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ABSTRACT

Objectives To develop and validate a tool for standardised
quality assessment of data-driven algorithms in
healthcare, focusing on the underlying data pipeline.
Methods Data Assessment Tool for Algorithm Critical
Appraisal and Robust Evidence (DATA-CARE) was
iteratively developed from the established Quality In
Prognosis Studies framework, selected after reviewing 10
existing quality assessment tools for observational and
artificial intelligence studies. DATA-CARE evaluates five
quality domains of the data pipeline: study population,
data, algorithm, outcome and report transparency. Each
domain comprises three to five quality criteria. With a

total score of 75 points, study quality is categorised as

low (<45), moderate (45-59) or high (>60). DATA-CARE
was validated during a systematic review on data-driven
algorithms using continuous physiological monitoring data
within the paediatric intensive care unit. Two independent
reviewers performed quality assessment using DATA-CARE
of included studies. Tool validation was evaluated using
inter-rater agreement and intraclass correlation coefficient
(ICC).

Results DATA-CARE demonstrated robust inter-rater
agreement (93.5%) with ICC 0.98 (95% CI 0.96 to 0.99). Of
3858 screened studies, 31 were reviewed in the use case,
describing diverse algorithms. Studies were predominantly
low (32.3%) to moderate (41.9%) and sporadically (25.8%)
high quality.

Discussion Predominance of low-to-moderate quality
studies reveals critical barriers to clinical implementation
of data-driven algorithms, including low quality data
capture and processing, lacking validation strategies and
non-transparent reporting of findings.

Conclusions DATA-CARE allows standardised and

reliable critical appraisal for a wide variety of algorithms,
addressing current gaps in standardised and reproducible
algorithm development.

INTRODUCTION

Data-driven healthcare, powered by artificial
intelligence (Al) and big data analytics, has
emerged as a transformative force in modern
healthcare." The ability to harness data for
bedside monitoring and decision support
via actionable algorithms holds the promise

WHAT IS ALREADY KNOWN ON THIS TOPIC

= Algorithm quality hinges on its underlying data pipe-
line, specifically source data, processing and analyt-
ical methodology and overall reproducibility. Existing
quality assessment tools often neglect this, limiting
the ability to review and reproduce algorithms and
thus hindering their clinical implementation.

WHAT THIS STUDY ADDS

= This study introduces and validates Data
Assessment Tool for Algorithm Critical Appraisal and
Robust Evidence (DATA-CARE), a quality assessment
tool that evaluates five key domains of the data
pipeline. It demonstrates high inter-rater reliability
and reveals that most reviewed studies in a paedi-
atric intensive care use case are of low-to-moderate

quality.

HOW THIS STUDY MIGHT AFFECT RESEARCH,
PRACTICE OR POLICY

= DATA-CARE provides a standardised and reliable
framework for evaluating algorithms, supporting
reproducible research and transparent reporting.
Its adoption could guide researchers, reviewers and
policymakers in improving the quality and clinical
readiness of data-driven algorithms in healthcare.

of improved and personalised care.' Despite
increasing research on this topic, a critical
gap persists between algorithm development
and clinical implementation, often attributed
to lack of standardised methodology.*™

In data-driven healthcare, continuously
measured data are used to guide clinical deci-
sion making.” Patients constitute the source
from which data follows a pipeline where raw
digitalised signals from bedside monitors and
devices are collected, processed and used in
algorithmic analysis to produce actionable
insights (figure 1).° The quality of the data
and integrity of each step in the data pipe-
line affects derived insights and their validity.
A robust and reproducible data pipeline is

BM) Group

van Twist E, et al. BMJ Health Care Inform 2026;33:e101608. doi:10.1136/bmjhci-2025-101608

