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a b s t r a c t 

Reinforcement learning (RL) offers powerful algorithms to search for optimal controllers of systems with 

nonlinear, possibly stochastic dynamics that are unknown or highly uncertain. This review mainly cov- 

ers artificial-intelligence approaches to RL, from the viewpoint of the control engineer. We explain how 

approximate representations of the solution make RL feasible for problems with continuous states and 

control actions. Stability is a central concern in control, and we argue that while the control-theoretic 

RL subfield called adaptive dynamic programming is dedicated to it, stability of RL largely remains an 

open question. We also cover in detail the case where deep neural networks are used for approxima- 

tion, leading to the field of deep RL, which has shown great success in recent years. With the control 

practitioner in mind, we outline opportunities and pitfalls of deep RL; and we close the survey with an 

outlook that – among other things – points out some avenues for bridging the gap between control and 

artificial-intelligence RL techniques. 

© 2018 Elsevier Ltd. All rights reserved. 
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Fig. 1. Taxonomy of the approaches reviewed, shown as a Venn diagram. 
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. Introduction 

Reinforcement learning (RL) is a model-free framework for solv-

ng optimal control problems stated as Markov decision processes

MDPs) ( Puterman, 1994 ). MDPs work in discrete time: at each

ime step, the controller receives feedback from the system in the

orm of a state signal, and takes an action in response. Hence, the

ecision rule is a state feedback control law, called policy in RL.

he action changes the system state, possibly in a stochastic man-

er, and the latest transition is evaluated via a reward function

negative cost). The optimal control objective is then to maximize

rom each initial state the (expected) cumulative reward, known as

alue. The problem is thus one of sequential decision-making, so as

o optimize the long-term performance. A first advantage of MDP

olution techniques is their generality: they can handle nonlinear

nd stochastic dynamics and nonquadratic reward functions. While

DPs and their solutions classically work for discrete-valued states

nd actions, this limitation is sidestepped by leveraging numerical

unction approximation techniques, and such approximate RL algo-

ithms are a main focus of current RL research. Beyond its general-

ty, another crucial advantage of RL is that it is model-free : it does

ot require a model of the system dynamics, or indeed, even the

xpression of the reward function. Instead, it learns from samples

f transitions and rewards, either offline, on a batch of samples

btained in advance from the system, or online, by obtaining the

amples directly from the system in closed-loop, simultaneously

ith learning an optimal controller. Thus, RL is an extremely valu-

ble tool to find (near-)optimal controllers for nonlinear stochastic

ystems, in cases when the dynamics are either unknown or af-

ected by significant uncertainty. 

RL is a large field, and researchers from many backgrounds

ontribute to it: artificial intelligence (AI), control, robotics, op-

rations research, economics, neuroscience, etc. Many books and

urvey papers have therefore been published on the topic, from

qually varied perspectives: AI, where the classical textbook is

hat of Sutton and Barto (1998) with the second edition ( Sutton

 Barto, 2018 ) , but also ( Bu ̧s oniu, Babuška, De Schutter, & Ernst,

010; Gosavi, 2009; Kaelbling, Littman, & Moore, 1996; Szepesvári,

010; Wiering & van Otterlo, 2012 ); control theory ( Lewis & Liu,

012; Lewis & Vrabie, 2009 ); operations-research flavored optimal

ontrol ( Bertsekas, 2012, 2017; Bertsekas & Tsitsiklis, 1996; Powell,

012 ); robotics ( Deisenroth, Neumann, & Peters, 2011; Kober, Bag-

ell, & Peters, 2013 ) etc. Some surveys focus on specific subareas,

ike policy gradient techniques ( Deisenroth et al., 2011; Grondman,

u ̧s oniu, Lopes, & Babuška, 2012 ), function approximation ( Geist &

ietquin, 2013 ), Bayesian formulations of RL ( Ghavamzadeh, Man-

or, Pineau, & Tamar, 2015 ), hierarchical RL ( Barto & Mahadevan,

003 ), multiagent approaches ( Bu ̧s oniu, Babuška, & De Schutter,

008 ), deep RL ( Arulkumaran, Deisenroth, Brundage, & Bharath,

017; Li, 2017 ) and so on. 

Against this extensive backdrop, our survey provides several

ontributions that we explain in the sequel, along with our orga-

ization of reviewed methods, shown in Fig. 1 . Among all the per-

pectives on RL we focus on two, shown as the two largest rectan-

les in the figure: AI, since it arguably provides the widest, most

eneral array of algorithms, and control-theoretic, due to our spe-

ific interest in this area. Throughout the paper, we use the name

pproximate, or adaptive, dynamic programming (ADP) for control-
heoretic methods. We begin in Section 2 by defining the prob-

em and covering basics that are required for all the methods dis-

ussed; this section is therefore not shown in Fig. 1 . In both AI and

ontrol, some methods are model-based, white in Fig. 1 ; while RL

s model-free, in light gray. We discuss model-based methods only

o the extent necessary to understand RL. Note that AI researchers

se the name “model-based RL” for algorithms that learn a model

rom data (effectively performing system identification) and then

erive their solution partly using this model. Here, to avoid confu-

ion we call these methods model-learning, while still classifying

hem as RL, and we reserve the model-based term only for ap-

roaches that employ a model from the start. 

When RL is applied to e.g. physical systems, the state and ac-

ion variables are continuous, and due to the generality of the dy-

amics and reward functions considered, it is usually impossible

o derive exact, closed-form representations of the value function

r control policy. Function approximation techniques must instead

e applied to represent them, and we focus Section 3 on the topic

f approximate RL (medium gray in Fig. 1). We discuss batch, of-

ine techiques as well as online learning methods of two types.

he first type, called temporal-difference learning, together with

he batch methods, can be seen as a sample-based implementa-

ion of dynamic programming. Half of these methods work in a

ather particular way that is atypical in control, called policy iter-

tion, where the long-term values of a fixed policy are found and

nly then the policy is improved. The second type of online learn-

ng comprises policy gradient methods, in which policy parameters

re directly optimized from observed data, similarly to extremum

eeking in control ( Ariyur & Krstic, 2003 ) but more general. 

While these approximate RL methods originate in AI, we ex-

lain them for (and from the viewpoint of) the control engi-

eer. With the exception of some works on the relation between

L and model-predictive control (MPC) ( Bertsekas, 2005; Beuchat,

eorghiou, & Lygeros, 2016; Ernst, Glavi ́c, Capitanescu, & We-

enkel, 2009; Görges, 2017 ), such mixed perspectives are usually

ot taken, and instead overviews focus separately either on AI

ethods ( Bu ̧s oniu et al., 2010; Gosavi, 2009; Kaelbling et al., 1996;

utton & Barto, 1998; 2018; Szepesvári, 2010; Wiering & van Ot-

erlo, 2012 ) or on ADP approaches ( Lewis & Liu, 2012; Lewis &

rabie, 2009 ). In contrast, our goal is to take a control-theoretic

erspective of AI techniques, and suggest some ways in which the

onnection between the two fields might be strengthened. With

his in mind, we fully dedicate Section 4 to control-theoretic con-

iderations and ADP methods. It turns out that there are funda-
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Section 4 . 

1 Whenever the set in which an object ranges is obvious from the context, we 

leave it implicit. Here, for example, the set is that of all possible policies – functions 

from x to u . 
mental philosophical differences between AI and control, stem-

ming from the fact that AI researchers focus almost exclusively on

performance with respect to a freely chosen reward function, while

control objectives revolve around stability. While ADP approaches

do address stability, many challenges remain, so that in our opin-

ion stable RL is effectively an open area, ripe for novel research. 

When RL is combined with a particular type of function ap-

proximator, deep neural networks (DNNs), the resulting methods

are known as deep reinforcement learning (DRL). This field has

recently attracted significant attention and concerted research ef-

forts, due to some impressive results ranging from super-human

performance in Atari games ( Mnih et al., 2015 ) and Go ( Silver et

al., 2017 ), to motion control in e.g. robotics. Therefore, we dedicate

Section 5 to DRL (dark grey in Fig. 1 ). The successes of DRL, com-

bined with the black box nature of DNNs, have led to some practi-

tioners using DRL algorithms without considering the alternatives.

We therefore discuss DRL by starting from the basic assumptions

underlying DNNs and the optimization procedures used to train

them. We then show both the potential and the possible pitfalls of

those assumptions in the context of RL, and examine how popular

DRL algorithms handle the pitfalls and exploit the potential. This

relatively narrow focus on the effects of the assumptions underpin-

ning DRL aims to allow (especially control) practitioners to better

evaluate if DRL is the right tool for their task. For a broader view

of DRL we refer the reader to the recent reviews ( Arulkumaran et

al., 2017; Li, 2017 ). 

Section 6 (not shown in the figure) closes the paper by an out-

look that gives references to related areas of research, points out

some ways of generalizing algorithms for e.g. output feedback, and

signals some important open issues in the field. 

List of main symbols and notation 

x, u, X, U, r state, action, state and action spaces, reward 

f, ρ, f̄ , ρ̄ dynamics, rewards, and their deterministic variants 

k, n discrete time step, length of multi-step return 

γ , V, Q discount factor, value function, Q-function 

π, ̃  π policy, stochastic policy 

V ∗, Q ∗, π ∗ optimal value function, Q-function, policy 

π, T π [ ·] policy, Bellman mapping under policy π

T [ ·] , T [ ·] Bellman optimality mapping for Q- and V-functions 

Q , R , P quadratic state and action penalty, Riccati solution 

α, �, t, ε learning rate, major and minor iteration, precision 

δ, e, λ temporal difference, eligibility trace and parameter 
ˆ Q , ̂  π approximate Q-function and policy 

φ basis functions 

θ, w Q-function and policy parameters 

θ−, w 

− the same, but for the target networks in deep RL 

p, m number of Q-function and policy parameters 

S, S, q dataset, number of samples, Q-value target 

g matrix representation of generic mapping g

d, J weight or probability, objective function 

·� , ∇· transpose, gradient w.r.t. parameters 

∼, P(·) , E{·} sampling from distribution, probability, expectation 

| ·| , ‖ ·‖ , ‖ ·‖ ∞ set cardinality, generic norm, infinity norm 

2. Basics of reinforcement learning 

These basic concepts and algorithms of RL can be found in stan-

dard textbooks ( Bertsekas, 2012; Bu ̧s oniu et al., 2010; Powell, 2012;

Sutton & Barto, 2018; Szepesvári, 2010 ), so we will only include

citations for some notable results and we refer the reader to the

textbooks for other details. 

2.1. Optimal control problem and its solution 

RL solves a discrete-time optimal control problem that is typ-

ically formalized as a Markov decision process (MDP) ( Puterman,

1994 ). Due to the origins of the field in artificial intelligence, this

formalism has some particularities, both in terminology and in
ome technical choices like using maximization. Whenever it is

seful, we provide insight on AI versus control-theoretic concepts

nd terminology. 

An MDP consists of the state space X of the system, the action

input) space U , the transition function (dynamics) f of the sys-

em, and the reward function ρ (negative costs). We leave X and U

eneric here, although in control they are often real vector spaces.

ransitions are usually stochastic, so that, as a result of the action

 k applied in state x k at discrete time step k , the state changes ran-

omly to x k +1 , drawn from f ( x k , u k , · ), which must define a valid

robability density. The transition function is therefore a collection

f such densities, f : X × U × X → [0, ∞ ). 

As a result of the transition to x k +1 , a scalar reward r k +1 =
(x k , u k , x k +1 ) is also received, according to the reward function

: X × U × X → R . The reward evaluates the immediate effect of

ction u k , but in general does not say anything about its long-term

ffects. We use notation inspired from control theory; the usual AI

otation would be (with varying capitalization) s for state, a for

ction, T or P for the dynamics, and R for the reward function. 

The controller (often called agent in RL) chooses actions accord-

ng to its policy π , which we take for now to be a determinis-

ic state feedback, π : X → U , so that u k = π(x k ) . Given a trajectory

 0 , u 0 , x 1 , u 1 , . . . with the associated rewards r 1 , r 2 , . . . the infinite-

orizon discounted return along this trajectory is: 

∞ 

 

k =0 

γ k r k +1 (1)

here γ ∈ (0, 1] is the discount factor. The value of a policy π from

nitial state x 0 is the expectation of the return under the stochastic

ransitions obtained while following π : 

 

π (x 0 ) = E x k +1 ∼ f (x k ,π (x k ) , ·) 

{ 

∞ ∑ 

k =0 

γ k ρ( x k , π( x k ) , x k +1 ) 

} 

(2)

r stated differently, the sum of the returns of all possible trajecto-

ies starting from x 0 , where each return is weighted by the proba-

ility of its trajectory. Functions V ( x ) are called (state) value func-

ions, or V-functions. 

The control objective is to find an optimal policy π ∗ that attains

he maximal value function: 1 

 

∗(x 0 ) := max 
π

V 

π (x 0 ) , ∀ x 0 (3)

ote that any policy that attains the maxima in this equation is

ptimal. An important property of MDPs is that, under appro-

riate conditions, there exists a deterministic optimal policy that

aximizes the value, despite the fact that transitions are stochas-

ic ( Bertsekas & Shreve, 1978 ). Thus, the objective is to maximize

he infinite-horizon expected discounted return. Finite-horizon ver-

ions are possible, see ( Bertsekas, 2017 ) for details, but we do

ot cover them here. In control, one would typically solve undis-

ounted problems ( γ = 1 ) with unbounded rewards, in which case

stability) conditions must be imposed to ensure that values are

ounded and the problem is well posed. There also exists a body

f RL techniques for undiscounted problems, see e.g. Jaksch, Ort-

er, and Auer (2010) ; Burnetas and Katehakis (1997) , which typ-

cally do not address stability explicitly. However, in RL, the dis-

ount factor is usually taken subunitary and rewards are assumed

o be bounded, which makes the value functions well-behaved ir-

espective of stability concerns. How to analytically reconcile the

erformance-oriented philosophy of AI-based RL with the stability

ocus of control is still an open question, and we return to it in
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iteration. 

