
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2011

MSc THESIS

Modular RT-Motion USB

Serge Keyser

Abstract

Philips Applied Technologies

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2011-01

During the course of this thesis, RTM-USB (Real Time Motion on
Universal Serial Bus) has grown from a single board motor controller
to a motion control platform. The original RTM-USB board, con-
taining a CPU and two motor drivers, has been extended (hardware
wise) with a network/bus interface which makes it easy to expand
the hardware functionality of the platform. Research has been under-
taken in order to see which hardware extensions would be interesting
for implementation on this platform. In order to demonstrate the us-
ability of the proposed modular concept a few extension modules are
implemented in hardware and the software needed to connect these
extension modules to the original RTM-USB board has been writ-
ten. Additionally, FPGA applications for motion control have been
studied. In parallel with this thesis there was a parallel activity,
which made the original RTM-USB software more extendable. Both
projects and the original RTM-USB hardware and software, compose
the new RTM-USB platform.

Modular RT-Motion USB
Hardware part

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Serge Keyser

born in Leidschendam, Netherlands

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Modular RT-Motion USB

by Serge Keyser

Abstract

D
uring the course of this thesis, RTM-USB (Real Time Motion on Universal Serial Bus)
has grown from a single board motor controller to a motion control platform. The original
RTM-USB board, containing a CPU and two motor drivers, has been extended (hardware

wise) with a network/bus interface which makes it easy to expand the hardware functionality of
the platform. Research has been undertaken in order to see which hardware extensions would
be interesting for implementation on this platform. In order to demonstrate the usability of
the proposed modular concept a few extension modules are implemented in hardware and the
software needed to connect these extension modules to the original RTM-USB board has been
written. Additionally, FPGA applications for motion control have been studied. In parallel
with this thesis there was a parallel activity, which made the original RTM-USB software more
extendable. Both projects and the original RTM-USB hardware and software, compose the new
RTM-USB platform.

Laboratory : Computer Engineering
Codenumber : CE-MS-2011-01

Committee Members :

Advisor: Ben Juurlink, CE TU Ddelft

Advisor: Georgi N. Gaydadjiev, CE TU Delft

Chairperson: Koen Bertels, CE, TU Delft

Member: Wouter A. Serdijn, Microelectronics, TU Delft

Member: Arjan van Genderen, CE, TU Delft

Member: Sait Izmit, Philips Applied Technologies, Eindhoven

i

ii

I dedicate this thesis to those who made me who I am.

iii

iv

Contents

List of Figures x

List of Tables xi

Acknowledgements xiii

1 Introduction 1
1.1 Motivation and Impact . 1
1.2 Introduction to RTM-USB . 1
1.3 Project Goals . 1
1.4 Thesis Organization . 2

2 Literature Survey 5
2.1 Related Work . 5
2.2 Extension Modules . 13

2.2.1 List of extension modules for RTM-USB 13
2.2.2 Use cases for the extension modules 17

2.3 Module Interconnect . 18
2.3.1 Interconnect Architecture . 18
2.3.2 Connection from RTM-USB to the interconnect interface (RT2I) . 19
2.3.3 Connection from interconnect interface to interconnect interface

(I2I) . 19
2.3.4 Connection from interconnect interface to hardware extension

module (I2HE) . 19
2.3.5 Parallel bus . 20
2.3.6 Interconnect Protocol . 21

2.4 How to use FPGAs in motion control applications 22
2.4.1 Applications on FPGA . 22
2.4.2 Useful FPGA modules for motion control 23
2.4.3 FPGA resource estimation . 25

2.5 Chapter Summary . 26

3 System Design 29
3.1 Extension Modules . 29

3.1.1 Extension Modules Selection Method 29
3.1.2 Selected Extension Modules . 29

3.2 Interconnect . 33
3.2.1 Interconnect Selection Method . 33
3.2.2 Selected Interconnect . 34

3.3 Interconnect Protocol . 37

v

3.4 Designing motion control applications on an FPGA 38

3.4.1 Interconnect between functional blocks on an FPGA 38

3.4.2 FPGA motion control functionality 38

3.4.3 FPGA Selection . 39

3.5 Chapter Summary . 39

4 Implementation 41

4.1 Used design tools . 41

4.2 Extension Modules . 41

4.2.1 Digital IO . 42

4.2.2 Encoder Counter . 42

4.2.3 Motor Amplifier . 43

4.3 Interconnect . 44

4.3.1 Hardware . 44

4.3.2 Software . 46

4.4 Cost Calculation . 46

4.4.1 Extension Modules . 46

4.4.2 Module Interconnect . 47

4.5 Chapter Summary . 47

5 Measurement Results 49

5.1 Extension Modules . 49

5.1.1 Digital IO . 49

5.1.2 Encoder Counter . 49

5.1.3 Motor Amplifier . 51

5.2 Interconnect . 53

5.2.1 SPI Bus and SPI Bridge . 53

5.3 Chapter Summary . 54

6 RTMotion-USB New Version 57

6.1 New RTM-USB Board design process . 57

6.2 New RTM-USB Implementation result . 57

7 RTMotion-USB Hardware Future Work And Conclusion 59

7.1 Thesis Summary . 59

7.2 Contributions . 60

7.3 Future Improvements . 60

7.4 Overall Conclusion . 61

A Motor Amplifiers In Motion Control 63

A.1 Motors In Motion Control . 63

A.2 Motor Amplifiers . 64

B Encoders 69

B.1 Different Types of Encoders . 69

B.2 Physical Implementation of an Encoder 71

vi

C FPGAs and CPLDs an Introduction 73
C.1 Terminology . 73
C.2 Physical structure . 73

C.2.1 FPGA . 73
C.2.2 CPLD . 74

C.3 Programming . 74
C.4 Usage . 74

D Schematics 77

Bibliography 80

vii

viii

List of Figures

1.1 RTM-USB Board . 2

1.2 The blocks in the dotted area make up the Hardware framework for the
RTM USB board . 3

2.1 Comparison graph between available motion control prototyping systems
(lower is better) . 11

2.2 Low Cost Motion Control by the University of Katalan 12

2.3 Low Cost Motion Control by Circuit Cellar 12

2.4 Architecture overview with the names of the different interconnect. 18

3.1 The principle of Series Elastic Actuation is all about measuring the
stretching of the spring. 30

3.2 Level converter to upconvert the outgoing voltage, using a single MOS
and a pull up resistor. 32

3.3 Level converter to upconvert the outgoing voltage, using a double MOS. . 32

3.4 Level converter to upconvert the outgoing voltage, using an opamp. . . . 33

3.5 Level converter to clip the incoming voltage (left) or to scale the incoming
voltage (right). 33

3.6 Excell sheet used to calculate the bandwidth usage of several different
modules . 34

3.7 Test Setup for the SPI I2I communication 36

3.8 Test Setup for the RS485 I2I communication 36

4.1 Digital IO PCB design . 42

4.2 Encoder Counter PCB design . 43

4.3 Encoder Counter Verilog design . 43

4.4 Motor Amplifier PCB Design . 44

4.5 SPI PCB Design . 45

4.6 Driver Software design . 46

5.1 Digital IO test setup wiring diagram . 50

5.2 Digital IO maximum output frequency at maximum output voltage 50

5.3 Digital IO max input frequency, channel 1 is input channel 2 is output . . 51

5.4 Spikes in the readout of the encoder counter, these spikes were caused by
latching problems. 51

5.5 Setup to test the encoder counter . 52

5.6 Test setup to test the full power delivered by the motor amplifier 52

5.7 BLDC Motor Control Hal sensor input as generated with an FPGA while
simulating a BLDC motor . 52

5.8 Test setup to test the SPI functionality 53

5.9 SPI Bridge with one complete PID loop 54

5.10 SPI Bridge receiving data from the encoder counter extension module . . 54

ix

5.11 SPI Bridge sending data to the DAC on the BLDC motor control extension
module . 55

5.12 SPI Bridge sending one byte to an extension module 55

6.1 The new RTM-USB hardware . 58
6.2 Robotics arm where the new RTM-USB hardware is integrated 58

B.1 3 bit binary absolute encoder disk . 71
B.2 Track and optical sensors to create a quadrature encoded pattern. 71

C.1 FPGA Logic Block build up. 74

x

List of Tables

2.1 High level properties of the compared systems 7
2.2 Comparison between prototyping systems for motion control 9
2.3 Main areas of motion control . 17
2.4 LPC2888 Peripherals properties . 19
2.5 Comercially available serial busses . 20
2.6 FPGA Vendors compared. 26
2.7 Resources needed for implementing motion control modules 26

3.1 SPI versus RS485 hardware . 36
3.2 SPI versus RS485 setup . 37

4.1 Design tools . 41
4.2 Bus master controllers . 45
4.3 Component price . 47
4.4 Component price interconnect . 47

5.1 Measured capabilities of the Digital IO extension module 49

A.1 Off the shelf power amplifier manufacturers 65
A.2 Single chip amplifier solutions . 66
A.3 Custom solutions . 66
A.4 Motor Controllers . 67

xi

xii

Acknowledgements

This document describes the work and research I did regarding the use and development
of a costeffective motion control platform called: Real Time Motion - USB.

As I started my internship in Philips back in the fall of 2008 I had no idea how
working inside a big company like Philips would be. After spending one year in Philips
I can truely say that Philips offers a great amount of opportunities which are simply
waiting to be picked up.

I had an amazing time working together with many colleagues of which a few I
would like to thank in particular. First and most of all my gratitude goes to my thesis
supervisor in Philips, Sait Izmit, who always carefully reviewed my work and who gave
me great feedback which made it possible for me to succesfully finish of this project.
Since this RTM-USB project also handles some software parts I want to thank my fellow
student and colleague Widita Budhysutanto for his help and assistence where needed.
Both my university supervisors, Ben Juurlink and Georgi Gaydadjiev, I would like to
thank for comming over to Philips to see my intermediate presentations and for reading
and correcting my thesis after I wrote it. Besides my coleagues I would like to thank the
many friends I made in Eindhoven: Asif, Mafalda, Wouter, Sara, Navin, Akshay, Sima,
Ulf and Armin thanks all for the time we spent together!

And last but certainly not least I would like to thank my mother for helping me out
with thousand-and-one small and big things, without which I would not have been able
to finish this thesis.

Serge Keyser
Delft, The Netherlands
January 28, 2011

xiii

xiv

Introduction 1
These days electronic hardware complexity rises by the day. Making custom electronical
hardware to control a mechanical prototype setup is not beneficial anymore, due to long
debug and design time. Hence the need arises for low cost, easy to use, highly modular
prototyping electronics.
This thesis will provide a solution to this need by designing and manufacturing the hard-
ware infrastructure needed for such a modular prototyping system.
In this chapter, Section 1.1 gives the motivation why and where exactely this thesis de-
livers added value, furthermore Section 1.3 shows which goals we need to meet in this
thesis. The last section in this chapter, Section 1.4, explains how this thesis is organized

1.1 Motivation and Impact

Modular motion control electronics prototyping hardware (hereafter simply called “hard-
ware”) does exist, however costs are high (in the order of 10k Euros for a simple system
like the BOSCH Rexroth NYCe 4000 [1]), it is complex to operate and over dimensioned
in most cases. Such a high price/high complexity limits the number of people who are
able to use the hardware. If it is possible to lower the complexity and cost, more people
can do more research in less time at less cost. This is where the RTM-USB platform is
positioned: A cost sensitive, easy to use motion control electronics prototyping platform
which is within reach of almost any control engineer.

1.2 Introduction to RTM-USB

Two years ago the RTM-USB (Real Time Motion on Universal Serial Bus) project
was started. Until the start of this thesis a board with a microcontroller and two DC
motor drivers (see figure 1.1), has been designed and manufactured. The board can be
controlled through a USB port using Matlab and/or Simulink. In order to turn the
RTM-USB board from a single board into a prototyping platform it should be made
possible to easily add extra hardware functionality. To do this in a structured way, both
the hardware needs to be made modular and a unified way to connect all the modules
together, needs to be defined.

1.3 Project Goals

The hardware where we start from is neither modular, nor does there exist a way to
connect additional hardware. The main goal of this thesis is to extend the hardware of

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: RTM-USB Board

the RTM-USB board with additional functionality which is usefull for motion control.
In order to reach this goal we need to meet the follwing sub-goals

• Design the interconnect to connect the RTM-USB to the to be designed extension
modules (see figure 1.2 for an overview).

• The to be designed interconnect should have one option to achieve high speed and
one to have multiple extensions on the same bus (not necessarily at high speed).

• Hardware extensions for the RTM-USB board should be designed and made. Their
functionality should be aimed at motion control.

• A test setup should be designed to show that the designed interconnect and hard-
ware extensions are actually working as intentioned.

As a separate part of this thesis, the use of FPGAs (Field Programmable Gate Arrays
see appendix C for an introduction) in motion control will be explored. The aim of this
exploration will be at application which are simple but require a lot of calculations or
an exceptional high data rate. We will look which motion control specific functionality
can be implemented on such an FPGA and how a modular architecture (similar to the
modular hardware platform) could be established.

1.4 Thesis Organization

This thesis is organized as follows: A literature survey is given in Chapter 2, in this
literature survey the position of the RTMotion-USB hard- and software is discussed with
respect to other real-time modular prototyping systems. This literature survey will also
reveal from which options one can choose during the design process of the RTMotion
Hardware Architecture. Chapter 3 shows how the architecture for the hard- and software
is designed, the designed architecture will later on be used to implement this hard- and
software. Next to design, also the goals which should be met are introduced. Later
on it is possible to measure and determine if these goals are met by the implemented

1.4. THESIS ORGANIZATION 3

Figure 1.2: The blocks in the dotted area make up the Hardware framework for the RTM
USB board

design. Chapter 4 introduces the design of the actual hard- and software. Hardware
schematics, PCB layout and code are discussed and explained. Chapter 5 shows that
the designed hardware meets the goals as set in Chapter 3. Chapter 6 treats how the
extensions as made in this thesis are used in a comercial product. As a conclusion to
this thesis, Chapter 7 gives a summary of the work done during the time span of this
project. Furthermore suggestions for future improvements of the architecture, hardware
or software are introduced.

In the appendices three important topics are discussed which are vital to under-
stand everything in this thesis. Appendix A gives an introduction in the various motors
which are being used in motion control and a very brief overview in which motor
controller electronics are available. Appendix B gives an introduction in what encoders
actually are (good in case the reader doesn’t have a background in motion control)
and how they are physically constructed. The last appendix, appendix C, gives a short
introduction in the terminology of Programmable Logic Devices (especially for those
who do not have a computer engineering or similar background).

4 CHAPTER 1. INTRODUCTION

Literature Survey 2
This chapter presents an overview of motion control platforms which are comparable to
the RTM-USB motion control platform as it is after the finishing of this thesis. Paragraph
2.1 introduces and compares these systems. The results of this comparison are used in
paragraph 2.2 to see which requirements should be met by the to be designed extension
modules. Concluding the discussion of the extension modules, some use cases will be
shown.

Following, the interconnect between the extension modules and the RTM-USB board
is being investigated in paragraph 2.3. The definition of the interconnect as it is seen
in this thesis will be defined. The paragraphs after this will discuss the various types of
interconnect that are present in this project, several solutions for this interconnect are
being discussed.

As the final subject of this chapter a review of the possibilities of FPGAs for motion
control is given in paragraph 2.4. Also for FPGAs it holds that setting up a modular
structure is important. Hence the different possibilities in FPGA software modules and
software interconnect between these modules are explored. In order to select the right
FPGA, there is always a need to give an estimation of how much resources a certain im-
plementation would take. An estimation of the resource cost to implement the previously
suggested FPGA software modules, is given.

2.1 Related Work

In this section related work is introduced. All the introduced systems are used for
rapid motion control prototyping, either in a lab environment or in a learning (school)
environment.

RTMotion-USB is a single board controller for motion control. The RTM-USB
platform aims at motion control applications which are on a tight budget but still
need high performance motion control. This controller has been successfully applied in
several Philips internal projects (robot arms, medical devices,etc).

dSpace is a modular prototyping environment aimed at: motion control, automotive
industrie, aerospace industry, etc. dSpace provides software and hardware which
integrates seamlessly with simulation programs like Matlab. dSpace has been deployed
during the prototyping phase of major projects (designing airplanes, helicopters, cars,
etc). In theory it would be possible to use dSpace hard- and software in a final product,
however in most cases this is too expensive.

Bosh Rexroth NYCe 4000 is a motion control system which is mainly aimed at high

5

6 CHAPTER 2. LITERATURE SURVEY

precision motion control. This system is useful for both prototyping and production.
The relative small size makes it easy to integrate in typical projects like semiconductor
and medical machines. Also here a complete product is delivered consisting of both
hardware and software.

National Instruments Labview is a widely used prototyping system, used from
classrooms till factory testing of produced electronics. There is also hardware availabele
for motion control, this hardware can be controlled using the accompanying software or
simulation programs like matlab/simulink.

Elector E-blocks is a simple prototyping system which aims at the educational
market, there are no items in the available hardware and software which are specifically
targeted at motion control. Despite this disadvantage some parts can be used to do
general signal processing which is useful for motion control. The hugh advantage is that
the learning curve is very modest and the delivered software is user friendly.

