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SUMMARY

This thesis explores how behavior-changing feedback devices can reduce energy
demand of heating residential buildings.

Greenhouse gas emissions of residential buildings need to be reduced as soon
as possible, which can be achieved by changing heating behavior. Because heating
residential building consumes a large share of energy in the EU, their energy-efficiency
needs to be increased. Due to the long service time of buildings, the pressing
reduction of emissions also needs to include existing buildings. Large-scale adoption
of conservation behavior is a promising approach towards this aim. Behavior change
could save about 20% percent of domestically consumed energy. Additionally, change in
behavior is widely applicable in the built environment, resource- and cost-efficient, and
of low capital intensity.

Behavior-changing feedback devices are a useful approach to change
energy-consumption behavior. They monitor and present (e.g. on in-home displays)
how residents are consuming energy. Such feedback showed to nudge householders to
save an average of 7%–15% of energy.

The future impact of these devices on a societal scale is of great interest. Commonly,
feedback devices are assessed by observing their impact within individual households.
Whereas this direct impact is important, the overall impact of devices at wider adoption
is highly relevant, too. It is worthwhile to know how quickly different social groups
would adopt feedback devices, and how this could support societal trends towards
conservation behavior. Because this impact has not been realized yet, this thesis assesses
this potential looking forward.

This thesis assumes a perspective of innovation diffusion. Due to their novelty,
behavior-changing feedback devices can be framed as innovations. It is of interest to
analyze the spreading of these devices from their first adopters to a potential larger user
base. In addition to this technology diffusion, the conservation behavior incentivized by
feedback devices can also diffuse. According to Social Learning Theory, social contacts
often imitate each others’ behavior, which makes behavior spread. This behavior
diffusion has repeatedly been observed empirically. For the case of behavior-changing
feedback devices, these two diffusions of technology and behavior are interlinked via
the behavior change that feedback devices exceed on their users. As feedback devices
diffuse, behavior change of their users may thus positively affect the diffusion of
conservation behavior.

Agent-based modeling is suited for simulating this co-diffusion of technology and
behavior. Simulation can directly incorporate existing knowledge of the impact of
feedback devices in field tests. This knowledge on this impact can then be scaled up by
simulation. Doing so can further make use of theoretical knowledge on the mechanisms
of the diffusions of household devices and conservation behavior. However, the
future diffusion of feedback devices is not a given, but subject to inherent uncertainty.
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2 SUMMARY

Therefore, simulation shows the consequences of what happens if a feedback device will
diffuse successfully. The potential impact of this technology can thus be analyzed in
‘what-if’ scenarios. Agent-based modeling is particularly useful for all these tasks. It has
the combined advantages of an actor-based perspective, its capability to infer emergent
system behavior from these micro-level definitions, and disaggregated modeling of
consumer decisions.

Unfortunately, this disaggregation also makes agent-based modeling somewhat
cumbersome, which is what that thesis aims to improve. Despite its usefulness,
agent-based modeling is presently relatively demanding in labor and programming
skills. To reduce these costs, this thesis applies agent-based modeling with the aim to
also make it quicker and more accessible. This is done by automation, which makes
modeling more systematic than what is common practice for innovation diffusion
models.

Motivated by this, this thesis addresses the following central research question:

How can the impact of behavior-changing feedback devices on energy-consumption
behavior be systematically simulated?

First, a framework of co-diffusion of technology and behavior was developed and
implemented in an abstract agent-based model. This served to explore via which
mechanisms feedback devices create an impact in a large-scale social system. To
realize the applied model, two previously published models on behavior diffusion and
technology diffusion were linked by the effect of an abstract feedback device. This
assumed the diffusion of a feedback device that nudges its adopters to lower their
heating temperature. Additionally, this created conservation behavior then diffuses via
behavior diffusion.

Simulation revealed two mechanisms via which behavior-changing feedback
devices create an impact. First, behavior diffusion distributed the behavior change
incentivized by feedback devices from adopters to non-adopters of devices. Second, this
similarity increased the speed of overall behavior change. Due to these mechanisms,
feedback effect and behavior diffusion interacted positively. The indicated relevance of
the combined co-diffusion of technology and behavior confirmed the value of the used
framework.

Next, analysis was made empirical. This made use of rich empirical data in the case
city Bottrop (Germany) and of a case technology that nudges its users to ventilate
their homes energy efficiently. The feedback effect component of the co-diffusion
framework was modeled based on data from field tests of this feedback device. Likewise,
also modeling the diffusion of energy-efficient ventilation behavior was calibrated with
empirical data.

This empirically-grounded model allowed measuring the relative importance of
the simulated processes. Results suggested that up to 46% of the overall impact from
the case technology was caused by behavior diffusion. This confirmed the previously
indicated relevance of including behavior diffusion in assessing the impact of feedback
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devices.

Based on the previously developed empirically-based model, impacts of policies were
analyzed. This includes measures of supporting device adoption that the literature
suggested to be successful. Selected policies included raising awareness, giving away
free devices, and lending them out. Each of these marketing strategies was simulated at
the same strength (i.e. number of used devices) and scale (i.e. same spatial area and time
horizon). These policies were tested by simulating scenarios of their implementation.
Their impact was then compared regarding effectiveness and cost-efficiency.

Results showed that lending out devices was particularly effective, whereas creating
sole awareness of them was most cost-efficient. Overall, the impact of feedback devices
was sensitive to policy choices. This highlighted the need to select the right diffusion
strategy when aiming to maximize the impact of feedback devices.

Finally, the methods that were developed during this thesis were standardized and
unified in an automation approach. This led to a software prototype that standardizes
these methods via automation. This increased automation in the generation of
agent-based innovation diffusion models and the assessment of policies. Candidates
of innovation diffusion models were thereby varied in structure and parameters to test
their plausibility for a given real-world case.

Based on (potentially multiple) plausible models, diffusion policies were assessed
for their potential to support device diffusion. Thus, standardizing the modeling
process sped it up and made the use of empirical data more systematic. Further, this
approach was capable of improving existing models, as well as generating models that
were validated by design. Combined, this showed the developed automation approach
successfully contributes to the method of innovation diffusion modeling.

It can be concluded that impact of feedback devices can successfully be assessed by
systematically simulating the co-diffusion of these devices and the behavioral change
they create. This relied on four pillars. First, assessment of impact based on developing
and simulating the framework of co-diffusion of technology and behavior. This
generalized the understanding of the potential impact of feedback devices. Second,
the initially abstract analysis was refined by empirical data. Third, this developed
empirical-based model allowed to assess the potential for policies to influence the
impact of feedback devices. Fourth, automation made assessment of this impact more
performant and accessible. Overall, this systematization improves the way agent-based
models of innovation diffusion are developed and applied.





SAMENVATTING

Dit proefschrift beschrijft hoe apparaten die feedback geven om gedrag te veranderen de
energievraag ter verwarming van huizen kunnen verlagen.

Broeikasgasemissies van woonhuizen moeten zo snel mogelijk worden gereduceerd.
Deze reductie kan worden bereikt door het gedrag omtrent het verwarmen te
veranderen. Omdat het verwarmen van woonhuizen een groot aandeel heeft in het
energieverbruik in de EU moet de energie-efficiëntie worden verhoogd. Vanwege de
lange levensduur van gebouwen vereist de urgente behoefte aan emissiereductie ook het
beschouwen van bestaande gebouwen. Het op grote schaal adopteren van besparend
gedrag is een kansrijke aanpak om dit doel te bereiken. Gedragsverandering kan
ongeveer 20% van de door huishoudens geconsumeerde energie besparen. Daarnaast
is gedragsverandering breed toepasbaar in de gebouwde omgeving, is het grondstoffen-
en kostenefficiënt en het brengt weinig kapitaalkosten met zich mee.

Het gebruik van apparaten die feedback geven om gedrag te veranderen vormt
een bruikbare aanpak voor het veranderen van gedrag rondom energieconsumptie.
Ze monitoren en brengen de mate van energieconsumptie in beeld (bijvoorbeeld op
schermen in huizen). Het is bekend dat feedback op die manier bewoners aanzet tot
energiebesparing van 7%–15%.

De toekomstige impact op maatschappelijke schaal is interessant. Het is gebruikelijk
om apparaten die feedback geven om gedrag te veranderen te beoordelen door naar
het effect te kijken op individuele huishoudens. Ondanks dat deze directe impact
belangrijk is, moet voor het bepalen van de totale impact ook worden gekeken naar
de impact van deze apparaten bij verdergaande adoptie. Het is nuttig om te weten
hoe snel verschillende sociale groepen deze apparaten willen adopteren en hoe dit de
maatschappelijke trends in grootschalige energiebesparing kan ondersteunen. In dit
proefschrift wordt dat potentieel verkend, omdat deze impact tot op heden nog niet is
gerealiseerd.

Dit proefschrift gaat uit van een innovatie-diffusieperspectief. Omdat apparaten
die feedback geven om gedrag te veranderen nieuw zijn, worden ze gezien als een
innovatie. Het is interessant om de verspreiding van deze apparaten te analyseren,
van de eerste adopters naar een mogelijk grotere gebruikersgroep. Naast de diffusie
van de technologie, kan ook het besparende gedrag, dat wordt gestimuleerd als
gevolg hiervan, verspreiden. Volgens de sociale leertheorie komt het regelmatig
voor dat sociale contacten elkaars gedrag imiteren. Dit maakt het mogelijk dat
bepaald gedrag zelf verspreidt. Deze zogenaamde diffusie van gedrag is herhaaldelijk
empirisch geobserveerd. Voor apparaten die feedback geven om gedrag te veranderen
worden de diffusieprocessen van technologie en gedrag gekoppeld door middel van de
gedragsverandering die de apparaten aanmoedigen. Daarnaast kan, bij de verspreiding
van apparaten die feedback geven om gedrag te veranderen, de gedragsverandering van
hun gebruikers een positief effect hebben op de diffusie van energiebesparend gedrag.

5



6 SAMENVATTING

Agentgebaseerd modelleren is geschikt voor de simulatie van deze processen:
de co-diffusie van technologie en gedrag. Simulatie kan daarbij bestaande kennis
uit praktijktests integreren met die over impact van apparaten die feedback geven
om gedrag te veranderen. Deze kennis over hun impact kan in simulaties worden
opgeschaald. Tevens kan gebruik gemaakt worden van de theoretische kennis over
de mechanismes die een rol spelen bij de diffusie van huishoudelijke apparaten en
gedrag rondom besparing. Desalniettemin spelen inherente onzekerheden een rol
in de toekomstige diffusie van deze apparaten. Dat betekent dat simulatie in staat
is om de gevolgen te laten zien van apparaten die feedback geven om gedrag te
veranderen onder de aanname van een succesvolle diffusie. De potentiele impact van
deze technologie wordt dan bestudeerd onder ‘wat als’ scenario’s. Agentgebaseerd
modelleren is bij uitstek geschikt voor deze taken, omdat het de voordelen van een
actorperspectief combineert met het vermogen systeemgedrag af te leiden uit het
modelleren van individuele consumentenbeslissingen die worden gedefinieerd op
microschaal. Bij agentgebaseerd modelleren kan het modelleren van individuele
beslissingen omslachtig zijn. Dit proefschrift heeft als doel daar verbetering in aan
te brengen. Agentgebaseerd modelleren is, ondanks haar nut, tot nu toe relatief
bewerkelijk en vereist veel programmeervaardigheden. Om de hieruit volgende kosten
te verlagen, wordt in dit proefschrift agentgebaseerd modelleren toegepast met als doel
het sneller en meer toegankelijk te maken. Daartoe wordt automatisering toegepast: dit
maakt het modelleren voor innovatie-diffusiemodellen meer systematisch dan tot op
heden gebruikelijk is.

Dit was de aanleiding voor de volgende hoofdonderzoeksvraag:

Hoe kan de impact van apparaten die feedback geven om gedrag omtrent
energieconsumptie te veranderen systematisch worden gesimuleerd?

Allereerst is een raamwerk van de co-diffusie van technologie en gedrag ontwikkeld.
Dat raamwerk werd geïmplementeerd in een theoretisch agentgebaseerd model. Dit
had als doel om de mechanismes te verkennen waarmee feedbackapparaten impact
bewerkstellingen in een grootschalig sociaal systeem. Om het model te ontwikkelen zijn
twee eerder gepubliceerde modellen over diffusie van gedrag en technologie aan elkaar
gekoppeld; het effect van een theoretisch feedbackapparaat werd daarin gemodelleerd.
De diffusie van een feedbackapparaat werd aangenomen die gebruikers aanzet tot
het verlagen van de temperatuur van hun verwarming. Dit besparende gedrag kon
verspreiden via het proces van gedragsdiffusie.

Simulaties hebben twee mechanismes in beeld gebracht waarmee deze
feedbackapparaten invloed uitoefenen. Het eerste mechanisme brengt de
gedragsdiffusie van feedbackapparaten van adopters naar niet-adopters. Het tweede
mechanisme was een positief effect op de snelheid van de gedragsdiffusie als geheel.
Het gevolg van deze mechanismes is een positieve interactie van het effect van feedback
en gedragsdiffusie. De bepaalde relevantie van het gecombineerd bestuderen van de
diffusie van technologie en gedrag bevestigt de waarde van het ontwikkelde raamwerk.
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De tweede stap was een empirische analyse met rijke data afkomstig uit de stad
Bottrop (Duitsland) en een technologiecasus die gebruikers aanmoedigt tot het
energie-efficiënt ventileren van huizen. Het feedbackeffect uit het co-diffusieraamwerk
werd gemodelleerd op basis van data van praktijktests van dit feedbackapparaat. Ook
de diffusie van energie-efficiënt ventilatiegedrag werd gekalibreerd met empirische
gegevens.

Het empirisch gefundeerde model maakt het mogelijk de relatieve bijdrage van
de gesimuleerde processen te bepalen. De resultaten laten zien dat maximaal 46%
van de totale impact van de technologie werd veroorzaakt door gedragsdiffusie. Dit
resultaat bevestigt het eerder vastgestelde belang om gedragsdiffusie mee te nemen bij
het beoordelen van feedbackapparaten.

Op basis van eerder ontwikkelde modellen, gefundeerd met empirische gegevens, zijn
beleidseffecten bestudeerd. Maatregelen die, zoals uit de literatuur blijkt, de adoptie
van apparaten succesvol ondersteunen, zijn opgenomen in de analyse. De set van
bestudeerde beleidsinstrumenten zijn het verhogen van de bekendheid, het gratis
verschaffen en het uitlenen van feedbackapparaten. Deze marketingstrategieën werden
gesimuleerd met vergelijkbare sterkte (in termen van het aantal gebruikte apparaten)
en schaal (in termen van de geografische schaal en tijdshorizon). De instrumenten zijn
getoetst door het simuleren van diverse implementatiescenario’s. Op basis daarvan zijn
de instrumenten vergelijken qua effectiviteit en kostenefficiëntie.

De resultaten laten zien dat het uitlenen van de apparaten bijzonder effectief is,
terwijl het vergroten van hun bekendheid het meest kostenefficiënt lijkt. In het algemeen
hebben de beleidsinstrumenten veel effect of de impact van feedbackapparaten. Dit
laat duidelijk de noodzaak zien om een gewenste diffusiestrategie te selecteren om de
impact van feedbackapparaten te maximaliseren.

Ten slotte is de voor dit proefschrift ontwikkelde methode gestandaardiseerd en
verenigd in een aanpak voor automatisering. Deze aanpak heeft geresulteerd in
prototype automatische software. Dit maakt het mogelijk automatisch agentgebaseerde
innovatie-diffusiemodellen te genereren en daarmee beleidsinstrumenten te evalueren.
Kandidaten voor innovatie-diffusiemodellen werden gevarieerd in structuur en
parameters om de aannemelijkheid van elk van die mogelijke modellen voor een casus
te kunnen bepalen.

De potentie van beleidsinstrumenten om diffusie te bevorderen wordt geëvalueerd
op basis van (mogelijk meerdere) aannemelijke modellen. Het standaardiseren van het
modelleerproces versnelt datzelfde proces en maakt het mogelijk om empirische data
meer systematisch in te zetten. Daarnaast stelt deze aanpak ons in staat om bestaande
modellen te verbeteren en leidt het tot het ontwikkelen van modellen die valide zijn door
hun ontwerp. Samen laat dit zien dat de aanpak voor automatisering een succesvolle
bijdrage levert aan de methode waarmee innovatie-diffusie wordt gemodelleerd.

Het kan worden geconcludeerd dat de impact van feedbackapparaten succesvol kan
worden vastgesteld door de co-diffusie van de apparaten en de gedragsverandering die
ze veroorzaken systematisch te simuleren. Deze conclusie is gebaseerd op vier pijlers.
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Ten eerste is dat de bepaling van de impact, welke is gebaseerd op de ontwikkeling
en simulering van het raamwerk van co-diffusie van technologie en gedrag. Dit
heeft geleid tot een algemeen begrip van de mogelijke impact van feedbackapparaten.
Ten tweede is dat de theoretische analyse die werd verfijnd met empirische data.
Ten derde is dat het empirische model dat is ontwikkeld voor het bepalen van het
potentieel van beleidsinstrumenten in termen van het beïnvloeden van het effect van
feedbackapparaten. Ten vierde is dat de automatisering die de analyse van deze impact
krachtiger en meer toegankelijk maakt. Uiteindelijk verbetert deze systematiseringsslag
de manier waarop agentgebaseerde innovatie-diffusiemodellen worden ontwikkeld en
toegepast.



1
INTRODUCTION

Motivation is what gets you started;
Habit is what keeps you going.

Jim Ryun

1.1. MOTIVATION

To tackle climate change and to deal with the depletion of fossil resources, a decrease
in greenhouse gas emissions is urgently needed (Edenhofer et al., 2014). Residential
heating represents a significant share of overall greenhouse gas emissions in the EU.
“Buildings represent 40% of the (European) Union’s final energy consumption” (European
Parliament, Council of the European Union, 2012). For residential buildings, ca. 57% of
this final energy is used for space heating (Itard and Meijer, 2008), the majority of which
is generated from non-renewable energy (Olivier et al., 2015). The resulting contribution
to overall greenhouse gas emissions in the EU is significant and therefore needs to be
addressed as urgently as overall emissions.

A particularly cost-effective way to mitigate these emissions from space heating is via
energy efficiency (Birol, 2008). Additionally, the EU committed to 20% increased energy
efficiency in 2020, compared to the energy consumption that was projected in 2007
(European Parliament, Council of the European Union, 2012). However, final energy
consumption of households in the EU failed to reduce significantly over the last 20
years (Eurostat, 2016). The building stock thus continues to bear significant potential
to meet this energy-efficiency target. Everything else being equal, this potential should
be addressed as soon as possible, because earlier mitigation allows for lower average
atmospheric temperatures (IPCC, 2007). Therefore, mitigation solutions are needed that
are not only effective, but also quick. With residential building envelopes in Europe
having an average service life of ca. 60 years (Balaras et al., 2005b, Table 2), the largest
near-term potential for reduction in energy demand of the building stock lies in existing
buildings (Balaras et al., 2007).

9
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Consumer behavior When increasing energy efficiency of existing buildings, potential
from behavior change can have a valuable contribution, First and foremost, behavior
change has the advantage to be of significant magnitude. Only due to different
behavior, heating energy consumed in similar buildings can vary threefold (Gill et al.,
2011). On average, significant savings of ca. 20% can be achieved from conservation
behavior (Lopes et al., 2012). Additionally, behavior change has strategic benefits
regarding implementation. Interventions to change energy-consumption behavior can
be quickly implemented, are of low cost and scalable (i.e. widely applicable in the built
environment) (Loock et al., 2013). Further, they require fewer physical resources than
other energy-efficiency measures, e.g. renovation of buildings (Balaras et al., 2005a).
Given the combination of these benefits, saving energy via behavior change appears to
be the low hanging fruits to energy-efficiency in buildings.

Feedback interventions To achieve behavior change in domestic heating, users of
buildings should receive feedback on their energy consumption. According to a recent
meta-study by Karlin et al. (2015), feedback interventions to user behavior showed
to reduce energy consumption by an average of ca. 7%. Long-term interventions (of
at least 12 months) even achieved average savings of ca. 15%. Behavioral feedback
was more successful if provided immediately, over longer periods of time, and via a
digital medium. Therefore, electronic feedback devices that can be permanently placed
in the household (e.g. in-home monitors or smartphone applications) appear best
suited. Such devices rely on retrieving behavioral data from sensors or other ‘Smart
Home’ appliances. Improvements of sensing technology and digitization of energy
infrastructure are currently expanding the options for behavioral “information to be
collected, processed, and sent back (as feedback) to consumers quickly, cheaply, and often
in real time” (Karlin et al., 2015). Beyond its present capabilities, this technological
potential can be expected to grow significantly with the future improvement of sensors
and the market penetration of the ‘Smart Home’ and ‘Internet of Things’.

Feedback devices The feedback devices that this thesis focuses on are designed to
persuade their users to practice energy conservation. For persuasion, they use so-called
‘nudging’ (Thaler and Sunstein, 2009), which suggests users to change their behavior
without forcing them to do so.

Changing behavior via feedback is challenging, because it has to ‘break’ existing
habits, which are difficult to change (Jackson, 2005). Energy consumption behavior
at home is particularly routinized: we may stand up in the morning, turn on the
thermostat, and we go to sleep after turning it off again. Such habits circumvent
thorough cognitive processing, at which conscious intentions influence actions and
could make a difference (Jager, 2003). Therefore, interventions that only provide
information to address intentions of energy consumers might fail. Instead, interventions
should interrupt habits during their execution (Gärling and Axhausen, 2003) and
instantly nudge users to practice another behavior. Over time, this approach has shown
to be successful at replacing a habit with a new one (Piacentini et al., 2010). For a detailed
presentation of the interaction of feedback devices with their users, see Chapter 2.2.
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In the following, two examples of feedback devices are presented. Both of these
incentivize conservation behavior. First, so-called ‘Transformational Products’ are
devices that become a material part of the routines they are designed to change. They
are described in detail by Laschke et al. (2011) and Jensen and Chappin (2014). When
an undesired habit is executed, the feedback can create ‘friction’ to interrupt habitual
behavior Laschke et al. (2011). At this window of conscious awareness, users are then
able to consciously align action with their goals and values. Ideally, a Transformational
Product now adds persuasion to ‘nudge’ users towards another habit (Thaler and
Sunstein, 2009). An example of a Transformational Product is the so-called ‘never hungry
caterpillar’, which is “a caterpillar-like device that is supposed to be placed next to a
TV. If the TV is switched to stand-by, it twists and thus symbolizes discomfort, which
creates awareness (of) the waste of energy. Thus, awareness is created just in time and
can immediately be translated into action” (Jensen and Chappin, 2014). Second, the
feedback device ‘CO2 meter’ is designed to create healthier room ventilation behavior,
but also showed to lead to energy savings. The device gives feedback on air-quality by
presenting the measured indoor CO2 levels in the intuitive colors of a traffic light. This
information motivates households to ventilate rooms at higher air-exchange rates, but
to stop ventilating when air-quality levels are sufficiently good. Indirectly, these two
changes in behavior conserve heating energy (see Chapter 3). At field tests, this showed
to create energy savings of ca. 8%.

Diffusion of feedback devices The impact of feedback devices (i.e. their overall effect
on energy-conservation behavior) can consistently be framed as an innovation diffusion.
The Theory of Diffusion of Innovations by Rogers (2003) describes an innovation as
any idea that is “new to an individual.” To this, Watts and Gilbert (2014) add that the
innovation needs to be an improvement and of value to this individual. The diffusion of
an innovation is “the process by which an innovation is communicated through certain
channels over time among the members of a social system” (Rogers, 2003). Successful
innovation diffusion can thus be seen equivalent to an innovation having great reach.
This is what makes understanding the diffusion of innovations powerful. For this
reason, Delre et al. (2010) stress the practical relevance of understanding the innovation
diffusion of any new product.

In the following, the framing of feedback devices as diffusing innovations will be
introduced in detail. The same will be done for the energy conservation that these
devices incentivize. Previous to this thesis, these two diffusions had been researched
individually, but apparently not in their interaction (Jensen and Chappin, 2014). Filling
this research gap, this thesis integrates these two diffusions of technology and behavior,
which are linked by the feedback effect of devices on behavior. Due to their linkage, these
two diffusions are researched within a single framework. I coin this the co-diffusion of
technology and behavior framework.

Technology diffusion will in this thesis describe the process of feedback devices
spreading among consumers. When consumers decide on whether to adopt an
innovation, they are “motivated to reduce uncertainty about the advantages and
disadvantages of the innovation” (Rogers, 2003). This motivation results in exchange
of information among consumers—e.g. via the mechanisms of word-of-mouth, which
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can self-reinforce diffusion and can lead to a take-off of adoption (Rogers, 2003).
Word-of-mouth has previously helped explain the successful take-off of the diffusion
of many products (Delre et al., 2010, 2007). The importance of this mechanism is
underlined by the Theory of Planned Behavior (Ajzen, 1991), which attributes human
decisions (among other factors) to subjective (social) norms. Understanding the
technology diffusion of feedback devices is able to draw on this theoretical foundation.
Eventually, a take-off of diffusion to wide adoption would be helpful for feedback devices
to have significant impact: the more adopters there are, the more persons will be
exposed to behavior-changing feedback.

Behavior diffusion is the spreading of energy-efficient heating behavior among
consumers. This concept bases on the Social Learning Theory (Ajzen, 1991).
Accordingly, observation of other persons’ behavior is an important source of an
individual’s learning. In an extensive review, Jackson (2005) concludes that this
mechanism bears significant potential for sustainable behavior to spread. Likewise,
numerous studies have concluded that diffusions of sustainable behaviors can be
explained by social learning (Azar and Menassa, 2015; Mohammadi et al., 2014;
Peschiera et al., 2010; Burchell et al., 2014). To describe this mechanism in the context of
energy conservation, Azar and Menassa (2014) coined the process of ‘diffusion of energy
efficient behavior.’

In the context of this thesis, behavior diffusion has the potential to reinforce the
overall effect of feedback devices. For instance, assume that an intervention addresses
consumer A, who then starts using a feedback device and adopts energy-efficient
heating behavior. Now, consumer B, a close peer of A, might observe and imitate this
new behavior and thus would also save heating energy. Consequently, such behavior
diffusion could increase the overall impact of feedback devices beyond the impact for
those households who are directly using feedback devices.

Effect of feedback from devices on heating behavior naturally links these two
diffusions. Feedback devices have the potential to change energy consumption behavior
of at least some of their users. If the diffusion of feedback devices takes-off, this could
trigger adoption of conservation behavior on a large scale. This in turn would support
behavior diffusion by exposing more parts of society to social learning of conservation
behavior. In the physics community, this coupling of diffusions is actively researched
as the ‘diffusion in multiplex networks’ (Granell et al., 2013; Funk and Jansen, 2010;
Cozzo et al., 2013; Bagnoli et al., 2007). In essence, this field of research has shown
that the interaction between two linked diffusions creates unique dynamics that can
not be directly explained by any of its constituting individual diffusions. Consequently,
exploring the co-diffusion of technology and behavior appears fruitful.

Simulating innovation diffusion Simulation modeling is promising at inferring the
future impact of feedback devices. The benefit of simulating “real-world systems is to give
us something useful that we could not—for a variety of reasons—obtain from the system
itself” (Ahrweiler and Gilbert, 2005). Watts and Gilbert (2014) emphasize that simulation
is useful to answer ‘what-if’ questions and to test policy actions. To understand ex-ante
the future potential of feedback devices, simulating ‘what-if’ scenarios and policies is
highly useful. At the time of writing, many feedback devices are still in the design
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phase or their market diffusion has recently started. This is why forecasting their
potential future impact is of particular interest. Thereby, it is important to remember
that predicting socio-technical systems faces high uncertainty (van Dam et al., 2012).
Fortunately, ex-ante insights do not strictly require precise prediction. Instead, Epstein
(2008) stresses that “bound(ing) (...) outcomes to plausible ranges” can also be valuable.
A confirmation of this forecasting capability of simulation is the model by Bass (1969). It
has shown to successfully capture the macro-level dynamics of innovation diffusion.

A particularly suited approach for simulating the co-diffusion of technology and
behavior is agent-based modeling. In practice, this is shown by numerous examples
of successful simulation of innovation diffusions (see Watts and Gilbert, 2014; Kiesling
et al., 2009)1. This success relies on three factors: its actor-based perspective,
its capability to infer emergent system behavior from this micro-level perspective,
and the disaggregated modeling of actor decisions (Chappin and Dijkema, 2015).
First, households are the key actors of the research perspective that this thesis
assumes. Agent-based modeling allows capturing their heterogeneity and socio-spatial
structure, which are important factors for energy and sustainability related decisions
of households (Grossmann et al., 2014). Second, simulating decisions and interactions
of these micro-level agents generates an emergent system behavior on the macro
level. This helps explain the dynamic inter-dependency of observations on both the
micro- and macro-level of a system, which assists at making sense of both. Third,
agent-based models capture in a disaggregated way the decisions of actors. Adoption
decisions of technology and heating practices can successfully be captured, e.g. by
using the Theory of Planned Behavior (Sopha et al., 2013; Schwarz and Ernst, 2009).
This disaggregation has the advantage of giving valuable mechanistic insight instead of
remaining a black-box that merely connects cause and effect.

However, disaggregation also makes agent-based modeling cumbersome, which
calls for rethinking current modeling practice. Developing disaggregated models is
relatively costly in time and labor (see Chapter 5). This has created two problems. First,
this constraint often leads to ‘ad hoc’ decisions on model design (Grimm et al., 2005).
In combination with many model design options, this has further led to a great variety
of agent-based models of innovation diffusion (see Kiesling et al., 2012). Unfortunately,
such high diversity is “a major obstacle to distilling general insights” (Thiele and Grimm,
2015). Second, high effort of model development has further contributed to the deficit
that “a versatile method of easily testing managerial strategies that influence the degree
and speed of diffusion processes is not currently available” (Garcia and Jager, 2011).
Consequently, a systematic modeling approach that increases efficiency in developing
agent-based innovation diffusion models and thus overcomes these downsides has yet
to be designed.

Overall, the perspective of innovation diffusion and agent-based modeling are the
right vehicles to increase understanding on the potential of feedback devices to reduce
heating demand. First, diffusion view from the Theory of Diffusion of Innovations and
Social Learning Theory, as well as theories of decision making like the Theory of Planned
Behavior, are rich sources from which theoretical knowledge can be drawn. Second,
agent-based modeling and simulation is suited as a methodological paradigm. This

1For a review of agent-based models of the diffusion of technology or behavior, see Chapter 2.4.2.
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combination of theory and methods is useful to systematically simulate the potential
impact of behavior-changing feedback devices. Such an approach could also be
empirically grounded in order to complement the common approach of empirical field
testing of devices. A model based on the empirical data from such field tests could
further assist policy decisions on how to effectively support the impact of feedback
devices. Ideally, all this should be taken out in a systematic modeling procedure that
overcomes the current challenge of agent-based modeling of innovation diffusion being
costly in time and labor.

1.2. RESEARCH QUESTIONS

The aim of this thesis is to give model-based insights into the potential of feedback
devices to impact heating energy demand. This will be done from a perspective of
innovation diffusion. Therefore, the central research question addressed by this thesis
is as follows:

How can the impact of behavior-changing feedback devices on energy-consumption
behavior be systematically simulated?

In the following are four sub-questions to this central question:

1. What are the mechanisms via which feedback devices can change heating
behavior?

2. What is the impact of the diffusion of feedback devices and of the diffusion of the
behavior that they incentivize?

3. How can the projected impact of feedback devices be affected by policies?

4. How can innovation diffusion models be developed and applied more
systematically?

1.3. RESEARCH APPROACH

The stated research questions express the need to conduct a model-based study. The
overarching method chosen is agent-based modeling of innovation diffusion. In the
following, the research approach taken out in this thesis is presented in detail.

Simulating the impact of feedback devices is a valuable alternative to prevailing
empirical research. So far, studies of empirical observation represent the bulk of research
on feedback devices. We aim to complement this body of knowledge with a model-based
study. Empirical observations have already created rich yet fragmented knowledge that
modeling can take up and combine. Simulation modeling can be based on this existing
empirical knowledge. The future of the simulated processes is of particular interest in
this thesis. Therefore, simulation would be useful to explore possible future trajectories
of impact from feedback devices.

The chosen research approach requires a stepwise proceeding. Its principal aim is
to assess the impact of behavior-changing feedback devices by ‘systematic simulation’.
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Therefore, the research approach of this thesis works towards tackling this task via an
automated software procedure. This approach promises a high degree of systemization
and standardization. It builds on three preparatory steps. First, the mechanisms via
which feedback devices create an impact are identified via simulation. Second, because
the real-world impact of feedback devices is of interest, simulation are empirical-based.
Third, the sensitivity of the impact to policies is explored systematically via scenario
analysis. Finally, this groundwork is combined into an automated software procedure
that makes the modeling process systematic. In the following, the succession of this
research approach is presented in detail.

1.3.1. MECHANISMS OF IMPACT FROM FEEDBACK DEVICES

The first step of this thesis is to understand the mechanisms via which feedback devices
create an impact on heating energy demand. This is done by developing an agent-based
model that implements the framework of co-diffusion of technology and behavior. As an
abstract technology case is chosen a feedback device that incentivizes heating at lower
temperatures. Hence, modeled behavior is the thermostat setting by users—a central
element to heating behavior.

Model building for this task combined existing models, which is not only efficient,
but also transfers their previous validation. Two diffusion models—one of technology
diffusion, one of behavior diffusion—are reproduced and integrated.

Simulation experiments are then used to identify the mechanisms and driving
factors of co-diffusion. This helps highlighting the data needed for increasing model
realism in the following research steps.

1.3.2. EMPIRICALLY-GROUNDED SIMULATION OF IMPACT

The simulation model from the previous step has to be refined to tackle empirical-based
questions. The second sub research question is therefore answered by a simulation
model that draws on data from field tests of feedback devices.

Commonly, the effect of interventions to energy consumption of households is
analyzed with households, who test feedback devices, as final units of assessment
(Darby, 2006; Grinewitschus et al., 2013; Karlin et al., 2014). In so-called ‘Living Labs’
(Liedtke et al., 2015), interventions are tested right in the location for which they were
designed. To quantify the induced change of behavior and energy consumption, testing
is commonly accompanied by sensors that log behavioral data.

Instead of only in selected households, the initial motivation of this thesis demands
that conservation of heating energy arises at larger geographical scales. This would
contribute significantly to the reduction of energy demand in heating. Simulation
modeling can help closing this gap across scales. With agent-based modeling and
adequate socio-spatial data, it is possible to extrapolate findings from households to
larger areas (Ernst, 2014). In this thesis, upscaling is conducted up to the city scale.
A suited link for this upscaling is commercial marketing data that maps individual
households and their sociodemographic properties.

When scaling up energy conservation, there are not only more households and
more opportunities to save energy. Also, due to interactions between households,
more processes take place that have to be captured. As described above, the diffusion
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of feedback devices and the diffusion of conservation behavior become relevant in a
system of multiple households. Capturing this co-diffusion in an empirically-based way
therefore is a means to gain understanding of the impact of feedback devices on larger
spatial scales.

This step of the research approach makes use of data from Living Lab experiments.
Chosen case technology was the CO2 meter, because close connection to empirical
researchers has given access to sensor logging data from corresponding field tests. The
chosen case area is the city of Bottrop (Germany), because rich marketing and building
data is available from project partners and stakeholders.

Developing and validating an empirical-based model requires empirical data. Two
patterns from empirical data are available for this: a historical trend of adoption
of conservation behavior and data on the importance of social contacts at creating
behavior change. These data were used to indirectly parameterize the simulation
model. In line with the concept of ‘pattern-oriented modeling’ (Grimm et al., 2005), this
coherence of the model with empirical data also assures its validity.

1.3.3. ASSESSMENT OF POLICY INTERVENTIONS

The third step of the research approach deepens the knowledge on the potential impact
of feedback devices. In the previous steps, the impact of devices has been assessed while
neglecting policies influencing the impact of devices. Nevertheless, the empirical-based
model from this previous step provides the foundation for doing so. The means to
answer the third sub research question therefore is to simulate policy scenarios.

The practical questions of how to influence the diffusion of feedback devices with
marketing is tackled. A literature review guides selection of strategies (see Chapter 4.3.1).
These then test with the simulation model from the previous research step. Addressed
by this advice are policy makers, stakeholders, and marketers. This research step thus
informs about what actions most effectively maximize the impact of feedback devices
and which ones are most cost-efficient at doing so. Further, it creates a blueprint for
assessing the role of policies towards the impact of feedback devices.

1.3.4. AUTOMATING AGENT-BASED MODELING OF INNOVATION DIFFUSION

The final research step combines the work from the previous three steps. The initial
step contributes the framework via which diffusion of feedback devices is modeled.
The second one contributed a method of building an empirical-based diffusion model
based on empirical data. The third step contributes the structured testing of policy
interventions.

In the final step, a procedure for generating and applying agent-based innovation
diffusion models is presented. This addresses the fourth sub research question. The
procedure is implemented as a software prototype of automated model generation.
Automating the process of agent-based modeling in this thesis further includes the
automated assessment of policies. Testing these with predictive models usually is a
highly repetitive and time-consuming task. Automation is introduced to make this only
repetitive and work-intensive for the used computing infrastructure, but not for users
themselves.
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1.4. OUTLINE

The structure of this thesis is shown in Figure 1.1. Each of the four sub research questions
and steps of the research approach is covered by one thesis chapter.
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Figure 1.1: Structure of this thesis.

Chapters 2–4 successively expand modeling methods to generate knowledge on the
co-diffusion of technology and behavior, as well as policy options. They take out the first
three steps of the research approach. Based on this groundwork, Chapter 5 presents a
method to automate the generation of agent-based innovation diffusion models and the
assessment of policies. This chapter takes out the fourth step of the research approach.
In the final thesis chapter, overall conclusions are drawn.