F 1

'salbojouyoal Jejiwis pue ‘Buluresy |y ‘Buiuiw elep pue 1xa) 01 parejal sasn 1o} Buipnjour ‘ybLAdod Ag pajoslold
1senb Aq 920z Areniga4 9T uo Wod fwg soewloul//:sdny woly papeojumoq ‘9Z0z ArenigaH ¢ uo 809TOT-5202-19YlWa/9ETT 0T S paysiignd 1s1y :soiewloju| ared % yyesH NG


https://bmjopen.bmj.com/
https://orcid.org/0000-0002-0968-5400
https://doi.org/10.1136/bmjhci-2025-101608
https://doi.org/10.1136/bmjhci-2025-101608
https://crossmark.crossref.org/dialog/?doi=10.1136/bmjhci-2025-101608&domain=pdf&date_stamp=2026-02-02

Open access

Acquisition

Preparation

Figure 1 Schematic overview of the data pipeline. Raw data are acquired from various sources and ingested (in batches from
files, via streaming of cloud databases) into the data pipeline where it undergoes systematic processing (such as noise cleaning)
to prepare it for analysis (machine learning, statistical modelling, signal analytics, dashboarding). This is a simplified overview;
there may be more details to the data pipeline (eg, aggregation of preprocessed data) or feedback loops (eg, following analysis,

preprocessing is enhanced).

therefore of critical importance to ensure data-driven
healthcare is effective, reliable and generalisable.
However, to our knowledge, there is no tool for quality
assessment of the data pipeline.

Quality assessment tools are often developed for a
specific study design or objective, focusing on individual
components rather than providing a comprehensive
assessment of the data pipeline.7 ® As such, available
tools tend to be fragmented and limited in scope, fail
to capture critical domains of the data pipeline or are
too focused on specific algorithm types.” ® Algorithm
quality and returned output are largely dependent on
source data and how this is ingested and processed in the
pipeline.” Perhaps most important of all is the ability to
reproduce and validate the data pipeline. This requires
transparency in research, in particular on study popula-
tion selection (data source), data quality and processing,
algorithm development and validation and (desired)
outcomes. Available tools that address these domains may
pose a suitable basis for quality assessment of data-driven
healthcare, but need to be adjusted to become widely
applicable to studies on data-driven healthcare.

A quality assessment tool for data-driven healthcare
enables critical appraisal of existing research and guides
towards standardised and reproducible data pipelines for
actionable clinical algorithms. Therefore, the aim of this
study was to develop and validate a quality assessment tool
for data-driven healthcare, based on the domains study
population, data, algorithm, outcome and report trans-
parency adjusted from the Quality In Prognosis Studies
(QUIPS) framework.

METHODS

Tool development

Tool developmentoccurred iterativelyin a six-member
working group, including an epidemiologist (Rd]),
clinicians (Rd], JWK), data scientists (EvI, BvW) and
engineers (AS, DT) at Erasmus MC Sophia Children’s

Hospital and Delft University of Technology (figure 2).
The tool was developed through refinement and
expansion of the QUIPS, which were most suitable
among ten existing tools identified for observational
and Al studies (online supplemental table S1).'***
The QUIPS tool was chosen as it guides systematic and
comprehensive critical appraisal in a user-friendly and
widely applicable format, with domains that adhere
to the data pipeline. Original domains study partic-
ipation, prognostic factor measurement, outcome
measurement, study confounding and statistical
analysis and reporting were translated to data-driven
healthcare. The domains were divided into criteria
that determine the quality per domain, covering the
data pipeline from input to output. Quality domains
and criteria were ranked based on applicability and

\ Development of DATA-CARE quality assessment tool ]

g Literature search for quality
§ assessment tools for
observational and Al studies Formulate intended use and
S range of applications
- | l
Comparison of quality Define key elements of data
assessment tools in working pipeline
groups: consensus on best basis
3 l
s
§ Translate quality domains to suit Formulate quality domains
° data driven care
s
3
E l
Translate criteria per domain Formulate quallty crteria
—
Tool evaluation via systematic
5 review on data driven care
é Write guidelines for quality
assessment tool

