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Summary

The energy transition towards a fossil-free energy system is in progress for various countries to miti-
gate greenhouse gas emissions. One critical bottleneck for ensuring swift transformation is facilitating
the rapid electrification of the sector, as well as managing the increasingly distributed and intermittent
energy resources, such as solar-PV or wind turbine facilities in the power grid. Where traditional power
grids rely on controllable power generation to ensure a reliable and secure balance of generation and
demand, new solutions must be found. Currently, the Netherlands is experiencing significant amounts
of power grid congestion, primarily due to this rapid introduction of DERs, without the necessary flexi-
bility solutions to accompany, stressing the need for action and future planning.

In the Dutch context, descriptive evaluations of energy systems or simulation studies of transition path-
ways are mostly used to address the challenges of power grid flexibility, resulting in ambiguous results
for investment planning of such flexible assets. Energy System Optimisation Models (ESOMs) can en-
able robust system planning by providing indicative, prescriptive pathways to aid such decisions under
uncertainty. However, for all modelling frameworks, the completeness of results is contested, largely
due to an interesting interplay in this flexibility domain. While power grid solutions such as energy
storage are well accounted for, another type of flexibility is often neglected or oversimplified: Demand
Response. Altering energy demand can offer implicit flexibility benefits by shifting the scheduled load
to favourable moments or curtailing the load. However, this flexibility solution is often neglected or over-
simplified in ESOMs, resulting in incomplete system outlooks for flexibility in the power sector, which
slows down the energy transition.

This thesis provides a comprehensive validation of modelling frameworks used for one such Demand
Response technology: load-shifting. It was found that the timely recovery of load-shifting processes for
large-scale modelling is often oversimplified. This study proposes a novel approach suitable for mod-
elling aggregated load-shifting in large-scale ESOMs. The new approach, known as the Wasserstein
method, was found to be easily applicable and accurately account for load-shifting characteristics, in-
cluding the saturation of available load-shifting and timely recovery of shifted load. Since the approach
is a top-down method, it does not require extensive information and process-specific constraints to
portray load-shifting effects at a top level.

Key insights were obtained from the energy system optimisation study for the selected research case.
For a fossil-free power grid in the Netherlands, load-shifting can create significant value for the power
grid by adding extra flexibility. This results in lower overall system costs and reduces the need for in-
vestment in other flexibility assets, particularly battery energy storage systems. However, it should be
stressed that controllable flexibility assets, such as fossil-free power plants, still play a significant role in
the cost-optimal network because they can accommodate peak demand and facilitate high penetration
of renewable energy resources, such as offshore wind capacity in the Netherlands.

Additionally, this thesis investigated the impact of load-shifting on decision-making processes for power
grid configurations. Optimal power grid configurations, both including and excluding load-shifting, were
tested for different weather and demand scenarios. The results showed that network configurations
incorporating Demand Response resulted in fewer additional costs due to weather and demand sensi-
tivity. This insight is crucial for investment and energy planning, as it reveals that networks exploiting
implicit flexibility are more robust and economical than those relying solely on explicit flexibility solutions.
Consequently, future power grids that include implicit flexibility from load-shifting are more risk-averse
and cost-effective than configurations relying solely on explicit flexibility solutions. Therefore, decision-
makers for investment planning are advised to further explore the possibilities of this flexibility solution.
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1
Introduction

This chapter serves as an introduction to the thesis study. In section 1.1, the current state of the
Dutch energy transition is discussed, highlighting the social relevance and justification of this research.
Section 1.2 elaborates further on the expected challenges for the power grid. Finally, the possibilities
of energy system modelling are presented in 1.3, along with their ability to contribute to policymaking
in the energy transition.

1.1. Dutch energy transition
Across the globe, the calamitous effects of global warming due to greenhouse gas emissions (GHG) are
widely accepted. In recent years, many countries have formulated relevant climate policies based on
their own or international needs, aiming to create a sustainable society for future generations. Research
from International Energy Agency [1] has indicated that governments drive 70% of global energy in-
vestment. In Dutch context, detailed emission reduction targets were outlined per sector and published
in the Ministery of Econimc affairs and Climate [2]. Following this National Climate Agreement, policy-
supporting reports and outlooks provided by numerous governmental and consulting parties have been
published. Informed by such reports, recent policy published by the Ministery of Economics & Climate
outlined that a heavy focus lies on shifting towards electricity as the primary energy carrier by 2050 for
the Dutch energy system [3]. Electrifying the energy system and ensuring a fossil-free power sector is,
therefore, the foundation of Dutch climate success. Taking on its responsibility, the share of renewable
energy resources in the Dutch power grid has risen over recent years, reaching 40% in 2022 [4].

Along with integrating more renewable energy sources, the infrastructure and functioning of the power
grid will need close attention to prevent it from becoming the bottleneck of the energy transition. As a
result, integral infrastructure outlooks have been developed to gain insights into possible configurations
of the Dutch power grid. Such configurations are highly uncertain since political decisions, technolog-
ical advancements, and societal support influence them. The Dutch Transmission System Operator
(TSO) TenneT, along with regional Distribution System Operators (DSOs) and additional energy grid
operators Gasunie developed such an exploratory configuration study [5], [6]. A range of scenarios
were presented to account for the previously mentioned uncertainty. The core purposes of such policy-
supporting studies can be considered as [5]:

• Sketching future energy trends in production and demand
• Exploring the use of future energy carriers and energy transport methods.
• Providing insight into necessary infrastructure to accommodate such trends
• Assessing the necessary investments and pathways to ensure a successful transition.

The study presents three scenarios with different configurations and outcomes. However, two key
trends are consistent across all scenarios. Firstly, a substantial growth in electrical demand is ex-
pected. This results from the electrification of various energy sectors. Secondly, the extensive and
swift expansion of intermittent RES will require increased grid flexibility solutions.

1.2. Flexibility
Due to the physical properties of electricity, the power grid must balance supply and demand. The
electricity demand varies over time, and the potential electrification of sectors further increases the

1



1.2. Flexibility 2

variation between peaks in demand. Currently, the balancing of supply and demand is ensured by
fossil fuel-powered generators, adjusting their output to match demand. However, reducing carbon
emissions requires transitioning to low-carbon energy sources, such as wind, solar photovoltaic (PV),
and nuclear power. Each of these alternatives presents unique challenges: wind and solar PV are de-
pendent on weather conditions, leading to variability in their electricity generation, while nuclear power
is typically operated at a near-constant output for reasons of economic viability and safety. Conse-
quently, ensuring grid flexibility in this evolving energy landscape becomes essential to accommodate
these low-carbon generators’ variable and often inflexible nature [7].

Power grid flexibility can be defined as the ability of the power system to adapt to changes in electricity
supply and demand, maintaining balance and stability. This includes various technologies and strate-
gies that enable the grid to accommodate the intermittent nature of renewable energy sources while
ensuring reliable power delivery.

Dutch TSO TenneT expands on the expected trends mentioned in 1.1 in power grid flexibility, highlight-
ing additional drivers for grid flexibility demand [8]. In addition to their intermittent generation, RES’
increasingly distributed and decentralised character poses new challenges. Moreover, the ongoing
electrification trend is expected to significantly increase the number of active market participants and
connected devices, further amplifying the demand for flexibility solutions. This growing need for flexi-
bility and its evolving role in the power system is illustrated in Figure 1.1.

Figure 1.1: Expected trend in grid flexibility [8]

As discussed, multiple knowledge institutes and consultancy agencies involved in the energy transition
agree on the growing demand for flexibility. However, the composition of the flexibility assets providing
this flexibility is uncertain. Table 1.1 summarises three recent studies into the Dutch flexibility sector
for target years 2030 and 2035. The table shows the most technologically mature flexibility technolo-
gies and their expected installed capacity. Although all three studies were published between 2022
and 2024, the battery capacity discrepancies highlight this domain’s uncertainty. Dutch Transmission
System Operator (TSO) TenneT TSO B.V. halved their projection from 2022 only two years later [9].
The organisation states that the economic viability is likely lower than initially expected. Almost contra-
dictory, they also state that their economic viability will increase over time due to battery cost reduction
and higher spreads in the Day-ahead electricity market.
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Table 1.1: Flexibility outlooks NL

Capacity of future
flexibility [GW]

TenneT TSO 2030 Netbeheer Nederland [6] 2035
MLZ’22 [10] MLZ’24 [9] KA1 ND2 IA3

P2Gas 0 3.0 4.0 13.6 5.6
P2Heat 0 3.3 5.3 8.5 3.7
Battery 10.3 4.9 22.7 31.5 13.7

interconnection 10.8 12.8 12.8 13.8 13.8
Demand Response 0.7 1.7 2.0 2.5 1.7

(Green) Gas powerplant 14.2 14.0 12.3 9.6 8.2
H2 powerplant 3.5 6.0 8.5

1.3. Energy system modelling
In addition to scenario analyses shown above, creating insights and integrating infrastructure has been
increasingly adopting energy system models (ESMs) [11] [12]. ESMs typically include relevant inter-
action of energy system components required for maintaining a stable energy grid. Through computa-
tionally combining engineering and economics fundamentals, such models can provide scientific and
political insights [13].

ESMs can be subdivided into subclasses: simulation and optimisation [14]. Simulation model, are
generally used for descriptive analysis, useful for generating insights into known system configurations.
Prescriptive models, used for finding an optimal configuration based on a set of decision variables and
constraints, are classified as optimisation models or Energy System Optimisation Models (ESOMs).
A common optimisation strategy for energy planners is cost-optimisation, which provides competitive
long-term energy system solutions. These have been recognised to be suitable for policy support [11].

1.3.1. Demand Response modelling
As previously discussed, while the infrastructure outlooks stated are useful for identifying key trends,
there are no insights into where optimal configurations may be found, especially in the flexibility domain.
Creating such an insight is critical for establishing desired futures for policy support and the energy tran-
sition.

One interesting actor in the flexibility landscape that causes trouble is demand response (DR).DR, also
referred to as Demand-side Management (DSM), relate to actions conducted on behalf of the energy
consumer.DR offers multiple benefits at energy system level, such as accommodating higher penetra-
tion of RES into the power grid [15], avoiding costs for line capacity expansions, providing ancillary
services [16], reducing the dispatch of expensive thermal generators [17], and decreasing the curtail-
ment of renewable energy resources [18]. In essence, DR results from incentives created in the energy
market to stimulate demand-side involvement for grid-balancing purposes. Regarding flexibility solu-
tions for a power grid, it can be considered economically more interesting to influence the load than to
install new power plants or electric storage devices [19]. In order words, DR is able to provide flexibility
implictly, as opposed to electric storage devices purposefully or explicitly installed to provide flexibility.

Evaluating DR impact on power grid flexibility remains difficult to predict and its characteristics make it
challenging to evaluate at top-level accurately citeOconnell2014BenefitsReview. While accurate rep-
resentations of specific DR processes exist, they are often too detailed and unsuitable for large-scale
power system analysis [20] . DR representation at the top level is, however, often oversimplified [21].
Integration of accurate DR is therefore crucial for gaining top-level insight resulting from ESOMs since
it directly influences the flexibility landscape of the future energy system.

1KA: Scenario 1 corresponding to climate actions
2ND: Scenario 2 corresponding to national growth
3IA: Scenario 3 corresponding to international ambition
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Although insights into flexibility configuration for the Dutch power grid have been explored, there is
a gap in the literature for assisting policy with cost-optimal flexibility compositions. Valuable network
insights could be obtained by better understanding the interactions between different flexibility actors
and leveraging prescriptive models for cost-optimal solutions. Especially interesting in this knowledge
gap is the absence of top-level DR representation in ESOMs, which could yield valuable insights for
decision-makers in balancing implicit and explicit flexibility for a future power grid.

1.4. Problem statement
This study aims to explore the implicit technological flexibility offered in networks including Demand
Response (DR), with respect to networks only offering explicit flexibility. An energy optimisation study
will be conducted to determine different configurations for the Dutch power grid in 2035.

This research was done in congruency with the engineering and consultancy enterpriseWitteveen+Bos.
Therefore, the scope of this thesis is in part aligned with research this company was conducting for the
Dutch Ministry of Enterprise [22].

1.5. Research Questions
Exploring the value of load-shifting Demand Response as a flexibility solution for cost-
optimal power grids
A research case for the Dutch power grid in 2035 through analysis of possible scenarios.

1. What is needed for effective climate policy, and what current challenges for Dutch policy can be
identified?

2. How can Energy System Optimisation Models aid policymakers, and how is Demand Response
incorporated?

3. What characterises DR, and how can this be effectively portrayed in large-scale Energy System
Optimisation Models?

4. What is the effect of implicit DR load-shifting for decision-making and investment planning for NL
2035 under different scenarios?

1.6. Reader's Guide
This section provides an overview of the thesis structure and content. A graphical representation is
illustrated in Figure 1.2. The thesis is organised into several chapters, progressing from foundational
concepts to detailed analyses and findings.

Chapter 1 presents an introduction to the Dutch energy transition, encompassing its associated pro-
cesses and policies, with particular attention to regional energy strategies and system integration stud-
ies. This chapter also establishes the research rationale and its societal significance. Building upon
this foundation, Chapter 2 delves into the Dutch context, exploring various flexibility solutions whilst
emphasising Demand Response. Together, these initial chapters comprehensively address the first
research question.

Chapter 3 examines optimisation and energy system optimisation models, exploring their value for pol-
icymakers and the integration of Demand Response. This chapter also presents a critical review of
load-shifting frameworks from existing literature, assessing their effectiveness and offering valuable
insights for energy modellers seeking to implement load-shifting frameworks.

The modelling framework for energy system optimisation is introduced in Chapters 4 and 5, outlining
key model choices, assumptions, and scope. Chapter 5 further details the methodological approach
applied to two case studies designed to address the third and fourth research questions. This includes
a thorough examination of the validation processes for load-shifting frameworks, addressing the third
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research question, alongside the methodological framework for tackling the fourth research question.

Chapter 6 presents a comprehensive analysis of the load-shifting frameworks’ validation process. Next,
chapter 7 shows the results of the impact of load-shifting in Dutch context, highlighting network effects,
and insights for decision-making.

The discussion in Chapter 8 offers a detailed interpretation of the results, examining their implications
and acknowledging limitations. This chapter also presents recommendations for future research direc-
tions. The thesis concludes with chapter 9, synthesising the most significant findings and their broader
implications.

Figure 1.2: Graphical overview of this thesis



2
Flexibility for the Dutch power grid

This chapter aims to answer the sub-question, ”What is needed for effective climate policy, and what
challenges for Dutch policy can be identified?” It highlights the crucial role of policy and planning in
establishing a fossil-free power grid. The chapter also provides background on key components for
valuable policy and system planning and the areas where policymakers deal with complexity and un-
certainty.

The chapter begins with a literature study on transition policy, focusing on the current system outlooks
presented by Dutch energy grid organisations and institutions. This provides background information
on the tools and aids available for policymakers in the Dutch context, aligning with the scope of this
thesis. A particular emphasis is placed on flexible solutions for future power grids, elaborating on the
terminology and its relevance to future power systems, policymakers, and capacity planning.

Section 2.1 discusses the importance of policymaking and good practices. In Section 2.2, the focus
shifts to the scope of this thesis: policymaking in the Dutch context, discussing the current tools at
hand, integration plans, and methodologies employed. Lastly, Section 2.3 expands on the trends and
insights shown in Section 2.2, providing more background on flexibility and its importance for policy
and decision-making.

2.1. Properties of valuable policy
The European Commission took important steps in this direction by publishing its European Commis-
sion [23] goals for 2035: 55% decrease (ref. 1990), 2040: 90%, 2050 net zero GHG, and importantly,
made this legally binding through the Climate Act law with the following objectives:
1. Long-term

Commitment is needed over a prolonged duration, and long-term scoping is necessary to increase
achievability.

2. Ambitious and explicit
Climate policy should be backed by accurate scientific numbers and state long-term goals.

3. Legally binding
Ensuring reversibility and defining a framework to oppose short-term economic gain concerning
long-term sustainability is essential.

4. Monitoring
Additional programs for progress monitoring should be employed, as well as to provide future
adaptability for further action.

5. Uncertainty mitigation
Flexible policy adaptation, as well as providing predictability for investors and economic actors

The above key -points are also considered by the Climate Change Performace Index [24] as crucial
points for policy effectiveness.

2.2. Dutch Policy landscape
The Netherlands has taken significant steps to address climate change through national policies and
frameworks. The Dutch government passed the Climate Law and published the National Climate Agree-

6
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ment (NCA), which outlines specific targets and organizational structures for emission reduction [2].
The NCA sets a goal of a 49% reduction in emissions by 2030, although this target is expected to be
aligned with the new European target of a 55% reduction.

The Dutch policy framework emphasises the importance of large-scale deployment and integration of
renewable energy sources. This is crucial as 75% of GHG emissions in the EU come from the energy
sector. The Netherlands aims to generate 35 TWh of electricity annually from large-scale onshore
renewables by 2030. Policy effectiveness monitoring and evaluation are carried out through annual
publications like PBL Planbureau voor Leefomgeving [25], which assess whether current policies are
sufficient to meet the renewability goals.

The Dutch policy landscape also faces challenges, including the need for flexible energy solutions to
accommodate the increasing share of renewables in the energy mix.
Policymakers must navigate complexities and uncertainties in the energy transition, requiring robust
planning and adaptive strategies.

2.3. Flexibility solutions
As discussed in section 1.2, the future power grid will increasingly rely on flexibility solutions to main-
tain balance and reliability. These solutions are crucial for long-term sustainability and addressing
immediate challenges like grid congestion, which will be further discussed in section 2.5.
This section will explore current flexibility solutions that help integrate renewable energy sources and
support the electrification of various sectors. Specifically, the focus will be on four categories of flexibility
options: flexible generation, network interconnection, electricity storage, and demand response, as
illustrated in figure 2.1.

Figure 2.1: Schemataic overview of flexibility solutions. Figure obtained from [7]

In the following sections, these flexibility solutions will be elaborated further, discussing their roles,
advantages, and limitations. Special attention will be given to demand response technology in section
2.4, as it is a primary focus of this study. Lastly, the current urgency of implementing these solutions
will be highlighted in section 2.5.

Flexible generation
Flexible generation refers to the ability of power plants to adjust their output deliberately to meet varying
energy demands. Currently, flexible generation is a critical component in maintaining a stable power
grid, with approximately 3,400 GW out of the 7,300 GW of installed generation capacity worldwide
being flexible[7]. This flexibility is predominantly provided by gas-fired power plants, which account for
29%, and hydropower plants, which contribute 28% of the total flexible generation capacity [26].
Flexibility in power generation can be categorized into three main types: very short-term, short-term,
and longer-term flexibility. The mechanical inertia of spinning generators passively provides very short-
term flexibility, which helps stabilise power system frequency. Short-term flexibility involves automated
or manual adjustments to power output. Longer-term flexibility encompasses measures such as the
start-up of power plants, operational improvements through advanced monitoring technologies, and
flexible generation capacity availability through new constructions, retrofits, and reserves.
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Variable renewable generators can contribute to power system flexibility requirements through [7]:

• Synthetic inertia:
Configuring inverters to mimic the behaviour of traditional generators.

• Curtailment:
Intentionally reducing output during periods of excess supply.

• Reserve operation:
Operating below maximum capacity to allow for increased output during periods of undersupply.

• Strategic location:
Minimizing flexibility needs by situating renewable generators in regions with varying weather
patterns.

• Output forecasting:
Enhancing the prediction of renewable energy production.

Network interconnection
The electricity network includes all infrastructure that links electricity production to areas of consump-
tion. Primarily, it bridges the geographic gap between where electricity is generated and where it is
needed. Additionally, consolidating various demand and variable generation sources helps to balance
overall demand and supply patterns. This also increases the range of flexibility options available, thus
decreasing the necessity for active power system flexibility. Consequently, expanding the network and
enhancing connections between regions with different weather conditions is considered a cost-efficient
strategy for decarbonizing power systems. However, the current global interconnection capacity be-
tween countries—acting as a stand-in for network links between regions with varying weather—is only
180 GW. Further expansion is progressing slowly due to substantial initial investment requirements,
the need for coordination across regions, and potential opposition from local communities.

Electricity storage
Electricity storage encompasses various technologies that capture surplus electricity and release it
during periods of deficit, thereby providing essential flexibility to energy systems. By enabling the
temporal shift of energy production and consumption, these technologies can be integrated at multiple
points within the electricity network, such as generation sites or consumer locations.

Figure 2.2: Schematic overview of electricity storage methods. Figure obtained from [7]

Electricity storage offers a variety of services, closely tied to the physical properties of the storage me-
dia and systems. A useful way to classify different storage systems and their potential applications is
by their power rating and discharge time at rated power. Based on these criteria, electricity storage
technologies can be broadly categorised into two main types: power-intensive and energy-intensive
[27].
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Power-intensive applications are crucial for providing ancillary services to the grid, such as frequency
and voltage regulation or enhancing power quality [27]. These applications deliver significant power
over short durations, typically on the order of seconds or minutes. They are characterised by a high
power-to-energy ratio (short discharge times) and rapid response times. Examples include superca-
pacitors and flywheels, which are suitable for very short-term storage needs.

Energy-intensive applications focus on storing large amounts of energy to balance supply and demand,
perform load levelling, or alleviate network congestion. These technologies are characterised by a lower
power-to-energy ratio (long discharge times) and are used on timescales ranging from hours to sea-
sons. Examples include pumped hydro and hydrogen storage, which are optimal for long-term storage
requirements [7].

Different storage technologies within the same category are generally appropriate for similar applica-
tions. For example, chemical storage is well-suited for large energy capacities and long discharge
durations, whereas thermal, mechanical, and electrochemical storage can handle medium-sized en-
ergy capacities with short to long durations. Electrical storage is best suited for small energy capacities
and short durations [28].

2.4. Demand Response
Demand response (DR) and demand side management (DSM) are often used interchangeably in
energy management, though DR has become the preferred term as it better emphasizes consumer
agency. These terms encompass voluntary changes in electricity consumption patterns by end-users
in response to market signals, typically price incentives or reliability needs. In the majority of existing
literature, a distinction is made: DSM can be described as the overarching actions of the consumer
consisting of two categories: Optimising energy efficiency and implementing DR. Both are measures
of the same objective, using the user’s energy consumption as an extra degree of freedom to decrease
stresses on grid capacity. It is economically more interesting to influence the load than to install new
power plants or install electric storage devices [19]. Energy efficiency in DSM is the result of permanent
improvements in energy consumption through efficiency investments, such as permanent changes in
equipment and upgrades in in system properties [19, 21]. Energy Efficiency measures are, however
not in the scope of this study, references on this topic include [29, 30].

The variations described in Figure 2.3 as ”DR with rebound” will in this study be referred to as ”Load
shifting”, and ”DR w/o rebound” will be referred to as ”Load shedding” and is further elaborated on the
next section 2.4.3.

Figure 2.3: DR categories [19]

2.4.1. Benefits
DR mechanisms can provide multiple benefits to an energy system. Firstly, it can accommodate
(higher) penetration of Renewable Energy Resources while also reducing the system cost of its in-
tegration [15] [31] [18].

Secondly, in power systems with high penetration of renewable energy sources (RES), DR can provide
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essential operational flexibility to balance the fluctuations in generation profiles and maintain grid secu-
rity. A key advantage of many load types is their ability to adjust power consumption rapidly, enabling
larger effective ramping rates from aggregate demand resources compared to conventional generat-
ing plants [32]. DR can also reduce dependency on imports from neighbouring countries and regions.
This allows for more strategic use of interconnections based on economic opportunities rather than
necessity. Additionally, it can alleviate grid congestion issues through pricing and market mechanisms
or direct load control [33].