After this short introduction, the above systems are compared on the functional level.
From table 2.1 we can immediately see that the number of possible units in one single
system is a lot higher for RTM-USB as compared to the competition. One might wonder
what the usefulness is of having 128 modules (at some point the information from all
these modules has to converge to a single point which which will overload the used USB
bus). However as stated in table 2.1 the RTM-USB modules can run stand alone, which
makes each unit eligible to do its own data processing. Using this fact it is possible to
run very fast (local) control loops and a much slower global control loop (which means
that the data load is more eavenly spread in time). This reasoning shows that the limit
of 128 RTM-USB modules, as set in the USB standard, still yields a usable application.
Furthermore the table shows that the RTM-USB board is performing in the mid range
of the five compared motion control prototyping systems.

2
.1
.

R
E
L
A
T
E
D

W
O
R
K

7

Table 2.1: High level properties of the compared systems

Name RTM-USB dSpace NYCe 4000 NI Labview E-Blocks

Target market
(budget wise) Low/Middel end High end High end Middle end Low end
Prototyping Yes Yes Yes Yes Education
Production Yes No Yes Yes No

Number of extension
modules (Aimed at
motion control) 0 5 20 4
Units per system 128 16 62 4 1
Cost Price (EUR)
(basic version) classified 10k 8k 1k5 300
Capable of running
stand alone Yes Yes Yes No Yes
Max control loop
frequency(kHz)
using a typical setup
with 1 encoder and 1 motor 10 10-20 20-30 1-2 0.5
More information [28] [10] [1] [29] [11]

8 CHAPTER 2. LITERATURE SURVEY

The above introduced motion control prototyping systems can now be compared (see
table 2.2) on a number of aspects which are the most important aspects of motion control
according to the future customers (employees of Philips Applied Technologies) which we
interviewd viz.:

• Interconnect is both how the systems connect with the outside world and how they
connect the extension modules internally.

• Motor control is a vital part of motion control, there are many types of motors,
and in this category the motors are listed that are being supported by the various
motion control systems.

• Encoder counters are the sensors which deliver feedback to see what the behaviour
of the motor is, a motor control loop is usually based on such a sensor.

• Digital and analog in- and outputs are used to control the motors and additional
sensors.

Please note that LabView and E-Blocks are not specifically targeted at motion control,
therefore not all points of comparison are available.

2
.1
.

R
E
L
A
T
E
D

W
O
R
K

9

Table 2.2: Comparison between prototyping systems for mo-
tion control

Name RTM-USB dSpace NYCe 4000 NI Labview E-Blocks

Control frequency 10kHz 32kHz 32kHz – –

Available Interconnect USB PCI Firewire PCI USB
Optical Firewire Serial
Ethernet USB
HSS 1 GPIB

PHS++2 Can (open)

Motor control
Supported motors DC DC/BLDC/ DC/BLDC/Stepper DC DC

Stepper/synchronous

Encoders
Supported encoders Quadrature Incremental 5V S0/S90 Quadrature –

S0/S90 Quadrature Quadrature
Sin/COS Analog 10V absolute

Endat 2.2
Panasonic incremental
Panasonic absolute

Endat 2.1
Hiperface

Sine/Cosine
Pulse count
per revolution(MHz) 0.225 1.25 0.4
Number of channels 2 6 10

Continued on next page

1High Speed Serial bus
2Proprietary local bus to connect all modules

10
C
H
A
P
T
E
R

2
.

L
IT

E
R
A
T
U
R
E

S
U
R
V
E
Y

Table 2.2 – continued from previous page

Name RTM-USB dSpace NYCe 4000 NI Labview E-Blocks

Analog IO
ADC
Number of bits
(per channel) 16/10 16 12/16 16 3 10
Number of channels 8 5-32 2(scalable) 2 7
Differential/
single ended single single single single single
Voltage input
range (V) 0/3.3 -5/+5 0/10 -15/+15 0/5

0/3.0 -10/+10 -5/+5 -5/+5
+/-12 save -10/+10 -10/+10

DAC
Number of bits
(per channel) 16 12/16 16 12/13/16
Number of channels 2 5-32 2(scalable) 4
Differential/
single ended single single single single
Voltage out put
range (V) 0/2.6 -5/+5 0/10 -10/+10

-10/+10 -5/+5
+/-12 safe -10/+10

Digital IO
Number of IO 32 32(scalable) 100 100 42
Voltage output range (V) 0/3.3 0/5 0/5 0/1.8/2.5 0/5
Buffered No Yes Yes Yes No

3These ADC cards are not made by National Instruments but by 3rd party suppliers

2.1. RELATED WORK 11

Using table 2.2 we can score each section of the table to get a better understanding
of the differences between the systems. There are 5 systems available, the system which
performs best in one section gets a score of one, the second best a score of two, etc. This
scoring method yields figure 2.1 in which a better system gets a lower score. The overal
score can be observed in the last column.

Figure 2.1: Comparison graph between available motion control prototyping systems
(lower is better)

From this figure we can draw a few conclusions:

• dSpace is overall the most diverse system available

• NYCe 4000 and NI Labview are quite comparable with regards to supported func-
tionality

• RTM-USB as it was before the start of this thesis is comparable with E-Blocks,
which means that a lot of work to increase the functionality of the RTM-USB board
needs to be done during the course of this thesis.

• If RTM-USB would become a serious player in the market of low cost modular
prototyping motion control, the supported functionality should be equivalent to,
or exceeding the functionality as delivered by NYCe 4000 (see also next point).

• dSpace is significantly better compared to the competition, inorder to not create
“another dSpace” (with all the drawbacks that we want to avoid, in terms of cost
and size) we should not try to support as much functionality as dSpace does.

Ofcourse there are many items which were not compared between the systems (finan-
cial cost, physical dimensions, accuracy (only partially discussed), etc) however it gives

12 CHAPTER 2. LITERATURE SURVEY

a quick overview of where RTM-USB is currently positioned and where we want it to be
at the end of this thesis.

In the previous comparison we took only commercially available systems into account
since we also want to make a commercial system. However there are many more lowcost
(prototyping) motion control initiatives who were being carried out as part of university
projects / research and have never been commercialized. Some examples are:

Figure 2.2: Low Cost Motion Control by the University of Katalan

“A New Low-Cost Motion Control Educational Equipment” by the university of
Katalan [4] (see figure 2.2). This is a very low cost motion control system used in a class
room setup. The whole unit is build around a Texas Instruments(TI) DSP which can be
programed from the computer using the TI software.

Figure 2.3: Low Cost Motion Control by Circuit Cellar

“A low cost USB-CAN Distributed Motion Control System” [27] Is the outcome of
a design contest as organised by Circuit Cellar (http://www.circuitcellar.com). This
system is based on a Microchip PIC microcontroller and a CAN bus (see figure 2.3). It
can be used to run simple PID loops at a loop frequency of approximately 2Khz.

Both these projects are, unlike the systems we compared earlier, not on the open
market and these projects need a lot more development before they can be commercial-
ized. This is why they were not take into account in the comparison on tables 2.1 and
2.2

2.2. EXTENSION MODULES 13

2.2 Extension Modules

This section presents a list of modules which are interesting to implement for the RTM-
USB project. A selection (see paragraph 3.1) of this list is implemented in hardware.
Besides this list a calculation is given on how much load each module puts on the final
system. This discussion is given in terms of bandwidth (bits/s). If a final system is com-
posed of these extension modules, it will just suffice to add up all bandwidth requirements
and to compare this to the capabilities of the interconnect, if the bandwidth needed is
less then the bandwidth available on the interconnect then it is possible to implement
the system. See chapter 3.1 for the capabilities of the interconnect. If the network is not
capable to suite a composed system, possible ideas to improve the interconnect are to
be found in section 2.3. Finally some use cases for the extension modules are discussed.
One of these use cases will be used as a vehicle to demonstrate the capabilities of the
implemented hardware.

2.2.1 List of extension modules for RTM-USB

In this paragraph we introduce a number of extension modules which could be imple-
mented to extend the RTM-USB platform. The modules are grouped in 4 different
categories: Functional, Connectivity, User Interface and Miscellaneous Extensions.

Functional Extensions

1. Digital IO: Simple in and output pins, groups of 8 would be preferable (since this
is one byte of data). Input and output buffers should be constructed such that
the input output voltage levels can be chosen by the end user. Usefull levels
for IO voltages are 0/5V -5/5V -10/10V -12/12V since most sensors for motion
control use these levels (see also table 2.2)

2. FPGA board: Contains an FPGA to do signal processing. The FPGA can be
used for all kinds of processing, ranging from counting encoders to speech
recognition. A list of these applications is given in Chapter 2.4.2

3. DSP board: Contains a simple DSP which can easily be programmed in C, this
is easier than an HDL needed to program an FPGA. The DSP could be used
for all sorts of motor control applications.

4. Encoder board: Contains the logic to count the pulses coming from a motor
encoder (at a maximum of 11MHz). This board will work as a buffer between
RTM-USB and the encoder since RTM-USB will never be fast enough to count
all pulses at the speed by which they are coming from the encoder.
Supported encoders could be of the type:

• Sin/Cos

• Incremental

• Absolute

• Quadrature

14 CHAPTER 2. LITERATURE SURVEY

A study on how these encoders work and how they should be used is given in
appendix B.
If a motor is moving at a slow pace (less then 10 rpm), the number of counted
pulses stays constant, hence it appears as if the motor is standing still. In
order to avoid this problem we can count the time between encoder pulses
(this is equal to taking the derivative of the number of pulses over time) by
which we can avoid coming up with a motor speed of zero.

5. DA/AD converters: Use these to control motion control power amplifiers and
to read the sensor values from the a sensor board. Typical values of the ADC
are:

• Number of bits: 16

• Number of channels: 8/16

• Differential/single ended: Selectable

• Input voltage range: 0/10, -10/+10, 0/5, -5/5 V

Typical values of the DAC are

• Number of bits: 16

• Number of channels: 8/16

• Differential/single ended: Selectable

• Output voltage range: 0/10, -10/+10, 0/5, -5/5 V

On this board also some simple filtering (low pas anti-aliasing) and biasing
should be done. Care should be taken that the resistors in these filters can be
easily replaced depending on the application where the filters are used for.

6. Memory: One board with ram and flash memory. Adding an SD slot would
provide us with a removable data storage which would be usefull for data
logging. The problem is that for SD cards a license is needed to control them
in SD mode, however most sd cards (not the small ones) have an SPI mode
in which they can be controlled. For SPI, only a license is needed if the SPI
controller is implemented in an FPGA. Otherwise no license is required.

7. Motor amplifier: This board contains the power chips which directly drive the
motors. Various types of motors should be supported: DC, AC, BLDC, step-
per, piezo actuators (for more information on these terms see Appendix A).
The board it self is controlled by either the network or the AD/DA converter
board for more accuracy. There should be different boards for different power
levels (0-50W and 50-150W).

8. Filters: A simple board with a few low pass filters for common frequencies (two
of each filter):

• 500 Hz

• 1000 Hz

• 2000 Hz

2.2. EXTENSION MODULES 15

9. Direct digital synthesis: Use the DA converter board and the FPGA or DSP
and the memory board to generate wave shapes which are not repeating and
have a specific wave shape (the memory should at least be 64k samples deep
to do useful work for motor control). Types of signals:

• White noise

• Setpoints (for actuator control)

• Sinusoid

Connectivity Extensions

10. USB-host: USB on the go (OTG) can be used to both connect to a host computer
or to an external peripheral. This is particularly useful if the RTM-USB
system will be a stand alone system, since this gives an easy way to connect
user input devices like a keyboard or mouse.

11. EtherCat: This would be a bridge between the local bus and the EtherCat bus.
This is particular useful if the RTM-USB would be used in an industrial
application/environment. A suggestion is the following module: Beckhoff,
FB1111-0140 which has the size of a post stamp (15 X 10 mm).

12. Ethernet: This is not a realtime bus however it is a really generalized way of
communication (every computer has an ethernet port these days) and ethernet
functionality is cheap and easy to implement. This extension would be used to
input user data or to output status messages to the computer. An ENC28J60
from Microchip could be used, this ehternet chip is controlable over SPI. The
problem in this case is that most chips go to the MAC layer but the Ethernet
stack has to be run on the RTM-USB (which might compromise the desired
realtimeness of the RTM-USB)

13. CAN: CAN bus is highly used in automotive/robotics applications, there fore it
would be a good choice to extend the RTM-USB board with this bus. Any
simple microcontroller (Microchip PIC,Atmel AVR, etc) with the support for
a ninth data bit on its serial port could be used here to act as a bridge between
the CAN bus and the RTM-USB board.

14. RS485: Rs485 is a physical layer of many different protocols (DMX, Profibus,
etc) and, hardware wise, very easy and cheap to implement. This can again
be done using a serial port on any microcontroller, the only hardware which
should be added is an differential line tranceifer such as Texas Instrument’s
sn65176B.

15. Radio Remote Control: Use a simple 2.4Ghz remote control module to setup
a robust wireless link which does not depend on a line of sight (as with IR
remotes) and can control lots of modern day home equipment (i.e. Philips
living colors lamp).

16 CHAPTER 2. LITERATURE SURVEY

16. PLC interface: This module has been considered however there is not much stan-
dard for a PLCs. Most PLCs just connect to the outside world using one of
the above busses/protocols. We just add it here to show there is no need to
consider implementing such an interface in the future.

17. Optical communication: Optical interfaces are being used in order to galvani-
cally separate the various parts of an interconnected system (which eliminates
noise introducing ground loops). A simple optical module could be made with
a TOSLINK module like the ones that are used for SPDIF data communica-
tion (with a data rate of 6Mb/s with Non Return To Zero, NRZ, endcoding).

User Interface Extensions

18. Debug board: This board contains a number of LEDs, switches and a simple
two line display. In case the RTM-USB is becoming a standalone system, this
board will make it easy to get some feedback from the hardware.

19. Display: A color display can display data in a user friendly way. If combined
with a touch screen it is possible to let the end user adjust parameters in the
device. It is not supposed to be a video screen since the data supply (the
network/bus used in this system) will not be fast enough to supply the video
data to the screen. The FPGA board could be used as a graphics controller.
There are numerous displays available on the market, brand names are Sharp,
Hitachi, Kyocera, etc.

20. Audio: This can be an extension which can replay messages to the user, if a micro-
phone is included speech processing can be done which creates an additional
user interface.

21. IR remote control: Use a simple (and inexpensive) TV/VCR/DVD/etc. remote
control to let the user input data into the system. As a bonus an IR led could
be added to the board in order to generate IR signals with which remote IR
controllable devices (i.e. tv, cd player, dvd player) could be controlled.

22. VGA camera: Use a camera to recognize the user, or any other objects, raw
camera data can not be transported over the network/bus (this would take
too much bandwidth) hence the data should be processed locally.

Miscellaneous Extensions

23. Experimenters board: Simple board with a field of holes and a connection to
the interconnect. The board contains a simple micro-controller which can be
used to interface one’s experiment to the RTM-USB board.

24. Sensor simulation board: Sensors are always depending on how the outside
world behaves. It is hard to control the outside world, for debugging pur-
poses it would be good to be able to control the sensor values in hardware.

2.2. EXTENSION MODULES 17

This should be a resistive type sensor simulator since most sensors have a
resistor like behaviour.

25. Location determination: It is important to know where the RTM-USB board
is connected, especially in the case when multiple boards are being used in
the same system. This functionality could be implemented as a separate
module or each of the extension modules could get a memory to store its ID
from which the main computer could determine what it is controlling (in the
case of a robot, a leg, a wrist, etc.) This is something that should not be
done in software or hardware (by the user) since if a mistake is made during
initialisation, a board is initialised as being a knee joint of a robot but in
reality is a wrist, we might end up with a damaged robot).

2.2.2 Use cases for the extension modules

In motion control several areas can be defined. Each area has its own demands in terms
of accuracy, cost, area, safety, etc. Motion control applications can be divided into three
categories, these and their specific characteristics can be found in table 2.3

Table 2.3: Main areas of motion control
Low End Middle End High End

Loop frequency 0-2KHz 0-10KHz 0-30KHz
Application area Toys Office Medical

House hold Pick and place Semiconductor
Robotics Robotics

Accuracy Milli meter Micro meter Nano meter
Most popular Stepper DC DC
motor types DC BLDC BLDC

Stepper Stepper
AC

System cost O(10) O(100) O(1000)

The aim of the RTM-USB platform is in the middle to high end production and
prototyping range. Please keep in mind that low cost does not mean low precision.
Typical applications in the low to middle end area are:

• Domestic robotics

• Motion control prototyping

• Medical equipment

• Electrical car control

In order to demonstrate the capabilities of the hardware as designed in this thesis we
will use a humanoid robot application. We do this for three reasons: the application is
already available, which creates an easy testbed. The application is also a good example

18 CHAPTER 2. LITERATURE SURVEY

of a low cost high precision system (exactly those systems that we want to target with
the RTM-USB board). Last but not least, this demonstration could prove the hardware
useful, leading to a real mass production of the work that has been done in this thesis.

2.3 Module Interconnect

The extension modules which will be designed in this thesis work, need to be connected
to each other and to the original RTM-USB board, this interconnect should be both
reliable and simple (cost effective) to implement. This paragraph is only there to show
what options are available for use in the interconnect, the real design choises with cor-
responding reasoning can be found in chapter 3.
In this design there will be a parallel and serial interconnect. First the interconnect
architecture is defined, with the emphasis on a serial interconnect, see paragraph 2.3.1.
The subsequent sections each introduce a distinctive piece of the interconnect and differ-
ent implementations are being explored. Following the serial interconnect, section 2.3.5
dicusses the parallel interconnect. Now that the interconnect is fully defined we need a
protocol to send data over this interconnect, how this could be implemented is described
in paragraph 2.3.6.