Figure 2 Schematic overview of stepwise development of
DATA-CARE in working group. Criteria for quality assessment
were formulated and reformulated iteratively during
consensus meetings. Al, artificial intelligence; DATA-CARE,
Data Assessment Tool for Algorithm Critical Appraisal and
Robust Evidence.
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clinical relevance for selection. Guidelines were
written with signalling questions and a scoring system
was adopted from de Jonge et al.*® ** The score per
domain reflects robustness of that domain and the
overall score reflects overall quality and risk of bias in
a study with regard to the data pipeline. Per domain,
15 points can be allocated, distributed over 3-5
criteria, yielding 17 criteria in total with a maximum
score of 75 points. Each criterion is scored out of
3 or 5 points depending on the number of criteria
within the domain, with 50% penalty for incomplete
or methodologically flawed information. A score of
80% (=60 points) constituted high quality, between
60% and 80% (45-59 points) moderate quality and
below 60% (<45 points) low quality.*

Quality domains

The study population domain guides readers to
assess whether the target population (data source)
was captured and whether risk of bias was introduced
when certain participants were (not) included in the
study, for example, due to selection bias, ascertain-
ment bias or loss to follow-up.'?* ?” It is based on the
three criteria: recruitment, inclusion and exclusion
criteria and baseline study population.

The data domain assesses whether data capture was
adequate and of sufficient quality. Itis the only domain
containing five criteria: data acquisition, data set size
and balance, missing data, preprocessing and feature
derivation. The criteria adhere to the data quality
dimensions of accuracy, completeness, redundancy,
readability, accessibility, consistency, usefulness and
trust.”® During data acquisition, sample frequencies
determine data resolution and may cause aliasing if
not appropriate to signal bandwidth.** Characteris-
tics like size, balance and completeness significantly
impact algorithm performance and stability. Imbal-
anced data lead to overrepresentation of the majority
class and may bias the algorithm to better distinguish
this class.” Missing data can introduce bias similar
to loss to follow-up, as eligible participants have
incomplete data or data of insufficient quality to be
included in analysis.” Missing data can be missing
completely at random, missing at random or missing
not at random, where the latter two introduce high
risk of bias if not accounted for during analysis.”'
Preprocessing and feature derivation are important
as medical data cannot be mistaken for ground truth,
affecting algorithm generalisability and computa-
tional efficiency while also posing a risk of bias and/
or overfitting.”**

The algorithm domain assesses whether the compu-
tational approach to derive an outcome of interest
was standardised, robust and valid across partici-
pants and its generalisability to the target popula-
tion, based on algorithm architecture, development
and evaluation. An algorithm should be appropriate
to the intended use and requires systematic data

partitioning, configuration and validation.” *® Data
partitioning refers to the train—test split, ideally on
a participant level to prevent data leakage which
may cause overfitting and reduce algorithm gener-
alisability.” If algorithms are patient-tailored, this
should be explicitly stated. To advance to population
inference, algorithms require internal (unseen test
set) and external validation (newly sampled data).37
Complementary performance metrics are vital to
clinical interpretation, including metrics of signifi-
cance (eg, p values) and uncertainty (eg, CIs) or of
discrimination (eg, balanced accuracy) and calibra-
tion (eg, R? curves).37 * Discriminative metrics allow
the reader to interpret how well the algorithm can
identify positive and negative instances, and calibra-
tion metrics allow interpretation of how reliable this
identification is.*®

The outcome domain assesses whether the outcome
was standardised and measured reliably across partic-
ipants and judges the risk of bias due to mislabelling,
as algorithms can only be implemented in clinical
practice if they can reflect on an outcome of interest.
To ascertain clinical implications, the outcome and its
labelling must represent a ground truth, that is, the
objective reality based on (reliable) measurement or
observation.'”” Outcomes need clear definitions and
standardised assessment, ideally via the reference
standard. Labelling maps outcomes to individual
data points is especially essential for supervised
algorithms which must learn to reproduce outcome
labels, while unsupervised algorithms create custom
labels.** Standardisation of outcome and labelling
may be limited by inter-rater variability.” If a ground
truth is not available (eg, clinical deterioration),
labels may be engineered (unsupervised) or derived
from clinically relevant endpoints (eg, therapeutic
intervention), with implications considered in the
discussion.

