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Abstract: The human controller (HC) can greatly improve target-tracking performance by
utilizing a feedforward operation on the target signal, in addition to a feedback response. System
identification methods are used to determine the correct HC model structure: purely feedback or
a combined feedforward/feedback model. In this paper, we investigate three central issues that
complicate this objective. First, the identification method should not require prior assumptions
regarding the dynamics of the feedforward and feedback components. Second, severe biases
might be introduced by high levels of noise in the data measured under closed-loop conditions.
To address the first two issues, we will consider two identification methods that make use of linear
ARX models: the classic direct method and the two-stage indirect method of van den Hof and
Schrama (1993). Third, model complexity should be considered in the selection of the ‘best’ ARX
model to prevent ‘false-positive’ feedforward identification. Various model selection criteria, that
make an explicit trade-off between model quality and model complexity, are considered. Based
on computer simulations with a HC model, we conclude that 1) the direct method provides more
accurate estimates in the frequency range of interest, and 2) existing model selection criteria do
not prevent false-positive feedforward identification. Copyright c©2016 IFAC

Keywords: Cybernetics, manual control, feedforward control, parameter estimation

1. INTRODUCTION

Manual control of a vehicle often requires the human con-
troller (HC) to steer a dynamic system along a reference
trajectory, while being perturbed by disturbances. This
target is often visible or to some extend known a priori by
the HC. As a result, the HC might respond to the target
in a feedforward fashion, but it is not known for which
control tasks this is true. To obtain insight, we study the
HC performing target-tracking and disturbance-rejection
control tasks by means of system identification methods.

In many control tasks the path of the vehicle is perturbed
by unpredictable disturbances, to which the HC can re-
spond only with a closed-loop feedback control strategy.
That is, the HC compensates for the ‘error’ between the
target and the current vehicle output. The HC might use
a purely feedback control strategy for target-tracking too,
but could improve tracking performance considerably by
utilizing an additional feedforward control strategy (Wa-
sicko et al., 1966). It is of interest to know when the HC
utilizes feedforward and when not.

System identification techniques allow us to objectively
measure if and model how the HC responds to multiple
sources of information. The identification of HC control
dynamics, with a focus on feedforward detection and
modeling, involves three important challenges.

First, most system identification methods require the
user to make assumptions regarding the model structure
and/or dynamics. The results of such analyses are thus
dependent on the subjective choices of the researcher. In
this paper, we will utilize black-box linear time invariant
(LTI) autoregressive with exogenous input (ARX) models,
that do not require any assumptions regarding model
structure or parametrization.

Second, data measured in human-in-the-loop experiments
involve relatively high levels of noise (Zaal et al., 2009) and
measurements need to be taken under closed-loop feedback
conditions. The combination of both can severely com-
plicate identification (van den Hof and Schrama, 1998).
If a closed-loop feedback path is present, noise in the
output signal will appear (through the feedback path) in
one or more input signals. The correlation between the
input signal and the output noise can cause the estimate
of the HC to be biased, in this case towards the inverse
of the system dynamics. Several identification methods
exist that explicitly deal with such closed-loop issues. In
this paper, we will compare the indirect two-stage method
of van den Hof and Schrama (1993) against the classical
direct method (Ljung, 1999), that does not account for
any closed-loop issues explicitly. We expect the indirect
method to perform better.

Third, a model that includes a feedforward path in addi-
tion to a feedback path generally has more parameters and
thus more degrees of freedom. For that reason alone the
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feedforward model potentially describes the data better
than a purely feedback model, even if a real feedforward
strategy was not present. Thus, if the ‘best’ model is se-
lected based on the quality of the fit alone, a false-positive
feedforward identification is possible. One, of many, meth-
ods to prevent model over-parametrization is the use of a
model selection criterion, such as the Akaike Information
Criterion (AIC, (Akaike, 1974)) or the Bayesian Infor-
mation Criterion (BIC, (Schwarz, 1978)). These criteria
explicitly take into account model complexity when se-
lecting the ‘best’ model, but apply different penalties to
the number of model parameters.

In this paper, we will explore these three issues through
computer simulations with a fixed and known HC model,
and compare the identified dynamics to the ground truth.
Output noise will be present to model the human remnant.
Both the direct and the indirect identification methods
are applied to data generated by two different HC models,
based on earlier experimental data. First, a pure feedback
HC model is used to investigate false-positive feedforward
identification. Second, a combined feedforward-feedback
HC model is used to investigate the accuracy of the
obtained estimates of the multi-loop HC model. Three
metrics of model quality are considered: 1) the mean
square error is used by the model selection criterion, 2)
the Variance Accounted For (VAF) to assess time domain
quality of fit, and 3) the absolute error in magnitude and
phase as a function of frequency to assess the identifiability
of specific model dynamics.