Thirdly, on a planning level, DR offers additional benefits. Acquiring and maintaining generation capac-
ity is a costly component in total power grid expenses [34]. The ability of DR to facilitate a balancing
effect between the volatility of RES generation and peak demand reduces the need for investment in
expensive peak power plants such as open cycle gas turbines [17]. Importantly, this, in turn, can also
contribute to reducing Greenhouse gas (GHG) emissions.

2.4.2. Activation mechanisms
DR encompasses methods or mechanisms where the price elasticity of electricity prices is leveraged
to gain grid stability and or flexibility benefits. A distinction can be made in how the response was
activated. Implicit DR corresponds to actions incentivised by time-varying prices, with the end-user
determining the exact nature of the DR. Active consumers adapt their electricity consumption based on
electricity price changes or other targeted incentives, thereby reducing the load in critical peak hours
[35]. Implicit DR is also often referred to as price-based DR control[36] [37].

Explicit DR, refers to actions done as the result of an explicit signal to the end-user, triggering, for
example, a contracted response in demand from the end-user in exchange for a type of remuneration
program [38]. This can also be found in literature as Incentive-based DR [36] [37]. For industry, ex-
plicit remuneration programs are most suitable, and for residential/tertiary sectors, implicit price-based
is most suitable [39].

A visualisation of DR categories is given below in figure 2.4, to illustrate the range of DR variations.

Figure 2.4: Demand response classification (Adapted from [40])
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2.4.3. Modes of flexibility services
Demand Response (DR) can be categorised based on the type of flexibility it provides. By understand-
ing these classifications, the various ways DR can contribute to grid stability and efficiency become
clearer. This section introduces the primary types of DR, highlighting their distinct characteristics and
applications.

Figure 2.5: In left figure, ’Curtailment’ corresponds to Load-shedding. On the right, load-shifting is shown. Figure obtained
from [21]

Load shedding
This term refers to curtailing electricity consumption. This can be achieved by shutting down electricity-
intensive processes or shifting to another technology to supply the needed energy [41]. As discussed
in section 2.4.2, the activation for this mechanism can be either explicit or implicit. Using contractual
agreements, grid operators can order load-shedding parties to reduce their energy or limit their capac-
ity. Load-shedding may also occur through (voluntary) price response.

This type of DR is mostly available for energy-intensive processes [42]. Another option in this category
is possible for industries that have access to on-site electricity generation, such as switching to CHP-
provided power based on time-of-use (TOU) prices in horticulture industries.

Load shifting
Load shifting refers to changing the energy consumption from hours with high electricity prices to hours
with low electricity prices, as shown in figure 2.5. Across sectors, multiple processes have been identi-
fied in the literature as suitable for load-shifting operation [43, 44], the most prevalent are summarised
in table 2.1 below:
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Sector Technology Timeshift [h] Reference
Industry Paper processing 3 [44, 43]

Air separation 4 [44]
Cement 4 [44]

Power-to-Heat (P2H) Process heat (industry) 3 [44]
Heat pumps (residential) 3 [44]

District heating 12 [44]
Power-to-Gas (P2G) Power-to-H2 24 [44]

Residential Wet appliances 6 [44, 43]
Cooling/freezing 2 [44, 43]
AC/Ventilation 1 [44, 43]

Tertiary Cooling food retail 2 [44, 43]
Commercial ventilation 2 [43]
Water management 2 [43]

Mobility E-mobility 5 [44]

Table 2.1: Overview of shifting times per sector application

Since load shifting is generally considered a more inexpensive option, this DR application is expected
to have the most impactful role in future power grids [16].

2.4.4. Future outlooks
Extensive analyses have outlined the theoretical potential of DR across various European regions,
emphasizing its significance in balancing energy supply and demand dynamically. Potential for DR
varies significantly by sector, with the highest flexibility observed in residential heating and industrial
processes. The geographical and temporal availability of DR is crucial, as it affects the overall potential
across the continent. In regions with high usage of electric heating and air conditioning, DR potential
exhibits substantial seasonal fluctuations, highlighting the need for strategic planning in DR implemen-
tation [43].

Sijm, Morales-Espana, and Hernandez-Serna [41] performed a DR study for the Netherlands and pre-
dicts a significant potential for DR, especially as we approach 2050. The study indicates that the annual
potential of DR flexibility could reach approximately 40 TWh by 2050, more than 15 times higher than
the 2.6 TWh estimated for 2030. However, several factors could influence these estimates. On the
one hand, the potential might be underestimated due to higher future electricity demands and the ex-
clusion of additional technologies or sectors that could offer DR. For instance, Power-to-Heat (P2H)
in non-household residential sectors and Power-to-Mobility for non-passenger electric vehicles (EVs)
could significantly increase DR potential. Additionally, including explicit heat storage technologies and
addressing flexibility needs due to grid congestion or market uncertainties could enhance DR potential.
Explicit DR could also offer higher flexibility by providing differentiated signals and incentives across
various end-users.

Conversely, there are arguments suggesting that the DR potentials might be overestimated. For exam-
ple, the dominance of gas boilers over electric boilers in 2030 could reduce the estimated DR poten-
tial for industrial Power-to-Heat technologies. Moreover, several constraints could limit DR potential,
including the availability and controllability of DR technologies, investment costs, specific charging re-
quirements of EVs, and various behavioural constraints. These barriers could significantly reduce the
realisation of DR potential [38].

The uncertainty surrounding DR potential, participation rates, and willingness-to-pay hampers the ability
to make accurate predictions about how this technology will evolve. This uncertainty underscores the
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need for further research into DR use and its potential benefits for the power grid. Addressing this
research gap is crucial for developing effective strategies to integrate DR into future energy systems.

2.5. Grid congestion
The physical properties of Distributed Energy Resources (DER) have already impacted the Dutch power
grid. The power grid is configured in a way that is optimal for centralized energy production and unidirec-
tional distribution. However, with the increasing integration of DERs, such as solar-PV, EVs, batteries,
and heat pumps, the grid is now required to operate bidirectionally, which poses particular challenges,
especially for rural areas [45]. Grid congestion issues manifest across different spatial scales and
network levels [33]:

• At LV (Low voltage) feeders or transformer station, serving up to 100 households
• At MV (Medium Voltage) feeders or transformer stations serving hundreds to thousands of house-
holds

• At HV (High Voltage) transmission cables or transformer stations serving 10,000+ households

Grid congestion patterns show a clear relationship with network scale. At higher voltage levels and
larger substations, congestion tends to follow more predictable patterns due to the averaging effect
of many consumers. In contrast, local low-voltage networks are more susceptible to sudden, unpre-
dictable congestion events, often triggered by activities like simultaneous EV charging. However, some
low-voltage areas can show predictable patterns, particularly in industrial zones or neighbourhoods with
substantial solar PV installations.

The main technical constraints leading to congestion are thermal limitations of grid components [46].
These issues can manifest in both directions - either through excessive power consumption or gen-
eration feed-in. While thermal constraints are typically the primary concern, voltage deviations and
reactive power imbalances also present significant challenges [46] [47].

One major obstacle in addressing these issues is the limited availability of detailed congestion data.
Comprehensive information about specific congestion characteristics - including their type, severity,
location, and temporal patterns - remains scarce, making it difficult to develop targeted solutions. [33]

(a) Availability of grid capacity for consumption (b) Availability feed-in grid capacity

Figure 2.6: Grid congestion in the Netherlands, 4-4-2024. Red means no availability, Orange means no availability but under
investigation, and yellow means limited availability. [48]

Several solutions have been proposed to alleviate these grid congestion issues. While grid reinforce-
ment remains necessary in certain scenarios, it’s typically not the most efficient solution for managing
increased grid usage. This is particularly evident when congestion usually stems from temporary ca-
pacity peaks, such as during high PV-generation periods or simultaneous EV charging, rather than
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continuous overloading. The strategic deployment of market-based incentives, including energy and
capacity tariffs, can provide effective flexibility solutions that often preclude the need for costly grid re-
inforcement.

Smart utilization of Distributed Energy Resources (DER) flexibility presents a more efficient alternative
to immediate grid reinforcement. Rather than defaulting to infrastructure upgrades, the inherent flexi-
bility of DERs can be leveraged strategically. Electric vehicles, batteries, and heat pumps can adjust
their operation timing, allowing them to meet energy requirements while avoiding peak loads. Addition-
ally, photovoltaic feed-in can be either curtailed or stored in batteries, providing further flexibility in grid
management.

Market-based solutions offer several promising approaches to grid management. Implementing Con-
gestion Service Providers (CSPs) through theGridOperators Platform for Congestion Solutions (GOPACS)
has already shown effectiveness by offering financial incentives for flexibility services. This platform
facilitates trading of transport capacity, complemented by smart network tariffs that encourage more
intelligent network use. Additional solutions could be offered by introducing local dispatch markets or
direct control of loads through demand response programs, creating a comprehensive framework for
flexible grid management. However, It must be noted that introducing more energy markets could di-
minish the effectiveness of, for example, the grid balancing imbalance market [49]. Conversely, while
suitable for grid balancing purposes, some flexibility solutions will likely enhance further grid congestion
[50].

It becomes evident that more flexible solutions are needed to alleviate the power grid and prevent
further grid congestion. Insufficient effort to resolve grid congestion could lead to delayed integration of
more renewable energy generation and the stalling of businesses. In conclusion, flexibility will have to
evolve its operation across 3 different domains: Balancing Responsible Parties (BRPs) responsible for
maintaining the balance between energy production and consumption in their portfolio, grid balancing,
and grid congestion. This is once again visualized in figure 2.7

Figure 2.7: Domains in which flexibility will operate

2.6. Conclusion
This chapter examined the key elements required for effective climate policy and the challenges Dutch
policy faced in the transition to a fossil-free power grid. In the realm of policy, several critical compo-
nents have been identified: long-term commitment, ambitious and explicit goals, legal binding, progress
monitoring, and uncertainty mitigation. These elements are essential for creating climate policies to
drive significant and sustained reductions in greenhouse gas emissions.
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To address the subquestion, ”What is needed for effective climate policy, and current challenges for
Dutch policy can be identified?”, it is clear that effective climate policy requires a multifaceted approach.
This includes setting clear, ambitious goals, establishing legally binding commitments, continuously
monitoring progress, and proactively managing uncertainties. The Dutch policy framework must evolve
to incorporate these elements while also addressing the specific challenges posed by the transition to
renewable energy sources and the integration of Distributed Energy Resources (DERs).

Four categories of flexibility options were explored: flexible generation, network interconnection, elec-
tricity storage, and demand response. Each of these solutions plays a vital role in accommodating the
variability of renewable energy sources and supporting the electrification of various sectors. The re-
liance on flexible generation, predominantly provided by gas-fired and hydropower plants, underscores
the need for diverse flexibility solutions to ensure grid stability.

DemandResponse (DR) emerged as a crucial component in the flexibility landscape. The analysis high-
lighted its significant benefits, including the ability to accommodate higher renewable energy source
(RES) penetration, reduce system costs, and provide essential operational flexibility. DR mechanisms,
such as load shedding and load-shifting, offer valuable tools for managing energy consumption pat-
terns in response to market signals. The distinction between implicit and explicit DR, along with their
respective activation mechanisms, was also elaborated, providing a comprehensive understanding of
how DR can be used to enhance grid stability.

Examining current challenges, particularly grid congestion, revealed the complexities associated with
the increasing integration of Distributed Energy Resources (DERs). The traditional power grid, opti-
mised for centralized energy production, now faces significant challenges in operating bidirectionally.
Thermal limitations of grid components, voltage deviations, and reactive power imbalances were iden-
tified as primary technical constraints leading to congestion. Addressing these issues requires a mul-
tifaceted approach, including smart utilization of DER flexibility, market-based solutions, and strategic
deployment of energy and capacity tariffs.

The uncertainty surrounding DR potential, participation rates, and willingness-to-pay hampers the abil-
ity to make accurate predictions about how this technology will evolve. This uncertainty underscores
the need for further research into DR use and its potential benefits for the power grid. This research
gap, particularly in understanding the barriers and opportunities for DR, is critical for developing effec-
tive strategies to integrate DR into future energy systems.
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Energy System Optimisation Models

As previously touched upon in section 1.3, valuable insights for policy advice can also be obtained
from prescriptive sources rather than descriptive ones. By leveraging such models, policymakers and
industry leaders can gain critical data-driven insights that influence energy policy on regional, national,
and global scales. Energy System Optimisation Models (ESOMs) have emerged as essential tools for
policymakers and industry leaders.

This chapter aims to answer the research question, ”How can energy system optimisation models aid
policymakers, and how is Demand Response incorporated?” This will be done by examining the value
of energy system optimisation modelling in practice, specifically by analysing their ability to provide
consistent, complex, and versatile scenario analyses that are crucial for informed decision-making.

The chapter begins with an overview of optimisation principles, highlighting the core components such
as objective functions, decision variables, and constraints. This sets the stage for understanding how
ESOMs operate and their significance in energy planning. Then, the value of ESOMs is examined, par-
ticularly their ability to provide consistent, complex, and versatile scenario analyses that are crucial for
informed decision-making. Next, uncertainties and limitations inherent in ESOMs are addressed, and
various approaches to mitigate these challenges are discussed. A particular focus is given to incorpo-
rating Demand Response (DR) in ESOMs, identifying the core challenges of aggregation and realistic
load-shifting dynamics.

Two prevalent bottom-up DR frameworks are discussed. They are assessed for their strengths and
weaknesses, particularly in terms of computational complexity and the risk of oversimplification. This
study proposes a novel approach based on the Wasserstein distance between two cumulative load
distributions to address these limitations. This method aims to bridge the gap between oversimplified
aggregations and detailed appliance-specific DR logic, offering a more flexible and computationally
efficient framework for non-process-specific DR. A summary of the discussed frameworks and their
suitability to large-scale ESOMs is given, to function as a guideline for energy modellers.

Firstly, in section 3.1, background theory on optimisation can be found, and how this is applied in an
energy modelling context. Next, section 3.2 discusses the value, validity, and limitations of considering
ESOMs. Section 3.3 provides further background in common concepts for load-shifting purposes. Fi-
nally, section 3.5 discusses frameworks and methods found in the literature for load-shifting purposes
and a contribution to this field by proposing a novel approach.

3.1. Optimisation
To leverage the benefits from ESOMs, it is imperative to understand optimisation. Optimisation revolves
around three core properties: The objective function(s), decision variables, and constraints. By max-
imising or minimising an objective function through a set of decision variables within the framework of
system constraints, optimal solutions can be found [51]. For scenario analysis, the objective function
typically aims to minimise costs or maximise social welfare, which is the sum of the consumers’ and
generators’ surplus. Decision variables might include capacities and operational schedules for gen-
erators, while constraints ensure the technical and regulatory feasibility of these operations, such as
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ramping limits for generators. or transmission line constraints. A typical objective function for ESOMs
is minimising the total annual system cost, and can be concisely exemplified below:

minCsystem =
∑
j

∑
t

(
CC

j,t + CO
j,t

)
(3.1)

Here, the total system cost Csystem is minimised by summing the annualised capital cost CC , and
annual operating costs CO, for every system component j, per timestamp t.
Different types of optimization problems exist: Linear Programming (LP) handles linear relationships
and can efficiently be selected for economic dispatch optimisation. If the situation extends to unit com-
mitment, whether a power grid actor’s capacity is activated in market clearing or not, binary variables
are introduced to the formulation. This optimisation problem formulation is called mixed integer linear
programming (MILP).

3.1.1. Linear Programming
Linear programming (LP) optimisation involves a problem with strictly linear objective function. The
linear relations generally consist of decision variables for power output per grid actor, bounded by
constraints for their respective limits. The main advantage of defining the problem linearly is the com-
putational tractability, making it the most favourable method for large-scale systems. The most concise
way to denote LP is as follows:

minimise cTx (3.2)
subject to Ax ≤ b, x ≥ 0 (3.3)

In this notation, A corresponds to the constraint coefficient matrix containing technical parameters and
system requirements, x corresponds to the vector of decision variables, including generator capacities
and operational decisions, and b denotes the constraints’ limits or right-hand side values, such as max-
imum capacities or demand requirements.

The set of constraints of the optimisation problem (3.3) can be visualised by a convex polytope. The
polytope encloses all feasible solutions to the linear problem. A 3D visualisation of such a convex
polytope is given in figure 3.1a. Every edge represents the maximum/minimum of the constraints.
Constraints can be considered ’active’ for any combination of decision variables on this edge. It can
be shown algebraically that the optimal solution can be found on one of the vertices of the polytope.
Additionally, since the linear function is convex, we can ensure this solution is the global minimum.

(a) 3D visualisation of a convex polytope. [52] (b) Visualistation of simplex method [53]

Figure 3.1: 3D visualisation of a LP problem, and the simplex method.

The simplex and interior-point methods are the two main algorithms for solving LP problems. Both
methods are used widely in computational solvers. The simplex method is schematically illustrated in
figure 3.1b. The suitability of each solving mechanism depends on the problem’s nature and size and
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the solver software’s strategy [54]. The fast (computational) solvability of LP problems, in combination
with the guarantee of finding a global optimum, makes LP problems especially suitable for large-scale
optimisation problems. [53].

3.2. Value of Energy System Optimisation Models
In the rapidly evolving landscape of global energy systems, sophisticated modelling tools are indis-
pensable. As discussed in the previous chapter, these tools are crucial in informing both government
policy and corporate strategies concerning developing new electricity generation plants and expanding
transmission infrastructure. Across multiple studies [55, 56], in-depth and flexible models are essential
for navigating the complexities of future energy scenarios.

The range of available energy system models is broad, each with unique capabilities and focuses.
Figure 3.2 provides a visual overview and classification of energy system models. Energy system
models are typically categorised into three primary types: top-down, hybrid, and bottom-up. Within the
bottom-up approach, there are three distinct model types: optimisation models, simulation models, and
accounting models.

Figure 3.2: Energy system model overview [57]

ESOMs are typically divided based on their operational focus and modelling approach. There are two
primary categories: dispatch optimisation models, which are geared towards short-term operational
strategies, and investment optimisation models, which focus on long-term infrastructure planning. Fur-
ther distinctions are made between brownfield and greenfield approaches. Brownfield models consider
existing infrastructures and focus on modifications, whereas greenfield models assume no pre-existing
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systems, ideal for designing entirely new infrastructures from scratch. Additionally, models can op-
erate under assumptions of perfect foresight or myopic decision-making. Perfect foresight models
assume complete knowledge of future conditions, and myopic models optimise in shorter, sequential
time frames without foresight beyond each period, creating a pathway to a possible transition.
ESOMs are widely used within energy system models and are appropriate for investment planning and
future-oriented studies. This comes down to three core advantageous properties in ESOMs, which can
be leveraged for decision-makers [58]:

1. Consistency: ESOMs can specify techno-economic performance characteristics of modelled
processes by providing a consistent accounting framework.

2. Suitability for complexity: The model formulation makes effective and swift normative goal-
seeking possible for highly complex systems.

3. Versatility in Scenario Analysis: Corresponding to energy and environment policy objectives,
they can showcase a range of energy futures.

3.2.1. Policy Value
The historical context of energy systems modelling highlights its significance in policy development.
The oil crisis of the 1970s underscored the need for long-term strategic energy planning, leading to the
establishment of institutions such as the International Energy Agency (IEA). These organisations de-
veloped early energy systems models that remain influential today. Initially focused on energy security
and costs, these models have evolved to address contemporary challenges such as climate change,
renewable energy integration, and the need for flexible demandmanagement [59]. Energy systemmod-
els have become pivotal for policy-making to identify cost-efficient system layouts that meet ambitious
climate change mitigation targets [11] [60]. Flexibility can be incorporated into models by accounting
for operational constraints of supply-side technologies and adding new flexibility options such as en-
hanced grid networks, storage units, and demand response. This comprehensive approach assists
decision-makers, including portfolio planners, power plant operators, grid operators, and policymakers,
in finding cost-optimal and sustainable future supply scenarios [60].

In the Dutch context, the relevance of ESOMs (Energy System Optimisation Models) for policy support
is evident. Witteveen+Bos and CE Delft conducted an energy study using an ESOM in parallel with the
timeline of this thesis. The Dutch Enterprise Agency commissioned the study to understand how an
optimal flexibility configuration for a fossil-free power grid could be achieved by 2035. The model opti-
mised investments in production sources, flexibility, storage, and infrastructure to meet electricity and
hydrogen demand. It provided hourly energy prices and revenues for different technologies, offering a
comprehensive understanding of the operation of a possible future energy system.

The purpose of thesemodels extends beyond generating quantitative predictions; they aim to challenge
our assumptions and provide a structured way of thinking about the implications of changes to parts of
the system. This approach is particularly important given the large uncertainties in long-term energy
planning. Models that produce narrowly focused quantitative predictions can often be misleading due
to the inherent uncertainties that grow over time [58]. Moreover, focusing solely on cost optimality
overlooks the social and environmental dimensions essential for real-world political feasibility, which
are challenging for models to depict. Various stakeholders with differing influences and motivations are
involved in energy planning, including local communities, for renewable capacity deployment decisions.
While methods to consider multiple objectives exist, incorporating the numerous stakeholder objectives
into a single multi-objective optimisation problem is virtually impossible.

Additionally, focusing on a single optimal solution may conceal a range of equally feasible but different
system configurations. Explicitly modelling and comparing these alternatives allows energy modellers
to support decision-making more effectively [61]. This uncertainty approach will be further discussed
in the next section 3.2.2.

3.2.2. Uncertainty and Limitations
While ESOMs (Energy SystemOptimisation Models) can generate crucial data-driven insights into com-
plex problems, it is important to acknowledge the significant amount of uncertainties involved. Virtually
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every model input and dimension is subject to uncertainty, so it is essential to discuss these trans-
parently. If the uncertainties of the ESOM are not properly assessed, ESOMs provide little value for
decision-makers [62].

Uncertainty can be classified into two main categories: parametric uncertainty and structural uncer-
tainty. Parametric uncertainty refers to imperfect knowledge of ESOM input values, while structural
uncertainty pertains to the imperfect mathematical relationships that govern energy system develop-
ment and operation within the model. Parametric uncertainty can be further subdivided into epistemic
and aleatory. Epistemic uncertainty is defined as the category where modellers can mitigate its effects
by collecting more data or detail. Aleatory uncertainty occurs when such possibility is not present [63].

Several approaches can be applied to address these uncertainties. Scenario analysis can address
parametric uncertainty by translating scenario assumptions into ESOM input parameters. It can also
address structural uncertainty by altering the model formulation to accommodate an uncertain scenario
element. Sensitivity analysis can be used to test structural uncertainties. Alternativemodel formulations
can be employed to understand the sensitivity of model results to these variations in model formulation.
Sensitivity analysis, when applied in this way, can help extract robust insights into different model for-
mulations and help navigate the catalogue of ESOM features.

Additionally, other methods may be employed since least-cost optimisation models can easily give a
false sense of exactness by presenting a single least-cost solution for a specific set of cost assumptions.
Techniques such as multi-objective optimisation and modelling-to-generate alternatives (MGAs) are
designed to find near-optimal solutions [61] [64].