2 
Instead of directly using value functions, RL often uses Q-

unctions Q : X × U → R , which fix the initial action: 

 

π (x, u ) = E x ′ ∼ f (x,u, ·) 
{
ρ(x, u, x ′ ) + γV 

π (x ′ ) 
}

(4)

ote that we use the prime notation to generically indicate quan-

ities at the next discrete time step, without reference to any par-

icular step k . The intuitive meaning of the Q-value Q 

π ( x, u ) is that

f expected return when starting from state x , applying the first

ction u , and following π thereafter. The optimal Q-function Q 

∗

s defined using V 

∗ on the right hand side of (4) . The reason for

referring Q-functions is simple: once Q 

∗ is available, an optimal

olicy can be computed easily, by selecting at each state an action

ith the largest optimal Q-value: 

∗(x ) ∈ arg max 
u 

Q 

∗(x, u ) (5)

hen there are multiple maximizing actions, any of them is op-

imal. In contrast, the formula to compute π ∗ from V 

∗ is more

omplicated and – crucially – involves a model, which is usually

navailable in RL. In general, for any Q-function, a policy π that

atisfies π(x ) ∈ arg max u Q(x, u ) is said to be greedy in Q . So, find-

ng an optimal policy can be done by first finding Q 

∗, and then

 greedy policy in this optimal Q-function. Note that the state

alue functions can be easily expressed in terms of Q-functions,

 

π (x ) = Q 

π (x, π(x )) , and V ∗(x ) = max u Q 

∗(x, u ) = Q 

∗(x, π ∗(x )) . 

The Q-functions Q 

π and Q 

∗ are recursively characterized by the

ellman equations , which are a consequence of the Q-function def-

nitions, and have central importance for RL algorithms. The Bell-

an equation for Q 

π states that the value of taking action u in

tate x under the policy π equals the expected sum of the imme-

iate reward and the discounted value achieved by π in the next

tate: 

 

π (x, u ) = E x ′ ∼ f (x,u, ·) 
{
ρ(x, u, x ′ ) + γ Q 

π (x ′ , π(x ′ )) 
}

(6)

he Bellman optimality equation characterizes Q 

∗, and states that

he optimal Q-value of action u taken in state x equals the sum of

he immediate reward and the discounted optimal value obtained

y the best action in the next state: 

 

∗(x, u ) = E x ′ ∼ f (x,u, ·) 
{ 
ρ(x, u, x ′ ) + γ max 

u ′ 
Q 

∗(x ′ , u 

′ ) 
} 

(7)

e will also interpret the right-hand side of each Bellman equa-

ion as a mapping applied to the Q-function, denoted T π for

6) and simply T for (7) . Thus, the Bellman equations may be

ritten as fixed-point relations in the space of Q-functions, Q 

π =
 

π [ Q 

π ] and Q 

∗ = T [ Q 

∗] , but we may also choose to apply these

appings to other, arbitrary Q-functions. 

It is instructive to examine the deterministic special case of

he framework, as control-theoretic formulations of optimal con-

rol are usually deterministic. In that case, the density f ( x, u , · )

ssigns all the probability mass to a single next state x ′ , leading

o deterministic dynamics x ′ = f̄ (x, u ) , where now f̄ : X × U → X .

ince x ′ is now fixed in the reward function as well, we may

lso simplify the reward function to ρ̄(x, u ) = ρ(x, u, f̄ (x, u )) , with

¯ : X × U → R . The expectation in the V- and Q-function defini-

ions (2) and (4) disappears as a single, deterministic trajectory

emains possible, with a return of the form (1) . The Bellman op-

imality Eq. (7) becomes: 

 

∗(x, u ) = ρ̄(x, u ) + γ max 
u ′ 

Q 

∗( ̄f (x, u ) , u 

′ ) (8)

As an example, consider the linear quadratic case, in which X =
 

p , U = R 

q , f̄ (x, u ) = Ax + Bu, and ρ̄(x, u ) = −x � Q x − u � R u (note

gain that rewards are equal to negative costs). The Bellman opti-

ality equation boils down to the familiar Riccati equation, which

n the discounted case is ( Bertsekas, 2012 ): 

 = A 

� [ γP − γ 2 P B (γ B 

� P B + R ) −1 B 

� P ] A + Q . (9) 
he optimal policy is a linear state feedback, π ∗(x ) = Lx, where 

 = −γ (γ B 

� P B + R ) −1 B 

� P A. (10) 

o avoid introducing unfamiliar notation for symbols with long-

stablished meanings both in RL and control theory, we use differ-

nt fonts, e.g. Q for Q-function versus Q for state weights, where

he latter font indicates the control-theoretic meaning. 

.2. Offline model-based methods for finite state-action spaces 

RL tackles general nonlinear dynamics and nonquadratic re-

ards, so analytical solutions like in the linear quadratic case are

o longer possible, and numerical algorithms must be used. The

asic methods readily work for state and action spaces X, U con-

isting of a finite number of discrete elements. The rationale is that

xact representations of the Q-functions and policies are possible

n this case. Note that since X is finite and hence countable, the

ransition function now collects probability mass functions: f ( x, u,

 

′ ) is the probability of transitioning to x ′ as a result of u in x , and

 : X × U × X → [0, 1]. 

We start from two methods that sit at the basis of model-free,

L algorithms: value and policy iteration. These methods work of-

ine and are model-based, i.e. they require the knowledge of f

nd ρ . For Q-functions, value iteration turns the Bellman optimal-

ty Eq. (7) into an iterative assignment, where the unknown op-

imal Q-function on the right-hand side is replaced by the cur-

ent iterate. This procedure is called Q-iteration 

2 and shown in

lgorithm 1 , where the expectation has been written as a sum ow-

lgorithm 1 Q-iteration. 

nput: f , ρ , γ , threshold ε 
1: initialize Q-function, e.g. Q 0 (x, u ) = 0 ∀ x, u 

2: repeat at every iteration � = 0 , 1 , 2 , . . . 

3: for every (x, u ) pair do 

4: Q � +1 (x, u ) = ∑ 

x ′ f (x, u, x ′ ) 
[
ρ(x, u, x ′ ) + γ max u ′ Q � (x ′ , u ′ ) 

]
5: end for 

6: until ‖ Q � +1 − Q � ‖ ∞ 

≤ ε 

utput: ˆ Q 

∗ = Q � +1 , ˆ π ∗(x ) greedy in 

ˆ Q 

∗

ng to the countable states, and ‖ Q ‖ ∞ 

:= max x, u | Q ( x, u )|. If rewards

re bounded and the discount factor is subunitary, the updates of

his algorithm are contractive and will asymptotically converge to

he unique fixed point corresponding to the optimal Q-function Q 

∗.

n practice, the algorithm is stopped once the iterates no longer

hange significantly, so it returns an estimate ˆ Q 

∗ and a correspond-

ng greedy policy. Note that Q-iteration is, in fact, classical dynamic

rogramming, but applied “forward in iterations” rather than back-

ard in time. After a sufficient number of iterations, the steady-

tate infinite-horizon solution is (approximately) reached. 

Unlike Q-iteration, policy iteration works explicitly on policies,

here at each iteration the Q-function of the current policy π� is

omputed (policy evaluation), and then a new policy π� +1 is found

hat is greedy in Q 

π� (policy improvement). The procedure is given

n Algorithm 2 . Assuming policy evaluation is exact, each policy

mprovement is guaranteed to find a strictly better policy unless it

s already optimal, and since in finite spaces there is a finite num-

er of possible policies, the algorithm converges in a finite number

f iterations. 

Algorithm 3 provides an iterative policy evaluation method that,

imilarly to Q-iteration, turns the Bellman Eq. (6) into an assign-

ent. This algorithm has similar convergence properties to Q-
The names of important methods and algorithms are underlined. 



12 L. Bu ̧s oniu et al. / Annual Reviews in Control 46 (2018) 8–28 

Algorithm 2 Policy iteration. 

Input: γ , f , ρ , 

1: initialize policy π0 

2: repeat at every iteration � = 0 , 1 , 2 , . . . 

3: find Q 

π� , the Q-function of π� � policy evaluation 

4: π� +1 (x ) = arg max u Q 

π� (x, u ) , ∀ x � policy improvement 

5: until π� +1 = π� +1 

Output: π ∗ = π� , Q 

∗ = Q 

π� 

Algorithm 3 Iterative policy evaluation. 

Input: π , f , ρ , γ , threshold ε 
1: initialize Q-function, e.g. Q 0 (x, u ) = 0 ∀ x, u 

2: repeat at every iteration t = 0 , 1 , 2 , . . . 

3: for every (x, u ) pair do 

4: Q t+1 (x, u ) = ∑ 

x ′ f (x, u, x ′ ) 
[
ρ(x, u, x ′ ) + γ Q t (x ′ , π(x ′ )) 

]
5: end for 

6: until ‖ Q t+1 − Q t ‖ ∞ 

≤ ε 

Output: ˆ Q 

π = Q t+1 
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When there are not too many states and actions, it is also pos-

sible to explicitly solve the Bellman Eqs. (6) (for policy evaluation)

or (7) (for Q 

∗), since they are in fact a system of equations with the

Q -values as the unknowns. For policy evaluation, the equations are

linear so they can be solved relatively cheaply. For the optimal Q-

function, they are nonlinear, but with certain relaxations they can

still be feasibly solved – see Section 4.2 later on. 

2.3. Online temporal-difference RL for finite spaces 

We discuss next temporal-difference algorithms, the most pop-

ular type of RL. There are many such algorithms, and we select just

a few common ones. All methods below are model-free (i.e. they

do not need to know f, ρ) and online (i.e. they can work alongside

the system). We remain in the finite-space case in this section. 

Perhaps the most popular RL algorithm is Q-learning ( Watkins

& Dayan, 1992 ). It starts from an arbitrary initial Q-function Q 0 ,

where the index now signifies discrete time k , and updates it using

observed state transitions and rewards, i.e. data tuples of the form

(x k , u k , x k +1 , r k +1 ) : 

Q k +1 (x k , u k ) = Q k (x k , u k ) 

+ αk [ r k +1 + γ max 
u ′ 

Q k (x k +1 , u 

′ ) − Q k (x k , u k )] (11)

where αk ∈ (0, 1] is the learning rate. This update applies an in-

cremental correction to Q k ( x k , u k ), equal to αk times the tempo-

ral difference in square brackets. The latter difference is between

the updated estimate r k +1 + γ max u ′ Q k (x k +1 , u 
′ ) of the optimal Q-

value of ( x k , u k ), based on information at the next step, and the

current estimate Q k ( x k , u k ). The updated estimate is a sample of

the right-hand side of the Q-iteration update in line 4 of Algorithm

1 , in which the expectation over next states is replaced by the ob-

served, random transition sample x k +1 and its corresponding re-

ceived reward r k +1 . The temporal difference is therefore (a sample

of) the error between the two sides of the Bellman optimality Eq.

(7) , and Q-learning can be understood as an online, incremental,

stochastic-approximation version of Q-iteration. 

As the number of transitions k grows to infinity, Q-learning

asymptotically converges to Q 

∗ if (i) 
∑ ∞ 

k =0 α
2 
k 

is finite and 

∑ ∞ 

k =0 αk 

is infinite, while (ii) all the state-action pairs are visited infinitely

often ( Jaakkola, Jordan, & Singh, 1994; Watkins & Dayan, 1992 ).

Condition (i) is standard in stochastic approximation: it requires

that learning rates shrink but not too quickly. A valid example is

α = 1 /k . In practice, the learning rate schedule requires tuning,
k 
ecause it influences the convergence rate (number of samples re-

uired to perform well). 

To satisfy condition (ii), firstly any state must be reachable from

ny other state (or otherwise, multiple experiments must be run

ith richly selected initial states). Secondly, it is not sufficient to

pply a deterministic policy to obtain the samples, as that would

ot attempt all the actions in a given state, and may not dynam-

cally reach the entire state space either. Instead, the policy must

pply exploration : e.g. actions are selected randomly, and each ac-

ion has nonzero probability at any state. Thus the policy becomes

tochastic, ˜ π : X × U → [0 , 1] . A classical choice ( Sutton & Barto,

018 ) is the ε-greedy policy, which applies a greedy action with

robability 1 − ε, and otherwise selects an action uniformly ran-

omly, leading to the policy probabilities: 

˜ (x, u ) = 

{
1 − ε + 

ε 
| U | for some u ∈ arg max u ′ Q(x, u 

′ ) 
ε 

| U | for the other actions 
(12)

ere ε ∈ (0, 1] is the exploration probability, and | · | denotes set

ardinality. Another option is Boltzmann, or softmax, exploration,

hich selects an action u with probability: 

˜ (x, u ) = 

e Q(x,u ) /τ∑ 

u ′ e 
Q(x,u ′ ) /τ (13)

ere τ is the exploration temperature, and by changing τ the pol-

cy can be tuned from fully greedy (in the limit as τ → 0) to fully

andom (as τ → ∞ ). Importantly, both (12) and (13) strive to bal-

nce exploration with the requirement of performing well while

ontrolling the system – exploitation of current knowledge as rep-

esented by the Q-function. This exploration-exploitation dilemma

s central to all online RL algorithms. Solving it for the two policies

bove boils down to selecting good schedules εk or τ k , which is a

ontrivial tuning problem in practice. Note that exploration in RL

s a field in its own right, and we cannot do it justice in this sur-

ey; some pointers to major classes of exploration techniques are

rovided in Section 6 . 

From a control point of view, exploration is a persistence of ex-

itation condition: even if Q-learning never uses an explicit model,

 model is still implicitly present in the Q -values, and persistent

xcitation is needed to “identify” it. Note also that while in con-

rol problems the reward function would be known, Q-learning

oes not make this assumption and learns about the rewards at

he same time as about the dynamics. A final remark is that, as

ong as conditions (i) and (ii) above are satisfied, Q-learning works

o matter what policy is actually applied to control the system.

-learning can therefore be seen as always evaluating the greedy

olicy, while the behavior policy can be anything exploratory – a

roperty called being off-policy. Algorithm 4 presents Q-learning

ith an arbitrary behavior policy. 

lgorithm 4 Q-learning. 

1: initialize Q-function, e.g. Q 0 (x, u ) = 0 ∀ x, u 

2: measure initial state x 0 
3: for every time step k = 0 , 1 , 2 , . . . do 

4: select action u k with an exploratory policy 

5: apply u k , measure next state x k +1 and reward r k +1 

6: Q k +1 (x k , u k ) = Q k (x k , u k )+ 

αk [ r k +1 + γ max u ′ Q k (x k +1 , u 
′ ) − Q k (x k , u k )] 

7: end for 

Along the lines of Q-learning, one can derive an online RL algo-

ithm for evaluating a given policy ˜ π : 

 k +1 (x k , u k ) = Q k (x k , u k ) 

+ αk [ r k +1 + γ Q k (x k +1 , u k +1 ) − Q k (x k , u k )] (14)
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ssuming that actions are chosen with ˜ π, which is exploratory so

hat all actions are attempted (plus the standard learning rate con-

itions). Note the replacement of the maximizing action with the

ction actually chosen by the policy, which means the algorithm

ims to solve the Bellman Eq. (6) for ˜ π (or rather, an extended

ariant of (6) that also takes the expectation over actions accord-

ng to ˜ π ). This algorithm is called simply temporal difference , or

D, and we may imagine a model-free version of policy iteration

 Algorithm 2 ) where TD runs in-between policy improvements for

ong enough intervals to allow Q-function convergence (a model-

ree version of Algorithm 3 ). 

