germany, 1999.

[63] Rienstra Sytze, Bakker Peter, and Visser Johan. International comparison of taxi regulations and uber.
2015. URL http://www.kimnet.nl/sites/kimnet.nl/files/
international-comparison-of-taxi-regulations-and-uber.pdf.

[64] Taxi and Limousine Commission. NYC Boro Taxi Trips 2013/2014, . URL
http://chriswhong.com/nycborotaxidata.

[65] Taxi and Limousine Commission. NYC Taxi Trips 2013, . URL
http://www.andresmh.com/nyctaxitrips.

[66] Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applications, volume 18. Siam,
2014.

[67] Taxi Service Trajectory. Porto Taxi Data.
urlhttp://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html. Accessed: 2016-07-03.

[68] Stefan Voß, Ibrahim H Osman, and Catherine Roucairol. Meta-Heuristics: Advances and Trends in Local
Search Paradigms for Optimization. Kluwer Academic Publishers, 1999.

[69] J Weda, J Poort, et al. De prijs van een taxirit: het effect van lokale factoren en marktfalen. Tijdschrift
Vervoerswetenschap, 44(3):88–97, 2008.

[70] Rui Xu, Donald Wunsch, et al. Survey of clustering algorithms. Neural Networks, IEEE Transactions on,
16(3):645–678, 2005.

[71] David Yassky and Michael R Bloomberg. 2014 Taxicab Factbook. New York City Taxi & Limousine
Commision, 2014. URL
http://www.nyc.gov/html/tlc/downloads/pdf/2014_taxicab_fact_book.pdf.

[72] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of multiobjective evolutionary
algorithms: Empirical results. Evolutionary computation, 8(2):173–195, 2000.

http://www.kimnet.nl/sites/kimnet.nl/files/international-comparison-of-taxi-regulations-and-uber.pdf
http://www.kimnet.nl/sites/kimnet.nl/files/international-comparison-of-taxi-regulations-and-uber.pdf
http://chriswhong.com/nycborotaxidata
http://www.andresmh.com/nyctaxitrips
http://www.nyc.gov/html/tlc/downloads/pdf/2014_taxicab_fact_book.pdf

"History may not repeat itself, but it does rhyme a lot."- Mark Twain (1970)

	Introduction
	Problem definition & research questions
	Related work
	Vehicle Routing Problems
	Scheduling algorithms for DARP
	Exact methods
	Heuristics
	Metaheuristics

	Multi-objective optimization
	Algorithms
	Metrics for performance evaluation

	Taxi demand prediction
	Methods for clustering data
	Methods for computing similarity
	Hierarchical clustering
	Squared error-based clustering
	Fuzzy clustering
	Density based clustering
	Choosing the number of clusters

	Regression Analysis
	Interpolation Methods

	Finding the best offers
	Cost for inserting a taxi ride
	Naive algorithm
	Parallel algorithm
	Algorithm with precomputed routes
	Niching methods

	Expected cost of a taxi ride
	Cost evaluation
	Expected taxi ride cost algorithm
	Risk aversion

	Empirical evaluation
	Taxi ride datasets
	New York City
	The Netherlands

	Naive algorithm
	Parallel algorithm
	Quality of route approximation
	Algorithm with precomputed routes
	Expected cost
	Time feature
	Spatial feature

	Risk aversion

	Future work & conclusion
	Bibliography