Figure 2.4: Architecture overview with the names of the different interconnect.

2.3.1 Interconnect Architecture

The interconnect which is used to connect the extension modules and the RTM-USB
board has to be both flexible and cost effective to implement. From the design specifi-
cations we have to implement both a serial and parallel bus. The reasoning behind this
is that an n bits wide parallel bus has a raw data throughput of n times the serial bus
at the same speed. In case a hardware extension uses more bandwidth than the serial
interconnect can deliver, a switch could be made from serial to parallel. Even though
this compromises the modularity of the setup, it would still be possible to setup a system
involving the RTMotion-USB board.

In order to discuss the interconnect we define three classes of interconnect: (see also
figure 2.4

• between RTM-USB and the interconnect interface (RT2I)

2.3. MODULE INTERCONNECT 19

• between the interconnect interfaces themselves (I2I)

• between the interconnect interface and the hardware extension (I2HE)

A setup with a separate interconnect interface adds extra hardware cost and com-
plexity, in comparison to interconnect where hardware extensions are directly connected
to the “RTMotion-USB’s” on board processor, however this layer of abstraction makes
the whole system more modular and less dependable on the processor which is on the
RTM-USB board (which makes it easier to switch to a different processor when needed).

2.3.2 Connection from RTM-USB to the interconnect interface (RT2I)

In order to keep the hardware implementation as simple (and as cost effective) as possible
preferably a peripheral from the LPC2888 processor on the RTM-USB board should be
used. An overview of the LPC2888 peripherals, available for data communication, and
their properties can be found in table 2.4

Table 2.4: LPC2888 Peripherals properties

Peripheral I2C I2S Memory bus LCD bus GPIO

Max frequency (MHz) 1.4 2.5 30 5 3
Max speed MBits/s 1.4 2.5 480 40 48
Bus type Tri-state Audio 16 bit 8 bit 16 bit

parallel parallel parallel

2.3.3 Connection from interconnect interface to interconnect interface
(I2I)

This interconnect will be implemented using one of the busses listed in table 2.4 how-
ever the interconnect interface should implement an abstraction layer between the used
processor (in this case ARM7) and the network. Such that in the future the current
processor might be replaced without affecting the interconnect.

Table 2.5 lists which available busses could be used in the I2I interconnect. There
are a lot more serial busses available, however this will be a low cost system, therefore
the aim is at the low cost hardware, easy (in terms of programming effort) to implement,
serial busses.

Which bus will be implemented, depends on the load on the bus. The bus load will
be calculated in chapter 3.2.

2.3.4 Connection from interconnect interface to hardware extension
module (I2HE)

In this part of the interconnect there are several possibilities.

20 CHAPTER 2. LITERATURE SURVEY

Table 2.5: Comercially available serial busses

Bus I2C I2S RS485 LVDS SPI 1-Wire

Max frequency (MHz) 1.4 2.5 20 500 10Mhz 0.111
Max speed MBits/s 1.4 2.5 20 800 10 0.111
Bus type Tri-state Audio Differential Differential Serial Serial

serial bus serial bus With chip Single
Enable wire

1. Convert the I2I bus type into another format which is usefull for the peripherals
on the hardware extension module, for example to one of those mentioned in table
2.5.

2. Convert the incoming serial data stream into a parallel one.

3. Incoming serial data is used in such a way that it controls the peripherals on the
extension module directly without conversion.

Item 1 is easy out of a user’s, hardware design and modularity, point of view. However
this requires extra space in the interconnect interface and the user needs to tinker on
the network interface, which is in turn not user friendly.
Item 2 enables the user to simply connect anything without having any knowledge of
the interconnect or the interconnect interface, since the protocol is handled by the I2I
interconnect the parallel port is transparent as seen from the side of the processor hence
this is easy to use. If the user wants to control anything, that does not have a parallel
interface, additional intelligence (micro controller, CPLD, etc) is required, which will
add to the module’s cost.
Item 3 is the most easy solution from the I2HE interconnect designer’s point of view
since nothing has to be designed. However this is the most demanding solution for the
user, every time an other hardware module is designed, the interconnect interface needs
extra software and the extendability(which comes with the provided modularity) will be
lost.

2.3.5 Parallel bus

This is the parallel bus that will be used next to the serial bus. The parallel bus is easy to
implement, there are not much possible schemes to choose from. The only possible way
would be to implement a simple 8/16 bit parallel bus. On the RTM-USB board there are
2 parallel ports which each expose 16 bits. In this case it is just simple GPIO, which can
only run at 3MHz. The maximum data throughput using GPIO is still 48Mbit/s (3M
* 16) which is faster than most serial solutions mentioned in table 2.5. The additional
benefit of using the parallel port can be seen during the debugging of the modules. Since
the GPIO is so elemetary, we do not need to worry about errors in the communication,
hence it is easy to rull out errors, which allows for easy debugging. In future revisions

2.3. MODULE INTERCONNECT 21

of the RTM-USB board the memory bus of the on board processor could be used to
transfer data. The memory bus is a lot faster than GPIO (see table 2.4).

2.3.6 Interconnect Protocol

In order to communicate on the I2I interconnect a protocol needs to be designed. Existing
protocols (like Modbus, Linbus, Sercos, etc.) put way to much overhead on the simple
system which is being proposed here.

The following requirements could be provided by the protocol for the RTM-USB
platform (depending on the type of I2I and demands of the final application):

1. Error detection: Wrong data could be detected, most of the time the data is
thrown away and the new data of the next iteration of the control loop will be
used. Care should be taken that the system goes in hold mode if there are too
many errors in the transmission.
It is also possible to refrain from doing any error detection, since there will an
update of the value every loop iteration. Even though this saves bandwidth and
processing power, good sanity checking is inevitable since bad data can lead to a
runaway of the system.

2. Single master/multimaster: Determines who can control the interconnect. In
order to keep everything realtime it is best to start with a protocol which only
allows one master. Later on, multi master extensions could be made if required,
and time permits.

3. Initialization: In order to see which modules are currently on the bus, the protocol
could provide a way to issue an inventory command which returns the address of
the module, the functionality and possible other parameters.

4. Lightweight: Since the interconnect will not be able to handle high data rates,
as little as possible overhead should be spend on the protocol.

The available options to deal with the above constraints are:

• Error detection:

– CRC checking : Works on multiple parts of data, needs some hardware, perfect
to implement in a CPLD or FPGA.

– Parity checking : Works mostly on one byte of data, is weaker than CRC
checking but easier to implement.

– Sanity check : Works on a whole setpoint sent. Compares the previous set-
point with the current one, if the current one differs too much, the current
received setpoint will be disgarded.

– Hash : Works on the whole setpoint, however multiple values lead to the same
hash number, hence if data is corrupted ““‘good enough” it might lead to the
same hash as the original data. Hash functions are separated in such a way
that this problem will not occur too often [13]

22 CHAPTER 2. LITERATURE SURVEY

• Single master/ multi master:

– Single master: deterministic, relatively easy to implement, low software foot
print, data could only be acquired by polling.

– Multi master: non deterministic, needs a way to schedule communication,
supports interrupts, easier to extent the interconnect.

• Initialisation:

– Tristate bus : give each module which is manufactured, a universal unique
ID, and using an anti-collision scheme, as is popular in RFID protocols, read
the IDs.

– Try all possible addresses and look for response: if the number of possible
addresses is not too high (max 256) it might be possible to try all addresses
and see if a response comes back.

– User set :The user enters which devices are on the bus, and the electronics
just assumes those modules are present.

More information on the protocol used and its design can be found in section: 3.2

2.4 How to use FPGAs in motion control applications

These days FPGAs are used in many applications. This section focuses primarily on
using FPGAs in motion control applications, where high speed and the ease of hardware
design are needed. An introduction into FPGAs is given in appendix C. There is no
time during this thesis project to implement an FPGA module hence the FPGA part
for this thesis is limited to this literature survey. Paragraph 2.4.1 presents how FPGAs
can be used in control applications. Continuing on this topic it is being shown which
functionality (Intellectual Property, IP) would be particular useful for the RTM-USB
platform. In order to be able to estimate which FPGA should be used, the resources
used by these functional blocks is estimated, using this estimation an FPGA will be
selected.

2.4.1 Applications on FPGA

The combination of motion control and FPGA is relatively little used since most of the
times motor control applications have a low financial budget (i.e. electrical motors in
office machines and household appliances). On the other hand FPGAs are very well
suited for machines where performance demands outweighs the cost (factory robots, air
craft, etc)[33] A few examples where FPGAs are used to do motion/motor control can
be found in [16] [22] Most of the solutions are ad-hoc solutions (not modular) if anything
should be implemented on an FPGA to be used with the RTM-USB board, a way to
make the FPGA software modular, should be found. A way to make a modular design
possible would be to use a Network/Bus On Chip (NOC/BOC) such as: NXP Æthereal
NOC[24], Wishbone BOC[26], Altera Avalon BOC [2], Core Connect BOC [5], Open

2.4. HOW TO USE FPGAS IN MOTION CONTROL APPLICATIONS 23

source NOC [19],Xpipes NOC [6]. Please note, the only network of the above list which
provides realtime communication out of the box, is Æthereal [24] [19], the busses can be
made realtime with some effort on the protocol side.

One of the developments which are currently a hot subject of research in motion
control on FPGA are fuzzy logic controllers [32] [15] [17] mainly to do low level control
loops (motor torque/speed control). The FPGA part is being used here to implement
the controller, the controller it self is being fed with setpoints from somewhere else
(micro controller, computer, etc). This is done since the software in micro controllers
(programmed in C) is easier to adjust for future users as compared to coding an FPGA
(in some HDL or using an HDL generator).

2.4.2 Useful FPGA modules for motion control

In order to determine which functions are useful to implement on an FPGA, a list of
functions has been compiled. These modules can be found in literature and have been
proven to be useful for motion control. For all these modules it holds that they contain
a lot of shifts and multiplications which run at high speed. Both tasks can be achieved
more easy in hardware (FPGA or CPLD) than in software (micro processor).

1. Stepper motor control: As proposed and implemented by [14] a stepper motor
controller is one of the possible modules to implement. The algorithms as
proposed by the paper shows that implementation of a stepper motor driver
in an FPGA allows for easy experimenting with different algorithms. Since a
stepper motor controller uses a lot of bit shifting, it is a good candidate to
move from software on a processor (where shifting is expensive) to an FPGA
(where bit shifting is easy).

2. FPGA Encoder counter: This is a basic element in motion control and the
FPGA hardware is perfectly suited [23] to implement this kind of counters /
controllers. Because an FPGA (real hardware) can be driven to high counting
speeds (> 30Mhz) relatively easy as compared to a microcontroller. Further-
more counters are easy to make at a custom length (32/16/12, etc. bits) in
an FPGA.

3. Software commutation: In brushless direct current (BLDC) motor applications
commutation (energizing the coils inside the motor at the right time) is im-
portant. Normally sensors are used to detect the rotor position. However it
is also possible to work without sensors and just calculate the position of the
rotor, as proposed and implemented by [20].

4. PID controller: PID controllers can be implemented relatively easy as demon-
strated by [30] however care should be taken that the controller is implemented
in such a way that it is optimized for the hardware structure of an FPGA e.g.
it should be easy to map the implementation on to a set of Look Up Tables
(LUTs)

24 CHAPTER 2. LITERATURE SURVEY

5. PWM controller: This block should be implemented as a separate block. In
order to be usefull for motion control a minimum PWM frequency of 100kHz
should be used.

6. Arithmetic units: The basic blocks of any signal processing system are Multiply
ACcumulate (MAC) functions. These functions perform a multiplication
and addition in one cycle and are particularly useful for filtering (next item).
However in motion control MACs can be used in PID loops as can be seen in
the following example: A simple PID loop would look like:

error = setpoint - current position
integral = integral + error*dt
deriv = 1/dt * (error - prev error)
out = Kp * error + Ki * integral + Kd * derivative
prev error = error

Concluding from the above pseudo code we can calculate that one PID con-
troller loop consists of:

• 4 subtractions/additions

• 4 multiplications

• 1 division

The division is questionable since it can be considered as multiplication of the
inverse of a constant. Hence per loop iteration we can identify 4 MACs. If
this loop is run at 10Khz we need to be able to proces 40E3 MACs/s per PID
loop. A single FPGA running on 40 MHz could do 40 MMACs/s, or 1000
PID loops. This is more than enough for the case where this FPGA will be
used (approx 10-20 loops maximum). For more complex controllers (Multiple
Input Multiple Output,MIMO) more calculations need to be done depending
on the controller and the loop speed.

7. Filtering: Since motion control sensors (like for instance encoders) are always
used in a noisy environment, filtering needs to be done. Filtering can be done
in the analog domain, however these will always be fixed filters. To implement
fixed analog filters really well, a lot of effort has to be put into designing analog
hardware. Besides this, good analog components are not really economical to
use (large component spread). If however a digital filter is used, a fairly cheap
and weak analog filter can be used. As an example we can take the following
numbers:

• Pulse frequency 3 MHz (as given in the specifications for the encoder
extension, see paragraph 2.2.1)

• Pulses per revolution (PPR) : 2000 as suggested in the interview with
future users

• Revolutions per minute(RPM): 5000 as suggested in the interview with
future users

2.4. HOW TO USE FPGAS IN MOTION CONTROL APPLICATIONS 25

Now it is possible to do 18 times over sampling (5000RPM = 83.33 RPS, 2000
PPR, 3Mhz/(83.33*2000) = 18). Due to this over sampling factor we can do
filtering very well in hardware. Options to do filtering are:

• Peak detection, count 14 times a 1 out of 18 counts, than it must have
been a 1, otherwise 0. This method has the disadvantage that the output
will always lag by 1 count.

• FIR /IIR (Finite/Infinite Impulse Response) Filter these filters are really
well known theory and can easily be implemented in an FPGA. The
performance will be much better than the peak detection circuit, however
much more resources are needed for the FIR/IIR circuit.

8. Miscellaneous: There are various blocks which are nice to have but are not an
absolute necessity.

• Sercos III interface: SERCOS (SErial Realtime COmmunications Sys-
tem) is a serial bus which connects all modules inside a realtime motion
control network. This bus is an widely used bus, and connects via ether-
net or optical links. Easy IO is an already free available implementation
of Sercos for low cost low end FPGAs[25].

• Ethercat: Beckhoff uses an FPGA to control an Ethercat PHY (PHYsical
layer chip). In order to send data over Ethercat, a MAC (Media Access
Controller) should be implemented in HDL code.[31]

• Complete controller: As proposed by [15] a complete controller could be
implemented on an FPGA. Such a controller would have everything to
work stand alone (control a motor and provide a user interface to the
outside world) All parts are connected using a standard bus. This bus
could be a comercial bus (avalon bus, as used in [15]) or an opensource
bus like Silicore’s Whishbone bus [26] or even a network on chip (NOC)
like Æthereal [24] [21] [22].

2.4.3 FPGA resource estimation

In this paragraph, the resources needed by each module, as proposed in section 2.4.2,
are estimated. This is just a rough estimation in order to be able to select an FPGA
device. The resources needed vary depending on the implementational complexity. The
table below lists each function and the approximate needed number of logic elements
(LE, a measure of the useable size of the FPGA) which is needed to implement the
function. Furthermore for each module an FPGA is suggested. For the really small
modules a cheaper CPLD (Complex Programmable Logic Device) will be suggested,
since these devices are easier to use (the configuration remains in place even when the
supply voltage is switched of, this in contrast to FPGAs where the configuration is lost
after power down). There are a number of FPGA vendors in the market, in order to
decide which vendor can be taken as a reference to map the functionality on, table 2.6
is created 4. This table presents an overview of the different vendors and their main

4For the scores given in the table 2.6 it holds that the more “+” signs are given the better the
manufacturer scores (i.e. the more pluses in ”Device Cost” the cheaper the devices are etc.).

26 CHAPTER 2. LITERATURE SURVEY

benefits and drawbacks. The columns “Software userfriendlyness” and “Availability of
devices” are based on data from other users as found on the internet.

Table 2.6: FPGA Vendors compared.

Vendor name Device Cost Software Cost Software Userfriendly Availability of devices

Actel −− Free Unknown −−

Altera ++ Free ++ ++
Atmel −− Unknown Unknown ++
Xilinx ++ Free – ++
Lattice + Unknown Unknown −−

As a reference, Altera FPGAs are taken since Altera scores best in table 2.6. Addi-
tionally it has the most userfriendly software (which is not necessarily the best, however
if a large user base of non computer engineering people is to be attracted, as is the case
for the RTM-USB platform, user friendliness may cost some performance).

Table 2.7: Resources needed for implementing motion control modules

Module number Number of Sugested FPGA Cost(Eur)

Logic Elements

Stepper motor 320 ep2c8 28.00
Encoder counter 240 epm240 5.10

Softwar comutation 523 ep2c8 28.00
PID controller 400 ep2c8 28.00
PWM controller 14 epm3064 2.10
Arithmetic units > 1000 ep2c8 28.00

Filtering > 1000 ep2c8 28.00
Miscelaneous ±8000 ep3c16 29.10

The figures in table 2.7 for estimated number of LE are taken from the papers which
are cited in the previous paragraph. From this table we can see that the FPGA ep2c8
would be a good choice to use if we want to implement an FPGA module on which we
can run all the above mentioned functionality. It is however very well possible to use
an ep2c16 which is only 1.5 euro more expensive but holds double the amound of Logic
elements.