It turns out, however, that we may dispense with the re-

uirement to converge before improvement, and in fact we may

mprove the policy at each step – implicitly, by selecting ac-

ions based on the current Q-function, e.g. with the ε-greedy or

oftmax policies (12), (13) . Such a scheme is called optimistic

olicy improvement, and using it in combination to the update

14) leads to the SARSA algorithm ( Rummery & Niranjan, 1994 ),

amed for the structure of the data tuple used by each update

(x k , u k , x k +1 , r k +1 , u k +1 ) – or state, action, reward, state, action. It

s given in Algorithm 5 . In order to converge to Q 

∗, SARSA re-

lgorithm 5 SARSA. 

1: initialize Q-function, e.g. Q 0 (x, u ) = 0 ∀ x, u 

2: measure initial state x 0 , choose arbitrary action u 0 
3: for every time step k = 0 , 1 , 2 , . . . do 

4: apply u k , measure next state x k +1 and reward r k +1 

5: choose u k +1 with exploratory policy based on Q k 

6: Q k +1 (x k , u k ) = Q k (x k , u k )+ 

αk [ r k +1 + Q k (x k +1 , u k +1 ) − Q k (x k , u k )] 

7: end for 

uires the same conditions as Q-learning, and in addition that the

xploratory policy being followed asymptotically becomes greedy,

or instance by letting ε or τ go to 0 in ε-greedy or softmax

 Singh, Jaakkola, Littman, & Szepesvári, 20 0 0 ). Note that unlike Q-

earning, SARSA always aims to evaluate the policy that it follows,

o it is on-policy. 

The following two methods are often used to increase the con-

ergence rate of temporal difference algorithms. The first method

xploits the fact that the latest transition is the causal result of the

ntire preceding trajectory, by marking visited state-action pairs

ith eligibility traces e : X × U → [0, ∞ ), see e.g. Singh and Sutton

1996) . The traces are initially zero: e 0 (x, u ) = 0 ∀ x, u, and at each

tep the trace of the currently visited state-action pair is either set

o 1 (in the replacing traces variant), or incremented by 1 (accu-

ulating). For all other states, the trace decays with λγ , where

∈ [0, 1] is a parameter. Formally: 

e k +1 (x k , u k ) = 

{
1 if replacing 
e k (x k , u k ) + 1 if accumulating 

e k +1 (x, u ) = λγ e k (x, u ) for all (x, u ) 
 = (x k , u k ) 

ote that state-action pairs become exponentially less eligible

s they move further into the past. Consider e.g. the TD algo-

ithm (14) , and denote the temporal difference by δk = r k +1 +
Q k (x k +1 , u k +1 ) − Q k (x k , u k ) . The traces are used by updating at

tep k all eligible state-action pairs using this temporal difference,

eighted by the traces: 

 k +1 (x, u ) = Q k (x, u ) + αk δk e k +1 (x, u ) , ∀ x, u (15)

o the latest transition sample is used to update many Q-values

nstead of one, increasing data efficiency. The algorithm obtained

s called TD( λ), and it reduces to the original one when λ =
 . The same idea can be applied in a straightforward fashion

o SARSA and Q-learning. Although for simplicity we introduced
races heuristically here, they have a deep analytical justification

n terms of using longer-horizon updates than just the single-step

ewards ( Sutton & Barto, 2018 ). 

The second method is called experience replay ( Lin, 1992 ).

ather than using each transition only once, when it is observed,

ll transitions are saved in memory and “replayed”, i.e. the origi-

al learning update is applied to them as if they would have been

bserved again. Two choices drive experience replay: how many

tored transitions are replayed at each true step k ; and how tran-

itions are selected (e.g. randomly, forward or backward along tra-

ectories). For the classical algorithms in this section, it is better

o replay trajectories backwards, as this better propagates reward

nformation. 

The guarantees we discussed for Q-learning and SARSA con-

ern asymptotic convergence to the optimal performance. To ana-

yze finite-time performance while taking into account the impact

f the (suboptimal, but necessary) exploration steps, techniques

an be used that minimize the loss with respect to the optimal

alues, called the regret. These techniques originate in so-called

andit (stateless) problems ( Auer, Cesa-Bianchi, & Fischer, 2002;

ubeck & Cesa-Bianchi, 2012 ), but also exist for dynamic MDPs

 Jaksch et al., 2010 ), see also the related work on optimal alloca-

ion strategies ( Agrawal, Teneketzis, & Anantharam, 1989 ; Graves &

ai, 1997 ). Such methods often have a quite different flavor from

he temporal-difference methods discussed above. 

. Approximate reinforcement learning 

.1. Approximate representations 

The methods in Section 2 require that Q-functions and poli-

ies are exactly represented – e.g. as a table indexed by the dis-

rete states and actions. In typical control problems, states and ac-

ions are continuous, exact representations are in general impossi-

le, and function approximation must be used. 

Depending on the algorithm, the Q-function and/or the policy

ust be approximated, and we denote their approximate versions

y ˆ Q and ˆ π . Often, parametric approximators are used, in which

ase the Q-function parameters are denoted by θ ∈ R 

p , and ap-

roximate Q-values by ˆ Q (x, u ; θ ) . For the policy, the parameters

re w ∈ R 

m . Linearly parameterized architectures are popular since

hey lead to relatively simple algorithms and analysis. For the Q-

unction, such a parametrization is written: 

ˆ 
 (x, u ; θ ) = 

p ∑ 

i =1 

φi (x, u ) θi = φ� (x, u ) θ (16)

here φ(x, u ) = [ φ1 (x, u ) , . . . , φp (x, u )] 
� 

is a vector of basis func-

ions (BFS), such as radial BFs or polynomial terms. A particularly

imple linear architecture is aggregation, where the BFs are binary

nd equal to 1 in disjoint areas of the state-action space; thus ev-

ry point in such an area has the same Q-value. 

One example of nonlinear parametrization is a BF expansion in

hich the BF shapes themselves are also parameterized ( Bertsekas

 Yu, 2009 ), e.g. by the centers and radii for radial BFs. However,

eural networks are probably the most widely used type of non-

inear approximator ( Bertsekas & Tsitsiklis, 1996; Riedmiller, 2005 ),

ith deep networks becoming very popular recently ( Mnih et al.,

015 ). The latter directly take images as their state input, and

onsist of many layers with specific structures; they are the fo-

us of Section 5 later on. In the adaptive dynamic programming

eld ( Lewis & Liu, 2012 ), approximators are also traditionally called

eural networks, but often the networks have one linear layer (or

nly the last linear layer is adapted), so in fact they boil down to

inear approximators. 

Many RL techniques also use nonparametric approximators,

hich vary their shape and number of parameters as a func-
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tion of the dataset, e.g. RL with kernel regression ( Farahmand,

Ghavamzadeh, Szepesvári, & Mannor, 2009; Ormoneit & Sen,

2002 ), Gaussian processes ( Engel, Mannor, & Meir, 2005 ), regres-

sion trees ( Ernst, Geurts, & Wehenkel, 2005 ), etc. 

The main advantage of function approximation is the reduction

of the (generally intractable) problem of learning the continuous-

argument Q-function or policy to the tractable problem of learning

a parameter vector. There is also a less obvious benefit: as each pa-

rameter contributes to estimating the value of many state-action

pairs, any transition from these pairs will help learning that pa-

rameter. This reduces the number of samples needed to learn, and

is called generalization. 

In the sequel, we describe some major approximate RL meth-

ods, see also Sutton and Barto (2018) , Bertsekas (2012) , Powell

(2012) , Bu ̧s oniu et al. (2010) for extensive reviews of the area. We

start with offline methods in Section 3.2 , and online temporal-

difference RL in Section 3.3 . The techniques we discuss in these

sections assume the Q-function approximator is such that greedy

actions can be efficiently found, see (5) , and use this fact to

sidestep the requirement of representing policies. Instead they

simply find greedy actions on demand, at any state where they are

needed. The usual way to achieve this is to discretize the actions

into a few values, and then maximize by enumeration. For linear

approximation (16) , this can be imagined as removing the u pa-

rameter from the BFs and instead replicating state-dependent BFs

for each discrete action, with different associated parameters. More

flexible solutions exist, e.g. differentiating polynomial approxima-

tions to find the maxima, or performing binary search in the ac-

tion space ( Pazis & Lagoudakis, 2009 ). In Section 3.4 , we discuss

policy gradient techniques, which explicitly search over parameter-

ized policies and do not need to maximize over actions. 

3.2. Offline approximate RL 

We describe two popular offline algorithms from the value and

policy iteration class, respectively. While in Section 2.2 these meth-

ods were model-based, their extensions here use a given dataset of

transition samples, so they become model-free RL when the sam-

ples are obtained from the system. Of course, if a model is in fact

available, it can be used to generate the samples. The dataset is

denoted S = { (x j , u j , x 
′ 
j 
, r j ) | j = 1 , . . . , S} , where x ′ 

j 
is sampled from

f ( x j , u j , · ) and r j is the corresponding reward. The dataset should

be sufficiently informative to allow finding a good solution – an

exploration requirement. 

The first algorithm is fitted Q-iteration , and was popularized

under this name by Ernst et al. (2005) , although its basic prin-

ciple was already known. It is applicable to any type of Q-

function approximator, although for clarity we will use a para-

metric one ˆ Q (x, u ; θ ) . At iteration � , when the parameters are

θ� , fitted Q-iteration computes the Bellman target q � +1 , j = r j +
γ max u ′ ˆ Q (x ′ 

j 
, u ′ ; θ� ) for each transition sample. Then, least-squares

regression is run on the input-output samples (x j , u j ) �→ q � +1 , j to

obtain the next parameters θ� +1 . Algorithm 6 summarizes the pro-

cedure. The target Q-value is exact in the deterministic case, when

Algorithm 6 Fitted Q-iteration. 

Input: γ , dataset S 
1: initialize parameter vector, e.g. θ0 ← 0 

2: repeat at every iteration � = 0 , 1 , 2 , . . . 

3: q � +1 , j = r j + γ max u ′ ˆ Q (x ′ 
j 
, u ′ ; θ� ) , for j = 1 , . . . , S 

4: θ� +1 = arg min θ
∑ S 

j=1 

[
q � +1 , j − ˆ Q (x j , u j ; θ ) 

]2 

5: until θ� +1 is satisfactory 

Output: ˆ Q 

∗, ˆ π ∗ greedy in 

ˆ Q 

∗ (implicitly represented via ˆ Q 

∗) 

  
he Bellman equation is (8) , and it is a sample of the right-hand

ide of (7) in the stochastic case. In the latter case, least-squares

egression should approximate the correct expected value. 

An asymptotic guarantee can be provided for fitted Q-iteration

y first defining an error ε such that at any iteration � ,

T [ ̂  Q (·, ·; θ� )] − ˆ Q (·, ·; θ� +1 ) 
∥∥

∞ 

≤ ε . Thus ε characterizes the worst-

ase error between the exact Q-functions that the Bellman map-

ing T would compute, and the actual, approximate Q-functions

ound by the algorithm. Then, fitted Q-iteration asymptotically

eaches a sequence of approximate Q-functions that each satisfy
ˆ Q − Q 

∗∥∥
∞ 

≤ ε 
1 −γ ( Bertsekas & Tsitsiklis, 1996 ). While this bound

olds for the Q-function and not the greedy policy, the follow-

ng general result makes the connection. If an approximately op-

imal Q-function 

ˆ Q 

∗ is available, then a greedy policy ˆ π ∗ in this

-function satisfies 
∥∥Q ̂

 π∗ − Q 

∗∥∥
∞ 

≤ 2 γ
1 −γ

∥∥ ˆ Q 

∗ − Q 

∗∥∥
∞ 

. Thus, overall,

tted Q-iteration asymptotically satisfies 
∥∥Q ̂

 π∗ − Q 

∗∥∥
∞ 

≤ 2 γ ε 
(1 −γ ) 2 

.

o-called finite-sample guarantees, which work for other norms

nd make explicit the dependence on the number of samples and

terations, are given by Munos and Szepesvári (2008) . 

Fitted Q-iteration may not converge to some fixed Q-function.

nder stronger conditions, including that the approximator does

ot extrapolate sample values, fitted Q-iteration updates are con-

ractive and converge to a fixed point ( Gordon, 1995; Ormoneit &

en, 2002 ). A simple such case satisfying the condition is interpo-

ation on a grid, with the samples equal to the grid points. 

Consider next policy iteration, and recall from Section 3.1 that

olicy approximation is sidestepped by computing greedy actions

n demand. Thus the core feature of approximate policy itera-

ion is the policy evaluation procedure. A fitted algorithm like

or Q-iteration may be used, but it turns out that if the approx-

mator is linear (16) , more efficient procedures can be devised

y exploiting the linearity of the Bellman Eq. (6) . One such pro-

edure is least-squares temporal difference (LSTD) , intr oduced for

alue functions V by Bradtke and Barto (1996) . When applied to

nd Q-functions, LSTD leads to least-squares policy iteration (LSPI)

 Lagoudakis & Parr, 2003 ). We return temporarily to discrete

paces, since the derivation is better understood there, but the fi-

al method applies to the continuous case as well. Let the dis-

rete states and actions be denoted by their index x = 1 , . . . , N and

 = 1 , . . . , M. We start by rewriting the Bellman mapping T π , see

gain (6) : 

 

π [ Q](x, u ) = ρ̄(x, u ) + γ
N ∑ 

x ′ =1 

f (x, u, x ′ ) Q(x ′ , π(x ′ )) (17)

here ρ̄(x, u ) = 

∑ N 
x ′ =1 f (x, u, x ′ ) ρ(x, u, x ′ ) are the expected re-

ards. Now, since the solution to the Bellman equation Q 

π =
 

π [ Q 

π ] is generally not representable by the chosen approxima-

or, the idea in LSTD is to solve a projected version 

ˆ Q = P [ T π [ ̂  Q ]] ,

n which the result of T π is brought back into the space of

epresentable Q-functions via a weighted least-squares projection

 [ Q] = arg min ˆ Q 

∑ 

x,u d(x, u ) 
∣∣Q(x, u ) − ˆ Q (x, u ) 

∣∣2 . Here, d gives the

eights of state-action pairs. 

To exploit linearity, define now a vector form of the Q-function,

 ∈ R 

NM , in which Q xu = Q(x, u ) for scalar integer index xu = x +
(u − 1) N. Then, (17) can be rewritten in matrix form: 

 

π [ Q ] = ρ + γ f Q (18)

here ρ collects expected rewards in a similar way to Q , and f ∈
 

N M×N M is a matrix of transition probabilities between state-action

airs. For a deterministic policy, f xu , x ′ u ′ = f (x, u, x ′ ) if u ′ = π(x ′ ) ,
nd 0 elsewhere, but the formalism generalizes to stochastic, ex-

loratory policies. 