The report transparency domain assesses the risk
of bias due to incomplete reporting or inappro-
priate statistical methodology, based on presentation
of data and findings, reporting of results and statis-
tical analysis. Data and findings should reflect the
study objective and methods but are not overstated
and limitations are discussed. Selective reporting
is avoided by presenting all results, including algo-
rithm subtypes and subgroups where applicable. On
indication, sensitivity analysis and/or post hoc anal-
ysis is reported. Statistical evaluation was specified,
statistical assumptions have been met and results are
consistently presented throughout the study (eg, OR
as positive decimal). To minimise bias and contribute
to fairness, adequate measures of significance or
uncertainty are provided with correction for multiple
testing where applicable.*” This allows interpretation
of findings, which is dependent on objective, sample
sizes and assumptions.*
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Tool validation

Data Assessment Tool for Algorithm Critical Appraisal
and Robust Evidence (DATA-CARE) was validated
during a use-case on data-driven healthcare in the paedi-
atric intensive care unit (PICU). Studies were identi-
fied using a systematic review conducted in accordance
with Preferred Reporting Items for Systematic Reviews
and Meta-Analyses guidelines.“ The search strategy
is detailed in online supplemental A. Study selection
was based on study design, setting, data and sampling
frequency as described in online supplemental B. Data
synthesis included information on study methodology
and characteristics of the data pipeline (online supple-
mental C). Included articles were qualitatively assessed
by two reviewers (EvI, BvW). After quality assessment,
scoring was compared, with disagreements resolved
during consensus meetings (EvT, BvW). Tool validation
was based on inter-rater agreement (%) and intraclass
correlation coefficient (ICC) for total quality score and
quality category.

RESULTS

The DATA-CARE tool

We present DATA-CARE, with quality domains and
criteria summarised in table 1. The full tool and guide-
lines are available in online supplemental D.

Data-driven healthcare in the PICU

Out of 3858 studies identified, 31 were included for
quality assessment after duplicates removal, screening
and full-text retrieval (online supplemental figure S1).
Main reasons for exclusion were non-monitoring objec-
tives and discontinuous data. The included studies and
characteristics of the data pipeline are presented in
online supplemental tables S2 and S3. Studies were
generally retrospective (23 (74.2%)) with median sample
size 90 (28-215) participants. Algorithms were mainly Al
(16 (51.6%)), specifically machine learning, followed by
signal analysis (12 (38.7%)) and were mainly intended
for prediction (13 (41.9%)) or monitoring (10 (32.3%)).
Studies on Al typically evaluated multiple classifiers,
most commonly neural networks and random forest (8
(25.6%)). None of the included studies developed dash-
boards or provided decision support. Data sampling
and window sizes varied widely. 19 studies (61.3%) used
separate data sets for algorithm development and vali-
dation and specified data partitioning, 9 of which intro-
duced data leakage. Cross-validation was reported by
12 studies (38.7%), optimisation by 16 studies (51.6%)
and handling of imbalanced data by 6 studies (19.4%),
all mostly Al. Additional validation post train—test proce-
dure was mentioned by three studies (9.7%). One study
(3.2%) performed external validation using prospectively
collected data. Performance metrics were mainly discrim-
inatory, including area under the receiver-operator curve
(AUROC), accuracy, sensitivity and specificity.