2.5 Chapter Summary

In this chapter it is shown which direct competitors are available for the RT-USB board,
four different competitors have been found. Al the competing systems have been com-
pared in order to give the RTM-USB board a background. A list of hardware extension
modules has been created in which several modules which are useful for motion control
are listed. Since all these modules should be connected to the RTM-USB board, the
interconnect is defined and split up in three parts. For each part there are several ways

2.5. CHAPTER SUMMARY 27

listed on how this interconnect could be implemented. In the final part of the chapter it
was looked into the use of FPGA’s in motion control. A list of FPGA applications has
been made, as well as an overview of FPGA resources needed for each of these applica-
tions. The next chapter will show which of the hardware modules will be designed and
which kind of interconnect will be implemented.

28 CHAPTER 2. LITERATURE SURVEY

System Design 3
In the previous chapter the possibilities of the RTM-USB platform, regarding the exten-
sion modules and interconnect, have been indicated. In this chapter these possibilities
will be narrowed down to a subset which will be implemented in real hardware during the
time span of this thesis. Paragraph 3.1 gives a list of modules which will be designed and
implemented, which interconnect topology and protocol are chosen is discussed in para-
graph 3.2. As the final part of this chapter, a selection will be made out of the FPGA
implementable functional blocks in paragraph 3.4.

3.1 Extension Modules

3.1.1 Extension Modules Selection Method

Since time is the limiting factor which prevents all modules listed in paragraph 2.2.1 to
be implemented, a selection needs to be made. The selected demo application where we
will use the RTM-USB board and the created extension modules is a robot arm. This
arm is a typical example of a motion control problem. The accuracy that is needed for
this application falls into the middle-end precision (typical control loops of < 1kHz, with
a typical data transfer rate of < 5MBit/s, accuracy: millimeters).

In order to see what electronics we need for this robotics arm we first need to know
how the arm works internally. As we take a closer look into the mechanics of the robot
arm we see that it works with series elastic actuation (SEA). The mechanical realisation
of this principle is displayed in figure 3.1.

This SEA principle is used to measure the external forces on the arm. By measuring
the stretching of the spring and using hooke’s law (F = -kx, with k the spring constant
and x the displacement of the spring) it is easy to measure how much force is applied
externally to the arm. It is important to know these external forces, since we have to
counteract these in case we have to maintain a steady position. Furthermore in humanoid
robotics it is especially important to know these fources since we need to be able to limit
the force that is being exerted by our application to the outside world (otherwise the
robot might cause someone serious injury). To continue with figure 3.1 it can be seen that
we need a motor, an encoder and an analog port (to measure the spring displacement
from the optical sensor) to control a joint in this arm. Since this principle can be seen
in most of the joints of the arm we consider controlling this as the main purpose of our
electronics. Hence we need to select modules from the list in paragraph 2.2.1, which will
help us to control this mechanical structure.

3.1.2 Selected Extension Modules

To be able to control the previous discussed mechanic model we need:

29

30 CHAPTER 3. SYSTEM DESIGN

Figure 3.1: The principle of Series Elastic Actuation is all about measuring the stretching
of the spring.

1. Encoder counter

2. Motor amplifier

3. Analog IO

The encoder counter is the most basic building block from any closed loop motion
control system. The encoder counter can be implemented using an off the shelf standard
chip, however these are hard to get. The chip which was used previously (HCTL
2032 from Agilent) worked sufficiently good, however it is only obtainable in a relative
big Dual Inline Package (6cm2) and its price is quite high (aprox 15 Euro in small
quantities). Therefore we looked for other ways to implement the encoder counter and
we looked back to the literature study on FPGAs in motion control (paragraph 2.4.2)
and we can easily use a small CPLD which can fulfill the same functionality as the
HCTL2032 at only one third of the price and one fourth of the size.

Right now the RTM-USB board is able to control Direct Current motors (two times
150 Watt), this would be enough to control the robotics arm application. However this
motor controller is not modular (it is too much integrated with the processor, so it
would be good to make a motor controller which is more modular. Furthermore BLDC
motors are favourable over DC motors (see appendix A) but they are not being used in
applications where the RTM-USB board is being used, simply because the RTM-USB
board does not support this kind of motors. Implementing a Brushless DC controller
would both enhance the RTM-USB board and broaden its usage.

3.1. EXTENSION MODULES 31

For the BLDC motor amplifier we found several amplifiers, see table A.2 in appendix A.
From these chips we selected the A3936, partially because Alegro DC motor drivers with
a similar electrical interface were already used in the current version of the RTM-USB
(hence simplifying the porting of the existing software drivers). But most of al because
these were the only chips available that claim to go up to a maximum of 150 Watt
without the need for external cooling. The solution we chose for this motor controller
is a single chip solution, hence we need very little additional external components. The
drawback of this solution is that in case we need a higher power amplifier, the chip and
the PCB design needs to completely be redone. In order to overcome this problem a
solution could be made with a separate power stage. The controller always stays the
same, however an additional power stage (which is easy to design) can be changed uppon
the needs of the user. This is further discussed in appendix A.

Just as a motor controller is already available, the analog IO is also available on the
RTM-USB board. If we look back to table 2.2 we see that digital IO is the other kind
of IO that is usefull to have. Preferably this IO should be able to cope with several
different voltages (+-20V/+-12 Volt/+-10V/+-5V, etc.). These voltage levels are both
for the input and output voltage levels and should be defined by the user.
In order to do this we have to implement a level converter. For up conversion there
are three ways to do this, see figure 3.2, 3.3 and 3.4. In figure 3.2 a level converter
using a mosfet can be seen, this is a simple design and can handle frequencies up to
10MHz and voltage levels from -20 till 20 volt. However this output will never be
able to supply current, since any supplied current will cause a voltage drop over R1.
Figure 3.3 presents a converter which makes use of two mosfets, this is a common
structure which is mostly used in integrated semi conductors, the design can easily
handle frequencies beyond 10 Mhz. The problem is that q2 can not be fully closed
unless its gate voltage is exactly the same as the user defined output high voltage
level. Hence this mosfet will always stay in the resistive area if the output high voltage
is more than 3.3V or less then 0V (the voltages which we use to drive this output
amplifier). To overcome this problem we can use a mosfet driver (not shown in the
figure), however this will double the area taken by each output converter. The final
converter design we have, can be seen in figure 3.4 here we use an opamp in a single
package which is able to cope with the user supplied voltage levels. The output can
supply a maximum of 50mA the only disadvantage is that the output frequency is lower
(max 5MHz, sine wave) compared to the other solutions, however the fact that we can
supply enough output current at the right voltage levels and the fact that our output
frequency will be less than 5MHz (depending on the final interconnect we choose)
makes that the circuit in figure 3.4 will be used in the digital io design as an output driver.

For the inputs we need an additional circuit (see figure 3.5). The circuit on the right
in figure 3.5 is useless since it assumes that the voltage levels are known, which is of
course not true. The left circuit in figure 3.5 gives the final answer, this circuit clips the
incoming voltage on -0.6 and 3.3 Volt (due to the voltage drop over the diode). This
clipping happens independent of the incoming voltage level, however the current that
goes through the diode will vary with the incoming voltage since the resistor’s value is
fixed. For voltage levels of -20/+20 V the current going through the diode is acceptable

32 CHAPTER 3. SYSTEM DESIGN

Figure 3.2: Level converter to upconvert the outgoing voltage, using a single MOS and
a pull up resistor.

Figure 3.3: Level converter to upconvert the outgoing voltage, using a double MOS.

if R4 is chosen around 1kΩ.

The digital IO are split in 8 inputs and 8 outputs, this is done because implementing
each pin as both input and output would render a much more complex PCB design and in
general for motion control applications (reading sensors) there is no need to dynamically
change the direction of the pins (from input to output or the other way around).

3.2. INTERCONNECT 33

Figure 3.4: Level converter to upconvert the outgoing voltage, using an opamp.

Figure 3.5: Level converter to clip the incoming voltage (left) or to scale the incoming
voltage (right).

3.2 Interconnect

3.2.1 Interconnect Selection Method

Before we can start the discussion about which interconnect to use we first need to
know what the load on the interconnect will be. To calculate the load of each module
on the interconnect, the data usage of each module needs to be determined. To gain
insight in the possibilities of the different scenarios for the interconnect, an excell sheet
is made which is used to calculate how much bandwidth is needed for different uses of
the modules, see 3.6. This excel sheet can also be used in case a new configuration of the
extension modules is build, in order to see if the configuration will fit into the bandwidth
capabilities offered by the module interconnect. The following properties of each module
can be varied.

• No of bits per channel

• No of channels

• Number of modules

• Loop frequency

34 CHAPTER 3. SYSTEM DESIGN

Figure 3.6: Excell sheet used to calculate the bandwidth usage of several different mod-
ules

• Bit width (for parallel bus)

• Bus occupation (which percentage of the time the bus is idle)

• Protocol overhead (how much of the bandwidth is spend on addressing, error cor-
rection, etc)

The minimum bandwidth needed for a system with 4 modules (two motor controllers,
one encodercounter and one digital IO which is a typical motion control application) at
a loop frequency in the order of 1-5kHz is approximately 5-10 Mbit/s.

3.2.2 Selected Interconnect

Based on the insight in the data usage and demands for the interconnect, gained in the
previous paragraph, it is now possible to select the interconnect.

If we look back at Section 2.2 there are three types of interconnect:

• RTM-USB to the interconnect interface (RT2I)

• Between interconnect interfaces themselves (I2I)

• Between the interconnect interface and the hardware extension (I2HE)

For the connection between RTM-USB and the interconnect interface (RT2I), one of
the ARM7 peripherals from table 2.4 needs to be selected. The above calculated bit rate
of 5-10 Mbit/s, only leaves room for the following peripherals:

• Memory bus Can’t be used since it is not available due to the RTM-USB’s board
design.

• LCD bus Could be used since it is available and it is hardware supported, hence
easy to use from a software point of view.

3.2. INTERCONNECT 35

• GPIO Could be used since 16 GPIO ports are available on the RTM-USB board’s
connectors, however if using GPIO we would end up emulating the LCD bus pro-
tocol on the GPIO bus. The advantage of having a 16 bits bus is partial nullified
by the fact that additional handshaking signals need to be used or a complex
bus protocol needs to be defined (which poses extra demands on the interconnect
interface).

From the above list we can conclude that with the current design of the RTM-USB
board the LCD bus is the cheapest and easiest to use solution. However if in the future
the RTM-USB board would be redesigned it would be best to use the memory bus. The
interconnect interface could just be put in the memory space of the controller, simplifying
the protocol to communicate between processor and interface. Another advantage, in
favour of the memory bus, appears due to the internal buildup of the ARM7 processor.
The ARM7 has the memory controller on the same bus as the processor (AHB, Advanced
Host Bus) whilst the LCD controller is on an other bus (APB, Advanced Peripheral Bus).
To go from AHB to APB a bridge needs to be passed, which takes extra time and could
cause extra delay to the internal functioning of the processor.

The next step in the interconnect is the connection between the interconnect inter-
faces (I2I) a bus type from table 2.5 needs to be chosen. With the calculated bandwidth,
we can simply rule out a few busses, the ones that remain are:

• SPI This is the most cost sensitive solution, there are a lot of chips that implement
SPI and convert it to parallel IO, the cost of implementation are low, however the
noise immunity and speed properties are worse than those on RS485. Additionally
we are not free to design our own protocol, we have to stick to the SPI protocol.

• RS485 This bus is really well shielded for noise (due to the fact that it is a
differential bus) the speed is twice as much as the SPI bus (inc case of SPI limited
by the available SPI to parallel converters) however the cost to implement RS485
is a lot higher, approx 4 times)

• LVDS This bus standard has both a really high bandwidth (> 200Mbit/s) and
an implementational cost which outweighs the bandwidth benefits by far for this
application, hence there is no need to use it here.

Concluding from the above list, there are two winning scenarios. Both SPI and
RS485 have equal good properties, but in different fields. Practice has to turn out which
fields play a meaningful role. Therefore two setups will be made from which it will be
determined which bus, either SPI or RS485, will be used for the connections between
interconnect interfaces. Table 3.1 lists the properties of each bus.

Two setups were made to test the differences between RS485 and SPI as shown in
figure 3.8. and figure 3.7 respectively. An overview of the used components in the test
setup can be found in table 3.2. In the SPI setup the SPI bus is controlled by a Microchip
PIC18F4550 because this is both easier to program, compared to the ARM7 chip on the
RTM-USB board, and it has an on board SPI peripheral whereas the ARM7 chip needs
an external chip to make an SPI port. The SPI bus on the PIC18F4550 has comparable

36 CHAPTER 3. SYSTEM DESIGN

Table 3.1: SPI versus RS485 hardware
SPI RS485

MAX Bandwidth 10Mbit/s 20Mbit/s
Number of chips needed 3 4

Footprint (cm2) 2.5 4
Effort to implement small large
Effort to extend large small
Noise sensitivity high low

Max number of devices 8 32

Figure 3.7: Test Setup for the SPI I2I communication

characteristics to an SPI port which will be attached to the ARM7 chip on the RTM-USB

Figure 3.8: Test Setup for the RS485 I2I communication

3.3. INTERCONNECT PROTOCOL 37

Table 3.2: SPI versus RS485 setup

SPI RS485

Sending chip PIC18F4525/s Altera EPM3064
Receiving chip MCP23S17 Altera EPM3064

Max data rate measured 10Mbit/s 20Mbit/s
Implementation finished yes no

board.

During the implementation of the test setup we found out that the physical size of
the RS485 solution was bigger (1.5 to 2 times) than we originally had thought. This
was caused because it was thought that the CPLD device could be obtained in a smaller
SMD package, however this specific device was not available in a smaller package. If we
look at a more expensive (in terms of financial cost) devices there are smaller devices
available however these become too expensive to be of any use for us. Furthermore the
SPI solution was much easier to implement, occupied a much smaller (about 3 times)
area and the cost were less. These disadvantage were too big to continue working on the
RS485, hence the SPI solution was chosen.

The last part of the interconnect is the interconnect interface and the extension
module (I2HE), we need to choose from the options as depicted in paragraph 2.3.4.
Since we choose to go for the SPI implementation using the SPI to parallel converter
from Microchip (MCP23S17) we are only left with a parallel connection on the I2HE
interconnect. This also limits us (severely) on the options we have regarding the protocol
which is used on the interconnect, but this will not prevent us from creating a useful
working system as we can see in the next chapter about the implementation of the system
(chapter 4)

3.3 Interconnect Protocol

In the previous paragraph the SPI to parallel converter (MCP23S17) was chosen for the
I2HE interconnect, from the options which are given in paragraph 2.3.6. We are not able
to do error detection, since this would require extra intelligence like a micro controller
or CPLD. As will be seen in the measurements chapter (see chapter 5) this will not pose
a problem.

Multi master is possible and can be done on the driver level in the ARM7 micro
controller. However for this thesis we start with single master since this will be easier to
debug then a multi master system and once a single master system is acquired it can be
extended to a multi master system.

For the initialisation we choose to use a system which is set by the user, the user
enters which modules (which addresses) are on the bus and the software assumes that
the modules are present. This is again done to have as little as possible intelligence
controlling the modules, because all intelligence includes software which needs to be
maintained which in turn makes the project more complex. In the end ideally the only

38 CHAPTER 3. SYSTEM DESIGN

software we want to maintain is the software on the ARM7 processor.

3.4 Designing motion control applications on an FPGA

In this section we look into which interconnect and modules could be implemented on an
FPGA. Unfortunately there will be no time during this project to implement anything
regarding the FPGA however it is good to know for future refrences what is possible to
implement.

3.4.1 Interconnect between functional blocks on an FPGA

As proposed in paragraph 2.4.1 some interconnect to connect all modules in the FPGA
should be used. The requirements for this interconnect are: flexible, cost effective and
realtime. From the solutions as proposed in paragraph 2.4.1 only Æthereal NOC is
realtime, the problem however with this network type is that it is quite heavy and license
fees are due. If we look into the Wishbone bus on chip [26] we find a simple lightweight
structure, with no license fees (since it is open source), easy to implement and posing
little overhead on the FPGA, unfortunately this bus is not realtime. In order to make
it realtime, a scheduler should be made to route the data through the interconnect in
real time. Another disadvantage of a bus is that the capacity of the bus is shared with
all the masters and slaves on that bus (Time Division Multiplexing, TDM), in case a
NOC was used multiple (local) data streams could have run over the same interconnect
without limiting each others bandwidth. Even though these draw backs are severe, the
benefits as mentioned above will outweigh them to a large extent.

3.4.2 FPGA motion control functionality

As already discussed previously in this thesis, there will be no implementation of FPGA
code, other than that needed for the interconnect or the motion control extension mod-
ules. However in this paragraph we would like to make a proposal for modules which
would be implemented on an FPGA in case we had more time left. A selection is made
from the list given in paragraph 2.4.2. The following modules could be implemented:

• Stepper motor controller

• Encoder counter

• PWM Controller

• PID Controller

• Filtering

These blocks are all selected for the same reason: they are both basic building blocks
of most motion control applications and they can show directly the added functionality
of the FPGA. The encoder counter is a special case since we are going to use it for this
thesis in a CPLD (unlike the other modules).