3.2.3. Flexibility solutions
Scenario analyses of future energy systems using different models often yield varied results and con-
clusions due to differences in input data and the models’ underlying formulations. The depiction of
technologies involved for typical flexibility solutions, such as energy conversion, storage, utilisation,
and transportation, is typically simplified in broad system models to manage the complexity of the
mathematical problem. This simplification can lead to significant discrepancies across different mod-
els, most notably for DR, battery storage, hydropower, and power transmission [65].

Additionally, the representation of these flexibility solutions is inconsistent across studies, as highlighted
by Heider et al. [60], noting the varying levels of technical flexibility representation among surveyed
models. This inconsistency can lead to different interpretations of flexibility’s role and effectiveness in
energy systems. The study underscores the need for a dialogue with model developers to ensure that
models accurately reflect the flexibility options available and are validated against real-world operations.
Heider et al. [60] states sector-coupling as one of the best-represented flexibility options in ESOMs.

Kirkerud, Nagel, and Bolkesjø [16] examines the role of DR through ESOMs in Nordic countries, where
the energy landscape is largely dominated by hydropower. The findings suggest that DR, particularly
through electric heating appliances, can significantly reduce the reliance on conventional storage and
backup generation.

3.3. Modelling approaches
Energy System Optimisation Models (ESOMs) can incorporate load-shifting through various modelling
frameworks, each with distinct advantages and limitations. Two fundamental approaches emerge in
the literature: bottom-up modelling, which builds system-level insights from detailed individual actor
characteristics, and top-down modelling, which analyses aggregate flexibility potential from a broader
system perspective. The choice between these approaches significantly influences how load-shifting
behaviours and constraints are represented within the model. This section examines these modelling
frameworks, particularly their implications for capturing critical load-shifting phenomena and their suit-
ability for different analytical purposes.
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3.3.1. Bottom-up modelling
Bottom-up models provide a detailed representation of an individual or a selection of similar DR ac-
tors, each characterised by unique properties. This modelling approach aggregates the flexibility of
individual assets to estimate the overall system flexibility [66]. A common method for implementing
DR through bottom-up modelling is the concept of Virtual Batteries or Virtual Power Plants (VPPs).
These frameworks leverage the analogy between load-shifting properties and battery characteristics
within power grids, making them suitable to represent load-shifting as a form of energy storage. Load-
shedding, on the other hand, can be compared to a negative generator.

One significant challenge of bottom-up modelling is the computational complexity that arises with the
increasing number of assets. As the number of assets grows, so does the model’s size, leading to
a substantial computational burden. This can make real-time utilisation difficult, even with advanced
solvers [66]. Another challenge is the extensive data requirement [57]. Bottom-up models necessitate
detailed information on each DR actor’s characteristics, which can be difficult to obtain and manage.
This includes data on load profiles, flexibility potential, and operational constraints.

Despite these challenges, bottom-up modelling offers the advantage of accurately capturing the be-
haviour and flexibility of individual DR actors. By considering the specific characteristics of each asset,
bottom-up models can provide a more precise estimation of the available DR capacity and its impact
on the energy system. This granularity is particularly beneficial when assessing the potential of specific
technologies or sectors to contribute to demand-side flexibility.

3.3.2. Top-down Modelling
Top-down modelling assumptions refer to approaching demand response (DR) not from an individual
actor perspective but from a broader system perspective. This approach aggregates the flexibility po-
tential of various consumers to predict the overall impact on the energy system. The demand response
can, in turn, be described by assigning price elasticities to represent load-shedding or valley-filling. Fur-
thermore, methods exist to describe load-shifting using cross-elasticities.

Price elasticity of demand is a common metric used in top-down models to quantify how much de-
mand varies with changes in electricity prices. This approach assumes that consumers will adjust their
electricity consumption in response to price signals, with higher prices leading to reduced demand
(load-shedding) and lower prices encouraging increased consumption (valley filling). Cross-elasticities
represent the responsiveness of demand between different periods, capturing the effect of shifting
consumption from peak to off-peak periods [32]. At the price-elasticity level, intertemporal cross-price
elasticities can describe load-shifting behaviour. Positive intertemporal cross-price elasticity indicates
that load is shifted from high-price to low-price hours, effectively increasing demand when preceding
or subsequent prices are higher. Conversely, negative intertemporal cross-price elasticity suggests
demand inertia, where demand decreases with higher preceding and subsequent prices, requiring con-
sistently low prices over several hours to trigger a response. Recent research by Hirth, Khanna, and
Ruhnau [67] demonstrates that intertemporal cross-price elasticities are predominantly positive in the
German context. This is an important insight, revealing that most load-shifting occurs for hours with
high prices without requiring high prices to persist for long.
However, assigning a single linear elasticity value for demand does not capture the reality and com-
plexity of demand response. Demand response is inherently non-linear and influenced by factors such
as price, temperature, time of day, and consumer behaviour. For example, the responsiveness of in-
dustrial consumers might differ significantly from that of residential consumers, and even within these
categories, the response can vary based on specific circumstances and constraints. Therefore, most
top-down methods fail to address challenges such as the variability in consumer behaviour and the
interdependencies between different factors influencing demand.

Dynamic elasticity models have been proposed to capture the nuances of demand response better.
These models allow for the elasticity values to change over time and across different conditions. For
instance, Pandey et al. [68] introduced an adaptive demand response framework that uses a dynamic
elasticity approach to model customer demand sensitivity. This model incorporates deterministic and
stochastic approaches to capture the variability in consumer behaviour and the intertemporal con-
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straints of load flexibility.

Importantly, Hirth, Khanna, and Ruhnau [67] highlighted the importance of considering electricity de-
mand’s very short-term price elasticity. Their study revealed that even small changes in wholesale
electricity prices could lead to significant changes in aggregate demand, especially among industrial
consumers. This underscores the necessity of using time-sensitive and context-specific elasticity val-
ues in top-down models to capture the impact of price fluctuations on demand accurately.
Top-down models often use aggregate data and system-level metrics to predict the impact of DR on the
overall energy system. This approach allows for assessing large-scale impacts, such as the potential for
peak load reduction and the integration of renewable energy sources. However, it also has limitations.
For example, data aggregation can obscure individual consumers’ behaviour and the specific factors
driving their response to price signals. This can lead to an oversimplification of the complexity of
demand response and potentially inaccurate predictions.

3.4. Demand Response modelling
Demand Response modelling for large-scale ESOMs presents several significant challenges. These
challenges arise fromDR’s unique characteristics and the complexities involved in accurately represent-
ing these characteristics at a network scale. Oconnell et al. [32] assessed the challenges for realistic
representation in detail, of which the most notable ones will be summarised. One of the primary issues
is the uncertain availability of DR capacity. Unlike traditional generators or storage units, DR is not
a consistently available resource. Its readiness to participate in electricity markets is variable, which
introduces uncertainty in its ability to provide flexibility to the system. Another challenge lies in the
economic behaviour of DR participants. ESOMs often characterize DR as acting economically ratio-
nally, similar to generators and other flexible network participants. However, this assumption may not
always hold true, as consumer behaviour can be influenced by various non-economic factors, leading
to inconsistent economic rationality.

Two crucial load-shifting properties often overlooked in large-scale ESOMs are saturation and load-
recovery. Saturation refers to the maximum load available for postponing or preponing for an appli-
ance or a process. Load recovery corresponds to the timely rebound of the shifted load to the default
load profile. Despite their importance, these features are frequently neglected in models incorporating
demand-side flexibility [15, 32].

Lastly, the diverse nature of load-shifting processes and appliances makes them unsuitable for aggre-
gation into single network entities. Such a representation cannot accurately represent the magnitude,
capacity and sensitivity of the underlying processes. As demonstrated by Evans, Tindemans, and An-
geli [69], a simple summation of energy and power capacities only serves as an outer bound of the
true flexibility limit for heterogeneous aggregations. Moreover, the feasibility of the capacities offered
by the aggregate VPP cannot be guaranteed, potentially leading to misleading system-level insights.
More advanced implementation of control and scheduling algorithms would be necessary to accurately
capture the capacity of aggregated DR at any given time. However, including such realistic control and
scheduling frameworks for Virtual Power Plants or batteries is often beyond the scope of many studies.

In summary, the key challenges for DR modelling in ESOMs include:

1. Uncertain availability: The inconsistent readiness of DR to participate in electricity markets.
2. Inconsistent economic rationality: The assumption of purely economically rational behaviour

may not always hold for DR participants.
3. Saturation and load-recovery: These crucial properties of load-shifting are often neglected in

large-scale models.
4. Aggregation complexities: The challenges in accurately representing heterogeneous DR re-

sources as a single aggregated unit.

These challenges highlight the need for more sophisticated approaches to DR modelling in ESOMs, to
ensure that the flexibility potential of demand-side resources is accurately represented and utilized in
energy system planning and operation.
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This study focuses on addressing two core challenges:

• Load-recovery & saturation
• Aggregation

These aspects are particularly relevant when implementing DR in models, as they introduce both struc-
tural and parametric uncertainties, concepts explored in Section 3.2.2 Since the structural uncertainties
related to DR’s economic irrationality and availability require detailed information at the DR actor level,
structural uncertainties in the above-listed challenges primarily require information and insights into
load-shifting frameworks. This study thus concentrates on the structural uncertainties associated with
load-recovery and aggregation challenges. These aspects are more amenable to system-level mod-
elling and have significant implications for the accuracy of DR representation in ESOMs.

3.4.1. Virtual battery
Energy optimisation models are often complicated frameworks, and modelling and prediction of DR can
further increase it’s complexity [37]. For many ESOMs, the basic principle of DR can be condensed to
the following: the deviation from normal energy usage by end users induced by electricity price signals
[70].

Figure 3.3: Core principle of Virtual battery representing load-shifting

The virtual battery concept extends the logic of energy storage to DR actors, as demonstrated by Gils
[43]. This framework provides a powerful tool for modelling DR in ESOMs, capturing key characteristics
such as saturation and load-recovery time. By representing DR capabilities as virtual energy storage,
flexible resources can more effectively be integrated into complex energy optimisation models. The
amount of hours the DR-actor can shift corresponds to the maximum storage level of the ”virtual store”,
or in other words, its saturation. Additionally, the amount of time by which the intervention needs to be
balanced again, also known as the load recovery time, can be seen as the maximum storage period
of the virtual battery. They form key aspects of DR on a more granulated perspective of the load, i.e.
sectoral or appliance-based. These key parameters will, from now on, be referred to by saturation and
load-recovery.

3.4.2. Aggregation
The introduction of DR into large-scale ESOMs has implications due to the aggregation of load-shifting
actors. Combining individual flexible units into a single entity is often termed a Virtual powerplant (VPP).
While such concepts offer a useful framework, aggregating heterogeneous units into one such entity
is not without its implications. When analysing DR at system level, the nature of the aggregation of
demand can be considered very diverse. Therefore representation of DR in one single unit [32] can be
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misleading.

A simple summation of energy and power capacities can effectively represent the aggregate flexibility
for homogeneous aggregations where the assets have similar characteristics. However, this approach
is problematic for heterogeneous aggregations. As demonstrated by Evans, Tindemans, and Angeli
[69], the summation of power and energy limits across diverse devices only serves as an outer bound-
ary of the true flexibility limit. This can lead to allocating infeasible requests when such an aggregated
model is used in optimisation problems. To realistically capture the capacity of aggregated DR at any
given time, more advanced implementation of control and scheduling algorithms could be applied to
accurately model the feasible aggregate flexibility. This study instead focuses on ensuring consistency
in Demand Response aggregation and modelling: Disaggregated demand response solely represents
homogenous aggregations. Different modelling requirements apply in the case of top-level, heteroge-
neous aggregations of demand. For example, the other key challenge to be addressed, saturation
and load-recovery, is subjected to strict timeframes for disaggregated or homogeneously aggregated
instances. For example. the thermal inertia of a cooling facility is subjected to a specific threshold for
load-shifting. The timeframe for a heterogenous aggregation of DR actors, such as a household or an
economic entity e.g. an industrial estate consisting of multiple processes and appliances with differing
properties, is not subjected to such constraints.

Gils [42] aggregated heterogeneous DR actors for similar characteristics. This revealed an interesting
methodology for combining the completeness of bottom-up modelling without introducing a great level
of aggregation and computational burden.

3.5. Frameworks in literature
For many load-shifting modelling purposes, virtual batteries or variations are used. The study CE Delft
and Witteveen+Bos [22] considers, also employs a virtual battery method of modelling load-shifting.
This section will discuss one of the most prevalent extensions of the Virtual battery framework found
in literature, referred to as the Kleinhans method. Also, another promising framework, from now on
referred to as theMoralesmethod, will be discussed, along with its suitability for bottom-up, large-scale
applications.

3.5.1. Bottom-up framework 1: Kleinhans
For load-shifting frameworks in ESOMS, a popular method was introduced by Kleinhans [71]. Further
used by Kirkerud, Nagel, and Bolkesjø [16] and Heitkoetter et al. [72], the structure uses a Virtual bat-
tery structure. The fundamental aspects of a battery component are leveraged to establish a model
that includes the ability to shift load.

The framework as originally proposed is summarised below [71]. Please note that different notation is
used in this study to ensure consistency of terminology and symbols.

dDR
t = D0

t + dt (3.4)
et = dt−1 + et−1 (3.5)

(3.6)

Here, dt corresponds to the charging/discharging rate of the virtual battery, D0
t corresponds to the

scheduled load, and dDR
t corresponds to the realised load. These symbols and their corresponding

load are also visualised in figure 3.4. Although not explicitly stated by all authors, frameworks generally
include the constraint of purely load-shifting, meaning no energy was curtailed.

T∑
t

dDR
t =

T∑
t

D0
t (3.7)

The following limits can be assigned to ensure realistic limits for upward demand shifts (charging) and
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downward demand shifts (discharging).

dmax
t = D

+

t −D0
t emax

t =

t+∆t∑
i=t+1

D0
i (3.8)

dmin
t = D

−
t −D0

t emin
t =≥ −

t∑
i=t−∆t+1

D0
i (3.9)

dmin
t ≤ dt ≤ dmax

t emin
t ≤ et ≤ emax

t (3.10)

From the above structure, the limit in equation 3.9 for emin stands out, allowing for negative energy
storage. Negative energy storage can be considered a load-shifting event, where demand is delayed
in this context. In other words, the battery starts by discharging before charging again to equilibrium.
One main improvement of this method is upon a regular battery model. Instead of assigning one max-
imum saturation, this method relates the maximum saturation of the virtual battery to the sum of ∆t
timesteps in the case of anticipation of demand. Whenever demand is postponed, the battery satura-
tion may not be larger than ∆t amount of hours of previously scheduled load.

Furthermore, from equation 3.8 and 3.9, the power limits for the virtual battery are assigned. In this
study, it is chosen to formulate dynamic charging limits. This effectively entails that the power limits are
variable over time, instead of 1 static limit per virtual battery. A visual representation of the difference
in static versus dynamic limits is given in figure 3.4 below.

(a) Static (dis)charging limits (b) Dyanamic (dis)charging limits

Figure 3.4: Difference between static D
+/− limits, and dynamic limits D

+/−
t

This study slightly adapts the limits for DR operation. Whereasmodels based on the structure presented
in 3.5.1, apply bottom-up appliance/sector-specific limits to the DR actor, this study assigns a flexible
bandwidth of demand, available for load-shifting, per node. The flexible bandwidth is a fraction of the
demand available for DR, as described below.

D
+

t = (1 + α)D0
t (3.11)

D
−
t = (1− α)D0

t (3.12)

3.5.2. Bottom-up method 2: Morales
This section will discuss another bottom-up logic for load shifting. This will be done by discussing lit-
erature sources that iteratively improved upon one another. It should be noted that in this overview,
symbols may have been used differently than in the corresponding literature for the sake of consistency
of this study. As stated by [15] and [21], the important characteristics this model aims to address are
accurate saturation of DR, and also most notably, timely load recovery.
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The issue of undue load recovery, as previously highlighted in 3.4, is a pressing issue for load-shifting
implementation. Timely load recovery ensures that corresponding adjustments are made at another
time to balance out any shifts in demand at one time. Without these balanced, time-related constraints,
the full operation of load-shifting cannot be accurately assessed, leading to potential distortions in power
system evaluations. This balance is essential to avoid undue load recovery, which can undermine the
effectiveness of load-shifting strategies. In section 3.5.1, the Kleinhans method showed constraints for
dynamically constraining the saturation of load-shifting. The timely recovery of a load-shifting process
is connected to its physical properties or wishes. For example, for a cooling facility in retail after a time
frame of ∆t = 2 (see table 2.1), the delayed or anticipated load should be recovered. If a modelling
framework fails to address such limits, undue load-recovery occurs.

Figure 3.5 illustrates a case of undue load-recovery for a load-shifting process able to shift load for
∆t = 1. In this case, on the left, an instance can be seen where undue load recovery occurs, whereas
timely recovery can be seen on the right.

Figure 3.5: The left figure, displays a case of undue load recovery. The right figure displays timely load recovery. Figure
obtained from [21]

Similarly to the Kleinhans framework, this bottom-up method also leverages the similarities from bat-
teries for load-shifting purposes. The virtual battery operates based on similar fundamentals as the
equations provided in section 3.5.1. Once again, the demand is split into a flexible demand and an in-
flexible demand; however, now, charging and discharging actions are distinguished. Also, constraints
ensuring no loss demand loss

dDR
t = D0

t + d+t + d−t ∀t (3.13)
T∑

t=1

d+t −
T∑

t=1

d−t = 0 (3.14)

d+,max
t = D

+

t −D0
t ∀t (3.15)

d−,min
t = D

−
t −D0

t ∀t (3.16)

d−,min
t ≤ d−t ≤ 0 (3.17)

0 ≤ d+t ≤ d+,max
t (3.18)

Note how the above equations also correspond to figure 3.4b.
Next, a storage variable is introduced et, along with ∆t, the maximum timeframe for a shifting opera-
tion. The ∆t variable is used similar to the ∆t variable introduced in section 3.5.1. However, additional
constraints are added in this framework to ensure a recovery action.

For delay load-shifting events, the energy variable should be equal to or larger than the sum of past
discharging over period∆t. Also, it must be larger than the (negative) sum of upward shifts over future
∆t periods. Similarly, for anticipation load-shifting, the energy storage level must be equal or smaller
than the sum of ∆t previous charging events, as well as smaller or equal to the (absolute) sum of ∆t
future discharging events.
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DR operation Equivalent battery operation Saturation and recovery constraints Notation

Delay load-shift et ≤ 0 past discharging actions (-) et ≥
∑∆t−1

l=0 d−t−l

future charging for recovery (+) et ≥ −
∑∆t

l=1 d
+
t+l

Anticipation load-shift et ≥ 0 past charging actions (+) et ≤
∑∆t−1

l=0 d+t−l

future discharging actions (-) et ≤ −
∑∆t

l=1 d
−
t+l

Table 3.1: Overview of load-shifting

Next, the authors introduce binary variable δt, in equation 3.25, to tackle the problem of undue recovery.
This problem occurs when rebound does not occur in the specified timeframe L.

et = et−1 + d+t + d−t ∀t (3.19)
et = et−1 + d+t + d−t ∀t (3.20)

et ≥
∆t∑
l=1

d−t+l ∀t (3.21)

et ≥ −
∆t−1∑
l=0

d+t−l ∀t (3.22)

et ≤
∆t∑
l=1

d+t+l ∀t (3.23)

et ≤ −
∆t−1∑
l=0

d−t−l ∀t (3.24)

d+,max
t = (D

+

t −D0
t )δt ∀t (3.25)

d−t = (D
−
t −D0

t )(1− δt) ∀t (3.26)

d−,min
t ≤ d−t ≤ 0 (3.27)

0 ≤ d+t ≤ d+,max
t (3.28)

δ ∈ {0, 1} ∀t (3.29)

Since the logic without δt allows for a simultaneous charging and discharging action within the same
timestamp t, DR actions can propagate over many hours to find the optimum rebounding time for cost
optimisation. The authors state that such a framework ensures a future rebound action to occur in a
timely fashion, as well as respecting its maximum store reservoir capacity.

This, however, converts the Linear Programming optimisation problem into a Mixed-integer Linear pro-
gramming problem. Especially for larger networks, such problems often become computationally in-
tractable. Therefore, Morales-España, Martínez-Gordón, and Sijm [21] propose a linear relaxation of
δ. They argue that depending on the tightness of the model, δ will still limit simultaneous cycling and
undue load recovery and yield a solution close to the MILP solution.

3.6. Novel approach
Instead of the bottom-up approach, this study presents a new type of top-down logic. This logic at-
tempts to bridge the gap between the oversimplified aggregations and detailed-appliance-specific DR
logic. Similarly, the structure exploits the properties of the virtual store component.

The Earth mover’s distance (EMD), often called the Wasserstein distance in statistical mathematics, is
used to measure the dissimilarity between two functions. Assume two distributions represent piles of
dirt. The Wasserstein distance is the minimum amount of effort needed to reshape one pile into the
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other, where effort is the product of the amount of dirt moved and the distance it is moved.

Given the characteristics of DR through load-shifting, two such distributions could be described: the
cumulative inelastic load and the cumulative load including DR. Both loads should add up to the same
total load.
For the continuous probability domain, the metric can be described as follows:

W (pr, pg) = inf
γ∼Π(pr,pg)

E(x,y)∼γ [||x− y||] (3.30)

Here, Π(pr, pg) is the set of all joint probability distributions possible between pr and pg. Then, γ ∈
Π(pr, pg), describes one ’dirt transportation plan’. The percentage of dirt needed to be transported
from point x to y, in order to make both distributions equal, is γ(x, y).

This approach, however, does not consider probability distributions, and thus, theWasserstein distance
formula can be simplified since we are working on a 1D, discrete function. Within this context, it is also
known as the Kantorovich-Rubinstein distance. The function is as follows:

W (p, q) =

n∑
i=1

|Fp(xi)− Fq(xi)| (3.31)

Here, the continuous distributions pr, pg are replaced with discrete 1D distributions p, q. Fp, Fq, in turn,
represents the cumulative load profiles (CLPs) of p and q, respectively.
Let us now implement this distance into the top-down framework. For our CLPs, we are interested in
the cumulative load of inflexible demand, D0,CLP

t over timespan T , and the cumulative load of ideal
flexible demand, dDR,CLP

t over timespan T . This would yield:

W (p, q) =

n∑
i=1

|Fp(xi)− Fq(xi)| (general form) (3.32)

WT (D
0, dDR) =

T∑
t=1

|D0,CLP
t − dDR,CLP

t | (specific case) (3.33)

If the flexible demand dDR
t is created as a decision variable, the Wasserstein distance, along with a

cost per distance, can be added to the objective function. This would yield the optimal timeshifting
moments for a network, completing the top-down time-shifting framework:

minimise : Csystem + Cshift ·W (3.34)

In this explanation, the Wasserstein distance is the distance between the cumulative scheduled load
over a timespan T and the cumulative flexible load over the same period. The method allows for linear
implementation, which simplifies the computational complexity and makes it more efficient to solve.