Table 1 Overview of DATA-CARE and point allocation for
scoring

Score*

Criteria o + -
Study population

Recruitment 5 25 0

Inclusion and exclusion criteria 5 25 0

Baseline study population 5 2.5 0
Data

Data acquisition 3 1.5 0

Data set size and balance 3 1.5 0

Missing data 3 1.5 0

Data preprocessing 3 1.5 0

Feature derivation 3 1.5 0
Algorithm

Algorithm architecture 5 25 0

Algorithm development 5 2.5 0

Algorithm evaluation 5 25 0
Outcome

Definition of outcome 5 2.5 0

Method and setting of outcome 5 2.5 0

assessment

Outcome labelling 5 2.5 0
Report transparency

Presentation of data and findings 5 2.5 0

Reporting of results 5 25 0

Statistical analysis 5 25 0

Adapted from Hayden et al and de Jonge et al with
permission.'?2°26

*Scoring symbols refer to maximum score (+), average score (&)
and minimum score (-).

DATA-CARE, Data Assessment Tool for Algorithm Critical Appraisal
and Robust Evidence.

Tool validation

Mean quality score was 50.6 (12.6) points, with 10
(32.3%) low quality studies (<45 points), 13 (41.9%)
moderate quality studies (45-59 points) and 8 (25.8%)
high quality studies (=60 points). Quality scores per study
are available in table 2. Most points were withheld in data
and report transparency domains as studies neglected to
report on data set size and balance, missing data and/or
lacked statistical rigour. Most points were allocated in the
outcome and algorithm domains. Interrater agreement
was 63.6% for total score and 93.5% for quality category,
with ICC 0.98 (95% CI 0.96 to 0.99) and 0.95 (95% CI
0.90 to 0.98). Across quality domains, inter-rater agree-
ment for domain scores was 64.5% for study population,
67.7% for data, 70.1% for algorithm, 70.1% for outcome
and 67.7% for report transparency.

4 van Twist E, et al. BMJ Health Care Inform 2026;33:6101608. doi:10.1136/bmjhci-2025-101608

'salbojouyoal Jejiwis pue ‘Buluresy |y ‘Buiuiw elep pue 1xa) 01 parejal sasn 1o} Buipnjour ‘ybLAdod Ag pajoslold
1senb Aq 920z Areniga4 9T uo Wod fwg soewloul//:sdny woly papeojumoq ‘9Z0z ArenigaH ¢ uo 809TOT-5202-19YlWa/9ETT 0T S paysiignd 1s1y :soiewloju| ared % yyesH NG


https://dx.doi.org/10.1136/bmjhci-2025-101608
https://dx.doi.org/10.1136/bmjhci-2025-101608
https://dx.doi.org/10.1136/bmjhci-2025-101608
https://dx.doi.org/10.1136/bmjhci-2025-101608
https://dx.doi.org/10.1136/bmjhci-2025-101608
https://dx.doi.org/10.1136/bmjhci-2025-101608
https://dx.doi.org/10.1136/bmjhci-2025-101608

Table 2 Quality assessment of included studies using DATA-CARE

Study Study population Data Algorithm development Outcome Report transparency Score
Singh et al % 15 12 10 15 12.5 64.5*
Azriel et al*® 7.5 10.5 12.5 12.5 10 53
Rooney et al*® 15 4.5 10 15 10 54.5
Badke et al®' 12,5 10.5 15 15 12,5 65.5*
Joram et al*? 15 10.5 10 10 10 55.5
Amiri et al*® 5 6 10 15 25 38.5
Castineira et al®* 7.5 13.5 7.5 12.5 2.5 435
Sorensen et al*® 12.5 7.5 10 10 12.5 52.5
Bose et al*® 5 10.5 10 12.5 12.5 50.5
Marsillio et al®’ 15 6 15 5 15 56
Messinger et al*® 15 9 7.5 5 7.5 44
Matam et al (2019)*° 7.5 7.5 12.5 10 7.5 45
Kamaleswaran et a/®® 7.5 6 12.5 12.5 7.5 46
Rusin et a/®’ 12.5 6 10 10 12.5 51
Zhang et a/®? 5 7.5 12.5 0 5 30
Biswas et a/®® 12.5 7.5 12.5 5 12.5 50