3.5. CHAPTER SUMMARY 39

3.4.3 FPGA Selection

The FPGA vendor was already selected in paragraph 2.4.3. Using their catalog, a se-
lection of devices can be made. From table 2.7 it is easy to see which FPGA is most
beneficial to choose. The ep2c8 (8000 LE) FPGA is a good choise for most of the projects,
however for only 1.10 Euro 1 more an FPGA which is twice the size and which is made
in a newer technology can be obtained (ep3c16, 16000 LE) besides that the ep3c16 is
the biggest FPGA which is still hand solderable (which is an advantage since all the
prototypes will be soldered by hand). So for the FPGA board the ep3c16 FPGA from
ALTERA is selected.

The smaller CPLDs can be used to implement simple modules (such as counters,
PWM generator). In case an FPGA is used, the counter design could be simply trans-
ferred from the CPLD to the FPGA.

3.5 Chapter Summary

In this chapter a selection of the extension modules has been made. This selection
(brushless DC motor controller, encoder counter and digital IO) will be implemented,
see next chapter. In order to connect all these modules together an interconnect bus
is selected. Several busses were considered, of which only RS485 and SPI remained as
useful candidates. After making two test setups s choice is made for SPI since it is
most cost effective, relatively easy to implement and easily extendable by using standard
available devices.

A list of FPGA functional modules which could be implemented has been compiled.
Unfortunately there is no time during this thesis to implement an FPGA extension mod-
ule. Several interconnect implementations have been investigated. The main outcome is
that the interconnect should be real-time and that a real-time Network On Chip (NOC)
is hard to implement, and not strictly needed for the low requirements of the RTM-USB
platform.

In the next chapter the selected extension modules will be implemented, we will
show how to implement them and which components have been chosen for the hardware
implementation.

1Prices from http://nl.digikey.com, November 25th, 2008

40 CHAPTER 3. SYSTEM DESIGN

Implementation 4
In the previous chapters, insight was gained into which modules and interconnect could
be implement and which would be implement. Modules and interconnect were designed
from a high level view. This chapter will show what was done and needed to implement
the modules and interconnect, which problems were encountered and which solutions were
found to these problems.

4.1 Used design tools

The software tools used for the design are freely available as student editions. Of course
with some limitations (see table 4.1) but for this project all the limitations were not
a problem at all. The only exception to this, is the compiler which was used for the
software on the ARM7, for this we used a licensed tool (license was already available at
Philips).

Table 4.1: Design tools

Design tool Used for Manufacturer Limitations website

Eagle Schematic capture Cadsoft Max PCB size 10*8 cm www.cadsoft.de
and pcb design Only 1 schematic

per design
Quartus Verilog design Altera High end devices www.altera.com

and synthesis not supported
Some IP not supported

No synthesize
optimizations

uVision 2 ARM7 code Keil No limitations www.keil.com
compilation (license)

4.2 Extension Modules

The extension modules of which the functional design has been done in the previous chap-
ters are implemented, schematics of these extension modules can be found on appendix
D at the back of this thesis.

41

42 CHAPTER 4. IMPLEMENTATION

Figure 4.1: Digital IO PCB design

4.2.1 Digital IO

The implementation of this module is quite straightforward, the final result of the design
can be seen in figure 4.1. The only problem encountered was the opamp, which is used to
shift the output levels up to a higher voltage compared to the input voltage, had a gain
bandwidth product (GBW) which was too low. Taking an opamp with a significantly
higher GBW solved the problem. In future revisions it might be best to consider using
a comparator, since they are faster then opamps and also at a lower cost. However this
comes at a price: almost all comparators have an open drain output, hence they can not
source current which yields the need for an extra amplifier. The results obtained with
the current opamps can be reviewed in the Chapter 5.

4.2.2 Encoder Counter

For this module we chose a CPLD from Altera. This module was not as straightforward
as the previous one. Since it had to be usable with both differential and single ended
encoders. A simple trick (setting one of the differential inputs to half the voltage supply)
was used to enable the encoder counter to work with both type of encoders. The hardware
implementation (see figure 4.2) was right in one go, however the software (for in the
FPGA) showed a few minor latching problems (see figure 5.4) this was easily solved in
the Verilog code. A schematic overview of the Verilog code can be seen in figure 4.3. The
final encoder counter is able to count up to two channels in either pulse mode (counting
the pulses coming from an encoder) or time mode which counts the number of clock
pulses between the edges of encoder pulses. This last implementation is particularly
useful to have when the motor is running at low speed. All counters are 32 bit long,
which is comparable to most of the commercial available chips.

4.2. EXTENSION MODULES 43

Figure 4.2: Encoder Counter PCB design

Figure 4.3: Encoder Counter Verilog design

4.2.3 Motor Amplifier

The motor amplifier is based on an amplifier from Alegro (see paragraph 3.1.1) which can
be controlled using an analog voltage from the RTM-USB board or an analog voltage from
a DAC on the motor controller which can be controlled over SPI. Using the datasheet
and scaling the components to the right values an implementation that worked in the
first time was made (see figure 4.4. It was found out that the datasheet of the test motor
which was used to test the amplifier showed the wrong connections. Unfortunately this
costed one motor (one of the hall sensors (see appendix B) was blown up). Once the
right datasheet was used this motor controller functioned properly.

44 CHAPTER 4. IMPLEMENTATION

Figure 4.4: Motor Amplifier PCB Design

4.3 Interconnect

4.3.1 Hardware

Two different bus architectures were considered: SPI bus and RS485. As was seen in
the previous chapter, SPI was more effective to implement in terms of cost, (software)
maintenance effort and physical dimensions. The chip that was finally taken as the
receiver was an MCP23S17 SPI to parallel port expander from Microchip, which will be
placed on all hardware expansion modules.

From the processor side there should be data send onto the SPI bus. The RTM-USB
board is not equipped with an SPI bus, hence we need to come up with an interface
to glue the RTM-USB board to the SPI bus (called RT2I in paragraph 3.2). For this
interface a choice of devices can be used (see table 4.2). The CPLD solution is both the
fastest and most cost effective solution. An advantage we get for free here is that in case
we take a bigger FPGA it would even be possible to put the SPI bridge and the encoder
counter (both written in Verilog) together such that they can be put on one board. Using
this CPLD the SPI bridge board (see figure 4.5) was created. This is a board with four
SPI channel outputs and a parallel input. Four channels were constructed since this
number of channels fitted in the available space and the four channels together give a
serial data speed which is equal to the parallel data speed (40Mbit/s).

On to each channel at most eight modules can be connected, which is a limitation of
the MCP23S17 SPI chip’s addressing capabilities. The parallel port of the SPI bridge
board connects to the LCD control port of the RTM-USB board, in this way both GPIO
(easy to debug) and the LCD bus (faster connection) can be used for sending data over
to the SPI bridge. Some Verilog code was written to split the incoming data into four
channels and to shift out the data on the SPI channels, the code can be configured using
parameters, hence if more SPI channels are needed it is simply a matter of changing the

4.3. INTERCONNECT 45

Figure 4.5: SPI PCB Design

parameters in the code and no rewriting of the code itself has to be done. Again here
the design was done tidy and both hardware and software worked almost in one time
(there were some minor bugs, but nothing structurally wrong).

Table 4.2: Bus master controllers
Controller SPI speed Package Internal/external Xtall Cost (Eur)

Tiny48 6Mbit/s QFN28/32 external 1.10
TQFP32

Atmega 128 8Mbit/s QFN64/32 external 7.69
PDIP
TQFP
BGA

CPLD 40Mbit/s TQFP100 external 2.00
(EPM240)

8051 6Mbit/s 10DFN external 2.75
(C8051F52X)

ARM7 10Mbit/s LQFP48 internal 3.30
(LPC2100)
MSP430 10Mbit/s TSSOP14 external 2.47
(2013)

PIC16F726 4Mbit/s 28SSOP external 2.20
PIC18F4550 11Mbit/s TQFP44 external 6.87

46 CHAPTER 4. IMPLEMENTATION

Figure 4.6: Driver Software design

4.3.2 Software

Besides the software in the CPLD (written in Verilog) device drivers had to be written
to control all the modules from the RTM-USB board. It was chosen to make a hardware
independent layer for each hardware module. This layer talks to the lower IO port driver
directly (in case the modules are directly connected to the parallel port of the RTM-
USB board) or to the SPI driver in case the modules are connected over the SPI bus
(see picture 4.6). All software is written in the C language.

4.4 Cost Calculation

Since this whole project is about designing a real system which can be manufactured in
a moderate quantity, the cost needs to be taken into account. This chapter takes all the
solutions which will be implemented as can be found in chapter 3 and makes a rough
cost calculation. This cost will be the financial cost only. Other notions of cost are being
left out.

4.4.1 Extension Modules

Per module the cost price of the components can roughly be calculated, by picking the
main components and add a 10 % for the additional components, table 4.3 gives such an
overview.

Prices are taken from nl.digikey.com as per may 1, 2010 Each module has additional
financial cost which is caused by the network interface, see paragraph 4.4.2 for the cost
per module. It might be good to notice that the price of the encoder counter board
is half the price of comparable commercial solutions (for which price only the chip is
obtained, a board should still be designed).

4.5. CHAPTER SUMMARY 47

Table 4.3: Component price

Module Component Price (EUR) total price(EUR)

Encoder counter
CPLD 5

Power regulator 0.58
X-tal 0.75

Connectors 0.80
7.60

Motor amplifier
Alegro A3936 Motor amplifier chip 4.00

Connectors 0.80
X-tal 0.75

6.05
Digital IO Opamps 2.00

Discrete components 3.00
5.50

SPI bridge CPLD 2.00
Oscillator 1.00
Connectors 1.20

4.40

4.4.2 Module Interconnect

The module interconnect adds additional cost to the modules, cost that can be left out
in the case that the modules are used only through the parallel port. In table 4.4 the
overhead cost can be found.

Table 4.4: Component price interconnect

Component Price (EUR)

MCP23S17 2.25
Connectors .50

Total Price (EUR) 2.75

4.5 Chapter Summary

In this chapter the hardware extension modules and interconnect have been implemented.
First the design tools have been discussed, following the schematic and PCB design of the
modules. Implementation went quite smooth, due to the fact that at each design stage
(schematic, PCB) the designs were carefully reviewed by colleagues with some hardware
design experience.

48 CHAPTER 4. IMPLEMENTATION

After the implementation a cost price calculation is being done over the main com-
ponents to see how much the extension modules and interconnect cost (financially). On
average the module’s hardware cost is less then 10 Euros including interconnect, which
is an absolute minimum for modular motion control hardware.

Measurement Results 5
In this Chapter the results of the measurements as carried out on the previously designed
and implemented hardware, are presented. Each paragraph covers the measurement of
one single RTM-USB extension module, the last paragraph combines all these modules
in order to test the interconnect. For each module the method is the same: The first
part introduces the measurement setup, following a short discussion about which mea-
surements will be carried out and why they are useful for this module. The second part of
the paragraph presents the results of the measurements with the aid of some signal plots
and measurement data

5.1 Extension Modules

5.1.1 Digital IO

A single Digital IO module (see paragraph 4.2.1) is taken. This module is wired according
to figure 5.1, using this setup it is possible to measure the input, output and input after
clamping voltages. The used oscilloscope is an Agilent DSO1024Athe signal generator
is aPhilips PM5138A. Figure 5.2 and 5.3 show two example plots of the measurements.
A summary of all the measurements can be found in table 5.1.

Table 5.1: Measured capabilities of the Digital IO extension module

Measured property Result Remarks

Max differential output voltage 35,9 Vp-p @ 143,7KHz Higher voltages can damage
the opamps

Max in voltage 18,3 V This is the clamped input
voltage @ 1.5mA

Min input voltage -17,7V This voltage is clamped
Max input frequency 1.506 MHz Beyond this frequency the

square wave becomes a sinusoid
Max out frequency 1.01 MHz As generated by the digital

IO board

5.1.2 Encoder Counter

In order to test the encoder counter implementation, simulations were carried out using
the Altera Quartus simulator and Mentor Graphics’s Modelsim. After these tests the
encoder implementation was uploaded to the CPLD and an Maxon Motors quadrature
encoder counter was hooked up to the encoder counter input (see fig 5.5 to see an
overview of the used test setup). First tests showed weird behaviour (see fig 5.4). The

49

50 CHAPTER 5. MEASUREMENT RESULTS

Figure 5.1: Digital IO test setup wiring diagram

Figure 5.2: Digital IO maximum output frequency at maximum output voltage

input to the motor is a steady voltage (hence the motor should run at constant speed.
The previously mentioned figure shows that the count goes backwards at some instance
of time and after that it goes continues its normal expected behaviour. It was found
that this was simply a mistake in the processing of the incoming read signals from the
RTM-USB board. A simple latch, implemented inside the CPLD, solved the latching
problem. In order to be able to test the maximum count speed of the encoder counter, a
setup was made where another CPLD emulates the encoder (in this case it is possible to
set the speed of the encoder using a function generator). The counters are implemented
as sampling counters, hence after 25M counts per second a degradation of the counted
value can be observed, which is not surprising since this is half the sampling speed (50
Msps) as per the Nyquist theorem data loss will be observed if input signals go faster
then half the sampling speed.

5.1. EXTENSION MODULES 51

Figure 5.3: Digital IO max input frequency, channel 1 is input channel 2 is output

Figure 5.4: Spikes in the readout of the encoder counter, these spikes were caused by
latching problems.

5.1.3 Motor Amplifier

The motor amplifier was tested by connecting a Maxon EC 25 Watt motor to the am-
plifier board. This testing was only performed in order to show that the motor amplifier
was functionally correct. To fully test the maximum output power of the amplifier, a
test setup was build (see figure 5.6). This setup contains three resistors in a star config-
uration. Each of these resistors is able to dissipate 50 Watts, while cooled with a fan (to

52 CHAPTER 5. MEASUREMENT RESULTS

Figure 5.5: Setup to test the encoder counter

make sure the solder between the registers does not melt) for future setups clamps should
be used to hold the resistors together, instead of solder. In order to make the amplifier
work, a HAL sensor emulator is made, see figure 5.7. This is easily done in a CPLD.
Results from this test are that the amplifier is able to supply approximately 10 minutes
150 Watts (3A@50V) (after that the test setup heated up too much and the solder could
not be cooled enough anymore). Hence the specifications from the manufacturer are
reachable using our own designed setup.

Figure 5.6: Test setup to test the full power delivered by the motor amplifier

Figure 5.7: BLDC Motor Control Hal sensor input as generated with an FPGA while
simulating a BLDC motor

5.2. INTERCONNECT 53

5.2 Interconnect

5.2.1 SPI Bus and SPI Bridge

In order to test the SPI bridge and all the SPI enabled peripherals a setup was made. This
setup contained two Maxon EC motors, one encoder counter module (with two encoder
counter channels), four digital IO boards (32 channels). The goal of the setup is to test
what the loop frequency is, and if the various parts of the SPI protocol work correctly.
See figure 5.8 for a schematic overview of the setup and figure 5.8 for a photo of the setup.
From figure 5.9 it can be observed that the maximum loop frequency is 1.18 KHz, which
is lower then was expected. This is partially due too the switching overhead between
sending data to the motor controller’s SPI DAC and sending data to the modules. If
a parallel DAC was to be used (which needed too much space to implement here) the
overhead of switching (approximately 150 micro seconds) would not be necessary. Data
would be send in the normal way taking approximately 50 us, hence giving a total time
gain of 100 us. Further more the figure shows big gaps between data transfers (about
40 us) these gaps seem to be caused by the slow data transfer between the RTM-USB
board and the SPI bridge (the RT2I interconnect). Speedup could be achieved here by
using a faster interconnect (memory bus or the LCD interface). These gaps are about
40 us wide and in the total PID loop there are 15 gaps, hence there is about 600 us to
save. Taking all these optimizations together, a loop speed of 114 micro seconds could
be achieved, which brings the loop frequency to 8,77 KHz. Which is much closer to what
was calculated in the first chapters. Due to hardware restrictions and time constraints
it was not possible to implement these optimizations.

Note: in all of the following figures which describe the SPI testing, channel 1 is de
chip select, channel 2 is the SPI clock, channel 3 is the data from the bridge to the
module, channel 4 is the data from the modules to the bridge.

Figure 5.8: Test setup to test the SPI functionality

54 CHAPTER 5. MEASUREMENT RESULTS

Figure 5.9: SPI Bridge with one complete PID loop

Figure 5.10: SPI Bridge receiving data from the encoder counter extension module

5.3 Chapter Summary

In this chapter the performance of the modules is being measured. All modules function
according to the specifications, or better. Some small problems were found, but they
were solvable in software. The SPI bridge shows that there is quite a lot of room for
optimization. After optimization the SPI bridge should be able to handle 8 times more
data traffic.

In the next chapter we will see how this SPI bridge and one of the modules (Encoder
Counter) are successfully being integrated in the new version of the RTM-USB board.

5.3. CHAPTER SUMMARY 55

Figure 5.11: SPI Bridge sending data to the DAC on the BLDC motor control extension
module

Figure 5.12: SPI Bridge sending one byte to an extension module

56 CHAPTER 5. MEASUREMENT RESULTS

RTMotion-USB New Version 6
During the last few month of this thesis a request came in to make several robotic arms
for university research. This meant that there was a budget for redesigning the RTM-USB
board and putting the main components of this thesis on this new designed RTM-USB
board. This chapter will briefly touch the design process of the new board and the outcome
of the build boards.