2
CO-DIFFUSION FRAMEWORK

First, earth had no roads
but as people walked on it

they thus made the roads

Lu Xun

2.1. INTRODUCTION

Reducing heating energy households consume is needed to mitigate climate change and
the depletion of energy resources and, more specifically, to reach the EU target of a 20%
gain in energy efficiency until 2020 (McDonnell, 2010). This is particularly important,
because approximately 30% of energy in the EU is used in residential buildings and the
bulk of this (ca. 57%) is used for heating (Itard and Meijer, 2008).

Changing the energy consumption behavior in households, e.g. setting lower
space heating temperatures and heating fewer rooms, can significantly reduce heating
demand at low investment costs and with few physical resources (Guerra-Santin and
Itard, 2010). This is illustrated by the fact that different heating behavior in similar
buildings can induce a three-fold difference between maximum and minimum energy
consumption (Gill et al., 2011).

In this study, we focus on technical devices that provide feedback to households on
their heating behavior and offer promise for supporting them to reduce their heating
demand, i.e. to practice energy conservation. It has been shown that such devices
can lead to typical energy savings of 10%, varying between an increase in energy
consumption and savings of up to 30% (Darby, 2006; Karlin et al., 2014). Their success
is based on the high frequency and the long duration of their feedback. First, frequent
(e.g. daily) feedback supports habituation of changed behavior (Jager, 2003). Second,

This chapter has been published as Jensen, T., Holtz, G. and Chappin, E.J.L., 2015. Agent-based assessment
framework for behavior-changing feedback devices: spreading of devices and heating behavior. Technological
Forecasting and Social Change 98.
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providing feedback over a relatively long time-span prevents behavioral relapse and
preserves the adopted energy conservation behavior (see Peschiera et al., 2010; Han
et al., 2013; Burchell et al., 2014).

Ex-ante assessment of novel behavior-changing feedback devices is needed because
different types of feedback vary significantly in their acceptance (Han et al., 2013) and
how they reduce energy consumption (Karlin et al., 2014). Ex-ante assessments can
reduce this uncertainty by eliminating the need to wait for data generated from actual
market trials on a technology’s effect. Failed market trials rooted in promoting and
launching the ‘wrong’ types of products waste resources and time that could otherwise
be directed to reducing energy consumption in households. Instead, distinguishing
between more and less promising devices upfront helps support the diffusion of those
devices that promise the greatest impact on energy conservation.

Existing methods for ex-ante assessment, e.g. trial testing (see Burchell et al.,
2014; Grønhøj and Thøgersen, 2011; Darby, 2006), are useful for describing direct
within-household effects of feedback devices. This approach estimates the direct impact
of a device by comparing behavioral changes between a treatment and control group
(Padonou et al., 2013).

However, we hypothesize that assessing only effects within households that use
feedback devices underestimates the overall impact of feedback technology on energy
consumption in a society. Instead, we argue that effects between households
play an important role, as was shown for technology diffusion in assessments of
environmental-friendly household technology (Schwarz and Ernst, 2009; Sopha et al.,
2013; Afman et al., 2010; Delre et al., 2010). Additionally, we propose that diffusion of
(changed) behavior needs to be included in assessments of behavior-changing feedback
devices, too.

We argue that, in addition to within-household effects, assessing the overall impact
of behavior-changing feedback devices on energy consumption needs to consider
both the diffusion of behavior-changing feedback devices and the spread of behavior.
The latter processes are both driven by the interactions between households. Direct
communication, the so called ‘word of mouth’ interaction, strongly influences the
number of households that adopt a new technology (Rogers, 2003), often reinforcing the
extent new products are adopted and spread (Janssen and Jager, 2002; Schwarz, 2007;
Rogers, 2003). Additionally, household interactions can spread the behavior induced by
feedback devices beyond households adopting the devices (Nolan et al., 2008; Göckeritz
et al., 2010). In particular, communicating energy consumption behavior between
households is common (Baedeker, 2014) and comparing individual to peer behavior can
trigger shifts in energy consumption behavior (Peschiera et al., 2010; Chen et al., 2012;
Azar and Menassa, 2014).

In this study, we combine the aforementioned concepts to create a single technology
assessment framework that covers (1) the direct impact that a feedback device unfolds
within a household, (2) diffusion of the feedback devices among households, and (3)
diffusion of (changed) energy consumption behavior. We furthermore implement an
agent-based model based on this framework. We use simulation experiments to explore
the relevance of the added behavior diffusion and to identify the relevant mechanisms.
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The remainder of this chapter is structured as follows. First, we describe the
functions of behavior-changing feedback technology (section 2.2). Second, we describe
the framework capturing the three relevant processes mentioned above (section 2.3).
Third, two existing agent-based models are combined into a model that implements
the presented framework (section 2.4). Finally, we use simulations from the combined
model to identify and demonstrate the relevant interactions between the spreading of
both feedback devices and energy consumption behavior.

2.2. BEHAVIOR-CHANGING FEEDBACK TECHNOLOGY

Fig. 2.1 shows how feedback devices can influence heating behavior. The context in
which these devices interact has two components: (1) the feedback loop between a user
and a heating system, and (2) human decision making on heating behavior.

Figure 2.1: Operation of behavior-changing feedback devices through interaction with the user. The varied
dashing of the arrows distinguishes the feedback between a heating system and its users (dotted lines) from the
users’ decision making (continuous lines). Underlined are the two presented means of feedback: persuasion
and situated awareness.

Feedback loop Even without feedback devices, heating systems provide feedback on
their performance to the users, who can then alter their behavior. For example, a user
controls the temperature, which, if it is too warm or cold, incentivizes the user to change
her heating behavior. Feedback devices can alter and enrich this feedback, e.g. by
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associating higher energy costs with high temperatures, thereby motivating the user to
change her heating behavior (Wood and Newborough, 2003).

The most common mechanism of feedback devices is using information to persuade
users to change their behavioral intentions, i.e. “the motivation required to perform
a particular behavior, reflecting an individual’s decision to follow a course of action"
(Armitage and Christian, 2003, p. 190). Feedback devices that rely on persuasion by
information to address the user on a conscious level, e.g. by monitoring the user’s
behavior, visualizing it to the user, and thus creating awareness (Laschke et al., 2011),
make energy consumption transparent and understandable (Wood and Newborough,
2003) and advocate a change in behavior. Smart Meters are a prime example for this
(see Wood and Newborough, 2003). Another example is feedback devices that make
energy consumption levels mutually transparent between friends so that behavior is
influenced by peer pressure (Peschiera et al., 2010). Related to heating, an example is
the E-quarium, which uses sensors distributed in the household to evaluate the users’
energy consumption behavior (see Delft University of Technology, 2014). By scoring
behavior, it involves the user in an incentive game that encourages use of lower heating
temperatures. The scores are continuously shown by the ‘happiness’ of a virtual fish.

Feedback can also be given immediately at specific instances of behavior to create
situated awareness. This can lead to users correcting performance. For example, Laschke
et al. (2011) present the ‘never hungry caterpillar’, a so-called Transformational Product
that is a caterpillar-like device placed next to a TV. If the TV is switched to stand-by,
the device twists, symbolizing discomfort. This creates situated awareness of wasted
energy and reminds the user that the TV can be switched off completely. Another
Transformational Product could be a household item located close to a window that
starts shivering if the window is open for too long during winter, emulating being cold
and remind the user to conserve heating energy by closing windows.

Decision making Heating behavior follows intentions, but it is constrained by habits.
Habits are action sequences that are performed without significant deliberation (Jager,
2003). They are triggered by so-called environmental cues. Repetition and positive
outcomes of actions increase the strength of associated between cues and behavior
(Jager, 2003). For example, saving energy costs by repeatedly turning down radiator
thermostats, before leaving the home, supports habit formation. With frequent
repetition in a stable environment, habits become reinforced, which makes them
increasingly dominant over intentional behavior (Jager, 2003).

The feedback mechanism that uses situated awareness has the potential to change
heating habits by interrupting them. This is because habits can effectively “be changed
through interventions that disrupt the environmental cues that trigger habit performance
automatically" (Verplanken and Wood, 2006, p. 90). Transformational Products,
implementing situated awareness, thus seem particularly suited for changing heating
habits.
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2.3. CONCEPTUAL FRAMEWORK FOR TECHNOLOGY

ASSESSMENT

In this section, we propose a framework for assessing the effect of behavior-changing
feedback devices. In this framework, we combine the direct effect of heating feedback
devices with first, the diffusion of this technology, second, the effect of feedback within
a household, and third, the diffusion of the changed behavior. This framework is shown
in Fig. 2.2 and defines the direction and interplay of these three processes from the
perspective of one household as a model.

Figure 2.2: Conceptual framework for assessing behavior-changing feedback technology. A household’s
technology adoption decision (partially) depends on the adoption state of its N neighbors and in turn
influences these peers’ adoption decisions. Likewise, a household and its peers are mutually influencing their
energy consumption behavior. If a household adopts feedback technology, then the feedback effect can also
change its energy consumption behavior.

Technology diffusion is the process in which households adopt technology, i.e.
choose to take up a specific feedback device. A well-known general characteristic of
such processes is that the initial adoption by a few ‘innovators’ self-reinforces via word
of mouth until a saturation level is reached (Rogers, 2003). As more people adopt
a technology, the adoption choice persuades non-adopters to adopt. For example,
empirical research shows that adopting water-saving shower heads by households can
be positively influenced by the number of that household’s peers who have already
adopted such shower heads (Schwarz and Ernst, 2009).

The feedback effect is the direct effect of feedback devices on their users’ heating
behavior. It links the processes of technology diffusion and behavior diffusion.

We coin behavior diffusion as the spreading of energy consumption behavior (see
Azar and Menassa, 2014), i.e. the phenomenon that “behavior can be spread from one
person to another via peer networks” (Chen et al., 2012, p. 517). A key driver for behavior
to spread is that of subjective norms, i.e. “the perceived social pressure to perform or
not to perform (a) behavior” (Ajzen, 1991, p. 188). The social pressure is formed by
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what a person perceives to be common and approved behavior. Subjective norms of
conservation, which influence behavior of households, can explain why conservation
levels between peers are highly correlated (Nolan et al., 2008; Göckeritz et al., 2010).
Because people with strong social ties mutually influence their behavior (Bandura and
McClelland, 1977), this influence is potentially transitive. This effect can thus spread
further than one link in a social network. Consequently, heating habits are relatively
similar within social groups (see Wilhite et al., 1996).

Behavior diffusion can act in any direction and may cause a so-called boomerang
effect. This effect occurs when a person who uses less energy than her peers adopts a
less stringent energy conserving strategy due to social influence (see Goldenberg et al.,
2010). If this ‘negative’ social influence is strong, households could be resistant against
the effects of behavior-changing feedback devices.

2.4. MODEL DEVELOPMENT

In this section, we develop a simulation model based on the presented framework. We
first argue that agent-based modeling is a well-suited approach for this. We then present
two existing agent-based models that each capture a substantial part of the framework,
i.e. technology diffusion and behavior diffusion, respectively. Finally, we integrate these
two models into a combined model.

2.4.1. AGENT-BASED MODELING

An agent-based model (ABM) captures real-world entities as autonomous computer
agents, which “have behaviors, often described by simple rules, and interactions with
other agents, which in turn influence their behaviors" (Macal and North, 2010, p. 151).

Agent-based modeling is a suitable tool for the given application for three
reasons. First, ABMs are able to capture socio-technical systems that ‘generate’
emergent phenomena in a bottom-up manner (van Dam et al., 2012; Chappin, 2011;
Epstein, 1996). Simulation results are thereby directly based on the micro-level
units of assessment—in this case the household agents—and their behavioral rules
and interactions. For example, the spreading of feedback technology and specific
energy-consumption behaviors emerges from household interactions that can be
modeled explicitly by an ABM.

Second, agent-based models are highly flexible in design because specifying rules
is only limited by the programming language. This flexibility allows ABM to assimilate
virtually all kinds of existing models, be they analytical or rule based, thus allowing us to
integrate different existing models.

Finally, ABM is advantageous over many other modeling approaches when model
entities are adaptive, heterogeneous and interact locally (Railsback and Grimm,
2011), all of which meet our modeling criteria. Households adapt their energy
consumption behavior and adopt feedback devices depending on their peers. They
are naturally heterogeneous in their product adoption preferences (Schwarz and Ernst,
2009). Further, interaction between households is more likely at smaller spatial scales
(Baedeker, 2014; Holzhauer et al., 2013).
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2.4.2. EXISTING TECHNOLOGY AND BEHAVIOR DIFFUSION MODELS

Various ABMs have been developed for diffusion of sustainable household technology
(Schwarz and Ernst, 2009; Sopha et al., 2013; Kroh et al., 2012; Zhang and Nuttall, 2011)
and energy consumption behavior (Azar and Menassa, 2014; Chen et al., 2012; Anderson
et al., 2014; Zhang et al., 2011). A previous review by Jensen and Chappin (2014) found
none of these models capture the proposed framework by connecting the two diffusions
of technology and behavior. However, the two models by Schwarz and Ernst (2009) and
by Anderson et al. (2014) were identified as particularly useful to model one of these two
diffusion processes, respectively. In the following, we present these models and their
potential to contribute to the proposed framework.

Technology diffusion The model by Schwarz and Ernst (2009) simulates the diffusion
of environmentally friendly technologies between households. Households are of
specific sociological lifestyles, i.e. social groups that share values and attitudes
(Bourdieu, 1984). The empirical-based distribution between these lifestyles is shown
in Table 2.1.

Table 2.1: Share of overall population of lifestyles, based on commercial marketing data for an area in Bavaria,
Germany, with ca. 10 million inhabitants (see Schwarz and Ernst, 2009).

Sociological Lifestyle Share (%)

Postmaterialists 10.9
Social leaders 20.4
Mainstream 24.7
Traditionalists 26.3
Hedonistic 17.8

A key component of the model is an empirical-based decision model for adopting
environmental-friendly household technology. Adoption decisions are modeled on an
empirical survey inspired by the Theory of Planned Behavior (see Ajzen, 1991), which
stipulates a decision depends on the weighted sum of (1) the attitude towards the
product, (2) the subjective norm, i.e. the ratio of an agent’s adopting peers and (3) the
perceived behavior control, which is the subjective effort of implementation (see Schwarz
and Ernst, 2009, Fig. 1 & 2). These three criteria are partly sensitive to the lifestyle (which
weigh decision criteria differently) and the specific sustainable technologies analyzed
(which have product properties regarding these criteria).

Schwarz modeled the adoption choice with 13 parameters, which are derived from
surveyed stated preferences. In the resulting ABM, some lifestyles are modeled to
rationally deliberate on technology adoption, whereas others use a decision heuristic
of bounded rationality. Postmaterialists and Social Leaders compare and weigh many
product characteristics to reach an adoption decision (Schwarz, 2007). Therefore,
they are modeled to deliberate but not be influenced by the subjective norm.
Conversely, Hedonists, Mainstream, and Traditionalist lifestyles consider fewer criteria
when deciding on adoption of technology. They are modeled to apply the so-called
take-the-best heuristic, i.e. they decide according to the most important stated decision
criterion that clearly favors one choice option. If the most important criterion does
not clearly favor one option decision, the next most important criterion is used. If no
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clear decision can be reached, agents imitate the majority of their peers. Note that the
subjective norm may be one decision criterion, and that the social environment hence
may have an effect on these lifestyles.

For the scenario of diffusing water-saving shower heads for which Schwarz and Ernst
have implemented the ABM, this detailed empirical decision model is mathematically
equivalent to simpler decision rules: If deciding, each lifestyle—according to
a specific probability—either adopts the technology or decides according to the
majority of its peers. Lifestyles that deliberate are always deciding in favor of the
environmental-friendly option. The Mainstream and Traditionalist lifestyles adopt
water-saving shower heads with a probability of 0.5 and imitate the majority of their
peers otherwise. Households of the Hedonistic lifestyle always imitate the majority of
their peers. Because only three different decision rules exist for five lifestyles, we are
grouping the lifestyles according to their decision-making rules.

Behavior diffusion The model by Anderson et al. (2014) captures how energy
consumption behavior spreads in social networks and describes how households change
the energy they consume by social influence. Thereby, the greater the difference in
behavior between a household and its social environment, the greater is the household’s
motivation to change behavior towards its peers (Festinger, 1962).

Behavior diffusion is described by a general social influence model, see Eq. 2.1.

βi ,t =βi ,t−1 + si ·

(

N
∑

j=1
wi j ·β j ,t−1

N
∑

j=1
wi j

−βi ,t−1

)

(2.1)

The energy consumption behavior (βi ,t ) of an individual (i ) at a certain time (t )
depends first on her previous energy consumption (βi ,t−1) and second on how much the
previous energy consumption of her N−1 peers (β j ,t−1) differs from the individual’s own
energy consumption, weighted by the strength of social ties (wi j ). Behavioral change
according to the second factor is scaled by the individual’s susceptibility to subjective
norms (si ).

This model captures empirical phenomena of behavior diffusion that other models
do not (see Chen et al., 2012; Zhang and Nuttall, 2012; Azar and Menassa, 2014). First,
in addition to spreading more stringent energy conservation, more stringent energy
conservation can diffuse. The model thus captures the boomerang effect (see section
2.3). Second, individual susceptibility to behavior diffusion (si ) provides one way to
capture habits. According to the model, if an agent’s behavior were habitual, si would
be lower and behavior would thus change (significantly) slower. This model, however,
does not capture the processes of habit formation and reinforcement.

2.4.3. INTEGRATING TWO EXISTING MODELS INTO A COMBINED MODEL

Rather than developing a model from scratch, we emphasize the importance
of integrating these two selected existing models into one combined model to
implement the proposed framework. Continuing to develop existing models promotes
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good scientific discourse because existing models strengthen the empirical and
methodological basis of a new model directly and transparently (Windrum et al., 2007).
It thus roots the model developed in this study directly in existing knowledge. It also
furthers knowledge on the existing model. This transfer of model validity is also called
TAPAS validation, which is abbreviated from Take A Previous model and Add Something
(Frenken, 2004).

In the following, we present the integration of the two existing models in four steps:
First, we discuss their theoretical alignment, given their theoretical differences. Second,
model adaptions were made to them to make them compatible and to transfer them
to the case of heating feedback devices. Third, we re-implemented them according to
these adaptions. Finally, these two models were linked via the effect of adopted feedback
devices on heating behavior and a social network based on empirical data.

Theoretical alignment Despite their strong similarities, the two combined models
have theoretical differences. Both model how innovations diffuse and emphasize social
network interactions as their driver. However, two differences remain.

First, the behavior diffusion sub-model emphasizes imitation between agents,
whereas the technology diffusion sub-model assumes mixed deliberation and imitation.
This disparity is justified by varying levels of uncertainty in both decisions (Festinger,
1954) and has been successfully applied in previous ABMs (e.g. Janssen and Jager,
1999). On the one hand, adoption of a household device involves a one-time decision,
based upon the perceived device properties. For example, a feedback device needs
to be purchased and installed only once and thereafter remains active. Because this
is a one-time action, it involves a delimited process of deliberation, which is driven
by intentions. Conversely, behavior change “must be repeated or continual to achieve
maximum energy-savings: they rarely cost money, but they do ask change in habit and
lifestyle adjustment...” (Han et al., 2013, p. 707). Repetitive actions, which lack a
delimited deliberation process, are thus less rational and, importantly, are commonly
highly uncertain in their energy related effects (see Costanza et al., 2012).

Second, due to different qualities of available empirical knowledge, the models
differ in household heterogeneity. The model of Schwarz and Ernst differentiates
between lifestyle groups, while the model of Anderson does not. However, we argue
this difference in detail does not compromise the theoretical compatibility of the two
models.

Model adaptions The technology diffusion model by Schwarz and Ernst (2009) had
to be reinterpreted as a model of individual households, which involved changes to
the social network. Originally, the model uses spatially aggregated household agents
(i.e. each represents all households of one lifestyle within one square kilometer) which
are connected in a small-world network. When diffusing novel technologies, the initial
phase of diffusion is relevant, where only a few adopters exist. Therefore, a higher
resolution is more appropriate for representing these few first adopters. We thus assume
the agents represent individual households in a social network.

Because detailed adoption decision models for heating feedback devices are not
available yet, we use water saving shower heads, which are better researched by Schwarz
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and Ernst (2009), as a proxy technology. In this conceptual study, a proxy technology
needs to meet the requirement of being qualitatively similar regarding its diffusion (e.g.
the device should be preferred by the same lifestyle groups). We argue our model meets
this requirement, because they generally serve the same function in households: they
save energy related resources (i.e. hot water and space heating energy, respectively) in
daily household routines. Further, both technologies are similar according to at least
three of Rogers’ (2003) innovation characteristics: Compatibility (i.e. which sociocultural
values and beliefs are affected by the innovation) is similar, as the technologies both
conserve thermal energy linked to daily consumption behavior and are both installed
inside the household. Complexity (i.e. perceived difficulty of use) is low for both
technologies. Water saving shower heads are quickly installed. Likewise, messages from
feedback devices should be self-explanatory. Trialability (i.e. “the degree to which an
innovation may be experimented with on a limited basis”, (Rogers, 2003, p. 16)) is also
similar, because both devices are low-cost and easy to start and discontinue within the
household.

The behavior diffusion model by Anderson et al. (2014) need not be adapted to
be integrated into the combined model. The behavior state variable was altered to
represent heating behavior, defining the modeled heating behavior as average space
heating temperature. This function was chosen because heating temperature significant
affects energy consumption in buildings (Guerra Santin et al., 2009).

Reimplementation The existing models were re-implemented in the NetLogo
framework (Tisue and Wilensky, 2004). Previously, the model by Schwarz and Ernst
(2009) had been implemented in Java. Because the initial model implementation
was not completely available, re-implementation was based on a PhD thesis (see
Schwarz, 2007). The model by Anderson et al. (2014) had been implemented in the
Repast J 3.0 framework (North et al., 2013). Being structurally simple, this model was
re-implemented based on Eq. 2.1.

Linking existing models to implement the framework To implement the framework,
we considered how feedback technology affected heating behavior for adopting
households. Modeled by Eq. 2.2, we assume that feedback devices alter behavior towards
an incentivized level (β∗

∞) and that this behavioral change proceeds asymptotically (with
the rate of ∆β).

βt =βt−1 + (β∗
∞−βt−1) ·∆β (2.2)

The principle of an incentivized target behavior is demonstrated, for example, by the
E-quarium, which offers its most positive heating feedback only if the room temperature
is at the normative goal of 18◦C. An asymptotic learning curve is appropriate because
it simulates two important aspects regarding behavioral change. First, a steadily
decreasing behavioral change effect of feedback technology. At later stages, user
engagement in feedback can decrease, suggesting the early phase of feedback is
the most important for behavioral change (see Peschiera et al., 2010). Second, the
asymptotic learning curve suggests feedback has a higher potential to alter behavior if
the normative goal of feedback is significantly different from the user behavior. This is
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Figure 2.3: Empirical degree distribution of social network. Distribution of the number of relationships
within a city through which a household communicates on heating behavior, based on interviews (Baedeker,
2014).

because saving energy by altering behavior has decreasing returns: the lower a person’s
energy consumption behavior is, the less options available to further reduce energy
consumption. These remaining options are likely to be less practical and effective.
For example, turning off the thermostat when leaving a room or the house is practical
and effective, whereas turning down the thermostat when inside the room is likely less
appealing to many people.

Finally, the agents are linked to each other via a social network, which models
the communication regarding adoption of both technology and behavior. We based
the network structure on interviewed ego-networks of communication on heating
behavior between households (Baedeker, 2014), and on literature (Watts and Strogatz,
1998). The modeled social network matches two statistical properties of the empirical
ego-networks: the degree distribution (i.e. with how many other households does an
agent communicate, see Fig. 2.3) and the probability for such communication to be
of short distance (pN B HD ) (i.e. within the same neighborhood of a city). In principle,
all lifestyles can connect. But to account for homophily within lifestyles, there is an
increased probability of connections within the same lifestyle (scaled by parameter h).
The network creation is presented in detail in A.

We implemented the proposed framework using this integration. For its
initialization, agents are created and linked in a social network. Then, at each time step,
the sub-models technology diffusion, feedback effect and behavior diffusion are applied
successively. For further model details, see A.

2.5. SIMULATION EXPERIMENTS

The purpose of this study is to propose, implement and explore an assessment
framework for behavior-changing feedback devices. This framework complements trial
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testing of such devices and simulating their diffusion by also simulating the diffusion of
the behavioral change they create. In this section, we are using simulation experiments
to investigate the relevance of combing these three processes into one framework.

We present three simulation experiments. In the first one we simulate only the
diffusion of feedback devices, but not the diffusion of behavior, and reproduce the
simulation results of Schwarz and Ernst. This verifies the way we re-implement the
model and serves as a reference against the effects of adding processes in the following
experiments. The second experiment extends this scenario to the proposed framework
by adding the two processes of feedback effect on behavior and behavior diffusion. In
this simulation we focus on the heterogeneity of the agents’ heating behavior in order to
identify the added effect of behavior diffusion in detail. In the third simulation we vary
strength of the feedback effect and behavior diffusion to explore how heating feedback
devices affect the behavior of different lifestyles. This aims to observe the effect of
behavior diffusion on a larger scale.

The model proceeds at time steps of one month and the simulation runs terminate
after 30 simulated years. The parameterization for the simulation experiments is given
in Table 2.2.

Table 2.2: Parameterization for the simulation experiments. Where a source is given, the parameter value is
empirical based. Else, the value is either chosen generically or varied extensively.

Paramter Value Meaning Source

|N | 3000 Number of household agents -
dN B HD 10 Range for links within neighborhoods -
pN B HD 0.5 p(Link within neighborhood) (Baedeker, 2014)
h 0.4 Homophily in social network -
deg∗

i [1,8] Degree of agent i (Baedeker, 2014)
t0 1990 Initial time step (Schwarz and Ernst, 2009)
tmax 2020 Final time step (Schwarz and Ernst, 2009)
∆t 1 Months of time step length (Schwarz and Ernst, 2009)
αi ,t ∈ {0,1} - Technology adoption variable -
δα 0.004 Tech. adoption decision probability (Schwarz and Ernst, 2009)
p(αi ,t=0) 0 Init. technology adoption rate (Schwarz, 2007)
βi ,t ∈R - Energy consumption behavior -
βi ,t0 ,∀i ∈ N 21.1 Init. energy consumption behavior (Shipworth et al., 2010)
β∗
∞ 18 Behavior incentivized by feedback -
∆β [0,1] Susceptibility to feedback -
si [0,1] Susceptibility to behavior diffusion -
wi j {0,1} Link strength between agent i and j (Baedeker, 2014)

2.5.1. REFERENCE SCENARIO OF TECHNOLOGY DIFFUSION

In the first simulation experiment we present the spread of environmental-friendly
technology between households generated by the technology diffusion sub-model. This
serves as a reference scenario to consider only the spread of heating feedback devices
and not the diffusion of behavior. Fig. 2.4 compares simulation results to empirical
market shares of a proxy technology.

The simulation results show that adopting environmental friendly household
technology significantly differs between households. The lifestyles of Postmaterialists
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Figure 2.4: Modeled adoption share of feedback devices over time. Modeled market shares are based on the
sub-model of technology diffusion that reproduces the model by Schwarz and Ernst (2009). The whiskers mark
the 2.5th and 97.5th percentiles over the adoption shares from 60 simulation runs. Empirical market shares for
the proxy technology of water-saving shower heads for December 2005 are shown by the hollow symbols on
the dashed line, see Table 2.3 for details.

and Social Leaders are adopting this technology with the greatest rate. Conversely,
the Hedonistic lifestyles barely adopt the technology. In between, the Mainstream and
Traditional lifestyles show intermediate adoption.

These results successfully reproduce the previous results of Schwarz and Ernst
(2009). First, the model generally matches the empirical market shares of the
environmental-friendly proxy technology, see Fig. 2.4. Second, it matches these
empirical data in the same range as the model as Schwarz & Ernst did, see Table 2.3. Our
model deviates less than 20% greater than the empirical market share when comparing
the model it is reproducing with the empirical market share. In addition, if we disregard
the Hedonistic lifestyles, for which only three empirical adoption data points were given
(see Table 2.3), the cumulative deviation is the same for both the original and the here
reproduced model.

We can easily infer that, assuming no behavior diffusion and homogenous effect
of feedback devices on households, the simulated difference in adoption between
lifestyles would imply a proportionate difference in the effect of environmental-friendly
technology between these lifestyles. The lifestyles that adopt such technology the most,
i.e. Postmaterialists and Social Leaders, could thus profit the most from its effect. In
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Table 2.3: Comparison of model reproduction with results of Schwarz and Ernst (2009) and empirical market
shares.

Lifestyle Model result a Original model b Market share c

Postmaterialists 51 53 55 (n=35)
Social leaders 51 53 42 (n=24)
Mainstream 32 18 29 (n=28)
Traditionalists 32 18 21 (n=21)
Hedonistic 5 0 0 (n=3)

a Mean adoption share (%) at simulation time December 2005.
b Adoption share (%) postdicted by Schwarz and Ernst (2009) at simulation time December 2005.
c Empirical market share (%) provided by Schwarz and Ernst (2009) for December 2005 (n ≡ sample size).

contrast, the Hedonistic lifestyles could not profit from the energy-saving effects of this
technology.

2.5.2. ADDING FEEDBACK EFFECT AND BEHAVIOR DIFFUSION

In the second simulation experiment, we added to the above reference scenario the
effect that feedback devices have on households’ heating behavior as well as behavior
diffusion. We assumed a fixed feedback effect strength which is identical for all lifestyles
(∆β = 0.1) and varied the level of behavior diffusion (si ), the latter one being the
innovative component we have added to previous studies and thus of specific interest
to us.

In this scenario, we are interested in the change of agent heating behavior. We focus
on heterogeneity of the agents’ behavior because there are two contradictory processes
at work: adopting feedback devices lead to behavioral change of (only) those households
that have adopted and thus tend to increase heterogeneity of behavior; and behavior
diffusion tends to smoothen the differences and make households more homogeneous.
The interaction effects of these processes are not obvious but determine how behavior
diffusion affects overall energy consumption.

The results of typical single simulation runs are shown in Fig. 2.5. For each level
of behavior diffusion strength, a separate plot is shown. For each time step, we
visualized the distribution of agents’ heating behavior, i.e. their individual room heating
temperature. Additionally, the aggregated average space heating temperature of all
agents is plotted for each time step. We limited the observation to agents of the lifestyles
of Social Leaders, the lifestyle group that most rapidly adopted feedback devices. This
lifestyle group was thus expected to show a clear contrast in heating behavior between
adopters and non-adopters.

The Figure shows that feedback devices have a different overall effect at different
levels of behavior diffusion, regarding heterogeneity of agents’ behavior and change
of average behavior. For all behavior diffusion levels, the agents’ heating behavior
shifts from the initial temperature of 21.1◦C towards 18.0◦C, the temperature being
incentivized by feedback devices. The distinction between the levels of behavior
diffusion appears to be especially clear because the process of behavior change induced
by the feedback devices operates on time-scales that are much shorter than the
process of the diffusion of the devices. Yet, greater behavior diffusion causes (1), less
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Figure 2.5: Change in heating behavior of agents of the lifestyle Social Leaders when considering diffusing

feedback devices, effect of these devices on households and behavior diffusion. Strength of behavior
diffusion (si ) varies between plots. The color gauge shows vertically the distribution of space heating
temperatures within one simulation run and its change over time shown horizontally. The line represents
the mean of the agents’ space heating temperature.

heterogeneity in agents’ heating behavior and (2), faster rate and extent of average
behavioral change. Note that both patterns are consistent between simulation runs.
We discuss these two phenomena in the following section and analyze the underlying
mechanisms.

Heterogeneity between adopters’ and non-adopters’ heating behavior Simulation
results show that stronger behavior diffusion strength reduces the behavioral gap
between adopters and non-adopters. At one extreme, without behavior diffusion, two
space heating temperatures dominate, 21.1◦C and 18◦C: heating temperatures generally
decrease from 21.1◦C to 18◦C. Thus, an increasing number of agents quickly change from
the former to the latter heating behavior over time. This behavioral heterogeneity clearly
distinguishes adopters from non-adopters of feedback devices. When behavior diffusion
strength is greatest, heterogeneity between adopters and non-adopters is minimal and
the transition for adopters and non-adopters from 21.1◦C to 18◦C is simultaneous. In
between these two extremes, increasing behavior diffusion allows the heating behavior
of adopters and non-adopters successively converge during the transition from 21.1◦C
to 18◦C.

According to the applied model, peers imitate each other more when the strength
of behavior diffusion (si ) increases; at maximum, individual behavior is equal to the
(weighted) average of peers’ behavior, regardless of own previous behavior and the effect
of feedback devices (see Eq. 2.2). Note that imitation is bidirectional and thus causes
both adopters and non-adopters to approach the behavior of the other group.
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Speed of change in average behavior At higher levels of behavior diffusion, the mean
agent heating temperature decreases faster. Without behavior diffusion, a decreasing
average heating behavior mirrors the increasing adoption of feedback devices. For
instance, at the simulation year 2005, ca. 50% of Social Leaders adopt feedback devices
(see 2.5.1). At the same time step, mean heating behavior has reached approximately
half way from 21.1◦C to 18◦C. At increasing levels of behavior diffusion, the transition
from 21.1◦C to 18◦C speeds up.

We argue that bidirectional imitation between agents alone fails to explain the
increasing speed of change in average behavior. This is because even though adopters
influence non-adopters towards lower heating temperatures, non-adopters similarly
influence adopters to a similar extent. Behavior diffusion simply distributes the
behavioral change from feedback devices between adopters and non-adopters. Because
behavior diffusion is bidirectional, it can only result in a zero-sum game.

Instead, we argue that this phenomenon is caused by an interaction between
the feedback effect and behavior diffusion. The feedback effect varies depending
on the adopters’ level of heating temperatures. As soon as adopters approach
heating temperatures of 18◦C, no further behavioral change occurs, which could
be ‘redistributed’. In contrast, at greater behavior diffusion, behavior heterogeneity
between adopters and non-adopters decreases and adopters thus heat at higher
temperatures. These higher heating temperatures increase the effect of feedback
devices due to the modeled asymptotic feedback effect function. Additionally, behavior
diffusion more efficiently distributes this effect.

In summary, stronger behavior diffusion leads to two phenomena. First, decreased
heterogeneity of heating temperatures between adopters and non-adopters of feedback
devices. Second, feedback devices motivate a faster transition to this behavior. The first
phenomenon is influenced by agents imitating each other. The second by a combination
of three factors: (1) greater behavior diffusion causes adopters and non-adopters to
converge in their behavior, (2) which causes higher heating temperatures for adopters
whose behavior is consequently more effected by feedback devices, and (3) at high levels
of behavior diffusion, this greater effect can be efficiently distributed between adopters
and non-adopters.

2.5.3. VARIATION IN FEEDBACK EFFECT AND BEHAVIOR DIFFUSION

With the following simulation experiment, we examine the effect of added behavior
diffusion when different lifestyles are considered simultaneously: Which social groups
are most affected by this effect? How does this effect differ between social groups?

As indicators we use the mean space heating temperatures of the households of each
lifestyle. Detailed simulation settings are given in Table 2.2.

We both varied the strength of behavior diffusion (si ) and the feedback effect on
behavior (∆β), to systematically observe their added effect. This variation is motivated
by uncertainty about de facto speeds of these sub-processes (see Anderson et al., 2014).
We vary the parameters as follows to compare four scenarios:

• Scenario 1: Feedback does not change behavior (∆β = 0),
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• Scenario 2: Feedback changes behavior, but behavior diffusion is not present (0 <

∆β < 1∧ si = 0)

• Scenario 3: Feedback and behavior diffusion act at intermediate strengths (0 <

∆β <= 1∧0 < si <= 1)

• Scenario 4: Both feedback and behavior diffusion act at maximum strengths (∆β =

1∧ si = 1)

Figure 2.6: Median of average space heating temperature of lifestyles over time. Varying strength of feedback
effect (∆β) and behavior diffusion (si ). The multivariate timelines were clustered statistically to highlight
model sensitivity. Line dashing represents the clustering result for each parameter combination (see legend).
Whiskers show the empirical 2.5th and 97.5th percentiles of the lifestyles’ average heating temperature of 25
simulation runs each.

The simulation results for these scenarios are shown in Fig. 2.6. Between the
scenarios, mean heating behavior of the respective lifestyles differs significantly. This is
confirmed by statistical clustering of the simulation results separating these scenarios.1

1Each simulation run resulted in one multivariate timeline of average space heating temperatures over time,
distinguished by the different lifestyles. The pairwise distance between these multivariate timelines was
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In scenario 1, in which technology does not change behavior (∆β = 0), overall energy
consumption behavior remains unchanged for all lifestyles. Thus, as can be expected,
with no behavioral change, behavior diffusion simply has no added effect.

In scenario 2 (with feedback effect but without behavior diffusion), the pattern of
behavioral change is similar to that when feedback devices are adopted. Feedback
technology changes energy consumption behavior of adopters, but this behavior does
not diffuse. Thus, behavioral change is directly determined by technology adoption (see
Table 2.3). As with the first simulation experiment, Postmaterialists and Social Leaders
were similarly affected first and to the highest degree. Mainstream and traditional
lifestyles were affected shortly after. The Hedonistic lifestyle was affected last and to
the lowest degree. The behavioral change over time was not sensitive to the strength of
feedback effect on behavior (∆β). We assume this to be caused by households adopting
technology relatively slowly compared to the time-scales on which the feedback effect
operates.

In scenario 3 (with both feedback effect and behavior diffusion at intermediate
levels), stronger behavior diffusion caused smaller differences in behavior between
lifestyles, and absolute levels of energy consumption of all lifestyles decreased. At
maximal behavior diffusion within this scenario, the differences in behavior seemingly
disappeared, similar to those observed in section 5.2. For agents of the Hedonistic
lifestyle, stronger behavior diffusion led to significantly lower room temperature
compared to without behavior diffusion. A similar effect occured for the other lifestyles,
but to a lesser extent. Thus, the less a lifestyle adopted technology the higher the added
effects of behavior diffusion to its heating behavior. Of note, even the leading lifestyles
(Postmaterialists and Social Leaders) reduce room temperature quicker if behavior
diffusion is assumed, i.e. the additional ‘redistribution’ of changed behavior to other
lifestyles does not (over-)compensate the effect discussed in section 5.2.