Si et al®* 2.5 10.5 5 7.5 2.5 28
Martin et a/®® 15 9 7.5 15 10 56.5
Kirschen et a/® 15 7.5 12.5 12.5 15 62.5*
Matam et al (2014)%” 6.5 9 7.5 2.5 2.5 28
Izquierdo et al® 0 9 10 5 0 24
Zoodsma et a/*® 15 9 10 12.5 10 56.5
Tabassum et al”® 5 10.5 7.5 7.5 7.5 38
Liu et al”* 15 13.5 15 15 15 73.5*
van Twist et alt 12.5 12 12.5 15 12.5 64.5*
(EEG)™

Macabiau et al”® 7.5 12 12.5 10 25 445
Le et al™ 7.5 12 12.5 10 2.5 445
Kwon et al” 12.5 7.5 10 12.5 12.5 55
Hunfeld et al™® 15 9 12.5 12.5 12.5 61.5*
van Twist et alt 12.5 17 12.5 15 15 72"
(ECG)””

Silva et al™® 15 7.5 12.5 12.5 12.5 60*
Mean (SD) 10.5 (4.5) 9.4 (2.7) 10.9 (4.1) 10.6 (4.1) 9.2 (4.6) 50.6 (12.6)

Note there are two pairs of studies with a similar author, where additional information is provided in brackets for distinction.

*Studies with a high quality (=60 points).
TStudy by same author as the present study.

DATA-CARE, Data Assessment Tool for Algorithm Critical Appraisal and Robust Evidence.

DISCUSSION

We have developed DATA-CARE, a quality assessment
tool for systematic critical appraisal of data-driven algo-
rithms in healthcare. This tool, based on the widely
recognised QUIPS, addresses five quality domains of the
data pipeline, including study population, data, algo-
rithm, outcome and report transparency. Validation of
DATA-CARE during a use-case on data-driven healthcare
in the PICU showed the tool can be applied to a wide

variety of algorithms, obtaining robust consensus in our
working group with 93.5% agreement and 0.98 correla-
tion. As such, DATA-CARE supports reproducible and
transparent research through structured critical appraisal
of data-driven algorithms.

To our knowledge, DATA-CARE is the first quality
assessment tool suited to the diverse and fast-growing
field of data-driven healthcare. While available quality
assessment tools for observational studies were relevant
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for epidemiological aspects (eg, study population), they
lacked domains that directly address the data pipeline
(eg, data processing).'’ " ¥ ™ Quality assessment tools
addressing the data pipeline were mainly intended for
Al and typically occurred as reporting checklists, span-
ning between 4 and 27 domains with variable numbers
of items per domain.’*?! Such checklists, however,
require fundamental knowledge on data science and
may provoke inter-rater variation.” Checklists also omit
the issue that computerised algorithms lack human
judgement and can therefore not identify inherent bias
in the data.”® For example, all checklists included data
partitioning, but partitioning on a subpatient level (eg,
event level) introduces data leakage as patients can occur
in both train-set and test-set, hampering generalisability.*’
Partitioning should also be done at the beginning of the
pipeline, as preprocessing techniques such as scaling on
the entire data set cause similar data leakage. Hence,
critical appraisal of information is just as important as
ascertaining its presence. Non-checklist quality assess-
ment tools included APPRAISE-AI and Prediction model
Risk of Bias Assessment Tool (PROBAST-AI), intended
for clinical decision support and predictive Al, respec-
tively.” ** APPRAISE-AI reported ICC between 0.71 and
1.00 for criteria scores, 0.89 and 0.99 for domain scores
and 0.98 for overall scores.”” A similar agreement was
obtained with DATA-CARE, though the agreement varied
across quality domains. Development of Quality Assess-
ment of Diagnostic Accuracy Studies (QUADAS-AI) and
Standards for Reporting of Diagnostic Accuracy Study
(STARD-AI) was ongoing at the time of publication, but
all were specifically intended for Al studies.'® ** DATA-
CARE uniquely shifts critical appraisal to the data pipeline
and uses key principles of transparent research reporting.
As such, DATA-CARE is widely applicable and practical,
without compromising on high reliability.