6.1 New RTM-USB Board design process

The main purpose of the redesign of the RTM-USB board (and creating its 3rd genera-
tion) was to get the two channel encoder counter and the SPI bridge on the RTM-USB
board. In this case it is still possible to attach peripherals (like the motor controller and
digital IO) to the RTM-USB board and the most used peripheral, the encoder counter,
is on board creating a more space economical implementation. As CPLD a chip was
taken which was twice as big as the chip used for the encoder counter such that both
the encoder counter and SPI implementation would fit in the same device. The CPLD
is connected to the memory interface of the processor on the RTM-USB bus such that
in the future a high speed data transfer channel can be setup. Currently the memory
bus pins can also be used as General Purpose IO which minimizes the design risk.

For this design process Philips’s internal PCB design house, Green house, was asked
to implement the design changes according to our specifications.

6.2 New RTM-USB Implementation result

After a few weeks a batch of boards came in (see 6.1) and since all the software was
already fully debugged, the only thing that needed to be done was changing the Hardware
Abstraction Layer (HAL) on the RTM-USB’s processor and combining the CPLD Verilog
code of the SPI bridge and Encoder Counter. This whole process took about two days
to get the software up and running. Almost no bugs were found after integrating the
previously tested and validated hardware and software. This shows the power of the
modular design philosophy of the RTM-USB motion control platform.

Finally, after testing the hardware on a functional level, the board was integrated
into a robotics arm (see figure 6.2). Several of these arms are being sold to the three
technical universities in the Netherlands.

57

58 CHAPTER 6. RTMOTION-USB NEW VERSION

Figure 6.1: The new RTM-USB hardware

Figure 6.2: Robotics arm where the new RTM-USB hardware is integrated

RTMotion-USB Hardware

Future Work And Conclusion 7
Since this thesis is not the final version of the RTM-USB platform, there is a need to
look ahead, to see where the platform should be heading for in the future. This chapter
gives a summary of the thesis, shows the contributions of this thesis to the world and
which work should be done in the future to continue and improve the current design.

7.1 Thesis Summary

First a study was performed to see which comparable systems are available on the mar-
ket. Two high end systems (meant for high precision control applications like medical
systems and semiconductor), one low end (education) and one middle end (simple con-
trol applications) systems were found. With respect to these systems the RTM-USB is
targeted between the middle and high end applications (of course whilst respecting the
limitations of the low cost nature of the RTM-USB board).

When looking into comparable systems it was also found which kind of extension
modules should be created in order to make the RTM-USB board an attractive, compet-
itive board. A list of several extension modules is made and the modules that are mostly
needed in control applications (encoder counter, motor controller and digital IO) were
selected to be designed and manufactured for this thesis. Additional the possibilities of
using FPGAs in motion control applications is investigated. Unfortunately there was no
time during the course of this thesis to implement an FPGA module.

Since this RTM-USB prototyping system should be modular it means that there
should be an interconnect between the modules. Since the design risk should be mini-
mized, it was chosen to take both a serial and parallel bus to serve as the interconnect.
The interconnect for the serial bus is divided in three parts, RTM-USB to interconnect
interface (RT2I), interconnect interface to interconnect interface (I2I), interconnect to
hardware extension module (I2HE). For each of these parts a communication protocol
is determined. For the RT2I the LCD interface available on the controller on the RTM-
USB board is being used. The I2I interface uses the SPI (Serial Pheripheral Interface),
for the I2HE there is not much to choose since it is determined by the chip that is being
used to connect to the SPI bus. The parallel bus is normal simple GPIO with intelligence
only on one side, hence there is not much of protocol that needs to be used here either.

Implementation was done in two steps: The first step was performed on the computer
(drawing PCBs, Printed Circuit Boards, and writing code in Verilog and C). The second
step was performed in the lab (soldering and testing the PCBs).
After implementing all the modules, relatively little design mistakes are found (most
of the problems find their roots in wrong interpretation of the available data, small
mistakes, forgotten components, etc.). Measurements unveil that the designed modules
work as good as expected or even better (in case of the encoder counter extension we

59

60 CHAPTER 7. RTMOTION-USB HARDWARE FUTURE WORK AND

CONCLUSION

were able to implement 2 types of encoders, where initially we were only planning to
implement one encoder).

At the final stages of this thesis a need for redesign of the RTM-USB board emerged,
since this board was needed in humanoid robotics arms that are sold to universities for
research. During this redesign it was possible to take away the biggest bottleneck in
the communication (being the RT2I interconnect, where GPIO was replaced with the
memory bus interface). Unfortunately it was not possible to get the memory bus up
and running during this thesis due to time constrains (the normal slow interface does
however work).

7.2 Contributions

This thesis contributes in several ways:

• Low cost modular middle- to high-end motion control prototyping is possible now.

• Encoder counters became more cost effective and versatile.

• It is shown that even in cost effective motion control programmable logic
(CPLD/FPGA) can be used without compromising the cost aspect.

• The functionality of the RTM-USB motion control board has been increased.

• A new version of the RTM-USB motion control board has been prepared to be
part of a series made product which is sold to customers outside Philips.

7.3 Future Improvements

With the redesign of the RTM-USB board (which is currently in its 3rd generation) lots
of improvements have already been made, a few more improvement suggestions are being
done here. There are several improvements that could highly improve the RTM-USB
modular design.

• More extension modules: designing and making more modules does not cost too
much time however it would make the RTM-USB board more flexible. Examples
of these modules would be

– FPGA module.

– Digital to Analog and Analog to Digital converter board.

• Removing bottlenecks: right now the interconnect interface to interconnect
interface (SPI bus) is one of the major bottlenecks. If time and budget permits a
more advanced higher speed bus should be used to get more peripherals sharing
one bus in order to save cable overhead in the robotics application.

• Removing bottlenecks: the memory bus of the new RTM-USB board is not yet
up and running, hence this should be implemented in order to get a faster data
connection between the RTM-USB’s processor and the SPI bridge.

7.4. OVERALL CONCLUSION 61

• Testing: the modules have been tested on a functional level, but in order to
produce them in series they should be evaluated according to a few industrial
standard tests like: EMC (Electro Magnetic Compatibility) and CE.

• Marketing: right now the RTM-USB platform is only used in selected prototypes
or products, mainly internal to Philips. This prototyping platform has the potential
to grow into a product that is widely used, since it is very low cost and easy to
use.

7.4 Overall Conclusion

When this thesis was started in the fall of 2008 a motion control prototyping system was
envisioned which is modular, easily expandable and highly cost efficient.

At the end of this thesis we can conclude that we were able to create such a system.
We even reached beyond this vision since it was never intentioned to have the RTM-USB
board redesigned and sold outside Philips. Furthermore enough study has been done to
increase the use of the RTM-USB system.

During this theses a lot has been learned about the design of electronics hardware for
motion control, which was entirely new for me. Inside the Philips Applied Technologies
motion control department, there did not exist a concrete background in hardware design.
Never the less with my own experience in hardware design, manufacturing and debugging
it was possible to extend the RTM-USB motion control platform in a relatively fast and
easy way.

We have seen that the strategy of first building a modular prototype and afterwards
integrating all the modular parts to one single board, proves itself (i.e. there were no
hardware bugs in the 3rd version of the RTM-USB board). For the future we foresee
that the RTM-USB board and the extension modules, with some small improvements,
can be widely used as Lego-blocks to do easy and fast prototyping of motion control
systems.

62 CHAPTER 7. RTMOTION-USB HARDWARE FUTURE WORK AND

CONCLUSION

Motor Amplifiers In Motion

Control A
In this appendix we take a look into which amplifiers are being used in motion control.
First an overview of the different types of motors, which are being used in motion control,
is given. Using this overview a choice of amplifiers is presented, stating which motors
can be controlled, which kind of interface is available on the amplifier, how much power
can be delivered, etc.

A.1 Motors In Motion Control

A variety of motors is being used in motion control. The following list gives an overview
of the motors used (in order of importance).

• Direct Current (DC) motor. Low manufacturing cost, easy to control, but still
brushes are needed which suffer from mechanical wear and cause large EMC emis-
sion.

• Brushless DC (BLDC) motor. The inverse of a DC motor (magnets rotate, coils
are standing still), needs a moderate complex controller, does not have brushes
which wear out or corresponding EMC problems.

• Stepper motor. Needs a simple controller, moves in discreet steps hence easy to
position, however construction is expensive due to the mechanical structure of the
motor. Control algorithms are available to increase the accuracy of every stepper
motor by a factor two (half stepping) which goes on the expense of extra power
usage.

• Linear motor (available in both DC and BLDC versions). Used whenever a linear
instead of rotating motion is needed, good performance at both high and low
speeds.

• Piezo actuator (high precision stepper motor). Used in applications which require
a high precision (nanometer accuracy), needs high voltages to control (>1000 V)
at a high frequency (>50KHz).

• Alternating Current (AC) motor. Can be connected to mains supply directly,
motor speed is controlled by the frequency of the AC source which makes speed
control complex. This type of motors show bad performance at low speeds, which
is important for robotics motion control since this type of control uses a lot of
stopping and starting.

63

64 APPENDIX A. MOTOR AMPLIFIERS IN MOTION CONTROL

• Switched reluctance motor. Cheap to design since the rotor is only a aluminium
cage and hence no magnets or coils are needed on the rotor however at low speeds
we can see high torq ripples.

A.2 Motor Amplifiers

In order to control a mechanical motor electrically, a motor controller is needed. Motor
amplifiers can be listed in three categories:

• Off the shelf: a plug and play solutions (see table A.1).

• Single chip: complete motor driver in one package. Only needs some simple
components to function (see table A.2).

• Custom solution: Completely self designed amplifier, needed if the other solu-
tions are not usable (due to lack of power and/or high cost) (see table A.3).

For the off the shelf and single chip solutions a few manufacturers and specific product
names are mentioned, for the custom solution some topologies and controller strategies
are mentioned.

One of the solutions which is particular interesting are the ones from Cirrus Apex.
These (SA306 and SA57) are single chip solutions which have an integrated controller
for DC and BLDC motors and can deliver up to 400W.

For this last category any output power is possible, it just depends on what kind
of switching elements (mosfets, IGBTs, etc) are placed. The good thing about these
custom solutions is that moving to a bigger motor only requires changing the switching
elements and not a redesign of the whole controlling circuit.

The circuits which are being used for the custom solutions contain a microcon-
troller/DSP/FPGA running a program that does all the calculations and controls the
amplifier part, see table A.4 for some examples.

A.2. MOTOR AMPLIFIERS 65

Table A.1: Off the shelf power amplifier manufacturers

Manufacturer Power Current Voltage Interface Motor Setpoint
(W) (A) (V) Type

Thor[18] 50 3 85- USB DC
264 Piezo

Stepper

Arcus[3] – – 12- USB Stepper
48

Galil[9] 500 4 24- Ethernet Stepper
10 80 RS232 DC servo

PCI
ISA

Elmo[7] 160- 3 11 Simple IQ [8] DC Brush
9600 50 60 Sine

Trapezoid

Eriks[12] 60- 3- 12- Analog DC
500 25 40 0/10 DC Brushless

± 15 AC
0/5 ± 10 Stepper
RS232

CANopen
Sercos[25]

Trust[?] 25- 1- 15- analog DC/BLDC Current
600 6 24 (± 10V)

Baldor[?] 630 Digital DC Current
135k 270 500 (serial) AC Voltage

Analog

Aerotech[?] 10 10 10 DC Current
9.6k 30 320 BLDC Voltage

Maxon[?] 24 2 12 Can open DC Current
1000 20 50 RS232 BLDC Voltage

66 APPENDIX A. MOTOR AMPLIFIERS IN MOTION CONTROL

Table A.2: Single chip amplifier solutions

Manufacturer Power Current Voltage Interface Supported Cost1

(W) (A) (V) motors (Eur)

Cirrus/Apex 4.5 - 0.010 - 38 Analog DC/BLDC 18-
10000 50 1200 710

Sanyo 1- 0.4- 2.5- Analog DC/BLDC 10-
200 4 50 Digital Voice coil 50

Piezo/Stepper

Infineon 10- 0- 0 Analog DC/SERVO –
1000 40 42 Digital Stepper/ASM

National Semi 10- 1- 4.5- Analog DC 5-
150 3 55 Digital Stepper 50

(address bus)

Alegro 10- 0.65 4- Analog DC/BLDC 2
150 3 50 Digital Stepper 20

(I2C/Serial)

ST Micro 0- 1- 8 - Analog DC/BLDC 5-
150 5.6 52 Digital Stepper 50

Table A.3: Custom solutions
Amplifier Topologies Motor type

Full H bridge DC
BLDC

Piezo motor
Half bridge DC (only one direction)

Stepper motor
DC High side/ Stepper motor
low side DC motor (only one direction)

Three phase reluctance motor
3 phase inverter AC motor

A
.2
.

M
O
T
O
R

A
M
P
L
IF

IE
R
S

67

Table A.4: Motor Controllers
Controller Controller Controller Performance Device Cost User Pin IDE

manufacturer type (bit) number (Average CPI) (Eur @100Pcs) IO count cost

Microchip 16(DSP) PIC24FJ64GA004 2 3.03 22 28 Free
Atmel 8(RISC) AT90PWM3 1 2.15 19 32 Free
Texas Instruments 32(DSP) TMS320F28015 1 3.81 35 100 $495.02
Texas Instruments 32(ARM7) TMS470R1A64 1.9 5.10 39 60 Free
Texas Instruments 16(RISC) MSP430F2112 2.5 1.88 24 28 Free
NXP 32(ARM7) LPC2141 1.9 4.16 45 64 Free

68 APPENDIX A. MOTOR AMPLIFIERS IN MOTION CONTROL

Encoders B
Encoders are sensors which are mounted on the shaft of a motor. The signals coming
out of these encoders give information (direct or derivable) about the direction, speed,
position or acceleration. There are many different types of encoders. In this appendix
we look closer into which encoders are available in the market and how they function.

B.1 Different Types of Encoders

Very often encoders are divided in two main categories:

• Incremental

• Absolute

The incremental encoder is an encoder which gives an output pulse every time a
marker is passed, multiple pulses can be generated per revolution. If the manufacturer
tells the user how many pulses are given per revolution of the encoder (mostly a power of
2: 128, 256,...) the pulses at the output can simply be counted and hence it is clear how
many degrees the motor has turned since the counting was started. However we can never
know what the position of the motor was at the moment counting was started, simply
because the incremental encoder doesn’t provide this. This is why absolute encoders are
invented. These encoders give at power on, the absolute position of the motor shaft (of
course with respect to a known zero point on the axis), the typical output is a logic
parallel (many wires!) or serial bus. Now the main difference between these encoder
types is the implementational complexity (see paragraph B.2), an absolute encoder is
way more complex to implement (more electronics, more logic, etc.) as compared to an
incremental encoder.
As a kind of hybrid solution between these two types of encoders there exist incremental
encoders with an index pulse. This index pulse is given once every revolution of the
encoder. Hence in order to know the absolute position of the encoder shaft we need to
rotate the motor just as long as to find the index pulse. Ofcourse this solution doesn’t
solve all problems: it also introduces problems if we start the routines to find the index
pulse at the physical limit of the mechanical construction which is controlled by the
motor. In this case, rotating the motor might destroy the mechanical construction.

Now how exactly can the position and direction of rotation be found? In case we
are using an absolute encoder the direction can be easily determined (counting up is one
direction, counting down the other) and of course the position is directly found as is
explained above.
In the other case, where incremental encoders are used, some tricks need to be used

69

70 APPENDIX B. ENCODERS

to find out what the direction and position of the motor is. Basically there are two
methods:

• Quadrature

• Sin/Cos

A quadrature or sin/cos signal consists of two signals which are 90 degrees out of
phase. See figure: add figure

If the picture is read from left to right, signal A comes before B, if the picture is
read from right to left B comes before A. Now using some simple logic it is possible to
detect which signal comes before the other signal. Hence we can determine the direction
in which the encoder is rotating! How these quadrature signals are constructed at the
encoder side is discussed in paragraph B.2.

When using the quadrature (square) wave output we have an accuracy in degrees of
360/(number of pulses per revolution), where “number of pulses per revolution” is 512
typically for humanoid robotics applications (with a resolution of 360/512 = 0.7 degrees)
In case higher accuracy is needed, a Sin/Cos encoder could be used. This encoder gives
two sinusoidal signals which are shifted by 90 degrees and typically one sinosoid per
revolution. Since these signals are analog we can determine the position as accurate
as we can sample the analog signal. If we take a 12 bit AD converter we see that the
resolution increases to: 360/4096 = 0.088 degrees which is roughly a 10 times increase
in accuracy! Each additional bit doubles the accuracy.

As with everything there is also a catch here, the analog signal has to travel from
the encoder to the AD converter. If this signal path is long, the motor introduces a lot
of noise and hence the extra accuracy is very likely to degrade.

There exist several ways in which data can be send from an encoder to a processing
unit. One is, as we saw earlier, using two simple wires over which a quadrature signal
or a sin/cos signal would go, however more robust protocols have been created. The
following two are the most popular protocols:

• Endata 2.1/2.2

• HiPerFace

EnDat(Encoder Data) is a protocol defined by the manufacturer Johannes Heidenhain
GmbH this protocol let both incremental and absolute encoders communicate over the
same interface. Absolute encoders are being read out in serial, solving the “many wires”
problem (see above). Furthermore the incremental and quadrature encoders can be used
together, the absolute encoder is used to see what the position is of the rotor at startup.
The incremental encoder, i.e. a Sin/Cos encoder, can be used to determine the exact
location.

