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Abstract-- The State of Health (SOH) is a crucial 

component of battery management systems (BMSs), offering 

important health information and protection against unsafe 

usage. In this paper, an accurate model for SOH estimation 

of Li-ion batteries was developed, which is uniquely 

characterized by using only the imaginary part of impedance 

at a specific frequency for precise SOH estimation. Through 

the identification of the relationship between impedance at a 

specific frequency and capacity degradation using 

correlation coefficients , the feature data most closely related 

to battery aging was selected. Next, the battery aging 

modeling and SOH estimation were validated on nine 

batteries across three different temperatures using a Feed-

forward Neural Network (FNN). The validation results 

indicated that the proposed method has a high estimation 

accuracy, achieving a Mean Absolute Percentage Error 

(MAPE) of merely 2.05% throughout the entire lifecycle of 

the battery 45C02 during tests at a temperature of 45°C. 

 
Index Terms—State of Health, Capacity Estimation, 

Electrochemical Impedance Spectroscopy, Machine 

Learning. 

I.  INTRODUCTION 

The lithium-ion batteries (LIBs) undergo a gradual 

degradation process due to calendar ageing and cycle 

ageing. State of Health (SOH) serves as a crucial indicator 

in this regard, providing a comprehensive reflection of the 

battery's ageing degree [1]. However, measuring SOH 

directly by sensors is not possible, and the degradation of 

LIBs is a complex and changing process [2]. Therefore, 

accurate SOH estimation becomes imperative for gaining 

insights into the current level of battery ageing and making 

informed decisions on the optimal time for battery 

replacement [3,4]. Among the measurable features of 

LIBs, such as terminal voltage and charging current, EIS 

contains relatively sophisticated and high-dimensional 

information relevant to battery ageing [5-7]. This 

information, if processed properly, can precisely indicate 

the degradation of LIBs. However, a typical battery EIS is 

a frequency-dependent broadband complex parameter, and 

the measurement is usually in the range from 10-3Hz to 

107Hz [8]. Some information in the EIS can even be 

misleading. Extracting critical features from EIS and 

accurately estimating SOH is a major challenge. 

In recent years, machine learning has been universally 

applied in many fields, particularly in tackling the complex 

problem of battery aging [9]. Recent developments in 

machine learning [10, 11] have revolutionized the way we 

model battery degradation, offering precise capacity 

estimation and health status predictions. 

The principal contribution of this work is the extraction 

of key features related to battery aging from complex and 

high-dimensional EIS data. The feature proposed in this 

paper utilizes only the imaginary part of impedance at a 

single frequency, and it exhibits consistency across various 

temperature conditions, 25°C, 35°C, and 45°C. Compared 

to existing feature extraction approaches based on EIS 

data, the proposed method requires less data input and a 

broader temperature applicability range, further enhancing 

the online applicability and generalizability of battery 

SOH estimation. The methodology of this research is 

illustrated in Fig. 1. 

The paper is structured as follows: Section II introduces 

the battery dataset. Subsequently, Section III details the 

feature extraction method and the structure of SOH 

estimation model. The results and discussion of the SOH 

estimation are presented in Section IV. Finally, Section V 

provides the conclusion of this article. 

 

 

Fig. 1.  Pipeline diagram of this paper. 
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II.  BATTERY DATA SETS 

The datasets utilized in this study comprise nine 

LiCoO2/graphite battery datasets, all sourced from the 

Cavendish Laboratory at the University of Cambridge [3]. 

The datasets were obtained at three different temperatures 

under the same work profile of 1C-rate (45mA) constant 

current (CC) constant voltage (CV) charging from 3.0V to 

4.2V and 2C-rate CC discharging to 3.0V as described in 

Table I. Included within the datasets are both EIS and 

capacity data. EIS measurements were conducted at nine 

different stages of the charge/discharge cycle, spanning a 

frequency range from 0.02Hz to 20kHz across 60 distinct 

frequencies, as detailed in Fig. 2. In this paper, we used  

discharging capacity and EIS data at state IX (0% SOC) to 

estimate SOH. Cells 25C01-25C04, 35C01, and 45C01 

were set as the training dataset, while cells 25C05, 35C02, 

and 45C02 comprised the testing dataset. 

TABLE I 

BATTERY AT VARIOUS TEST TEMPERATURES 

Test 

Temperature 

Battery  

Cells 

Cell  

Chemistry 

Work  

Profile 

25°C 

25C01 

25C02 

25C03 

25C04 

25C05 LiCoO2 

Charging:  
1C-rate CC-CV 

Discharging: 

2C-rate CC 
 

35°C 
35C01 

35C02 

45°C 
45C01 

45C02 

 

 

Fig. 2.  Nine different charging/discharging states. 