3.6.1. Virtual battery application
To include the Wasserstein distance into the minimisation problem, another virtual battery framework
can define a concise relation between the inelastic demand D0

t and flexible demand dDR
t .

dDR
t = D0

t + dt (3.35)

dDR,CLP
t =

t∑
i=0

dDR
i (3.36)

The resulting structure is subjected to constraints and limits similar to those of the previous bottom-up
models. However, instead of focusing on appliance-related dynamics for timely recovery and energy
saturation, this method focuses on a selection of basic rules for load-shifting within ESOMs. The formu-
lation of the constraints can be found below. Firstly, the equation 3.37 enforces that no load is curtailed
or created. Secondly, in a similar fashion as was shown for the Kleinhansmethod in equations 3.9, 3.8,
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3.10, flexible bandwidth limits charging and discharging rates of the virtual battery framework, as well
as the maximum amount of demand to be displaced.

D0,CDF
T = dDR,CDF

T (3.37)

dW,min
t = D

−
t −D0

t (3.38)

dW,max
t = D

+

t −D0
t (3.39)

dW,min
t ≤ dWt ≤ dW,max

t (3.40)

eW,max
t ≤

t+∆t∑
i=t+1

D0
i (3.41)

eW,min
t ≥ −

t∑
i=t−∆t+1

D0
i (3.42)

The energy constraints limit the virtual battery to shift energy over longer periods, which is unrealistic
for DR operations. The time-dependent limits correspond to past and future demand blocks, similar in
fashion as described in 3.5.1. The maximum amount of energy to be anticipated, meaning for eWt ≥ 0,
cannot exceed ∆t amount of hours of future flexible demand. Similarly, the virtual battery may not
postpone more than ∆t hours of past flexible demand.
Another advantage of the virtual battery logic is that any difference between |D0,CLP

t − dDR,CLP
t | at

any given t is the cumulative profile of
∑t

t=0 dt. This corresponds directly to the storage level at that
moment, ew(t). This results in the following definition of the Wasserstein distance trough applying a
virtual battery framework:

W (T ) =

T∑
t=0

|eWt | (3.43)

3.7. Guidelines and overview
A summary table is presented below to compare the discussed methods comprehensively. This table
highlights the key properties of each virtual battery model and their suitability for different sizes of
Energy System Optimisation Models.

• Model: This column lists the name of the virtual battery framework being discussed.
• Energy limits (Saturation of DR): This column describes how the framework defines the energy
limits for the virtual battery. It indicates whether the limits are fixed or dynamic and how they relate
to the saturation of demand response.

• Charge discharge limit: This column explains the charging and discharging limits imposed by
the framework. It indicates whether the limits are static or dynamic and how they impact the
maximum flexible bandwidth.

• Recovery: This column addresses whether the framework includes constraints to recover shifted
load. This is crucial for realistic modelling of load-shifting, as it ensures that postponed demand
is eventually met.

• Inconvenience pricing: This column highlights the pricing mechanism used to account for the
inconvenience or cost associated with load-shifting. It specifies whether the cost is related to
charge/discharge actions or the state of charge.

• Problem formulation: This column indicates the type of optimisation problem formulation used
by the framework, such as Linear Programming (LP) or Mixed Integer Linear Programming (MIP).

• Suitability: This column briefly assesses the framework’s suitability for different types of DR
modelling. It highlights any potential limitations or strengths.

By providing this detailed comparison, the table helps to understand the key differences and similar-
ities between the frameworks, guiding the selection of the most appropriate method for specific DR
modelling needs in energy system studies. This table thus aims to provide an overview and guidance
for the suitability of virtual battery use for large-scale ESOMs. However, assessing which load-shifting
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problem can best be described by which framework can also be interesting. Such a table can be
found in Appendix C. In that table, guidance for modelling is provided based on the desired level of DR
aggregation to be modelled.
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3.8. Conclusion
This chapter addressed the research question: How can energy system optimisation models aid pol-
icymakers, and how is Demand Response incorporated? by exploring the various aspects of Energy
System Optimisation Models and their application in Demand Response.

After introducing the concept and background of optimisation in section 3.1, the value of ESOMs was
elaborated in section 3.2, and in the policy context in section 3.2.1. This demonstrated their role in
providing consistent, complex, and versatile scenario analyses. These models effectively address the
uncertainties inherent in long-term energy planning, allowing for robust decision-making in the face of
evolving energy landscapes. Historical context and contemporary examples, such as the energy study
by witteveen+Bos and CE Delft, underscored the practical relevance of ESOMs in policy support.

The investigation revealed important insights regarding modelling approaches for Demand Response.
Bottom-up frameworks, while detailed and process-specific, often face challenges with computational
complexity and data requirements. Top-down approaches, particularly when dealing with aggregate
demand response, offer advantages in capturing system-level dynamics and price elasticity effects.
This research found that the modeller’s objectives should guide the choice between these approaches:
bottom-up modelling proves more suitable for analysing specific load-shifting processes, while top-
down modelling is better suited for understanding aggregate system-level flexibility potential.

However, the chapter also acknowledged the uncertainties and limitations of ESOMs. It was noted that
parametric and structural uncertainties pose significant challenges, and various approaches, such as
scenario and sensitivity analyses, are essential to mitigate these uncertainties. Two core challenges
are identified: Consistent and valid use of DR aggregation, realistic saturation, and time recovery for
load-shifting DR. It was argued that these challenges necessitate sophisticated modelling approaches
to accurately represent the flexibility potential of demand-side resources.

Two bottom-up DR frameworks, the Kleinhans and Morales methods were singled out and discussed.
These frameworks apply the concept of virtual batteries to model load-shifting and define additional
constraints to tackle saturation and/or load-recovery challenges. The mentioned Kleinhans framework
was identified to be prone to oversimplification due to its lack of timely recovery constraining.
A novel top-down approach based on the Wasserstein distance was proposed to address these lim-
itations. This method bridges the gap between oversimplified aggregations and detailed appliance-
specific DR logic. By leveraging the properties of virtual batteries and incorporating the Earth mover’s
distance, this approach offers a more flexible and computationally efficient framework for non-process
specific DR.

In conclusion, ESOMs provide a powerful tool for policymakers, offering prescriptive insights that guide
energy policy and investment decisions. The choice between bottom-up and top-down approaches
significantly impacts the model’s ability to capture DR dynamics, with each approach offering distinct
advantages depending on the intended application. While virtual batteries remain a popular choice for
bottom-up models, they must be implemented thoughtfully to avoid oversimplification or computational
intractability. The novel Wasserstein distance method presents a promising alternative, particularly for
system-level analyses, by balancing modelling detail with computational efficiency. This comprehen-
sive exploration underscores the critical role of ESOMs in navigating the complexities of modern energy
systems and supporting informed, data-driven decision-making.



4
Model structure

This chapter presents a comprehensive methodology for developing a verification network and a power
grid model for the Netherlands’ power sector in 2035, utilizing the PyPSA-Eur framework. The primary
goal is to structure a reproducible approach.

To achieve this goal, the chapter provides context on the open-source software employed for network
modelling, namely PyPSA and PyPSA-eur. Relevant dependencies, workflows, and data management
practices are discussed to ensure transparency and repeatability.

The chapter is structured as follows: Section 4.1 discusses the tools used for energy system optimisa-
tion, focusing on PyPSA and PyPSA-Eur. Section 4.2 elaborates on the model choices and assump-
tions that underpin the scenarios. Lastly, Section 4.3 presents the design of the test case methodolo-
gies, providing a solid foundation for the subsequent analysis and discussion of results. By establishing
this comprehensive methodological framework, a robust basis is created for assessing potential future
developments and policy interventions in the Dutch power system, paving the way for in-depth analysis
in the following chapters.
Core pillars for model and methodology based on best practices/guiding principles were assigned
based on DeCarolis et al. [58].

• Quality assurance
Input data for ESOM should be of high level and peer-reviewed.

• Managed model evolution Begin with a simple, validated model. Carefully add complexity as
required by specific analysis needs while regularly assessing and managing overall model detail
to avoid unnecessary complexity. Employ ’model archaeology’ and version control to maintain
consistency over time.

• Consideration of endogenous & exogenous uncertainty
Both structural and parametric uncertainty factors are possibly impacting top-level conclusions.
Effort on epistemic parametric uncertainty for cost-data is expended in section 4.2.4 and appendix
A. Structural uncertainty is addressed through assessing the understanding of valid DR virtual
battery frameworks.

• Tranparency
ESOMs should be designed transparently since the analysis aimed at decision-makers benefits
from their involvement. Clear documentation, conveying of results and acknowledgement of limi-
tations ensures more robust findings [62].

4.1. Model framework: PyPSA-eur
This chapter provides an overview of the framework used in this optimisation study, focusing on the
PyPSA and PyPSA-eur configurations. First, section 4.1.1 introduces the fundamental components
and capabilities of the PyPSA open-source tool, illustrating how it facilitates power system analysis.

Section 4.1.2 expands on PyPSA-eur, detailing the workflow and data inputs that enable comprehen-
sive modelling and optimisation of the European power grid, leveraging various open-access data and
an automated workflow.

33
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4.1.1. PyPSA
PyPSA is the acronym for Python for Power System Analysis. It is an open-source functionality de-
signed to bridge software tools for power flow analysis and multi-period energy system modelling [73].
Unlike many traditional power system modelling tools designed for single-period network analysis, it
can address complexities introduced by integrating renewable energy sources and the electrification
of energy sectors such as transportation and heating. This capability can be a crucial instrument for
operational planning, infrastructure investment, and integration of multiple energy systems.

Components and and Structure
The PyPSA framework consists of several core system components that interact with each other, listed
in 4.1. The table was used directly from Brown, Hörsch, and Schlachtberger [73]

Network Structure containing all network components
Bus Fundamental nodes to which all other components attach

Carrier Energy carrier (e.g. wind, solar, gas, etc.)
Load A consumer of energy

Generator Generator whose feed-in can be flexible subject to minimum loading or mini-
mum down and up times, or variable according to a given time series of power
availability

Storage Unit A device which can shift energy from one time to another, subject to efficiency
losses.

Store Amore fundamental storage object with no restrictions on charging or discharg-
ing power

Shunt Impedance An impedance in shunt to a bus
Line A branch which connects two buses of the same voltage

Transformer A branch which connects two buses of different voltages
Link A branch with a controllable power flow between two buses

Table 4.1: PyPSA components

Buses are mathematically designed to enforce energy conservation at all times through Kirchhoff’s
Current Law. The connected components to the bus determine the power balance. Links can connect
two buses through alternative energy conversion processes.

Functionalities
PyPSA is a powerful tool since it is able to provide multiple functionalities, such as power flow analysis,
least-cost optimisation for dispatch problems, and least-cost minimisation for investment planning. For
AC and DC-powered networks, PyPSA solves the non-linear power flow equation through the Newton-
Raphson algorithm [74].

Crucially for the scope of this study, PyPSA also can calculate leas-cost investment optimisation. Using
linear network equations, the cost-optimal investment in capacities of generation, storage, transmission
and infrastructure can be determined. Since this is the functionality of interest for this study, the more
comprehensive objective function used for least cost investment is given below [73].

min
[∑

n,s

cn,sgn,s +
∑
n,s

cn,shn,s +
∑
l

clFl (4.1)

+
∑
t

wt[
∑
n,s

on,s,tgn,s,t +
∑
n,s

on,s,thn,s,t] +
∑
t

[sucn,s,t + sdcn,s,t]

]
(4.2)

The objective costs consist of the capital costs cn,s for 3 types of component capacities:
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1. gn,s, Generator capacity per bus n and per type s

2. hn,s, Storage unit and Store capacity per bus n and per type s

3. Fl, Capacity of branch l

Secondly, the operational cost per time snapshot t is also minimised for generator and storage dispatch.

1. wt weighting per snapshot t. If hourly resolution is used, wt = 1

2. on,s,t the marginal cost of dispatch per generator, store or storage unit per bus n, type s, and time
t.

3. gn,s,t, the dispatched generator capacity per bus n, and per generator type s and time t.
4. hn,s,t the dispatched storage unit or store capacity per bus n, and type s and time t.
5. sucn,s,t&sdcn,s,t start-up and shutdown costs for generators with unit commitment.

4.1.2. PyPSA-eur
PyPSA-eur is an extended configuration of PyPSA designed tomodel and optimise the European power
system, encompassing the entire ENTSO-E network and infrastructure at or above 220 kV. This frame-
work leverages PyPSA’s modularity and expands upon it with additional functionalities through a mod-
ular configuration file and a reproducible Snakemake workflow for sustainable data analysis [75]. This
workflow integrates diverse and freely available data sources, enabling efficient system planning and
analysis.
The Snakemake workflow orchestrates an automated pipeline, calling upon rules and dictating which
scripts to run, along with their corresponding input data. Furthermore, the workflow dictates the order
of this workflow and keeps track of which parts need regeneration after repeated use. The 4 most
important steps in this workflow will be discussed in section 4.1.2. Key data inputs for this workflow will
be discussed below.

Land availability
The availability of suitable land for power grid optimisation is critical for planning and expanding re-
newable energy facilities. To realistically establish the potential capacity for the specified configuration,
PyPSA-eur utilizes an open tool created by the Instute of Energy and Climate Research at Jeulich
Forschungszentrum, GLAES [76]. GLAES (Geospatial Land Availability for Energy Systems) analyses
geographical constraints to identify viable areas for wind and solar installations. It utilizes several data
layers:

• Corine Land Cover: Provides detailed information on land cover types across Europe, crucial
for identifying potential sites for renewable energy projects.

• Natura 2000: A network of conservation areas where development is restricted, ensuring that
energy projects do not encroach on protected ecosystems.

• GEBCO: Offers bathymetric data, important for planning offshore renewable energy structures
like wind farms.

Meteorological Data
Having established the potential capacity for renewable generation, corresponding weather data is
necessary. Meteorological data across spatial and temporal dimensions is therefore accessed. Two
primary sources are utilized:

• ERA-5: Provides hourly data on various weather parameters, including wind speeds and solar
irradiation, essential for projecting renewable energy outputs.

• SARAH-2: Supplies high-resolution solar radiation data, enhancing the accuracy of solar power
generation estimates.

The data inputs are centrally organised and updated at the open science project Zenodo, by Hörsch
et al. [77].
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Workflow and Outputs
The PyPSA-eur framework employs a comprehensive workflow that converts raw data into actionable
insights through a series of streamlined steps:

1. Network Preparation: Establishes the PyPSA network structure, aligning it with the European
high voltage grid, ENTSO-E [78], along with European classification for regions: NUTS [79]. This
step integrates the spatial and temporal input data. Python dependencies such as atlite convert
weather data into energy systems data.

2. Simplification of the PyPSA Network: To reduce computational demands, the network is sim-
plified by standardising transmission lines, removing non-functional components, and clustering
networks to manage complexity efficiently. This effectively entails the high-resolution information
per NUTS3 region into the amount of desired clusters by use of k-means algorithms [80].

3. Optimisation Problem Solving: Utilises the prepared and simplified network to formulate and
solve the optimisation problem. The objective is to minimise operational and infrastructure costs
while adhering to technical constraints and ensuring system reliability.

4. Collection & summary: Outputs are consolidated and summarised in a .nc file format, providing
a comprehensive overview of the optimised network. This includes performance metrics, cost
analysis, and system reliability indices, crucial for informed decision-making.

This structured approach enables PyPSA-eur to handle complex datasets and produce optimisation
scenarios that are both robust and applicable to real-world policy and planning in the European energy
sector.

4.2. Model choices
Having discussed the ESOM framework this study employs, this section will discuss the research-
specific model choices applied. Since the study was performed in parallel with CE Delft and Wit-
teveen+Bos [22], similar model choices can be observed in terms of network component selection,
policy standards assumptions and resolution.

4.2.1. Foresight
when conducting an ESOM study multiple optimisation timelines can be of interest to gain specific
insights:

• Perfect Foresight: In this approach, the optimisation model fully knows all future events. The
model can thus determine an optimal strategy across the entire planning horizon. This method is
often applied over a set time, e.g. 1 year. Therefore it is also referred to a snapshot optimisation.

• Perfect Foresight with Rolling Horizon: This variant incorporates perfect foresight but limits
the decision-making to a rolling time window, which is periodically updated. Given the dynamic
and uncertain nature of energy markets, this approach increases the computational burden but
provides a more realistic assessment.

• Myopic Foresight: Myopic foresight models offer an outlook for progressive and iterative changes
in a network. Multiple benchmark moments can be defined to be optimised before the desired op-
timisation year. The model will then run a series of optimisations, using the output of the previous
benchmark as the input for the next. This method is insightful for sketching a detailed transi-
tion outlook. However, myopic optimisation also leads to the postponement and cancellation of
strategic investments in key renewable technologies, and therefore, the resulting network can
have increased costs up to 14% [81].

Perfect foresight was chosen for this study for several key reasons. Firstly, this choice reduces the
computational burden of the optimisation problem. While the rolling horizon approach is particularly
suitable for modelling uncertainty for specific temporal behaviours, it is not crucial for this study’s primary
objective of establishing a network configuration for the future year 2035. The main advantage of
myopic foresight models is that a transition path is created in addition to an ideal configuration. Offering
detailed application advice is beyond the scope of this project. Instead, the study focuses on creating a
desirable baseline configuration. Additionally, using perfect foresight ensures comparability with many
other optimisation studies.



4.2. Model choices 37

4.2.2. Time-series input data
Time-series data encompasses dynamic inputs like the load profile and weather data. The selected
weather year for the research cases will be set to 2013, since this is the default in the PyPSA-eur setup.
The temporal resolution is kept at the original corresponding data resolution, 1h interval.
Important aspect [61], [82], [83].
The demand data originates from the ENTSO-E and is further assessed by Open Power System Data
[84], an open platform providing high-quality, open-access time-series data for modelling demand pat-
terns.

4.2.3. Policy standards and assumptions
The scope of this study focuses on the power sector. The goal is to optimise freely, not limited by lobby
or political decisions. It is, however, important to make two key optimisation design choices, serving
as the main pillars for constructing a reference scenario that is in line with current projections. Firstly,
the share of renewable power, as this is part of the research question. Secondly, the power demand
in 2035, since the power demand is exogenous to the energy model, and therefore can be considered
an inelastic input. To achieve at feasible and realistic decision, this section assesses the insights and
scenarios provided by Dutch governmental bodies and other key future planners concerning a future
Dutch power grid. The reports are summarised in Table 4.2 below.

Title Region Published in Scenario year(s) Reference
IP2024 NL 2023 2035 [6]
II3050 NL 2023 2030, 2050 [5]

Nationaal plan energiesysteem (NPE) NL 2023 2030 - 2050 [3]
Klimaat- en Energieverkenning (KEV) NL 2023 2030 [25]

ENTSO-E TYNDP EU* 2024 2040 - 2050 [85]

Table 4.2: Dutch energy system reports considered for this study’s reference scenario
*ENTSO-E member countries

The selected reports were carefully chosen as referencematerial to ensure the validity and resemblance
of national and international planning, the references are exclusively from power grid operators and/or
governmental bodies. The sources all provide goals and projections in 2 key areas for development in
the power sector in the Dutch or European context. The findings of the above studies are summarised
in table 4.3 below.

Study Scenario % renewable power Electrical Energy use vs 2019
IP2024 KA (2035) 100% +56%

ND (2035) 100% +79%
IA (2035) 100% +76%

NPE 2035 100% x
KEV 2030 92% +19%

ENTSO-E, NT+ (2040) 96% +33%
TYNDP DE (2040) 99% +42%

GA (2040) 100% +27%

Table 4.3: Electrical energy projections

Additional assumptions
Within the PyPSA-eur framework, multiple modelling decisions should be made to create a configura-
tion of a base scenario. It is essential to select the necessary input data carefully to ensure a robust
and durable base network. This will, in turn, make a solid groundwork for future implementation and
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optimisation of flexibility options. In addition to policy goals set on CO2 reduction, fossil-free power
sector and energy use in the Netherlands, the following policy decisions are used for model creation:

• All neighbouring countries have a fossil-free power system, and it is impossible to compensate
with negative emissions (Carbon Capture Storage). This entails that the Netherlands cannot
import non-green electricity.

• The optimisation is set for the power grid only. This effectively means that there is no sector
coupling.

• Since there is no sector coupling, all produced hydrogen is used for electrical energy storage.
• There are no governmental subsidies to stimulate certain technologies.
• Nuclear energy is considered a fossil-free power source.

In contrast with the study performed by CE Delft andWitteveen+Bos [22], performed in parallel with this
study, all components can be optimised freely through brownfield optimisation. Goals for an installed
capacity of Onshore/Offshore Wind, Solar, and Nuclear energy, as stated in the [3] are not considered
as fixed inputs.

Desired installed power ranges for energy sources and carriers are deliberately excluded to ensure the
unbiased exploration of the optimal baseline scenario. The baseline scenario will, therefore, be able to
optimise the optimal capacity of various network options freely, given in table 4.4.
Key-choices in policy assumptions

1. The Power sector is fossil-free
2. Power demand increases by 50%

4.2.4. Spatial resolution
To account for a reliable and accurate representation of the Dutch power grid, it is desirable to account
for neighbouring countries in the optimisation step. Interconnection with neighbouring countries is crit-
ical to include since this impacts the required flexibility needed for energy, and it would be incomplete
to consider the Netherlands as an islanded network object [22]. Therefore, the reference model will
include 7 neighbouring countries: Germany, Belgium, France, Luxembourg, Norway, Denmark, and
the United Kingdom. This is also in congruency with the study done by CE Delft and Witteveen+Bos
[22].

Assigning the correct resolution is important since a balance needs to be struck between overcompli-
cating and oversimplifying. For computational tractability, assigning low spatial resolutions allows for
easier power flow optimisation. However, oversimplifying the power grid’s spatial structure can result in
cost underestimation in cost-minimisation studies [86]. Additionally, more realistic network bottlenecks
arise when higher resolution is applied, potentially shifting the optimal configuration of renewable assets
to areas with lower capacity factors to mitigate such bottlenecks [86].
As discussed in section 4.1.2, the spatial resolution makes up an important dimension of the input data
to be retrieved through the model workflow. The size of the spatial resolution thus heavily impacts the
total amount of dimensions needed for the optimisation. Therefore, this model choice is inconsistent
for the two study cases to be presented later. This will be further discussed in the corresponding
methodology sections for the respective case studies.
Key-choices for spatial dimensions

1. Reference case: NL in 7 nodes, neighbouring countries in 17.
2. Verification case: NL in 6 nodes.

Network Components
It is important to include all relevant components existing in the power grid of the Netherlands and the
neighbouring countries included in the power system to be optimised. Since the objective function is a
system cost minimisation, the costs must be valid and realistic. Consistent data sources were used to
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prevent contradicting cost relations for costs, efficiency, and other technological data. All relevant cost
data corresponding to these components can be found in Appendix A. All newly added components
technology specifics and cost data can also be found in A. Importantly, Load-shedding was also in-
cluded. The default load-shedding mechanism was utilised, which is based on research from Schröder
and Kuckshinrichs [87]. The corresponding costs can be found in appendix A. Except for load-shifting
flexibility, all newly added components could be implemented into the native PyPSA-eur framework
and did not require external tools.

Category Component Default PyPSA-eur component
Generators Offshore Wind (AC) ✓

Offshore Wind (DC) ✓
Onshore Wind ✓
Solar - PV ✓
Nuclear ✓

Hydro power ✓
Biomass ✓

Run of River ✓
Virtual Load-shedding generator ✓

H2 CCGT, retrofitted Newly added
H2 CCGT Newly added
H2 OCGT Newly added

Flexibility Li-ion battery (2h, 4h, 8h) Newly added
Flow - ion battery Newly added

CAES Newly added
Electrolysis ✓
Fuel cell ✓

Underground H2 storage ✓
Pumped Hydro storage ✓

Demand Response (only Load-shifting) Newly added
Infrastructure HVAC (overhead) ✓

HVDC onshore underground ✓
HVDC offshore underground ✓

H2 pipeline ✓
Converters ✓

Table 4.4: Component table reference scenario

From table 4.4, the large variety of network components can be observed, resulting in a realistic set of
possible network objects to choose.