HiPerFace (High Performance Interface), by SICK—Stegmann, is basically the same
as Sin/Cos (which was invented by the same manufacturer) however a differential RS485
line is added to this bus to send parameters (max motor current, motor voltage, etc.) to
and from the encoder.

B.2. PHYSICAL IMPLEMENTATION OF AN ENCODER 71

Figure B.1: 3 bit binary absolute encoder disk

Figure B.2: Track and optical sensors to create a quadrature encoded pattern.

B.2 Physical Implementation of an Encoder

Encoders are devices which should be as simple to build as possible, being a mechanical
device, the more parts are used in the design the more likely the encoder will fail early
in its lifetime.

Hence most of the time there is an optical connection between the moving and static
part of the encoder. Incremental encoders have a comb shaped structure attached to
the moving part (see figure: B.2) then a led/optical receiver on the fixed part is used
to distinguish between the black and white spots. Absolute encoders work in a similar
way. In stead of a comb shaped structure there is a more complex structure like a gray
skill encoded structure (see figure: B.1).

If a quadrature signal is needed it can be created by using two tracks which are 90
degrees out of phase and use two detectors to read both tracks (see figure: B.2). There is
a very simple optimisation step, the detectors could be placed (multiples of) 90 degrees
out of phase. This eliminates the need for a second track, hence saving on space and
parts. Besides optical reading it is also possible to create an encoder output signal using
a magnet and a hal sensor. This is most convenient if a sine/cosine output is required
(using one magnet and two 90 degrees out of phase placed hal sensors yields the correct
output).

72 APPENDIX B. ENCODERS

FPGAs and CPLDs an

Introduction C
This Appendix is written for those who are not familiar to FPGAs and CPLDs. The first
part of the chapter discusses a few commonly used terms and abbreviations. Following a
discussion of the physical buildup of the devices, emphasis will be put on the differences
between FPGAs and CPLDs. Since FPGAs and CPLDs need programming, we will
discuss a few programming languages and tools in the last chapter.

C.1 Terminology

FPGA: Field Programmable Gate Array, Contains RAM memory to store its firmware,
hence the firmware is lost after a power cycle.
LE: Logic Element, a programmable function on an FPGA, the number of LEs gives a
notion of the size of an FPGA.
CPLD: Complex Programmable Logic Device, Contains flash to store its firmware,
hence the firmware is not lost.
PLD: Both FPGA and CPLD are Programmable Logic Devices (PLD). In case we
need to refer to both, we will use PLD as a common name.
PLDs: are devices that contain logic functions (and, or, nor, etc.).
HDL: These logic functions can be programmed using an Hardware Description
Language (HDL), paragraph C.3 will discuss in to more detail what an HDL is.
Manufacturers: Xilinx and Altera are the biggest producers of ordinary PLDs, next
to these two there are a few who are designing PLDs for niche markets (like radiation
hardened devices for aerospace).
Firmware: is the thing that goes into the PLD, some manufacturers will call it a
bitstream (Xilinx).
Configuration device: is a device (microprocessor or dedicated chip) which runs an
algorithm to program an FPGA. A CPLD does not need this since it has internal flash
in which the program is stored.

C.2 Physical structure

C.2.1 FPGA

FPGA’s are build around Logic Blocks (LB) (see figure C.1), these LBs are programmed
using the firmware. This firmware configures each LB’s functionality. This RAMmemory
is loaded with the firmware on power on by the use of a configuration device or an external
processor. FPGA’s mostly contain several additional peripherals like: tranceivers (PCI,
Ethernet, etc.), Phase Locked Loops, DDR RAM interfaces, etc.

73

74 APPENDIX C. FPGAS AND CPLDS AN INTRODUCTION

Figure C.1: FPGA Logic Block build up.

C.2.2 CPLD

CPLD’s are build up in a similar way as FPGA’s however ones loaded with a configura-
tion (in the internal flash) the configuration will not be lost if the power is switched off.
Furthermore the logic density on a CPLD is lower then on an FPGA, which simplifies
the routing and fitting step in the CPLD design software.

C.3 Programming

As we know there are two main manufacturers Xilinx and Altera, both have free IDEs
(Integrated Development environments) which can both handle Verilog and VHDL, the
two main hardware description languages, as well as some more obscure or manufacturer
dependable languages.

The programming of the devices is being done through JTAG (Joint Test Action
Group) this is an industry standard programming and debug interface (basically a huge
shift register).

C.4 Usage

In general we can state that all tasks which can be performed by a sequential (mi-
cro)processor or microcontroller can also be performed using a PLD. However in the
previous paragraph we saw that everything in a PLD runs in parallel. Hence PLDs
are mainly used in cases where speed up is needed and the needed speedup can not be
performed in a sequential processor. Furthermore there are some processing tasks which
require shifting or counting at high speeds (for instance encoder pulse counting or filter-
ing), these tasks put a disproportional amount of work load on a sequential processor.
In those cases it is useful to use a PLD, since the internal structure (see paragraph: C.2)
alows to perform these counting and shifting tasks at no performance loss for the PLD
(keep in mind that the resource loss becomes high if counters and shifting operations are
working on wide bit values).

Now the reader would ask the natural question: when to use an FPGA and when
to use a CPLD? Here we try to give a simple step by step plan which can easily guide

C.4. USAGE 75

the user to make a choice between FPGA and CPLD. We should consider de following
aspects, these are the most important 3 aspects in choosing between FPGA and CPLD:

1. (Re)configurability

2. HDL design complexity

3. Financially

First we have to wonder if the firmware needs to be changed often. In case it is
needed to change the firmware often (when running adaptive algorithms on the PLD) it
is most favourable to have an FPGA, since the CPLD’s internal flash would suffer from
many rewrites.

When the firmware doesn’t necessarily needs to be changed often, the HDL complex-
ity comes in to play. For complex designs (basically everything beyond a set of counters
or simple filtering) an FPGA will be more beneficial since it will contain more Logic
Elements and will be more likely to fit a bigger design, however a configuration device is
needed in order to configure the FPGA. Per Logic Element an FPGA (including separate
configuration device) becomes cheaper at as little as approximately 2000 Logic Elements.

This discussion is a little over simplified, however it gives a starting point to choose
an FPGA or CPLD for those who are not familiar to PLDs to make a choice between
FPGA or CPLD, in fact the above reasoning is what the author of this thesis always
uses in order to start making a choice.

76 APPENDIX C. FPGAS AND CPLDS AN INTRODUCTION

Schematics D
This appendix contains all the schematics of the designed modules.

1. Page 1,2 Digital IO

2. Page 3,4 Encoder Counter

3. Page 5 Motor Controller

4. Page 6 SPI Bridge

Copyright of these schematics belongs to Philips.
Nothing of these schematics may be reproduced, unless approved by Philips.
All rights reserved.

77

 !"#" $##%#&'()' *%%+',-./010,2.13140,5-6789:/01;<,8=>0.3/00?@,?1;1AB3CD,?1;1AB3CDE0F.%G7.//A'%#H#I

JK?

#$$<L

JK?

#
$
M

#
$
M

#
$
M

?K2
?K2
?K2

N@2 &7#)OLK

P
&
Q
&

P
&
Q
&

5
+
?

J
5
+
+
K

!
$
$

!
$
$

JK?

P
&
Q
&

#$$<L

#
$
M

P
&
Q
&

JK?

@##

5
#

5

5
&

#

&

(

R

*

)

T

7Q

!

#$

5*
5)
5!

#

&

(

R

*

)

T

!

#$

##

#&

#(

#R

#*

#)

#T

7QR

#!

 $

U$
##

U#

U
#&

5+7+-
#R

CK-U
#*

CK-8
#(

J28$
 (

J28#
 *

J28
)

J28&
 !

J28R
#

J28(

J28*
&

J28)
R

J2U$
#)

J2U#
#!

J2U
#T

J2U&
 $

J2UR
 #

J2U(

J2U*
 &

J2U)
 R

Q??
(

Q77
*

C@(

7@V
!

H@7
)

7C
T

7D
#$

2
W
5

5
+
7
+
-

5
&

5
&
&

@#(

5
&
R

P(Q
P(Q

JK?
JK?

JK?

P&Q&P&Q&

7@V

7@V

7?C

7?C

7+5CD9CK-U

7+5CD9CK-U

7+5CD9CK-8

7+5CD9CK-8

7?D

7?D

7+5CD9@7

7+5CD9@7

7+5CD95+7+-7+5CD95+7+-

?#(

?#(

?#R

?#R

?#&

?#&

?#

?#

?##

?##

?#$

?#$

?T

?T

?!

?!

?)

?)

?*

?*

?(

?(

?R

?R

?&

?&

?

?

?#

?#

?$

?$

->=<%3/:0%1<%A./%=1;.A%4Y01A1Y<

#M

JK?

#M

JK?

#M

JK?

#M

JK?

#M

JK?

#M

JK?

#M

JK?

#M

JK?

S/</=%&E&QS/</=%&E&Q

S/</=%&E&Q S/</=%&E&Q

S/</=%&E&Q S/</=%&E&Q

S/</=%&E&Q S/</=%&E&Q

#$$<L #$$<L #$$<L

JK?

#$$<L #$$<L #$$<L

JK?

#$$>L #$$<L

Q
P

Q
"

#$$<L

#$$<L

JK?

#$$>L

#$$<L

JK?

5R

5#*

5#)

5#!

5#T

5 !

5 T

5&$

?(?#

? ?*

?& ?)

?R ?!

@& @R @(

@* @) @!

#

X2#

@#$ @T

#

&

R

(

*

)

!

T

#$

##

#&

7Q(

#

&

R

(

*

)

!

T

#$

##

#&

7Q*

@#

@#&

@#)

@#!

P(Q

P(Q

JK?

JK?

P&Q&

P&Q&

?#(

?#R

?#&

?#

?##

?#$

?T

?! D6-$
D6-#
D6-
D6-&
D6-R
D6-(
D6-*
D6-)

CK$

CK$

CK#
CK#

CK

CK

CK&

CK&

CKR

CKR

CK(

CK(

CK*

CK*

CK)

CK)

QP

QP

Q"

Q"

P

P

N@&&)R

N@&&)R

N@&&)R

N@&&)R

N@&&)R

#$$<L

#
$
M

#
$
M

JK?

P
&
Q
&

N@&&)R

N@&&)R

N@&&)R

N@&&)R

N@&&)R

#$$<L

Q
P

Q
"

Q
P

Q
"

#$$<L #$$<L
JK? JK?

P
&

"

D6-

#

C@#UN2#

P
#$

"
T
D6-

!

C@#UN2&

P
(

"
*
D6-

)

C@#UN2

P

"
#&

D6-
#R

C@#UN2R

P
R

"
#
#

C@#Q@@
@#

5
(

5
T

P
&

"

D6-

#

C@ UN2#

P
#$

"
T
D6-

!

C@ UN2&

P
(

"
*
D6-

)

C@ UN2

P

"
#&

D6-
#R

C@ UN2R

P
R

"
#
#

C@ Q@@
@

@#R @#*

?)

?*

?(

?R ?&

?

?#

?$
D6-$

D6-#

D6-

D6-& D6-R

D6-(D6-*

D6-)

Q5+L

Q5+L

Q5+L

Q5+L

Q5+L

Q5+L

Q5+L

Q5+L

Q5+L

 !"#" $##%#&'(!'(!%%)'*+,-./.*0,/1/2.*3+45678-./9:*6;<.,1-..=>*):?@8-;>@<:A-;*>0B=7>C4D+)3E.?,%F5,--A'%#G#H

ID=

ID=

J
&
K
&

J
&
K
&

#$$:L #$$:L

ID=

J
&
K
&

#$$:L #$$:L #$$:L #$$:L #$$:L #$$:L

ID=

J
&
K
&

#$$:L

ID=

J
&
K
&

#
$
M

#
$
M

J
&
K
&

ID=

I>BR$

I>BR#
#S

I>BR
T

I>BR&
TS

=)K7C)
S&

=)K7>B3D
SS

K>>UC
(V

K>>UC#
V

K>>UD+
#&

ID=UC
#$

ID=UD+
##

+=C
 (

+>R
 S

+N5

+=U
 &

ID=UD+
T(

ID=UC
&

ID=UC
ST

ID=UC
T$

ID=UC
OV

ID=UC
V&

K>>UD+
T&

K>>UC#
&#

K>>UC#
S(

K>>UC
!$

K>>UC
VS

6
(T

6
(O

6
(!

6
T#

6
TT

6
TO

6
T!

6
TV

6
O$

6
O#

6
O

6
O&

6
OS

6
O(

6
OT

6
OO

6
O!

6
!#

6
!

6
!&

6
!S

6
!(

6
!T

6
!O

6
!!

6
!V

6
V$

6
V#

6
V

6
V(

6
VT

6
VO

6
V!

6
VV

6
#$$

6
#

6
#

6
#

&

6
#

S

6
#

(

6
#

T

6
#

O

6
#

!

6
#

#
(

6
#

#
T

6
#

#
O

6
#

#
!

6
#

#
V

6
#

$

6
#

#

6
#

T

6
#

O

6
#

!

6
#

V

6
#

&
$

6
#

&
&

6
#

&
S

6
#

&
(

6
#

&
T

6
#

&
O

6
#

&
!

6
#

&
V

6
#

S
$

6
#

S
#

6
#

S

6
#

S
O

6
#

S
!

6
#

S
V

6
#

(
$

6
#

(
#

6
#

(

6
#

(
&

6
#

(
S

6
#

(
(

> >& >S >(>T >O >! >V

+N5

+>R

+=C

+=U

K==

ID=

C4+
&

K==
S

K55

+3U
#

>#S

3
&
(

3
&
T

ID=

J&K&

+=C

+=C

+>R

+>R

+N5

+N5

+=U

+=U

I>BR$

L0IW7C)
L0IW7>B3D

)D#
>B3X
>B3Y
)D
C)D
XDY
5)B
5)B#
=O
=T
=(
=S
=&
=
=#
=$

>ZWDD)BWX757&K&

>ZWDD)B6X757&K&

>ZWDD)BUX757&K&

>
Z
W
D
D
)
B
W
Y
7
5
7
&
K
&

>
Z
W
D
D
)
B
6
Y
7
5
7
&
K
&

>
Z
W
D
D
)
B
UY
7
5
7
&
K
&

I>BR#
I>BR
I>BR&

+0#

+0

+
0
&

+
0
S

J
(
K

ID=

#$$:L

#
$
M

(M#

(M#

#
$
M

(M#

#
$
M

ID=

ID=

ID=

#$$:L

ID=

J
(
K

ID=

#
$
M

#
$
M

#
$
M

#
$
M

#
$
M

#
$
M

ID=

J
(
K

D@/.-5<;2;-.

J
(
K

6
#

W

X
&

6
O

W
T

X
(

6
V

W
#$

X
##

6
#(

W
#S

X
#&

)D#
S

)D&S

K>>
#T

ID=
!

>#

3
S

3(

3V

3
#
$

3##

3
#

#

&

(

S

T

O

V

5K#

!

#$

>#$

3

(

3

T

3

O

3

!

3

V

3
&
$

B#

ID=

>ZWDD)BUY

>ZWDD)BUY

>ZWDD)B6Y

>ZWDD)B6Y

>ZWDD)BWY

>ZWDD)BWY

G>ZWDD)BUY

G>ZWDD)BUY

G>ZWDD)B6Y

G>ZWDD)B6Y

G>ZWDD)BWY

G>ZWDD)BWY
>ZWDD)BWY757&K&

>ZWDD)B6Y757&K&

>ZWDD)BUY757&K&

>ZWDD)BWY75

>ZWDD)B6Y75

>ZWDD)BUY75

ID=

#$$:L

ID=

#
$
M

#
$
M

#
$
M

=D0
=D0
=D0

N>0 &5#OPLD

J
&
K
&

J
&
K
& $

!
$
$

!
$
$

ID=

J
&
K
&

#$$:L

#
$
M

J
&
K
&

ID=

0
Q
3

3
)
5
)
+

>##

3
#

3

3
&

#

&

(

S

T

O

V

5K

!

#$

3T
3O
3!

#

&

(

S

T

O

V

!

#$

##

#&

#(

#S

#T

#O

#V

5KS

#!

 $

W$
##

W#

W
#&

3)5)+
#S

UD+W
#T

UD+6
#(

I06$
 (

I06#
 T

I06
 O

I06&
 !

I06S
#

I06(

I06T
&

I06O
S

I0W$
#O

I0W#
#!

I0W
#V

I0W&
 $

I0WS
 #

I0W(

I0WT
 &

I0WO
 S

K==
(

K55
T

U>(

5>R
!

G>5
O

5U
V

5C
#$

3&#

3
&

3
&
&

>#(

3
&
S

+0# +0 +0& +0S

0
Q
3

3
)
5
)
+

J(K
J(K

ID=
ID=

ID=

J&K&J&K&

5>R

5>R

5=U

5=U

5)3UC7UD+W

5)3UC7UD+W

5)3UC7UD+6

5)3UC7UD+6

5=C

5=C

5)3UC7>5

5
)
3
UC
7
>
5

5)3UC73)5)+5)3UC73)5)+

)D#

)D#

>B3X

>B3X

>B3Y

>B3Y

)D

)D

C)D

C)D

XDY

XDY

5)B

5)B

5)B#

5)B#

=O

=O

=T

=T

=(

=(

=S

=S

=&

=&

=

=

=#

=#

=$

=$

+0# +0 +0& +0S

#
$
M

(M#

(M#

#
$
M

(M#

#
$
M

ID=

ID=

ID=

#$$:L

ID=

J
(
K

ID=

#$$:L

J
(
K

ID=

#
$
M

#
$
M

#
$
M

#
$
M

#
$
M

#
$
M

ID=

J
(
K

D@/.-5<;2;-.