Further, by collecting the basis function values in a matrix

∈ R 

NM×p , 
xu ,i = φi (x, u ) , an approximate Q-function is writ-
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ˆ Q = 
θ . Weighted least-squares projection can be written in

losed form as P = 
(
� d 
) −1 
� d , where d is the weight vec-

or, with d xu = d(x, u ) . Finally, replacing the matrix forms ˆ Q and

 into (18) , the projected Bellman equation becomes after a few

anipulations: 

(
� d 
 − γ
� d f 
) θ = 
� d ρ, or equivalently Aθ = b 

ith A := 
� d 
 − γ
� d f 
 ∈ R 

p×p , and b := 
� d ρ ∈ R 

p . While

his equation involves the model, A and b can fortunately be es-

imated in a model-free fashion, from samples drawn according

o the weights d (reinterpreted as probabilities). The formulas are

iven directly in Algorithm 7 , where lines 3–5 comprise LSTD. Re-

all that the algorithm works for continuous variables as well. 

lgorithm 7 Least-squares policy iteration. 

nput: γ , dataset S 
1: initialize policy π0 

2: repeat at every iteration � = 0 , 1 , 2 , . . . 

3: A � = 

∑ S 
j=1 φ(x j , u j ) 

[ 
φ� (x j , u j ) − γφ� (x ′ 

j 
, π� (x ′ 

j 
)) 
] 

4: b � = 

∑ S 
j=1 φ(x j , u j ) r j 

5: solve A � θ� = b � to get Q-function parameters θ� 

6: π� +1 (x ) = arg max u ˆ Q (x, u ; θ� ) , ∀ x (implicitly) 

7: until π� +1 is satisfactory 

utput: ˆ π ∗ = π� +1 

The asymptotic properties of LSPI, and more generally of ap-

roximate policy iteration, are similar to those of fitted Q-iteration.

n particular, the algorithm may never reach a fixed point, but if at

ach iteration the policy evaluation error 
∥∥ ˆ Q (x, u ; θ� ) − Q 

π� 

∥∥
∞ 

is

pper-bounded by ε, then the algorithm eventually reaches a se-

uence of policies such that ‖ Q 

π − Q 

∗‖ ∞ 

≤ 2 γ ε 
(1 −γ ) 2 

( Lagoudakis &

arr, 2003 ). The policy evaluation error can be specifically charac-

erized for LSTD, see Lazaric, Ghavamzadeh, and Munos (2012) for

 finite-sample analysis of L STD and L SPI, and Bu ̧s oniu et al.

2011) for a review. In practice, when the algorithms converge, LSPI

ften needs fewer iterations than fitted Q-iteration, mirroring a

imilar relationship for exact policy and value iteration. An alter-

ative to LSTD is an iterative algorithm called LS policy evaluation,

nalyzed by Yu and Bertsekas (2009) ; while instead of solving the

rojected equation we may also minimize the difference between

he two sides of (6) , leading to Bellman residual minimization, see

cherrer (2010) for a comparison between this and the projection-

ased algorithms. 

Research on batch RL methods is ongoing, with recent de-

elopments in e.g. nonparametric approximation ( Farahmand,

havamzadeh, Szepesvári, & Mannor, 2016 ), exploitation of low-

evel controllers called “options” ( Mann, Mannor, & Precup, 2015 ),

nd combinations with deep learning ( Lee, Levine, & Abbeel, 2017 ).

ombinations of this latter type are presented in detail in the up-

oming Section 5 , although we already note that the usage of so-

alled minibatches of samples in deep RL is closely connected to

tted Q-iteration. 

.3. Online, temporal-difference approximate RL 

To derive a simple variant of approximate Q-learning , we

ill reinterpret the term r k +1 + γ max u ′ Q k (x k +1 , u 
′ ) in the orig-

nal Q-learning (11) as a target of the incremental update. In

he approximate case, we replace this target by q k +1 = r k +1 +
max u ′ ˆ Q (x k +1 , u 

′ ; θk ) which has the same form as the Bellman

arget from fitted Q-iteration, except that now instead of an offline

ataset we use samples observed online, and update the parame-

ers at each step k . The main idea is to perform gradient descent
n the squared error between this target and the approximate Q -

alue ( Sutton and Barto, 1998 , Chapter. 8): 

θk +1 = θk − αk ∇ 

(
1 

2 

[ q k +1 − ˆ Q (x k , u k ; θk )] 2 
)

= θk + αk [ q k +1 − ˆ Q (x k , u k ; θk )] ∇ 

ˆ Q (x k , u k ; θk ) 

= θk + αk 

[
r k +1 + γ max 

u ′ 
ˆ Q (x k +1 , u 

′ ; θk ) 

− ˆ Q (x k , u k ; θk ) 
]∇ 

ˆ Q (x k , u k ; θk ) 

(19) 

here the target was held constant in the first two equalities, the

radient is always with respect to the parameters, and notation

g ( θ k ) means that the gradient of g is evaluated at point θ k . Note

hat an approximate temporal difference ˆ δk has been obtained in

he square brackets. For linear parameterizations (16) , the deriva-

ive of Q ( x k , u k ; θ ) is very simple: it is equal to the vector of basis

unctions φ( x k , u k ). We do not provide explicit pseudocode of the

lgorithm, since it is easily obtained by replacing the exact update

n Algorithm 4 by (19) . 

An approximate SARSA variant is similarly derived: 

θk +1 = θk + αk [ r k +1 + γ ˆ Q (x k +1 , u k +1 ; θk ) 

− ˆ Q (x k , u k ; θk )] ∇ 

ˆ Q (x k , u k ; θk ) 

here the policy is based on 

ˆ Q . If the policy is held constant, then

his update performs policy evaluation, and it becomes a gradient-

ased, approximate version of the TD method. 

Just like in the exact case, exploration is required by these ap-

roximate online methods, and the learning rate and exploration

chedules are essential for learning speed. Experience replay ex-

ends in the obvious way: by reapplying the gradient-based up-

ates to the stored samples. Eligibility traces e ∈ R 

p now accumu-

ate the impact of the parameters on the updates, as measured by

he gradients: e k +1 = γ λe k + ∇ 

ˆ Q (x k , u k ; θk ) , where the traces are

nitialized at zero. Then, the updates are changed so that the ap-

roximate temporal difference is weighted by the eligibility trace

nstead of just the latest gradient: θk +1 = θk + 

ˆ δk e k +1 . By plugging

n the appropriate ˆ δk , this procedure applies equally well to ap-

roximate SARSA, Q-learning, and TD. For clarity, Algorithm 8 ex-

lgorithm 8 Approximate SARSA( λ). 

1: initialize parameters, e.g. θ0 = 0 p , and traces e 0 = 0 p 
2: measure initial state x 0 , choose arbitrary action u 0 
3: for every time step k = 0 , 1 , 2 , . . . do 

4: apply u k , measure next state x k +1 and reward r k +1 

5: choose u k +1 with explor. policy based on 

ˆ Q (x k +1 , ·, θk ) 

6: ˆ δk = r k +1 + γ ˆ Q (x k +1 , u k +1 ; θk ) − ˆ Q (x k , u k ; θk ) 

7: e k +1 = γ λe k + ∇ 

ˆ Q (x k , u k ; θk ) 

8: θk +1 = θk + 

ˆ δk e k +1 

9: end for 

mplifies the complete gradient-based SARSA( λ) method. Note that

STD and other methods in the least-squares family can also be ex-

ended to use eligibility traces ( Thiery & Scherrer, 2010 ). 

While the derivations above are heuristic, the overall idea is

ound. Tsitsiklis and Van Roy (1997) have analyzed approximate

D, while a comparison between gradient-based TD and LSTD from

ection 3.2 is provided by Yu and Bertsekas (2009) . Convergence of

pproximate Q-learning has been proven for linear approximators,

nitially under the restrictive requirement that the policy followed

s constant ( Melo, Meyn, & Ribeiro, 2008 ). This is of course unre-

listic, and finding good off-policy, online approximate RL meth-

ds has been the focus of many research efforts, see e.g. Munos,

tepleton, Harutyunyan, and Bellemare (2016) , Sutton, Mahmood,

nd White (2016) . Most of the effort in online RL in the last few
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years has however been focused on deep approximation, and we

postpone that discussion until the dedicated Section 5 . 

3.4. Policy gradient and actor-critic methods 

The approximate RL algorithms reviewed so far require fast

maximization of Q-functions over actions, which usually means

the actions are discretized, as explained in Section 3.1 . Exploiting

this, policies are represented implicitly, via the Q-functions. Both

of these features may sometimes be undesirable in control prob-

lems. To accurately stabilize to some state or track some trajectory,

continuous actions are generally needed. Furthermore, some prior

knowledge on the policy may be available, which may be included

in a policy parametrization (e.g. the policy may be initialized to a

linear controller that is known to work locally), whereas translat-

ing such prior knowledge into an initial shape of the Q-function is

highly nontrivial. 

Policy gradient techniques solve these issues by choosing to

represent the policy explicitly, almost always with a parametric ap-

proximator and including an exploration term. The policy is then

ˆ π(x, u ; w ) , where for each x ∈ X and w ∈ R 

m , ˆ π(x, ·; w ) is a proba-

bility density over the continuous action space U . Often, this den-

sity is a Gaussian centered on some parameterized deterministic

action. Below we review some major ideas in policy gradients, see

Deisenroth et al. (2011) , Grondman et al. (2012) for dedicated re-

views of the area. 

As hinted by the name, policy gradient methods perform gradi-

ent ascent on a scalar objective function, defined as the expected

return when drawing the initial state from a distribution d 0 ( x )

(while the actions and next states follow their own distributions): 

J(w ) = E x 0 ∼d 0 (·) , u k ∼ ˆ π(x k , ·;w ) , 
x k +1 ∼ f (x k ,u k , ·) 

{ 

∞ ∑ 

k =0 

γ k ρ(x k , u k , x k +1 ) 

} 

= 

∫ 
X 

d w (x ) 

∫ 
U 

ˆ π(x, u ; w ) 

∫ 
X 

f (x, u, x ′ ) ρ(x, u, x ′ )d x ′ d u d x 

The second formula rewrites the expectation using the so-called

discounted state distribution d w (x ) = 

∑ ∞ 

k =0 γ
k P(x k = x ) , which

sums up the probabilities of encountering that state at each sub-

sequent step, properly discounted for that step ( Sutton, McAllester,

Singh, & Mansour, 20 0 0 ). This distribution is superscripted by w

as it depends (through the policy) on the parameters. By chang-

ing d w , the discounted returns to be optimized can be replaced by

average rewards over time, and many policy gradient methods are

originally given for such average rewards. Note that by choosing

d 0 , we may focus the algorithm on interesting initial state regions,

or even just a few specific states. 

The core gradient ascent update is then written: 

w � +1 = w � + α� ∇J(w � ) 

where � is the iteration, and the learning rates α� must obey the

usual stochastic approximation conditions (i)–(ii) from Section 2.3 .

The key question is how to estimate the gradient in this formula.

Many methods use Monte-Carlo estimation with trajectories sam-

pled using the current policy, often called roll-outs. For instance,

REINFORCE ( Williams, 1992 ) and GPOMDP ( Baxter & Bartlett, 2001 )

are two classical such methods. Such direct estimation methods are

very general, but may suffer from large variance of the gradient es-

timates and therefore slow learning. 

Actor-critic methods tackle this problem by using a value func-

tion (the critic) to compute the gradient of the policy (the ac-

tor). The fundamental connection between these two quantities is

given by the policy gradient theorem, discovered simultaneously

by Sutton et al. (20 0 0) and by Konda and Tsitsiklis (2003) . When

applied in the approximate case, this theorem requires that the Q-

function is represented using a so-called compatible approximator,
hich is linear and uses the BFs φ(x, u ) = ∇ log ˆ π(x, u ; w ) : 

ˆ 
 (x, u ; θ ) = [ ∇ log ˆ π(x, u ; w )] 

� 
θ

hen, the policy gradient theorem states that: 

J(w ) = 

∫ 
X 

d w (x ) 

∫ 
U 

∇ ̂  π(x, u ; w ) ̂  Q (x, u ; θ )d u d x (20)

ssuming that θ has been found so that ˆ Q (x, u ; θ ) is a least-

quares approximation of the true Q-function of the policy

ˆ (x, u ; w ) given by the current parameter w . Compatible ap-

roximation provides a major advantage: once a good policy

arametrization has been found (from prior knowledge or oth-

rwise), a Q-function parametrization automatically follows. Intu-

tively, (20) says that the least-squares projection of the Q-function

n the span of the compatible BFs provides sufficient information

o compute the gradient. To find θ , approximate policy evaluation

ay be performed e.g. with the TD or LSTD techniques above. 

A few landmark references about actor-critic methods include

 Barto, Sutton, & Anderson, 1983 ), where the actor-critic struc-

ure was first defined; ( Peters & Schaal, 2008 ) which popu-

arized the so-called natural actor critic ; and ( Bhatnagar, Sutton,

havamzadeh, & Lee, 2009 ) where an array of such algorithms

ith convergence proofs was given. We outline here the partic-

larly elegant method of Peters & Schaal (2008) . It relies on the

atural gradient ( Amari & Douglas, 1998; Kakade, 2001 ), which

escales the gradient ∇J ( w ) by the inverse of the curvature, some-

hat like Newton’s method for optimization but without assuming

 locally quadratic shape. The details are involved, but the final re-

ult is that for a compatible Q-function approximator, the natural

radient is equal the Q-function parameters θ , leading to the sim-

le update: 

 � +1 = w � + α� θ� 

. Control-theoretic approaches and viewpoint 

Control-theoretic approaches and techniques for approximately

olving optimal control problems of the type (2) - (3) are labeled

pproximate or Adaptive Dynamic Programming (ADP). Many of

hese approaches are model-free, in which case they are classified

s RL. However, not all ADP methods involve learning or have a

irect connection with RL. 

Owing to the broadness of the terms ADP and RL, many au-

hors utilize them interchangeably, and ADP is sometimes also

sed to denote AI approaches. To keep the terminology consistent,

n this survey we reserve the term ADP only for control-theoretic

pproaches; and RL only for model-free methods – regardless of

hether they originate in AI or control. 