Addition of H2 network
Since this study focuses on DR frameworks within energy system optimisation frameworks, it is cru-
cial to create a competitive and realistic flexibility actor landscape. Therefore, dispatchable CCGT is
included. Since the power sector is fossil-free, these assumptions are extended to include H2 CCGT
and OCGT. Furthermore, the network is extended with the ability to retrofit existing OCGT and CCGT
gas turbines. Additionally, all nodes connected by HVAC transmission have the investment option to
be connected by H2 pipeline. Furthermore, this model choice was also made in parallel with the study
done by [22].
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4.2.5. Model limitations
Due to the nature of the optimisation problem, results from cost optimisation should be inspected care-
fully. The optimisation problem cannot account for all factors influencing a true transition path, espe-
cially since a perfect foresight snapshot optimisation approach is chosen. This will result in the following
core limitations:

• Technical infeasibility:
While economically interesting through the set of linear cost functions assigned to the technology,
the technical challenges for realising certain technologies could be challenging. Large increases
in any type of technology will thus be subjected to limited feasibility due to a lack of workforce,
supply chain limitations, industry maturity or logistical difficulties.

• Societal acceptance:
Not all technologies experience the same level of social acceptance, and preferences exist in
the capacity planning based on the general public. As discussed, an unbiased energy system
optimisation study can provide data-driven nuance to such preferences, but the lack of societal
acceptance diminishes the feasibility of potential outcomes. Primarily, onshore wind is a tech-
nology that is expected to be saturated in terms of capacity in the Netherlands, even though
cost-optimally larger capacity might be desirable.

• Consistent European policies:
The Netherlands’ network capacities are linked with the energy mix of neighbouring countries.
The optimal power mix assumes seamless international energy trade, especially in our reference
case, which boasts high interconnection capacities.

• H2 CCGT retrofitted location
The exact locations of turbines available for retrofit were outside this scope, and national retrofit
limits were used. Therefore, the exact location of the H2 turbines might not correspond to the
locations of existing gas turbine infrastructure. This could have implications for the feasibility of
H2 capacities since the H2 turbines are placed strategically in the network to facilitate the peak
demand moments.

• Electrolyser compatibility with power grid:
Technical details, such as minimal compatibility with intermittent operation, are out of the scope
of this study.

Key-choices for network components and costs

1. Usage of default PyPSA-eur components and expert knowledge for additional components
2. Inclusion of diverse flexibility actors, including retrofitted H2.
3. Component costs used with a consistent data source, found in Appendix A

Since PyPSA-eur is designed as an energy system built from the ground up, it has to model a myriad
of factors, actors and assumptions. As discussed in section 4.2.4, spatial and temporal information is
aggregated for large-scale optimisation within the optimisation framework. Pointed out by the authors
of the PyPSA-eur, using Voronoi cells to aggregate the generation and demand information has limi-
tations [Horsch2018PyPSA-Eur: System]. The exact topology of the distribution grid is ignored for
aggregation, potentially resulting in network components being connected to the wrong substations.
Furthermore, the exogenous available local data per country is scaled in size based on GDP distribu-
tion per country but does not include the corresponding local profile. In addition to this notion, the open
source data input for PyPSA-eur, originating from ENTSO-E, can not always be considered constant
[88].
Additionally, the network components above are either technologically aggregated, meaning their tech-
nological properties result from a combination of different technologies and characteristics, or only
include one technology. For example, for the Solar PV component native to PyPSA-eur, the output per
irradiation results from an aggregation of different materials, technologies and materials. Whilst aggre-
gations like these simplify reality, they can generally be considered to provide adequate representation
of the energy system [89].
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Test case Research case
Model inputs Weather data (ERA5, SARAH) 2013 2013

Load data (TYNDP) 2013 2013
Component costs Appendix A Appendix A

Model choices Geographical scope [countries] NL NL, BE, DE,
FR, GB, DK, NO, LU

Spatial resolution [nodes] 6 24
Temporal resolution hourly hourly

Power-sector fossil-free fossil-free
Demand factor 1.5 1.5

Extension to default PyPSA-eur components Table 10 Table 10
Foresight perfect foresight perfect foresight
Field brownfield brownfield

Goal verification network insights

Table 4.5: Summary of key model choices and assumptions

4.3. Load-shifting intergration
4.3.1. Load-shifting availability
To model load-shifting, it is necessary to assign a certain fraction of the demand available for load-
shifting. In reality, such availabilities are often the result of multiple external effects, such as temper-
ature, time of year, time of day or day of the week [67, 32]. Including such dependencies introduces
non-linearities into the optimisation framework, and therefore, assigning more elaborate availabilities
is out of the scope of this study.

Also such availabilities can vary widely per load-shifting process, thus requiring detailed information
per load-shifting actor. Since the scope of this study is not to gain insights into DR actors willingess-
to-particpate, or load availabilities, a simplified approach is taken to approximate top-level aggregate
load-shifting availability.

Because of the privacy sensitivity of demand of potential demand actors, little estimations exist on the
overall aggregate availability for demand response. Therefore, this study leveraged expert knowledge
from Witteveen+Bos and CE Delft. In their study CE Delft and Witteveen+Bos [22], three availability
scenarios for industrial demand were considered between [10 - 30%]. Therefore, this study will employ
a flexible percentage in this range of 10%.

As discussed in section 3.5.1, such a flexible share effectively means assigning a dynamic flexbile
bandwidth to the total demand.
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Figure 4.1: schematic overview flexible bandwidth
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4.3.2. Inconvenience costs
Assigning costs to the load-shifting is relatively straightforward because the application of virtual batter-
ies allows for utilising native PyPSA network components and assigning operational costs accordingly.
The addition of the virtual batteries in the network then automatically adds them to the total objective
function, where the virtual batteries, along with the operational costs, are included through on,s,thn,s,t

min
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4.3.3. Network topology
To successfully implement the load-shifting framework, the network topology of the PyPSA network
needs to be modified. An extra node is added to every network node to model the flexible bandwidth
for load-shifting.

1. Creation of an extra shifting node for every network node
2. A unidirectional link between the two nodes has a capacity of difference between the upper and

lower limits of the flexible bandwidth per node. This equivaltes to D
+

n,t−D
−
n,t. In the case of 10%

flexible bandwidth e.g. α = 0.1, this equates to 0.2D0
n,t

3. To every shifting node, a virtual battery is connected. In the case of disaggregation of J load-
shifting types, J multiple virtual batteries are placed on the same shifting node. This effectively
entails that they ’share’ the flexible bandwidth. Importantly, for this case, the total charging and
discharging is limited to the same 0.2D0

n,t to prevent cross-charging/discharging between the
virtual batteries.

4. To every shifting node, a ’Flexible’ load is attached. This lode corresponds to αD0
t,n. This load

can thus be supplied by the larger grid, through the unidirectional link, or virtual battery operation
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Figure 4.2: Topology of virtual battery implementation.

In summary, integrating the virtual battery concepts for the research cases requires a careful introduc-
tion to the PyPSA-our network. This is done through assigning power limits to the virtual battery in the
form of a flexible bandwidth and through assigning operational costs. A generic visualisation of the
topology of virtual battery integration is given below:

4.4. Conclusion
This chapter introduced the modelling framework, along with modelling decisions and considerations.
The design of this framework is crucial to addressing the research questions, as the scope of the prob-
lem is further quantified and illustrated through these model decisions. After applying the framework to
the subsequent sub-research questions, its effectiveness will be evaluated to determine if it success-
fully delivered the intended purpose.

The PyPSA framework, a powerful open-source tool for power system analysis, was presented in detail.
PyPSA’s capabilities, including power flow analysis, least-cost power plant dispatch, and least-cost in-
vestment optimisation, were highlighted. The extended configuration, PyPSA-eur, was also discussed,
showcasing its ability to model and optimise the European power system by leveraging diverse and
freely available data sources through a structured workflow.

Key model choices were made to ensure the robustness and relevance of the study. These include the
geographical scope, temporal and spatial resolution, policy standards, and assumptions. The study
aligns with the research conducted by Witteveen+Bos, particularly in terms of network component se-
lection, policy standards, and assumptions, ensuring validation of results as well as expertise insights
in the context of the Dutch power grid. The model choices reflect a balanced approach between com-
putational tractability and a realistic representation of the power sector.

Integrating virtual battery concepts into the PyPSA-eur framework was introduced, focusing on the core
concept of inconvenience cost. This cost, akin to the operational cost of a physical battery, is critical
for modelling demand response (DR) mechanisms. The network topology was modified to include an
extra node for each network node, facilitating the introduction of virtual batteries. This setup enables
the flexible bandwidth for load-shifting and assigns operational costs to the virtual battery, ensuring
effective integration into the power system model.
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In conclusion, this chapter established a comprehensive methodology for developing a verification
network and a power grid model for the Netherlands’ power sector in 2035. Integrating PyPSA and
PyPSA-eur, along with informed model choices and incorporating virtual battery concepts, provides a
robust foundation for the subsequent analysis and discussion of results. This framework, once applied,
will be evaluated to ascertain its success in addressing the research questions and achieving the study’s
objectives.



5
Methodology

In this section, the methodology employed to address the research question is detailed:
Exploring the value of Demand Response (DR)/Load-shifting as a flexibility solution for a cost-
optimal power grid: A research case for the Dutch power grid in 2035 through analysis of pos-
sible scenarios.
This chapter outlines a structured approach to implementing DR load-shifting for large-scale energy
planners. The methodology is divided into two main components

1. Test case:
A smaller, simplified network is designed by lowering the geospatial resolution while maintaining
other model choices. This allows for verifying DR modelling frameworks in a computationally
feasible environment. The goal of the test case is to address Subquestion 3:
What characterises DR, and how can it be effectively portrayed in (large-scale) Energy System
Optimisation Models?

2. Research Case:
The research case represents the full system of interest. One verified DR modelling framework
is tested and compared with a DR framework with known shortcomings to highlight its impact on
a system scale. This phase focuses on gaining insights into network behaviour from load-shifting
and investment decision-making dynamics. The aim here is to answer Subquestion 4:
What is the effect of implicit DR load-shifting on decision-making and investment planning for the
Netherlands in 2035 (under different scenarios)?

Initially, the Kleinhans and Morales load-shifting frameworks undergo qualitative verification tests to
replicate realistic load-shifting behaviour. Additionally, their computational traceability is quantitatively
assessed to validate their applicability. A novel approach is also specified and qualitatively assessed.
The two load-shifting mechanisms from the test case are introduced for the second case study to
validate both models’ top-level impact on decision-making. Network insights, such as differences in
optimal capacities and system costs, are then evaluated to extrapolate findings to the broader context
of investment planning and policy advice.
Section 5.1 elaborates on the structure and methods for the test case. Subsequently, Section 5.2
discusses the methodology used for the second case study in greater detail.

5.1. Test case: validation of frameworks
This section aims to construct a thorough validation methodology for the selected DR modelling frame-
works. It contributes to the current landscape of DR optimisation frameworks by presenting data to
verify these methodologies.

This approach aims to derive conclusions on the effectiveness of both frameworks for modelling DR
(within a large-scale context), ensuring a balance between model simplicity and the realistic represen-
tation of DR capabilities. The insights and results will be discussed in section 6

The validation method will consist of two analyses per framework:
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• Qualitative test of DR characteristics:
This analysis focuses on the effectiveness of the framework in tackling the core DR challenges
of saturation & load-recovery

• Quantitative assessment of computational burden:
This analysis will present computation times to indicate the feasibility and applicability of the frame-
works. Furthermore, inconvenience pricing ranges will be examined to determine their role in their
respective framework.

The methodology is designed such that the result will yield a verified DR framework suitable for large-
scale optimisation. Importantly, for the Morales method, two linear relaxations will be compared to
test the efficacy. Additionally, another linear relation was evaluated, but it did not fit the scope of this
analysis. This can be found in appendix B.

To correctly and efficiently compare the behaviour of the variations of bottom-up models, a separate
network is designed, as specified in section 4.2.4. This case study focuses on the dynamics of virtual
batteries within the bottom-up framework. Therefore, the bottom-up model is applied to a scaled-down
network to increase computational tractability.

Figure 5.1: Schematic figure showing the nodes in the test case

5.1.1. Assigning Virtual battery limits
In CE Delft and Witteveen+Bos [22], a flexible share for the industry is taken 20%, without further spec-
ification of other aggregated load-shifting sectors. For the flexible bandwidth of this study, value of
α = 0.1 is assigned. The primary aim of this contribution is to gain insights into the dynamics of virtual
batteries. Therefore, it must be reiterated that assigning exact flexible bandwidth for the technologies
or processes of the virtual batteries in this test case is not the goal.

D
+

t = (1 + α)D0
t = 1.1D0

t (5.1)

D
−
t = (1− α)D0

t = 0.9D0
t (5.2)

This study explores load-shifting for different sectors. For the Kleinhans and Morales load-shifting
frameworks, one virtual battery should represent a homogenous aggregation of identical appliances or
processes for this sector. The exact process or appliance is not necessarily of interest for the purpose
of this verification. Therefore, these three load-shifting processes will be from now on out specified as:
Industrial, Tertiary & Residential process. The resulting
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Disaggregated, J = 3 Aggregated
Kleinhans Morales Wasserstein
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Table 5.1: Energy and Power Constraints for Virtual Battery Framework

5.1.2. Consistent cost comparison
For the load-shifting mechanism to operate in the energy system, operation prices must be determined.
These prices are often referred to as the ’willingness-to-participate’ or ’inconvenience cost’ for a DR
actor. This concept will be referred to as the inconvenience cost in this study. Importantly, for Virtual
Battery frameworks, this cost can be directly compared to the operational cost of the battery.
The primary objective of this section is to establish a robust framework for consistent cost comparison
across different demand response (DR) modelling approaches. The bottom-up frameworks, such as
Kleinhans and Morales, impose inconvenience costs for load-shifting through power costs denoted as
c1 (charging/discharging). In contrast, the top-downWasserstein method assigns inconvenience costs
per megawatt-hour hour (MWhh), denoted as c2, as discussed in Section 3.6.
The goal here is to ensure that all DR modelling frameworks experience similar cost parameters,
thereby allowing for valid comparative insights into their operational differences. To achieve this level
playing field, the cost parameters c1 and c2 must be assessed and adjusted to facilitate a fair com-
parison. This approach ensures that the different methods can be compared, limiting the bias due to
differing cost structures.
Comparing the costs for top-down, aggregated load-shifting models with disaggregated bottom-upmod-
els is a delicate matter since the composition of load-shifting costs is fundamentally different.

For bottom-up models, various technologies, each with unique costs, shifting durations, and flexible
bandwidths, can be differentiated in a network. The resulting aggregate of the actions done by each
of these components, or virtual batteries, then determines the total shifted load. Conversely, top-down
modelling does not consider strict shifting durations, and only one cost reflects the amount of load shift-
ing, given a certain bandwidth. Therefore, comparing these methods is cumbersome. The approach
taken in this methodology revolves around using a top-down cost assumption and reliably connecting
this to both time duration and costs per disaggregated virtual battery. To achieve this, the cost-per-
shifting action of the top-down model needs to be approximately translated to a cost and a time dura-
tion for different bottom-up aggregated batteries with different cost structures. This strategy is further
elaborated below.

Let P (t) represent the charging or discharging power of the battery, and et is the energy level. For any
load-shifting duration T , the total costs for that load-shifting action can be derived. Below, C1 represents
the costs incurred by bottom-up frameworks assigning costs per MWh and C2 for top-down frameworks
assigning costs per MWhh:

C1 = c1

∫ T

0

|P (t)|dt, C2 = c2

∫ T

0

|e(t)|dt (5.3)

C1 = c1PavgT, C2 = c2
1

2
|emax|T (5.4)

(5.5)

Given such a load-shifting scenario, it becomes possible to create equivalent costs per load-shifting
duration T . To ensure equivalency, we set C1 = C2 for the same duration T . Under this condition, note
how emax = ∆tPavg and ∆t = 1

2T , as illustrated by the example below.
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Figure 5.2: illustrative load-shifting action.

The figure also shows ϵj which resembles the non-zero energy level, note that this value is always
ϵ = T − 1. To achieve equivalency, the following steps are taken:

C1 = C2 For sameT (5.6)

c1PavgT = c2
1

2
|emax|T (5.7)

c1Pavg = c2
1

4
PavgT (5.8)

c1
c2

=
T

4
(5.9)

Given the approximation for comparison of two methods, let us now discuss the costs assigned to the
test case network.

When examining costs for load-shifting at an aggregated, top-level scale, the price-elasticity level and
intertemporal cross-price elasticities can describe load-shifting behaviour[68]. Positive intertemporal
cross-price elasticity indicates that load is shifted from high-price to low-price hours, effectively increas-
ing demand when preceding or subsequent prices are higher. Conversely, negative intertemporal
cross-price elasticity suggests demand inertia, where demand decreases with higher preceding and
subsequent prices, requiring consistently low prices over several hours to trigger a response. Recent
research by Hirth, Khanna, and Ruhnau [67] demonstrates that in the German context, intertemporal
cross-price elasticities are predominantly positive, supporting the notion that load-shifting is more likely
to occur over shorter time frames.

This insight further validates the cost structure for c2, assigning cost per Mwhh. Assigning costs per
MWhh naturally favours short-duration shifts. This methodology, therefore, creates 5 ascending cost
tiers as shown in table 5.2 below. From the disaggregated set of prices, the resulting equivalency prices
can be derived approximately based on the duration of the load shift T .
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Disaggregated, J=3 Aggregated
c1 [€/MWh] c2 [€/MWhh]

Industrial Tertiary Residential
∆t 12 6 2
T 24 12 4
ϵj 23 11 3

Cost Tier 1 60 30 10 10
Cost Tier 2 120 60 20 20
Cost Tier 3 180 90 30 30
Cost Tier 4 240 120 40 40
Cost Tier 5 300 150 50 50

Table 5.2: Cost structure for different DR frameworks

Although the purpose is not to specify technology-specific time duration and costs, the costs for in-
dustrial shifting can be verified based on expert knowledge from W+B and CE Delft. In CE Delft and
Witteveen+Bos [22], a total inconvenience cost per industrial load-shift of 200 e/MWh was assigned.
Whilst that study has not linked any timeshifting frame ∆t to load-shifting action, the approximation
shown in table 5.2 for cost tier 2 can be considered realistic

By assigning similar cost-per-time-duration ratios to the bottom-up and top-down frameworks, the two
methods could effectively be compared. It is, however, important to realise that this inconvenience
cost structure is therefore skewed towards more favourable pricing of DR for shorter duration time
load-shifting. As discussed, this is obvious when considering Wasserstein modelling. However, for
bottom-up modelling, this is not necessarily realistic. An obvious insight from the table is the increased
costs for longer-duration shifts due to the equivalency approximation. An important notion here is that,
in reality, higher inconvenience costs are not necessarily connected to longer durations of load shifts.
Multiple examples of longer-duration load-shifting action can occur for fairly low prices, such as power-
to-heat processes [43] [44]. At the same time, higher-cost, short-duration processes exist. However,
since the purpose of this test case is not to create a realistic and complete bottom-up network and
compare its aggregate with a top-down structure. Rather, this method focuses on fairly assessing and
comparing the two DR modelling frameworks, and thus the prices shown for the disaggregated set do
not necessarily relate to a load-shifting process.

5.2. Research case: impact of load-shifting
The main result from Section 5.1 is a well-defined, verified DR framework, suitable for large-scale
ESOM.

This section discusses the methodology employed to answer the subquestion: What is the effect of
implicit DR load-shifting on decision-making and investment planning for NL 2035 under different sce-
narios?

Subsequently, it examines the decision-making process for opting for a power grid utilising implicit flex-
ibility through DR, or selecting a power grid configuration with explicit flexibility through firm flexibility
assets such as Battery Energy Storage Systems (BESS).

To adequately answer the subquestion, two intermediate steps can be distinguished to gain the desired
insights:

1. Network analysis and comparison
Network-related insights into the cost-optimal solution are assessed for two networks: one in-
cluding DR and one excluding DR. The aim is to validate the load-shifting framework on a larger
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network scale and assess the effect of load-shifting on the network scale.
2. Robust investment planning

Further sensitivity analyses are employed to gain insight into robust decisions. By varying mul-
tiple weather-input scenarios, a regret assessment is conducted to determine whether networks
including implicit flexibility result in worse investment decisions.

5.2.1. Network analysis
As discussed in Section 4.2.4, the optimal network for both perturbations is put into a wider context
than solely the Netherlands. Seven neighbouring countries are considered, although in smaller spatial
resolution than the power grid of interest in NL.

Figure 5.3: Research case geographical scope

Since the ESOM is a prescriptive energy modelling tool, the cost-optimal configuration for the energy
system is the main output to be analysed. The main goal of this analysis step will therefore be to
analyse and compare between networks:

• Optimal installed capacities
Comparing differences in the flexibility sector to yield insights into possible futures in this power-
grid sector.

• Optimal infrastructure expansion
Assessing differences in infrastructure.

This analysis will be done for a power grid excluding load shifting and including load shifting to compare
and analyse results. Also, to further validate the effectiveness of the results from the test case, two
different load-shifting frameworks will be tested to highlight the differences.

5.2.2. Robust investment planning
To address the fourth research subquestion: What is the effect of implicit DR load-shifting on decision-
making and investment planning for NL 2035 under different scenarios?, a comprehensive analysis
is conducted to inform strategic decision-making. This analysis examines the interplay between DR
and other flexibility assets, particularly emphasising their implications for investment decisions. An
investment regret methodology is employed to evaluate the robustness of cost-optimal network config-
urations with and without DR integration, providing strategic guidance for decision-makers operating
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under conditions of uncertainty.

The regret approach can be described as a simplified version of theMiniMax regret methodology, which
is particularly well-suited for energy infrastructure planning and future scenario analysis for several
compelling reasons [90]:

1. The inherent uncertainty stems from future policy decisions and regulatory frameworks, making
probabilistic scenario assignment inherently challenging

2. Infrastructure planning necessitates a systematic and objective decision-making framework that
minimizes subjective bias

3. The methodology circumvents the need for subjective probability assignments to different scenar-
ios, providing a more robust analytical foundation

4. The approach aligns with the risk-averse perspective typically adopted by infrastructure planners
and policymakers

The simplified approach for the MiniMax regret can be described as follows.

1. First, network optimisations are performed for three additional weather years, 2011, 2012, and
2014.

2. For each weather year, two distinct network configurations are optimised:

• Configuration A: System without DR
• Configuration B: System with DR

3. Each optimised configuration is then tested against the weather conditions of all other years.
Since the configurations are fixed, the only cost difference results from different optimal dis-
patches of assets, yielding a unique system OPEX per year.

4. The regret for each configuration is calculated as the difference between:

• The OPEX when the configuration operates under different weather conditions
• The OPEX of the optimal configuration for that specific weather year

5. The maximum regret for each configuration across all weather years is identified.
6. The configuration with the lowest maximum regret is selected as the most robust solution.