Progression of data-driven healthcare critically hinges
on study quality, common barriers being low quality
data, lack of external validation and incomplete or non-
transparent reporting of findings.**® These barriers
were also encountered during validation of DATA-CARE.
None of the reviewed algorithms were implemented,
DATA-CARE quality scores varied widely and the majority
of studies were regarded as low-to-moderate quality.
While the lack of progression and low study quality may
reinforce one another, research has shown that qualita-
tive issues persist even among algorithms approved as
medical devices."” Predominant low scores in the data and
report transparency domain, contrary to higher scores in
the algorithm domain, imply that the current bottleneck
of data-driven healthcare is poor quality data or studies
simply neglect to reproducibly report their data pipe-
line. Among reviewed studies, common issues included
heterogeneity in design, small and imbalanced data sets,
inconsistent data processing and partitioning and lacking
validation strategies with only singular metrics (eg,
AUROC). While specific train—test sets may be less rele-
vant in non-Al and/or non-prediction studies, alternatives

such as stratification were rarely reported. Altogether,
these inconsistencies in the data pipeline hamper repro-
ducibility. However, they also extend as significant barriers
on a regulatory level when it comes to implementation of
data-driven healthcare, in particular under international
bodies such as the Medical Device Regulation (MDR).*
Despite stringent demands with regard to validation and
transparency, such regulations lack guidelines on how to
achieve this. International regulations such as the MDR
could therefore benefit from tools like DATA-CARE to
establish guidelines for standardised and reproducible
algorithm development.

The strengths of the present study are that it was
conducted in a transdisciplinary working group with
experts from medical, engineering and research method-
ology fields. While clinicians are familiar with algorithm
output (ie, a clinical outcome), engineers are familiar
with the input (ie, data and underlying measurement
principles). DATA-CARE comes with comprehensive
guidance, including examples, signalling questions and
a scoring system. Moreover, DATA-CARE is practical
and can be applied to a wide variety of studies on data-
driven studies in healthcare. Nevertheless, this study is
not without limitations. Because DATA-CARE is intended
to be widely applicable to data-driven healthcare, some
criteria may be open to interpretation. This is espe-
cially the case for criteria in the algorithm development
domain, as precise configurations of algorithms (eg, clas-
sifier type, intended objective) may vary. However, regard-
less of the algorithm type, it still requires an architecture
with a dedicated input and output or objective, which
must be developed and validated. As shown here, agree-
ment between raters using DATA-CARE was overall high,
but varied across quality domains. Furthermore, quality
assessment was only performed within our own working
group, and the possibility of a learning curve within the
process was not considered. We still recommend users of
DATA-CARE to always carry out quality assessment with
two independent reviewers and reach consensus in inter-
pretation of criteria prior to scoring. The compelling
need for a widely applicable quality assessment tool for
data-driven healthcare supports the present approach.

We encourage further refinement of DATA-CARE. By
using the tool prospectively, criteria can be further spec-
ified and/or novel criteria can be formulated. Poten-
tially, instead of equal points per domain, some domains
may need to be prioritised and receive more points than
others. While DATA-CARE is a quality assessment tool,
its use highlights recurring methodological issues and
reporting issues that could inform the development of
future guidelines or checklists for standardised and repro-
ducible data-driven healthcare. Although such guidelines
exist, they rarely address the full data pipeline. DATA-
CARE’s focus on this aspect represents its key novelty and
potential contribution to improving study quality. Ulti-
mately, this will contribute to bridging the gap between
algorithm development and implementation in clinical
care.
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Conclusion

DATA-CARE, a quality assessment tool based on the
QUIPS, allows reliable critical appraisal for a wide variety
of algorithms within data-driven healthcare. The tool
is widely applicable, spanning five quality domains that
adhere to the data pipeline, addressing current gaps in
standardised and reproducible algorithm development.
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