In scenario 4 (both feedback effect and behavior diffusion at maximum level),
heating behavioral changed the quickest for all lifestyles, implying a synergistic effect
of technology and behavior diffusion on energy consumption behavior.

2.6. DISCUSSION AND CONCLUSIONS

In this study, we have proposed, implemented and simulated an assessment framework
for the overall effect of heating feedback devices on energy consumption. This
framework includes the process of behavior diffusion for assessing heating feedback
devices, which commonly considers their direct effect on adopters and, to a lesser extent,
how devices diffuse between (potential) adopters.

This study confirms our initial proposition: the relevance of incorporating behavior
diffusion into the assessment of such devices. Simulations revealed two mechanisms
behind behavior diffusion driving the overall effect of heating feedback devices.
First, behavior diffusion spreads the effect of feedback devices between adopters and
non-adopters. It thus not only decreases heterogeneity of these two groups’ behavior but
also introduces a qualitative difference compared to technology diffusion by reaching

defined by their Manhattan distance. Hierarchical clustering into 4 groups was conducted applying Ward’s
minimum variance method.
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non-adopters of devices. Second, simulations show behavior diffusion can considerably
speed up the overall behavioral change caused by feedback devices. The convergence
of energy-consumption behavior between adopters and non-adopters slows down
adopters reaching the energy conservation level incentivized by feedback devices. This
prolongs the effect of feedback devices on adopters, which is further propagated to
non-adopting households through behavior diffusion.

In summary, we observe that behavior diffusion contributes significantly to the
overall effect of feedback devices on energy consumption. Without behavior diffusion,
lifestyles are only affected according to their share in adopting technology. Behavior
diffusion reduces the differences in behavior between adopters and non-adopters and,
when interacting with the feedback effect, synergistically increases the speed and degree
of behavioral change for all lifestyle groups so the overall effect of feedback devices is
stronger.

This finding supports previous research highlighting the potential for behavior
diffusion to reinforce interventions for changing energy consumption behavior (see
Peschiera et al., 2010; Chen et al., 2012; Anderson et al., 2014). In this chapter, we
confirmed such an added effect of behavior diffusion with heating feedback devices
exists, particularly when their simultaneous diffusion interacts.

2.6.1. IMPLICATIONS AND RECOMMENDATIONS

We focus on three aspects highlighting the implications of our study: (1) lessons on the
difference between behavior-changing feedback devices and automation technology,
(2) the fruitful interaction of two existing fields of diffusion research and (3) future
applications of the proposed framework.

First, we stress feedback devices that support energy conservation can spread
changed behavior beyond households adopting these devices, thus creating the positive
externality of benefiting more households. We assume that this kind of externality is
not specific to feedback devices, but to varying degrees inherent to any intervention
that changes energy consumption behavior. In contrast, energy efficiency devices that
do not change behavior, such as domestic energy efficiency automation technology,
do not provide this externality. For example, heating automation devices, e.g. Google
Nest, can potentially increase heating energy efficiency, but do not incentivize behavior
change capable of spreading via behavior diffusion. These considerations underline
the relevance of (also) analyzing behavior diffusion when assessing energy-efficiency
devices.

Second, we highlight the added value of integrating technology diffusion and
behavior diffusion models. In this study, integrating both types of diffusion models
identified indirect effects from feedback devices that normally would not emerge with
either diffusion model. We also assume interactions between these types of diffusions
might be relevant in contexts where the effect of technology is behavior change.

Third, the synergy between diffusion of feedback devices and energy conservation
encourages further research with this framework. This includes refining the simulation
model to empirical scenarios.
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2.6.2. LIMITATIONS AND FUTURE RESEARCH

Findings from the proposed technology assessment framework were based on a
simulation model that integrates two existing models. The tight coupling between the
conceptual framework and its implementation in this simulation model allowed us to
analyze its concepts and integrate the framework more generally. However, as the main
limitation of this study, the findings lack empirical support. Improving the model with
empirical data thus constitutes a major route for future work.

We outline below methods for developing the presented framework into a more
empirical-based model. Such a model would allow estimating more precisely the
overall effect of feedback devices on heating energy consumption. Conversely,
behavior-changing feedback devices could be compared ex-ante in how they conserve
energy. Encompassing the mechanisms, speed and intensity of technology diffusion,
feedback effect, and behavior diffusion for both applications should be based on
empirical data. We present three practical steps for strengthening the empirical
foundations required by both applications.

First, empirical data can make the model more realistic, e.g. by using pattern
oriented modeling (see Grimm et al., 2005). Collecting data on how society influences
energy consumption behavior is particularly challenging. Yet, research on how
households interact regarding energy conservation levels identifies patterns useful for
developing future model (see Baedeker, 2014; Nolan et al., 2008). In addition, field
research in the realm on Living Labs and Smart Cities provides opportunities to gather
empirical data on influence between households (e.g. respective to their belonging to
lifestyle groups) (see Pentland, 2014).

Second, another route forward is making the decision-making more specific to
heating behavior than in the existing models. One possibility is using empirically-based
choice modeling (see Araghi et al., 2014). This allows considering other effects on
heating behavior, e.g. fuel price.

Third, current field tests of novel feedback devices, e.g. Transformational Products,
can better estimate the direct effect of feedback on behavior (see Liedtke et al., 2015).
Focus groups of field testing participants can further knowledge on accepting over longer
times periods, an important factor contributing to diffusion success (Rogers, 2003). This
allows further investigation of the role habits play in the repeatedly observed relapse of
behavior during long-term behavioral change interventions (see Peschiera et al., 2010;
Chen et al., 2012).

Additionally, we can use the presented model to investigate heating feedback
devices combined with energy-efficient retrofits of buildings, an important energy
efficiency approach for the built environment (Guerra Santin et al., 2009). In this
study, we model the overall effect of ‘stand-alone’ feedback devices on heating
temperatures. Alternatively, one could model the application of feedback devices where
both approaches, i.e. renovation and behavioral change, interact. Investigating how
interaction of feedback devices and renovation interact is interesting as it has been found
that retrofitting saves less energy (and heating costs) than expected due to the rebound
effect (Friege and Chappin, 2014), i.e. users commonly increase heating temperatures
after energy-efficient renovations and hence decrease the energy efficiency gain from the
renovation. The assessment framework we developed could help investigating the effect
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of feedback devices if they are available to households after energy-efficient renovations,
e.g. through craft businesses.

2.6.3. CONCLUSION

Considering behavior diffusion when assessing behavior-changing feedback devices is
important because it can significantly influence their overall effect. We identified two
mechanisms through which behavior diffusion increases both the reach and speed of
behavioral change induced by such devices.

We suggest that interventions that aim at changing behavior should exploit
this synergy for increasing their effects. The proposed framework is useful for
better capturing and eventually assessing the effect of such interventions on energy
consumption behavior ex-ante.





3
ENERGY-EFFICIENCY IMPACTS OF

AN AIR-QUALITY FEEDBACK DEVICE

“It’s a dangerous business, Frodo, going out your door.
You step onto the road, and if you don’t keep your feet,

there’s no knowing where you might be swept off to.”

J.R.R. Tolkien

3.1. INTRODUCTION

The main factors that determine energy demand of houses are (1) the climate, (2)
building properties, e.g. heat permeability of building envelope, (3) efficiency of installed
heating technology, and (4) the heating behavior of households, e.g. how to heat and
how to ventilate rooms (Pérez-Lombard et al., 2008; Gill et al., 2011). In this paper, the
focus lies on household behavior, which is an important pillar for reduction of energy
consumption (Tukker et al., 2010). For instance, identical buildings can vary by a factor
of over 3 between minimum and maximum energy consumption, only due to different
users (Gill et al., 2011).

Interventions that persuade households to practice energy-efficient heating
behavior are an attractive approach to reduce heating energy consumption with low
overall effort. Two important advantages of focusing on household behavior are that (1)
it is a low-cost option to mitigate CO2 emissions (Birol, 2008), as no significant financial
investment is required (Dahlstrom et al., 2012) and (2) behavior interventions are less
prone (in comparison to building insulation) to trigger rebound effects in domestic
heating (see Friege and Chappin, 2014). One example of efficient heating behavior
is ‘shock-ventilation’ (SV) (i.e. completely opening windows for 5 minutes two to four

This chapter has been published as Jensen, T., Holtz, G., Baedeker C., Chappin, E.J.L., 2016. Energy-efficiency
impacts of an air-quality feedback device in residential buildings: an agent-based modeling assessment.
Energy and Buildings 116.
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times per day), which saves up to ca. 25% of heating energy—with an average of ca.
8%—compared to commonly practiced trickle ventilation (i.e. ventilating at low flow
of air, e.g. by opening windows only slightly)1 (Grinewitschus et al., 2013; Lovric, 2015).
Previous studies showed that these savings rely on both the quicker ventilation rate and
on preventing the too long ventilation times of trickle-ventilation (Galvin, 2013).

Devices that provide feedback to households on their heating behavior appear
promising as a means to change these routines. Their installation in households leads
to a relatively high frequency of interaction with their users, supporting habituation of
new behavior (Jager, 2003). One such device is the ‘CO2 meter’, which visualizes indoor
air-quality (measured by CO2 level) in the colors of a traffic light. This feedback proved
successful at persuading its users to practice SV behavior and to save heating energy
(see 3.3.2). Such behavior change of device users is commonly identified by combined
monitoring of behavior and energy consumption (Guerra Santin et al., 2009) (e.g. in
‘Living Labs’ in which interventions are tested in the users’ real life surroundings (Liedtke
et al., 2015)). The direct stimulation of behavior change within adopting households—in
the following referred to as ‘feedback effect’—, is the keystone of the impact of a feedback
device.

However, the effect of the ‘CO2 meter’ in a multi-household setting on a larger scale,
such as a city, depends on additional processes (Jensen et al., 2015): (1) The technology
diffusion of the feedback device among households, by which more households are
exposed to feedback. Market research methods can give insights into future market
diffusion of household devices. This ranges from qualitative field experimenting (Rogers,
2003, pp. 71) to quantitative simulation models that project future diffusion (Schwarz
and Ernst, 2009; Sopha et al., 2013; Kiesling et al., 2012). (2) The diffusion of changed
behavior via social influence that adopters exceed on non-adopters in their social
environment. Social influence is a strong motivation for behavior change (Nolan et al.,
2008; Liedtke et al., 2013) and thus has the potential to influence the overall effect of
feedback devices (Jensen et al., 2015). The effect of feedback devices within households,
the diffusion of devices, and diffusion of (changed) behavior have commonly been
researched separately (Chen et al., 2012; Jain et al., 2013; Ekpenyong et al., 2014; Azar and
Menassa, 2015). However, Jensen and Chappin (2014) have shown that interactions of
device diffusion and behavior diffusion, coined co-diffusion of technology and behavior
can induce effects that become only visible from the holistic perspective.

Assessing the overall effect of feedback devices beyond single households can be
achieved by simulation modeling. This can be done by integrating the above outlined
processes into one model. Agent-based modeling has been used successfully for this
integration (Jensen et al., 2015), because it allows direct modeling on existing empirical
and theoretical knowledge (van Dam et al., 2012). This previous modeling approach
should be refined into a more empirical-based model, in order to allow a realistic
assessment of the magnitude of the impact of feedback devices.

In this paper, we therefore assess the impact from the ‘CO2 meter’ via an
empirically-based agent-based model (ABM) that integrates feedback effect and the
diffusions of technology and behavior. To support practical applications with more
insight, also the contributions of sub-processes to this impact are quantified. This

1Practicing SV can also consume more energy, e.g. compared to not ventilating rooms at all.
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aims to answer the following question: what is the overall effect of the ‘CO2 meter’ on
energy-efficient heating behavior, as emerging from its sub-processes of feedback effect,
technology diffusion and behavior diffusion? The remainder of this paper is structured
as follows. First, the functioning of behavior-changing feedback devices is explained,
using the example of the ‘CO2 meter’. Second, the framework used to analyze the effect
of this device in a multi-household setting is described. Third, a novel simulation model
is introduced that projects the potential future impact of the ‘CO2 meter’ on heating
behavior within the city of Bottrop, Germany. This model is developed and calibrated
based on empirical research conducted by some of the authors. 2 Finally, simulation
experiments are analyzed in order to answer the stated research question.

3.2. BACKGROUND

In this section is presented how the ‘CO2 meter’ affects behavior of its users. Further, it
shows how it unfolds its overall effect in a multi-household setting.

3.2.1. FEEDBACK EFFECT OF DEVICE TO ITS USERS

The success of the ‘CO2 meter’ in reducing heating demand bases on its relative
advantage3, perceived by its users, and on its conscious and its pre-conscious influence
on them.

Use of the ‘CO2 meter’ is motivated by its assistance to improve indoor air quality as
a means to health and air quality comfort, which has a relative advantage over manual
ventilation without knowing CO2 levels. Previous research showed that a ‘CO2 meter’ can
change behavior and improve indoor air-quality significantly (Geelen et al., 2008). As the
focus of ventilation during the heating period lies mainly on thermal comfort (Griffiths
and Eftekhari, 2008; Santamouris et al., 2008), feedback can shift this focus towards
air-quality. Energy savings from incentivized SV behavior are a positive side-effect to
this, which can additionally motivate use of the device.

A feedback device, such as ‘CO2 meter’, can influence the heating behavior of its
users (Jensen et al., 2015) via two routes: (1) via information it persuades users to start
and to stop ventilation. Even though households can be aware of air quality, additional
information can lead to reinterpretation and thus to conscious and intentional behavior
change. (2) via supporting habituation of changed ventilation behavior. Habits are
action sequences triggered by environmental cues and performed without significant
deliberation. Repeatedly practicing a habit with positive outcome increases its strength,
making it self-reinforcing and relatively stable (Jager, 2003). Combining the two routes of
information provision and support of habituation, new habits would form starting from
initially conscious interactions with the feedback device which are then more and more
enacted without extensive deliberation. For example, keeping track of exact CO2 levels
would convert into the habit of ventilating for a certain amount of time at certain times
of the day, e.g. after getting up in the morning. Thus, habit formation could stabilize the
behavior induced by the ‘CO2 meter’.

2This refers to the authors of the published journal paper. Model development and calibration was taken out
exclusively by the author of this thesis.

3Relative advantage is “the degree to which an innovation is perceived as better than the idea it supersedes."
(Rogers, 2003, p. 15).
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However, the empirical evidence about long-term effects of feedback-devices is
mixed. Some research suggests that behavior change from feedback devices relapses
eventually (Peschiera et al., 2010). Conversely, others suggest conditions under which
behavior relapse does not take place, e.g. if reoccurring feedback is intuitive (Jain, 2013),
or if coming from a permanently installed device (Burchell et al., 2014). Also, ongoing
behavior change has been observed at particularly long-term exposure to feedback
devices (Stromback et al., 2011). Due to these contradicting findings, the long-term
effect of the ‘CO2 meter’ on users can not be clearly deduced from experience with other
feedback devices. Therefore, feedback effect was modeled to be neither relapsing, nor
increasing, but to be constant over time.

3.2.2. OVERALL EFFECT OF FEEDBACK DEVICE

Figure 3.1 shows how the overall effect of a feedback device emerges from interactions
between individual households, based on an assessment framework by Jensen et al.
(Jensen et al., 2015). Besides behavior change from feedback devices, central entities
of this framework are households who make two decisions: whether to adopt a feedback
device and whether to practice SV behavior.
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Figure 3.1: Conceptual framework on the effect of behavior-changing feedback devices. Each of the three
shown households (A, B and C) has two roles: to decide on device adoption (bottom level) and on heating
behavior (top level). These decisions are influenced by media information and social influence. Those
households that adopt a feedback device are also affected in their heating behavior by feedback from the
device.

At ‘decision events’, households decide on the adoption of feedback devices and
on which heating behavior to practice—but they do not decide on it continuously.
For device adoption, there are certain windows of opportunity, e.g. when the device
becomes available or when previous technology is replaced. Similarly, households
do not continuously deliberate on heating behavior. Daily repeated behavior is
commonly habitual, which limits its re-evaluation—and thus potential intrinsic
behavior change—to sporadic events. Due to the relative stability of habits (Jager,
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2003), external events are ideal to trigger the breaking of a habit. In the context of
ventilation behavior, such triggering events can be changes of heating costs, household
demographics, the place of living, or the appearance of mold within the home. Such
events can ‘unfreeze’ a habit environment, create a window of opportunity for conscious
deliberation and behavior change, and—via anew habit formation—‘refreeze’ into a
(potentially changed) habit (Lewin, 1947).

Once a decision event occurs, the actual decisions on adoption of devices and
SV behavior depend on both intrinsic factors of households and their environment.
According to the Theory of Planned Behavior4 (Ajzen, 1991), adoption depends on the
intention to do so, and intentions depend on the households’ attitudes towards the
adoption choice, their perceived behavioral control over adoption and the subjective
norm, i.e. the perceived adoption prevalence within their social environment. We
propose information to have the potential to change attitude (i.e. persuading to adopt)
and therefore to have an influence on adoption decisions. The importance of subjective
norms (Nolan et al., 2008) motivates considering interactions in social networks and the
effect that adoption behavior of peers has on a particular household. The perceived
behavioral control of households is assumed to be high, as ventilation behavior can
easily be changed.

The two diffusions of technology and behavior are connected by the effect that a
feedback device has on heating behavior of a household. The diffusion of a feedback
device can change the behavior of device adopters. This changed behavior can then
influence social norms in the social network of the adopting household. Through this
change in norms, the energy-efficient behavior can further diffuse among households,
including to households that are either not using the feedback device or that are not
influenced by it (Jensen et al., 2015).

3.3. METHODOLOGY

In this section, first, the use of agent-based modeling for our study is motivated.
Thereafter, the simulation model developed to answer the research question is
presented.

3.3.1. AGENT-BASED MODELING

Agent-based modeling is a bottom-up simulation method. Agents are computer-objects
that can correspond one-to-one to real-world entities (van Dam et al., 2012). Thus,
an ABM can represent households with “agents [that] are programmed to interact in
the same ways as the real actors do and to experience the same constraints and have
access to the same knowledge” (van Dam et al., 2012, p. vi). Consequently, relevant
empirical data (e.g. on households’ locations and their decision preferences concerning
innovations) can be incorporated into models without the need for further simplification
or abstraction. This has the added advantages of making behavior of agents relatively
easy to understand and to communicate.

Agent-based modeling is suited to model the diffusion of innovations. According to
Rogers, “diffusion is the process by which an innovation is communicated through certain

4This theory is widely applied for decision modeling (Schwarz and Ernst, 2009; Sopha et al., 2013).
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channels over time among the members of a social system" (Rogers, 2003, p. 11). Thus,
diffusion strictly depends on decisions and communication of households (van Dam
et al., 2012, pp. 48). An ABM, facilitates understanding the mechanisms of emergence,
by capturing both an emergent phenomenon and its causing elements

For three reasons agent-based modeling is suitable to capture the overall effect
of the ‘CO2 meter’. Agent-based simulation modeling is particularly suited to model
household behavior appropriately when their adaptiveness, heterogeneity and local
interactions should be accounted for (Grimm and Railsback, 2013). Adaptiveness
is important to consider, e.g. because households that use feedback devices choose
differently on behavior adoption than those that do not; heterogeneity is important
because households adopt sustainable household products and heating behavior under
different conditions; local interactions should be modeled due to the role of social
contacts in persuading innovation adoption.

3.3.2. MODEL DESCRIPTION

The purpose of the presented model is ex-ante assessment of the ‘overall effect’ of
behavior-changing feedback devices: their effect on heating behavior in the adopting
households, the diffusion of these devices, and the diffusion of this behavior change
to other households, including non-adopters. The model was implemented in Repast
Simphony for Java (North et al., 2013). In the following, it is is presented in the format
of an ODD Protocol (Grimm et al., 2010), which is a standard for presenting agent-based
models.

ENTITIES, STATE VARIABLES AND SCALES

Household agents are the main model entities. Their properties and actions are shown
in Figure 3.2.
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Figure 3.2: Modeled household properties and actions. Formatted as a Unified Modeling Language class
diagram. See text for details.

Each household agent has six individual properties. Their lifestyle (i.e. the consumer
group they belong to) is a fixed property of each household that influences their



3.3. METHODOLOGY

3

47

inclination to adopt sustainable household devices (Schwarz and Ernst, 2009). Whether
they adopt a feedback device or SV behavior, respectively, are binary states of each agent
(‘adoptingTechnology’ and ‘adoptingBehavior’). They further possess a geographical
location (‘xCoordinate’ and ‘yCoordinate’). They are also located in a social network,
being influenced by a fixed set of peers (‘networkPeers’). Each agent has a threshold
above which it intends to adopt SV behavior. The threshold is modeled as the minimum
fraction of peers that adopted SV behavior (THLD∗

i , see 3.3.2).
Agents perform actions (i.e. ‘behaviorDiffusion()’, ‘technologyDiffusion()’, and

‘feedbackEffect()’) that correspond to the submodels described in sections 3.3.2–3.3.2.
Each simulation step corresponds to one month. The point in time of initialization

(t0) represents January 2006. Feedback devices are introduced in January 2016 (ti nt )
and simulations terminate with the year 2030 (tend ). This describes a situation where
feedback devices are not known or not available until beginning of 2016. From that
moment on, the devices are available on the market.

PROCESS OVERVIEW AND SCHEDULING

An overview of the simulation phases and their scheduling is given in Figure 3.3.
Simulation is subdivided into three phases: (1) during the Setup phase, model runs are
initialized (see 3.3.2), household agents are added to the model and connected via a
social network (see B). (2) In the Pre-introduction phase, feedback-devices are not yet
introduced into the system. Thus, the simulation is running but only the process of
behavior diffusion takes place (see 3.3.2). This serves for the replay of historic behavior
diffusion patterns (see 3.3.2). (3) The Post-introduction phase starts at the introduction
of feedback devices into the system. From there on, also the processes technology
diffusion and feedback effect occur (see 3.3.2 and 3.3.2).

INPUT DATA

Fundamental empirical input data of the model describe households and their social
network. 31.839 household agents were generated from municipal geo-data within
the spatial extent of the central neighborhoods of the city of Bottrop, Germany.
To reconstruct the socio-spatial structure of households in this area (Ernst, 2014),
marketing data on the spatial distribution of lifestyles was used to assign each household
to a Sinus® lifestyle group (Sinus Sociovision, 2015)). This typology clusters households
in lifestyles (the so-called milieu) which are differentiated along two dimensions: social
status and openness of basic values.

The social network between agents was generated based on a mixed-methods
social network analysis (Prell, 2011; Holstein and Straus, 2006) conducted in Bottrop.
Interviews were conducted in which social network graphs were generated that mapped
by which organizations and individuals the interviewees were influenced in their heating
behavior, e.g. how to set up their heating system and advice on saving energy. This
identified social influence from peers (i.e. friends, neighbors and relatives) as important
factors to explain heating behavior. The modeled social network was tailored to
feature the same degree-distribution5 of ego-networks as these empirical networks.

5The degree distribution in a graph is the probability distribution of the number of connections that its nodes
have.
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Decision event Events triggering behavioral change are highly specific to personal
lives and no empirical data on statistical distribution of such events was available to
us. We therefore used Google search frequency on SV behavior as a proxy. Search
for information is an integral step of innovation adoption (Rogers, 2003). Monthly
frequencies of search engine queries about SV were used as a proxy for events of
deliberation on whether to adopt SV behavior. These data were used to parameterize
a time-dependent rate δβ(t ), which represents the rate of deliberation on SV adoption in
our model (see C).

Adoption decision model The development of the decision model was guided by a
qualitative survey, distributed to households in the Ruhr Area in winter 2014/2015.
Householders were asked which sources (1) they had received information on SV from
and, (2) provided they practiced SV behavior, which sources had motivated adoption.7

Responses were quantified by counting the occurrence of answer options for the two
questions. Survey results underlined the importance of modeling both media and social
contacts to influence behavior adoption. According to our analysis (see D), reported
adoptions were motivated for up to 23.1% by social influence and for at least 76.9% by
information (from media and social contacts).

This contribution of information and social influence to SV adoption led us to apply
the Theory of Planned Behavior for a decision model on the intention to adopt SV
behavior. This theory is useful here, because it distinguishes between changes to attitude
(e.g. due to information), as well as to subjective norms (e.g. due to social influence).
The structure of the applied decision model based on the Theory of Planned Behavior
is shown in Eq. 3.1: when deliberating, agent i adopts technology if attitude (ATTi ),
perceived behavior control (PBCi ) and subjective norm (SNi ) outweigh an intention
threshold (THLDi ). This threshold represents alternative behaviors that have to be
exceeded in utility, as well as potential inertia, e.g. caused by the effort of changing
behavior.

adopti on =

{

1 ATTi +PBCi +SNi ≥ THLDi

0 else
(3.1)

For parameter reduction, we simplified the adoption condition to make it depend
only on SNi (see Eq. 3.2). Thus, subjective norm remains the only dynamic parameter:
its exceedance over a threshold (THLD∗

i ) expresses intention to adopt SV.

ATTi +PBCi +SNi ≥ THLDi ⇔

SNi ≥ THLDi −ATTi −PBCi ⇔

SNi ≥ THLD∗
i

(3.2)

To capture the role of information in motivating adoption, each agent’s attitude
towards SV (ATTi ) is incremented each simulation step by ∆β,AT T . This represents
persuasion from government and media campaigns that provide positive information on
SV behavior (Galvin, 2013). Thus increased attitude equals decrementing the threshold

7Answer options included mass media, social media, colleagues and classmates, family and household
members, friends and acquaintances, and a blank text field for other sources.
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THLD∗
i that the subjective norm has to exceed for the decision model to favor SV

adoption.

SUBMODEL TECHNOLOGY DIFFUSION

Because the ‘CO2 meter’ is relatively novel, no historical adoption shares are available.
For estimating diffusion in such cases, Rogers (2003) recommends: (1) transferring
knowledge on adoption (e.g. adoption rates) from a similar innovation and (2) surveying
perceived attributes of the novel innovation. We combined these approaches by using
an existing simulation model on the diffusion of similar technology and by integrating
surveyed perceived attributes of the ‘CO2 meter’ into this model.

The existing model that was used for this purpose is the technology diffusion
model presented by Schwarz and Ernst (2009). It was built to model the diffusion of
water-saving shower heads. This device is similar to the ‘CO2 meter’, regarding Rogers’
generalized innovation characteristics: (1) compatibility: just like heating feedback
devices, they are integrated in daily household routines to conserve thermal energy (e.g.
hot water); (2) complexity: installation of both technologies is simple and can be done by
the lay person; (3) triability: given their similar costs at mass production and their similar
complexity of installation, both innovations can be experimented with on a limited basis.

The Schwarz & Ernst model captures households in their heterogeneity in lifestyles.
Households—depending on their lifestyle—have different empirical-based decision
models on feedback device adoption, each inspired by the Theory of Planned Behavior.
Households with lifestyles of higher social status are modeled to deliberate rationally,
weighing all adoption decision factors. Conversely, other households decide by bounded
rationality, based on the subjectively most important decision factor that clearly favors
acceptance or rejection of adoption.

After empirical parameterization, the decision model by Schwarz & Ernst is
equivalent to the following simple decision rules. At the monthly probability (δα) of
0.4%, agents decide on device adoption—this probability was taken over and thus the
temporal pattern of how the proxy technology diffuses. At deliberation, the households
of higher social status (grouped hereupon as Social Leaders) always adopt the diffusing
device—not being influenced by social status. Households of the societal mainstream
and conservative lifestyles (grouped hereupon as Mainstream agents) adopt devices at
50% probability, imitating the adoption choice of the majority of their social network
peers otherwise. Households of the hedonistic lifestyle (defined as the social group
of relatively high openness of basic values and lower social status (Sinus Sociovision,
2015), labeled hereupon Hedonists) exclusively imitate the majority of their peers.
Consequently, the latter two lifestyle groups are modeled to be able to discontinue the
use of the ‘CO2 meter’.

For adaptation of the model to our case, we surveyed the perception of householders
in Germany towards the ‘CO2 meter’. Resulting values of perception substituted
the device-specific parameters in the decision model of Schwarz & Ernst. However,
the resulting simple adoption heuristics (and consequently the adoption rates and
timelines) did not change with these changed parameters. This supports the proposed
similarity between the water-saving proxy technology and the ‘CO2 meter’, but also
reflects the low parameter sensitivity of the applied decision model.
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SUBMODEL FEEDBACK EFFECT

We based modeling of how feedback technology affects ventilation behavior directly on
observations from living lab experiments in 12 households. These were equipped with a
‘CO2 meter’ and their indoor air-quality, heating temperature and energy consumption
were monitored. Adopters of the ‘CO2-Meter’ were observed to be persuaded to adopt
SV behavior at a probability of 0.83 (p(α∗)). This probability was used to model the
rate by which households adopt their behavior after having adopted a feedback device.
As was the case in the field tests, this effect is modeled to take place within one
month after adoption (i.e. one time step after device adoption, cf. Fig. 3.3). As a result
from the air-quality feedback, individual households saved more than 10% (supposedly
because they were ventilating rooms permanently before) or even increased their energy
consumption more than 10% (supposedly because they barely ventilated rooms before
given the feedback). Energy savings however concentrated in the interval between 5% to
10%. Given this range of the dominant group, the households with a change in energy
consumption of less than 5% were assumed to not having responded to feedback devices
significantly, and model them to have not changed behavior.

MODEL VERIFICATION

The model implementation was verified to assure it corresponded to the here presented
conceptual model. Verification focused on the two submodels behavior diffusion
and technology diffusion, being the most complex model components. The behavior
diffusion submodel was verified by unit testing of its implementation. The technology
diffusion model was verified by reproduction: given the same parameterization, but
different households and social network, technology diffusion was highly similar to
results of the technology diffusion model by Schwarz and Ernst (2009), as shown by
Jensen et al. (2015).

PARAMETERIZATION

Table 3.1 shows the model parameters set during initialization. Four parameters were
varied in 5 steps each, equally spaced within the given intervals. Each of the resulting
625 parameter combination was simulated twice—once with and once without the ‘CO2

meter’ being introduced.

Indirect calibration Whereas the feedback effect and technology diffusion processes
were modeled on living lab experiments and an existing model, we indirectly calibrated
the behavior diffusion process with three empirical patterns. This procedure of
parameter uncertainty reduction is also referred to as ‘pattern-oriented modeling’ or
‘inverse modeling’ (Grimm et al., 2005; Wiegand et al., 2003). In a first step, those
parameter combinations that reproduce the empirical patterns are identified, and only
these combinations are subsequently used for evaluating the effect of feedback devices.
This assures that results accord to the available empirical data.

First, the conducted survey revealed a pattern on the respondents’ perceived ratio of
peers who adopted SV behavior. At the beginning of 2015, its value is 38.3%, which was
extended by an uncertainty range to the interval 32.3–44.3% .

Second, the surveyed ratio between information and social influence in motivating
SV adoption (see Table C.1) was applied. Modeled SV adoptions (up to the time of the
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Table 3.1: Parameterization for the simulation experiments. See text for references to parameterization
sources.

Parameter Value Meaning

p(βi ,t0 = 1) [0.27, 0.39] Initial SV behavior adoption share
T HLD∗

mean [0, 1] Mean of behavior adoption threshold
T HLD∗

std
0.3 Std. of behavior adoption threshold

δβ,event ]0, 0.04] Rate of behavior delib. trigger events
∆β,AT T ]0, 0.006] Monthly increment to attitude towards SV

p(αi ,t0 = 1) 0 Initial feedback device adoption share
δα 0.004 Technology adoption deliberation rate
p(α∗) 0.833 Success rate of feedback devices
t0 0 Time step (month) of initialization
ti nt 120 Time step (month) of device introduction
tend 300 Time step (month) of end of simulation
dN B HD 200 Max. length (m) of neighborhood edges
pN B HD 0.5 Ratio of edges within neighborhood

survey, i.e. 2015) was traced back by whether they were caused rather by change of
attitude or subjective norm. If a household agent (until first SV adoption) underwent
more change in attitude than in subjective norm, then this agent was assumed to be
‘motivated’ by information. Conversely, if change in subjective norm exceeded that of
attitude, the behavior change was assumed to be ‘motivated’ by social influence. Thus,
those parameterizations were selected that generated the surveyed shares of adoption
motivation (i.e. ca. 8–23% from social influence and ca. 77-92% from information, until
the beginning of 2015; see D).

Third, those initializations where less than half of initial SV adopters adopt this
behavior intentionally were discarded. This represents a tendency towards initial
adopters to intend SV adoption, without enforcing full intentionality.

3.4. RESULTS AND DISCUSSION

To address the research question on the overall effect of feedback devices on ventilation
behavior, we conducted the following four model experiments. (1) A reference scenario
of behavior diffusion, where feedback technology is not introduced. Thereby, model
parameterizations that reproduced empirical patterns of SV behavior diffusion (see
3.4.5) were selected and only those were included for the following scenarios. (2) The
diffusion of the ‘CO2 meter’ only was simulated. (3) The co-diffusion of technology
and behavior was simulated, in which diffusing feedback devices add to and reinforce
the diffusion of SV behavior. (4) In concert with the baseline behavior diffusion
from experiment 1, diffusion of devices among households where they can change
behavior was simulated. But this behavior change from devices was assumed not to
diffuse beyond adopting households. Results from this experiment were compared
to experiment 3 to quantify relative strengths of technology diffusion and behavior
diffusion from feedback devices.
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3.4.1. EXPERIMENT 1: BEHAVIOR DIFFUSION

To calibrate the diffusion of SV behavior at absence of feedback devices, those
parameterizations were selected that met the given empirical patterns.

Parameter selection This section shows how application of empirical data from
interviews decreased parameter uncertainty about the varied parameters THLD∗

mean ,
∆β,AT T , δβ,event , and p(βi ,t0 =1). These have the following effects in the model: (1)
THLD∗

mean influences whether, during the course of the simulation, SV adoption had
the tendency to diffuse successfully or is successively rejected; (2) ∆β,AT T influenced
the same feature, but could only add positively to SV behavior diffusion. Thus, it can
reverse a negative trend caused by a high THLD∗

mean . (3) δβ,event controls the speed of
behavior diffusion, e.g. a higher rate increased (negative or positive) rates of diffusion
in magnitude. (4) p(βi ,t0 =1), i.e. initial SV adoption share, influences which parameter
combination could meet the surveyed adoption share pattern in 2015. At lowest SV
initialization, exponentially increasing runs were selected. Conversely, at highest SV
initialization, runs with a quasi-linear decline in SV adoption were selected.

Fig. 3.4 contrasts the state space of behavior adoption over time between all
simulated parameterizations and the 7% of parameterization sets that were selected via
the empirical patterns. Behavior diffusion trajectories of all model parameterizations
were diverse, with SV adoption exceeding 95% and dropping below 5% over the course
of simulation. Conversely, the state space of the selected parameterizations narrowed
down significantly. Variation is particularly low until 2016, which is up to when empirical
data was available.

Hence, the empirical patterns reduced uncertainty the most at the time period they
apply to, but still reduced uncertainty considerably for the simulation time from 2016
on. The gain of SV adoption over the course of the simulation had a strong positive
tendency, ranging from ca. -15% to ca. +60% over the same time period. Thus, the range
between moderate decrease to drastic increase projects a positive expectation for future
SV adoption.

Distribution under selected parameterizations SV behavior in selected model
variants is shown in Fig. 3.5. Despite their variation of up to 60%, half the selected
model variants, as well as the average adoption per time step, lay within a relatively
narrow band of c. 20% difference in SV adoption share. Distribution of projected SV
adoptions was skewed: outliers towards lower SV adoption were stronger than towards
greater ones.

3.4.2. EXPERIMENT 2: ‘CO2 METER’ DIFFUSION

Fig. 3.6 shows simulated adoption of feedback devices among different lifestyle groups
over time. Device adoption rates differed between lifestyle groups: agents of the Leading
Lifestyles showed highest, the Mainstream group intermediate, and Hedonists lowest
adoption rates. This was directly caused by different adoption decision models (see
3.3.2).

Due to this difference in decision models, SV adoption curves differed between
lifestyles: Leading Lifestyles showed an asymptotic, Mainstream agents a quasi-linear,
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Figure 3.4: Pattern-oriented selection of parameterizations. The dotted lines delimit the state space of all
simulation runs. Range of selected parameterizations shown by black area. Curve oscillation was due to
seasonal variation in SV adoption deliberation (see C.4). The dashed vertical line highlights the point in time
before which empirical patterns were available.

and Hedonists an exponential increase in adoption. SV adoption increased
asymptotically among agents of the Leading Lifestyle, because they always decide
to adopt the ‘CO2 meter’ when deliberating on adoption. This caused successive
convergence against an asymptote of 100% device adoption. Conversely, Hedonists
are imitating their peers, causing a successively growing rate of adoption due to an
increasing overall device adoption. For mainstream agents, who mix both these decision
strategies, showed a quasi-linear adoption curve, which is likewise a mix of the two
previous adoption curves.

3.4.3. EXPERIMENT 3: CO-DIFFUSION OF TECHNOLOGY AND BEHAVIOR

In this experiment, behavior diffusion and technology diffusion were integrated to a
co-diffusion of technology and behavior (i.e. the simultaneous diffusion of feedback
devices and SV behavior).

In Fig. 3.7, its adoption under sole behavior diffusion (scenario 1) was compared to
co-diffusion of technology and behavior (scenario 3). The co-diffusion scenario resulted
in greater average SV adoption, compared to scenario 1. Due to feedback devices, SV
adoption increased by ca. 12 percentage points (σ = 5.3).