This approach can act as a suitable surrogate for an actual MiniMax approach. The most important
difference is that in this approach, the optimal solution is found from the discrete set of 8 possible in-
vestment decisions: 4 weather scenarios with 2 possible configurations. An actual MiniMax approach
would optimise for the continuous solutions space between all sets of the configurations, which might
impact the results. This is an important notion since the sample size of our scenarios limits the outcome
of the simplified version.
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Results: validation of load-shifting frameworks

In this chapter, the PyPSA-eur framework is employed to optimise a network configuration specific to
the Netherlands, with model assumptions and choices as outlined in Section 4. The primary objective
of this chapter is to address the subquestion:

What characterises Demand Response (DR), and how can it be effectively portrayed in (large-scale)
Energy System Optimisation Models (ESOMs)?

To achieve this, both quantitative and qualitative insights are gathered on how the selected DR mod-
elling frameworks—Kleinhans,Morales, andWasserstein—perform. The analysis is conducted through
the following steps:

1. A qualitative analysis of timely recovery.
2. A quantitative assessment of computational tractability

Section 6.1 presents the results of the Kleinhans method, focusing on virtual battery operation and
load-shifting effects. This is followed by Section 6.2.3, which highlights the linear approximation pro-
posed in theMoralesmethod. Finally, a comparative analysis of theWassersteinmethod is conducted,
providing a comprehensive evaluation of its performance.

As discussed in section 5.1.2, 5 cost tiers were assigned for, corresponding to the virtual battery con-
figurations. For clarity and consistency, they are repeated here

Disaggregated, J=3 Aggregated
c1 [€/MWh] c2 [€/MWhh]

Industrial Tertiary Residential
∆t 12 6 2
T 24 12 4
ϵ 23 11 3

Cost Tier 1 60 30 10 10
Cost Tier 2 120 60 20 20
Cost Tier 3 180 90 30 30
Cost Tier 4 240 120 40 40
Cost Tier 5 300 150 50 50

Table 6.1: Cost structure for different DR frameworks

For consistency, whenever a specific case of virtual battery is highlighted, this will be done for virtual
batteries operating in cost tier 2.
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6.1. Kleinhans framework
To qualitatively validate the results of Kleinhans method, insights will be focused on saturation & load
recovery.

Saturation & load recovery
The primary aim of this contribution is to gain insights into the dynamics of virtual batteries. There-
fore, it must be reiterated that the exact inconvenience pricing and realistic, flexible bandwidth for the
technologies or processes the virtual batteries in this test case represent are kept arbitrary since the
purpose is to verify their validity rather than their top-level impact.

The first qualitative assessment should inspect the Load-recovery & saturation. To observe the timely
recovery of load-shifting actions, the duration of non-zero energy level is observed in every virtual
battery. Since every charging event corresponds to an increase in demand and a discharging event
to a decrease in demand, any non-zero time interval ϵ corresponds to a load-shifting action. The non-
zero time duration was counted for every zero crossing for the chosen disaggregated virtual batteries
(Industrial process, Tertiary process, Residential process).
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Figure 6.1: mean duration of load-shifting action by corresponding virtual batteries

From the above figure 6.1, it can be observed that the duration of the Virtual battery action, is happening
at timeframes which are not in the correct range. The omission of any load-recovery constraint resulted
in load-shifting durations that extended expected load-shifting durations. From the load-shifting table,
given in 2.1, most shifting times are observed to be within 1 day and 24 hours. Without load-recovery
constraints, the cost-optimal network position for the virtual battery is to charge and discharge selec-
tively
From the table, this can be further visualised after inspecting the actions done by the virtual battery,
which represents an aggregation of an industrial process over a full year. in figure 6.2 below.
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Figure 6.2: Industrial Virtual battery table test case, cost tier 2

From this figure, the duration and frequency of the load delay(negative energy level of virtual battery)
and anticipation of load events become clear. Furthermore, it can be concluded that the DR behaviour
of the virtual battery is more representative of long-term storage solutions in a power grid. Since load-
shifting DR for all three sectors is not projected to operate at such time durations, this DR battery
operation can be deemed unrealistic. Technology-specific load recovery limits are not dealt with, and
demand can be postponed for time durations beyond the defined shift times.

The behaviour in charging and discharging becomes clearer after inspecting the battery behaviour for
the period January to February, in figure 6.3. The virtual battery operates cost-optimally by acting on
the most profitable moments. The absence of specific mechanisms ensuring recovery thus results in
undue load recovery.
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Figure 6.3: Behaviour of Industrial virtual battery, cost tier 2

Computation time
The computation times refer to the time needed to solve the least-cost investment problem. The ob-
jective function to be solved is described in detail in equation 4.2. The solving times for the Kleinhans
model are listed in table 6.2. The solver settings for the used solver are listed in appendix D.

Kleinhans method Solving time [minutes]
Mean across cost tiers 6.88

Table 6.2: Solving times for Kleinhans method

Key takeaways:

1. The Kleinhans method does not model realistic load-shifting actions
2. The limited added complexity results in low computation times.

6.2. Morales framework
In this section, the second virtual battery method is conducted to test and verify its dynamics in the test
network. Note that the goal of this chapter is not to provide accurate DR estimation for a future grid but
to test the logic and operation of the virtual battery within the framework.
The goal of this section is the following:

• qualitatively assess the efficacy of the binary variable δ for ensuring load-recovery
• qualitatively assessing the efficacy of the linear relaxation of δ
• Investigating the framework’s functionality without a complementarity variable.

For verifying the virtual battery mechanics in the Morales framework, a similar structure was applied.
The topology of the virtual batteries within the PyPSA-eur framework can again be visualised by figure
4.2. The only exception is that the virtual battery in the figure is now replaced with a virtual battery
restricted by the constraints presented in 3.5.2.
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6.2.1. Mixed-integer Programming framework
The MIP network corresponds to the methodology posed in 3.5.2. Specifically, the δ operator is kept
binary, as demonstrated in 3.29. Due to the scaled-down test case, MIP optimisation can be conducted.
First, let us inspect the behaviour of the virtual battery and the efficacy of the binary complementarity
variable δ.

Saturation & load-recovery
First, the mean times of operation are verified for the same cost range, as in section 6.1. Since this
framework has explicitly constrained the load-shifting behaviour, more timely load-recovery is expected.
To qualitatively asses the threshold for ’timely’ recovery, every maximal non-zero energy level ϵ is shown
in the graph. Recall from table 5.2, that for for Industry virtual batteries ϵ = 23, for Tertiary batteries
ϵ = 11, for residential batteries ϵ = 3.
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Figure 6.4: Mean load-shift duration times MIP Morales, with maximum non-zero energy level ϵj

From figure 6.4, introducing the load-recovery constraints resulted in better timely recovery. On aver-
age, all virtual stores are shown to shift load over a realistic timeframe.

To further assess this, in figure 6.5, a visualisation is given for the industrial Virtual battery in cost tier
2, to illustrate the dynamics of the virtual battery. This operation in March shows that the bottom-up
model acts as intended: discharging at a high marginal bus price and recuperating at a lower price if
the difference exceeds the inconvenience costs.
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Figure 6.5: Change in Demand caused by the virtual battery

Also, from figure 6.5, the timely load-recovery can be seen. The virtual battery completes the charging
and discharging action within the flexible time frame.

Another interesting insight is into the dynamics between sectors. Note how no specific bandwidth is
assigned per virtual battery but rather one flexible bandwidth for all demand responses. This results in
virtual batteries having to ’share’ this flexibility bandwidth at times.
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Figure 6.6: Change in demand caused by multiple virtual batteries

Note how in figure 6.6, the behaviour of discharging and charging moments is distributed over time.
Since the total charging/discharging capacity is 0.1 for all virtual batteries, the cost-optimal order of
charging/discharging is found per virtual battery. It should be noted, however, that these dynamics
might not be desirable for illustrating real-world behaviour since DR offered by different processes gen-
erally do not influence each other.

Further inspection into the efficacy of the binary complementarity variable reveals an interesting ob-
servation in figure 6.7. The maximum duration of DR action cannot be guaranteed through the binary
variable δ. From Table 5.2, we know that the maximum shifting time for the Industrial virtual battery is
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T = 24. However, in figure 6.7, it can be seen that the virtual battery exceeds its maximum flexible
time.

Figure 6.7: Example of untimely recovery for the MIP model

From figure 6.7, the following can be concluded by analysing the charging and discharging behaviour.
The created logic can only ensure timely recovery if there are no interruptions in the charg-
ing/discharging process. Since there is no constraint limiting the battery to discharge or do nothing
during an action, the above behaviour can occur in virtual battery dynamics.

Computation time

Method Kleinhans method [minutes] MIP network [minutes]
Mean across cost tiers 6.88 719.4

Table 6.3: Mean solving times for Kleinhans and MIP methods

From table 6.4, it becomes clear how the introduction of the binary variable significantly increased the
computation time of the test network, as was also pointed out by the authors of this problem formula-
tion [21]. In this example, a disaggregation of J = 3 was chosen. This effectively means that for every
timestep t at every node, 3 binary variables exist. MIP solvers like Gurobi use Branch-and-Bound
algorithms, effectively creating a multitude of subproblems (branches) which need to be explored for
every binary variable. Therefore, any increase in disaggregation, temporal and spatial resolution, will
further enhance the computational burden exponentially. This makes the MIP formulation especially
unsuitable for large-network bottom-up disaggregated virtual batteries.

6.2.2. Loose linear relaxation
The following section will discuss the study of the bottom-up model. Before testing the efficacy of linear
relaxation of the δ complementarity variable, this section will set a benchmark for assessing the other
linear relaxations. Within the framework stated in 3.5.2, this effectively means this framework is the
loosest relaxation:

d+t ≤ 0.1D0
t δ → d+t ≤ 0.1D0

t

d−t ≥ −0.1D0
t (1− δ) → d−t ≥ −0.1D0

t

The variable introduced for mitigating simultaneous cycling is now absent. Since this variable was
added to ensure timely recovery, more untimely recovery is expected.
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Saturation and Recovery
Figure 6.8 shows how the shift times are in the right domain while the mean times have increased.
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Figure 6.8: Caption

Once again, the week from the 3rd of March to the 10th is analysed for the Industrial Virtual battery.

Figure 6.9: Change in demand due to industrial VB. NB: only Industry battery shown

The basic price incentive dynamics of the virtual battery work properly: Discharging the virtual battery
happens at expensive prices, and charging at cheap times. Also, the charging and discharging be-
haviour works accordingly for this period since no simultaneous cycling is observed.

Network dynamics
In order to further analyse the effect of omitting a complementarity variable, the load-shifting properties
of the virtual batteries are inspected for performance over the full optimisation timeframe of 1 year.

To test the dynamics of the unconstrained virtual battery concerning its binary counterpart, an evaluation
is generated in figure 6.10. The chart shows all DR actions done per virtual battery. On the y-axis, the
number of DR actions is shown, per flexible time duration. This consequently gives insight into
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which virtual batteries are most often activated, as well as for what timeduration, energy was shifted.
Also, the amount of energy per timespan of the DR action is visualised through the ’bubble’ size. In
this plot, virtual batteries corresponding to the industry, tertiary and residential sectors are abbreviated
by Ind, Ter and Res, respectively.
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Figure 6.10: Load-shifting overview of MIP versus Unconstrained Morales, Cost tier 3

To improve the visualisation insights, Cost tier 3 was selected. This limits the amount of load-shifting
actions. From this figure, the following conclusions can be drawn:

• Most energy for both networks is displaced through short-term load-shifting. This is due to the
formulation, as discussed in 5.1.2.

• Most undue recovery cases occur in all virtual batteries, however, primarily for the most used
Residential virtual battery.

• Untimely load-shifts can still occur at a duration far beyond the maximum allocated time. For
example, for tertiary with 22.

6.2.3. Tight linear relaxation
Let us now assess the quality of the δ complementarity variable within the dynamic network. Since the
binary complementarity constraint was proven unable to guarantee timely recovery, it is unclear in what
ways the linear relaxation of this variable will prove valuable.

d+t ≤ 0.1D0
t δ → d+t ≤ 0.1D0

t

d−t ≥ −0.1D0
t (1− δ) → d−t ≥ −0.1D0

t

Saturation and load-recovery
Again, an initial check is performed to verify the range of DR actions. Figure 6.11 shows the mean DR
virtual batteries to be operating in the range of duration as would be expected.
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Figure 6.11: Mean load-shift duration for Morales methods

From, figure 6.11, little difference between the loose relaxation can be found. Also, when comparing
the relaxation for the same time period in march as in figure 6.9. This is shown in figure 6.12.

Figure 6.12: Virtual battery operation in march for δ relaxed Morales

To acquire more conclusive results on the effectiveness of the tight relaxation, the virtual batteries are
assessed at the network scale.

Efficacy of relaxation
The above results showed the local efficacy of the δ variable for one virtual battery at the bus level. Now,
let us inspect more general metrics of the full network over a year, using the bubble plot visualisation
again. The linearised δ is tested against the MIP model, as well as the unconstrained model in figure
6.13
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(a) Cost tier 3 MIP DR operation, versus DR operation containing δ complementarity variable
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(b) Cost tier 3 Unconstrained DR operation, versus DR operation containing δ complementarity variable

Figure 6.13: Combined bubble plots of unconstrained virtual batteries vs delta

From figure 6.13a, interesting observations can be made at the top level. Firstly, similar results are
observed for the loosely relaxed, unconstrained version: most undue occurrences happen for the resi-
dential virtual battery. Fit can be observed that residential virtual battery is less utilised in the linear
delta model. Secondly, the number of ’illegal’ DR operations increased significantly for the tertiary vir-
tual battery. Also, the industrial virtual battery seemed prone to more DR actions that exceeded the
maximum flexible time of the virtual battery.

From figure 6.13b, the most important observation is the prevalence of similar DR actions between both
models. For DR actions done by the industrial virtual battery, the unconstrained model can be seen
to operate slightly more. For example, the unconstrained model operated in time duration buckets [45
- 46], and [49-50]. These illegal actions were mitigated by the introduction of the linear delta model,
however also actions occur in the [43-44] bin.

6.2.4. Summary of Morales variations
This section will summarise the findings on Morales’s load-shifting mechanisms on load-recovery, satu-
ration and computational burden. It will present the parameter axes on which the level of load recovery
was tested. From figures 6.10 6.13a, both the energy displaced per sector and the number of hours



6.2. Morales framework 63

of untimely load-recovery could be obtained. In order to now concisely display the number of untimely
actions done per sector, per morales variation, another visualisation is presented below in figure 6.14.
Here, the amount of untimely load-recovery actions, as a percentage of all DR actions for the
corresponding virtual battery is presented.
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Figure 6.14: Percentage of undue load-recovery actions, of all load-shifting actions

From figure 6.14, interesting insights can be obtained. Firstly, a trend can be observed that for most
instances, the δ relaxation resulted in less undue load recovery.

However, irregularities for all virtual batteries remain between cost tiers. The irregularities in the indus-
try of virtual batteries can largely be attributed to the small sample size. As shown for cost tier 3 in
figures 6.13a, and 6.10, the total amount of industrial virtual battery actions is fairly low. Due to the
low sample size, one additional undue recovery case impacts the percentage more heavily. For other
sectors, these irregularities also occur due to decreased sample size, however, at later cost tiers. It
can therefore be concluded that increasing costs has limited positive impact on limiting undue recovery.

Importantly, from figure 6.14, the efficacy of both linear relaxations can be assessed. Although impacted
by the irregularities from the small sample size, slightly fewer undue recovery actions can be observed.
The initial reason of the authors of the Morales methods, as discussed in section 3.5.2, highlighted the
problem of simultaneous cycling as the reason. This does not seem to be a significant issue for this
test case because of the similarity in results of both relations. To gain insight into how simultaneous
cycling is prevented, another comparison chart is given below:
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Figure 6.15: Simultaneous cycling present in Morales variations

From this chart, the high number of simultaneous cycling events in the residential virtual batteries can
be explained by their high overall share in load-shifting events. This figure once again shows the limited
but positive effect of the higher relaxation.

From a computational perspective, the MIP framework is not computationally tractable for large-scale
ESOM. This is once again shown in table 6.4.

Method Kleinhans MIP Loose relaxation Tight relaxation (δ)
Mean across cost tiers 6.88 12.0 13.9 13.0

Table 6.4: Mean solving times for different methods [minutes]

Key takeaways:

1. all Morales bottom-up frameworks enable realistic load-recovery timeframes for virtual batteries
within large-scale ESOMs.

2. No framework can guarantee load-recovery
3. The tighter relaxation offers limited added performance but is also an identical computational

burden to the loose relaxation. Therefore tight relaxation can best be used.
4. The computational time of the MIP formulation inhibits implementation for large-scale ESOMs.

6.3. Wasserstein framework
The newly generated Wasserstein metric can be linearly implemented in the new objective function,
along with a penalty, Cshift, which is essentially a cost per MWhh.

minimise : Csystem + Cshift ·W (t) (6.1)

This method was tested in these test cases again, and the results for the same March period are shown
in figure 6.16 below.
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Figure 6.16: Demand versus Demand incl DR, bus NL0 0 1st week of March. Cost tier 3: 30 MWhh

From figure 6.16, the effects of the alternative virtual battery approach are neatly shown. Although
no recovery limits are assigned, as for the bottom-up model, the virtual battery recovers its load in
realistic time durations. This is due to the inconvenience costs allocated to the virtual battery’s state of
charge/energy level. Deviations from the original load occur for reasonable timeframes corresponding
to real-life DR actions.
To analyse the Wasserstein VB method on the full timescale of the optimisation, a similar structure is
employed as in the bottom-up verification. The results from the Wasserstein method are visualised in
the same manner as for the bottom-up frameworks, sorting the DR actions per count, duration, and
energy displaced. In figure 6.17, cost tiers 1, 3, and 5 are shown.
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Figure 6.17: Load-shifting actions by theWasserstein modelling framework, for cost tiers 1, 3 & 5

From figure 6.17, it can be observed that most load-shifting actions occur for short shifting timeframes.
This is as expected since the formulation of this method effectively penalises load-shifting with increas-
ing duration.
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From the lowest cost tier (10 €/MWhh), a substantial load is shifted for 9 to 13 hours. This trend
decreases with increasing load since the return on investment diminishes.
Note how similar conclusions can be drawn from a top-down perspective. That is, the categorisation of
DR activity from the bottom-up modelling can also be done post-optimisation using top-down methods
by observing the shifts happening for longer intervals. The virtual battery actions done by the industry
sector are categorised by acting in larger than 18-hour bins.
In the previous section on bottom-upmodelling, the observation was that for realistic top-level DR action,
it could prove useful to include sector-specific flexible shares for a more realistic representation. From
the Wasserstein method, however, an alternative approach can be employed. Instead of categorising
per sector, it could be interesting to categorise by estimated MWhh cost. That is, a small section of
demand available for DR could, for example, be categorised as very inelastic and have low MWhh
costs. A larger section of demand operates at more elastic MWhh prices.

Comparison between frameworks
The visualisation for DR operation over the full timescale revealed similar curves for both methods,
validating the effectiveness of both approaches for analysing top-level load-shifting behaviour.

Due to the careful cost standardization approach, both methods produce comparable results, which
validates the effectiveness of the Wasserstein method as an alternative to bottom-up frameworks for
analysing aggregate DR behaviour.

From the cost standardisation in section 5.1.2, a benchmark was set to approximate equivalency based
on a fixed shifting duration T . From the equation below, it can be observed that for decreasing T and
consistent c2, for equal pricing, c1 should also decrease to maintain equivalency.

c1
c2

=
T

4
c1 =

Tc2
4

(6.2)

Since, in this framework, the costs are fixed, and thus such equivalency cannot be maintained for a dif-
ferent time duration, the Wasserstein method is more economical for shifts shorter than the benchmark
T . This can also be seen in figure 6.18.
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Figure 6.18: Comparison of DR methods, Cost Tier 3

This step has validated the effectiveness of the Wasserstein methods since it can be shown to shift
loads over primarily short-term time duration and recover its shifted load in due time. This makes it a
suitable virtual battery framework for top-level, aggregate load-shifting models.
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For energy modellers more interested in DR process specifics, the tight relaxation Morales method
remains a valid option. However, timely recovery cannot be guaranteed for each DR process modelled.
If the goal is to model specific DR processes rather than aggregate top-level load-shifting, the costs
and shifting time parameters can be adjusted to create different time-scale load-shifting behaviours.
However, since the scope of this study focuses on aggregate load-shifting behaviour, the Wasserstein
method’s ability to effectively capture short-term DR activities makes it the preferred choice. Additional
examples of specific DR process modelling scenarios are provided in appendix F.

Key takeaways:

1. TheWasserstein method effectively models load-recovery within realistic timeframes.
2. The preference for higher counts and energy shift in load-shifting is a realistic characteristic of

top-level DR.
3. The method is easily linearly applicable, making it computationally efficient.
4. No information on large sets of load-shifting processes needs to be assessed, as the load repre-

sents aggregated DR.
5. The method captures short-term load shifting, which aligns with expected DR behaviour patterns.

6.4. Solving time summary
This section concludes with a chart of the previously mentioned solving times. The solving time for the
test case without load-shifting frameworks was included for completeness. All times are summarised
in figure 6.19.
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Figure 6.19: Summary of solving times per load-shifting method

The solving times for the linear frameworks can be considered comparable. One consideration is,
however, that if the amount of disaggregation J would increase, and thus the number of virtual batteries
per node, the solving times for the Kleinhans & Morales methods are expected to increase.
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6.5. Conclusion
This chapter aimed to verify the efficacy of bottom-up methods for modelling Demand Response (DR)
within large-scale Energy System Optimisation Models (ESOMs). The analysis revealed several key
insights into the operation and feasibility of these frameworks. Firstly, the Kleinhansmethod was found
inadequate in ensuring timely recovery, rendering it unsuitable for accurate load-shifting behaviour.
This method’s inability to account for load recovery within realistic timeframes undermines its validity
for DR modelling.

In contrast, the Morales method demonstrated a more robust approach to DR modelling, although it
could not guarantee load recovery. The Mixed-Integer Programming (MIP) formulation provided the
most reliable results, ensuring timely recovery. However, the associated computational burden proved
a significant drawback, making this method unsuitable for large-scale ESOMs. The linear relaxations of
the Morales method, including both loose and tight relaxations, showed an increase in undue recovery
cases compared to the MIP formulation. Despite this compromise on accuracy, the tight relaxation, in
particular, offered a substantial improvement in computational tractability, making it a viable option for
bottom-up DR modelling in large-scale ESOMs.

The Wasserstein method emerged as a promising alternative for top-down DR insights. It effectively
ensured load recovery within realistic timeframes, making it suitable for aggregate DR modelling. The
method’s ability to incorporate all DR without requiring extensive additional information further en-
hances its appeal for large-scale ESOMs. The load-shifting profile of the Wasserstein virtual battery
aligns with insights from literature: most load-shifting occurs in the very short term. Additionally, the
computational tractability of theWassersteinmethod is favourable, making it a practical choice for com-
prehensive DR analysis.

In summary, while the Kleinhans method falls short in ensuring accurate DR modelling, the Morales
method offers a balanced approach between accuracy and computational feasibility, particularly in
its tight linear relaxation form. However, for large-scale aggregate DR modelling, the Wasserstein
method proves most advantageous due to its ability to capture short-term load-shifting behaviour while
maintaining computational efficiency effectively. Therefore, the Wasserstein method will be employed
to achieve a comprehensive and realistic portrayal of DR in large-scale ESOMs.
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Results: cost-optimal power grids

This chapter extends the model scope to the larger network, as discussed in section 4. The primary
objective is to address the sub-question:

What is the effect of implicit DR load-shifting for decision-making and investment planning for the Nether-
lands in 2035 under different scenarios?