In contrast to the other methods in this paper, control-theoretic

pproaches often rely on state-dependent value functions V 

π , V 

∗,

o we will characterize them briefly here. The Bellman equations

or the policy and optimal value functions are, respectively: 

 

π (x ) = E x ′ ∼ f (x,π (x ) , ·) 
{
ρ(x, π(x ) , x ′ ) + γV 

π (x ′ ) 
}

(21)

 

∗(x ) = max 
u 

E x ′ ∼ f (x,u, ·) 
{
ρ(x, u, x ′ ) + γV 

∗(x ′ ) 
}

(22)

imilarly to T [ Q ], we will also interpret the right-hand side of

22) as a mapping applied to the value function, denoted T , so

hat V ∗ = T [ V ∗] . A temporal-difference error similar to the one in

quare brackets in (14) , but written in terms of value function V ,

s: 

 k +1 + γV (x k +1 ) − V (x k ) (23)

In the remainder of this section, we first reflect on RL stabil-

ty considerations ( Section 4.1 ), and then in Section 4.2 we present

DP based on Linear Programming (LP). 
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.1. Stability considerations for reinforcement learning 

As previously stated, (2) - (3) is an optimal control problem for

equential decision making under uncertainties ( Bertsekas, 2017;

orrelli, Bemporad, & Morari, 2017; Powell, 2012; Russell & Norvig,

016; Sutton & Barto, 2018 ). Optimal control methods typically

eek control laws in an offline manner assuming availability of the

nderlying dynamic models ( Borrelli et al., 2017; Liberzon, 2011 ).

hen the underlying models are unavailable or partially known,

daptive control approaches are employed in an online fashion

 Landau, Lozano, M’Saad, & Karimi, 2011 ). Thus, online RL meth-

ds (e.g., Section 2.3 ) represent adaptive optimal control methods

n the sense that (sub)optimal control laws are obtained online

sing real-time measurements without a model ( Lewis, Vrabie, &

amvoudakis, 2012; Sutton & Barto, 2018 ). 

Stability analyses of optimal and adaptive control methods are

rucial in safety-related and potentially hazardous applications

uch as human-robot interaction, autonomous robotics or power

lant control. Informally, stability requires containment, that is, for

ounded initial conditions (say, within the ball of radius δ around

he origin), the system state remains bounded (say, within the ball

f radius ε) for all future times. Furthermore, asymptotic stability

roperties may be imposed, which require that the state eventually

eaches a certain fixed value or set. In tracking problems, where a

eference trajectory must be followed, the stability requirements

ay be imposed for the tracking error. In general, containment

nd asymptotic stability need to be independently imposed to en-

ure an appropriate behavior of the system. Various specific no-

ions of stability exist that vary e.g. in how large the initial con-

ition and subsequent states can be, in the speed of convergence

o the asymptotic value, etc.; examples include local, asymptotic,

xponential ( Khalil, 2002 ), set ( Teel & Praly, 20 0 0 ) or semiglobal

tability ( Teel & Praly, 1995 ), as well as uniform ultimate bound-

dness ( Barmish & Leitmann, 1982 ); see the respective references

or formal definitions in continuous time. In order to have tractable

nd conclusive solutions, the control community often starts from

eterministic settings when devising optimal and adaptive control

aws. Subsequently, potential uncertainties, noise and disturbances,

hich are not found in the deterministic setting, are handled us-

ng various robustness tools (e.g., dissipativity, Lp-stability, Input-

o-State Stability, etc.) and simplifications (e.g., certainty equiva-

ence) in order to infer stability in an appropriate sense ( Görges,

017; Lewis et al., 2012; Postoyan, Bu ̧s oniu, Neši ́c, & Daafouz, 2017;

ang, Liu, & Wei, 2014; Zhang, Cui, Zhang, & Luo, 2011 ). 

Unlike the standard control approaches ( Borrelli et al., 2017;

andau et al., 2011; Liberzon, 2011 ), which are designed around

tability from the start, RL approaches necessitate further stabil-

ty, feasibility and robustness guarantees ( Görges, 2017; Lewis et

l., 2012 ). It is worth pointing out that here we are interested in

tability from the control viewpoint, as described above, for the

losed-loop system resulting from using the (e.g. online learning)

ontroller. This should not be confused with another notion of sta-

ility often used in AI, which refers to convergence of learning al-

orithms (to the asymptotic behavior from the control viewpoint).

e always use in this review the word “convergence” for the latter

otion. 

This highlights a fundamental philosophical difference between

he AI and control communities. AI researchers focus on perfor-

ance in terms of cumulative rewards, where the rewards can

ave any meaning and are seen as a given part of the problem.

lgorithmically, this means that only the convergence (qualita-

ive/asymptotic, or quantitative via convergence rates) of the learn-

ng process to a near-optimal solution is considered, whilst over-

hoot bounds along the learning process (that is, the so-called

- ε arguments), which are needed for closed-loop stability, are put

side. This is sometimes possible due to innocuous nature of some
I applications (e.g., mastering video or board games), while for

hysical systems such as robots stability is resolved heuristically.

onversely, the objectives of control researchers revolve around

tability, so that even when optimal control is used, the major

and often, the only – role of the rewards (equivalently, nega-

ive costs) is to represent stability requirements, such as in stan-

ard approaches to Model Predictive Control (MPC). There exist of

ourse exceptions – for instance, economic MPC methods ( Diehl,

mrit, & Rawlings, 2011 ) reintroduce “true” optimization objectives

n MPC. 

This basic difference leads to other, subtler variations between

he fields. For example, in AI rewards are often assumed to be

ounded from the outset, whereas in control they are not because

f the state unstably grows arbitrarily large this should be reflected

y arbitrary (negative) reward magnitudes. Similarly, a discount

actor is not typically used in control because the value function

ould no longer be a Lyapunov function, so that optimal solutions

f (2) - (3) might not be stable at all ( Postoyan et al., 2017 ). Fur-

hermore, since without some knowledge about the system it is

mpossible to provide an (at least initial) stabilizing controller, con-

rol approaches typically assume some model knowledge for con-

rol design and then add uncertainty on top of this basic model, as

xplained earlier. On the other hand, AI usually takes the view that

othing at all is known about the dynamics, which – in addition

o making stability guarantees very difficult – also leads to a ten-

ency in AI to disregard any existing knowledge about the model.

e provide in Section 6 some ideas on how these two different

verall views might be reconciled. 

Next, to help ground things for the control engineer, let us

otice that closed-form solutions of (2) - (3) are available in some

pecific cases: Linear Quadratic Regulation (LQR) problems, which

ere presented in Section 2.1 , Linear Quadratic Gaussian (LQG)

roblems ( Bertsekas, 2017; Lewis et al., 2012; Modares, Lewis, &

iang, 2015; Powell, 2012; Sutton & Barto, 2018 ), and H ∞ 

-control.

ven though the H ∞ 

, LQR and LQG (iterative) solutions are not

riginally derived using the RL framework, these solutions (e.g., the

alue-function-based Hewer’s and Lyapunov recursion algorithms)

re readily derived using the RL approaches presented in previous

ections as shown by Bertsekas (2017) ; Lewis et al. (2012) ; Powell

2012) ; Sutton and Barto (2018) . 

We delve deeper into the standard LQR problem. When γ = 1 ,

he following Hamiltonian function ( Lewis et al., 2012 ): 

(x k , u k ) = x � k Q x k + u 

� 
k R u k + (Ax k + Bu k ) 

� 
P (Ax k + Bu k ) − x � k P x k ,

here P is the Riccati solution, is in fact a temporal dif-

erence error (23) . This is because x � 
k 
Q x k + u � 

k 
R u k = r k +1 ,

(Ax k + Bu k ) 
� 
P (Ax k + Bu k ) = V ∗(x k +1 ) , and x � 

k 
P x k = V ∗(x k ) . A

ecessary condition for optimality ∂H(x k , u k ) /∂u k = 0 yields the

tabilizing and optimal control law: 

 k = π ∗(x k ) = −(B 

� P B + R ) −1 B 

� P Ax k = Lx k , (24) 

hich is the undiscounted version of (10) . Next, since it also holds

hat: 

 

∗(x k ) = 

∞ ∑ 

i = k 
r i +1 = x � k Q x k + u 

� 
k R u k + V 

∗(x k +1 ) , 

e have that: 

 

� 
k P x k = x � k Q x k + x � k L R L � x k + x � k (A + BL ) 

� 
P (A + BL ) x k 

ielding: 

 = Q + L R L � + (A + BL ) 
� 
P (A + BL ) , 

= A 

� [ P − P B (R + B 

� P B ) −1 B 

� P ] A + Q 

hich is the undiscounted version of the Riccati Eq. (9) . 
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To apply RL, we will use Q-functions. In the LQR case, the opti-

mal Q-function is: 

Q 

∗(x k , u k ) = x � k Q x k + u 

� 
k R u k + (Ax k + Bu k ) 

� 
P (Ax k + Bu k ) 

This can be rewritten in the following quadratic form ( Lewis & Vra-

bie, 2009 ): 

Q 

∗(x k , u k ) = 

1 

2 

[
x k 
u k 

]� [
A 

� P A + Q B 

� P A 

A 

� P B B 

� P B + R 

]
︸ ︷︷ ︸ 

=: 

[ 
Q xx Q xu 

Q ux Q uu 

] 

[
x k 
u k 

]
(25)

By solving then ∂Q 

∗(x k , u k ) /∂u k = 0 , we get: 

u k = Q 

−1 
uu Q ux x k , (26)

which is in fact (24) . Nevertheless, although both (24) and

(26) render the optimal control law, these two expressions are con-

ceptually different. If the system model (i.e., the matrices A and B )

is known, one can readily utilize (10) . However, in RL the model

is unknown, in which case (26) has a crucial advantage: it can

be learned from data. This is done by learning the matrix of Q-

function parameters in the form (25) , which renders the optimal

LQR control law u k via (26) . In other words, RL provides means

to solve the algebraic Riccati Eq. (9) without knowing the model,

possibly in an online manner using data measured along the sys-

tem trajectories. Note that exploration is important in such a learn-

ing procedure; in control-theoretic approaches, exploratory actions

are often obtained by adding so-called probing noise to the control

signals – similarly to the policy gradient methods of Section 3.4 . 

For deterministic control-affine plants: 

x k +1 = f̄ x (x k ) + f̄ u (x k ) u k , (27)

similar conclusions can be obtained even without the knowledge

of f̄ x and f̄ u , as demonstrated by Zhang et al. (2011) , Lewis et al.

(2012) , Yang et al. (2014) . 

This line of deriving algorithms leads to the ADP field, which

has stability as its primary focus, and most of the papers cited

above are from ADP. However, the stability guarantees for H ∞ 

,

LQR and LQG are not given in the realm of RL, but by referring

to the original (model-based) works. These works typically con-

sider offline algorithms with perfect model knowledge and state

information so that closed-loop stability during learning is not a

relevant concern. Somewhat reversed approaches, in which the

authors start off with robust stability (e.g., Lp-stability) and em-

ploy RL towards (sub)optimality, are also of interest ( Anderson et

al., 2007; Friedrich & Buss, 2017; Kretchmar et al., 2001; Toli ́c &

Palunko, 2017 ). Such approaches follow the control philosophy of

trading off optimality for stability. 

A general framework for investigating stability of (sub)optimal

control laws for deterministic discounted problems was given by

Postoyan et al. (2017) . Even though Postoyan et al. (2017) do not

deal with solving (2) - (3) , which is the focus of this paper, they

elucidate connections between control-theoretic and AI approaches

towards solving the deterministic version of (2) - (3) . The main in-

sight is that discounting, which is preferred in AI because it leads

to nice fixed-point properties and algorithm convergence, can lead

to instability unless care is taken to select γ sufficiently close to

1. Note that the default choice in control is γ = 1 , as we selected

it in the equations above, but this can lead to unboundedness of

solutions unless stability is addressed (which is typically not done

in AI works). Postoyan et al. (2017) also highlight novel connec-

tions between MPC ( Borrelli et al., 2017; Grimm, Messina, Tuna,

& Teel, 2005; Grüne & Pannek, 2016 ) and RL. For further compar-

isons among MPC and RL, refer to ( Bertsekas, 2005; Beuchat et

al., 2016; Ernst et al., 2009; Görges, 2017 ) and references therein.

Accordingly, MPC is model-based, not adaptive, with high online
omplexity, but with a mature stability, feasibility and robustness

heory as well as inherent constraint handling. On the other hand,

L is model-free, adaptive, with low online complexity, but with

mmature stability, feasibility and robustness theory as well as dif-

cult constraint handling. It appears that the synergy of MPC and

L is a promising research avenue for handling (2) - (3) with stabil-

ty guarantees. 

Lastly, because guaranteeing stability of RL is a formidable chal-

enge, many existing results suffer from a number of shortcom-

ngs. Most algorithms for nonlinear systems rely on function ap-

roximation for the reasons explained in Section 3 , and a ratio-

ale behind employing approximate architectures is the fact that

asis functions can (uniformly) approximate any continuous func-

ions with arbitrary precision on compact sets. However, what if

he underlying optimal value function (i.e., Q- or V-function) is not

ontinuous? Can this discontinuity be determined a priori for some

roblems so that the approximation architecture and stability anal-

ses can be modified accordingly? In addition, during the learn-

ng process, how can one guarantee that this compact set will not

e left, especially in stochastic settings? Notice that the approxi-

ation error outside the compact set may not be upper bounded.

hich initial conditions yield trajectories within the compact set

f interest? Furthermore, while convergence results resolve stabil-

ty issues for offline learning to some extent (since RL does not

un in closed loop with the system), how to ensure that all it-

rations yield stable control laws during online RL, especially in

tochastic environments? Even for deterministic problems, some of

hese questions are still not fully addressed ( Lewis et al., 2012 ).

ll the above approximation and stability considerations are even

ore difficult when considering continuous-time dynamics and re-

ards as exemplified by integral RL ( Lewis et al., 2012 ) and related

pproaches ( Jiang & Jiang, 2012 ). 

.2. Linear programming approaches 

Not all ADP approaches for solving (2) - (3) have the RL flavor.

he works of de Farias and Roy (2003) , Wang, O’Donoghue, and

oyd (2014) , Beuchat et al. (2016) devise LP approaches to ADP

y formulating linear optimization problems whose solution cor-

esponds to the solution of the optimal control problem (2) - (3)

or γ ∈ (0, 1). The rationale is that LP is a fast, effective and well-

nderstood optimization tool. 

Although LP approaches have different viewpoints and strate-

ies, they are built upon the following two properties: 

• monotonicity : for functions V, V ′ : X → R the following holds 

V (x ) ≤ V 

′ (x ) , ∀ x ∈ X ⇒ T [ V ] ≤ T [ V 

′ ] , (28)

where function inequalities are interpreted pointwise, and 

• value iteration convergence : similarly to the Q-function case dis-

cussed in Section 2 , for any bounded initial value function V 0 :

X → R and any x ∈ X , since γ < 1, the following holds 

V 

∗(x ) = lim 

k →∞ 

T k [ V 0 ](x ) , (29)

Now, an LP counterpart of (2) - (3) is: 

maximize E x 0 ∼d 0 (·) ̂  V (x ) 

ubject to 

ˆ V ≤ T [ ̂  V ] , (30)

here ˆ V (x ) = 

∑ p 
i =1 

φi (x ) θi is an underestimator of the fixed point

 

∗ (also, θi ∈ R , φi : X → R ). Note that, just like in most methods

iscussed herein, function approximation (in this case with BFs) is

mployed. 