In Fig. 3.8, the role of different technology adoption shares across lifestyle groups on
their SV adoption is examined. The magnitude of additional SV adoption of lifestyle
groups followed their device adoption: Leading Lifestyles showed greatest additional
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Figure 3.5: Distribution of model runs with selected parametrization. The dotted lines delimit the state space of
all selected parameterizations. The dashed lines delimit the state space between the 25th and 75th percentile
at each time step. The continuous line represents the expected value (mean) of SV adoption per time step.
Curve oscillation was due to seasonal variation in SV adoption deliberation (see C.4).

adoption, Mainstream agents intermediate, and Hedonists lowest deviation. Thus,
affinity of a lifestyle to adopt the ‘CO2 meter’ considerably influenced the overall relative
effect that the device had on the lifestyle’s SV adoption.

Energy-efficiency impact To illustrate the energy-related impact of the ‘CO2 meter’,
these results on additional SV adoption were transformed into change of heating energy
demand. As the living lab experiments showed, those device adopters who changed
their energy consumption after adoption significantly (see 3.3.2) decreased their energy
consumption by an average of 8%. The empirical reduction in energy demand from SV
behavior was therefore approximated as these 8%, which lies within the range of energy
savings previously theorized (Galvin, 2013).

On this basis, the difference between experiments 1 and 3 of up to 18% additional
SV adopters of the Leading Lifestyles 15 years after device introduction translate into ca.
1.5% additional heating energy savings in this group. Analogously, Mainstream Lifestyles
would decrease energy demand by ca. 1%, and Hedonists by ca. 0.5%. Hence, the
facts that the ‘CO2 meter’ is only adopted partially and that SV diffusion would spread
independently from feedback devices anyway considerably lower the overall effect of
the CO2 meter on the multihousehold level, compared to the 8% of potential energy
savings of a single household. This lower effect, however, still appears attractive given
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Figure 3.6: Simulated technology adoption over time, differentiated by lifestyle groups (i.e. Social Leaders,
Mainstream and Hedonistic Lifestyles in top-down order). The dashed vertical line highlights the moment
when feedback devices are first introduced.

the relatively low costs for the ‘CO2 meter’ in comparison to its alternatives, e.g. energy
efficiency renovation.

3.4.4. EXPERIMENT 4: QUANTIFYING SUB-PROCESSES

The fourth model experiment aimed to quantify the relative contributions of technology
diffusion and behavior diffusion to the overall effect of the ‘CO2 meter’. While it is
obvious that the devices themselves need to diffuse in order to unfold an effect on
the multi-household scale, it seems less obvious that diffusion of behavior induced
by the devices will make a significant difference. The potential for such a significant
contribution of behavior diffusion to the overall effect of feedback devices was shown by
previous research (Jensen et al., 2015), but it was not yet quantified. It appears useful
for practical applications to know whether to concentrate efforts rather on achieving
successful technology diffusion or on supporting behavior diffusion, and hence use our
empirically-based model to investigate the issue further.

A fourth experiment was thus conducted, in which technology adoption statically
increases SV adoption: it may lead to SV adoption as in the previous experiments, but
this change in behavior is considered to remain restricted to the adopting household
and not to add to behavior diffusion. Therefore, behavior diffusion unfolds as simulated
in experiment 1, unaffected by the diffusion and effect of feedback devices.

To quantify the relative contributions of technology diffusion and behavior diffusion
on SV adoption, experiments 3 and 4 were compared in their additional SV adoption
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Figure 3.7: Comparing SV adoption shares for all agents between co-diffusion of technology and behavior
(solid line) and experiment 1 (dashed line). The dotted vertical line highlights the moment of feedback devices
introduction. Whiskers indicate the minima and maxima.
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Figure 3.8: Comparing SV adoption shares for lifestyle groups between scenario 1 (dashed line) and
co-diffusion of technology and behavior (solid line). The dotted vertical line highlights the moment when
feedback devices are first introduced. The whiskers indicate the 25th and 75th percentile.

over the reference scenario from experiment 1. Experiments 3 and 4 thereby only differ
in the diffusion of behavior induced by adopted devices.

Shown in Fig. 3.9, experiments are compared between pairs of the same
parameterization. It shows the additional effect to non-adopters of feedback devices
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Figure 3.9: Additional percentage points of SV behavior adoption due to feedback devices. Calculation based
on comparing SV adoption share between simulation runs at same parameterizations with and without
feedback devices. Added adoption is shown for all agents under the scenarios of static technology diffusion
and co-diffusion of technology and behavior and for those agents who do not adopt feedback devices at the
co-diffusion scenario. Whiskers indicate 25th and 75th percentiles.
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in the co-diffusion scenario8. For both experiments—similar to Fig. 3.8—differences for
all agents in Fig. 3.9 were greatest for Leading Lifestyles, intermediate for Mainstream
agents, and lowest for Hedonists. This underlines the importance of different affinities
of lifestyles to adopt feedback devices. Added SV adoption steadily increased over time
for all lifestyle groups and is always positive after 10 years of device diffusion. As shown
in Table 3.2, the overall effect of the ‘CO2 meter’ on additional SV adoption by Leading
Lifestyles consisted to ca. 12 percentage points of behavior diffusion, for Mainstream
agents to ca. 24 pp. and for Hedonists to ca. 46 pp.

Table 3.2: Summary on the overall effect of the ‘CO2 meter’ in percentage points. Standard deviation shown
in parentheses. Further is presented how generation of this effect is composed of technology diffusion and
behavior diffusion.

All households Leading

Lifestyles

Mainstream & Traditional

Lifestyles

Hedonists

Lifestyles

Added SV adoption (pp) 12 (5.3) 18 (8) 13 (6) 6 (3)
Technology Diffusion (%) 78 82 76 54
Behavior Diffusion (%) 22 12 24 46

This finding is underlined by the additional effect to non-adopters of devices in the
co-diffusion scenario. For each lifestyle group, difference in SV adoption in this group
increased steadily. Over time, this impact on SV adoption is highly similar between
non-adopters of different lifestyle groups, because they were modeled to decide on SV
adoption in the same way. This effect to non-adopters (of devices) further adds weight of
evidence to the relevance of behavior diffusion in the co-diffusion of the ‘CO2 meter’ and
SV behavior, e.g. almost half additional SV adoption by all Hedonists is as well achieved
for Hedonists that are non-adopters of devices. The mechanism by which non-adopters
of devices are reached is further discussed by Jensen et al. (2015).

3.4.5. VALIDITY AND LIMITATIONS

In order to achieve a valid assessment of the ‘CO2 meter’ from model experiments, the
model used for this should adequately reflect relevant aspects of reality. These aspects
were selected according to a previously published assessment framework (Jensen et al.,
2015). Realism of modeling these was assured by carefully designing the model
components technology diffusion, behavior diffusion and feedback effect based on
empirical data and widely accepted theory.

To guarantee sufficient realism of the behavior diffusion submodel, indirect
parameterization (inspired by pattern-oriented modeling (Grimm et al., 2005)) was
used to select those parameterizations that successfully reproduce empirical patterns.
Patterns regarding (1) SV adoption shares in 2015, (2) motivations to adopt SV, and (3)
intentionality of SV adoption at initialization were applied. Selected parameterizations
matched all of these three patterns, thus adding weight of evidence to realism of this
submodel.

Validation of the technology diffusion submodel bases on the TAPAS approach,
standing for “Take A Previous model and Add Something” (Frenken, 2006). Instead of

8Note that for experiment 2, no such additional effect to non-adopters on devices exists.
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building a new technology diffusion submodel from scratch, an existing model was
‘taken’ and other processes were ‘added’. This has a key advantage: “one can take
advantage of existing core models to formulate a new robust model in a relatively short
amount of time and with a larger degree of understanding” (Frenken, 2006, p. 152). This
also contributes to model validation, particularly if the previous model was successfully
validated. The previous model here is the technology diffusion model by Schwarz and
Ernst (2009), which was validated by being based on survey data and being tested
against empirical diffusion data of household products. To assure its correct use in this
study, its transferability to the ‘CO2 meter’ was justified (see 3.3.2) and its successful
re-implementation verified (see 3.4.2).

Realism of the feedback effect process directly stems from modeling it on results from
living lab experiment. Measurements on the percentage of households who change
behavior when using the ‘CO2 meter’ and resulting energy savings were integrated into
the model.

Limitations We expect the following limitations to have potentially affected our
findings: the fundamental uncertainty regarding future innovation diffusion, small
sample sizes of empirical data, behavior diffusion modeling decisions, and how
technology introduction is modeled.

Results strictly depend on whether the ‘CO2 meter’ and SV behavior will diffuse
successfully in the future. Due to contingency of the future, perfectly predicting
innovation diffusion does not appear to be possible. Instead, modeling what happens
if both diffusions will take place is possible and useful. The uncertainty of this projection
was reduced with empirical data from multiple sources. Additionally, a simulation
approach was chosen that can cope with parameter uncertainty, basing findings on the
ensemble of all parameterizations that were validated.

Limited empirical data from multiple sources might have affected representativeness
of results, e.g. the limited period of time over which the ‘CO2 meter’ has been observed
in a small number of households. Therefore, the estimated energy savings from SV
behavior of 8% could be either under- or overestimated. It should be considered that
estimated energy savings (linearly) inherit this added component of uncertainty.

SV behavior choice was modeled to be equal across lifestyle groups. But this might
not be the case in reality. Heterogeneity would in principle be possible. Some lifestyles
could have an inclination towards certain behaviors, e.g. some could be more motivated
to practice energy-efficient behavior; or behavior change might be more inconvenient
for others. These options were not considered here here, because no suiting empirical
data regarding heterogeneity in behavior adoption was available. Instead the model was
built directly on the limited available data.

Further, SV behavior was modeled as binary: households do thus either adopt shock
ventilation or not. It would be desirable to model ventilation behavior in more detail,
in order to better represent the energy-efficiency related impact of a feedback device.
For instance, duration of ventilation could be an important additional factor to consider
(Galvin, 2013), including if households do not ventilate at all. Given that our empirical
basis did not allow further differentiation, we chose to limit degrees of freedom in the



3.5. CONCLUSION

3

61

model to those of available data. Hence, the effect attributed to SV adoption in this paper
represents an empirical average difference to other ventilation practices.

Finally, the specific way in which device introduction was modeled to can be
expected to impact the results. Technology becomes available quickly and to all agents
at the same time. This implies feedback devices to be marketed intensively and
successfully. This implication was accepted, because it is the simplest assumption and
detailed comparison between marketing strategies is beyond the scope of this paper.

3.5. CONCLUSION

Purpose of this study is to answer the following question: what is the overall effect of
the ‘CO2 meter’ on energy-efficient heating behavior, as emerging from the processes
of feedback effect, technology diffusion and behavior diffusion? This effect was found
to be significant, accounting for an average 12% (δ = 5.3) added percentage points of
additional SV adoption for the modeled case city Bottrop. For this case area, the ‘CO2

meter’ was estimated to be able to decrease residential heating energy demand by c. 1%
at 15 years after its introduction.

Overall effect of feedback devices Our simulation results indicate that introduction
of the ‘CO2 meter’ in the city of Bottrop would significantly increase energy-efficient
heating behavior. Results showed the average overall effect of this device for different
social groups to range from ca. 6 to ca. 18 percentage points of additional SV adoption
at 15 years after device introduction. This magnitude adds weight of evidence to
the relevance of the driving key mechanism: the direct effect of feedback to device
users was identified as the initial keystone to the effect of devices to SV diffusion.
Technology diffusion spreads devices among households (where feedback can then
change behavior) and behavior diffusion adds to this by spreading behavior change from
adopters to non-adopters of devices.

Neglecting the impact of the ‘CO2 meter’ via behavior diffusion would underestimate
its overall effect significantly. To indicate which processes would be most relevant in
interventions that use the ‘CO2 meter’, relative contributions of technology diffusion
were compared to behavior diffusion on SV adoption. The share of the overall impact
that the ‘CO2 meter’ caused via behavior diffusion ranged from 12% for Leading
Lifestyles, over 24% for Mainstream and Traditional lifestyles, to 46% for the lifestyle
group Hedonists (see Table 3.2). Thus, this underestimation would be the least for
households of highest social status, for those of intermediate to low social status and
highest openness of basic values.

Effects on heating energy consumption Based on the simulation results, average
heating energy savings of ca. 1% could be expected within 15 years from the introduction
of the ‘CO2 meter’ in the City of Bottrop. This ranges from 1.5% for Leading Lifestyles,
over c. 1% for Mainstream Lifestyles and to 0.5% for the Hedonist lifestyle. 1% of
energy savings appears rather low compared to the ca. 8% savings potential of the ‘CO2

meter’ for individual households. This difference in our assessment was due to the
following reasons: (1) ca. 40% of households in the case area are already adopting SV
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behavior, (2) SV behavior has—according to our results—the tendency to increase in
adoption, independently from feedback devices, and (3) diffusion of the ‘CO2 meter’
will likely not reach full penetration in a reasonable time frame. Therefore, describing
a feedback device’s energy savings potential by its potential for individual households
can be misleading. Instead, it appears preferable to use a potential that is scaled by the
expected spreading of this device and by the spreading of its induces behavioral change.

Merits of the ‘CO2 meter’ in interventions The ‘CO2 meter’ will likely differ in
acceptance and adoption between social groups; assumed it spreads similarly as
other sustainable household products. This difference influences how much these
groups would undergo change in heating behavior due to the ‘CO2 meter’ and would
predominantly affect households of higher social status (i.e. Leading Lifestyles). Hence,
the authors recommend this to be considered at interventions that use the ‘CO2 meter’:
targeting households of higher social status with such interventions could have a greater
impact.

The spreading of the ‘CO2 meter’ has been identified as the main factor determining
its overall impact. Thus, practitioners who want to create impact with this device
should primarily support its spreading between households. However, supporting the
spreading of behavior change from device adopters is worthwhile, too—particularly
when aiming to spread energy-efficient heating behavior to social groups that are less
inclined to use the ‘CO2 meter’.

Overall,—considering the uncertainty of technology projections—the ‘CO2 meter’
promises significant energy savings at low cost. In comparison to other strategies, it can
be distributed cost-effectively and is widely applicable. Thus, this device can be regarded
as fit to efficiently tackle ‘low hanging fruits’ of energy-efficiency in residential heating.

Future research We propose to assess further feedback devices using the integrated
modeling approach that is presented here. Additionally, we expect co-diffusion of
technology and behavior to have a fruitful role in future behavior change interventions,
e.g. to increase overall behavior change.

Further, elements of the model that remained uncertain due to lacking empirical
data should be refined based on further empirical research. For instance, further
differentiating the exact ventilation behavior that modeled households can practice
could be a useful direction of research. Also valuable would be those research designs
which observe interactions between technology diffusion, feedback effect and behavior
diffusion. Further, linking of separately gathered data sets on the respective processes
could improve understanding these interactions.

Regarding technology introduction, policy options regarding the here modeled
intervention should be explored, e.g. device marketing strategies. We recommend
applying the here presented model to achieve this. This would both deepen insight into
the future prospects of feedback devices, as well as support policy decisions in how to
apply them effectively.



4
SIMULATING MARKETING

STRATEGIES FOR FEEDBACK

DEVICES

“...before any new product can be developed it has to be properly researched.
We’ve got to find out what people want from fire,

how they relate to it, what sort of image it has for them.”

Douglas Adams

4.1. INTRODUCTION

To quickly reduce CO2 emissions, one way that seems promising is to change heating
behavior. In the EU, residential buildings account for ca. 30% of final energy
consumption; about 60% of this is taken up by space heating (Itard and Meijer, 2008).
The potential for the reduction of this share via behavioral changes is 20-30% (Wood
and Newborough, 2003), e.g. by practicing energy-efficient ventilation behavior (Galvin,
2013) and setting lower thermostat temperatures (Guerra Santin et al., 2009).

Providing feedback to energy consumers about their energy consumption behavior
can help them tap into this savings potential. Feedback about behavior was found to
decrease energy consumption up to 20%, with an average of 10% (Karlin et al., 2014;
Wood and Newborough, 2003). Numerous approaches exist to give feedback to energy
consumers, e.g. email, online platforms, or installed feedback devices (Karlin et al.,
2014; Laschke et al., 2011; Darby, 2006). One example of a feedback device is a so-called
‘CO2 meter’, which shows the indoor air quality–measured by CO2 level–in the form of
a traffic light. This was shown to be effective in convincing households to practice the
energy-efficient ‘shock ventilation’ (‘Stoßlüften’) of rooms (see Section 4.2).

This chapter has been submitted to the Journal of Environmental Management.
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This study focuses on feedback devices installed in the home, due to their potential
to create greater effects in the long term. One challenge to feedback interventions
is behavioral relapse (Verplanken and Wood, 2006), i.e. energy consumption levels
returning to the levels before intervention occurred. However, feedback from
devices appears to be less prone to behavioral relapse or decreasing attention for
feedback—particularly when installed quasi-permanently and made directly accessible
to users (Burchell et al., 2014).

To reduce heating energy demand significantly, market introduction of feedback
devices should be managed effectively—and ineffective management should be avoided
early on. Especially in the earliest phase of product diffusion, good marketing can
significantly support the adoption of that product (Delre et al., 2007). There are various
established marketing strategies, such as advertising devices to the general public or
giving the first devices away as free promotional gifts. It is critical to identify the best
options among such strategies given the requirement of maximum behavior change. We
argue the respective merits of each strategy should be well estimated ex-ante—before
any real-world implementation. This is crucial to avoid actions that have low or
counterproductive effects and would delay achievement of desired results.

Simulation modeling is useful for identifying effects of actions on product diffusion
before their implementation (van Dam et al., 2012; Schwarz and Ernst, 2009; Rixen
and Weigand, 2014). Simulation, being quicker than real-time, can thus help avoid
ineffective action in the real world. Simulation modeling is capable of estimating
the potential future effects of marketing strategies towards sustainable household
products and the resulting impacts (Schwarz and Ernst, 2009; Delre et al., 2010). Yet,
such undertaking has to acknowledge the uncertainties of forecasting social systems
and the energy sector (van Dam et al., 2012). Therefore, goal of this study is not
predicting the exact impact of marketing strategies of great detail. Instead, high-level
marketing strategies are merely to be compared in a relative way, regarding their general
effectiveness and cost-efficiency.

This study therefore aims to use simulation modeling to compare and propose
marketing strategies for feedback devices ex-ante. This assessment will adopt and refine
a simulation model on the diffusion and effect of a CO2 meter (Jensen et al., 2016). From
this, we aim to identify the management strategies for rolling out feedback devices that
show the best impact over a range of future scenarios. To facilitate practical results, we
also suggest stakeholders that would be well suited to putting these devices into action.
Altogether, this study addresses the following research question: Which innovation
management is most effective at creating additional energy-efficient heating behavior via
the marketing of behavior-changing feedback devices?

The rest of this paper is organized as follows. First, we present previous findings on
the device used in this case study. Second, we present the state of literature on modeling
marketing strategies, the specific simulation model adopted for this case study, and
the strategies we assess with this model. Third, we answer the research question by
simulating and analyzing these strategies.
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4.2. THE CO2 METER CASE STUDY

In this section, we present the CO2 meter as a case study of a device and previous findings
on its effects. This device gives feedback to its users about indoor air quality and gives
them an incentive to ventilate energy-efficiently. The device shows its feedback in the
intuitive colors of a traffic light: good air quality is shown by green, intermediate by
yellow, and unhealthy air by red.

Field tests have shown that the use of a CO2 meter has the potential to change
the ventilation behavior of householders, which consequently supports a reduction in
heating demand. For ventilation, most households in Germany have windows that have
two sets of hinges that allow the option of opening windows completely (i.e. practicing
so-called ‘Stoßlüften’ or ‘shock ventilation’) using one set of hinges, or only partially, by
tilting them open on the second set of hinges (Galvin, 2013). The CO2 meter increases the
attractiveness of shock ventilation, because this behavior increases the ventilation rate
and thus the speed at which improved air quality is shown by the feedback. Increased
ventilation rate and avoidance of overly long ventilation times, in turn, reduce heating
energy demand (Galvin, 2013). The savings from adopting shock ventilation have been
shown to amount to an average of approximately 8% (Lovric, 2015; Jensen et al., 2016).

Previous research assessed not only the effect of the CO2 meter for its direct users, but
for an entire city–comprised of adopters and non-adopters of feedback devices. Impact
from the CO2 meter relied on three processes: (1) its diffusion among households, thus
increasing the number of users, (2) the feedback effect for its users, and (3) consequent
spread of this induced behavior change, e.g. to households that do not use the device.

4.3. METHODS

This study aims at designing marketing strategies for feedback devices, and then identify
which would be most effective. We adopted the four-step method by Roozenburg &
Eekels (1995) for this task: (1) analysis of the problem and gathering of existing options
to solve it; (2) synthesis of the analyzed options to tentative solutions; (3) simulation
of these solutions to forecast “the behavior and properties of the designed product by
reasoning and/or testing models” (Roozenburg and Eekels, 1995, p. 91); and (4) empirical
evaluation of the most promising solutions.

In this study, we focus on the first three of these steps—analysis, synthesis and
simulation. Feedback devices for behavior change in heating are still in the early phases
of market entry. This study will prepare and support the future real-world evaluation
and implementation of marketing strategies of these devices.

4.3.1. ANALYSIS: MARKETING OPTIONS

We analyzed various possible marketing strategies for feedback devices by drawing on
the wide base of literature on managing the diffusion of innovations with marketing.

CLASSIFYING MARKETING OPTIONS IN THE LITERATURE

The challenge of getting more households to adopt a product is a problem tackled
by the field of marketing. We thus reviewed multiple promising marketing strategies.
These strategies were classified in a widely used array of marketing options: E.
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Jerome McCarthy’s ‘marketing mix’ (1996). In addition to the product itself and its
characteristics—we assume a situation where an already designed device needs to be
marketed—the marketing mix classifies actions into three additional categories: (1) The
price of the product, on which the willingness of adoption may depend; (2) Promotion
activities that communicate the product to potential adopters; and (3) the place, i.e.
the distribution channels via which a product is marketed. Motivated by our intention
to simulate selected marketing strategies with agent-based modeling, we focused our
literature search on this field. Thus, the Scopus database Elsevier (2015) was queried
with the search term ‘simulation AND agent-based AND diffusion AND innovation* AND
(promotion* OR policy).’ The selection criterion for strategies was their reported success.
In addition, we included sources in the review article by Kiesling et al. (2012) on this
question.

Price The most frequently modeled marketing strategy in the reviewed studies were
discounts on products. Successful incentives were found in the form of discounts (or
subsidies) (Ferro et al., 2010; Cantono and Silverberg, 2009; Zhang et al., 2015) and
purchase bonuses (Rixen and Weigand, 2014); the changing of economic interactions
in a system has also been found to be indirectly successful (de Holanda et al., 2008). The
overall economic effect of giving away a limited number of products for free may also
be greater than if discounts or rebates are offered. This approach has shown particularly
promising when compared to discounts (Zhang et al., 2015).

Promotion Regarding product promotion, advertising and social marketing have
repeatedly been found to be successful at supporting product diffusion:

(1) Awareness of a product is a crucial precondition to its adoption (Rogers, 2010).
Delre et al. (2007) showed that spreading information about a new product–early in its
marketing phase–can increase the diffusion success. This is supported by other studies
(Rixen and Weigand, 2014; de Holanda et al., 2008; Schreinemachers et al., 2007).

(2) Social marketing is a more focused approach to promotion, in which targeted
individuals market to their peers. A particularly positive role in spreading innovations
appears to be played by ‘Opinion Leaders’ (Rogers, 2010). These are people who are
considered to be relatively highly innovative (i.e. they adopt innovations earlier) (Rogers,
2010) and who also can influence a large number of other people (Kiesling et al., 2012).
Reviews by Kiesling et al. (2012) and Nisbet & Kitcher (2009) and a study by Eck et al.
(2011) highlight the merits of leveraging this group in social marketing to managing the
diffusion of innovations.

In practice, a marketing strategy that uses Opinion Leaders should include two
steps, recruitment followed by training (Nisbet and Kotcher, 2009). Recruitment could
rely on the high social connectedness of potential Opinion Leaders. In the context of
energy conservation, candidates would, for instance, be active in or known by local
environmental groups. Training would feature involving selected Opinion Leaders in
workshops to prepare them to have the greatest possible effect. We would expect their
recruitment to require local knowledge.
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Place A product can be made accessible at different places and in different ways, which
can significantly influence which consumer group is exposed to it the most. Several
simulation studies have shown this to be a way to support product diffusion. Variation
of placement is commonly operationalized as varying the social group targeted by a
marketing campaign (Zhang et al., 2015; Ferro et al., 2010), which we will do in the
following as well.

4.3.2. SYNTHESIS: PROPOSED MARKETING STRATEGIES

In this section, we present the marketing strategies that were selected for the simulation
4.1. The respective designs are built on the literature review; this is then followed by
using the simulation to assess them.

Table 4.1: Scenarios of marketing strategies to support the diffusion of feedback devices.

Scenario Targeting Marketing strategy

GIVEal l Any households Give away free devices
GIVELL Leading Lifestyles Give away free devices
GIVEMS Mainstream Give away free devices
GIVEHD Hedonist Give away free devices
LEND Any households Lending out devices
AWAREal l Any households Raise awareness of device
AWARELL Leading lifestyles Raise awareness of device
AWAREMD Mainstream Raise awareness of device
AWAREHD Hedonists Raise awareness of device
OLconnect Opinion leaders Connect all peers
OLaw ar e Opinion leaders Spread awareness to peers of peers
OLben Opinion leaders Adopt behavior
OLdev Opinion leaders Adopt devices

Price We chose the two strategies—giving away and lending out of devices—which
reduce the cost of adoption to zero. (1) Giving away a limited number of free devices
is a direct way to encourage households to adopt feedback devices. Its rationale is to
make the peers of first adopters aware of feedback devices through word of mouth. This
has the potential to leverage social influence, which successively entices more peers to
adopt devices. (2) Lending out devices enables households to monitor their behavioral
performance for a while and potentially change it. After a certain period, the device is
returned and lent to another household. The short timeframe of this intervention might
increase behavioral relapse, but could–in return–reduce the cost and resource impact of
disseminating devices. We considered this strategy, which did not appear in the review,
because we took note that a public-private partnership organization1 has the plan to
lend out feedback devices in the future.

Promotion Regarding promotional strategies, we modeled raising awareness of the
devices in households to leverage marketing with Opinion Leaders. (1) Raising
awareness consists of informing households of the availability of feedback devices.

1This is the ‘Innovation City Management GmbH’, which coordinates the roll-out of energy-efficient technology
in the city of Bottrop.
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Households that have become aware of these devices can from then on choose to
adopt them. The resulting adoption of devices can then further spread awareness of
devices to the peers of adopters. (2) Opinion Leaders were found in our literature
review to have a special role in the diffusion of innovation. We differentiate the
assumed training of Opinion Leaders in four ways, which relies on their characteristics
of relatively high social participation and levels of innovativeness (Rogers, 2010). (a)
Being active communicators, they could mutually connect their respective peers on the
topic of feedback devices and heating behavior. Thus, all peers that an Opinion Leader
influences would influence each other on this topic. (b) As they communicate actively,
they could be encouraged to spread awareness deeper into their social environment.
Thus, not just the peers they influence, but also those influenced by these peers could
be made aware of a feedback device. (c) Due to their innovativeness, Opinion Leaders
could be convinced to adopt shock ventilation, regardless of whether feedback devices
continue to be used. In this case, they would exceed social influence on their peers
regarding behavior. (d) In the same way, they could be convinced to adopt feedback
devices. This could influence their peers towards device adoption.

Place Finally, the two marketing strategies of giving away free devices and raising
awareness were cross-combined with variation of place, i.e. the targeting of different
consumer groups.

4.3.3. SIMULATING HEATING BEHAVIOR AND FEEDBACK DEVICES

In this section, we will motivate our application of the approach of agent-based
modeling and provide the model specifications. This is followed by a description of how
a previously published simulation model was adapted and made to capture the selected
marketing strategies.

AGENT-BASED MODELING

We used agent-based modeling in order to represent real-world households with
computer objects, so-called ‘agents.’ The relevant decisions and actions of real-world
households are captured by decision models and implemented as software algorithms.
Relationships between real-world households, e.g. social influence, become links of
information flow between these computer objects. Thus, the real-world process of
interest is modeled by object-oriented software and can be experimented with in a
virtual environment (Sonnessa, 2004).

Agent-based modeling is suited for this study for two reasons. First, the one-to-one
relationship (van Dam et al., 2012) between real-world actors and agents makes
modeling results, e.g. impacts of modeled policies, more intuitive and therefore more
easily understood. Second, agent-based modeling is uniquely able to capture human
decision-making (see Briegel et al., 2012; Jager and Janssen, 2012; Sopha et al., 2011),
e.g. of innovation adoption and energy consumption behavior (Azar and Menassa, 2015;
Chen et al., 2012).

SIMULATION MODEL

In this section are presented the specifications on the used simulation model. A base
version of this model was previously presented by Jensen et al. (2016). The model
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purpose is to capture the effect of feedback devices on the adoption of energy-efficient
heating behavior. For this study, we increased realism of this model by adding
a word-of-mouth mechanism (see below). The main model elements and their
interactions are described in the following.

Household agents Household agents make two relevant decisions: they decide about
adoption of feedback devices and of energy-efficient heating behavior. The key
processes which the agents undergo include the diffusion of the CO2 meter; the feedback
effect on its adopters, which may create changes in behavior, and the spreading of
this behavior change via behavior diffusion. Households within a case area of the
‘Innovation City Bottrop’2 are represented by household agents. They amount to
a total of 31,840 agents. These agents are in one of three lifestyle groups, based
on commercial marketing data (Sinus Sociovision, 2015) that maps the distribution
of sociological lifestyles within the city of Bottrop. Because these lifestyles showed
different affinities of adopting sustainable household products (Schwarz and Ernst,
2009), households in the model were accordingly assigned to one of the following
lifestyle groups3: (1) ‘Leading Lifestyles’ of higher social status and more modern values,
having the highest affinity for adopting feedback devices; (2) ‘Mainstream’ lifestyles of
intermediate social status—including those groups with more traditional values—which
have an intermediate affinity for the feedback devices; and (3) ‘Hedonist’ lifestyles,
which have a relatively low social status. The social network that connects the agents has
been modeled on two empirical data sources. The way in which this data was applied in
generating a social network is presented by Jensen et al. (2016, appx. A).

Technology diffusion The technology diffusion process was transferred from the
model by Schwarz & Ernst (2009), which models diffusion of water-saving shower heads.
This appliance was used as a proxy technology for feedback devices for the following
reasons: (1) both technologies have the purpose of saving thermal energy demand in
the household; (2) both technologies can be installed and used virtually without effort;
(3) both technologies are cheap, meaning that their purchase does not represent a
significant barrier to their adoption or testing.

Following the empirical-based adoption decision model presented by Schwarz &
Ernst, agents do not deliberate continuously on adoption, but at a monthly probability
(δα) of 0.4%. At the point of deliberation, Leading Lifestyles always adopt devices.
Mainstream agents adopt devices with a 50% probability and imitate their peers’
majority otherwise. Hedonist agents always imitate the majority of their peers.

We extended the previously published version of this model by a word-of-mouth
mechanism, to increase model realism. The previous model assumed all households
to be be instantly able to adopt feedback devices. Instead, this study assumes that
consumers can only adopt devices when aware of these devices. They become aware
if at least one of their peers has previously been using the device.

2www.icruhr.de
3Names of lifestyles are used as in the cited sources. Use of this naming in this study is intended as a value-free

reference to the Sinus marketing typology.
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Feedback effect The way feedback devices affect behavior is modeled based on field
tests of the CO2 meter (Jensen et al., 2016): households that use the CO2 meter adopted
shock ventilation with a probability of ca. 83.3%; this behavior change further saved
around 8% of a household’s heating energy.

Behavior diffusion Agents were modeled to deliberate on whether or not to adopt
shock ventilation at random events. The assumed likelihood of these events over time
was based on the search frequency on Google for the German term for shock ventilation
(i.e. ‘Stoßlüften’). We modeled the likelihood of deliberation on behavior adoption as a
sinus curve that was scaled linearly as in Eq. 4.1–4.2 and that peaks during winter.

δβ,annual (t ) =











0 before JUN 2008

0.235 after JUN 2009, before JUN 2010

1 after JUN 2010

(4.1)

adopti on =











1 if SNi ≥ THLD∗
i

0 else

(4.2)

At deliberation, the behavioral intention of individual household agents is
determined by a decision model that is based on the Theory of Planned Behavior (Ajzen,
1991). Only if the ratio of influencing peers who adopt the behavior exceeds a threshold,
adoption of the behavior take place. Over time, this threshold decreases for all agents,
as they are assumed to receive positive information about shock ventilation from the
media.

PARAMETERIZATION

The model parameters and their range Table are shown in 4.2. All the simulation results
presented here rely on a combination of model parameterizations. These parameters
were selected for their ability to present behavior diffusion patterns that represent
empirical patterns. For this parameter search, which was based on Pattern-Oriented
Modeling (40), we applied three empirical patterns (Jensen et al., 2016): (1) adoption
of shock ventilation in the study area would lie in the range of 32.3% to 44.3%; (2)
8% to 23% of adoptions of shock ventilation results result from social influence via
personal contact; the rest would come from information from media; (3) the majority
of agents who adopt shock ventilation at the beginning of a simulation run would adopt
it intentionally.

4.3.4. IMPLEMENTATION OF MARKETING STRATEGIES

The following section discusses how the selected marketing strategies were
implemented in the simulation model.

All strategies are comparable in scale of implementation and timeframe. Regarding
scale, 1,000 household agents of the virtual city were sampled, representing about 3.1%
of the overall population. The only exception to this is the strategy of lending out devices;
in this simulation, 1,000 devices were lent out. Implementation of each strategy starts in
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Table 4.2: Parameterization used in the simulation experiments.

Parameter Value Meaning

p(βi ,t0 = 1) [0.27, 0.39] Initial SV behavior adoption share
T HLD∗

mean [0, 1] Mean of behavior adoption threshold
T HLD∗

std
0.3 Std. of behavior adoption threshold

δβ,event ]0, 0.04] Rate of behavior delib. trigger events
∆β,AT T ]0, 0.006] Monthly increment to attitude towards SV
p(αi ,t0 = 1) 0 Initial feedback device adoption share
δα 0.004 Technology adoption deliberation rate
p(α∗) 0.833 Success rate of feedback devices
t0 0 Time step (month) of initialization
ti nt 120 Time step (month) of intervention start
tend 300 Time step (month) of end of simulation
dN B HD 200 Max. length (m) of neighborhood edges
pN B HD 0.5 Ratio of edges within neighborhood

January 2016 and is simulated for 15 years, amounting to 180 monthly intervals in the
model.

Price The ‘Giving Away Free Devices’ scenario was run as follows: (1) 1,000 random
households were selected. (2) These were made adopters of feedback devices. (3) The
peers influenced by them thus become aware of feedback devices.

Lending out devices was implemented as: (1) 250 households were randomly
selected, to whom devices were lent for three months. This was based on the assumption
that 1,000 devices were lent out once per year for 3 months. (2) At the point of device
adoption, a household has an empirical probability of 0.83 of starting shock ventilation.
(3) After device adoption, the household continued to re-evaluate behavior adoption as
usual. Consequently, relapsing to earlier behavior patterns was not modeled explicitly,
but was possible.

Promotion The ‘Raising Awareness’ scenario was run by: (1) 1,000 random households
were made aware of feedback devices. (2) These households would from then on, with
a monthly probability of δα, consider the adoption of feedback devices.4 As defined in
the model, if a household adopts a device, the peers influenced by this household would
become aware, too.

Strategies based on ‘Opinion Leaders’ were run as: (1) The 1,000 household agents
that influence the most other agents were selected as Opinion Leaders5. (2) Depending
on the respective scenario, these Opinion Leaders become active in one of four ways. (a)
Additional links are created that mutually connect their peers in the social network. (b)
They spread awareness of the devices to their peers and to the peers of their peers. (c)
They adopt energy-efficient behavior and continue to do so. (d) They adopt feedback
devices themselves and raise awareness of these among peers.

4Thus, making a household aware of devices does not make it instantly consider device adoption.
5Note that ‘Opinion Leaders’ is not coterminous with ‘Leading Lifestyles’. Opinion Leaders appear in all

lifestyle groups.
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Place Product placement was implemented by differentiating the strategies of ‘Giving
Away Devices’ and ‘Raising Awareness’: the randomly selected households were drawn
from the respective target lifestyle group; see Table 4.1.

4.4. RESULTS AND DISCUSSION

To answer the stated research question, we conduced four simulation experiments. The
first two establish a connection between marketing strategies and their effects, both for
the case study of the device under review and for the ‘virtual city’ that was modeled.
Experiments 3 and 4 test the generalizability of the findings for this case.

(1) Reference scenario. We first simulated ventilation behavior as would be expected
without any effect by feedback devices. This serves as a reference scenario from which
the effects of marketing can be derived.

(2) Effects of marketing strategies. In this experiment, the effects of marketing
strategies are analyzed and compared. These effects are separated into device adoption
and the behavior change induced by marketing. As a result, it is possible to identify the
most effective and cost-efficient marketing strategies and assist in the identification of
stakeholders capable of implementing such strategies.

(3) Sensitivity to policy location. A central aspect of flexibility in large-scale
marketing measures is location, e.g. measures carried out in different locations of a
city. We thus compare the effects of the same interventions, but carried out in different
neighborhoods of the same city. This experiment thus tests to what degree effects are
generalizable regarding the location of implementation in a city.

(4) Sensitivity to urban structure. Given that the previous experiments simulate the
city of Bottrop as a case study, we test generalizability to other cities. Therefore, we
compared the experimental results of the case study of our model city with four other
virtual cities with systematically varied socio-spatial structures.

4.4.1. EXPERIMENT 1: REFERENCE SCENARIO OF BEHAVIOR DIFFUSION

In this experiment, we generated a reference scenario of this behavior in the absence
of any measures. The simulated marketing strategies will later be compared to this
reference scenario in order to identify their impact.

Figure 4.1 presents the reference scenario of behavior diffusion for Bottrop.
Over time, the share of people who adopt shock ventilation practices generally

increases, both according to the mean and within the 25th and 75th percentiles. One
of the main factors for this trend is the effect of positive information from media in
the model. The stepwise increase in the adoption of shock ventilation occurs because
energy-efficient ventilation is more relevant to households during winter (Jensen et al.,
2016).