A comprehensive network analysis is conducted in section 7.1 to adequately answer this research
question. The analysis begins by examining the cost-optimal configuration within the full geographical
scope, excluding DR. This is followed by a focused and detailed analysis of the cost-optimal power grid
for 2035 in the Dutch context. These properties are then compared with introducing DR into the full
network scale to assess the overall effect on power system capacity and, more specifically, on flexibility
assets.

Subsequently, in section 7.2, results from the sensitivity analysis will present the robustness of the
power grid for different optimisation weather and demand years. Here, valuable insights for decision-
makers are provided, which can further assist in decision-making in light of the energy transition in the
Dutch context.

7.1. Network analysis
The scope of this study is focused on providing an in-depth analysis of a future power grid for the
Netherlands. This will be done by providing a comprehensive overview of the total network, as well
as the specific Dutch context. Next, the implications and intricacies of introducing load-shifting in the
network are discussed.

7.1.1. Total system overview
This subsection discusses the full system scope, focusing on the optimal distribution of installed capac-
ities for various power sources. The aim is to illustrate the interconnections and the diverse regional
power sources contributing to a cost-optimal, fossil-free power grid. Figure 7.1 presents a visual rep-
resentation of the optimal capacities at each power grid node, highlighting the distribution of different
energy sources and the role of hydrogen assets within the network.
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Figure 7.1: Optimal capacity per node

The first overview (Figure 7.1) provides insight into the network beyond the Netherlands, illustrating
the interconnection and diverse regional power sources. This figure visualises the optimal installed
capacity for various power sources. Each node’s pie chart shows the distribution of different energy
sources, and the smaller pie charts inside represent the optimal capacities of hydrogen assets.

From figure 7.1 it becomes clear that cost-optimisation favours significant investment in two core RES:
solar-PV generation and onshore wind turbines. solar-PV is especially prevalent in the southern areas
of France and Germany. Onshore wind locations are distributed throughout Northwestern Europe, with
especially large quantities in Great Britain.

Due to the fossil-free nature of the power grid, there is a high demand for renewable solutions with
controllable power. Without controllable power, the intermittency of renewable sources would result in
volatility of local marginal prices that drive system costs.

This controllable power dispatch is partly covered by the utilisation of H2 CCGT retrofitted plants, which
are fully maximised across the network. This is expected since the CCGT retrofitted turbine is the most
inexpensive option for converting the stored hydrogen to electricity. The countries bordering the North
Sea host a large share of electrolysers necessary to facilitate the system’s hydrogen network. These
electrolyser hotspots can be attributed to the correlation of cheap wind energy surpluses resulting in
cheap electricity prices.

A summary of the optimal capacities aggregated per category, present in the network for Northwestern
Europe, is given in figure 7.2
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Figure 7.2: Total Optimal Energy Mix

In addition to the controllable power output provided by the hydrogen OCGT and CCGT, energy storage
is necessary in a cost-optimal power grid. The storage options are summarised in the figure below:

6.5k

28.9k

3.0k

16.2k

25.4k

696.2

10.1k

253.1

5.7

42.2

84.1

7.0

15.5

562.8

26.2

76.7

8.6

BE DE DK FR GB LU NL NO

10

100

1000

10k

H2

H2

PHS

PHS

li-ion (4h) battery

li-ion (4h) battery

St
or

ag
e 

ca
pa

ci
ty

 [G
W

h]

Figure 7.3: Caption

From figure 7.3, the importance of utilisation of salt caverns for H2 storage becomes clear. Due to the
large volumes present, and the low costs, extensive hydrogen storage is key for enabling controllable
electricity output from H2 OCGT & CCGT.
Figure 7.3 highlights the system’s reliance on various storage and conversion technologies to maintain
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grid stability and meet demand. These solutions only include batteries, Pumped hydro storage, and
hydrogen storage, each playing a distinct role in balancing supply and demand. It becomes clear that
H2 caverns are used extensively by the model. A total underground hydrogen storage of 91 TWh is
amassed. This is within the range of current estimation of technical potential [91]. Hydrogen storage is
critical to facilitate the flexibility offered by the CCGT and OCGT hydrogen plants. These power plants
are critical for power generation in demand situations with little renewable power production.

Other network insights are listed below:

• Li-ion 2h Battery: Not utilised in the optimised scenario. The capability of flexible hydrogen tur-
bines to handle smaller peaks in demand appears more economical, rendering high power, low
storage, and Li-ion batteries unnecessary.

• Li-ion 4h Batteries: Significantly installed across most countries, these batteries address longer-
duration peaks and the absence of renewable energy sources. Their widespread deployment
indicates their crucial role in providing mid-term energy storage solutions.

• Li-ion 8h/Mechanical Batteries: Hardly utilised in the cost-optimal network. The flexibility offered
by interconnectivity, hydrogen assets and Li-ion 4h batteries prove to be sufficient.

• Existing pumped hydro storage infrastructure in counties contributes to grid flexibility.
• Compressed Air Energy Storage (CAES) and Flow-ion batteries were not utilised in the cost-
optimal power grid.

7.1.2. Power grid NL 2035
Having assessed the optimal outlook of the larger system, this section now focuses on the power grid
in Dutch context. First, figure 7.4 displays the cost-optimal capacities resulting from the optimisation.
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Figure 7.4: Optimal Energy Mix in NL

From figure 7.4, the importance, and value of onshore wind capacity becomes clear. Since the Nether-
lands is dominated by wind resources, a range of flexible and controllable units can be found. The
flexibility is mainly provided by interconnection through neighbouring countries, hydrogen assets, and
Li-ion 4h batteries. The investment in OCGT turbines instead of CCGT turbines can be explained by
their lower investment costs, making up for their lower efficiency and higher variable costs. Since the
OCGT units will also be used for select peak hours, it is the more economical path in this configuration.
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7.1.3. Impact of load-shifting
This section shows the results after introducing the different virtual battery models. Inconvenience costs
must be assigned to assess the impact of load-shifting at the system level. Since extensive research
and data collection into the load-shifting and demand response inconvenience pricing, or willingness-
to-pay is out of scope for this thesis, the prices result from the expertise of Witteveen+Bos. CE Delft
and Witteveen+Bos [22] study estimates the willingness-to-pay for a load-shifting action in industry
at 200 eu/MWh. From the standardisation method derived in section 5.2, this yields the following
comparison for a comparative analysis between Wasserstein and Kleinhans frameworks. Note how
these costs correspond to cost tier 2 from 5.2. Since the costs in the table refer to the costs per
charging/discharging action, the total costs for the industry are approximately the same.

Kleinhans, disaggregated J=3 Wasserstein, aggregated
Price per (dis)charging action [eu/MWh] Price per battery energy level [eu/MWhh]
Industrial Tertiary Residential

∆t 12 6 2
T 24 12 4

120 60 20 20

Table 7.1: Inconvenience costs for load-shifting reference case.

The introduction of the load-shifting frameworks in the cost-optimal power grid yielded the following
differences in installed capacity for the 3 distinctive solutions.
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Figure 7.6: Impact of Kleinhans &Wasserstein load-shifting frameworks on the cost-optimal power grid in Dutch context

Scenario Total system costs (109 EUR) NL system costs (109 EUR)
NO DR 119.04 10.70
Kleinhans 114.58 12.36
Wasserstein 115.41 12.33

Table 7.2: Overview of total system costs and Dutch system costs per scenario

An important notion is the capacity for the load-shifting Virtual battery in figure 7.6. The resulting ca-
pacity in this figure is the result of aggregating the maximum capacities for the virtual batteries in the
system for one point in time, and does not represent the available capacity at any given time. Since
the charging/discharging capacities of the virtual batteries are directly linked to the corresponding load
at bus level, the stated capacity for DR can only be available at high-demand moments in time.

From the above figures 7.5, 7.6, and table 7.2, four key trends will be identified.

1. Load-shifting competes with Li-ion batteries
In figure 7.6, both frameworks show a significant decrease in installed Li-ion storage. Notably,
on the larger network scale, the Kleinhans method, however, overestimates the capacity of Li-
ion due to the problems highlighted in section 6.1: the virtual battery operates at longer-duration
timescales.

2. Load-shifting unlocks increased Offshore Wind investment in NL
The introduction of load-shifting properties allowed for more RES penetration. For the Nether-
lands, this expanded the potential of offshore wind, from 16.7 GW to 24 GW. Increasing the pene-
tration of RES is desirable since this makes the network more robust and provides the possibility
for more exports.

3. Load-shifting does not significantly mitigate the necessity for hydrogen network
While both load-shifting frameworks illustrate the ability of load-shifting to decrease the reliance
on OCGT in peak demand situations, both figures 7.6 and 7.5 indicate that load-shifting modelled
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through Wasserstein frameworks do not mitigate capacity for controllable power output. Due to
the absence of timely recovery constraints, the Kleinhans framework’s virtual battery can function
similarly to the CCGT. This results in a misleading underestimation of flexibility assets necessary
for the non-peak demand moments.

4. Load-shifting results in lower total system cost, but increases investment in NL
The introduction of load-shifting allowed for lower system costs. This can be expected since
there are no capital investments to include load-shifting, the objective function essentially gained
a decision variable, meaning the network is the same cost as the case without DR at worst. In-
terestingly, however, the introduction of load-shifting led to an increase in system cost for the
context of the Netherlands. This can be attributed to the increased amount of offshore wind.

To ensure the validity of the optimisation result, the network is compared against the predictions from
Netbeheer Nederland [6] scenarios and TenneT TSO B.V. [9] to further verify the cost-optimal config-
uration, and put results in perspective. Furthermore, this study aims to provide an unbiased future
network regarding current policy, opinion, or societal preference. Therefore, interesting insights can
be obtained in the table since any large discrepancy between the cost-optimal configuration and the
scenarios could highlight a missed opportunity from a purely economic standpoint.

[9] 2030 [6] 2035 This study 2035
MLZ’2024 KA ND IA no DR DR Wasserstein

Demand [TWh] Total 151 234 314 209 204 208
for H2 storage 48.3 101.1 47.8 33.5 37.4

Production [GW] Wind onshore 9.1 10.6 12.7 8.1 30 29.3
Wind offshore AC 16.7 27.5 29.5 25.5 3.2 3.2
Wind offshore DC 16.7 24.1

Solar 59.3 75.9 98.2 52.6 28.2 26.6
Nuclear 0.5 0.5 0.5 0.5 0 0

Gas powerplant 14.0 12.3 9.6 8.2
H2 powerplant 3.5 6.0 8.5 13.1 14.4

Total 99.6 130.3 156.5 103.4 91.2 97.6

Flexibility [GW] P2Gas 3.0 4.0 13.6 5.6 8.9 9.6
P2Heat 3.3 5.3 8.5 3.7
BESS 4.9 22.7 31.5 13.7 2.2

interconnection 12.8 12.8 13.8 13.8 38.1 42.4
DR 1.7 2.0 2.5 1.7 0 2.8

Table 7.3: Comparison of cost-optimal configuration with descriptive scenario studies for NL

The most notable observation in comparing the scenarios for the Netherlands is that the cost-optimal
configuration from this study leans heavily towards onshore wind capacity investment for the Nether-
lands. In contrast, the reference studies rely on solar capacity. Moreover, the inclusion of load-shifting
into the network increased Offshore wind capacity.

Interestingly, the cost-optimal solution invests substantially in high interconnectivity, as opposed to
BESS. This is because the optimisation does not differentiate between countries and interests and
preferences for energy independence.

The cost-optimal capacities for H2 power plants exceed the expectations set by the other scenarios.
However, gas powerplants are still present in the scenarios from Netbeheer Nederland and TenneT.
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7.2. Sensitivity analysis and decision-making
From the above results, the effect of load-shifting purposes on the network has been illustrated. To
more adequately answer the subquestion and research question:

Sub-question 4: What is the effect of implicit DR load-shifting for decision-making and investment plan-
ning for NL in 2035 under different scenarios?

As described in section 1.3, Energy System Optimisation Studies like this thesis typically aim to present
indicative data in optimal network configurations for a fossil-free future in the most economical way.
Therefore, on an investment planning level, the economic impact of introducing a load-shifting mecha-
nism into the model is important to decision-makers. The introduction of load-shifting predictably results
in a more economical configuration, which follows directly from our research design. With load-shifting
requiring no capital expenditure (CAPEX), the system determines a new cost-optimal equilibrium be-
tween reduced flexibility capacity and the dispatch costs of available load-shifting batteries.

To demonstrate this, the model choices for the reference case are extended for additional years beyond
the initial input year of 2013. Table 7.4 shows the magnitude of the system cost decrease.

For clarity, the steps involved with the simplified MiniMax from 5.2.2 are once again summarised here.

1. First, network optimisations are performed for three additional weather years, 2011, 2012, and
2014.

2. For each weather year, two distinct network configurations are optimised:

• Configuration A: System without DR
• Configuration B: System with DR

3. Each optimised configuration is then tested against the weather conditions of all other years.
Since the configurations are fixed, the only cost difference results from different optimal dis-
patches of assets, yielding a unique system OPEX per year.

4. The regret for each configuration is calculated as the difference between:

• The OPEX when the configuration operates under different weather conditions
• The OPEX of the optimal configuration for that specific weather year

5. The maximum regret for each configuration across all weather years is identified.
6. The configuration with the lowest maximum regret is selected as the most robust solution.

This approach ensures that the selected network configuration performs adequately across various
weather conditions rather than being optimised for a single weather year. The strategy helps decision-
makers identify solutions that minimise the risk of poor performance under different scenarios.

System details NL details
Annualised cost

(CAPEX+OPEX) [e109] Total demand [TWh] Annualised cost
(CAPEX+OPEX) [e109] NL demand [TWh]

NO DR 2011 101.61 2556 8.68 166.02
2012 96.96 2556 7.47 152.87
2013 115.66 2556 10.70 170.92
2014 102.05 2556 9.33 161.98

DR 2011 98.16 2556 10.10 166.02
2012 94.37 2556 7.83 152.87
2013 112.42 2556 12.42 170.92
2014 98.86 2556 10.77 161.98

Table 7.4: Combined system and NL details
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Interestingly, however, the system cost for the Netherlands increases with the introduction of DR in the
total system. This can be attributed to the network effect as described in section 7.1.3, such as the in-
creased capacity of Offshore wind. Figure 7.6 showed the increase in Offshore Wind production in the
Netherlands. This trend can be observed across multiple weather and demand scenarios, indicating
that a more flexible network results in the Netherlands becoming a larger host for renewable energy
sources (RES).

For investment planning decision-making, however, insights into risk-averse, robust investment deci-
sions cannot adequately be addressed by differences in investment per year. Therefore, the focus
is shifted to the robustness of the two types of optimal network configurations for different scenarios.
Weather and demand input data sensitivities are extended to include cross-testing of different network
configurations, as discussed in 5.2.2. The resulting costs are then compared with the optimal solution
for that year, and the difference in cost is defined as the ’regret’ cost, as it displays how much worse the
chosen network performed compared to its optimal counterpart. Table 7.5 below shows the resulting
regret costs.

Interestingly, the system, including DR, results in lower regret costs in almost all cases. This is not
trivial, as the decreased amount of explicit flexibility installed might result in a less robust network when
tested over multiple years.

For example, in the case of 2013, the configuration, including load-shifting, enabled more investment
in the Netherlands, as well as the total system, in Offshore DC wind production. If the wind conditions
in another year are then less favourable, this investment cost is likely to result in regret costs when
compared with the optimal configuration for that year. Thus the observed trend that the inclusion of
demand response generally results in less regret costs than

Regret System level
2011 2012 2013 2014 Max.

NO DR 2011 0.00 7.35 32.62 3.56 32.62
2012 42.87 0.00 81.60 53.79 81.60
2013 9.59 14.90 0.00 10.15 14.90
2014 3.40 5.88 35.27 0.00 35.27

DR 2011 0.00 6.77 31.90 3.93 31.90
2012 26.70 0.00 68.20 35.62 68.20
2013 10.28 14.09 0.00 10.36 14.09
2014 3.30 5.26 33.62 0.00 33.62

Table 7.5: System regret: total system demand fixed for every year

When the method is scoped to just the Netherlands, the regret data also poses interesting results. Note
how negative regret costs are possible here when the system costs for a chosen year are cheaper
than the optimal configuration cost for the year in question. This is only possible because the scope
is narrowed to a subset of the optimisation problem and could not occur if the optimisation network
included only the Netherlands. Furthermore, as seen from Table 7.4, the scaling factor applied to
the electricity demand does not yield the same electricity demand for the Netherlands for all years. In
Appendix E, the same sensitivity analysis is applied to a standardised NL electricity demand. Generally,
the trend that DR networks result in smaller regret costs from Table 7.5 is less consistent.
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Regret NL system level
2011 2012 2013 2014 Max.

NO DR 2011 0.00 1.85 -0.22 -0.64 1.85
2012 2.10 0.00 -0.77 0.51 2.10
2013 1.93 3.48 0.00 1.29 3.48
2014 1.22 2.62 0.61 0.00 2.62

DR 2011 0.00 3.10 -0.37 -0.41 3.10
2012 0.57 0.00 -0.39 0.09 0.57
2013 2.13 4.47 0.00 1.47 4.47
2014 0.89 3.56 0.41 0.00 3.56

Table 7.6: NL system regret

As described in Section 5.2.2, this approach is similar to a minimax approach but is not as comprehen-
sive since the available configurations are limited to four existing ones.

7.3. Conclusions
Firstly, the extended network configuration analysis reveals significant insights into the future of the
Netherlands’ power grid. The cost-optimal, fossil-free power grid configuration for the Netherlands
in 2035 demonstrates significantly higher levels of interconnectivity and onshore wind capacity than
current planning projections. Additionally, the inclusion of offshore wind capacity increases with the
introduction of load-shifting.

Secondly, with selecting a suitable modelling framework, key insights were obtained from the energy
system optimisation study. Load-shifting can create significant value for a fossil-free power grid in the
Netherlands by adding extra flexibility. This results in lower overall system costs and requires less
investment in other flexibility assets, especially battery energy storage systems. However, in the Dutch
context, it should be noted that for this energy system optimisation, the system costs increased with
the introduction of load-shifting. Controllable flexibility assets such as fossil-free power plants still play
a significant role in the cost-optimal network due to their ability to accommodate peaks in demand.

Thirdly, the impact of load-shifting on decision-making was assessed through sensitivity analyses. Op-
timal power grid configurations were tested for different weather and demand scenarios, including and
excluding load-shifting. Network configurations, including demand response, reduced additional costs
due to weather and demand sensitivity. This insight is valuable for decision-making in investment and
energy planning, as it reveals that investment in explicit flexibility services is neither more economical
nor more risk-averse.
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Discussion

This chapter interprets the findings presented in the previous chapter, placing them within the broader
context of our research objectives. The primary goal is to discuss effective Demand Response (DR)
methodologies and their characterisation within large-scale Energy System Optimisation Models (ES-
OMs). Specifically, the aim is to answer the research question:

Exploring the value of Load-shifting Demand Response as a flexibility solution for a cost-optimal power
grid: A research case for the Dutch power grid in 2035 through analysis of possible scenarios.

By examining the results of the test case, this chapter assesses the selected models for their suitability
for energy system modellers. It provides insights and guidance on choosing appropriate DR frame-
works, highlighting the strengths and limitations of each approach.

The discussion includes key takeaways from the introduction of DR into a fossil-free power grid, focus-
ing on its impact on system flexibility, investment decisions, and operational costs.

Furthermore, the chapter explores the implications of DR on network configurations under multiple sce-
narios, such as varying weather conditions and demand patterns. These insights are crucial for energy
planners and decision-makers, as they offer valuable information on how DR can enhance system ro-
bustness and reduce uncertainties in planning.

Section 8.1 provides a detailed discussion of the DR framework results, addressing research question
2 and evaluating the performance of each methodology. Section 8.2 explores the broader context im-
plications of the findings, focusing on the 2035 fossil-free power grid in the Netherlands and offering
key takeaways for investment planners and policymakers. Section 8.3 discusses the model applica-
tion, examining its effectiveness and potential improvements. The chapter concludes with Section 8.4,
presenting promising directions for future research in virtual battery use, DR, and the application of
ESOMs in energy policy.

8.1. Validity of DR frameworks
In section 6, results on the validity of three DR applications for ESOMs were presented. Given these
results, this section aims to answer research question 3:
What characterises DR, and how can DR be correctly modelled for large-scale ESOMs?

Given the core challenges inherent to DR, the key to employing valid load-shifting mechanisms can be
summarised in 3 main practices:

• Valid simplification of inherently complex framework:
When employing a virtual battery structure, realistic dynamic Saturation, as well as load recov-
ery needs to be accounted for.

• Applicability to large-scale ESOMs:
Reformulating a battery framework for DR load shifting keeps the objective function linear, without
oversimplifying core load-shifting properties.
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• Information accessibility:
Top-level decisions require information. If the goal is to estimate system/network load-shifting
potential, modellers should choose top-down or bottom-up approaches based on the level of
available information.

This study focused on three DR modelling frameworks, utilising Virtual battery properties to model load-
shifting.The Kleinhans method, Morales method, and the newly proposed Wasserstein method. The
results indicated that the Kleinhans method did not adequately ensure timely recovery, making it un-
suitable for accurate DR modelling in large-scale ESOMs. Its inability to account for load recovery for
realistic timeframes resulted in long-duration load shifts.

On the other hand, the Morales method, specifically the linear programming (LP) variant, offered a
robust approach to DR modelling with a good balance between accuracy and computational feasibility.
Although it could not guarantee load recovery in all instances, it was found to be viable for large-scale
ESOMs due to its enhanced computational efficiency compared to the MIP formulation.

TheWasserstein method emerged as a promising top-down approach, effectively ensuring load recov-
ery within realistic timeframes and demonstrating favourable computational tractability. This method’s
ability to incorporate all DR without requiring extensive additional information makes it suitable for ag-
gregate DR modelling in large-scale ESOMs.

Given these insights, the selection of the top-down Wasserstein framework was considered valid and
most suitable for providing top-level insights without delving into the remuneration and willingness-to-
pay likelihood of possible Dutch actors. For energy system modellers looking into the impact of specific
processes on a network scale, the Morales LP framework would be valid and suitable based on the
same three practices listed above.
In order to create more insights into the validity and use cases of DR modelling frameworks, this thesis
provides guidance to energy system modellers through prosing a suitability table given in 3.2. Here,
multiple virtual battery frameworks are compared based on their properties, applicability and suitability,
thus offering a valuable overview.

Importantly, the method of verifying the DR frameworks employed in this research leaned heavily on
testing the methods on the criteria of saturation, load recovery, and aggregation, in the context of virtual
batteries. These were highlighted as dimensions in which structural uncertainty could be explored
without intensive research in DR-specific technologies. It should, however, be considered that other
bottom-up and top-down frameworks exist to test these criteria. One interesting approach for a top-
down method was proposed by Schledorn et al. [92]. This research assesses a soft-linking framework
named Frigg, which uses a demand response function to model end-consumer behaviour and then
soft-links this with an energy system model, using the post-response demand as input to the model.
This approach is fundamentally different from our approach.