In general, the constraint in (30) is known as the Bellman in-

quality and represents a relaxation of the Bellman Eq. (22) . The

ellman inequality is not linear in 

ˆ V owing to the max operator
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n (22) . Therefore, LP approaches seek linear conditions/constraints

hat imply ˆ V ≤ T [ ̂  V ] . For instance, (30) is a linear program in the

ase of finite state and input spaces ( de Farias & Roy, 2003 ). In

ddition, ˆ V ≤ T [ ̂  V ] in (30) is often replaced with the iterated Bell-

an inequalities, that is, ˆ V ≤ T K [ ̂  V ] , K > 1, K ∈ N , in an effort to

btain less conservative estimates of V 

∗. As in the case of the Bell-

an inequality, the iterated Bellman inequality is often replaced

y conditions/constraints that imply it. Similar lines of reasoning

pply when Q-functions, rather than V-functions, are of interest as

xemplified by Beuchat et al. (2016) . 

Performance bounds similar in spirit to those presented in the

arlier sections are obtained for LP approaches as well. In addition,

nline variants of (30) are devised by de Farias and Roy (2003) ,

ang et al. (2014) , Beuchat et al. (2016) . 

. Deep reinforcement learning 

Next, we shift our focus closer to AI in order to discuss a new

ubfield of RL that is extremely promising and has consequently

een a surge of research effort in recent years. This field is Deep

einforcement Learning (DRL), and can be understood as a partic-

larly powerful way to solve function approximation in RL, as in-

roduced in Section 3.1 . 

There are many different function approximators to choose

rom, and all make some assumptions about the functions that

eed to be approximated. Neural Networks (NNs) make only

moothness assumptions and, as a consequence, are able to repre-

ent any smooth function arbitrarily well given enough parameters

 Hornik, 1991 ), making them a very general approximator option.

owever, without assumptions in addition to smoothness, it is im-

ossible to learn to approximate certain complex functions in a

tatistically efficient manner ( Bengio, Delalleau, & Roux, 2006 ). The

ost important additional assumption made in Deep Neural Net-

orks (DNNs) is that the function that needs to be approximated

an be composed of a hierarchy of simpler functions ( Goodfellow,

engio, Courville, & Bengio, 2016 ). This assumption is expressed

hrough the architecture of DNNs, which have multiple hidden

ayers that compute nonlinear transformations of the outputs of

revious layers. This decomposability assumption has proven very

seful, especially when learning functions of natural data such as

mages, sounds and languages. 

The combination of these DNN function approximators with RL

nto DRL is tempting, especially for domains such as robotics where

t can enable learning behaviors directly from raw sensory sig-

als through trial and error. DRL has already shown impressive re-

ults such as achieving super-human performance on the game of

o, which until recently was believed to require human intuition

 Silver et al., 2016 ). It is however important to realize that the as-

umptions behind DNNs do not always hold and that they do come

t a price. We outline the assumptions, the opportunities they of-

er and the potential pitfalls of combining DNNs with RL in Section

.1 . In Section 5.2 , we describe common general strategies to deal

ith the challenges of DRL, while Section 5.3 gives an overview

f popular DRL algorithms and how they implement the solutions.

ection 5.4 describes ways in which the opportunities provided by

he DNN assumptions can be exploited further. 

.1. Opportunities and pitfalls 

In order to decide whether using a DNN as a function approxi-

ator is a good idea, and to realize the potential when one is used,

t is important to be aware of the consequences stemming from the

ssumptions underlying deep learning. 
niversal function approximation 

The use of a universal function approximator, which can ap-

roximate any smooth function arbitrarily well, makes it possible

o learn complex nonlinear policies and value functions. Theoret-

cally, the combination of RL with DNNs gives a very general al-

orithm. However, this does mean that the space of possible func-

ions is very large, making the optimization problem of finding a

ood set of parameters difficult. When more is known about the

roperties of the function that needs to be approximated, includ-

ng this knowledge and thereby reducing the search space can be

ery beneficial. Although additional assumptions might introduce

ias in the learned function, it might also make the problem of

earning the function tractable. Additionally, the use of a universal

unction approximator makes it more likely to over-fit the train-

ng data. Rajeswaran, Lowrey, Todorov, and Kakade (2017) showed

ow, on a set of benchmarks often used to test DRL algorithms, RL

ith simpler function approximators learned faster and resulted in

ore robust policies, as the neural network policies over-fitted on

he initial state distribution and did not work well when initialized

rom different states. 

tochastic gradient descent 

While several optimization techniques could be used to fit

he parameters of a neural network (e.g. neuroevolution, Koutník,

uccu, Schmidhuber, & Gomez, 2013 ), the large number of parame-

ers in most neural networks mean that first-order gradient meth-

ds are by far the most popular choice in practice. These tech-

iques calculate an estimate of the first-order gradient of the cost

unction with respect to all of the network parameters. In the

implest case, the parameters are simply adjusted slightly in the

opposite) direction of the gradient, although often techniques are

sed that incorporate momentum and adaptive learning rates per

arameter such as rmsprop ( Tieleman & Hinton, 2012 ) and adam

 Kingma & Ba, 2014 ). 

Neural networks can learn in a statistically efficient way be-

ause their parameters can apply globally and the decomposition

nto functions of functions allows the efficient reuse of parame-

ers. While this allows for the generalization of a policy to un-

xplored parts of the state-space, it also means that the gradient

stimates should be representative of the entire state-action space

nd not biased towards any particular part of it. Therefore, gradient

stimates are usually averaged over individual gradients computed

or a batch of experiences spread out over the state-space. Subse-

uent gradient estimates should similarly be unbiased; they should

e independent and identically distributed (i.i.d.) over the relevant

tate-action space distribution. When the gradient estimates suf-

er from high variance (as is the case for Monte-Carlo estimates of

he policy gradient, see again Section 3.4 ), they should be averaged

ver a larger batch to get a more reliable estimate. 

unctions of functions 

The assumption that the function that needs to be approxi-

ated is composed of a hierarchy of simpler functions is encoded

n DNNs by having multiple layers, with each layer computing

 function of the outputs of the previous layer. The number of

nique functions that the entire network can represent scales ex-

onentially with the number of layers ( Raghu, Poole, Kleinberg,

anguli, & Sohl-Dickstein, 2016 ) and the optimization of deeper

etworks has theoretically been shown to be less likely to result

n a poor local optimum ( Choromanska, Henaff, Mathieu, Arous, &

eCun, 2015 ). 

When determining the gradient of the loss function with re-

pect to the parameters, the repeated multiplications with the

erivative of a layer with respect to its inputs, resulting from the

hain rule, can cause the gradients to become too large or small

o effectively learn from. This problem is especially pronounced in
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recurrent neural networks, which are effectively very deep in time

and repeatedly apply the same function ( Hochreiter, Bengio, Fras-

coni, Schmidhuber et al., 2001 ). 

Complexity 

On domains where the underlying assumptions are valid, DNNs

have shown remarkable results in practice. The theoretical foun-

dations are however still somewhat incomplete ( Zhang, Bengio,

Hardt, Recht, & Vinyals, 2016 ). DRL lacks the theoretical guarantees

offered by RL with some other types of function approximators. At

the same time, it has been shown to scale to problems where the

alternatives are intractable. 

The complexity of the interplay of the different com ponents of

DRL algorithms makes the learning curve fairly steep for beginning

practitioners. Implementation details not mentioned in papers can

have a more significant influence on the performance of a method

than the parameters that are the focus of the work ( Henderson et

al., 2017; Tucker et al., 2018 ). The complexity of the domains DRL

is often tested on also contributes to a relatively high computa-

tional complexity. This means that DRL papers often include fewer

repetitions of the experiments than are needed to get statistically

significant results ( Henderson et al., 2017 ). 

5.2. Common solution components 

A substantial number of DRL algorithms have been proposed re-

cently. These algorithms all have to address the problems outlined

in the previous section. To do this, most methods are based on a

few shared ideas. While most of these ideas and the problems they

address are not limited to RL with DNNs as function approxima-

tors, they have proven crucial for getting DRL to work well. This

section discusses these common ideas, while the algorithms them-

selves are discussed in the next section. 

Delayed targets 

When DRL algorithms use bootstrapping to learn a value func-

tion, the learning is posed as a supervised learning problem. For

the states and actions in the batch, the targets are the boot-

strapped value estimates and the networks are trained by mini-

mizing the difference between the network’s predictions and these

bootstrapped value estimates. These value targets are problematic

for convergence since they are highly correlated with the network

predictions. This direct feedback loop can cause the learning pro-

cess to diverge ( Mnih et al., 2015 ). To ameliorate this problem, the

target values can be calculated using an older version of the (ac-

tion) value function network, often called target network. 

Trust region updates 

The strongly nonlinear nature of neural networks can mean that

a step in parameter space can have an unexpected effect on the be-

havior of the function. Although small learning rates can help, the

resulting increase in training time and required amount of train-

ing samples mean that preventing problems in this manner is of-

ten infeasible in practice. The problems are especially pronounced

for policy gradient strategies based on roll-outs, where the gradi-

ents additionally exhibit high variance. Changes to the policy can

quickly change the distribution of states visited by the updated

policy away from the on-policy distribution for which the update

was valid. 

To improve the likelihood of the updates to the policy resulting

in increased performance, the changes in the policy distribution

should therefore be kept small. Several schemes have been pro-

posed to prevent the changes to the parameters of the policy from

resulting in too large changes to the policy distribution. These in-

clude adding a constraint on the policy distribution change to the

optimization ( Schulman, Levine, Abbeel, Jordan, & Moritz, 2015a ),
lipping the objective function such that only small changes to

he policy distribution are considered beneficial ( Schulman, Wol-

ki, Dhariwal, Radford, & Klimov, 2017 ), and constraining the policy

arameters to be close to the running average of previous policies

 Wang et al., 2016 ). 

-step returns 

A problem that is inherent to bootstrapping methods is that

hey result in biased updates since the targets are based largely on

n approximation of a function that should still be learned and is

herefore by definition incorrect. This bias can prevent value func-

ion based methods from converging. On the other hand, Monte-

arlo based methods, although unbiased, result in high variance.

his is because the return calculated for each roll-out trajectory

epresents only a single sample from the return distribution, while

alue functions represent the expectation of the return distribu-

ion. 

On the complex domains that DRL is often applied to, the high

ariance of Monte-Carlo based methods tends to result in learning

hat is infeasibly slow. At the same time, the bias of methods based

xclusively on learning value functions through bootstrapping re-

ults in learning that can be faster at times, while failing to learn

nything useful altogether other times. A common strategy there-

ore is to interpolate between these extremes, for instance by using

 -step algorithms ( Watkins, 1989 ). To estimate the return from a

ertain state, these algorithms use the true rewards observed dur-

ng n time-steps and the learned value estimate for the state in

ime step n + 1 . For instance, in n -step SARSA, the action value tar-

et becomes: 

 (x k , u k ) = r k +1 + γ r k +2 + · · · + γ n −1 r k + n + γ n ˆ Q (x k + n +1 , u k + n +1 ) 

(31)

or n = 1 , the standard (1-step) SARSA target is recovered, while

or n → ∞ , (31) becomes a Monte-Carlo estimate of the return.

ote that n -step returns are an alternative way to achieve a similar

ffect to the eligibility traces discussed in Section 2.3 . In fact, us-

ng eligibility traces leads to a combination of n -step returns for all

alues of n , exponentially weighted by λn −1 ( Sutton & Barto, 2018 ).

he n -step return is preferred in DRL because it tends to be easier

o use with momentum based optimization and recurrent neural

etworks ( Mnih et al., 2016 ). 

Just like the use of target networks, the use of n -step return

argets reduces the correlations between the value function that

s being learned and the optimization targets. Whereas the use of

argets networks slows down the learning process in order to at-

ain the convergence gains, the use of n -step returns can speed up

earning when the roll-outs are close to on-policy. 

xperience replay 

One of the largest mismatches between the RL framework and

he stochastic gradient descent optimization algorithms used to

rain DNNs is the requirement of the latter for i.i.d. estimates of

he gradients. This requirement can be satisfied by using an experi-

nce replay buffer. The consecutive, strongly correlated experiences

btained through interaction with the environment are saved into

he buffer. When batches of experiences are needed to estimate

he gradients, these batches are assembled by sampling from the

uffer in a randomized order, breaking their temporal correlations.

he fact that off-policy algorithms can learn about the optimal

olicy from data obtained by another policy means that a fairly

arge amount of previous experiences can be retained. This in turn

eans that even if the policy changes suddenly, the data distri-

ution used to calculate the gradients changes only slowly, which

ids with the convergence of the optimization process. Finally, the

act that old experiences can be reused aids the sample efficiency
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f algorithms using an experience replay buffer. Extensions have

lso been proposed, with the most popular being to replace uni-

orm sampling from the buffer with sampling based on a distribu-

ion determined by the temporal difference error associated with

he experiences ( Schaul, Quan, Antonoglou, & Silver, 2016 ). By sam-

ling surprising experiences more often, the learning process can

e sped up significantly. This is similar to the classical idea of pri-

ritized sweeping ( Moore & Atkeson, 1993 ). A detailed investiga-

ion into experience replay for control applications is given by de

ruin, Kober, Tuyls, & Babuška, (2018b) . 

When using n -step returns with n > 1, it is necessary to com-

ensate for the fact that the samples are not from the policy for

hich we want to estimate the return. Importance sampling is a

opular choice that prevents bias ( Precup, Sutton, & Singh, 20 0 0 ).

he downside of importance sampling is that when the difference

etween the policies is large, the importance weights quickly be-

ome either very small, effectively rendering the sampled experi-

nces useless, or very large, resulting in updates with very high

ariance. Other compensation strategies that address these issues

ave been proposed, see Munos et al. (2016) for an overview. 

When an on-policy learning algorithm is used, a buffer can

e filled with experiences from roll-outs with the policy. After a

earning update based on these experiences, the buffer is emptied

nd the process is repeated. 

nput, activation and output normalization 

The nonlinearities used in neural networks bound the outputs

f the neurons to a certain range. For instance, the popular Rec-

ified Linear Unit (ReLU) maps all non-positive inputs to zero. As

 consequence, when calculating the derivatives of these nonlin-

arities with respect to their inputs, this derivative can be very

mall when the input is outside of a certain range. For the ReLU,

he derivative of the activation with respect to all parameters that

ed to the activation is zero when the input to the ReLU was non-

ositive. As a consequence, none of the parameters that led to the

ctivation will be updated, regardless of how wrong the activation

as. It is therefore important that the inputs to all neural network

ayers (whether they be the input to the network or the ouputs of

revious layers) are within a sensible range. 