Despite this positive trend, future behavior becomes increasingly uncertain over
time. Fig. 4.1 shows that over time the gap between the 25th and 75th percentiles,
as well as between minimum and maximum, of adopting shock ventilation increases.
Nevertheless, the trend towards more adoption of shock ventilation remains. Moreover,
most simulation runs lie within a relatively narrow range between the 25th and 75th

percentiles.
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Figure 4.1: Behavior diffusion in the absence of feedback devices. The mean share of behavior adoption over
all simulation runs is shown by the black line. The 25th and 75th percentiles are shown by the whiskers. In the
background, the frequency of projected data points (from 280 simulation runs) is shown by the shading of the
gray tiles.

4.4.2. EXPERIMENT 2: SIMULATING MARKETING STRATEGIES

We further compared marketing strategies based on their effect on the level of device
diffusion and on the adoption of shock ventilation practices, which is the main endpoint
of interest in this study.

MARKETING EFFECTS ON TECHNOLOGY DIFFUSION

We analyzed the effects of marketing strategies on device adoption in two steps: (1) for
each strategy we assessed the level of adoption of feedback devices over time; (2) we
analyzed in more detail the strategies of greatest impact.

Table 4.3 shows the effects of all simulations of marketing strategies on technology
adoption. Adoption rates are shown for 5, 10 and 15 years after policy implementation.
In addition, conversion rates express the number of adopting households after 15 years
relative to the scale of the marketing strategies.

Simulation results show that marketing strategies varied significantly with regard to
impact. Some strategies caused over 10% of households to adopt a feedback device.
Conversely, other strategies had no effect at all. Thus, conversion rates ranged from
6.43 to 0; i.e. for each household targeted by a marketing campaign (or device lent out,
respectively), up to ca. 6 adopters were gained in 15 years.

Targeted marketing was most effective when addressing the Leading Lifestyles group.
This increased effect is based on two facts. (1) Leading Lifestyles were modeled to be
most inclined to adopt feedback devices. (2) Leading Lifestyles have more influence
on other households than other lifestyle groups do (Jensen et al., 2016, Table A.3).



4

74 4. SIMULATING MARKETING STRATEGIES FOR FEEDBACK DEVICES

Table 4.3: Effect of marketing strategies on technology adoption. ∆FD describes the effect on the share of
adoption after 5, 10 and 15 years. Standard deviations in parentheses. The conversion rate describes how
many households adopt the feedback device after 15 years relative to those who were targeted by the respective
marketing strategy.

ID ∆FD after 5 yrs (%) ∆FD after 10 yrs (%) ∆FD after 15 yrs (%) Conversion rate after 15 years

GIVEal l 4.5 (0.1) 6.5 (0.2) 9.2 (0.4) 2.93 (0.13)
GIVELL 5.4 (0.1) 8.2 (0.2) 11.7 (0.3) 3.73 (0.1)
GIVEMS 4.6 (0.1) 6.7 (0.2) 9.4 (0.3) 2.99 (0.1)
GIVEHD 3.5 (0.1) 4.4 (0.2) 5.7 (0.3) 1.81 (0.1)
LEND 0.8 (0) 0.8 (0) 0.8 (0) 0.25 (0)
AWAREal l 0.4 (0) 1.1 (0.1) 2 (0.1) 0.64 (0.03)
AWARELL 0.9 (0.1) 2.3 (0.2) 4.2 (0.2) 1.34 (0.06)
AWAREMS 0.4 (0) 1.1 (0.1) 1.9 (0.2) 0.6 (0.06)
AWAREHD 0 (0) 0 (0) 0 (0) 0 (0)
OLconnect 0 (0) 0 (0) 0 (0) 0 (0)
OLaw ar e 4.5 (0.2) 9.5 (0.2) 14.9 (0.3) 4.74 (0.1)
OLbeh 0 (0) 0 (0) 0 (0) 0 (0)
OLdev 8.3 (0.2) 14 (0.2) 20.2 (0.3) 6.43 (0.1)

Combined, these two factors create a ‘trickle-down’ effect in the diffusion of feedback
devices: an effective spreading from households of higher social status to those of lower
status.

The impact of marketing strategies generally increased over time. This is driven
by word-of-mouth processes reinforcing the marketing. After device adoption of an
agent, its non-adopting peers become aware of the device and thus become capable of
adopting devices in the future. The only exception to this mechanism is the marketing
strategy of lending out devices to households, for which the word-of-mouth mechanism
is not modeled.

Further, marketing strategies that address Opinion Leaders have the greatest
conversion rates. This is directly based on their high degree of social engagement. This
results in an ability to influence more households than average (Rogers, 2010). Due to
the higher likelihood of households of higher social status influencing other households
(Jensen et al., 2016), high social engagement is often disproportionally found in the
group of Leading Lifestyles.

Following this aggregated comparison, we analyzed the most promising strategies
in detail. This aimed to analyze the effect over time as well as in ways that differentiated
among lifestyle groups; it also facilitates a more detailed discussion on the most effective
marketing strategies. These were the strategies GIVELL , OLdev , and OLaw ar e . Figure 4.2
shows the diffusion of feedback devices by the lifestyle groups over time.

Among the marketing strategies that were most effective, differentiation among
lifestyle groups is consistent. In all cases, device adoption was greatest for Leading
Lifestyles, lower for Mainstream, and lowest for Hedonists.

Marketing strategies also show variance in the degree to which they reach the
three lifestyle groups. When targeting Leading Lifestyles, the difference in adoption
between this group and the other ones increased. The relatively effective strategy
of targeting exclusively the Leading Lifestyles group (in scenario GIVELL) leads to
increased disparities in the use of shock ventilation. This suggests a tradeoff between
the effectiveness of a strategy and the penetration levels required to reach other lifestyle
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Figure 4.2: Device adoption in prototypical interventions. Device adoption in prototypical interventions. It
shows adoption levels of feedback devices over time, differentiated by the ‘Leading Lifestyles,’ ‘Mainstream,’
and ‘Hedonist’ lifestyle groups. Marketing strategies start in 2016.

groups: targeting Leading Lifestyles is effective, but leads to more unequal results
between lifestyle groups.

MARKETING IMPACT ON BEHAVIOR DIFFUSION

In the following, we analyze the simulated effect of marketing strategies on the adoption
of energy-efficient ventilation behavior. As above, Table 4.4 presents the aggregated
effects of all strategies.

The greatest impact on behavior change was achieved by using the marketing
strategy based on lending out devices–in contrast to the small increase in overall device
adoption it created. This is explained by the fact that each device is lent to more than
one household agent. We argue this can be seen as a strong effect, in light of the fact
that a device is lent out only once per year and that it is–in this strategy–only available
through lending.

Targeting Opinion Leaders proved effective for behavior change–particularly when
giving feedback devices to them. For instance, this is more effective than (only)
convincing them to adopt energy-efficient behavior. This difference is explained by the
fact that by giving away devices, the adoption of devices can spread over time, which in
turn means they create more adopters of shock ventilation (Jensen et al., 2016).

Just as it was for device adoption, targeting the Leading Lifestyles group with
marketing about behavior change was shown to be most efficient. Conversely,
targeting was only somewhat effective for Mainstream households and least effective for
Hedonists. Once again, the greater impact that results from targeting Leading Lifestyles
is explained by their different centrality in the social network. This, however, serves to
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Table 4.4: The effect of marketing strategies on the adoption of shock ventilation practice. ∆SV describes
the effect on the share of those who adopt after 5, 10 and 15 years (the significance of difference to baseline
scenario is shown; *: p <0.1; **: p <0.01). The conversion rate describes how many households adopt the
feedback device after 15 years relative to how many were targeted by marketing.

ID ∆SV after 5 yrs (%) ∆SV after 10 yrs (%) ∆SV after 15 yrs (%) Conversion rate after 15 yrs

GIVEal l 2.9 (9.5) 4.2 (12.9) 5.2 (15.8) 1.66 (5.03)
GIVELL 3.3 (9.3) 5.2 (12.7) * 6.5 (15.5) * 2.07 (4.94)
GIVEMS 2.8 (9.5) 4.1 (12.9) 5.2 (15.7) 1.66 (5.00)
GIVEHD 2.4 (9.4) 3.2 (13) 3.7 (16.1) 1.18 (5.13)
LEND 7.9 (9.2) ** 14.5 (11.9) ** 18.9 (13.9) ** 6.02 (4.43)
AWAREal l 0.3 (9.8) 0.6 (13.5) 0.9 (16.5) 0.29 (5.25)
AWARELL 0.3 (9.7) 1.1 (13.2) 1.8 (16.2) 0.57 (5.16)
AWAREMS 0.4 (9.8) 0.8 (13.6) 1.2 (16.6) 0.38 (5.29)
AWAREHD -0.1 (9.9) -0.1 (13.6) -0.1 (16.7) -0.03 (5.32)
OLconnect 0.4 (10) 0.8 (13.8) 1.2 (17) 0.38 (5.41)
OLaw ar e 2.6 (9.5) 5.5 (12.7) * 7.8 (15.3) * 2.48 (4.87)
OLbeh 3.3 (9.3) 4.1 (12.9) 4.3 (16.2) 1.37 (5.16)
OLdev 5.8 (9.2) * 9.2 (12.4) ** 11.5 (15) ** 3.66 (4.78)
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Figure 4.3: Adoption of shock ventilation in the most effective marketing strategies. Adoption by marketing
is compared to the reference scenario in the absence of feedback devices. Comparison is shown separately for
all agents and the three lifestyle groups, respectively.

reinforce marketing campaigns. When raising awareness of devices is the issue, one
additional factor is the different level of interest in adoption. After being made aware
of such devices, Leading Lifestyles adopt devices eventually, and Mainstream agents
to an intermediate degree, but Hedonists only do if the majority of their peers already
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do. Thus, the awareness campaigns prompt word-of-mouth effects of different strengths
among the different demographic groups.

Marketing strategies that are based on creating awareness of the availability of
devices appears to have the lowest rate of effectiveness. In fact, making Hedonist agents
‘aware’ had no effect at all. This is because even if agents of this group become aware of
devices, they would only adopt them if the majority of their peers have already done so.

We analyzed scenarios with the highest effects (i.e. GIVELL , LEND, OLdev , and
OLaw ar e ) in detail, see Figure 4.3. Of these strategies, LEND is the only strategy that
affected all lifestyles equally. This is because agents are selected randomly for devices
being lent to them. Diffusion of technology does not take place. Consequently, the
different levels of interest in feedback devices among lifestyle groups do not affect the
overall impact of their use.

The other strategies exert the greatest effect on households in the Leading Lifestyles
group. Even strategies OLbeh and OLdev , which only target Opinion Leaders, had the
highest impact on this group. This is highlighted by the significance levels in Fig. 4.3.
This difference results because households in this lifestyle group are well-connected
socially and relatively interested in the adoption of feedback devices.

Cost efficiency of marketing In this section, after having analyzed the effectiveness of
marketing strategies, we discuss cost efficiency. We first estimated the cost of the main
components of marketing feedback devices. From this, it is possible to determine the
cost efficiency of the modeled marketing strategies in inducing behavior changes.

We argue that the cost of marketing depends on three general components:
awareness, devices and training, as indicated in Table 4.5. Awareness represents either
making a household aware of feedback devices or facilitating their engagement in other
marketing strategies. Its cost is estimated to be e5–20 per household, assuming an
online marketing campaign that is geographically confined to one city. On average, it
costs less than e2 to create awareness in a customer (i.e. ‘cost per click’) (Hochman
Consultants LLC, 2016). Additionally, designing an awareness campaign would result in
estimated costs of e5–20 per household. Device costs would be e50–75, representing
the costs of parts and assembly of a CO2 meter. Training of Opinion Leaders would
amount toe20–100 per Opinion Leader, ranging from simply providing catering for two
workshops, up to the potential cost of a location and staff for training.

Table 4.5: Cost components of marketing strategies for feedback devices.

Cost component Represents Min. cost (e) Max. cost (e)

awareness Making one household aware 5 10
device Giving away one device 50 75
training Training an Opinion Leader 20 100

Table 4.6 compares marketing strategies in their costs and cost efficiencies. The cost
of the different marketing strategies are calculated as follows. The GIVE strategies require
making households aware of the availability of devices and then providing them with
such devices. For the LEND strategy, the cost of awareness is inversely correlated with
the number of times a device is lent out (i.e. once per year over 15 years). The AWARE
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strategies naturally only include the costs of making households aware. Leveraging
Opinion Leaders (OL strategies) requires raising the awareness of potential Opinion
Leaders, and then providing them with training. All strategies are related to either the
number of households that are targeted or the number of devices that are lent out, which
is the same for all strategies.

We will first identify the most cost-efficient ones within the four groups of marketing
strategies, before proceeding to compare these four groups. Within the two categories
of ‘Raising Awareness about Devices’ and ‘Giving Away Free Devices,’ all strategies are
assumed to have similar costs. Thus, the most effective strategies from these categories
within each group are also the most cost-efficient ones (i.e. GIVELL and AWARELL).
For both categories, these are the ones that target Leading Lifestyles. In the group of
‘Leveraging Opinion Leaders,’ the most cost-efficient strategy is to use Opinion Leaders
to spread awareness about feedback devices (OLaw ar e ). Giving feedback devices to
Opinion Leaders (OLdev )–the most effective strategy in this group–would nevertheless
also result in higher costs and is therefore less cost-efficient.

Among these best strategies from these four groups, raising awareness about
feedback devices among the Leading Lifestyles group was the most cost-efficient.
Lending out feedback devices (LEND) and raising awareness of them through Opinion
Leaders (OLaw ar e ) had a similar level of cost efficiency. However, the cost efficiency
range of the lending strategy is less uncertain and slightly better. Giving out feedback
devices to the Leading Lifestyles (GIVELL) was the least cost-efficient approach.

Stakeholders available for implementation The availability of stakeholders to
implement the marketing strategies simulated here is a critical question. Available
stakeholder types would first need an interest in households using a feedback device
or in heating their homes efficiently. Second, they should be capable of implementing
such strategies. The following section discusses what types of agents would be suitable
stakeholders; these are presented along the three highlighted marketing strategies
regarding price, promotion and place.

(1) Giving discounts on feedback devices or giving them away for free requires
significant financial resources. This in turn requires stakeholders to be sufficiently
motivated. This seems to be the case for at least two stakeholder types. First, a
housing rental company would have substantial advantages in convincing its tenants
to practice shock ventilation, which would reduce indoor humidity and mold damage to
buildings (Galvin, 2013). Energy utilities—through the energy context of their customer
relationships—could market the CO2 meters to their customers as a tool to save energy
as well. These utilities, in many EU countries, are also the main providers of Smart Home
devices; feedback devices for heating behavior can be integrated into these systems
as well. By giving out devices at lower prices, the utility could benefit from improved
customer relations.

Regarding the lending out of feedback devices, public-private partnership
organizations, such as the aforementioned Innovation City Management GmbH could
be a suitable stakeholder to lend out feedback devices. In the past, this company has
even declared an interest in doing so.
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Table 4.6: Cost-efficiency of scenarios
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(2) Stakeholders can inform consumers about the availability of feedback devices via
advertisement campaigns. For instance, consumer advisory organizations can provide
such information to households. Due to the relatively low costs of advertising, all
interested stakeholders would in principle be able to provide such information.

We argue that leveraging Opinion Leaders should preferably be carried out by a
stakeholder that has high potential of reaching them. We expect Opinion Leaders to
be found if they are active in civil society, e.g. in environmental conservation groups.
Ideally, such Opinion Leaders would be stakeholders from a cross-section of society
rather than a homogeneous connection, e.g. of a housing company or a retail store.
Instead, a consumer advisory organization could be better suited to identify Opinion
Leaders, due to its local knowledge.

(3) We stress that stakeholders differ significantly in their capabilities to target social
groups. Housing companies and energy utilities have direct connections to many
households. In the past, charity organizations have also given away energy-saving
appliances to these households (Caritas, 2016). This could also be done with feedback
devices. In principle, public welfare systems could implement energy savings and split
the savings between the beneficiaries and the taxpayers. However, this was found to
be unfeasible in Germany for legal reasons (Institut für Energie-und Umweltforschung
Heidelberg GmbH, 2009). Retail shops, however, are also interested in the spread of
novel technology. They would have the option to advertise and supply novel devices.

Combining this availability of stakeholders to implement marketing strategies with
the simulated impacts of these strategies revealed two insights regarding stakeholders
that appear relevant for marketing feedback devices.

First, stakeholders whose interest focuses on lower-income groups appear less suited
to support the marketing of feedback devices. This is due to the finding that targeting
households of high social status makes marketing more effective in general than the
targeting of households of lower social status. Consequently, stakeholders focusing on
welfare services to low-income households would only be suitable to market feedback
devices to a limited degree.

Second, the contrasting impacts of the lending strategy in the adoption of technology
and behavior suggest that this strategy is best implemented by stakeholders with an
interest in maximizing behavior change, instead of device adoption. Some stakeholders
(e.g. retailers) could be more interested in maximizing device adoption rather than any
behavioral changes on the part of their customers. Others (e.g. consumer advisory
organizations) could be more interested in creating behavior change. For the strategy
of lending out devices, the number of adopted devices is low, whereas the impact on
behavior change is relatively high. With the relatively low number of devices needed
for the lending strategy, this in particular would dovetail with the interests of the latter
stakeholder group.

4.4.3. EXPERIMENT 3: GENERALIZABILITY ACCORDING TO

NEIGHBORHOOD

Besides knowing which marketing strategies are effective, it would be useful to know
where their implementation would be most effective. Likewise, if marketing is carried
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out at one area, it is of practical interest how other areas are affected by this. Therefore,
we compared the impact of marketing between different parts of the city of Bottrop.

As a first step of this comparison, we chose a simulated implementation of one
relatively effective marketing strategy, GIVELL , in the case study city in general, as well
as in three of its neighborhoods. For all of these three areas, sufficient households of
each lifestyle group were available. We chose this strategy because it is the most effective
strategy that (unlike the LEND strategy) can facilitate the process of device diffusion–and
thus would in principle be most prone to spatially differentiated impacts.

Figure 4.4 shows the location of these three neighborhoods in which the policy is
implemented, and adoption of shock ventilation 15 years after strategy implementation
for each neighborhood. The results suggest that marketing has the highest impact
at its location of implementation. This is shown by the consistent pattern that the
neighborhood in which the policy was implemented is also subject to the greatest
impact.

The results further indicate that the neighborhood in which the policy was
implemented is the only one which diverges significantly in impact from the city in
general. Targeting an individual neighborhood with a given policy implementation
leads to a different effect from this intervention only in this neighborhood. Thus, the
place of policy implementation influences the place of greatest effect. Conversely,
neighborhoods adjacent to the neighborhood of implementation did not experience any
greater impact than those that were at a greater distance.

To test whether varying the specific location of policy implementation matters for
the whole city, we compare impacts from these three scenarios on the city level. Fig.
4.5 shows the adoption of shock ventilation practices for the overall city and for all
marketing strategies 15 years after implementation.

This comparison indicates that the location of marketing does not significantly affect
the impact on a city scale—with the exception of targeting of Opinion Leaders. The
impact caused by the same marketing strategies did not change significantly when
implemented at different locations. The only exception to this appeared to be the
targeting of Opinion Leaders. This was shown to be more successful at the level of the
city as a whole. We traced this back to the fact that Opinion Leaders are ‘hubs’ in a social
network. The larger these hubs—ceteris paribus—the more effective their leverage. Not
constraining the marketing campaign spatially (e.g. to a neighborhood) would allow the
campaign to reach larger hubs. Consequently, greater impacts could be achieved.

Thus, varying the location of policy implementation has two—seemingly
contrasting—effects: concentrating policy implementation in a neighborhood increased
its effect locally. Conversely, such concentration of implementation did not significantly
change impact on the city scale.

4.4.4. EXPERIMENT 4: GENERALIZABILITY FROM THE CASE CITY

In addition to the sensitivity to the place of marketing, it is also important to know
whether findings also hold for cities other than the modeled city in the case study.
Testing previous findings from this study would allow a determination of generalizability
to other cities. This knowledge is important for any actions derived from this study that
will be outside the case of Bottrop.
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Figure 4.4: SV adoption in neighborhoods at various locations of intervention. Maps and box plots show the
share of adoption of shock ventilation practices by neighborhood. Marketing strategy ‘GIVELL ’ is implemented
in the three neighborhoods ‘Batenbrock’, ‘Innenstadt’ and ‘Stadtmitte West’, shown in this order.
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Figure 4.5: Overall adoption of shock ventilation at various places of marketing. For each marketing strategy,
adoption throughout the entire city was compared 15 years after initial marketing in the whole city or in one
of three neighborhoods.

To test this sensitivity, we compare marketing effects among the following five cities:
(1) The model city of Bottrop serves as a reference.
(2) Two cities were generated that, respectively, decrease and increase local

clustering of lifestyles. This was implemented by either completely clustering or mixing
lifestyles at the street level. As a result, however, the difference in social structure
between neighborhoods was only minimally affected. This variable is likely to differ
among cities, as other cities would be less or more homogeneous socially.

(3) Two random cities were used to test for extreme variation in urban structure.
They were generated by moving the modeled households from the virtual case city to
a random location in a spatial bounding box the size of Bottrop. These households
were then connected by a newly generated social network that, like for the modeled city,
corresponds to the empirical data on social structure. We thus randomized the spatial
structure of the virtual city case, without compromising the realism of the social network.
This measure did not change the relative composition of lifestyles between the three
cities either.

Fig. 4.6 compares adoption of shock ventilation between these five virtual cities for
all marketing strategies, 15 years after implementation. These strategies are simulated
over all empirically calibrated parameter combinations.

Results show that the difference in impact among cities of an intervention appears
insignificant. The differences in implementation strategies is a stronger factor than the
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Figure 4.6: Adoption of shock ventilation practice at various virtual cities. For each marketing strategy,
adoption throughout an entire city was compared 15 years after carrying out marketing strategies in one of
five virtual cities.

differences among cities. The degree of local clustering of lifestyles and socio-spatial
structure do not appear to influence the success of a marketing strategy. This could be
due to the high ratio of social connections between neighborhoods (50%, see Table 4.2).

However, from the second experiment (see 4.4.2) the conclusion can be drawn that
the lifestyle composition in a city would influence the impact of marketing. A city with
a higher ratio of households of the Leading Lifestyles group (i.e. of highest social status)
would also likely experience greater effects.

Overall, the generalizability of marketing strategies between different cities and
urban structures was found to be high. This indicates that policy assessment in this
study can be transferred from the model city case to others with a similar composition
of lifestyle demographics.

4.4.5. VALIDATION AND LIMITATIONS

For the applied model needed to be assured that simulation results capture the real
world, thus ecological validity needed to be shown. This was taken out in three ways:
(1) Empirical data was directly integrated into the model. This was done for modeling
the effect of the CO2 meter in households, as well as for the probability of feedback
actually changing household behavior. (2) We further used ‘Pattern-Oriented Modeling,’
a validation method that ensures that simulation results coincide with empirically
observed patterns (Grimm et al., 2005). In particular, the behavior diffusion process
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was validated with this technique. To do this, we used patterns of adoption levels of
energy-efficient ventilation behavior, the role of social influence in causing its adoption,
and the degree to which this adoption conforms to intentions (see Section 4.3.3). (3) To
validate the technology diffusion process, the so-called ‘TAPAS validation’ method was
applied (Frenken, 2006, p. 151).We used an existing model on the diffusion of a relatively
similar, environmentally friendly household product class: water-saving appliances
(Schwarz and Ernst, 2009). This model was validated with historical diffusion data for
this proxy technology. We thus based the diffusion of feedback devices by the diffusion
of this proxy, in order to reduce uncertainty about the diffusion of behavior-changing
feedback devices.

Limitations We expect the results of this study to be affected by the selected marketing
strategies, limitations regarding estimates of marketing costs, and the uncertain nature
of forecasting itself.

Some marketing strategies were not possible to be modeled due to the model
structure. Moreover, charting the changing preferences of consumers was not possible,
because these are not part of the model used. However, we regard the selection of
the modeled marketing strategies as appropriate and meaningful. This is because this
selection spans a wide range of marketing options and covers its relevant categories
of price, promotion, and place. Furthermore, within this selection, we particularly
compared strategies that showed as promising in the literature.

Even though we could estimate the cost efficiency of multiple marketing strategies
assessed in this study, cost efficiency remained uncertain. Therefore, we limited
ourselves to giving cost ranges for the marketing strategies. Consequently, ranges of
estimated cost efficiency overlap, making it uncertain which strategies are most cost
efficient. However, we regard this uncertainty as inherent, as different stakeholders
might have different costs for respective types of marketing. We further dealt with this
uncertainty by examining it in the discussion.

Overall, residual uncertainty of the model results has to be considered as high, which
naturally calls for a careful interpretation of simulation results. The main reason for this
is the discussed high uncertainty of the future of complex socio-technical systems (van
Dam et al., 2012). Another reasons is the simplification from reality, which is necessary
to any model-based analysis. Finally, also the possibility of partial imprecision of the
simulation model could only be excluded to the degree this was done in the validation
procedure (see Section 4.4.5). Due to thus residual uncertainty, we consider the most
valuable results generated by this simulation study the relatively robust comparison
between marketing strategies—not necessarily the simulated absolute levels of impacts.

4.5. CONCLUSION

In this study we aimed to answer the following research question: Which innovation
management is most effective at creating additional energy-efficient heating behavior
via the marketing of behavior-changing feedback devices? Marketing strategies for
feedback devices successfully resulted in additional adoption of energy-efficient
ventilation behavior, particularly when: (1) the use of feedback devices was incentivized
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economically by giving away or lending out some devices for free; (2) the social influence
of well-connected Opinion Leaders (i.e. households that are particularly influential for
others) was leveraged to promote the devices; and (3) households of higher social status
were targeted primarily by marketing.

The core mechanism creating this effect is the result of two processes: the direct
impact of a given marketing strategy and its amplification through the distribution of
feedback devices on the one hand, and on the other hand an increase in energy-efficient
behavior via social connections. Marketing strategies (e.g. giving away free devices
or raising awareness about them among households) can have an effect on their own.
These interventions may persuade more households to adopt these devices, which will
in turn cause a majority of these device adopters to adopt energy-efficient behavior.
This added energy-efficient behavior (being the direct result of the marketing strategy
or of device adoption) then amplifies the spread of energy-efficient behavior. Marketing
strategies assessed in this study varied significantly in effectiveness and cost efficiency.
These differences are summarized in Table 4.7.

Table 4.7: Results on marketing strategies, indicating effectiveness and cost efficiency in creating adoption of
energy-efficient heating behavior.

Scenario Effectiveness Cost efficiency

GIVEal l + +
GIVELL ++ ++

GIVEMS + +
GIVEHD + +
LEND +++ ++

AWAREal l +/- ++
AWARELL +/- +++

AWAREMD +/- ++
AWAREHD +/- -
OLconnect +/- -
OLaw ar e ++ ++

OLben ++ +
OLdev ++ ++

Effectiveness of innovation management via marketing This simulation study
allowed us to compare the effectiveness of marketing strategies that used economic
incentives, promotion, and placement to different degrees.

The economic incentive of lending out feedback devices was the most effective
strategy. This approach resulted in the highest ratio of additional adopters of
energy-efficient behavior relative to the number of devices that were lent out. The
alternative economic incentive of giving away devices for free was successful to a lesser
degree. We thus stress the practical potential of lending out individual feedback devices
to households.

The promotional approach of raising awareness about the availability of feedback
devices was the least effective marketing strategy. The only exception to this was the
potential to use Opinion Leaders to raise awareness about the devices not just among
their peers, but also among the peers of these peers. In contrast, marketing strategies
that caused the greatest impact were those that either gave away devices to households
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or targeted Opinion Leaders. In particular, giving devices away to households of the
Leading Lifestyles group was effective in convincing more households to start using the
devices.

Targeting different social groups with marketing campaigns changed their
effectiveness significantly. Targeting Opinion Leaders and members of the Leading
Lifestyle group appeared most effective. The effect was greatest for Leading Lifestyles,
lower for Mainstream, and lowest for Hedonists. Findings regarding this order of
effect were robust in all variants of marketing strategies.6 Therefore, we suggest
primarily targeting Opinion Leaders or households of the Leading Lifestyles. In practice,
identification of households to be targeted can be done by using commercial marketing,
such as the here applied Sinus marketing typology.

Adjusting the targeting of marketing spatially—within an entire city or its
neighborhoods—generally determined the main area of impact, but not the overall
impact. Thus, when it is of interest to maximize impact in a local area, then this area
should be the focus of marketing activities. For maximizing the impact on a city scale,
however, it did not matter which of its parts were targeted. The only exception to
the latter finding is the targeting of Opinion Leaders. When targeting these, results
indicated the desirability of utilizing the most influential Opinion Leaders from an entire
city–instead of being spatially restricted to a single neighborhood.

Overall, we found lending out devices to be the most effective marketing strategy
to promote feedback devices. Giving away devices and targeting Opinion Leaders were,
regarding device adoption, among the most effective strategies. Raising awareness about
feedback devices appeared to be least effective.

Cost-efficiency of innovation management The estimated cost efficiency of
marketing strategies has a somewhat different order than their effectiveness. (1)
The most cost-effective measure is raising awareness among agents. This strategy, when
targeting households of higher social status, is among the least effective, but it is cost
effective due to its low price. (2) Lending out feedback devices was the second-best
strategy. Even though feedback devices need to be provided for this intervention, their
cost is low because a device can be lent out multiple times. (3) Leveraging Opinion
Leaders was shown to be slightly less cost-effective than lending out devices, due to
the costly training that would have to be given to Opinion Leaders. Nevertheless, the
best marketing strategy leveraging the high social engagement and influence of Opinion
Leaders was that of raising awareness about feedback devices within their social circle.
This strategy combined high effectiveness with a relatively low cost, because no devices
need to be subsidized. (4) Finally, the relatively effective marketing strategy of giving
away some free devices was found to be least cost efficient, because they require
sponsorship of free feedback devices. Of this subset of strategies, targeting households
of higher social status still has the best cost efficiency.

We stress that the cost efficiency of these strategies can vary depending on which
stakeholder implements them. For instance, if a sponsorship of free feedback devices
cannot be done cost efficiently, the marketing strategies of giving away or lending

6The only exception is the—relatively successful—strategy of lending out devices, which did not create an
effect that varied between lifestyles.
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out devices would in turn result in higher costs. Conversely, the cost efficiency of
marketing that leverages Opinion Leaders depends significantly on whether training can
be supported by available resources or needs to be outsourced (e.g. workshop rooms or
training staff).

Role of stakeholders in rolling out feedback devices Stakeholders who might support
feedback devices might nevertheless also have very different interests: maximizing
device adoption does not necessarily imply the adoption of energy-efficient heating
behavior, or vice versa. We have identified some relevant types of stakeholders who likely
would be more interested in maximizing device utilization to be, for instance, energy
utilities and retailers. Conversely, organizations that might prioritize the end of behavior
change could be consumer advisory organizations and public-private partnerships with
sustainability goals.

Both these groups could reach their goals with a set of overlapping strategies–with
the lending out of devices being the only exception. Both the adoption of feedback
devices and of energy-efficient behavior can be supported effectively by leveraging
Opinion Leaders and by giving away free devices to initial adopters–preferably those of
relatively high social status (i.e. Leading Lifestyles). The only exception is the marketing
strategy of lending out, which increased energy-efficient behavior most effectively in our
assessment.

Generalizability We tested the generalizability of these findings, comparing the effects
from marketing campaigns in a virtual version of Bottrop (as our case-study city) with
two other, randomly generated, virtual cities. We determine that the results of this
study seem to be generalizable to other cities, including those with very different
socio-spatial structures. This has two major implications for our study: (1) marketing
strategies that were shown to be successful in the ‘virtual Bottrop’ would likely also be
successful in another city with a similar composition of lifestyle groups; (2) commercial
high-resolution marketing data on the locations of consumer lifestyles in a city might
not be needed for studies like this. The overall population share of lifestyle groups would
suffice instead.

Impact on heating energy demand Campaigns simulated in this study increased the
adoption of shock ventilation by up to ca. 18% (σ = 13.9%) after 15 years. This impact
was found statistically significant. Given the empirically estimated 8% of energy savings
from this ventilation behavior, this would translate into a decrease in energy demand by
ca. 1.5% (σ = 1.1%). Similarly to additional shock ventilation, these energy savings would
be distributed heterogeneously. Households of higher social status would likely decrease
their energy demand more, whereas households of lower social status would less so.

This reveals that, given the low costs of feedback devices, their impact can be relevant
on a city scale, but is also limited. Particularly, the overall impact on a broader scale
stays below its impacts on individual adopters. Therefore, we suggest that interventions
that use the CO2 meter should be combined with energy-related renovation measures,
e.g. replacing building insulation. This is particularly useful as insulating buildings



4.6. FUTURE RESEARCH

4

89

increases the relative share of ventilation in heating demand; this makes the CO2 meter
particularly useful for well-insulated buildings.

4.6. FUTURE RESEARCH

We see the following opportunities on how future research can add to the contributions
of this study.

We suggest to increase robustness of forecasting by refining the applied simulation
model in two aspects. First, modeling the decision of adopting feedback devices could
be done in more detail. More detailed insight into the process of decision-making would
for instance allow the assessment of marketing strategies in more detail, e.g. regarding
detailed communication with consumers. Such increased detail would require extensive
empirical data on past device diffusion, as well as more specific assumptions on future
developments in the energy sector (e.g. regarding energy prices). Second, the here
presented method of assessing marketing strategies should be transferred to more cases
of feedback devices. This would be advantageous, because it would differentiate the
undertaken comparison between marketing strategies.

This study analyzed how feedback devices can be used to conserve heating
energy. However, this approach could be compared more closely in its combination
with alternative approaches. In particular, the aforementioned alternative of energy
renovation could be included, motivated by the interactions between refurbishment and
user behavior (Berkhout et al., 2000). From this, we would expect an assessment that
included and compared both energy-related renovation efforts and feedback devices to
be fruitful and informing for policymakers and stakeholders alike.

We regard the assessment approach of this study to be well-suited for future
applications on the diffusion of technology and behavior. We expect to see more cases
of simulation assisting the support of behavior changing technology, in order to trigger
behavior change towards sustainability on a larger societal scale.
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AUTOMATING MODEL

DEVELOPMENT AND APPLICATION

The best work is not what is most difficult for you; it is what you do best.

Jean-Paul Sartre

5.1. INTRODUCTION

Understanding the prospects of innovations and how they spread is powerful.
Mechanistic understanding of the diffusion of an innovation can help explaining their
success. For instance, the Theory of Diffusion of Innovations by Rogers (2003) allows
understanding diffusions based on general mechanisms of interpersonal interactions.
From these, it is possible to infer general patterns and key actors of innovation diffusion.
Further, the explanatory power of the general mechanisms of innovation diffusion has
been confirmed in empirical cases of diffusing innovations (Schwarz and Ernst, 2009;
Sopha et al., 2013; Jensen et al., 2016).

Beyond understanding, found mechanisms can be used for guiding practical actions.
Persons and organizations often want to know “how to speed up the rate of diffusion of
an innovation” (Rogers, 2003). Actions that achieve this can directly be derived from
causal mechanisms of the spreading of an innovation. Further, simulation can be used to
project and estimate the impact of practical actions. This allows forecasting the impact
of these actions from the underlying mechanisms. This study will focus in particular
on simulating innovation diffusion with agent-based modeling (ABM). This approach
represents real-world actors with computer agents, whose actions towards innovations
are modeled by explicit decision models (Delre et al., 2007; Jensen and Chappin, 2016).

However, mechanistic understanding is particularly challenging to gain. It is harder
to achieve than statistical inference, which reveals co-occurrence of events in a set of
observations. Requirements for gaining it also exceed sole causal understanding, which

At the time of writing, this chapter is in press at the Journal of Environmental Modeling and Software.
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‘only’ requires knowing that one event generally causes another one (Aalen and Frigessi,
2007). Instead, mechanistic understanding implies to know if one event (likely) “leads to
a specific, deterministic behavior in another” (Leek and Peng, 2015).

ABM can illuminate mechanisms of the diffusion of innovations, but is challenged
by time and labor intensive model building (van Dam et al., 2012). Via simulation,
ABM links micro-level actions of actors to ‘emergent dynamics’, e.g. innovation diffusion
(Chappin and Dijkema, 2015). Thereby, macro-dynamics of innovation diffusion are
‘decoded’ by being explained by micro behavior of agents (Grimm et al., 2005; Stern,
2016). Unfortunately, ABM is commonly more time-intensive than its alternatives (e.g.
system dynamics (Watts and Gilbert, 2014) and statistical analysis). This limits its
practical applicability. In line with these challenges, Garcia and Jager (2011) emphasize
the current “challenge is designing (agent-based models) that are useful (to) managers
without programming skills.”

We propose to enable agent-based modeling to overcome these limitations by
automated model generation. Several approaches to automation exist, which we
propose to combine: (1) Translating simple specifications into executable models.
Examples are http://m.modelling4all.org and the MAIA framework by Ghorbani
et al. (2013), which automatically generate simulation models from specifications by
domain-experts. (2) Model building from existing components. A method to this
idea is ‘TAPAS’1, via which previously validated models are reused at new applications
(Frenken, 2006). (3) Using data for model-building in a structured way. Grimm
et al. (2005) proposed ‘Pattern-oriented Modeling’ to falsify model variants that fail to
reproduce a set of patterns from empirical data. This replaces ad-hoc decisions and
informed guesses about adequate model structures and parameters with rigid testing
against empirical data.

Therefore, the target of this study is to present a process that systematically builds
ABMs via the following steps: (1) extracting driving mechanisms from empirical
observations on innovation diffusion; (2) projecting diffusions into the future; and (3)
assessing the effects of real-world actions and policies ex-ante, via simulation. This
study aims to answer the following question: “Can automated generation of agent-based
models on the diffusion of innovation be achieved, and how could this be useful?” This
question will be addressed by specifying an automated software procedure for this task.
To further provide proof of concept, application of an implementation of this procedure
to the diffusion of sustainable products among households will be presented.