8.2. Value of load-shifting
This research was designed to provide insights into the future of the Netherlands’ flexibility landscape.
In order to arrive at a valid insight for this matter, the main research question was phrased as follows:
Exploring the value of Demand Response (DR)/Load-shifting as a flexibility solution for a cost-optimal
power grid: A research case for the Dutch power grid in 2035 through analysis of possible scenarios.

Assigning value to load-shifting was done in two distinct ways: Firstly, at a detailed network level, the
value of load-shifting was found to mitigate the need for large capital investments, especially in Li-ion
4h batteries. In addition to this insight, the introduction of DR facilitated more capacity of RES in the
Netherlands. Furthermore, the introduction of load-shifting into the network-enabled a lower system
cost.

In reality, the economic value of flexibility options is more complex than is taken into account by a
cost-minimisation. A cost minimisation considers simply the sum of investment costs and operational
expenses. Comparing their economic value outside the created model space requires more insights



8.3. Model approach & Methodology 81

into the current flexibility landscape and how flexibility offers value in electricity markets. Without perfect
foresight present in the optimisation formulation, availability, quick reaction, and dispatch ability play a
crucial role in valuable flexibility assets, which is not taken into account for this study. The inclusion
of a separate financial network is an ongoing field of study and will be further discussed in the future
research section 8.4.
Secondly, this thesis aims to aid decision-makers by not only showing the network effects of DR but
also how it impacts the robustness of an investment choice. That is, the value of load-shifting is tested
in a decision-making context for investment planning. Through cross-testing multiple cost-optimal net-
work configurations, this study found that on a system level, deciding on the implicitly flexible system
diminishes the regret with respect to the system which opted for investing in explicit flexibility assets
While this sensitivity showed interesting results that further give insight into decision-making, an impor-
tant consequence of decision-making based on MiniMax regret principles is the high sensitivity to the
chosen set of scenarios. For this analysis, it was purposefully chosen to exclude an extreme weather
scenario. The inclusion of an extreme year could, therefore, drastically change results, as will be dis-
cussed in 8.4.

The value of load-shifting was primarily assessed based on its economic benefits, mainly due to the
nature of the optimisation problem: cost minimisation. However, a more comprehensive valuation of
demand response and other flexibility assets might yield a different outcome. If the analysis was ex-
tended to account for reduced material use, CO2 footprint, or other social welfare properties, it can be
argued that DR can offer additional value for a future energy system.

8.3. Model approach & Methodology
This section will further evaluate the model approach and its consequences for top-level conclusions.
In chapter 4, core model pillars were devised, and the implications of the model choices for important
factors will be further discussed in this section

8.3.1. Uncertainty
Uncertainty was considered at structural and parametric level in this study. As discussed in section
3.2.2, the parametric uncertainty of the applied model relates to the uncertainty of the input data for the
ESOM. To account for parametric uncertainty, additional verification was conducted into the economic
input parameters. While out of the scope of this study, the results from the model presented would have
benefited significantly from adding more sensitivity analyses for the input data used. Through analysing
a larger set of inputs, the eventual outcome of the cost-minimisation can prove more valuable for de-
cision makers because of the increased level of uncertainty accounted for. Additional cost projections
and discount rates for used network components or different projections of technical parameters would
contribute to a more robust conclusion. Furthermore, the regret is the result of the parametric uncer-
tainty considered in the model. That is, important risks might be missed since parametric uncertainty
for future cost evolutions, demand and weather patterns are not included. Conversely, if very wide sets
of parametric uncertainty were to be included, more conservative regret decisions could be expected,
potentially changing the results. This is further elaborated in section 8.4.

Structural uncertainty for the load-shifting mechanism was identified as a research gap in the current
field of ESOM and has a central role in this study. Through a thorough verification, best practices for
energy system modellers were established by presenting a table 3.2, and C.1. Additionally, 3 alterna-
tive weather scenarios were presented to increase the robustness and validity of the results.

Additional structural uncertainties, however, remain in the model. The most crucial structural uncer-
tainty that is unaddressed is an exploration of the near-optimal space through Modeling-to-Generate-
Alternatives (MGA). The presented model would have benefited in validity had this method been ex-
plored, as discussed in section 8.4.
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8.3.2. Transparency
Transparency and traceability are essential pillars in conducting energy system optimisation studies. In
this research, transparency and reproducibility are communicated through listing data sources, frame-
works, and publishing code. Importantly, open-source ESOM infrastructure of PyPSA and PyPSA-eur
was employed, both of which extensive documentation exists.

It should be noted however, that most computational processes were performed on the TU Delft IEPG
server, thus computation times might be lower when a local computational set-up is employed. Addi-
tionally, all problems were solved using the Gurobi solver. Gurobi is a commercial solver that provides
free access to academics. While open-source solvers are available, their performance is not on the
same level. All (mean) computational times are given in appendix D.

8.4. Future research
Exploration of Near-optimal space
More in-depth research should be done on how DR affects the system’s ’must-haves’ and ’nice-to-
haves’ to debate the impact of DR on the configuration accurately. For this, MGA is a widely used,
valuable tool to diminish structural uncertainty and strengthen the actual indicative results of the ESOM
[58] [61]. To achieve the most complete uncertainty analysis, exploration of the near-optimal space
should be combined with global sensitivity sweeps to account for parametric uncertainty, as demon-
strated in studies by Neumann and Brown [64].

Focusing on DR frameworks, including DR parameters such as the willingness-to-pay, flexibility share,
or bandwidth in such sensitivity analyses is essential for more in-depth insights into top-level DR impact.

Increasing detail in LP DR framework
DR appliance-specific dynamics such as seasonality, dynamic pricing, and dynamic flexible bandwidth
could be accounted for. Linear approximations of non-linear properties, like temperature dependence,
could also be explored. Furthermore, research into the symmetry of demand response is important. As
Oconnell et al. [32] pointed out, different DR actors tend to respond differently to price changes. Price
decreases might not incentivize certain actors and only respond to increases, or vice versa.

Separate market optimisation
In the model presented in this study, the underlying economics result from meeting nodal bus balances,
operational costs, and capital investment costs per technology. However, a more detailed representa-
tion of actual markets and remuneration programs could improve the overall quality of the ESOM, as
well as insightful comparisons such as implicit versus explicit flexibility benefits, as presented in this
study.

An interesting future research direction could, therefore, be a separate market optimisation. Instead of
using the optimal dispatch as a result of the cost-optimal solution, a market-clearing optimisation could
be performed. This is much like the actual Day-ahead markets, such as the EPEX spot market. All
demand and production are collected per bidding zone per hour. Next, through the merit order marginal
costs per producer, the market clearing is determined. It should be noted that market optimisations like
these do not include Power Purchase Agreements (PPAs) or other long-term contracts. W+B recently
showed a useful approach to such an additional financial market optimisation.

The proposed strategy by W+B, as well as the current financial ’market’ in the model, including repre-
sentation of the flexibility market, remains a future challenge. Mainly because the timescale of these
markets is smaller than 1 hour, and they are the direct result of non-perfect foresight. This leads to an
underestimation of the potential revenue streams and functionality of flexibility assets.

Information gap in DR participation
One of the main inhibitors for modellers is the lack of transparency in the willingness-to-pay of potential
DR actors. Consequently, most DR explorations in ESOM now only model how DR could contribute
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to a future energy system, rather than how it will. Additionally, the rollout and cost of DR-related hard-
ware remain unclear. Different sectors would need to be involved at various levels of hardware and IT
services implementation, further complicating the assessment of DR potential and its associated costs.

Expanding sensitivity analysis to MiniMax regret
More research into the choice of weather scenarios, since these ultimately decide the outcome. For
example, to be most robust would be to test and compare both configurations for extreme weather
scenarios, low-demand/high-demand and high renewable years.
This method is also limited to a sensitivity analysis of regret, rather than a true minimisation of maximum
regret, as highlighted in section 5.2.2. That is, the current approach does not consider the entire
model space of decision variables and optimises for the cost-optimal configuration, resulting in the
least amount of regret for the given weather scenarios. This could be a future step in providing robust
investment planning decisions. Therefore, for future research, a more extensive exploration of the
regret between the two system choices is desirable to validate the results shown here.



9
Conclusion

This thesis presents an assessment of load-shifting frameworks suitable for large-scale energy system
optimisation and proposes a novel load-shifting framework. Additionally, an energy system optimisa-
tion study is presented, optimising the Dutch power grid in 2035 and providing insights into the effect
of load-shifting on power grid dynamics. Furthermore, the effect of load-shifting properties on power
grid configuration was examined in decision-making analysis to ensure valuable insight for investment
planning. This contributes to filling the gap in the current understanding of suitable frameworks for
load-shifting, as well as providing insights into possible power grid flexibility outlooks.

Considering the research question: Exploring the value of Load-shifting Demand Response as a flexi-
bility solution for a cost-optimal power grid, three main conclusions can be drawn.

Firstly, when implementing load-shifting actions into large-scale Energy System Optimisation Models,
energy modellers are tasked with selecting a valid methodology to gain accurate network insights. Vir-
tual battery frameworks are often used to model load-shifting effects. This thesis found that such virtual
battery frameworks are susceptible to modelling assumptions and simplifications, thereby failing to ac-
count for core load-shifting effects accurately. The novel Wasserstein approach was proven to be a
valid and easily applicable modelling framework for energy modellers aiming for top-level insights into
load-shifting network effects. The model proved to be accurate in representing the saturation of avail-
able load-shifting, as well as the timely recovery of shifted load. Also, since the approach is a top-down
method, it does not require extensive information and process-specific constraints to portray the load-
shifting effects at a top level.

Secondly, with selecting a suitable modelling framework, key insights were obtained from the energy
system optimisation study for the selected research case. For a fossil-free power grid in the Nether-
lands, load-shifting can create significant value for the power grid by adding extra flexibility. This results
in lower overall system costs for the total geographical scope, and requires less investment in other
flexibility assets suitable for providing such flexibility, especially battery energy storage systems. It
should be stressed, however, that controllable flexibility assets such as fossil-free power plants still
play a significant role in the cost-optimal network because of their ability to accommodate peaks in
demand. Furthermore, the cost-optimal configuration enabled more penetration of renewable energy
resources, resulting in increased capacity of offshore wind in the Netherlands.

Thirdly, another key research area was to gain insight into load-shifting and its impact on decision-
making. For this, optimal power grid configurations were tested for different weather and demand
scenarios, including and excluding load-shifting. It was found that network configurations including de-
mand response, resulted in fewer additional costs due to weather and demand sensitivity. This insight
is valuable for decision-making in investment and energy planning since it reveals that investment in
explicit flexibility services is neither more economical nor more risk-averse. Therefore, this research
contributes to the highlighted research gap, aiming to provide clearer pathways into how the flexibility
landscape of the Netherlands should be organised to ensure an economical and reliable future power
system.
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A
Network Component costs

Generators FOM [%/year] VOM [eu/MWh] investment [EUR/kWel] lifetime [years] efficiency Reference

Biomass 45.3 2338 30 0.468 [93]
Onshore wind 12.0 1.37 1100 30 [94]
Offshore wind 2.25 0.02 1622 40 [94]

Nuclear 1.27 3.55 8600 60 0.33 [95]
Solar 1.99 0.01 450 25 [94]

Run of River 2 3412 80 0.9 [93]
Hydropower 1 2450 80 0.9 [93]

Load-shedding 105 [87]
H2 CCGT retrofit 1.785 15.8 182 25 0.59 [22][94] [96]
H2 CCGT (new) 1.785 15.8 875 25 0.59 [22] [94]
H2 OCGT (new) 1.785 19.3 450 25 0.42 [22] [94]

Table A.1: Included generators in the model, along with their technical and economical parameters.

Energy infrastructure FOM investment [EUR/MW/km] lifetime Reference

Pipelines & cables
H2 pipeline 3 225 50 [97] [98]
HVAC 2 1160 45 [99]

HVDC submarine 0.35 3000 45 [100] [101] [102]
HVDC overhead 2 3800 45 [94]

Other
HVDC inverter pair 2 1000000 (EUR/MW) 45

Table A.2: Infrastructure components included in the model.
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This study
andW+B[22] DEA 2023 (2030) [27] ESGC 2022 (2030) [103] ENTEC (2030) [104]

PHS
CAPEX [eu / kWh] 2274.8 4250 2207 470
FOM [%/kW y] 0.01 0.01 0.007 0.06

RTE 75.00% 75.00% 80.00% 0.7-0.85
lifetime 80 50 60 50-100

Li-ion storage
CAPEX storage [eu/kWh] 125 150 270 - 400 150 - 350
CAPEX bicharger [eu/kW] 178 170 - -

FOM [%/kW yr] 0.42% 0.62% - 1%
RTE 0.88 0.92 0.85 0.85-0.89

Lifetime [years] 15 25 16 10-20

Flow battery storage
CAPEX storage [eu/kWh] 168 290 304.713 370
CAPEX bicharger [eu/kW] 160 350 - -

FOM [%/kW yr] 1.7648 2 4 1-2
RTE 0.7 0.78 0.65 0.7-0.85

Lifetime [years] 30 20 12 10-25
Mechanical storage

CAPEX storage [eu/kWh] 50 92 45 112 - 450
CAPEX bicharger [eu/kW] 1500 957 - -

FOM [%/kW yr] 1.1115 - - 1
RTE 0.6 0.65 0.52 0.54 - 0.7

Lifetime 60 40 60 25 - 60

H2 salt cavern H2 underground system
CAPEX [eu/kWh] 2.1 2.1 1083 2979
FOM [%/kW yr] 0 0

RTE 1 0.99 0.31 0.2 - 0.4
Lifetime [years] 100 100 30 5 - 30
H2 electrolyser
CAPEX [eu/kW] 550 650
FOM [%/kW yr] 0.04 0.02

RTE 0.6217 0.705
Lifetime [years] 25 25
H2 Fuel Cell

CAPEX [eu/kW] 1164.04 1169.71
FOM [%/kW yr] 0.05 0.05

RTE 0.5 0.5
Lifetime [years] 10 10

Table A.3: Flexiblity solutions included, along with a additional research into the validity of the costs



B
McCormick envelope

In addition to the relaxation of the complimentarity variable, this thesis explores an alternative approach.
Instead of introducing complementarity constraint δ, the objective function is made bilinear, converting
the problem to be Non-linear, instead of MILP: Add another subscript j to denote that variables exist
per time and per node (for all equations for that matter)

minCsystem =
∑
t

CC
t +

∑
t

CO
t +

∑
t

wtC
M (B.1)

wt = d+t d
−
t (B.2)

The minimisation of wt ensures the simultaneous cycling of upward and downward cycling to be small,
enforcing a similar type of logic as the complementarity constraint. For NLP’s, McCormick envelopes
are a widely used method for convex relaxation of bilinear terms in optimisation. First introduced by
NAME McCormick, the relaxation provides a way to linearise non- convex bilinear constraints, allow-
ing the problem to be solved using linear programming techniques. The logic essentially establishes
concave over-estimators, and convex under-estimators for the NLP problem, approaching the optimum
[105].
he addition of the McCormick envelope yields the following additional constraints[71]. For the under-
estimators: inconsistent with subscripts...
The under-estimators of the function are represented by:

wj,t ≥ d+L
j,t d

−
j,t + d+j,td

−L
j,t − d+L

j,t d
−L
j,t (B.3)

wj,t ≥ d+U
j,t d−j,t + d+j,td

−U
j,t − d+U

j,t d−Uj,t (B.4)

The over-estimators of the function are represented by:

wj,t ≤ d+U
j,t d−j,t + d+j,td

−L
j,t − d+U

j,t d−Lj,t (B.5)

wj,t ≤ d+j,td
−U
j,t + d+L

j,t d
−
j,t − d+L

j,t d
−U
j,t (B.6)

Here, the d
+U/L
j,t stand for the upper and lower bounds of the variable. Within the context of the bottom-

up framework, these can be substituted with maximum discharging/charging capacities for the virtual
battery in the framework.Now, the variable wj,t can be created, along with the above set of estimator

Figure B.1: McCormick envelope [105]
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constraints. If this variable is then added along with a penalty cost, a new, LP, objective function is
found:

minCsystem =
∑
j,t

CC
j,t +

∑
j,t

CO
j,t + PMcC

∑
j,t

wj,t (B.7)

After further consideration, this method was deemed ineffective due to the formulation of the relax-
ation. This made this method unsuitable for further assessment. This method proved ineffective due to
fundamental issues with the relaxation formulation, particularly in handling the non-linear relationship
wt = d+t d

−
t . The core challenge lies in attempting to linearise the constraint xy = 0, which presents

several significant limitations when using McCormick linearisation. First, the equation xy = 0 creates
a nonconvex feasible set that consists of two separate, disjoint convex regions.

Second, while McCormick linearisation is effective for rectangular domains, it struggles to accurately
represent the disconnected nature of solutions where either x or y must be zero.

Finally, and perhaps most critically, the relaxation produces an outer approximation that is insufficiently
tight, allowing solutions where both x and y can be non-zero. This violates the fundamental require-
ment of the original constraint and leads to solutions that, while mathematically valid within the relaxed
formulation, are not feasible for the original problem.



C
Suitability matrix mapped per aggregation
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D
Computation times & solver settings

D.1. MIP Gurobi settings
1 n.optimize.solve_model(solver_name='gurobi', solver_options={
2 'BarHomogeneous': 1,
3 'crossover' : 0,
4 'MIPGap' : 0.0003})

D.2. LP Gurobi settings
default pypsa-eur

1 n.optimize.solve_model(solver_name='gurobi', solver_options={
2 'method' : 2,
3 'crossover' : 0,
4 'BarConvTol' : 1e-6,
5 'Seed': 123,
6 'AggFill': 0,
7 'PreDual': 0})
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E
Additional sensitivities

System details NL System
Annualised cost

(CAPEX+OPEX) [e109] Total demand [TWh] Annualised cost
(CAPEX+OPEX) [e109] Total demand [TWh]

NO DR 2011 107.192 2631.1566 9.164 170.930
2012 116.519 2702.2765 10.492 170.930
2013 115.662 2555.5 10.701 170.930
2014 112.89 2696.8214 10.446 170.930

DR 2011 103.6445 2631.1566 10.139 170.930
2012 113.2618 2702.276 12.048 170.930
2013 112.419 2555.5 12.424 170.930
2014 109.48 2696.8214 12.374 170.930

Table E.1: System details and NL System details: total system demand fixed for every year

While the results for this case also show how systems including DR generally have lower costs, the
lowest maximum regret was found for a system without DR. This is different than the system stated in
section 7.2. This discrepancy highlights the fact that the solutions are similar in robustness. It must be
noted that since the demand of the optimised system is not kept consistent, the comparative analysis is
a bit more cumbersome. A more comprehensive study, which could optimise for minimax regret, could
yield interesting insights into the interplay between implicit and explicit flexibility investment decision-
making.

Regret costs system
2011 2012 2013 2014 Max.

NO DR 2011 0.00 22.12 23.68 15.81 23.68
2012 6.5132 0.00 8.29 3.87 8.29
2013 6.4796 20.37 0.00 35.16 35.16
2014 2.9640 15.23 17.74 0.00 17.74

DR 2011 0.00 21.60 23.91 10.97 23.91
2012 6.5829 0.00 8.41 4.41 8.41
2013 7.3751 12.24 0.00 22.85 22.85
2014 2.7558 14.60 17.04 0.00 17.04

Table E.2: System regret: total system demand fixed for every year
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E.1. System cost sensitivity 2013 99

Regret costs NL
2011 2012 2013 2014 Max.

NO DR 2011 0.00 5.92 -0.48 1.38 5.92
2012 0.92 0.00 -0.40 -0.19 0.92
2013 1.70 5.05 0.00 16.46 16.46
2014 1.22 4.47 0.18 0.00 4.47

DR 2011 0.00 2.91 -0.81 -0.33 2.91
2012 1.58 0.00 -0.32 -0.42 1.58
2013 2.26 3.05 0.00 2.86 3.05
2014 2.09 3.64 0.39 0.00 3.64

Table E.3: System regret: total system demand fixed for every year

E.1. System cost sensitivity 2013
In order to assess the endogenous parameters of the created model, another sensitivity can reveal
the impact of DR This will be done by conducting a sensitivity analysis on two of the most important
characteristics assigned to the DR operation: Inconvenience costs (willingness-to-pay), and the
flexible share.

Figures E.1, show how the system objective functions differs per increasing/decreasing flexible band-
width α, and increasing decreasing Cost tier.

E.1.1. System cost sensitivities

Figure E.1: Sensitivity of system cost to flexible bandwidth parameter (α) and Cost tier

Also, this procedure is repeated for the Kleinhans method
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Figure E.2: Caption

The results show the standardised results in system cost, in reference to cost tier 3: 30 eu/ MWhh.
From the above heatmaps, it becomes clear that the Kleinhans method is more susceptible to display
larger changes in system costs due to changing network effects. This shows, that large-scale systems
employing Kleinhans methodology thus are expected to find larger differences in system configuration,
resulting in volatile results.

E.1.2. time-variant flexiblity
For this sensitivity, a timely dependent flexible share was tested. Considering results from [67], who
pointed out that DR is less elastic at daytime hours and workdays.

hours between 08:00 - 20:00 flex hours on working days (mon-fri) other hours mean flex over year
Rigid 0.1 0.1 0.1 0.1

Variable 0.104 0.135 0.080 0.1

Figure E.3: Cost = 25 eu / MWhh

This figure shows that the reduced flexible share in night/morning hours effectively results in less flexible
demand usage without the right price incentives.



F
Additional structures tight relaxation Morales

Disaggregated, J=3 Aggregated
c1 [€/MWh] c2 [€/MWhh]

Industrial Tertiary Residential
∆t 12 6 2
T 24 12 4
ϵ 23 11 3

Cost Tier 1 60 30 10 10
Cost Tier 2 120 60 20 20
Cost Tier 3 180 90 30 30
Cost Tier 4 240 120 40 40
Cost Tier 5 300 150 50 50

Table F.1: Standard cost parameters

F.1. Decreased cost difference

Disaggregated, J=3
c1 [€/MWh]

Industrial Tertiary Residential
∆t 12 6 2
T 24 12 4

Cost Tier X 100 80 60

Table F.2: Smaller cost difference per virtual battery
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F.2. Equal costs per virtual battery 102
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Figure F.1: Smaller cost difference per virtual battery

From figure F.1, clearly a larger share of energy is shifted in primarily the industry sector. This figure
shows the ability of the bottom-upMorales framework to also account for different types of load-shifting
processes.

F.2. Equal costs per virtual battery

Disaggregated, J=3
c1 [€/MWh]

Industrial Tertiary Residential
∆t 12 6 2
T 24 12 4

Cost Tier Y 50 50 50

Table F.3: Equal cost per virtual battery
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Figure F.2: Equal cost per virtual battery

For the equal cost framework shown in figure F.2. Since all virtual batteries have the same costs, most
shifts for the industrial batteries make sense. Interestingly, however, timeshifts also occur for other
virtual batteries.

F.3. Decreased timeframe difference

Disaggregated, J=3
c1 [€/MWh]

Industrial Tertiary Residential
∆tZ 8 6 4
TZ 16 12 8

Cost Tier 2 120 60 20

Table F.4: Different ratio in recovery times
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Figure F.3: Caption

From this figure, the load-shifting action is almost exclusively centred around shifts in the 11-hour range.
This highlights, how the tight relaxation bottom-upMoralesmethod is able to model DR processes with
time-specific properties. IT should once again be noted, however, that there is still a significant amount
of undue load recovery happening. Interestingly, the model does not use the industrial virtual battery
for time durations over 11 hours.
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