This dataset offers extensive insights into the internal 

transformations occurring within LIBs. However, within 

the vast amount of complex and high-dimensional data, 

only a small portion is significantly related to capacity 

degradation. The presence of numerous input EIS data 

complicates the identification of meaningful correlations, 

potentially diminishing the precision of SOH estimation 

model. To mitigate this issue, we emphasized the necessity 

of feature extraction to identify impedance characteristics 

that strongly correlate with battery degradation, directly 

impacting the SOH of LIBs. Thus, we introduced an 

innovative approach for extracting EIS data features, 

grounded in electrochemical principles, to enhance the 

accuracy of SOH estimation. 

III.  METHODOLOGY 

The methodology of this paper is divided into two main 

sections: feature extraction and the structure of the SOH 

estimation model. In the feature extraction section, the 

method for extracting single-frequency imaginary 

impedance features using the Spearman correlation 

coefficient is discussed. The second part provides a 

detailed explanation of the architecture of the Feed-

forward Neural Network (FNN) algorithm used in this 

study. 

A.  Feature Extraction Method 

To investigate the relationship between the trends in 

real and imaginary impedance and battery capacity, a plot 

illustrating this correlation for battery cell 25C01 at 

17.8Hz under state IX is presented in Fig. 3. This 

illustration serves to demonstrate that the correlation 

between the EIS parameters (both real and imaginary 

impedance) and battery capacity does not follow a linear 

trend. Consequently, the use of Pearson’s correlation 

coefficient analysis, which presupposes linearity, is 

deemed unsuitable for evaluating this particular 

relationship. 

 

(a) 

 

(b) 

Fig. 3.  The non-linear correlation between the battery EIS and capacity: 

(a) real impedance vs. capacity, (b) imaginary impedance vs. capacity. 
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To accurately capture this non-linear dynamics, the 

Spearman’s rank correlation coefficient is utilized, 

offering a robust metric for clarifying the relationship 

between impedance and capacity. This coefficient ranges 

from +1, indicating a positive correlation, to -1, signifying 

a negative correlation, with values near the extremes (i.e., 

close to +1 or -1) denoting stronger correlations. Fig. 4 

illustrates Spearman's coefficient for various battery cells, 

revealing an absence of a uniform correlation within the 

extensive frequency spectrum of EIS (covering 60 

different frequencies from 0.02Hz to 20004.45Hz). 

However, a distinct frequency band from 0.41976Hz to 

2.73547Hz in the imaginary impedance domain 

consistently exhibits a significant negative correlation with 

battery capacity. This finding suggests that an increase in 

imaginary impedance within this frequency range is 

associated with capacity degradation, highlighting a 

specific area of focus for battery health assessment. 

To pinpoint the frequency within this range that most 

closely correlates with capacity degradation, we conducted 

standard deviation analyses. These analyses identified that 

the frequency of 1.07Hz not only demonstrates a high 

Spearman's coefficient but also features the lowest 

standard deviation. This combination suggests a robust and 

consistent link to capacity degradation. 

 

(a) 

 

(b) 

Fig. 4.  Heatmap of Spearman coefficients for nine battery cells across 

60 distinct frequencies: (a) the correlation between real impedance and 
capacity, and (b) the correlation between imaginary impedance and 

capacity. 

B.  Model structure 

After identifying the frequency that exhibits the 

strongest correlation between impedance and capacity, the 

imaginary component at 1.07Hz was selected for SOH 

estimation. Subsequently, a FNN was utilized to establish 

the battery aging model, distinguished by its strong 

regression abilities and adeptness at identifying complex 

non-linear patterns in datasets. 

A three-layer FNN architecture was developed, as 

shown in Fig. 5, incorporating the Leaky Rectified Linear 

Unit (Leaky ReLU) as its activation function. This choice 

offers a significant improvement over the conventional 

ReLU by allowing a minor, positive slope for negative 

input values, effectively preventing neurons from 

becoming inactive during training. Leaky ReLU maintains 

several benefits of its predecessor, such as computational 

efficiency and the avoidance of gradient saturation, while 

simultaneously overcoming its primary drawback. 

To enhance the model's generalization capabilities and 

reduce the likelihood of overfitting, a dropout strategy was 

adopted. This technique selectively "drops" a portion of 

neurons and their connections during training, forcing the 

network to learn more diverse and generalized patterns. 

This addition not only strengthens the model's predictive 

reliability but also ensures its robustness across various 

battery cells. 

 

Fig. 5.  Model structure. 

IV.  RESULTS AND DISCUSSION 

Based on the analysis and calculations detailed 

previously, we employed imaginary impedance at 1.07Hz 

as the optimal feature for estimating SOH of battery cells 

under three different temperature settings: 25°C, 35°C and 

45°C. The training dataset include cells 25C01 to 25C04, 

35C01, and 45C01, while cells 25C05, 35C02, and 45C02 

were set as the testing dataset. Both datasets contain 

battery data from three different temperature conditions. 