The remainder of this study is structured as follows. First, we provide background
on agent-based modeling of the diffusion of innovations. Second, the procedure that
automates the building of such models is presented. Finally, this procedure is applied to
a case of innovation diffusion.

5.2. AGENT-BASED MODELING OF INNOVATION DIFFUSION

This section will provide details on agent-based modeling of innovation diffusion,
which is the application domain of the proposed automation procedure. We will show

1‘TAPAS’ abbreviates “Take A Previous model and Add Something”.
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that there exists a high degree of standardization of existing diffusion models. This
standardization helps automated modeling.

According to Geels and Johnson (2015), there exist four general types of dynamic
innovation diffusion models. We hereby focus on innovation models that are dynamic,
because innovation itself is a process of change (Kiesling et al., 2012). (1) Adoption
models capture spreading of an innovation among potential adopters, e.g. how the user
base of a new product increases via word-of-mouth. (2) Models of up-scaling and system
building describe a small system expanding to a larger one, e.g. an electricity system
expanding from a decentralized ones to a single centralized system. (3) Replication
and circulation models emphasize the replication of an adoption during its circulation
to other location. Considering replication emphasizes adapting an innovation to
other local conditions. (4) Societal embedding models consider the embedding of an
innovation in business, societal, policy, and user environments.

‘Adoption’ type models are of special interest to this study. This is because their
modeling of “independent adopters making (adoption) decisions” (Geels and Johnson,
2015, p. 12) fits well with the actor-centric perspective of agent-based modeling.
Adoption type models are represented by ‘aggregated’ and ‘individual level’ models
(Kiesling et al., 2012). Aggregated models directly model the overall adoption dynamics
of an entire population. This approach is represented by the ‘Bass model’ and commonly
modeled with system dynamics (Kiesling et al., 2012). Conversely, ‘individual level’
models capture the adoption decisions of individuals in a population, from which overall
adoption dynamics ‘emerge’.

In this study, we will focus on the individual level models, because of their
capability to incorporate more aspects of reality. According to Kiesling et al. (2012),
‘individual level’ models are superior to ‘aggregated’ ones (such as system dynamics).
(1) Explanatory power is greater for ‘individual level’ models, because they explicitly
connect behavior and decisions of agents with aggregated diffusion dynamics. (2)
Population heterogeneity can be captured more detailed in ‘individual level’ models.
(3) Social processes (e.g. interactions between consumers) are modeled explicitly. This
process can have great impact on diffusion success (Delre et al., 2007). Agent-based
‘individual level’ models are particularly suited to model social interactions. In contrast
to discrete-event simulation, they are capable of modeling detailed social interaction
topologies in a computationally efficient way (Watts and Gilbert, 2014). Consequently,
this study will focus on innovation diffusion models that are agent-based.

Automating the building of agent-based innovation diffusion models is facilitated by
their similar structure. A review by Kiesling et al. (2012) finds that most ‘individual level’
diffusion models have such a common structure. Accordingly, virtually all agent-based
innovation diffusion models are variations of one meta-model, shown in Fig. 5.1. This
meta-model comprises the following elements: (1) Consumer agents represent the
entities than can adopt an innovation. These can be individual persons, households, or
groups of households. (2) Social structure is the heterogeneity of consumer agents, e.g.
dividing them in different consumer groups. (3) Decision making processes (formalized
as decision models) are the key actions of consumer agents to model the adoption of
an innovation. (4) Social influence between agents (from peers, social groups or overall
population) can affect decision making of consumers and is commonly modeled as a
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Figure 5.2: Overview of phases of automation procedure. The procedure is sub-divided into the subsequent
phases preprocessing of input data, inverse modeling of potentially explaining models, and policy modeling of
models that were accepted based on the previous phase.

influence is defined by a social network graph. For generating a social network graph,
we used the algorithm described by Jensen et al. (Jensen et al., 2016, Appendix A.2).

Agents have to be defined by a CSV file with the columns ID, X and Y coordinates, and
name of the social group they may belong to. The network graph is provided as a CSV file
with the columns FROM and TO, defining directed links between two agents identified
by their IDs. For instance, bidirectional influence between two agents would require two
lines in this file.

(2) Innovation properties are provided that represent how an innovation is perceived
by households. This idea follows Rogers (2003), according to whom diffusion success of
innovations depends on generalizable properties. Examples of the innovation properties
are relative compatibility, complexity, and trialability.

Innovation properties each have to be provided as NetLogo source files. Each file
contains a NetLogo method that sets innovation properties of an innovation as global
variables.
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(3) Patterns are provided that characterize the dynamics of the real-world process
that shall be modeled. These patterns are “indicators of essential underlying processes
and structures” (Grimm et al., 2005). Each additional pattern reduces uncertainty
about which mechanisms could explain the diffusion of an innovation. An example
for a relevant pattern is the exponentially increasing adoption share of a successful
innovation during its initial diffusion (Rogers, 2003).

Patterns are formalized by provided as NetLogo functions that calculate how well
a simulation run matches each pattern. The values returned from these functions
represent how well a simulation run suffices a pattern. A returned value of 0 signals a
perfect fit with a pattern. With greater divergence from the pattern, this returned value
increases. At simulation runtime, these functions query simulation runs and return
fitness values for the following matching function.

(4) A ‘matching function’ describes the desired behavior of an accepted simulation
model in terms of the provided patterns. This function weights and combines patterns
to describe model output that would be considered realistic. This function assists in
finding simulation runs that represent the empirical patterns best.

The matching function has to be defined by a character string. Variables of this
function are the names of the provided empirical patterns (and the functions that
calculate matching with these patterns). For an example, see Eq. 5.2 at the application
case below.

Inverse modeling The inverse modeling phase identifies models that satisfy the
provided matching function.

Within a range of plausibility, pre-defined models are varied in their structure and
parameter values. For this, the NetLogo tool BehaviorSearch was used (Stonedahl and
Wilensky, 2016). It repeatedly runs each potential model, thereby varying its structure
and parameters, searching for an optimal fit with the pattern. The optimum that
this search converges to is defined by the user-provided matching function. For the
application case, we executed BehaviorSearch with a simulated annealing optimization
(see Table 5.1 for search settings).

At the end of this phase, the user has to choose which tested models from the
model library with which structural variation shall be accepted. Accepted model variants
should be those that generate realistic results. This decision can be based on the best
fitness values and respective parameters, which are reported for each structural variation
of each tested model. If a model reproduced all provided empirical patterns, then it
can be considered a potential explanation of these input data. Because the user has
pre-defined this ideal behavior via the matching function, the fitness value is a strong
indicator for this judgement. If model variants of multiple complexity levels match the
patterns well, the simplest ones of these variants should be preferred. This serves to
manage the risk of ‘overfitting’ at high structural complexity (Provost and Fawcett, 2013).
If required, the reported parameters settings for the best fit of each model variation allow
the user to simulate and assess these model settings more closely in NetLogo.

Policy simulation The proposed automation procedure provides the useful function
of semi-automatically assessing policies. Here, policies are those actions that aim at



5.3. METHODS

5

97

Table 5.1: Search setting of simulated annealing optimization. Applied search tool was the NetLogo extension
BehaviorSearch. Search parameters are names as in this tool.

Search parameter Value

Mutation rate 0.05
Temperature change factor 0.95
Initial temperature 1.0
Restart after stall count 0
Evaluation limit 300
Optimization goal ‘Minimize Fitness’
Collected measure ‘MEDIAN_ACROSS_STEPS’
Fixed sampling 5
Combine replicates ‘MEDIAN’

systematically supporting the diffusion of an innovation. Polices are provided in a policy
library, which can be extended by the user. Such automated policy modeling is useful,
first, because it frees the user from redundant, manual work. Further, running the same
set of policies across all models that are accepted by the user based on the inverse
modeling results increases robustness of the policy assessment. This can for instance
be achieved by averaging over all these forecasts.

Policies are pre-implemented as NetLogo functions and stored as individual NetLogo
source files. Users have to choose from a set of policies that support innovation diffusion
or define other policy options. The user is recommended to test those policies for all
diffusion models that resulted in a sufficient fit with the provided empirical patterns.
Each policy simulation is executed from an XML file with the ‘BehaviorSpace’ tool in
NetLogo. These files are derived from a template, but parsed based on the user choices
on policies and models, and the respective parameterizations that previously resulted in
a best match with the empirical data.

5.3.2. APPLICATION CASE: DIFFUSION OF WATER-SAVING APPLIANCES

We applied the here presented automation procedure to the diffusion of water-saving
showerheads. This was motivated by available empirical data of high quality for this
case. We used the proposed automation procedure to generate models that explain
these data and to test policies. This served as a proof of concept and illustrates the
proposed automation procedure. Also, it informs us about the mechanisms with which
water-saving showerheads could spread. Policy simulation shows how this spreading
could be effectively influenced.

EMPIRICAL DATA FOR APPLICATION CASE

Empirical data on the diffusion of water-saving showerheads was used, as presented by
Schwarz (2007).

(1) Agents data. Previous research found a significant relationship between lifestyle
group and adoption behavior regarding water-saving appliances (Schwarz, 2007).
Accordingly, three consumer groups could be clustered: ‘Leading Lifestyles’, which are of
higher social status, are most interested in the adoption of such appliances; ‘Mainstream
and Traditional’ households show intermediate interest in them; and ‘Hedonists’ are
least interested in water-saving appliances.
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(2) Innovation properties. Properties of water-saving showerheads and conventional
showerheads were surveyed. For each lifestyle group, the relative importance of these
properties was also surveyed. This allows modeling the choice of consumers regarding
the adoption of water-saving showerheads.

(3) Diffusion patterns. Two empirical patterns on the diffusion of water-saving
showerheads emerged. First, marketing shares in Germany after 15 years of product
diffusion show difference in adoption between these consumer groups. Second, the
adoption diffusion curve during the first 15 years of innovation diffusion has an
exponential shape.

EXISTING MODEL ON SHOWERHEADS DIFFUSION

An agent-based simulation model was previously built based on some of this empirical
data (Schwarz, 2007). We will here coin it the ‘Schwarz’ model. This model describes the
decision making of agents regarding the adoption of feedback devices. According to the
model, initially no household uses water-saving shower heads. At a monthly deliberation
probability of 0.004, each household decides whether to adopt the water-saving option.
There is a probability at which agents adopt the technology option that is adopted by
the majority of their peers. This probability is differentiated by the three lifestyle groups
(Jensen et al., 2015): (1) Leading Lifestyles always adopt the device, regardless of their
peers; (2) Mainstream agents adopt devices in 50% of the cases, and imitate their peers
otherwise; and (3) Hedonists always imitate the majority of their peers.

EVALUATED AGENT-BASED MODELS

We created a generic model library of two further models. We coined these models
‘Schwarz flexible’ and ‘TPB’, which abbreviates Theory of Planned Behavior.

‘Schwarz flexible’ model This model is structurally similar to the ‘Schwarz’ model, but
its parameterization was made ‘flexible’ in two ways. First, the monthly deliberation
probability became a flexible parameter between 0.004 and 0.04. Second, the probability
of agents to adopt according to the majority of their peers also became a flexible
parameter (between 0 and 1) for each social group.

‘Theory of Planned Behavior’ model The second decision model is based on the
Theory of Planned Behavior (TPB) by Ajzen (1991). Modeled adoption is based on
three factors: the attitude towards an innovation (ATT), the perceived behavioral control
(PBC) over adopting it, and the subjective norm (SN) towards adoption from the social
environment. For water-saving showerheads, this means that adoption is more likely if
first, attitude towards this product is more positive, second, if the adoption is perceived
as easy and feasible, and third, if adoption is more common among peers. We used the
formalization shown in Eq. 5.1 (Schwarz, 2007).

adoption_intentioni = (1− s) · (ATTi +PBCi )+ s ·SNi (5.1)

According to this model, an agent calculates utility for each option i and adopts
the one with the highest adoption intention, based on the following factors. ‘ATTi ’ is
the product of two vectors: properties of innovation i and weights (i.e. importance)
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that the agent’s social group assigns to these characteristics. An example of such a
characteristic is environmental-friendliness of an innovation. ‘PBCi ’ is a product of
innovation characteristics (that translate into the ease of adoption) and the respective
weights of importance for the social group. An example is the purchasing cost. ‘SNi ’ is
the ratio of peers of a household that use product ‘i’. The parameter ‘s’ is the importance
to practice the same behavior as its peers, motivated by a need for social cohesion or
uncertainty about the product.

We differentiated these two models by an optional word-of-mouth (WOM)
mechanism. Without this mechanism being active, all agents can principally deliberate
on adoption at any time. If this mechanism is active, agents only consider adopting
feedback devices if they are aware of them. At adoption, an agent makes the peers
that it influences aware of the device. The activation of this mechanism thus becomes
an additional degree of freedom to the structure of both models. In the inverse
modeling phase of the automation procedure, this will become subject to structural
model variation.

AUTOMATED POLICY SIMULATION

In addition to enhancing mechanistic understanding, we assessed the impact of policy
actions towards innovation diffusion. A policy (i.e. “course or principle of action” (Oxford
University Press, 2016)) regarding innovations often aims at directing their diffusion
(Jensen and Chappin, 2016). Typically, this is increasing their rate of diffusion.

The above presented automation procedure can automatically project the impact of
policies on diffusion. This could be used to test implementations of new policies, as well
as the termination of previous ones. The automation phase only uses those models for
projections of policy impacts that were accepted based on the inverse modeling phase.

As policies to be tested, we chose two marketing strategies at which free products
are given away. (1) After 15 years of device diffusion, an additional 10% of households
receive a free water-saving shower head. (2) The same policy is applied, but to those
households who influence most other households. These selected households can be
framed as households of opinion leaders, who are highly connected and influential
(Kiesling et al., 2012). They have thus shown particular potential to leverage innovation
diffusion (Rogers, 2003; Kiesling et al., 2012; Nisbet and Kotcher, 2009; Van Eck et al.,
2011). Simulation of this second policy relies on the explicit modeling of the social
network. Consequently, it could not directly be tested by some simulation approaches
that lack a modeled social network, e.g. system dynamics.

The tested policies have the potential to promote further adoption of this product by
social influence and WOM. Time of policy implementation is 15 years after the beginning
of product diffusion. From this point in time, no empirical data were available. Policy
simulation thus projects the uncertain future diffusion.

5.4. RESULTS AND DISCUSSION

We conducted two simulation experiments, each representing one of the two automated
phases of the procedure.

• Experiment 1 simulates the simulation models from the model library and
compares simulation results to the original ‘Schwarz’ model.
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• Experiment 2 demonstrates automated policy simulation with the models that
were accepted as sufficiently realistic in the first experiment.

5.4.1. EXPERIMENT 1: INVERSE MODELING

In this experiment, two diffusion models (‘Schwarz flexible’ and ‘Schwarz TPB’) were
tested for their ability to explain the historical diffusion of water-saving showerheads.
This testing is taken out by the inverse modeling phase of the proposed automation
procedure. Each of these two models was simulated at two structural variations (with
and without the WOM mechanism) and at varied parameters. Simulation results were
tested against two empirical patterns: the exponential takeoff of adoption and the
empirical market shares of the three consumer groups after 15 years.

The provided matching function that was minimized in order to search for realistic
models is shown in Eq. 5.2. Mainly, the simulated adoption shares are compared
to the provided empirical ones. In the inverse modeling phase, mismatching with
empirical market shares is minimized. Further, if the shape of the adoption curve is
not exponential, then a significant penalty is added to the matching function. Basis for
this is the overall adoption share over all agents and the length of a simulation run of 15
years. Matching results (i.e. best fitness and according parameters) are shown in Table
5.2.

minimize {‘adoption shares’+1000 · ‘exponential’} (5.2)

Table 5.2: Results of inverse modeling phase: best fit and parameterizations. Optimized fitness for
the models ‘Schwarz flexible’ and ‘TPB’ with and without word-of-mouth (WOM) is shown. Parameter
combinations (except those that resulted in no adoption at all) with best fit are shown: the monthly
deliberation probability and social influence (δα) in adoption are given for the consumer group ‘Leading
Lifestyles’, ‘Mainstream and Traditionals’, and ‘Hedonists’ (sLL , sMS , sHD ).

Model WOM fitness δα sLL sMS sHD
‘Schwarz’ no - 0.004 0 0.5 1
‘Schwarz flex.’ no 19.12 0.029 0.723 1 0.996
‘Schwarz flex.’ yes 5.91 0.013 0 0.679 0.928
‘TPB’ no 26.61 0.013 0.288 0.428 0
‘TPB’ yes 5.72 0.016 0 0.456 0.200

Results of best matches, shown in Fig. 5.3, revealed that model versions without
WOM were less able to match the patterns: the ‘Schwarz flexible’ model, was not able
to generate an exponential pattern, while the ‘TPB’ model could generate exponential
increase in adoption, but was not able to match the adoption data at the same time.
With the WOM mechanism being active, both models were able to match both patterns.
The only limitation to this matching is a relatively bad reproduction of the empirical
market share of the ‘Hedonists’ group. Based on these results, we regard both simulated
models generally suited to explain the diffusion of water-saving showerheads, but only
if the WOM mechanism is included.
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Figure 5.3: Average adoption of water-saving showerheads, as simulated by the four tested model structured

at best matching parameters. Results are differentiated by consumer group. Whiskers show the quartiles. The
hollow points show empirical market shares of the respective consumer group after 15 years of diffusion. For
each of the consumer groups ‘Leading Lifestyle’ and ‘Mainstream’, two market share data points were used.

5.4.2. EXPERIMENT 2: POLICY SIMULATION

In this experiment, we applied the proposed procedure to automatically assess the
impact of a policy on innovation diffusion. This assessment only based on those model
variants that matched the empirical patterns in the previous experiment. Instead of
testing policy interventions for one simulation model, policies are tested for all models
that were thus accepted in the inverse modeling phase. The simulated policies (see
Section 5.3.2) are as follows: (1) to give away free water-saving showerheads to 10%
of households after 15 years of innovation diffusion; and (2) giving away water-saving
showerheads at the same point in time to 10% of households, who are influencing
the most other households (i.e. who have outgoing network connections to most other
households).

Figure 5.4 and 5.5 show the impact of the assessed policies, which led to the following
findings. First, impacts for the two models are relatively similar: giving away free
devices at the advanced stage of product diffusion makes the scenarios with and without
policy intervention initially diverge quickly. Following the interventions, the innovation
spreads at a similar rate, compared to the reference scenario without intervention.
Second, for both models, the higher adoption due to the intervention led to a gradual
saturation in adoption at the end of 25 years of diffusion. Adoption over time thus forms
an S-curve, which is predicted by the Theory of Diffusion of Innovations (Rogers, 2003).
This shows that (in this regard), the simulated models are in line with prevailing theory.
Overall, the similar additional impact for the two models underlines the robustness of
the proposed procedure.

The two assessed policies had a different impact. For both used models, addressing
opinion leaders generated a higher impact than addressing random households.
Further, the similarity in policy impact for the two simulated models and the difference
between the policies is underlined in Table 5.3. It shows the same relative order
of impact of the two assessed policies. For both models, the marketing strategy of
addressing opinion leaders has a higher impact. Further, the impact of each policy
(compared between both models it was tested with) is relatively similar. At this point,
it would be possible to extract statistical properties of predicted policy impacts over
all tested models. For estimating the expected impact, averaging of predictions would
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Figure 5.4: Impacts of policy that addresses all households (continuous line) compared to baseline scenario
(dashed line). Whiskers show the quartiles. Results rely the two most realistic model structures with
parameterizations that matched empirical patterns best.

be advisable. Alternatively, minimum and maximum of such an ensemble would give
insights into degree of uncertainty. Overall, this indicates that the policy assessment
based on multiple models increased the robustness of the proposed procedure.

5.4.3. LIMITATIONS

Discussion of limitations will focus on two aspects of the proposed automation
procedure rather than the application case. This is because this procedure is the key
contribution of this study.

(1) The proposed automation procedure might not be applicable to very uncertain
processes or models. It appears limited to cases where potential explanations are
restricted to a bounded space of options. This is the case for e.g. innovation diffusion.
Nevertheless, the proposed procedure has been able to handle structural uncertainty.
However, up to which limit such uncertainty can be managed is not known at this point.

(2) The proposed procedure is not easily applicable by everyone. It requires data
processing skills in the preprocessing phase. This might limit the circle of potential
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Figure 5.5: Impacts of policy that addresses opinion leaders (continuous line) compared to baseline scenario
(dashed line). Whiskers show the quartiles. Results rely the two most realistic model structures with
parameterizations that matched empirical patterns best.

users. Yet, the procedure still widens this circle of users, compared to the prevailing
model building ‘from scratch’.

(3) Further, the procedure might require cautious application by the user. Even
though the presented method is mostly automated, key decisions still have to be made
by the user. This critical role of user decisions is a common feature of automated
data-analysis tools, e.g. statistical tests (Strasak et al., 2007). If these decisions are not
cautiously made in the presented automation procedure, quality of results might be
compromised. For instance, tested diffusion models might be selected by the user
without understanding their functioning.

5.5. CONCLUSION

The question guiding this study has been how the generation of agent-based innovation
diffusion models can be automated and how this could be useful. This question has been
addressed by specifying and presenting an automation procedure to the generation of
agent-based models on innovation diffusion and by applying to a case study.
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Table 5.3: Results of policy simulations based on selected, sufficiently realistic models (with

word-of-mouth). Impact is shown as additional percentage of product adoption 15 years after policy
implementation.

Model WOM Policy Additional adoption (10 yrs)

‘Schwarz flex.’ yes ‘give away to 10%’ 10.5%

‘Schwarz flex.’ yes
‘give away to 10%
(opinion leaders)’

13.3%

‘TPB’ yes ‘give away to 10%’ 6.0%

‘TPB’ yes
‘give away to 10%
(opinion leaders)’

7.7%

Implementation and application of the proposed design showed that the automation
procedure is applicable to the diffusion of water-saving showerheads. It further enabled
high efficiency of time and labor for this case. This serves as a proof of concept and adds
weight of evidence to its suitability to automate the generation of agent-based models of
innovation diffusion.

This application further revealed several advantages of the proposed automation
procedure. Present practices of building agent-based models on innovation diffusion are
highly diverse. Therefore, it does not seem informative to compare the here proposed
procedure against any specific existing practice. Instead, we will conclude on the
presented method by re-iterating its advantages. We stress that, in combination, these
benefits validate the proposed design.

At application, the procedure proved helpful for improving existing diffusion models
from empirical data. The previously empirically validated ‘Schwarz model’ on the
diffusion of water-saving showerheads could be refined to increase its realism. For
this refinement, word-of-mouth mechanism of communication between consumers
was found plausible—both theoretically and data-wise. This role of word-of-mouth
adds weight of evidence to the importance of future marketing efforts that leverage this
mechanism.

The rigid use of data in the proposed procedure creates model validation by design.
The procedure is driven by comparing model output to empirical data, which is central
to validation (Rand and Rust, 2011). Further, systematically comparing multiple models
(and mechanisms) enables the good scientific practice of being able to falsify those
that can not explain empirical observations. Overall, this has the potential to make
agent-based modeling more rigorous than in common practice (Grimm et al., 2005).

The presented approach allows using relatively complex simulation modeling at low
complicatedness for the user. Provided a library of potential mechanisms has previously
been implemented, a user would only need to provide key data on a dynamic, potentially
complex system. The automated procedure then simulates bottom-up models and
then tests their matching with the provided data. This procedure selects potentially
explaining mechanisms and thus supporting gaining mechanistic understanding.

Due to this relative ease of use, the presented automation approach helps increasing
the circle of persons that could independently build agent-based simulation models on
innovation diffusion. We see the classical role of the modeler extended by the role of the
user (also referred to as ‘thematician’ (Drogoul et al., 2002; Galán et al., 2009)). Such a
user can build and apply diffusion models without requiring programming or simulation
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skills. Except for extending a library of model components, the commonly required
implementation by modelers and computer scientists (Drogoul et al., 2002; Galán et al.,
2009) is not required. A user only has to process and provide the required input data, as
well as interpret the generated model results. From a perspective of innovation diffusion,
we regard this widening of the circle of adopters a crucial service to the spreading of
agent-based modeling as an innovative forecasting method.

5.5.1. FUTURE RESEARCH

We suggest to progress this study in three directions.
First, the central phase of inverse modeling is crucial to the proposed automation

procedure and could be improved. We propose to support anticipated users of this
automation procedure to make good choices on matching functions. For this, different
designs of the inverse modeling phase should be compared. Those that are robust in
providing good results over several applications cases should be preferred. One such
variation would be to withhold for validation some of the data that is now used for model
calibration. For choosing between alternating model hypothesis, various statistical
approaches should be tested. Candidate methodologies for this are, for instance, Akaike
Information Criterion and Bayes factors.

Second, user-friendliness of the procedure can be increased by accepting
unstructured input data. The presented application case used structured empirical
data. Approaches from data science could allow us to execute the procedure with
un-structured data. Overall, increased user-friendliness further increases the circle of
potential users.

Finally, we suggest to expand the application of the proposed automation procedure
to more cases. This could be facilitated by finding a way for the automation procedure
to be as generally applicable as possible. For instance, this could even include
generating models from far smaller components than are currently in the modeling
library. Application to more cases would eventually help establish reference models
on the diffusion of innovations, which can further support the development of sound
innovation diffusion models.

Overall, we believe these future development and applications will encourage users
who are not model builders to apply the proposed automation approach. The here
presented design is meant to assist them in exploiting the merits of agent-based
modeling of innovation diffusion.





6
CONCLUSIONS AND

RECOMMENDATIONS

I love all who are like heavy drops,
falling one by one out of the dark cloud that lowereth over man:

they herald the coming of the lightning,
and succumb as heralds.

Friedrich Nietzsche

6.1. CONCLUSION

Reducing domestic heating demand is an attractive contribution to the reduction
of greenhouse gas emissions. Feedback devices, if diffusing successfully among
consumers, could trigger the behavior change in heating that would significantly
contribute to this. This thesis used simulation modeling to estimate the potential
diffusion of such devices. It also estimated the behavior change of device users and the
diffusion of the behavior change that this creates. Based on capturing these diffusions,
the potential impact of devices, i.e. their overall effect on energy-conservation behavior,
could be simulated and analyzed.

With these simulations, it is possible to inform policy makers and stakeholders
on how to support the impact of feedback devices. Their actions could potentially
amplify or diminish the realization of the potential that is inherent to behavior-changing
feedback devices.

This thesis set out to develop a simulation study design for agent-based modeling
to tackle these tasks. Ideally, this design would overcome the current limitations
of agent-based modeling, which often requires cumbersome and somewhat arbitrary
decisions on model design. From this motivation emerged the central research question
of this thesis:

How can the impact of behavior-changing feedback devices on energy-consumption
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behavior be systematically simulated?

This section gives an answer to this question. This includes providing
methodological recommendations to modelers, as well as practical recommendations
to policy makers. Eventually, this chapter will reflect on limitations of this thesis, and
will highlight emerging future challenges.

The central research question of this thesis has been addressed in detail in
four sub-questions. Their succession inspired a stepwise research approach, which
dedicated to each sub-question one step. The first three of these developed methods
simulated the impact of behavior-changing feedback devices. They started at identifying
the mechanisms of co-diffusion, modeled empirically-grounded impact of devices,
and eventually assessed policy strategies systematically. In the fourth step, these
methods could eventually be standardized as a procedure of automatically generating
agent-based diffusion models and assessing the impact of policies on diffusions. In the
following, the lessons learnt during these four research steps will be presented. Based on
these insights, an overall conclusion on the central research question will then be drawn.

6.1.1. CONCLUSION 1: MECHANISMS OF IMPACT OF FEEDBACK DEVICES

As a first step of this thesis, the general dynamics of interaction between the diffusions of
feedback devices and energy-efficient heating behavior were analyzed. This addressed
the following question: What are the mechanisms via which feedback devices can change
heating behavior?

Conclusion 1 – In addition to the diffusion of feedback devices, the diffusion of
energy-efficient behavior enhances the overall impact of feedback devices on heating
behavior. Consequently, behavior diffusion is confirmed as an important component to
this co-diffusion of technology and behavior. This is in line with previous research on the
potential of behavior diffusion to spread energy-efficient behaviors (see Peschiera et al.,
2010; Chen et al., 2012; Anderson et al., 2014). This motivates behavior diffusion to be
considered at future assessments of feedback devices.

Two mechanisms were identified via which behavior diffusion increases the overall effect
of feedback devices. First, behavior diffusion was found to spread energy-efficient
behavior from households, who changed their behavior due to feedback, to others.
By thus reaching non-adopters of devices, behavior diffusion decreases difference in
behavior between adopters and non-adopters of feedback devices. Second, behavior
diffusion was found to speed up the overall behavior change from feedback devices. Due
to behavior diffusion, one feedback device reached more households (e.g. the peers of
device users). This makes the impact of each device stronger and thus overall behavior
change faster.

Behavior diffusion can be regarded to thus create a positive externality to the
diffusion of feedback devices. As changed behavior can spread from households that
use feedback devices, more households can indirectly benefit from this feedback. This
can be attributed to behavior change and will not be found at energy-efficiency devices
that do not create behavior change. For instance, home automation (e.g. ‘smart’ adaptive
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thermostats) can save energy, but would not incentivize behavior change that could be
leveraged by behavior diffusion.

Consequently, behavior diffusion should be included in the assessment of
behavior-changing feedback devices. This is because it has the potential to reinforce the
impact of feedback devices significantly. This further motivated measuring the relative
importance of this process in the following steps of the research approach.

6.1.2. CONCLUSION 2: PROJECTED IMPACT OF A FEEDBACK DEVICE

The second step of the research approach quantified the relative importance of the
modeled processes. The abstract modeling approach from the previous research step
could not measure this with reasonable certainty. For doing so, an empirically-grounded
modeling approach was needed. The co-diffusion framework of this thesis was therefore
applied to an empirical case. This aimed at answering the following sub research
question: What is the impact of the diffusion of feedback devices and the diffusion of the
behavior that they incentivize?

Conclusion 2 – The overall effect of a case feedback device—scaled up by device diffusion
and the diffusion of energy-efficient behavior—was found to be of significant importance.
Its projected effect was predominantly caused by the diffusion of feedback devices and less
so by behavior diffusion.

Overall, the diffusions of a feedback device and that of the behavior it creates was found
to cause a significant impact. These diffusions were further estimated to successfully
scale up the effect of the case technology ‘CO2 meter’ in the case city Bottrop (Germany).
Accordingly, 15 years after the start of successful device diffusion, energy-efficient
ventilation would have increased by an additional 12 (6–18) percentage points. Based
on experience with proxy innovations, this impact is expected to differ between social
groups. The early adopters of feedback devices can be expected to be of higher social
status.

Diffusion of a device, including the direct feedback to its users, was found to be the
main component of its impact. Contribution of this process showed to be the larger than
that of behavior diffusion. This emphasizes the key role of device diffusion: this diffusion
is not just necessary for feedback devices to have an impact at all—it also appears to be
the most important effect component.

Conversely, diffusion of energy-efficient behavior was also found to have an
important contribution, but of second rank. The relative contribution of behavior
diffusion to the overall effect of the assessed feedback device ranged from 12% to 46%,
depending on the social group. The lower the social status of a household, the higher
the relative importance of behavior diffusion. Consequently, neglecting the impact of
behavior diffusion would underestimate the impact of feedback devices significantly.

To practitioners, this suggests that efforts of increasing the impact from feedback
devices should focus on supporting device diffusion over behavior diffusion. These
efforts could be most effective when focusing on households of higher social status, who
are most interested in using feedback devices. From these early adopters, devices and
energy-efficient behavior could then ‘trickle down’ to other social groups.
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6.1.3. CONCLUSION 3: POLICY RECOMMENDATIONS

The previous research step analyzed the diffusion of feedback devices, but did not factor
in the effect of policies that may support feedback devices. The following step therefore
explored ways in which the diffusion and impact of feedback devices could actively be
supported. Based on the previously developed empirically-based simulation model,
policies towards this end were assessed in simulation experiments. By assessing these
marketing strategies, this study addressed the following question: How can the projected
impact of feedback devices be affected by policies?

Conclusion 3 – Marketing of feedback devices was estimated to have a significant impact
on their projected impact. Marketing strategies of lending out or giving away feedback
devices for free, and of targeting households who are of high social status or Opinion
Leaders, were found particularly effective and cost-efficient. Marketing campaigns
showed to increase projected adoption of energy-efficient ventilation by an additional ca.
21% of households over 15 years. However, changing the location of their implementation
did not significantly affect the impact of marketing campaigns.

In this thesis, marketing strategies have been found as attractive options to support the
overall impact of behavior-changing feedback devices. When addressing the previous
sub-questions, the diffusion of feedback devices showed to be of particular importance
for the eventual decrease in heating demand. If marketing is able to persuade an
initial set of households to adopt devices, word-of-mouth can drive more households
to adopt the same devices. This can then trigger the other processes discussed in this
thesis: i.e. households undergoing behavior change due to feedback and the diffusion of
energy-efficient behavior.

Comparison of marketing strategies showed that lending out devices, giving away
free devices and targeting socially well connected households are particularly effective
at triggering the largest effects. Simulation was used to systematically compare the
effectiveness of marketing strategies from the general categories economic incentives,
promotion, and placement. Lending out feedback devices for three months each was
found the most effective strategy. This strategy also appears to be highly practical
because only a limited number of devices needs to rotate among households. Likewise,
initially giving away a limited number of free devices to households was also effective.
Further, targeting different social groups was relevant for the effectiveness of marketing.
The higher the social status of a household, the more effective targeting it via marketing
appeared. Moreover, targeting households that are socially well connected (so-called
‘Opinion Leaders’) appears particularly effective. Conversely, raising awareness about
the availability of feedback devices was generally found the least effective. The only
exception to the low effectiveness of raising awareness was when this marketing strategy
was targeted to Opinion Leaders and households of high social status.

When comparing the impact of marketing strategies regarding their cost-efficiency,
they rank differently. Due to its low cost, raising awareness of the availability of feedback
devices is of highest cost-efficiency—particularly when targeting households of higher
social status. Lending out feedback devices was second best regarding cost-efficiency
because one device can be lent out to multiple households. Leveraging Opinion
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Leaders was estimated to be less cost-efficient because their training is expected to be
expensive. Finally, giving away a limited number of free devices was found the least
cost-efficiency—with the only exception of when households of higher social status were
targeted.

These results were found to be generalizable between neighborhoods and cities of
implementation. Regarding neighborhood of policy implementation, spatially focused
marketing did only lead to a local increase in impact from feedback devices. But
changing the place of marketing did not alter the overall behavior change from feedback
devices on a larger spatial scale. Likewise, simulation results were also not sensitive
regarding spatial structure of a modeled city. This lack of sensitivity to spatial variation
suggests that the essential dynamics of co-diffusion of technology and behavior do
not heavily rely on detailed spatial structures. Consequently, the use of commercial
socio-demographic data of high resolution will not always be needed for future,
comparable simulation studies.

6.1.4. CONCLUSION 4: AUTOMATING INNOVATION DIFFUSION MODELING

The final step of the research approach aimed at making agent-based modeling less
costly in time and labor. This made use of the methods from the previous steps. Previous
model development and application in this thesis was principally taken out manually. At
the time of writing, this was common practice in the field of agent-based innovation
diffusion modeling. To make these tasks more systematic, automation was applied.
Thereby, the following question was addressed: How can innovation diffusion models
be developed and applied more systematically?

Conclusion 4 – Innovation diffusion models can be developed and applied more
systematically by the use of automation. This was realized by an automation software
prototype that uses a standardized procedure to select model components that fit a
given innovation diffusion case. This makes building and using agent-based innovation
diffusion models more systematic and less costly in time and labor.

Realizing the presented automation approach was possible due to three factors: existing
models candidates, their ontological similarities, and data availability. First, the
multitude of available agent-based innovation diffusion models provides a high variety
of potential mechanisms of innovation diffusion (Kiesling et al., 2012). The presented
automation procedure draws on this diversity. Instead of requiring the generation
of entirely new mechanisms, simpler testing of explanations from previous models
is possible. Second, most existing agent-based models of innovation diffusion are
ontologically similar (Kiesling et al., 2012): they have a shared understanding of objects,
concepts, and other entities that are modeled (van Dam et al., 2012). This makes it
possible to use them as exchangeable modules in a meta-model. Modularization in the
automation software was able to directly map this modularization of models. Finally,
the data-driven approach of the automation procedure required historic diffusion data.
Because innovation diffusion is a well-established field of research, data on this process
was available.
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This approach showed to be successful at speeding up model generation and
making the modeling process more systematic. Gain in speed was one of the design
requirements that motivated automation. Further, automation aimed at making the
modeling process more systematic. The presented case application on the diffusion of
water-saving shower heads showed that both targets could be met. Overall, this proof
of concept underlines that the chosen automation approach fulfilled its purpose and
success.

6.1.5. OVERALL CONCLUSION

The previous conclusions on the sub research questions provide the foundation
to answer the central research question of this thesis: How can the impact of
behavior-changing feedback devices on energy-consumption behavior be systematically
simulated?

Overall conclusion – The impact of behavior-changing feedback devices on
energy-consumption behavior can be analyzed systematically by simulating the
co-diffusion of these devices and behavioral change. This relied on four pillars. First,
assessment of impact based on developing and simulating the framework of co-diffusion
of technology and behavior. This generalized the understanding of the potential impact
of feedback devices. Second, the initially abstract model analysis was refined by empirical
data. Third, the thus developed empirical-baed model allowed to assess the potential
of policies to influence the impact of feedback devices. Fourth, automation made
assessment of this impact more performant and accessible. Overall, this improves the way
agent-based models of innovation diffusion models are developed and applied.

Systematically assessing feedback devices via the framework co-diffusion of technology
and behavior proved to be fruitful. Dynamics of the impact of feedback devices
confirmed that it has been worthwhile to include both these diffusions in the
assessment. A further benefit of the co-diffusion framework was the possibility to
operationalize it for agent-based modeling. Doing so allowed to simulate and scale up
findings from field tests of feedback devices.