J
(
K

6
#

W

X
&

6
O

W
T

X
(

6
V

W
#$

X
##

6
#(

W
#S

X
#&

)D#
S

)D&S

K>>
#T

ID=
!

3
#
&

3#S

3#(

3
#
T

3#O

3
#
!

#

&

(

S

T

O

V

5K&

!

#$

>#

>#&

3
#
V

3

$

3

#

3

3

&

3

S

B

ID=

>ZWDD)BUX

>ZWDD)BUX

G>ZWDD)BUX

G>ZWDD)BUX

>ZWDD)BWX

>ZWDD)BWX

G>ZWDD)BWX

G>ZWDD)BWX

>ZWDD)B6X

>ZWDD)B6X

G>ZWDD)B6X

G>ZWDD)B6X

>ZWDD)BWX757&K&

>ZWDD)B6X757&K&

>ZWDD)BUX757&K&

>ZWDD)BWX75

>ZWDD)B6X75

>ZWDD)BUX75

 !"#" $##%#&'$$' !%%(')*+,-.-)/+.0.1-)2*34567,-.89)5:;-+0,--<=)>9?,8:@?,7A=B0,8:C)AC?C:=C9?:C0B0,8:CD-E+%F4+,,?'%#G#H

A=/ I4#JKLM

#$$9L

NM<

NM<

NM<

O
P
Q

$
D#
I
R

NM<

#$$9L

NM<

 $9L

NM<

Q
<
<

NM<

Q
<
<

P
#
S

 $9L $9L

$
9
L

 $9L

NM<

#$$9L

4
*
/
4
I
T
R
$
4
4
A
5

4
*
/
4
I
T
R
$
4
4
A
5

4
*
/
4
I
T
R
$
4
4
A
5

4
*
/
4
I
T
R
$
4
4
A
5

4
*
/
4
I
T
R
$
4
4
A
5

4
*
/
4
I
T
R
$
4
4
A
5

O
P
Q

NM<

O
P
Q

#$$9L#;L

#
$
U

#
$
U

#
$
U

&J;L

NM<

<M/
<M/
<M/

 " I" $I#

NM<

Q
<
<

AV3M*"/B<"2V3M<ID$

AV3M*"/B<"2V3M<ID$

AV3M*"/B<"2V3M<ID$

AV3M*"/B<"2V3M<ID$

NM<

O
I
Q
I

O
P
Q

#
$
U

#
$
U

O
P
Q

!
$
R

NM<

!
$
R

NM<

O
P
Q

#
$
U

O
P
Q

$

#$$9L

#
$
U

NM<

O
I
Q
I

O
I
Q
I

O
I
Q
I

W="
!

W=O
J

W5"
R

W5O
P

WB"
&

WBO
I

52(BS
#&

<>2
I!

(MB5T(
IX

(Y*AV<(
&$

5TBMS
&#

/L<#
&I

/L<
&

Q
2
(
N

I
J

V
4
=

I
R

4T((/
I

=
/
#

I
$

=
/

I
#

Q
=
/

X

V3*B
#J

V3*5
 #

V3*=
 !

N
M
<

N
M
<

N
M
<

N
M
<

N
M
<

N
M
<

N
M
<

N
M
<

N
M
<

N
M
<

N
M
<

4(M4(
#P

42
#R

W5>B4
#!

Q
5
5
#

#
X

Q
5
5

R

T
4
4

P

T
4
4
#

$

Q
<
<

X

*B=W
 J

2(L
#$

N
M
<

B$
##

B#

B
#I

2(4(*
#&

>M*B
#R

>M*5
#P

N/5$
 P

N/5#
 R

N/5
 J

N/5I
 !

N/5&
#

N/5P

N/5R
I

N/5J
&

N/B$
#J

N/B#
#!

N/B
#X

N/BI
 $

N/B&
 #

N/BP

N/BR
 I

N/BJ
 &

Q<<
P

Q44
R

>=

4=S
!

G=4
J

4>
X

4V
#$

GT<B=
P

Q2(LB
R

B
Q
4
4

J

QV3*B
!

4<>
&

4=S
I

G=4

Q
<
<

#

=#

2
P

=

=I

2
&

=& =P

=
R=J

=!

<
#

<

<
I

<
&

<
P

<
R

>M
#

V3*

N
M
<

I

=# =#I

2
#

2

2
I

=#&

#

I

P

&

R

J

X

4Q#

!

#$

2R
2J
2!

#

I

P

&

R

J

X

!

#$

##

#I

#P

#&

#R

#J

#X

4Q

#!

 $

Y#"#

Y#"

W#

W

WI

W&

*
/
#

2
X

2
#
$

A
=
6
(
M
B
5
T
(

/
Z
2

2
#
#

2
#

#

I

&

P

R

J

!

4QI

2
#
I

2#&

*/

=#P

2
I
&

NM<

NM<
NM<

NM<

4=S

4=S

4=S

4<>

4<>

4<>

A=6(MB5T(

A=6(MB5T(

A=6(MB5T(

A=6<>2

A=6<>2

A=6<>2

<B=6GT<B=

<B=6GT<B=

<B=6GT<B=

A=652(BS

A=652(BS

A=652(BS

A=642

A=642

A=642

A=64T((/

A=64T((/

A=64T((/

A=6(Y*AV<(

A=6(Y*AV<(

A=6(Y*AV<(

A=6/L<#

A=6/L<#

A=6/L<#

A=6/L<

A=6/L<

A=6/L<

A=65TBMS

A=65TBMS

A=65TBMS

OPQ

OPQ

OPQ

A=62(L

A=62(L

A=6W="

A=6W="

A=6W5"

A=6W5"

A=6WB"

A=6WB"

W5>B4

A=6V3*B
A=6V3*5

*B=W

/B2>V$

/B2>V$

4(2>V6>M*B

4(2>V6>M*B

4(2>V6>M*5

4(2>V6>M*5

4<V

4<V

4(2>V6=4

4(2>V6=4

WBTTO

4(2>V62(4(*

4(2>V62(4(*

&D$XRQ

A=6V3*=

OIQI

OIQI

<B=6G=4

<B=6G=4

<B=6G=4

/B2>V#

/B2>V#

/B2>V

/B2>V

/B2>VI

/B2>VI

/B2>V&

/B2>V&

O

 !"#" $##%#&'$$'()%%*'+,-./0/+1-0203/+4,56789./0:;+7<=/-2.//>?+61@874@>A*+61@874@>A*B/C-%D6-..E'%#F#G

AH>

AH>

I
J
K
J

I
J
K
J

#$$;L #$$;L

AH>

I
J
K
J

#$$;L #$$;L #$$;L #$$;L #$$;L #$$;L

AH>

I
J
K
J

#$$;L

AH>

I
J
K
J

#
$
M

#
$
M

I
J
K
J

AH>

A?SV$

A?SV#
#&

A?SV
W

A?SVJ
W&

>*K8T*
&J

>*K8?S4H
&&

K??@T
()

K??@T#
)

K??@H,
#J

AH>@T
#$

AH>@H,
##

,>T
 (

,?V
 &

,N6

,>@
 J

AH>@H,
W(

AH>@T
J

AH>@T
&W

AH>@T
W$

AH>@T
X)

AH>@T
)J

K??@H,
WJ

K??@T#
J#

K??@T#
&(

K??@T
!$

K??@T
)&

7

(
W

7

(
X

7

(
!

7

W
#

7

W
W

7

W
X

7

W
!

7

W
)

7

X
$

7

X
#

7

X

7

X
J

7

X
&

7

X
(

7

X
W

7

X
X

7

X
!

7

!
#

7

!

7

!
J

7

!
&

7

!
(

7

!
W

7

!
X

7

!
!

7

!
)

7

)
$

7

)
#

7

)

7

)
(

7

)
W

7

)
X

7

)
!

7

)
)

7

#
$
$

7

#

7#

7#
J

7#
&

7#
(

7#
W

7#
X

7#
!

7#
#(

7#
#W

7#
#X

7#
#!

7#
#)

7#
 $

7#
 #

7#
 W

7#
 X

7#
 !

7#
)

7#
J$

7#
JJ

7#
J&

7#
J(

7#
JW

7#
JX

7#
J!

7#
J)

7#
&$

7#
&#

7#
&

7#
&X

7#
&!

7#
&)

7#
($

7#
(#

7#
(

7#
(J

7#
(&

7#
((

? ?J ?& ?(?W ?X ?! ?)

T5,
J

K>>
&

K66

,4@
#

?#&

4
J
(

4
J
W

#

J

(

&

W

X

)

6KX

!

#$

AH>

AH>

IJKJ

,>T

,>T

,?V

,?V

,?V

,N6

,N6

,N6

,>@

,>@

A?SV$

L1AO8T*
L1AO8?S4H4,6

,Y>
4Y>
S>X S>W

S>(
S>&
S>J
S>
S>#
S>$
S*4
S4U
S46
S?6

A?SV#
A?SV
A?SVJ

6
*
4
@T
8
?
6
8
J

6
*
4
@T
8
?
6
8
&

6
?
V
8
J

6
>
T
8
J

6
*
4
@T
8
@H
,
O
8
J

6
>
@8
J

6
*
4
@T
8
@H
,
7
8
J

6
?
V
8
&

6
>
T
8
&

6
*
4
@T
8
@H
,
O
8
&

6
*
4
@T
8
@H
,
7
8
&

?,6

6?S
6>O

4*6*,
Z,OA86*S

4*6*,8

,46,

6*4@T8?68
6?V8
6>T8

6*4@T8@H,O8

6
*
4
@T
8
@H
,
7
8

6*4@T8?68#
6?V8#

6>T8#
6*4@T8@H,O8#

6*4@T8@H,78#
6>@8#

6>@8

6
>
@8
&

A1S*>
A1S*>#

A1S*>J

4
*
>

A
4
*
*
H

#
(
$

#
(
$

AH>

I
J
K
J

NO$J"

AH>

I
J
K
J
8
.
P
E

I
(
K
8
.
P
E

#$$=L #$$=L#$$;L #$$;L

AH> AH>

I
(
K

I
J
K
J

I
(
K
8
.
P
E

I
(
K

I
(
K
8
=
/
Q

I
J
K
J
8
.
P
E

I
J
K
J

I
J
K
J
8
=
/
Q

R
*
S
S
T
U

#
(
$

R
*
S
S
T
U

#
(
$

R
*
S
S
T
U

#
(
$

(M

(M

(M

(M

(M

(M

(M

(M

I
J
K
J

#$$;L #$$;L #$$;L #$$;L

I
J
K
J

AH>

#$$;L #$$;L #$$;L #$$;L

AH>

I
(
K

#

J

(

&

W

X

)

6K

!

#$

#

J

(

&

W

X

)

!

#$

##

#J

#(

#&

#W

#X

#)

6K(

#!

 $

1
U
4

4
*
6
*
,

4
J

4
J
J

#

J

(

&

W

X

)

6K#

!

#$

#

J

(

&

W

X

)

6KJ

!

#$

#

J

(

&

W

X

)

6K&

!

#$

#

J

(

&

W

6KW

#

J

6K!

?# ?#$?## ?#

#

J

6K)

#

J

6K#$

A
1
#

4
#

A
1

4

A
1
J

4
J

4&

4(

4W

4X

4!

4)

4#$

4##

?#J ?#(?#W ?#X ?#! ?#) ? $? #

AH>
AH>

AH>

AH>
AH>

AH>
AH>

AH>
AH>

AH>
AH>

IJKJ

IJKJ

IJKJ

IJKJ

4,6
,Y>

4Y> S>X
S>W S>(
S>& S>J
S> S>#
S>$ S*4
S4U S46
S?6

I(K

I(K

I(K

I(K

6*4@T8?68J

6*4@T8?68&

6?V8J
6>T8J

6*4@T8@H,O8J

6*4@T8@H,O8J

6>@8J
6*4@T8@H,78J

6*4@T8@H,78J

6?V8&
6>T8&

6*4@T8@H,O8&

6*4@T8@H,O8&

6*4@T8@H,78&

6*4@T8@H,78&

?,6

6?S
6>O
4*6*,8

6*4@T8?68
6?V8
6>T8

6*4@T8@H,O8

6*4@T8@H,O8

6*4@T8@H,78

6*4@T8@H,78

6*4@T8?68#
6?V8#
6>T8#

6*4@T8@H,O8#

6*4@T8@H,O8#

6*4@T8@H,78#

6*4@T8@H,78#

6>@8#

6>@8

6>@8&

I(K8567

I(K8567 IJKJ8567

I I

,-0/%/-[=29%Q.%!$W%T-\ 4J FJJF#F FJ

78 APPENDIX D. SCHEMATICS

Bibliography

[1] NICEe 4000, http://www.boschrexroth.com.

[2] Altera, Avalon Interface Specifications, (2008).

[3] Arcus, http://www.arcus-technology.com/.

[4] D. Montesinos-Miracle S. Galceran-Arellano O.Gomis-Bellmunt A.Sudria-Andreu,
A new low-cost motion control educational equipment, 2007 European Conference
on Power Electronics and Applications, Sept 2007, pp. 1–6.

[5] R.Hofmann B.Drerup, Next Generation Coreconnect Processor, 15th Annual IEEE
Intl ASIC/SOC Conf., September 2002, pp. 221–225.

[6] D. Bertozzi L. Benini, Xpipes: A Network-on-Chip Architecture for Gigascale
Systems-on-Chip, IEEE circuits and systems magazine, May 2004, pp. 18–31.

[7] Elmo Motion Control, http://www.elmomc.com/.

[8] , http://www.elmomc.com/products/elmo-motion-control-simplIQ-tech.htm.

[9] Galil Motion Control, http://www.galilmc.com/.

[10] dSpace, http://www.dspace.com.

[11] E-blocks, http://www.matrixmultimedia.com.

[12] Eriks, http://mechatronica.eu.

[13] Wiki Pedia / Hash Functions, http://en.wikipedia.org/wiki/Hash function, (2009).

[14] D. Carrica M.A. Funes S.A. Gonzalez, Novel Stepper Motor Controller Based on
FPGA Hardware Implementation, Transactions on Mechatronics Vol 8 Number 1,
March 2003, pp. 120–124.

[15] Y. Kung G.Shu, Development of a FPGA-based Motion Control IC for Robot Arm,
ICIT 2005. IEEE International Conference on Industrial Technology, December
2005, pp. 1397–1402.

[16] National Instruments, Creating Custom Motion Control and Drive Electronics with
an FPGA-based COTS System, (2006).

[17] D. Kim, An implementation of fuzzy logic controller on the reconfigurable FPGA
system, IEEE Trans. Ind. Electron, June 2000, pp. 703–715.

[18] Thor Labs, http://www.thorlabs.com/.

[19] A. Ehliar D. Liu, An FPGA Based Open Source Network-on-Chip Architecture,
International Conference on Field Programmable Logic and Applications, Augustus
2007, pp. 800–803.

79

80 BIBLIOGRAPHY

[20] C. Lin C. Hung C. Liu, Position Sensorless Control for Four-Switch Three-Phase
Brushless DC Motor Drives, Proceeding of the 2006 IEEE Industry Applications
Conference Forty-First IAS Annual Meeting (IAS’06), October 2006, pp. 2049–2053.

[21] P. Martin, Design of a Virtual Component Neutral Network-on-Chip Transaction
Layer, Proceedings of the conference on Design, Automation and Test in Europe -
Volume 1, March 2005, pp. 336–337.

[22] X. Shao D. Sun J.K. Mills, A New Motion Control Hardware Architecture with
FPGA-Based IC Design for Robotic Manipulators, Proceedings of the 2006 IEEE
International Conference on Robotics and Automation, May 2006, pp. 3520–3525.

[23] A.Kapoor N.Simaan P.Kazanzides, A System for Speed and Torque Control of
DC Motors with Application to Small Snake Robots, IEEE/APS Mechatronics and
Robotics, 2004.

[24] K. Goossens J.Dielissen Andrei Radulescu, Aethereal Network on Chip: Concepts,
Architectures,and Implementations, IEEE Design and Test of Computers, Septem-
ber 2005, pp. 414–421.

[25] E. Schemm, SERCOS to link with Ethernet for its third generation, (2004).

[26] Silicore, WISHBONE System-on-Chip (SoC) Interconnection Architecture for
Portable IP Cores, (2002).

[27] Circuit Cellar/ simple motion control system,
http://www.circuitcellar.com/flash2002/First/abstractM250.htm, (2002).

[28] Philips Applied Technologies, http://apptech.philips.com, (2007-2008).

[29] Lab View, http://www.ni.com/labview/.

[30] Y.F. Chan M. Moallem W. Wang, Efficient Implementation of PID Control Algo-
rithm using FPGA Technology, 43rd IEEE Conference on Decision and Control,
December 2004, pp. 4885–4890.

[31] FB1122 FPGA with altera cyclone FPGA, EtherCAT piggyback controller boards,
(2008).

[32] T. Ya Z. Runjing H. Xiaoxia, Application of FPGA in Direct Current Motor Servo
System, Proceedings of the 27th Chinese Control Conference, July 2008, pp. 261–
265.

[33] G. Young, Motion Control and Mixed-Signal FPGAs, (2007).