The results in Fig. 6 demonstrated that FNN can 

effectively capture the degradation trend of different LIBs 

through the selected EIS feature. Specifically, Figures 

6(a), 6(b), and 6(c) present the SOH estimation results for 

25C05, 35C02, and 45C02, respectively. Table II 

summarizes the SOH estimation evaluation results, which 

are analyzed across four key metrics: Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), and coefficient of 

determination (R2). Metrics for cell 25C05 show an RMSE 

of 1.13, an MAE of 0.92, a MAPE of 2.91%, and an R2 of 
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0.78. For battery cell 35C02, we note an RMSE of 1.21, an 

MAE of 0.97, a MAPE of 3.3%, and an R2 of 0.82. 

Importantly, cell 45C02's analysis reveals an RMSE of 

0.74, an MAE of 0.68, a MAPE of 2.05%, and an R2 of 

0.93, indicating a relatively higher accuracy in SOH 

estimation. The experimental results showed that both the 

feature extraction method and FNN are feasible and  

effective for SOH estimation across varied temperature 

settings. 

 

 

 
Fig. 6.  Estimation of the battery SOH using the imaginary impedance at 

1.07Hz: (a) Battery 25C05; (b) Battery 35C02; (c) Battery 45C02. 

TABLE II 

PERFORMANCE METRICS FOR THE SOH ESTIMATION 

Battery  

Cells 
RMSE MAE MAPE(%) R2 

25C05 1.13 0.92 2.91 0.78 

35C02 1.21 0.97 3.30 0.82 

45C02 0.74 0.68 2.05 0.93 

 

To further highlight the superiority of the proposed 

feature extraction method, we compared the results of this 

study with those in existing literature [8] that used different 

feature extraction methods for SOH estimation on the 

same datasets. The outcomes in Table III clearly indicated 

that the approach proposed in this study yields improved 

results in RMSE, MAE, MAPE, and the R² when using 

Neural Networks (NN) as the modeling algorithm. 

TABLE III 

COMPARISON BETWEEN THE PROPOSED METHOD AND EXISTING 

LITERATURE  

Battery  

Cells 
RMSE MAE MAPE(%) R2 

35C02 1.21 0.97 3.30 0.82 

 [8] 1.51 1.46 4.57 0.73 

 

 

The feature extraction method presented in this study, 

along with the validation results, clearly indicates that 

using the imaginary impedance at 1.07Hz as the feature 

input for SOH estimation can lead to accurate results. To 

clarify the marked correlation between this frequency 

range and battery degradation, an EIS plot is provided in 

Fig. 7. According to references [1,12,13], an EIS spectrum 

can be categorized into three areas: high-frequency, mid-

frequency, and low-frequency regions. It has been noted 

that 1.07Hz is situated within the mid-frequency area, 

which, as reported in studies [1, 14], is significantly 

connected to critical electrochemical behaviors such as 

changes in electrochemical reaction kinetics, constraints in 

lithium-ion diffusion, and the formation of the Solid 

Electrolyte Interphase (SEI) layer. 

The results obtained in this study suggest that the 

battery degradation process under the operational 

conditions analyzed is primarily influenced by these three 

electrochemical changes. The approach proposed herein 

provides a fresh dimension for exploring battery 

degradation. Future studies should focus on extending the 

verification of these insights, thus enhancing our 

understanding of the mechanisms of battery aging and 

contributing to the development of more robust BMSs 

 
Fig. 7.  EIS curve divided by three frequency regions. 
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V.  CONCLUSIONS 

In this paper, we introduced a feature extraction 

technique based on correlation coefficients for estimating 

the SOH of LIBs. We focus on utilizing only the imaginary 

part of the EIS at 1.07Hz to set as feature. Subsequently, a 

FNN algorithm is employed to model the non-linear 

relationship between impedance and capacity, thereby 

establishing an SOH estimation model. This approach 

outlines the methodology for accurately estimating battery 

health under three distinct temperatures. Using only 

single-frequency imaginary impedance data can 

significantly reduce the memory demands of the BMS and 

streamline the SOH estimation process. This strategy is not 

only resource-efficient but also paves the way for further 

simplification in battery health diagnostics. Detailed 

findings and extended research on this topic will be shared 

in our subsequent publications. Our approach illustrates 

consistent effectiveness across the entire lifecycle of LIBs, 

as evidenced by precise estimation metrics for the battery 

cell 45C02, including an  RMSE of 0.74, an MAE of 0.68, 

an MAPE of 2.05%, and an R2
 of 0.93. The innovative 

feature selection strategy, coupled with the application of 

FNN, offers valuable insights for advancing industrial 

practices in battery management and health assessment. 
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