Scaling up the impact of feedback devices via simulation confirmed them to be
suited to tackle low-hanging fruits of energy-efficiency in buildings. For households that
use feedback devices, these achieve average energy savings of ca. 8% (Karlin et al., 2015).
Conversely, upscaling the impact of a device with this impact to the city level projected
overall savings of 1%–2%. These overall savings are significantly lower, but still have to
be seen as worthwhile because they come at low cost and high scalability.

The need to reduce heating energy consumption by far more than this projected 2%
calls for a combination with other approaches. The roll-out of feedback devices needs to
be combined with e.g. upgrading the insulation of existing buildings. Connecting these
approaches will be useful because the expected future increase in building insulation
will also increase the relative importance of user behavior in energy consumption.

The automation procedure presented in this thesis further improved performance of
developing agent-based innovation diffusion models. Having sped up the development
of innovation diffusion models via automation frees resources during the model building
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process. These can be used by modelers to test a greater variety of model explanations
for observed phenomena. Additionally, automating model generation reduces the need
for programming skills on the side of the modeler. This, in turn, widens the circle of
persons that can apply agent-based modeling to better simulate and shape diffusions of
innovations.

Finally, the presented automation procedure progresses the method of agent-based
innovation diffusion modeling by making it more rigorous. First, this is done by
achieving ‘validation by design’ of the generated diffusion models. This relies on
the strict comparison of the generated models with empirical data, assuring that
these successfully represent real-world processes. Further, this strictly in-built model
validation contributes a systematic method to model comparison and falsification.
Given empirical data of an innovation diffusion, the automation procedure guides the
comparison of realism between model candidates. This automated comparison makes
it easier to identify plausible models and to take out the good scientific practice of
falsifying less plausible ones.

6.2. LIMITATIONS AND FUTURE RESEARCH

Regarding the undertaken research approach, limitations are of three kinds: model
uncertainty, limitations of model application, and limitations of the presented
automation approach. For each of these limitations, it is further proposed how to tackle
these.

6.2.1. MODEL UNCERTAINTY

Uncertainty is fundamentally inherent to simulation modeling. Modeling is a
simplification and an abstraction from reality, due to which realism naturally has to
be reduced. Therefore, it can be regarded impossible to eliminate limitations to model
realism. If models, which can only be built based on yet existing knowledge, are used
to predict the future, their uncertainty might further increase. Consequently, there are
potentially unlimited facets of model uncertainty and limitations to model realism.

Despite this fundamental uncertainty, when using a model to design solutions that
would work in reality, it is still possible to make it useful for this task. To Pablo Picasso
are attributed the words “Art is a lie that helps us see the truth.” The same has been said
about simulation modeling. Accordingly, the way models are used can compensate for
their inherent uncertainty.

In the following will be reflected on the three main model uncertainties in this
thesis—and it will be shown how modeling has still been made useful for these cases.
First, limited empirical data from field tests of feedback devices might have affected
the quality of results. Based on the available data, the energy savings from the
case technology ‘CO2 meter’ were estimated as 8%. This figure lies within a range
of plausibility, but it might change with future insights. Fortunately, because this
uncertainty propagates linearly, results can readily be adjusted in the future. Second,
consumer choice on energy-efficient heating behavior was modeled to happen equally
across lifestyle groups, which might not be the case in reality. Conversely, choice on
feedback device adoption was modeled heterogeneously, based on experience with
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proxy innovations. This difference suggests that also heating behavior might diffuse
heterogeneously through society. Future field research has the potential to provide the
empirical insights into this. At this point in time, social structure of diffusion decisions
was modeled as detailed as available empirical data allowed for. Finally, an important
part of this thesis is subject to the inherent uncertainty of future projections. Even
though methods were applied to estimate the future success of feedback devices (e.g.
using proxy-innovations and surveying), projecting the future diffusion of a yet to be
marketed innovation is fundamentally uncertain. The way the simulation models were
used had to cope with this uncertainty. For instance, it had to be made clear that the
projected successful diffusion of a device is a mere assumption. Instead of predicting if
a device will diffuse, it is rather suited to show what happens if it does. Additionally,
generating findings from a large ensemble of varied simulation runs and potential
futures helped to cope with this uncertainty.

The realism of the simulation models that were developed in this thesis can
be further increased. This will have the benefit of decreasing model uncertainty.
Consequently, transfer of insights from models to reality will be strengthened. Ways how
this could be achieved are presented in the following section.

Empirical analysis of social influence Collecting data on how society influences
energy consumption of individual persons is challenging, but valuable. In this thesis,
qualitative data from interviews and surveys on the level of individual households
was used to directly model the mechanisms by which social influence takes place.
Quantitative observations on the aggregated, societal level were used to inversely model
the rate of this change. A missing link between these data sources is quantitative
behavioral data of connected groups of individuals that is of high detail. Ideal data to
fill this gap would be time line data of behavior of persons that also frequently interact
with each other in person. These data would appear suited to better understand and
model interpersonal influence on energy consumption behavior.

Capturing behavior with higher temporal resolution Similar to data on social
influence of higher quality, it would be valuable to use behavioral data of higher
temporal resolution. In this thesis, behavioral data from field research were aggregated
to the mere probability that a feedback device creates some behavior change among
its users. This aggregated figure was then directly integrated in the simulation models.
Instead, it would be valuable to gain deeper empirical understanding of the process
of behavior change from feedback. This would also include detailed behavioral
mechanisms, such as relapse of behavior to the level prior to a feedback intervention.
Capturing this phenomenon was not possible in this thesis, just the same as in previous
research (see Chen et al., 2012). These insights would require behavioral data of high
resolution and therefore would become possible if this data were available.

Modeling more kinds of behaviors With additional data on energy consumption
behavior, behavior could also be modeled with greater detail. In this thesis, room
ventilation was modeled as binary: households would either adopt energy-efficient
‘shock ventilation’ or not. This was due to the focus on shock ventilation, but also due
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to limited empirical data. When increasing resolution of behavioral data, feedback on
the impact of behavior changing feedback could be modeled better. For example, a
transition from different ventilation behaviors to ‘shock ventilation’ might be of different
ease and therefore different likelihood. Therefore, capturing more ventilation behaviors
with modeling could be worthwhile. It would also be beneficial to model the duration
of ventilation, as this is an important factor to effectiveness and energy-efficiency of
ventilation.

More detailed decision on device adoption It appears promising to increase the detail
with which decisions on device adoption are modeled. In this thesis, this is done based
on a previously validated, but rather simple decision model. At increased detail of
decision modeling, it will become possible to model more types of interventions. For
instance, if numerous relevant consumer preferences regarding the decision making
process on adoption are modeled, it could be derived how changes to these preferences
would affect adoption choice. Via simulation could additionally be projected the overall
effect that such interventions would have on the diffusion of feedback devices and their
scaled-up impact.

6.2.2. LIMITATIONS OF MODEL APPLICATION

The chosen research approach led to further limitations in model application. This
showed in the limited number of case studies and restrictions in testing policies.

First, work in this thesis focused on exploring the impact of feedback devices via
simulation, which limited resources for generating empirical insights. This led to the
circumstance that only one case of a feedback device and only one type of energy
conservation behavior was examined in depth. Consciously accepting this limitation
allowed to instead prioritize the development of multiple simulation models and the
progression of computational methods.

Second, some potential policies could not be assessed, due to the chosen model
structure. For instance, addressing specific preferences of consumers was not possible.
This was because they were not modeled in great enough detail. Instead, the tested
marketing strategies had to address other aspects (i.e. price, promotion, and place).

Model application can be extended, to address these limitations. The following
paragraphs present options for this.

More cases of feedback devices A central future application of the developed
simulation models could be their application to more cases of feedback devices. More
experience could be gained on the temporal dimension and on the magnitude of overall
impact from feedback devices. Finally, policy recommendations would become more
robust with more cases and the simulation based assessment of policies would have a
stronger foundation.

Assisting the design of feedback devices The simulation models presented in this
thesis have the purpose to assess the impact of existing feedback devices. Instead,
these models could also be used to assess the impact of hypothetical devices. These
assessed hypothetical devices could be prototypes or early design drafts. In iterations
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between drawing board and simulation, ex-ante assessment via simulation would assist
the design of future feedback devices that can more effectively create behavior change.

Exploring synergies with other policies The policies that have been assessed in this
thesis were exclusively dedicated to support the diffusion of feedback devices. In
addition to such policies, it would be attractive to concurrently test policies regarding
other aspects of energy efficiency. For instance, one important set of policies to lowering
energy consumption in buildings is energy renovation. Energy renovation is an overall
crucial contribution to reducing heating demand. But it has repeatedly been observed
that energy-efficiency of heating behavior decreases after such renovations. Therefore,
feedback devices could be used to support energy-efficiency of heating behavior after an
energy renovation. A coupling of the simulation models from this thesis with simulation
models on renovation decisions, for instance, would make it possible to assess such
synergy between policies.

6.2.3. LIMITATIONS OF THE AUTOMATION APPROACH

Finally, also the presented approach of automated generation of innovation diffusion
models has its limitations. It faces some limitations regarding the applicability to cases
and at extending the circle of users.

The applicability of the presented automation procedure to particularly uncertain
cases of real-world processes might be limited. The procedure has shown to work well
for the diffusion of a novel product in society. The success of this procedure relied on the
following factors: the availability of several simulation models, a shared understanding
by these models on the modeled system, and the availability of data on the modeled
process. Consequently, application to further cases of innovation diffusion appears
feasible, whenever data are available. To cases where these conditions are not met, an
automated modeling approach might not applicable.

Further, even though the intention of enabling automated modeling is to extend the
circle of users, this could only be achieved to a limited degree. The central reason for this
limitation is that taking out the presented procedure requires data processing skills and
at least basic understanding of simulation models. Data processing skills are required to
create the required input. Additionally, even though the model building is automated,
the user has to guide the software to create meaningful results. This critical role of
user decisions is a common feature of automated data-analysis software, e.g. statistics
tools. Even though the presented approach widens the circle of potential users, these
requirements for them limit their number.

These limitations can be addressed by future research. Building on the presented
procedure for the automated generation of agent-based models of innovation diffusion
bears significant potential.

Additional cases of feedback devices Having developed a way to automatically
generate and apply simulation models on innovation diffusion will facilitate modeling
the diffusion of more feedback devices. With model building being automated, users
will be able to focus on only providing required data on their diffusion or suited proxies.
Thus, applying agent-based modeling to the assessment of more feedback devices will
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be relatively time-efficient, compared to repeated manual model development ‘from
scratch’.

Identifying reference models on innovation diffusion Being able to automatically test
many diffusion models against the same set of empirical data will make it possible to
identify reference models of innovation diffusion. A current limitation in the field of
innovation diffusion modeling is the multitude of simulation models. At this point in
time, it is not clear which of the theoretical explanations contained in the numerous
innovation diffusion models has the widest applicability. This thesis contributes to the
field of agent-based innovation diffusion modeling by presenting the procedure that is
capable of falsifying models for specific cases of innovation diffusion. Future research
that applies this procedure to many cases might be able to find out what diffusion model
works under what system characteristics.

Improving automated inverse modeling Also technical improvements to the
presented automation approach appear to be of significant potential. In the
presented automation procedure, the inverse modeling phase is crucial. Its
potential for improvement should therefore be further evaluated. The now used
‘simulated annealing’ optimization technique could for instance be compared to other
optimization approaches. One criterion of comparison could be how robust result
quality is (e.g. against user decisions in the matching function).

Generating simulation models from atomic components One particularly attractive
improvement to the automation procedure would be generating innovation diffusion
models without requiring a library of complete decision model candidates. The
presented automation prototype requires entire decision models to be stored as
components in a pre-defined model library. This has the disadvantage of redundancy:
mechanisms such as word-of-mouth have to be implemented for each component in the
library. Instead, these models could be broken down to the smallest possible sub-models
that could be re-assembled at runtime of the automation procedure. Each mechanism
(e.g. word-of-mouth) would become one of these models components. Based on data,
components could then automatically be combined to models, similar the way decision
trees are ‘grown’ and ‘pruned’ in the field of machine learning. Thus, reducing the size
of the required components in the model library would potentially reduce the effort of
extending the model library.

Increasing user-friendliness Finally, it would be worthwhile to invest time into greater
user-friendliness of the presented automation approach. For now, the automation
software is at the stage of a proof of concept. Because it has the potential to be
applied by non-programmers, it could also be made even more accessible to them.
First, data analysis tools could be integrated on the input side of the procedure that
might make it possible to automatically build models directly from unstructured input
data. Further, to support users at selecting diffusion models and policies to be tested, a
graphical user interface could also be beneficial. Finally, more detailed reporting could
make the approach more transparent to laypersons. Overall, it is to be expected that
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these improvements have the potential to further support the anticipated adoption of
agent-based modeling by non-modelers in order to allow them to better understand and
shape innovation.

6.3. REFLECTION

In the following, this thesis will reflect on lessons on adequate complexity of modeling
innovation diffusion. Thereafter, an outlook is given on future models in forecasting and
on the democratization of predictive modeling.

6.3.1. COMPLEXITY OF AGENT-BASED INNOVATION-DIFFUSION MODELS

There exist two schools of thought that each propose use of either simple or complex
agent-based models. Both views have valid arguments, making it difficult to side
with only one of them. On the one hand, it is advocated to use simple models that
avoid overfitting real-world phenomena by capturing only the most important driving
factors. On the other hand, other modelers propose to use models that are descriptive by
capturing the modeled phenomena more intuitively, but are also more complex.

The automation approach presented in this thesis offers a third way. The presented
approach informs on adequate model complexity by making rigorous use of empirical
data. By testing models of varied complexity against data, it informs users which model
complexity is adequate to explain a real-world phenomenon. This complements the
somewhat arbitrary intuition of modelers with systematic benchmarking against data.

The presented automation approach assists modelers in choosing between simple
and descriptive models. Furthermore, the automated approach facilitates the parallel
development and application of multiple models. Without significant added effort,
modelers can both develop simple and descriptive models in parallel. With this
multi-model approach, modeling can draw on both these worlds to create the best
model ensemble. Thereby, it is useful that all of the agent-based models generated by
the presented automation approach are close to theories and are black boxes (as e.g.
current deep learning models). Consequently, a multi-model approach has the benefit
of providing complementing mechanistic explanations of the modeled innovation
diffusion.

6.3.2. FUTURE MODELS IN FORECASTING

One of the take home messages of this thesis is that there is great potential to improve
the quantitative models used in forecasting. While building these models is up to future
research, it is already possible today to describe design targets for them. The following
section proposes a direction into which to develop these models for forecasting.

Such outlook can directly build on existing modeling paradigms, which each have
some desired traits. A desirable forecasting model would show the following four
signs. It would be highly predictive, quick, user-friendly, and informative. First,
being – within the inherent limitations of this undertaking – highly predictive is a key
property of a powerful forecasting model. A current modeling paradigm that is strong
at this is deep learning. Second, model development and application should also be
quick. This is currently achieved by statistical models. But given the emerging cloud
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computing infrastructure, parallel computation is becoming a valid alternative means.
Third, a forecasting model should be user-friendly. This trait is commonly found at
automated statistical software packages. Finally, a model should be informative about
the mechanisms on which forecasting relies. This is a property at which agent-based
models are currently strong.

Future research should aim at combining these advantages. In contrast to biological
evolution, the evolution of technology is easily capable of recombining technologies,
even if they have evolved significant differences (Kelly, 2010). This emphasizes the
feasibility of cross-learning between the different modeling schools in forecasting. The
ingredients for the next generation of forecasting models are there. Now, they need to be
put together.

6.3.3. DEMOCRATIZING PREDICTIVE MODELING

We are moving towards a digital society that generates and finally can make use of vast
amounts of data. These data can be generated on virtually every aspect of our lives. Due
to the mega trends of Internet of Things and Quantified Self, this includes also detailed
data of individual persons. Such fine grained data can be used for generating ‘what-if
scenarios and predictions on these persons. But one of the key questions regarding this
is who should be able to do so.

An important challenge for the future is to democratize this technological potential.
Presently, there exists a large divide between leading tech companies and individual
persons. Many state-of-the-art businesses make use of model-based analytics.
Conversely, almost no individual person does. Empowering laypersons to analyze their
personal ‘data trails’ would help closing this digital divide.

To achieve democratization of predictive modeling, model-based analytics needs to
become more accessible to these individuals. Models need to become easier to use
and their results need to become more intuitive. They also need to be highly flexible
regarding their input data. Achieving this would increase the society-wide use of self
service analytics. Only then would it be possible to maximize the total value that society
generates from this technology.





A
MODEL DESCRIPTION

In the following, the agent-based model developed in this paper is described using the
ODD (Overview, Design concepts, Details) protocol (Grimm et al., 2010).

PURPOSE

The purpose of this model is to investigate the effect of behavior-changing feedback
devices on heating behavior by capturing the diffusion of technology and behavior
among households communicating on technology adoption and energy consumption
behavior. Both processes are combined in one model to explore their relative
importance on the overall effect of behavior-changing feedback technology.

ENTITIES, STATE VARIABLES, AND SCALES

Central entities of the model are agents that represent individual households in one
city. Each household agent has three static attributes. First, an agent is of one of five
sociological lifestyles (Postmaterialists, Social Leaders, Traditionalists, Mainstream or
Hedonistic lifestyle) defining its preferences to adopt environmental-friendly household
technology (see Schwarz and Ernst, 2009). Second, agents have a set of social ties to other
household agents, their peers. The number of peers is based on empirical observations
(see Fig. 2.3). Third, each household has a static position in the two-dimensional
space. Location defines the likelihood peers are linked with one another, because spatial
proximity makes a link between two households more likely (Holzhauer et al., 2013).

Additionally, each household has two dynamic state variables. First, a household has
either adopted technology or not, represented by a binary variable. Second, a household
has a specific energy consumption behavior. Here, we defined this as the mean space
heating temperature, with unit ◦C.

Temporal resolution of the model is monthly time steps from January 1990 to
December 2019.

Spatial resolution is abstract. Households have a random and fixed position in a
two-dimensional rectangular plane with side length of 100 continuous spatial units. This
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plane does neither wrap to a cylinder nor torus, but represents a well-delimited spatial
area, such as a city.

PROCESS OVERVIEW AND SCHEDULING

The model consists of the sub-models ‘technology diffusion’, ‘feedback effect’ and
‘behavior diffusion’, which are executed successively at each time step. Within these
sub-models, agents change their state variables concurrently, i.e. their future states are
partly influenced by the state variables of their peers at the previous time step. Model
initialization, steps, and sub-models for each time step are as follows:

1. Initialization

2. WHILE (t < tmax ):

(a) Technology Diffusion

(b) Feedback Effect

(c) Behavior Diffusion

DESIGN CONCEPTS

Basic principles applied in the model are mainly four scientific theories. First, Diffusion
of Innovations Theory (see Rogers, 2003) is applied as a general model guideline. It
contributes to representing the spread of technology and behavior innovations when
potential adopters interact. Thereby, Rogers’ distinction between earlier and later
adopters is captured by the different decision making of the five sociological lifestyles
for adopting feedback technology. Second, Social Network Theory is applied by
connecting households in a social network graph. This graph defines social ties between
households, among which these communicate. This informs agents of the adoption and
energy consumption behavior of their peers. Consequently, social influence can affect
the households’ decisions in these realms. Third, technology adoption is partly based
on the Theory of Planned Behavior (see Ajzen, 1991). This decision theory underlies
agents’ decision to adopt technology. According to this theory, an innovation adoption
decision depends on both the adopter’s preferences and her peers’ decisions (Rogers,
2003). Finally, behavior diffusion is based on Social Learning Theory (see Bandura
and McClelland, 1977), which suggests peer behavior influences energy consumption
behavior of households.

Emergence occurs through the diffusions of technology and behavior. These
diffusions are macro processes based on adoption decisions at the micro level, i.e. the
level of agents.

Sensing of household agents occurs through social ties of the social network graph.
Agents perceive which of their peers adopt feedback devices and what temperature they
set for heating. This sensing of peer behavior marks the origin of social influence.

Interaction occurs through social influence between household agents sharing
relationship links. For technology diffusion, adopting peers increases the probability
(where this equals not already 1) a household adopts feedback technology. For
behavior diffusion, a household agent gradually adapts its energy consumption behavior
according to the mean behavior of its peers.



A

123

Objectives of household agents drive their choices on technology adoption or energy
consumption behavior. Agents adopt feedback devices if it incurs a relative advantage
over not adopting. Inspired by the Theory of Planned Behavior, this decision can be
influenced by the number of adopting peers. For behavior diffusion, household agents
follow objectives: habituality and conformity. With no social influence, household
agents habitually practice their previous behavior. Social influence, however, motivates
behavioral change towards the mean peer behavior. The strength of this social influence
is defined by si , the households’ susceptibility to behavioral change (see below).

Adaptation appears when agents’ make different decisions at varying levels of social
influence. All peers of a household supporting a certain decision can increase the
likelihood this household makes the same decision.

Stochasticity occurs in three aspects. First, location of agents and their social network
are initialized randomly. Second, each time step agents have a random probability to
consider technology adoption. Finally, the lifestyles Mainstream, Traditionalists and
Hedonists do not decide on technology adoption by deterministic deliberation, but by
applying the so called ‘take-the-best’ heuristic.

Observations lead model design decisions on the social network topology,
preferences to adopt technology, and energy consumption behavior. From interviews
on ego-networks of communication on energy consumption behavior, provided by
Baedeker Baedeker (2014), have been derived the degree distribution in the social
network (see Fig. 2.3) and the probability of a network tie to be of short spatial distance
(pN B HD = 0.5). From surveys on the mean space heating temperatures in British
households by Shipworth et al. Shipworth et al. (2010), the initial energy consumption
behavior is set to 21.1◦C. The technology adoption decision of agents is based on
extensive surveying conducted by Schwarz Schwarz (2007).

INITIALIZATION

Model initialization follows three successive steps: creating household agents,
generating the social network and setting the adoption state variables of the agents.

Initialization creates N household agents. Each agent is assigned a random location
and a random lifestyle, weighted by an empirical distribution (see Table 2.1).

The social network is built on two empirical foundations. First, we extract
two statistical ego-network properties from interviews with households about energy
consumption behavior (Baedeker, 2014). These properties include the ‘degree
distribution’ of network nodes (see Fig. 2.3) and the probability relevant communication
within a city occurs in the same neighborhood (pN B HD = 0.5). The second theoretical
foundation is members of a certain sociological lifestyle communicate more with
members of the same lifestyle. We developed an algorithm that was inspired by Watts
and Strogatz Watts and Strogatz (1998) to generate a social network that meets these
empirical characteristics:

1. Assign a degree target deg∗(i ), i.e. the ideal number of peers of each agent, for
fitting the overall degree target distribution to the empirical degree distribution.

2. Create a number of links equal to the respective degree target by repeatedly
applying for the agents with fewer assigned peers than their degree target:
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(a) Randomly choose lifestyle with which to connect (probability to connect to
own lifestyle is set by the homophily-probability h, while all other lifestyles
share the residual probability equally).

(b) Connect to a random agent of the chosen lifestyle, who has less peers than
its degree target and who is closer than dN B HD .

3. Remove each relationship link with a probability (1 - pN B HD ).

4. Repeat step 2 with the altered constraint forging connections between agents with
distance greater than dN B HD .

Finally, the adoption state variables are initialized for all agents. Household agents
are assumed not to initially adopt feedback technology. The initial energy consumption
behavior (yi ,t0 ) is homogeneously set to 21.1◦C for all agents, based on the mean of space
heating temperatures observed by Shipworth et al. Shipworth et al. (2010).

SUBMODEL: TECHNOLOGY DIFFUSION

This submodel represents the decision framework for agents to adopt technology, which
based directly on the empirical-based model presented by Schwarz Schwarz (2007).

Agents have a fixed probability at each time step to decide on adoption (δα).
When deciding, the adoption decision is modeled to be qualitatively different between
lifestyles. For some lifestyles, i.e. Postmaterialists and Social Leaders, surveying shows
that they trade-off many criteria when deliberating on adoption Schwarz (2007). The
decision for these lifestyles is thus modeled on rational deliberation, similar to the
Theory of Planned Behavior (see Ajzen, 1991), but without underlying social influence.
Conversely, Hedonists, Mainstream, and Traditionalists generally consider fewer criteria
when deciding on technology adoption. Thus, agents of these lifestyles are not
deliberating rationally on technology adoption, but apply the so-called take-the-best
heuristic (Schwarz, 2007, see). They decide according to the most important stated
decision criteria that clearly favor one choice option. Two decision criteria with the same
stated importance are processed in a random order. If this heuristic does not lead to a
clear decision, agents imitate the majority of their peers.

We parameterized the decision model for adoption preferences using Schwarz
(Schwarz, 2007) surveyed results on water-saving shower heads for energy-saving
feedback technology. This transfer is motivated by the relatively high similarity between
these two resource-saving technologies.

These adoption decisions are equivalent to simpler decision rules. First, the lifestyles
Postmaterialists and Social Leaders always decide in favor of the environmental-friendly
option. Second, the Mainstream and Traditionalist lifestyles are, with an equal
probability, randomly choosing between imitating the majority of their peers and
adopting the eco-friendly option. Finally, agents of the Hedonistic lifestyle always decide
to imitate the majority of their peers.

SUBMODEL: FEEDBACK EFFECT

The sub-model Feedback Effect describes how adopted feedback technology changes
the agent’s heating behavior state variable. We model behavioral change from feedback
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technology over time as an asymptotic learning process, see Eq. A.1. Thereby, energy
consumption behavior (βt ) asymptotically approaches a behavior suggested by the
feedback (β∗

∞) with the rate ∆β.

βt =βt−1 + (β∗
∞−βt−1) ·∆β (A.1)

SUBMODEL: BEHAVIOR DIFFUSION

The sub-model Behavior Diffusion describes how peer behavior influences agent
heating behavior, see Eq. A.2. The strength of social influence (si ) drives a household to
approach from its own previous behavior (βi ,t−1) toward the behavior of its peers (β j ,t−1)
weighted by the strength of their mutual social relationship (wi j ).

βi ,t =βi ,t−1 + si ·

(

N
∑

j=1
wi j ·β j ,t−1

N
∑

j=1
wi j

−βi ,t−1

)

(A.2)





B
INPUT DATA

In the following, generation of household agents and their social network from empirical
data is presented.

Households For all residential buildings in the case area, heated floor area and
estimated heating demand were available from municipal data. Due to privacy
protection, the number of residents was not available for individual residential
buildings, but for building blocks (i.e. neighborhoods). From this, the number of
households per building block was calculated based on the regional average household
size of c. 2.12 persons Landesbetrieb Information und Technik Nordrhein-Westfalen
(IT.NRW) (2014). These household agents were assigned to residential buildings, so that:
(1) to each building is assigned at least one household agent, (2) within each building
block, the number of assigned household agents per building are ideally proportional
to its heated floor area. Thus, household agents of the same building block had approx.
the same heated floor area. Finally, household agents were positioned within the spatial
extent of their buildings.

Lifestyles were assigned to household agents based on geo-marketing data.
Commercial data by the company Microm® provided the locally dominant lifestyle for
all road sections in the case area. Each household agent was assigned a lifestyle by expert
judgement, depending to the lifestyle data-points in its spatial proximity.

Social network Social influence between household agents is modeled via a social
network. This network was empirically based on a mixed-methods social network
analysis Prell (2011); Holstein and Straus (2006) conducted in the City of Bottrop,
Germany. It provided data on communication on heating behavior. Interviews
were conducted with 23 householders; both inhabitants of one-family dwellings and
apartment buildings. Personal relations and relations to actors in the value chain of
heating/space heating (i.e. craftspeople, manufacturers) were mapped to social network
graphs around the interviewed persons Baedeker et al. (2014). According to these
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interviews, family and friends have a high impact on decisions regarding ventilation and
heating behavior.

Modeling a social network followed two statistical properties, extracted from these
ego-networks: (1) the probability of a social network tie to be within the same
neighborhood (pN B HD ) and (2) the distribution of network degree, i.e. the number of
peer households by which a household is influenced (Jensen et al., 2015, Fig. 3). These
data points were complemented by data from Holtzhauer Holzhauer (2015), describing
how lifestyle groups are mutually connected in social networks of influence (see Table
B.1).

Table B.1: Probability of an influencing peer to be of a specific lifestyle, depending on ego’s lifestyle (Holzhauer,
2015, Fig. 3.8).
Note that in this study Traditional Lifestyles are aggregated with (and as) Mainstream Lifestyles.

Peer lifestyle

(influencing householder)
Leading
Lifestyles

Mainstream
Lifestyles

Traditional
Lifestyles

Hedonists
Lifestyles

Ego lifestyle

(influenced householder)
Leading Lifestyles 0.59 0.10 0.22 0.09
Mainstream Lifestyles 0.50 0.34 0.12 0.04
Traditional Lifestyles 0.36 0.25 0.32 0.07
Hedonists Lifestyles 0.37 0.15 0.32 0.16

Social network generation, inspired by the Watts & Strogatz Watts and Strogatz (1998)
algorithm for creating small-world networks, followed these steps:

1. To each household, assign a degree target (deg∗
i ), randomly drawn from an

empirical distribution (Jensen et al., 2015, Fig. 3).

2. For each household i with less influencing peers than deg∗
i :

(a) Randomly choose lifestyle of next peer, weighted by probabilities from Table
B.1.

(b) Create directed network edge from random other household who (1) has the
chosen lifestyle and (2) is within the same neighborhood (i.e. closer than
dN B HD ).

3. For each network edge: delete network edge at probability (1 - pN B HD ).

4. Repeat step 2 with the altered constraint that new peers are not in the same
neighborhood (i.e. distance greater than dN B HD ).
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GOOGLE TRENDS

Frequency of Google searches on SV behavior was used as a proxy for frequency
of deliberation on its adoption. Google Trends Google (2015) was inquired
for the frequency of Google searches for ‘Stoßlüften’ (i.e. the German term for
shock-ventilation). Google Trends is “a real-time daily and weekly index of the (relative)
volume of queries that users enter into Google” Choi and Varian (2012). Reported sets of
data are normalized spatially and temporally by being “divided by a common variable,
like total searches” Google (2015).
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Figure C.1: Google Trends data and simplified sine curve. The solid line shows the normalized Google search
activity for the German expression for shock-ventilation. The dashed line is fitted to this data (see Eq. C.1) and
used in the model.

Search frequency is shown in Fig. C.1. In the Google search frequency two
patterns were observed—a seasonal and an inter-annual one. Seasonally, frequency
mirrors the relevance of energy-efficient ventilation during winter. Inter-annually,
frequency increased after 2009 and reached a plateau.1 However, the outlying winter of
2010/2011—with relatively low search frequency—could neither be explained by winter
temperatures nor press article frequency on SV.

1This inter-annual pattern was verified by analyzing all German press articles in the GENIOS.DE database.
Articles containing ‘Stoßlüften’ (normalized by the number of all articles) quickly became more frequent by a
factor of c. 2.5 in 2007 and remained at that level.
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Table C.1: Survey results on the stated information on and motivation to adopt SV behavior. Listed are relative
shares of information/motivation sources. Responses cumulated to n responses, multiple responses being
allowed. The two last rows separate the motivation to adoption SV behavior into motivation from information
and social influence (see text for details).

Response Colleagues

& classmates

Family

& household

Friends

& acquaintances

Mass

media

∑

% n

Information on SV 3.8 % 23.2 % 19.6 % 53.6 % 100 56
Motivated SV adoption 5.9 % 35.3 % 17.6 % 41.1 % 100 56
Motivation:
information

2.7 % 17.8 % 15.1 % 41.2 % 76.9 17

Motivation:
social influence

3.1 % 17.5 % 2.5 % 0 % 23.1 17

Google search activities were mathematically generalized with Eq. C.1, which
distinguishes these two temporal patterns. The function of this equation is shown by
the dashed line in Fig. C.1. It is the product of two mathematical terms, which are
functions of the time step (i.e. month) of simulation, starting in January 2006: (1) The
seasonal peaking of searches on SV during winter motivated using a sine function as
a generalization (see Eq. C.2). Similar to the search data pattern, this function peaks
during winter (i.e. in January) and does not assume negative values. (2) To also capture
the inter-annual pattern, this first term is scaled linearly by Eq. C.3. In the Google Trends
data, search activity on SV behavior was absent before the winter of 2008/2009, relatively
low during the winter of 2008/2009, and relatively constant thereafter. These three
phases are represented by linear factors to the seasonal sine function. Their respective
factors represent the difference in the integral over the respective winter peaks in search
activity.

δβ, f i t (t ) = δβ,annual ·δα,season (C.1)

δβ,season(t ) = max

[

0,sin

(

t −2.23

6
·π

)

·0.72+ (1−0.72)

]

(C.2)

δβ,annual (t ) =











0 if t ≤ 30

0.235 if 30 < t < 42

1 if t ≥ 42

(C.3)

Assuming that search activity is generally proportional to the occurrence of events
that trigger deliberation on SV adoption, both these components were scaled by the
rate at which such events occur. Both the inter-annual and seasonal patterns of
information search activity are thus scaled by the the occurrence rate of events that
trigger deliberation on SV adoption (δβ,event ). Because this rate was not available from
the literature, it was parameterized indirectly as ranging from 0.01 to 0.03 (see 4.4.5).
Thus, average modeled occurrence of events that can trigger adoption deliberation is
between c. 2.5 to 8 years.

δβ(t ) = δβ,event ·δβ,annual (t ) ·δβ,season(t ) (C.4)



D
SURVEY EVALUATION

This section presents how shares of SV adoption motivated by information and social
influence were extracted from survey results.

The surveyed relative contribution of sources to information and motivating
adoption is shown in Table C.1. Regarding distributing information on SV, social contacts
and media had about the same importance of 46 and 54%, respectively. Conversely,
media slightly exceeded social contacts in importance for motivating behavior change,
with 59 over 41%, respectively.

Even though this could suggest that SV adoption is mainly motivated by social
influence (rather than from an information source as media), the authors argue that
provision of information from peer has to be considered, too. The importance of media
(and thus of information) in motivating SV adoption let us to distinguish motivation
further between motivation from information and motivation from social influence.

The differentiation between media and social contacts in motivating SV adoption
was therefore transformed into the differentiation between information and social
influence. This was undertaken by combining (1) the assumption that media only
exceeds information, but not social influence and (2) the relative strength to which
media and each peer category provide information (see Table C.1). As a result,
76.9% of adoptions are resulting from exposure to information, and 23.1% from
social influence. If the category ‘family and household members’ is excluded from
this calculation—because it partly covers intra-household interactions—, the shares
between social influence and information in motivating SV adoption are 8.8 and 92.2%,
respectively.

131





BIBLIOGRAPHY

Aalen, O. O. and Frigessi, A. What can statistics contribute to a causal understanding?
Scandinavian Journal of Statistics, 34(1):155–168, 2007.

Afman, M. R., Chappin, E. J. L., Jager, W., and Dijkema, G. P. J. Agent-based model
of transitions in consumer lighting. In Proceedings of 3rd World Congress on Social
Simulation, Kassel, Germany, pages 1–2, 2010. URL http://chappin.com/emile/

docs/Afman10a.pdf.

Ahrweiler, P. and Gilbert, N. Caffè nero: the evaluation of social simulation. Journal of
Artificial Societies and Social Simulation, 8(4), 2005.

Ajzen, I. The Theory of Planned Behavior. Organizational Behavior and
Human Decision Processes, 50(2):179–211, 1991. ISSN 0749-5978. doi: 10.
1016/0749-5978(91)90020-T. URL http://www.sciencedirect.com/science/

article/pii/074959789190020T.

Anderson, K., Lee, S., and Menassa, C. Impact of social network type and structure
on modeling normative energy use behavior interventions. Journal of Computing
in Civil Engineering, 28(1):30–39, 2014. ISSN 0887-3801. doi: 10.1061/(ASCE)CP.
1943-5487.0000314. URL http://ascelibrary.org/doi/abs/10.1061/%28ASCE%

29CP.1943-5487.0000314.

Araghi, Y., Lee, E. P., and Bollinger, L. A. Informing agent based models with discrete
choice analysis: diffusion of solar pv in the netherlands. Proceedings of Social
Simulation Conference 2014, 2014.

Armitage, C. J. and Christian, J. From attitudes to behaviour: Basic and applied research
on the theory of planned behaviour. Current Psychology, 22(3):187–195, September
2003. ISSN 0737-8262, 1936-4733. doi: 10.1007/s12144-003-1015-5. URL http://

link.springer.com/article/10.1007/s12144-003-1015-5.

Azar, E. and Menassa, C. C. Framework to evaluate energy-saving potential from
occupancy interventions in typical commercial buildings in the United States. Journal
of Computing in Civil Engineering, 28(1):63–78, 2014. ISSN 0887-3801. doi: 10.1061/
(ASCE)CP.1943-5487.0000318. URL http://ascelibrary.org/doi/abs/10.1061/

%28ASCE%29CP.1943-5487.0000318.

Azar, E. and Menassa, C. C. Evaluating the impact of extreme energy use behavior on
occupancy interventions in commercial buildings. Energy and Buildings, 97:205–218,
2015.

133



134 BIBLIOGRAPHY

Baedeker, C. E-mail communication on results of SusLab project on social networks of
heating behavior communication., 2014. Date: 2014-5-22.

Baedeker, C., Greiff, K., Grinewitschus, V., Hasselkuß, M., Keyson, D., Knutsson, J.,
Liedtke, C., Lockton, D., Lovric, T., Morrison, G., et al. Transition through sustainable
product and service innovations in sustainable living labs: application of user-centred
research methodology within four Living Labs in Northern Europe. In IST 2014: 5th
International conference on Sustainability Transitions, 2014.

Bagnoli, F., Liò, P., and Sguanci, L. Risk perception in epidemic modeling. Physical
Review E, 76(6):061904, December 2007. doi: 10.1103/PhysRevE.76.061904. URL
http://link.aps.org/doi/10.1103/PhysRevE.76.061904.