When the properties of the inputs are unknown a priori and

hey cannot be normalized manually, adaptive normalization can

e used. These techniques can also be used on subsequent lay-

rs. Normalization techniques include batch normalization ( Ioffe &

zegedy, 2015 ), layer normalization ( Ba, Kiros, & Hinton, 2016 ) and

eight normalization ( Salimans & Kingma, 2016 ). 

Similar considerations apply to the backward pass through a

etwork during training. The gradients of the loss with respect to

he parameters should not be too large, as an update based on

arge gradients can quickly cause the subsequent activations of the

nit with the updated parameters to be outside of this range for

hich learning works well. Particularly, this means that while the

cale of the reward function does not influence most forms of RL,

RL algorithms can be sensitive to this property ( Henderson et al.,

017 ). 

To ensure that the parameter gradients are within a sensible

ange, these gradients are often clipped. This changes the optimiza-

ion objective but prevents destructive updates. Additionally, when

earning value functions, the reward function can be scaled such

hat the resulting value function is of a sensible order of magni-

ude. Rewards are also sometimes clipped, although this changes

he problem definition. Finally, the target values can be adaptively

ormalized during learning ( van Hasselt, Guez, Hessel, Mnih, & Sil-

er, 2016a ). 
.3. Popular DRL algorithms 

In this section we will discuss some of the more popular or

istorically relevant algorithms for deep reinforcement learning.

hese algorithms all address the challenges of performing RL with

deep) neural network function approximation by combining im-

lementations of some of the ideas outlined in the previous sec-

ion. Table 1 gives a comparison of some popular or historically

elevant DRL algorithms. 

eural Fitted Q iteration (NFQ) 

An important early development in achieving convergent

L with neural network function approximation was the

eural Fitted Q iteration (NFQ) algorithm ( Riedmiller, 2005 ), a

ariant of fitted-Q iteration ( Algorithm 6 ). The algorithm uses a

xed experience buffer of previously obtained interaction sam-

les from which to sample randomly. By calculating the target

-values for all states at the start of each optimization iteration,

he optimization is further helped to converge. A final measure to

id convergence was to add artificial experience samples to the

atabase at the goal states, where the true Q-values were known. 

eep Q-network (DQN) 

While good for convergence, the need for an a-priori fixed set

f experiences is limiting. While new experiences can be added to

he NFQ buffer, Mnih et al. (2015) proposed to continuously write

xperiences to an experience replay buffer during training, and to

ample experiences uniformly at random from this buffer at reg-

lar environment interaction intervals. Since the constant changes

o the contents of the buffer and the learned Q-function mean that

ood targets can not be calculated a priori, a copy θ− of the Q-

unction parameters θ is kept in memory. The optimization tar-

ets (Q-values) are calculated using a target network, which is a

opy of the Q-function network using these older parameters θ−.

t regular intervals the target network parameters θ− are updated

o be equal to the current parameters θ . Mnih et al. (2015) demon-

trated their method using raw images as inputs. Their convolu-

ional Deep Q-Network (DQN) achieved super-human performance 

n a number of Atari games, resulting in growing interest in the

eld of DRL. 

The base DQN algorithm is simple to implement. Through vari-

us extensions, DQN can achieve competitive performance on do-

ains with discrete actions ( Hessel et al., 2017 ). 

ouble DQN (DDQN) 

Although value function based methods are inherently biased,

QN suffers from a particular source of bias that can be re-

uced fairly easily. This form of bias is the overestimation of the

eturns which results from the maximization over the Q -values

7) . The max operator uses the same values to both select and

valuate the Q -values, which makes over-estimation of the values

ikely ( van Hasselt, Guez, & Silver, 2016b ). To address this prob-

em, the selection and evaluation can be decoupled. The origi-

al double Q-learning algorithm did this by learning two separate

-functions, based on separate experiences ( van Hasselt, 2010 ).

ne of these Q-functions is then used for the action selection

hile the other is used to determine the Q -value for that action.

he Double Deep Q Network (DDQN) algorithm ( van Hasselt et al.,

016b ) uses the two separate networks that are already used in

QN for the separation such that the complexity of the algorithm

s not increased. As in DQN, the target network is used to deter-

ine the value of the Q-function used for bootstrapping, while the

n-line network is used to determine for which action the target

-function is evaluated. This makes the optimization targets: 

 (x, u ) = r + γ ˆ Q 

(
x ′ , arg max 

u ′ 
ˆ Q (x ′ , u 

′ ; θ ) ; θ−
)

. 
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Table 1 

Deep reinforcement learning algorithms reviewed. Return estimation refers to the targets for value functions and / or the return estima- 

tion in the policy gradient. Update constraints refer to both constraints on bootstrapping as well as updates to the policy. 

Algorithm Policy Return estimation Update constraints Data distribution 

NFQ Discrete 3 , deterministic 1-step Q Bootstrap with old θ Off-policy fixed apriori 

(D)DQN Discrete, deterministic 1-step Q bBotstrap with old θ Off-policy experience replay 

DDPG Continuous, deterministic 1-step Q Bootstrap with old θ , w Off-policy experience replay 

TRPO Discrete / continuous stochastic ∞ -step Q Policy constraint On-policy 

PPO Discrete / continuous stochastic n -step advantage (GAE) Clipped objective On-policy 

A3C Discrete / continuous stochastic n -step advantage – On-policy 

ACER Discrete / continuous stochastic n -step advantage Average policy network On-policy + Off-policy 

3 A different version of NFC for continuous actions (NFQ-CA) does exist ( Hafner & Riedmiller, 2011 ). 
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This simple change was shown to improve the convergence and

performance of the DQN algorithm. 

Deep Deterministic Policy Gradient (DDPG) 

For continuous action spaces, an actor-critic al-

gorithm exists that is closely related to DQN. This

Deep Deterministic Policy Gradient (DDPG) algorithm ( Lillicrap

et al., 2015 ) uses a deterministic policy u = ˆ π(x ; w ) . For conver-

gence, target network copies of both the actor and the critic are

used for the critic’s optimization targets: 

q (x, u ) = r + γ ˆ Q 

(
x ′ , ˆ π(x ′ ; w 

−) ; θ−). 
In this algorithm the target network parameters θ−, w 

− slowly

track the online parameters θ , w using a low pass filter. They are

updated after each optimization step according to: 

θ− ← (1 − τ ) θ− + τθ

w 

− ← (1 − τ ) w 

− + τw, 

with τ � 1. To calculate the gradients for updating the policy pa-

rameters, the algorithm uses samples of the deterministic policy

gradient ( Silver et al., 2014 ): 

∇ w 

J ≈ 1 

B 

∑ 

b 

∇ a ˆ Q (x, u ; θ ) | x = x b ,u = ̂ π(x b ;w ) ∇ w ̂

 π(x ; w ) | x = x b , (32)

with b the index in the mini-batch of size B containing experiences

sampled uniformly at random from the experience buffer S . The

DDPG method additionally uses batch normalization layers ( Ioffe &

Szegedy, 2015 ). 

DDPG is one of the simpler DRL algorithms allowing for contin-

uous action spaces. Since the algorithm is off-policy, it additionally

allows for experience replay, which together with the use of boot-

strapping can lead to sample efficient learning. However, its off-

policy nature makes DDPG most suitable for domains with stable

dynamics ( Henderson et al., 2017 ). Additionally, the bias in the pol-

icy gradient due to the exclusive reliance on a learned value func-

tion can limit the performance and convergence of the algorithm. 

Trust Region Policy Optimization (TRPO) 

While DDPG uses an off-policy critic to determine the policy

gradient for a deterministic policy, Schulman et al. (2015a) intro-

duced a policy gradient method on the other end of the bias-

variance spectrum. Their Trust Region Policy Optimization (TRPO)

algorithm uses a large number of roll-outs with the current pol-

icy to obtain state action pairs with Monte Carlo estimates of their

returns ˆ Q 

w old (x, u ) . The stochastic policy is then updated by opti-

mizing for the conservative policy optimization objective ( Kakade

& Langford, 2002 ), while constraining the difference between the

policy distribution after the optimization and the older policy dis-

tribution used to obtain the samples: 

max 
w 

E 

{
ˆ ˜ π(x, u ; w ) 

ˆ ˜ π(x, u ; w ) 
ˆ Q 

w old (x, u ) 

}
(33)
old 
ubject to E 
{

D KL ( ̂  ˜ π( x, ·; w old ) || ˆ ˜ π(x, ·; w )) 
}

≤ c (34)

here D KL denotes the Kullback–Leibler divergence, and the expec-

ations are with respect to the state distribution induced by the

ld policy. To perform the optimization, a linear approximation is

ade to the objective and a quadratic approximation is made to

he constraint. The conjugate gradient method is then used fol-

owed by a line search to calculate the next parameter values. The

RPO method is relatively complicated and sample inefficient, but

oes provide relatively reliable improvements to the policy. 

eneralized Advantage Estimation (GAE) 

The stochastic policy gradient can be written as ( Schulman,

oritz, Levine, Jordan, & Abbeel, 2015b ): 

 w 

J = E 

{ 

∞ ∑ 

k =0 

�k ∇ θ log ˜ π(x k , u k ; w ) 

} 

, (35)

here �k is an estimate of the return when taking action u k in

tate x k and following the policy afterwards. A trade-off between

he bias and variance of the policy gradient estimates can be made

y choosing how much �k is based on observed rewards versus

 learned value estimate, as discussed in Section 5.2 . Additionally,

he variance of the policy gradient can be reduced by subtracting a

aseline from the return estimate ( Greensmith, Bartlett, & Baxter,

004 ). A common and close to optimal choice for the baseline is

he state-value function. This makes � the advantage function: 

 (x, u ) = Q(x, u ) − V (x ) , 

hich represents the advantage of taking action u in state x as op-

osed to the policy action π ( x ). An n -step estimate of the advan-

age function is: 

ˆ 
 

(n ) (x k , u k ) = 

n ∑ 

i =1 

γ i −1 r k + i + γ n ˆ V (x k + n +1 ; θ ) − ˆ V (x k ; θ ) (36)

o better trade off the bias introduced by the imperfect

earned value function for low n with the variance of es-

imators with high n , Schulman et al. (2015b) define a

eneralized Advantage Estimator (GAE) as an exponentially

eighted average of n -step advantage estimators: 

ˆ 
 

GAE(λ) := (1 − λ) 
N ∑ 

n =1 

(λn −1 ˆ A 

(n ) ) (37)

he authors use the estimator with the TRPO algorithm. The value

unction is learned from Monte-Carlo estimations with trust region

pdates as well. 

roximal Policy Optimization (PPO) 

The constrained optimization of TRPO makes the algorithm rel-

tively complicated and prevents using certain neural network ar-

hitectures. In the Proximal Policy Optimization (PPO) algorithm,
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chulman et al. (2017) therefore replace the hard constraint by a

lipped version of the objective function, which ensures that for

ach state the potential gain from changing the state distribution is

imited, while the potential loss is not. This allows optimizing the

bjective (which uses the GAE) with stochastic gradient descent, as

ell as adding additional terms to the objective. Specifically, a re-

ression loss for the value function is added, which allows param-

ter sharing between the value function and policy. Additionally,

 loss based on the entropy of the policy is added to encourage

xploration ( Williams & Peng, 1991 ). PPO is a relatively simple al-

orithm that offers competitive performance. 

synchronous Advantage Actor Critic (A3C) 

Instead of collecting a large number of consecutive on-policy

rajectories with a single policy, which are then batched together,

nih et al. (2016) proposed the use of a number of parallel actors

ith global shared parameters. These actors all calculate updates

ith respect to the shared parameters, which they apply to the

arameters asynchronously ( Recht, Re, Wright, & Niu, 2011 ). To en-

ure the actors explore different parts of the state-action space so

hat the parameter updates better meet the i.i.d. assumption, each

gent uses a different exploration policy. While a number of pro-

osed algorithms benefited from the parallel actor setup, the most

uccessful was the Asynchronous Advantage Actor Critic (A3C) al- 

orithm. This algorithm takes a small number of steps, after which

t calculates n -step advantage estimates (37) and value function es-

imates for these roll-out steps. These are then used to calculate

radients to update the policy (35) and the value function. 

ctor Critic with Experience Replay (ACER) 

The downside of the on-policy methods (TRPO, PPO, A3C) is

hat once a step has been made in policy space, reevaluating the

olicy gradient requires discarding all previous experiences and

unning trials with the new policy. To increase the sample effi-

iency, it is desirable to combine the good convergence of the on-

olicy algorithms with the ability to reuse past experiences of off-

olicy algorithms. 

One algorithm that does this is the Actor Critic with Experi-

nce Replay (ACER) algorithm of Wang et al. (2016) . It uses the

3C algorithm as a base and combines it with a trust region up-

ate scheme based on limiting the distance between the new pol-

cy parameters and those of a running average of recent policies.

t then alternates between the standard on-policy updates of A3C

nd off-policy updates, where each parallel agent samples trajecto-

ies from a local experience buffer for the updates. Truncated im-

ortance sampling with a bias correction term is used to correct

or the off-policy nature of the n -step trajectories. While the al-

orithm offers very competitive performance for both discrete and

ontinuous actions, it is relatively complex. 

nterpolated Policy Gradient (IPG) 

Another way in which on- and off-policy algorithms can

e combined is to simply interpolate between the biased yet

ample efficient deterministic policy gradient obtained from an

ff-policy critic (32) and the unbiased yet sample inefficient

n-policy Monte Carlo estimate of the policy gradient. This

nterpolated Policy Gradient (IPG) method was proposed by Gu et

l. (2017) , who found intermediate (but mostly on-policy) ratios to

ork best. 

.4. Extensions 

The DRL algorithms discussed in the previous section mostly

ddress the pitfalls of combining RL with DNNs. However, the use

f DNNs also offers opportunities to go beyond simply performing
L with DNN function approximation. The functional decomposi-

ion of DNNs means that while later layers might compute very

ask specific features, earlier layers could represent much more

eneral functions. For example, while later layers in a convolu-

ional network might learn to recognize task specific objects, ear-

ier layers might learn to detect edges or textures ( Olah, Mordv-

ntsev, & Schubert, 2017 ). These earlier layers might therefore eas-

ly generalize to new tasks and, equivalently, be trained from data

btained from separate tasks. Therefore, the deep learning assump-

ions make the combination of DRL with transfer learning and state

epresentation learning very interesting. 

tate representation learning 

In most of this survey, we have considered the standard RL

roblem in which the agent has access to the state of the envi-

onment x . In real control applications, especially in the domain

f robotics, the state is not directly accessible. Instead, only some

ndirect effects of the true state might be observed by a set of sen-

ors. Without resorting to the POMDP formalism (discussed later),

earning a policy in this case can therefore be seen as a combi-

ation of learning a representation of the state from the sensor

ata and learning a policy based on the state representation. While

he state representation can be learned implicitly through DRL, the

umber of required trial and error samples might be prohibitively

xpensive as the reward signal might contain only very indirect in-

ormation on how to learn the state-representation. 