Balaras, C. A., Droutsa, K., Dascalaki, E., and Kontoyiannidis, S. Heating energy
consumption and resulting environmental impact of European apartment buildings.
Energy and Buildings, 37(5):429–442, May 2005a. ISSN 0378-7788. doi: 10.1016/
j.enbuild.2004.08.003. URL http://www.sciencedirect.com/science/article/

pii/S0378778804002464.

Balaras, C. A., Droutsa, K., Dascalaki, E., and Kontoyiannidis, S. Deterioration of
European apartment buildings. Energy and Buildings, 37(5):515–527, 2005b.

Balaras, C. A., Gaglia, A. G., Georgopoulou, E., Mirasgedis, S., Sarafidis, Y., and Lalas,
D. P. European residential buildings and empirical assessment of the Hellenic
building stock, energy consumption, emissions and potential energy savings. Building
and Environment, 42(3):1298–1314, March 2007. ISSN 0360-1323. doi: 10.1016/j.
buildenv.2005.11.001. URL http://www.sciencedirect.com/science/article/

pii/S0360132305004671.

Bandura, A. and McClelland, D. C. Social learning theory. Prentice-Hall Englewood Cliffs,
NJ, 1977.

Bass, F. M. A new product growth for model consumer durables. Management science,
15(5):215–227, 1969.

Berkhout, P. H. G., Muskens, J. C., and Velthuijsen, J. W. Defining the rebound effect.
Energy policy, 28(6):425–432, 2000.

Birol, F. World energy outlook. International Energy Agency, 2008.

Bourdieu, P. Distinction: A social critique of the judgement of taste. Harvard University
Press, 1984.

Briegel, R., Ernst, A., Holzhauer, S., Klemm, S., Krebs, F., and Piñánez, A. M.
Social-ecological modelling with LARA: a psychologically well-founded lightweight
agent architecture. In 2012 International Congress on Environmental Modelling
and Software Managing Resources of a Limited Planet, Sixth Biennial Meeting,
Leipzig, Germany, pages 2513–2520, 2012. URL http://ftp.jaist.ac.jp/pub/

sourceforge/l/la/lara-framework/fullPaperBriegelEtAl_preprint.pdf.



BIBLIOGRAPHY 135

Burchell, K., Rettie, R., and Roberts, T. Working together to save energy?, June 2014.
Report of the Smart Communities project.

Cantono, S. and Silverberg, G. A percolation model of eco-innovation diffusion: the
relationship between diffusion, learning economies and subsidies. Technological
Forecasting and Social Change, 76(4):487–496, 2009.

Caritas. Energy-saving-check program for low income households, 2016.
URL http://www.stromspar-check.de/english.html. Available at:
http://www.stromspar-check.de/english.html.

Chappin, E. J. L. Simulating Energy Transitions. Next Generation Infrastructures
Foundation, 2011. ISBN 9789079787302. PhD thesis, Delft University of Technology.

Chappin, E. J. L. and Dijkema, G. P. J. Modeling for transition management. Available at
SSRN 2618413, 2015.

Chen, J., Taylor, J. E., and Wei, H.-H. Modeling building occupant network
energy consumption decision-making: The interplay between network structure and
conservation. Energy and Buildings, 47:515–524, April 2012. ISSN 0378-7788. doi:
10.1016/j.enbuild.2011.12.026. URL http://www.sciencedirect.com/science/

article/pii/S0378778811006414.

Choi, H. and Varian, H. Predicting the present with Google Trends. Economic Record, 88
(s1):2–9, 2012. doi: 10.1111/j.1475-4932.2012.00809.x.

Costanza, E., Ramchurn, S. D., and Jennings, N. R. Understanding domestic energy
consumption through interactive visualisation: a field study. In Proceedings of the
2012 ACM Conference on Ubiquitous Computing, pages 216–225. ACM, 2012.

Cozzo, E., Baños, R. A., Meloni, S., and Moreno, Y. Contact-based social contagion
in multiplex networks. Physical Review E, 88(5):050801, November 2013. doi: 10.
1103/PhysRevE.88.050801. URL http://link.aps.org/doi/10.1103/PhysRevE.

88.050801.

Dahlstrom, O., Sornes, K., Eriksen, S. T., and Hertwich, E. G. Life cycle assessment
of a single-family residence built to either conventional- or passive house standard.
Energy and Buildings, 54:470–479, November 2012. ISSN 0378-7788. doi: 10.1016/j.
enbuild.2012.07.029.

Darby, S. The effectiveness of feedback on energy consumption. A Review for DEFRA of
the Literature on Metering, Billing and direct Displays, 2006, 2006. URL http://www2.

z3controls.com/doc/ECI-Effectiveness-of-Feedback.pdf.

de Holanda, G. M., Ávila, I. M. A., and Martins, R. B. Mapping users’ perspectives and
outlining social impacts from digitalization of terrestrial TV in Brazil. Telematics and
Informatics, 25(1):19–35, 2008.



136 BIBLIOGRAPHY

Delft University of Technology. E-quarium - an energy visualization and advice
system. http://www.io.tudelft.nl/actueel/congressen-en-symposia/

design-for-our-future-13-september-2013/delft-design-labs/

applied-labs/e-quarium/, 2014. Accessed: 2014-07-28.

Delre, S. A., Jager, W., Bijmolt, T. H. A., and Janssen, M. A. Targeting and timing
promotional activities: An agent-based model for the takeoff of new products. Journal
of Business Research, 60(8):826–835, August 2007. ISSN 0148-2963. doi: 10.1016/
j.jbusres.2007.02.002. URL http://www.sciencedirect.com/science/article/

pii/S0148296307000392.

Delre, S. A., Jager, W., Bijmolt, T. H. A., and Janssen, M. A. Will it spread or not? the
effects of social influences and network topology on innovation diffusion. Journal of
Product Innovation Management, 27(2):267–282, 2010. ISSN 07376782. doi: 10.1111/
j.1540-5885.2010.00714.x.

Drogoul, A., Vanbergue, D., and Meurisse, T. Multi-agent based simulation: Where are
the agents? In Multi-agent-based simulation II, pages 1–15. Springer, 2002.

Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler,
A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S.,
von Stechow, C., Zwickel, T., and Minx, J., editors. Climate Change 2014: Mitigation
of Climate Change. Contribution of Working Group III to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change. Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 2014.

Ekpenyong, U. E., Zhang, J., and Xia, X. Mathematical modelling for the social impact to
energy efficiency savings. Energy and Buildings, 84:344–351, 2014. URL http://www.

sciencedirect.com/science/article/pii/S0378778814006616.

Elsevier. Scopus, 2015. URL http://www.scopus.com. Retrieved 2015-11-27.

Epstein, J. M. Growing artificial societies: social science from the bottom up. Brookings
Institution Press, 1996.

Epstein, J. M. Why model? Journal of Artificial Societies and Social Simulation, 11(4):12,
2008. URL http://jasss.soc.surrey.ac.uk/11/4/12.html.

Ernst, A. Using spatially explicit marketing data to build social simulations.
In Smajgl, A. and Barreteau, O., editors, Empirical Agent-Based Modelling -
Challenges and Solutions, pages 85–103. Springer New York, January 2014.
ISBN 978-1-4614-6133-3, 978-1-4614-6134-0. URL http://link.springer.com/

chapter/10.1007/978-1-4614-6134-0_5.

European Parliament, Council of the European Union. Directive 2012/27/EU of
the European Parliament and of the Council of 25 October 2012 on energy
efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing
Directives 2004/8/ec and 2006/32. Official Journal of the European Union, 315:1–56,
2012. URL http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:

L:2012:315:0001:0056:EN:PDF.



BIBLIOGRAPHY 137

Eurostat. Final energy consumption in households - data sheet code: t2020_rk200.
online, 2016. Accessed: 2016-04-28.

Ferro, E., Caroleo, B., Cantamessa, M., and Leo, M. Policy incentives for innovation
diffusion: an agent-based simulation. In Electronic Government and the Information
Systems Perspective, pages 166–173. Springer, 2010.

Festinger, L. A theory of cognitive dissonance, volume 2. Stanford University Press, 1962.

Festinger, L. A theory of social comparison processes. Human relations, 7(2):117–140,
1954.

Frenken, K. History, state and prospects of evolutionary models of technical change:
a review with special emphasis on complexity theory. The Netherlands: Utrecht
University., 2004. URL http://www.narcis.nl/publication/RecordID/oai:

library.tue.nl:656114.

Frenken, K. Technological innovation and complexity theory. Economics of Innovation
and New Technology, 15(2):137–155, 2006.

Friege, J. and Chappin, E. J. L. Modelling decisions on energy-efficient renovations: A
review. Renewable and Sustainable Energy Reviews, 39:196–208, 2014.

Funk, S. and Jansen, V. A. A. Interacting epidemics on overlay networks. Physical Review
E, 81(3):036118, March 2010. doi: 10.1103/PhysRevE.81.036118. URL http://link.

aps.org/doi/10.1103/PhysRevE.81.036118.

Galán, J. M., Izquierdo, L. R., Izquierdo, S. S., Santos, J. I., Del Olmo, R., López-Paredes, A.,
and Edmonds, B. Errors and artefacts in agent-based modelling. Journal of Artificial
Societies and Social Simulation, 12(1):1, 2009.

Galvin, R. Impediments to energy-efficient ventilation of German dwellings: a case study
in Aachen. Energy and Buildings, 56:32–40, 2013.

Garcia, R. and Jager, W. From the special issue editors: Agent-based modeling of
innovation diffusion. Journal of Product Innovation Management, 28(2):148–151,
2011.

Gärling, T. and Axhausen, K. W. Introduction: Habitual travel choice. Transportation, 30
(1):1–11, 2003.

Geelen, L. M. J., Huijbregts, M. A. J., Ragas, A. M. J., Bretveld, R. W., Jans, H. W. A.,
van Doorn, W. J., Evertz, S., and van der Zijden, A. Comparing the effectiveness of
interventions to improve ventilation behavior in primary schools. Indoor Air, 18(5):
416–424, 2008.

Geels, F. W. and Johnson, V. Adoption, upscaling, replication/circulation, and societal
embedding: Four theoretical models of technology diffusion applied to biomass
district heating systems in Austria (1979-2013). In Proc. International Sustainability
Conference (IST, Helsinki, Finland, 2015), 2015.



138 BIBLIOGRAPHY

Ghorbani, A., Bots, P., Dignum, V., and Dijkema, G. Maia: a framework for developing
agent-based social simulations. Journal of Artificial Societies and Social Simulation,
16(2):9, 2013. URL http://jasss.soc.surrey.ac.uk/16/2/9.html.

Gill, Z. M., Tierney, M. J., Pegg, I. M., and Allan, N. Measured energy and water
performance of an aspiring low energy/carbon affordable housing site in the UK.
Energy and Buildings, 43(1):117–125, 2011.

Göckeritz, S., Schultz, P. W., Rendón, T., Cialdini, R. B., Goldstein, N. J., and Griskevicius,
V. Descriptive normative beliefs and conservation behavior: The moderating roles of
personal involvement and injunctive normative beliefs. European Journal of Social
Psychology, 40(3):514–523, April 2010. ISSN 1099-0992. doi: 10.1002/ejsp.643. URL
http://onlinelibrary.wiley.com/doi/10.1002/ejsp.643/abstract.

Goldenberg, J., Libai, B., and Muller, E. The chilling effects of network externalities.
International Journal of Research in Marketing, 27(1):4–15, 2010. ISSN 01678116. doi:
10.1016/j.ijresmar.2009.06.006.

Google. Google trends help center, 2015. URL https://support.google.com/trends.
accessed: 2015-4-15.

Granell, C., Gómez, S., and Arenas, A. Dynamical interplay between awareness and
epidemic spreading in multiplex networks. Physical Review Letters, 111(12):128701,
September 2013. doi: 10.1103/PhysRevLett.111.128701. URL http://link.aps.

org/doi/10.1103/PhysRevLett.111.128701.

Griffiths, M. and Eftekhari, M. Control of CO2 in a naturally ventilated classroom. Energy
and Buildings, 40(4):556–560, 2008.

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., and Railsback, S. F. The
ODD protocol: A review and first update. Ecological Modelling, 221(23):2760–2768,
2010. ISSN 03043800 (ISSN). doi: 10.1016/j.ecolmodel.2010.08.019.

Grimm, V. and Railsback, S. F. Individual-based modeling and ecology. Princeton
University Press, 2013.

Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., Thulke, H.-H.,
Weiner, J., Wiegand, T., and DeAngelis, D. L. Pattern-oriented modeling of agent-based
complex systems: lessons from ecology. Science, 310(5750):987–991, 2005.

Grinewitschus, V., Lovric, T., and Rumler, N. Influence of user behavior and home
automation on energy consumption. In Proceedings of the 7th International
Conference on Energy Efficiency in Domestic Appliances and Lighting (EEDAL13),
Coimbra, Portugal, pages 11–13, 2013.

Grønhøj, A. and Thøgersen, J. Feedback on household electricity consumption: learning
and social influence processes. International Journal of Consumer Studies, 35(2):
138–145, 2011.



BIBLIOGRAPHY 139

Grossmann, K., Bierwirth, A., Bartke, S., Jensen, T., Kabisch, S., von Malottki, C., Mayer,
I., and Rugamer, J. Energetic retrofit: considering socio-spatial structures of cities.
GAIA-Ecological Perspectives for Science and Society, 23(4):309–313, 2014.

Guerra-Santin, O. and Itard, L. Occupants’ behaviour: determinants and
effects on residential heating consumption. Building Research & Information,
38(3):318–338, 2010. URL http://www.tandfonline.com/doi/abs/10.1080/

09613211003661074.

Guerra Santin, O., Itard, L., and Visscher, H. The effect of occupancy and building
characteristics on energy use for space and water heating in Dutch residential stock.
Energy and Buildings, 41(11):1223–1232, 2009.

Han, Q., Nieuwenhijsen, I., de Vries, B., Blokhuis, E., and Schaefer, W. Intervention
strategy to stimulate energy-saving behavior of local residents. Energy Policy, 52:
706–715, 2013.

Hansmeier, N. and Matthies, E. Energiebewusste RUB – Richtig Heizen und
Lüften. Ergebnisse einer umweltpsychologischen Intervention zur Förderung
energieeffizienten Verhaltens an der Ruhr-Universität Bochum. URL http:

//www.change-energie.de/projekt/download/EnergiebewussteRUB%20_

Projektbericht.pdf. Project Report, Ruhr-University Bochum, Faculty for
Psychology., 2007.

Hochman Consultants LLC. The cost of pay-per-click (PPC) advertising –
trends and analysis, 2016. URL https://www.hochmanconsultants.com/

cost-of-ppc-advertising/. Accessed: 2016-09-13.

Holstein, B. and Straus, F. Qualitative Netzwerkanalyse. Konzepte, Methoden,
Anwendungen. Wiesbaden: Verlag für Sozialwissenschaften, 2006.

Holzhauer, S. Dynamic Social Networks in Agent-based Modelling - Increasingly Detailed
Approaches of Network Initialisation and Network Dynamics. PhD thesis, University
Kassel, 2015. Unpublished.

Holzhauer, S., Krebs, F., and Ernst, A. Considering baseline homophily when generating
spatial social networks for agent-based modelling. Computational and Mathematical
Organization Theory, 19(2):128–150, June 2013. ISSN 1381-298X, 1572-9346. doi: 10.
1007/s10588-012-9145-7. URL http://link.springer.com/article/10.1007/

s10588-012-9145-7.

Institut für Energie-und Umweltforschung Heidelberg GmbH. Gutachten zur
Übertragung des Hamburger Fifty-Fifty-Modells auf ALG II- und Sozialhilfe-Bezieher,
2009.

IPCC. Climate change 2007: synthesis report. Adopted by Session at IPCC Plenary XXVII,
2007.

Itard, L. and Meijer, F. Towards a Sustainable Northern European Housing Stock: Figures,
Facts, and Future, volume 22. Ios Press, 2008.



140 BIBLIOGRAPHY

Jackson, T. Motivating sustainable consumption: a review of evidence on consumer
behaviour and behavioural change: a report to the Sustainable Development Research
Network. Centre for Environmental Strategy, University of Surrey, 2005.

Jager, W. Breaking ‘bad habits’: a dynamical perspective on habit formation and
change. In Hendrickx, L., Jager, W., and Steg, L., editors, Human Decision Making and
Environmental Perception. Understanding and Assisting Human Decision Making in
Real-life Settings. University of Groningen, 2003. URL http://www.rug.nl/staff/

w.jager/jager_habits_chapter_2003.pdf.

Jager, W. and Janssen, M. An updated conceptual framework for integrated modeling of
human decision making: The Consumat II. In Paper for Workshop Complexity in the
Real World@ ECCS, pages 1–18, 2012. URL http://www.rug.nl/staff/w.jager/

jager_janssen_eccs_2012.pdf.

Jain, R. K., Gulbinas, R., Taylor, J. E., and Culligan, P. J. Can social influence drive energy
savings? Detecting the impact of social influence on the energy consumption behavior
of networked users exposed to normative eco-feedback. Energy and Buildings, 66:
119–127, November 2013. ISSN 0378-7788. doi: 10.1016/j.enbuild.2013.06.029. URL
http://www.sciencedirect.com/science/article/pii/S0378778813003782.

Jain, R. K. Building Eco-Informatics: Examining the Dynamics of Eco-Feedback Design
and Peer Networks to Achieve Sustainable Reductions in Energy Consumption. PhD
thesis, Columbia University, 2013. URL http://academiccommons.columbia.edu/

catalog/ac:165189.

Janssen, M. and Jager, W. An integrated approach to simulating behavioural processes:
A case study of the lock-in of consumption patterns. Journal of Artificial Societies and
Social Simulation, 2(2):21–35, 1999. URL http://jasss.soc.surrey.ac.uk/2/2/

2.html.

Janssen, M. A. and Jager, W. Stimulating diffusion of green products. Journal of
Evolutionary Economics, 12(3):283–306, 2002. URL http://link.springer.com/

article/10.1007/s00191-002-0120-1.

Jensen, T. and Chappin, E. J. L. Reducing domestic heating demand: managing
the impact of behavior-changing feedback devices via marketing. Environmental
Management, 2016. Under review.

Jensen, T., Holtz, G., Baedeker, C., and Chappin, E. Energy-efficiency impacts of
an air-quality feedback device in residential buildings: an agent-based modeling
assessment. Energy and Buildings, 116:105–119, 2016.

Jensen, T. and Chappin, E. J. L. Towards an agent-based model on co-diffusion of
technology and behavior: a review. In 28th European Conference on Modeling and
Simulation 2014, Brescia, pages 782–788, May 2014.

Jensen, T., Holtz, G., and Chappin, E. J. L. Agent-based assessment framework for
behavior-changing feedback devices: spreading of devices and heating behavior.



BIBLIOGRAPHY 141

Technological Forecasting and Social Change, 98:105–119, September 2015. doi:
10.1016/j.techfore.2015.06.006.

Karlin, B., Ford, R., and Squiers, C. Energy feedback technology: a review and taxonomy
of products and platforms. Energy Efficiency, 7(3):377–399, June 2014. ISSN 1570-646X,
1570-6478. doi: 10.1007/s12053-013-9227-5. URL http://rd.springer.com/

article/10.1007/s12053-013-9227-5?no-access=true.

Karlin, B., Zinger, J. F., and Ford, R. The effects of feedback on energy conservation: A
meta-analysis. Psychological bulletin, 141(6):1205, 2015.

Kelly, K. What technology wants. Penguin, 2010.

Kiesling, E., Günther, M., Stummer, C., and Wakolbinger, L. An agent-based simulation
model for the market diffusion of a second generation biofuel. In Proceedings - Winter
Simulation Conference, pages 1474–1481, 2009. ISBN 978-142445770-0. doi: 10.1109/
WSC.2009.5429299.

Kiesling, E., Günther, M., Stummer, C., and Wakolbinger, L. M. Agent-based simulation
of innovation diffusion: a review. Central European Journal of Operations Research, 20
(2):183–230, 2012.

Kroh, J., Ernst, A., Welzer, H., Briegel, R., David, M., Kuhn, S., Piñánez, A. M., Schönborn,
S., and Gellrich, A. Überregionale Potentiale lokaler Innovationsimpulse. Zur
Diffusion sozio-technischer Innovationen im Bereich Erneuerbare Energien, volume 6.
Kassel University Press GmbH, 2012. URL http://books.google.de/books?

hl=en&lr=&id=CXO_liUYZT0C&oi=fnd&pg=PP1&dq=Potentiale+lokaler+

innovationsimpulse&ots=ioxzgroTcv&sig=ZrEiDuY1SKi4sMZWUCfLwyU_ehw.

Landesbetrieb Information und Technik Nordrhein-Westfalen (IT.NRW). Datasheet
’Privathaushalte nach Haushaltsgrößen - Muenster, Regierungsbezirk’, 2014.
Accessed: 2014-11-07.

Laschke, M., Hassenzahl, M., and Diefenbach, S. Things with attitude:
Transformational Products. In Create11 Conference, page 1–2, 2011. URL
http://create10.squarespace.com/storage/create11papersposters/

Things%20with%20attitude.pdf.

Leek, J. T. and Peng, R. D. What is the question? Science, 347(6228):1314–1315, 2015.

Lewin, K. Group decision and social change. Readings in Social Psychology, 3:197–211,
1947.

Liedtke, C., Hasselkuß, M., Welfens, M. J., Nordmann, J., and Baedeker, C.
Transformation towards sustainable consumption: Changing consumption patterns
through meaning in social practices. In 4th International Conference on Sustainability
Transitions, pages 702–729, ETH Zurich, Switzerland, June 2013.



142 BIBLIOGRAPHY

Liedtke, C., Baedeker, C., Hasselkuß, M., Rohn, H., and Grinewitschus, V. User-integrated
innovation in Sustainable LivingLabs: an experimental infrastructure for researching
and developing sustainable product service systems. Journal of Cleaner Production,
97:106–116, 2015. ISSN 0959-6526. doi: 10.1016/j.jclepro.2014.04.070. URL http:

//www.sciencedirect.com/science/article/pii/S0959652614004338.

Loock, C.-M., Staake, T., and Thiesse, F. Motivating energy-efficient behavior with green
is: An investigation of goal setting and the role of defaults. Mis Quarterly, 37(4):
1313–1332, 2013.

Lopes, M., Antunes, C., and Martins, N. Energy behaviours as promoters of energy
efficiency: A 21st century review. Renewable and Sustainable Energy Reviews, 16(6):
4095–4104, 2012.

Lovric, T. Unpublished results from living lab experiments in the SusLab project
(www.suslab.eu), conducted by the ‘University of Applied Sciences Ruhr West’, April
2015.

Macal, C. M. and North, M. J. Tutorial on agent-based modelling and simulation. Journal
of Simulation, 4(3):151–162, 2010.

McCarthy, E. J. Basic Marketing, volume 8. McGraw-Hill Education, 1996.

McDonnell, A. Barriers and Enablers to Energy Efficient Retrofitting of Dwellings in
Ireland Masters thesis. PhD thesis, Waterford Institute of Technology, January 2010.

Mohammadi, N., Wang, Q., and Taylo, J. E. Exploring the potential influence of Opinion
Leaders in diffusion of energy conservation practices. In Tolk, A., Diallo, S. Y., Ryzhov,
I. O., Yilmaz, L., Buckley, S., and Miller, J. A., editors, Proceedings of the 2014 Winter
Simulation Conference, 2014.

Nisbet, M. C. and Kotcher, J. E. A two-step flow of influence? Opinion-leader campaigns
on climate change. Science Communication, 2009.

Nolan, J. M., Schultz, P. W., Cialdini, R. B., Goldstein, N. J., and Griskevicius, V. Normative
social influence is underdetected. Personality and Social Psychology Bulletin, 34(7):
913–923, January 2008. ISSN 0146-1672, 1552-7433. doi: 10.1177/0146167208316691.
URL http://psp.sagepub.com/content/34/7/913.

North, M. J., Collier, N. T., Ozik, J., Tatara, E. R., Macal, C. M., Bragen, M., and Sydelko,
P. Complex adaptive systems modeling with Repast Simphony. Complex adaptive
systems modeling, 1(1):1–26, 2013.

Olivier, J. G., Janssens-Maenhout, G., Marilena, M., and Peters, J. A. Trends in global CO2

emissions: 2015 report, 2015. URL http://edgar.jrc.ec.europa.eu/news_docs/

jrc-2015-trends-in-global-co2-emissions-2015-report-98184.pdf.

Oxford University Press. Policy, 2016. URL http://www.oxforddictionaries.com/

definition/english/policy. Accessed: 2016-04-22.



BIBLIOGRAPHY 143

Padonou, E., Villot, J., et al. Estimation of energy savings through a kriging metamodel.
ENBIS-13 Summary Session Reports, 2013., 2013.

Pentland, A. Social physics. How good ideas spread - the lessons from a new science.
Penguin Books Ltd, 2014.

Pérez-Lombard, L., Ortiz, J., and Pout, C. A review on buildings energy consumption
information. Energy and buildings, 40(3):394–398, 2008.

Peschiera, G., Taylor, J. E., and Siegel, J. A. Response-relapse patterns of building
occupant electricity consumption following exposure to personal, contextualized and
occupant peer network utilization data. Energy and Buildings, 42(8):1329–1336,
August 2010. ISSN 0378-7788. doi: 10.1016/j.enbuild.2010.03.001. URL http://www.

sciencedirect.com/science/article/pii/S0378778810000691.

Piacentini, J., Woods, D. W., Scahill, L., Wilhelm, S., Peterson, A. L., Chang, S., Ginsburg,
G. S., Deckersbach, T., Dziura, J., and Levi-Pearl, S. Behavior therapy for children with
tourette disorder: a randomized controlled trial. Jama, 303(19):1929–1937, 2010. URL
http://archinte.jamanetwork.com/article.aspx?articleid=185896.

Prell, C. Social network analysis: History, theory and methodology. Sage, 2011.

Provost, F. and Fawcett, T. Data Science for Business: What you need to know about data
mining and data-analytic thinking. " O’Reilly Media, Inc.", 2013.

Railsback, S. F. and Grimm, V. Agent-Based and Individual-Based Modeling: A Practical
Introduction. Princeton University Press, October 2011. ISBN 1400840651.

Rand, W. and Rust, R. Agent-based modeling in marketing: Guidelines for rigor.
International Journal of Research in Marketing, 28(3):181–193, 2011. ISSN 01678116.
doi: 10.1016/j.ijresmar.2011.04.002.

Rixen, M. and Weigand, J. Agent-based simulation of policy induced diffusion of smart
meters. Technological Forecasting and Social Change, 85:153–167, 2014.

Rogers, E. M. Diffusion of Innovations. Simon and Schuster, 2010.

Rogers, E. M. Diffusion of Innovation. Free Press, New York, 5 edition, 2003.

Roozenburg, N. F. M. and Eekels, J. Product Design: Fundamentals and Methods. John
Wiles & Sons, 1995.

Santamouris, M., Synnefa, A., Asssimakopoulos, M., Livada, I., Pavlou, K., Papaglastra,
M., Gaitani, N., Kolokotsa, D., and Assimakopoulos, V. Experimental investigation of
the air flow and indoor carbon dioxide concentration in classrooms with intermittent
natural ventilation. Energy and Buildings, 40(10):1833–1843, 2008.

Schreinemachers, P., Berger, T., and Aune, J. B. Simulating soil fertility and poverty
dynamics in Uganda: A bio-economic multi-agent systems approach. Ecological
Economics, 64(2):387–401, 2007.



144 BIBLIOGRAPHY

Schwarz, N. and Ernst, A. Agent-based modeling of the diffusion of environmental
innovations - an empirical approach. Technological Forecasting and Social Change,
76(4):497–511, 2009. ISSN 00401625. doi: 10.1016/j.techfore.2008.03.024.

Schwarz, N. Umweltinnovationen und Lebensstile: eine raumbezogene, empirisch
fundierte Multi-Agenten-Simulation. PhD thesis, Metropolis-Verl., Marburg, 2007.

Shipworth, M., Firth, S. K., Gentry, M. I., Wright, A. J., Shipworth, D. T., and Lomas,
K. J. Central heating thermostat settings and timing: building demographics. Building
Research & Information, 38(1):50–69, 2010.

Sinus Sociovision. Sinus-Milieus, 2015. URL http://www.sinus-sociovision.de/

en/.

Sonnessa, M. Modelling and simulation of complex systems. PhD thesis, University of
Torino, Italy, 2004.

Sopha, B. M., Klöckner, C. A., and Hertwich, E. G. Exploring policy options for a transition
to sustainable heating system diffusion using an agent-based simulation. Energy
Policy, 39(5):2722–2729, May 2011. ISSN 03014215. doi: 10.1016/j.enpol.2011.02.041.
URL http://linkinghub.elsevier.com/retrieve/pii/S0301421511001315.

Sopha, B. M., Klöckner, C. A., and Hertwich, E. G. Adoption and diffusion of
heating systems in Norway: Coupling agent-based modeling with empirical research.
Environmental Innovation and Societal Transitions, 8:42–61, September 2013. ISSN
2210-4224. doi: 10.1016/j.eist.2013.06.001. URL http://www.sciencedirect.com/

science/article/pii/S2210422413000427.

Stern, N. Economics: Current climate models are grossly misleading. Nature, 530(7591):
407, 2016.

Stonedahl, F. and Wilensky, U. BehaviorSearch, 2016. URL http://behaviorsearch.

org. Accessed: 2016-04-21.

Strasak, A. M., Zaman, Q., Pfeiffer, K. P., Gobel, G., and Ulmer, H. Statistical errors in
medical research-a review of common pitfalls. Swiss medical weekly, 137(3/4):44,
2007.

Stromback, J., Dromacque, C., and Yassin, M. H. The potential of smart meter
enabled programs to increase energy and systems efficiency: a mass pilot comparison,
2011. URL http://esmig.eu/sites/default/files/2011.10.12_empower_

demand_report_final.pdf.

Thaler, R. H. and Sunstein, C. R. Nudge: Improving decisions about health, wealth and
happiness. Penguin Books Ltd, 2009.

Thiele, J. C. and Grimm, V. Replicating and breaking models: good for you and good for
ecology. Oikos, 2015.



BIBLIOGRAPHY 145

Tisue, S. and Wilensky, U. Netlogo: A simple environment for modeling complexity. In
International Conference on Complex Systems, pages 16–21, 2004.

Tukker, A., Cohen, M. J., Hubacek, K., and Mont, O. The impacts of household
consumption and options for change. Journal of Industrial Ecology, 14(1):13–30, 2010.

van Dam, K. H., Nikolic, I., and Lukszo, Z. Agent-Based Modelling of Socio-Technical
Systems. Springer, Guildford and UK, 2012.

Van Eck, P., Jager, W., and Leeflang, P. Opinion Leaders’ role in innovation diffusion: A
simulation study. Journal of Product Innovation Management, 28(2):187–203, 2011.
ISSN 07376782. doi: 10.1111/j.1540-5885.2011.00791.x.

Verplanken, B. and Wood, W. Interventions to break and create consumer habits. Journal
of Public Policy & Marketing, 25(1):90–103, 2006. URL http://journals.ama.org/

doi/abs/10.1509/jppm.25.1.90.

Watts, C. and Gilbert, N. Simulating Innovation: Computer-based Tools for Rethinking
Innovation. Edward Elgar Publishing, 2014.

Watts, D. J. and Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature,
393(6684):440–442, 1998.

Wiegand, T., Jeltsch, F., Hanski, I., and Grimm, V. Using pattern-oriented modeling for
revealing hidden information: a key for reconciling ecological theory and application.
Oikos, 100(2):209–222, 2003.

Wilhite, H., Nakagami, H., Masuda, T., Yamaga, Y., and Haneda, H. A cross-cultural
analysis of household energy use behaviour in Japan and Norway. Energy Policy, 24
(9):795–803, 1996.

Windrum, P., Moneta, A., and Fagiolo, G. Empirical validation of agent-based models:
Alternatives and prospects, March 2007. URL http://jasss.soc.surrey.ac.uk/

10/2/8.html.

Wood, G. and Newborough, M. Dynamic energy-consumption indicators for domestic
appliances: environment, behaviour and design. Energy and Buildings, 35(8):821–841,
September 2003. ISSN 03787788. doi: 10.1016/S0378-7788(02)00241-4. URL http:

//linkinghub.elsevier.com/retrieve/pii/S0378778802002414.

Zhang, H., Vorobeychik, Y., Letchford, J., and Lakkaraju, K. Data-driven agent-based
modeling, with application to rooftop solar adoption. In Proceedings of the 2015
International Conference on Autonomous Agents and Multiagent Systems, pages
513–521. International Foundation for Autonomous Agents and Multiagent Systems,
2015.

Zhang, T., Siebers, P.-O., and Aickelin, U. Modelling electricity consumption in office
buildings: An agent based approach. Energy and Buildings, 43(10):2882–2892, 2011.
ISSN 03787788. doi: 10.1016/j.enbuild.2011.07.007.



146 BIBLIOGRAPHY

Zhang, T. and Nuttall, W. J. Evaluating government’s policies on promoting smart
metering diffusion in retail electricity markets via agent-based simulation. Journal
of Product Innovation Management, 28(2):169–186, 2011. ISSN 1540-5885. doi:
10.1111/j.1540-5885.2011.00790.x.

Zhang, T. and Nuttall, W. J. An agent-based simulation of Smart Metering technology
adoption. International Journal of Agent Technologies and Systems, 4(1):17–38, 2012.
ISSN 1943-0744, 1943-0752. doi: 10.4018/jats.2012010102. URL http://www.

igi-global.com/article/content/66067.



CURRICULUM VITÆ

Thorben Jensen was born on September 1, 1987 in Langenhagen, Germany. After
completing high school education at Gymnasium Langenhagen in 2007, he enrolled
at Osnabrück University (Germany) for the Bachelor of Science program Applied
Systems Science, with the minor subjects of computer science, mathematics, geography,
and geomatics. During his studies, he spent a semester studying mathematics at
the University of Granada (Spain). He graduated from his B.Sc. program in 2011.
His Bachelor’s thesis focused on simulating the transport and fate of medicinal
compounds in the environment. He continued his studies with the Master of Science
program Environmental Systems and Resource Management, with the minor subjects
of computer science and geomatics. During the M.Sc. program he took part in courses
on simulation modeling and resource management at the ‘Institute for life, food and
horticultural sciences and landscaping’ in Angers (France) and at the University Center
in Svalbard (Spitsbergen). Additionally, he assisted at teaching several classes at
Osnabrück University and became a research assistant at the Helmholtz Centers for
Environmental Research and for Polar and Marine research. In 2013, he graduated from
his M.Sc. program. In his graduation project, he simulated the storage of CO2 in the
Arctic Ocean under a changing climate.

In the year 2013, he became a PhD candidate in the section Energy and Industry at
the Faculty of Technology, Policy and Management, at Delft University of Technology.
In the same year, he took up a position as a Research Fellow at Wuppertal Institute
for Climate, Environment, and Energy (Germany) and was a guest lecturer on data
analysis at University of Angers (France). In his PhD project, he drew on his interest
in computer science. In his daily work, he enjoyed automating routine tasks, which
eventually led him to his contribution of automating major parts of model generation
and policy assessment for innovation diffusion models.

During his PhD he made use of many traveling opportunities. In 2015, a scholarship
sponsored by the foundations Robert Bosch and Mercator allowed him to be a visiting
researcher at the Chinese ‘Green Development Low-carbon Think Tank Partnership’. He
presented at several conferences—in China, the US, and Europe. In France, his work
on automated model generation was awarded with the ‘Best Student Paper Prize’ by the
International Environmental Modeling and Software Society.

At the time of writing, he continues to explore data driven modeling as a Data
Scientist at EY (Ernst & Young).

This CV was last updated on February 22, 2017.

147





PUBLICATIONS BY AUTHOR

1. Jensen, T. and Chappin, E. J. L. Towards an agent-based model on co-diffusion of technology
and behavior: a review, proceedings of the 28th European Conference on Modelling and
Simulation, Brescia, Italy, 782–788, 2014.

2. Großmann, K., Bierwirth, A., Bartke, S., Jensen, T., Kabisch, S., Malottki, C. v., Mayer, I., and
Rügamer, J., Energetic retrofit: considering socio-spatial structures of cities, GAIA-Ecological
Perspectives for Science and Society 23 (4), 309-312 (2014).

3. Jensen, T., Holtz, G., and Chappin E. J. L. Agent-based assessment framework
for behavior-changing feedback devices: Spreading of devices and heating behavior,
Technological Forecasting and Social Change 98, 105–119, 2015.

4. Holtz, G., Jensen, T., and Chappin, E. J. L. Modelling the diffusion and effect of behavior
changing feedback devices, proceedings of the 2015 Annual Conference of the EU-SPRI
Forum, 2015.

5. Jensen, T., Holtz, G., Baedeker, C., and Chappin, E. J. L. Energy-efficiency impacts of an
air-quality feedback device in residential buildings: an agent-based modeling assessment,
Energy and Buildings 116, 151–163, 2016.1

6. Jensen, T. and Chappin, E. J. L. Agent-based modeling automated: data-driven generation
of innovation diffusion models, proceedings of the 8th International Congress on
Environmental Modelling and Software, Toulouse, France, 2016.2

7. Jensen, T. Agent-based modeling 2.0: automated generation of innovation diffusion models,
poster presented at the 5th International Engineering Systems Symposium, Washington,
D.C., USA, 2016.

8. Jensen, T. Reducing domestic heating demand: managing the impact of behavior-changing
feedback devices via marketing, Environmental Management, under review, 2016.

9. Jensen, T., Holtz, G., and Chappin, E. J. L. Automated model structure variation and policy
robustness testing: a procedure for innovation diffusion models, proceedings of the Social
Simulation Conference, Rome, Italy, 2016.

10. Jensen, T. and Chappin, E. J. L. Automating agent-based modeling: data-driven generation
and application of innovation diffusion models, Environmental Modeling and Software, in
press, 2017.

1This contribution has been selected as one of the ten most important scientific publications of the Wuppertal
Institute in 2016.

2This contribution has been awarded with the ‘Best Student Paper Prize’ by the International Environmental
Modeling and Software Society.

149