Instead, explicit State Representation Learning (SRL) objectives

an be used before or during the RL phase. These objectives can

llow learning from unlabeled sensor data, as well as limiting the

arameter search space through the inclusion of prior knowledge.

uto-encoding is a popular SRL objective as it is fully unsuper-

ised; through a compression objective salient details are extracted

rom observations that are highly redundant ( Finn et al., 2016;

inton & Salakhutdinov, 2006; Lange, Riedmiller, & Voigtlander,

012 ). Besides the knowledge that observations are highly redun-

ant, other priors include the fact that the state of the world only

hanges slowly over time ( Wiskott & Sejnowski, 2002 ), as well

s the fact that the state should be predictive of immediate re-

eived rewards ( Shelhamer, Mahmoudieh, Argus, & Darrell, 2016 ).

dditional priors, relevant to physical domains, were suggested by

onschkowski and Brock (2015) . Besides encoding general knowl-

dge about the state of the world, it is possible to learn to en-

ode the observations in a way that is suitable for control. One

xample is the work of Watter, Springenberg, Boedecker, and Ried-

iller (2015) , which embeds images into a state-space in which ac-

ions have a (locally) linear effect. Another example is provided by

onschkowski, Hafner, Scholz, and Riedmiller (2017) who learned

o encode the positions and velocities of relevant objects in an un-

upervised manner. Jaderberg et al. (2017) proposed to learn, off-

olicy, additional value functions for optimizing pseudo rewards

ased on controlling the sensory observations and the activations

f the neurons of the networks. The inclusion of SRL in DRL can

elp learn representations and policies that generalize to unseen

arts of the state-space more easily ( de Bruin, Kober, Tuyls, &

abuška, 2018a ). 

ransfer learning 

Just as the generality of the functions encoded by the earlier

ayers of the policy and value function DNNs means that they

an be trained with more than just RL updates, and generalize

o unseen parts of the state-space, it also means that the en-

oded functions can be relevant to more than just the training task.

his makes DRL suitable for transfer learning, where generaliza-

ion needs to be performed to a new task, rather than just across

he state-space of the training task. In this context, Parisotto, Ba,

nd Salakhutdinov (2015) used DQN agents trained on several Atari
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games as teachers for a separate DQN agent that was trained to

output similar actions, and have similar internal activations as the

teachers. This was found to result in a weight initialization that

sped up learning on new games significantly, given enough simi-

larity between the new games and some of the training games. It

is also possible to more explicitly parameterize representations for

transfer. Universal Value Functions (UVFs) ( Schaul, Horgan, Gregor,

& Silver, 2015 ) are one example where value functions are learned

that generalize over both states and goal specifications. To im-

prove the performance in domains where only reaching a goal re-

sults in obtaining a reward, Andrychowicz et al. (2017) proposed

Hindsight Experience Replay (HER) , which relabels a failed attempt

to reach a certain goal as a successful attempt to reach another

goal. Another representation that is suitable for transfer learning is

the Successor Features (SF) representation ( Barreto, Munos, Schaul,

& Silver, 2017 ) which is based on successor representations ( Dayan,

1993 ). These representations decouple the value function into a

representation of the discounted state distribution induced by the

policy and the rewards obtained in those states. Zhang, Springen-

berg, Boedecker, and Burgard (2017) illustrated the use of this rep-

resentation with DRL in the robotics domain. 

Supervised policy representation learning 

Sometimes the state of the environment is available for specific

training cases, but not in general. For instance, a robot might be

placed in a motion capture arena. In this case, it might be relatively

simple to learn or calculate the correct actions for the states in the

arena. Alternatively, it might be possible to solve the RL problem

from specific initial states, but hard to learn a general policy for all

initial states. In both of these scenarios, trajectories of observations

and actions can be collected and supervised learning can be used

to train DNN policies that generalize to the larger state-space, pre-

venting many of the issues of DRL. One technique that applies this

principle is Guided Policy Search (GPS) , which adds a constraint to

the local controllers on the deviation from the global policy, such

that the local policies do not give solutions that the DNN can not

learn to represent ( Levine, Finn, Darrell, & Abbeel, 2016; Levine &

Koltun, 2013 ). 

6. Outlook 

We close our review with an outlook that starts by touching on

important areas of (or related to) RL that we could not cover in

our main survey. Then, we explain some ways in which practical

problems may violate the standard MDP formulation of the prob-

lem, and – where available – point out generalized methods that

address this. Finally, we signal some important issues that remain

open for RL methods. 

6.1. Research areas 

There are entire fields of research that contribute ideas or al-

gorithms to RL, but that we were unable to cover in this review.

These fields include among others robotics ( Deisenroth et al., 2011;

Kober et al., 2013 ), operations research ( Powell, 2012 ), economics

( Kamien & Schwartz, 2012 ), and neuroscience ( Sutton and Barto,

2018 , Chapter 15). Within control, relevant subfields include opti-

mal control, adaptive control, and model-predictive control, which

we touched on briefly in Section 4 ; in addition to other more

specific areas like iterative learning control ( Moore, 2012 ) or ex-

tremum seeking ( Ariyur & Krstic, 2003 ). A specific area of AI re-

search with deep connections to RL and receding-horizon MPC is

online or sample-based planning, which at each step uses a model

to simulate and evaluate several candidate sequences of actions, or

closed-loop action selection rules in the stochastic case ( Bu ̧s oniu,

Munos, & Babuška, 2012; Kocsis & Szepesvári, 2006; Munos, 2014;
einstein & Littman, 2012 ). Then, one of these solutions is se-

ected, its first step is applied, and the procedure is repeated in

he next state. These methods trade off a curse of dimensionality

ith respect to the state, with a “curse of horizon” – they are gen-

rally exponentially complex in the horizon up to which sequences

re examined ( Munos, 2014 ). 

A crucial component of RL that we discussed only briefly is ex-

loration. Exploration methods can be grouped into undirected and

irected exploration ( Thrun, 1992 ). While undirected methods in-

iscriminately apply some noise to the action selection, with the

rototypical example being ε-greedy exploration (12) , directed ex-

loration methods use knowledge of the learning process to ex-

lore in a smarter manner. For example, methods like Bayesian RL

 Ghavamzadeh et al., 2015; Russell & Norvig, 2016 ) and bandit the-

ry ( Auer et al., 2002 ), or optimal allocation strategies ( Agrawal et

l., 1989 ; Graves & Lai, 1997 ) offer principled ways of designing

nd analyzing exploration strategies. Another benefit of Bayesian

L is the easier incorporation of prior knowledge into the algo-

ithms. Other directed exploration methods include those that add

o the original rewards an extra exploration-inducing term, called

ntrinsic reward, when visiting states that are deemed interesting

 Barto, 2013 ). These intrinsic rewards can for example be based

n the (pseudo) state visit count ( Bellemare et al., 2016a ), on

he temporal difference error ( Achiam & Sastry, 2017 ) or on the

rediction accuracy of a simultaneously learned dynamics model

 Schmidhuber, 1991 ). Note that these methods imply additional

omputational costs, which may be significant for some of them,

ike Bayesian RL. In ADP approaches, exploration is often called

robing noise. 

.2. Generalizing the problem 

The underlying models used by most of the RL algorithms dis-

ussed above assume noise-free state information, whilst many

ontrol processes possess output feedback buried in noise and

rone to delays ( Azizzadenesheli, Lazaric, & Anandkumar, 2016;

ai, Hsu, Kochenderfer, & Lee, 2012; Bertsekas, 2017; Jaakkola,

ingh, & Jordan, 1995; Toli ́c, Fierro, & Ferrari, 2012 ). This imper-

ect state information can be soundly handled within the frame-

ork or Partially Observable Markov Decision Processes (POMDPs)

 Azizzadenesheli et al., 2016; Bai et al., 2012; Jaakkola et al., 1995;

ussell & Norvig, 2016 ) or – when at least some model informa-

ion is available – by using state estimation ( Bertsekas, 2017; Toli ́c

t al., 2012; Toli ́c & Palunko, 2017 ). However, solving POMDPs im-

oses significantly greater computational costs than MDP-based RL

 Bai et al., 2012 ). Like in RL, the exploitation-exploration issue can

e addressed using e.g. Bayesian RL ideas ( Ross, Pineau, Chaib-draa,

 Kreitmann, 2011 ). 

All models utilized in this paper are time-invariant (stationary

sing the AI vocabulary). Therefore, provided that the underlying

odel changes “slowly enough”, all algorithms presented herein

eadily apply. However, the precise characterization of “slowly

nough” intricately depends on the algorithm learning rate and

dditional results are needed in this regard. Despite our efforts,

e were not able to find any work focusing exclusively on this

opic. General remarks and guidelines are found in ( Bertsekas,

017; Powell, 2012; Russell & Norvig, 2016; Sutton & Barto, 2018 ).

t is also of interest to investigate models with delayed dynamics,

hich also appears to be an uninvestigated problem in RL. 

Another challenge with the standard MDP formulation arises

hen the sampling frequency of the system to be controlled is

igh. Higher frequencies mean that the effect of a single action on

he eventual return reduces. Using the difference in expected re-

urns for different actions to determine a policy therefore becomes

roblematic, especially when combined with function approxima-

ion or when noise is present. From a control perspective however,
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 sufficiently high sampling frequency can be crucial for the per-

ormance of the controller and for disturbance rejection ( Franklin,

owell, & Workman, 1998 ). While RL works often consider the

ampling frequency to be a given property of the problem, in re-

lity it is an important meta-parameter that needs to be selected.

hile more work is needed in this direction, there are approaches

hat make RL more suitable for higher sampling frequencies, or

ven continuous time. These include the Semi-Markov Decision

rocess (SMDP) framework ( Bradtke & Duff, 1995 ), which adds the

ime it takes to transition between states to the MDP framework,

s well as the advantage learning algorithm ( Baird, 1999 ) and the

onsistent Bellman operator ( Bellemare, Ostrovski, Guez, Thomas,

 Munos, 2016b ) which both devalue suboptimal actions in order

o increase the difference between the expected returns of the op-

imal and sub-optimal actions (the action gap). 

Multi-agent decentralized RL, in which the agents learn to opti-

ize a common performance index, is not yet fully solved ( Beuchat

t al., 2016; Bu ̧s oniu et al., 2008; Lewis et al., 2012; Russell &

orvig, 2016; Toli ́c & Palunko, 2017 ). When it comes to adver-

arial agents, the game theoretic viewpoint is needed ( Lewis et

l., 2012; Modares et al., 2015; Russell & Norvig, 2016 ). From the

tability and learning convergence point of view, impediments of

ulti-agent games range from the existence of multiple equilibria

o non-stationary costs-to-go owing to coupled problems. 

.3. Other open issues 

An open issue that applies to AI and control equally is the de-

ign of the right function approximator for a specific problem. Sim-

ler architectures, like basis functions, suffer more from this prob-

em since they are less flexible; while more general architectures

ike (deep) neural networks, kernel representations, Gaussian pro-

esses, support vector regression, regression trees, etc. have just a

ew meta-parameters to tune and are (at least ideally) less sensi-

ive to tuning. Nevertheless, using these more complicated repre-

entations may not always be an option, due e.g. to computational

estrictions, or even fundamental ones – many ADP methods with

tability analysis only work for linear BF expansions, for instance.

o the question of choosing the right BFs is still a relevant one,

ee e.g. Munos and Moore (2002) , Grüne (2004) , Bertsekas and Yu

2009) . 

A related issue is that, in general, RL can still only handle small-

o-medium scale problems, up to on the order of ten variables. This

imit is broken in certain cases where specific assumptions may be

ade on the structure of the state signal – e.g. deep RL can handle

mage (or image-like) state signals with tens or hundreds of thou-

ands of pixels. The scale drops severely when more complicated

avors of problems, like POMDPs, have to be solved. An alternative

athway to scalability may be provided by hierarchical RL ( Barto &

ahadevan, 2003 ). 

Control-related deficiencies of RL, some of which are discussed

y Khargonekar and Dahleh (2018) , include lack of transparency

nd interpretability as well as vulnerability to adversarial attacks

nd to rapid and unforeseen changes in the environments. Re-

arding interpretability for instance, once the learning process of

 model-free algorithm is over, the Q-function encodes (i.e., hides

way) the underlying model. In other words, neither the structure

f the model (e.g. dominant dynamics/eigenvalues) nor its parame-

ers are discovered. Moreover, it is not clear how to detect when a

odel parameter changes slightly in such a way that the under-

ying model becomes unstable. A novel learning algorithm with

ovel assumptions (e.g., novel admissible policies) might be re-

uired. In addition, it is not clear how to determine (and address)

he case when exploration during the learning process was not ad-

quate and some important dynamics were not learned. 
In deep RL, recent public successes have led to a substantial in-

rease of interest in the field over the last few years. While DRL is

ertainly very capable and can give very good results when applied

o the right problems, it is not the right tool for every problem. In

he context of control, more research is needed into determining

hich kinds of problems benefit from using DNNs as function ap-

roximators. This might have to be done by getting a better un-

erstanding of how the representations are learned for common

etwork types and what types of functions are represented and

earned efficiently. A better understanding of the representation of

 learned policy might also help with the interpretability issue,

hich is even more problematic for deep representations than for

lassical ones, and can therefore lead to a major bottleneck for us-

ng DRL in control. Additional gains in the convergence properties

nd analysis of DRL algorithms are also needed, as DRL methods

re often quite sensitive to their meta-parameters. Furthermore,

he resulting controllers lack any types of stability guarantees and

ave been shown to over-fit to the training policy trajectories. Fi-

ally, continued work on combining on and off-policy approaches

ill hopefully lead to algorithms that yield improved stability with

etter sample efficiency. 

Despite the fact that ADP approaches consider stability, many

hallenges remain, so that general stable RL is unsolved ( Section

 ). To address this, stability analysis should identify the most gen-

ral possible assumptions on the dynamics, and requirements on

he rewards, so that (near-)optimal solutions are stabilizing. Within

hese (hopefully, not very tight) constraints imposed by stability,

I should then take over and provide algorithms that converge

uickly to near-optimal solutions. These algorithms should not be

ully black-box, but should exploit any model and stability knowl-

dge provided by control theory. How to do this is not yet known,

specially when the dynamics or exploration are stochastic, but we

trongly believe that this is a very promising area, and that good

olutions can only arise from a synergy of control-theoretic stabil-

ty and AI optimality. 
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