The paper is structured as follows. First, the target-
tracking and disturbance-rejection control task is intro-
duced in Section 2 followed by a description of the HC
model. Then, the two identification methods and model
selection criteria are discussed in Section 3. The computer
simulation details are described in Section 4 followed by
the results in Section 5. The paper ends with conclusions
and recommendations for future work.

2. CONTROL TASK AND HC MODEL

2.1 Control Task

This paper focuses on the identification of human control
behavior in a combined target-tracking and disturbance-
rejection task, with a predictable target signal and an
unpredictable disturbance signal, see Fig. 1. The HC per-
ceives the target signal ft, the system output θ perturbed
by fd and the tracking error e = ft − θ from a pursuit
display (Wasicko et al., 1966). The HC generates a control
signal u to steer the system with dynamics Yc such that
θ accurately follows ft, thereby minimizing e. An example
is an aircraft pitch attitude tracking task where ft is the
intended pitch attitude and θ the actual pitch attitude.

Human
controller
dynamics

Yc(s)
+

−

+

+

ft e u

fd

θ

Fig. 1. Control scheme studied here.

The target signal to be tracked is composed of constant
acceleration-deceleration parabola segments, see Fig. 2,
representative for a realistic control task. Each parabola
segment consists of a constant acceleration phase, directly
followed by a constant deceleration phase, of identical
duration and magnitude. The parabola segments resemble
a rapid change in pitch attitude, performed in minimum
time within the pitch acceleration limits of the aircraft.
The unpredictable disturbance signal fd consists of a sum
of ten sines, with the lowest frequency at 0.23 rad/s and
the highest frequency at 17.33 rad/s, and is identical to
the one used in (Drop et al., 2013).
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Fig. 2. Control task target and disturbance signals. Note
that fd is scaled by 300% for clarity in this plot.

The system dynamics Yc are second-order dynamics:

Yc(s) =
Kcωb

s (s+ ωb)
, (1)

with Kc = 2.75 and ωb = 2. Dynamics of this form can
represent a wide array of vehicle dynamics.

2.2 HC Model

Highly predictable target signals such as the parabola
signal considered here might invoke feedforward control
behavior in the HC, in addition to a closed-loop feedback
component, see the HC model in Fig. 3 (Drop et al., 2013;
Laurense et al., 2015). The ideal feedforward response is
equal to the inverse of Yc, such that u(s) = ft(s)/Yc(s) and
subsequently θ(s) = Yc(s) · ft(s) / Yc(s) = ft(s), which
results in e = 0. A feedback component is still necessary
even if the HC were able to perform perfect feedforward
control on ft, to attenuate the disturbances by fd.

Ype
(s)

Ypt
(s)

Ynms(s) Yc(s)

Human controller

+

−

+

+

ft e upe

upt

+

+ u

n

+

+

fd

θ

Fig. 3. HC model block diagram.

The feedforward path Ypt
is modeled according to the

Inverse Feedforward Model of (Laurense et al., 2015):

Ypt
(s) = Kpt

1

Yc(s)

1

(TIs+ 1)2
e−sτpt , (2)

where the gain Kpt
, the second-order filter parametrized

by TI and the feedforward time delay τpt
are included to

model imperfections in the human feedforward control.



The feedback path Ype
is described as:

Ype
(s) = Kpe

(TLs+ 1)e−sτpe , (3)

with Kpe
the feedback gain, TL the lead time and τpe

the
feedback path time delay (McRuer and Jex, 1967).

The neuromuscular system (NMS) is described by:

Ynms(s) =
ω2
nms

s2 + 2ζnmsωnmss+ ω2
nms

, (4)

with ωnms and ζnms the natural frequency and damping,
respectively (McRuer et al., 1968).

Human nonlinearities and output noise are modeled by the
remnant signal n, which is modeled as white noise filtered
by (Zaal et al., 2009):

Yn(s) =
Knω

3
n

(s2 + 2ζnωns+ ω2
n) (s+ ωn)

, (5)

with ωn = 12.7 rad/s and ζn = 0.26 (Zaal et al., 2009).
Kn was chosen such that σ2

n/σ
2
u = 0.15 in a disturbance-

rejection only tracking task (ft = 0) and fd as in Fig. 2.

3. IDENTIFICATION METHODS

3.1 ARX model estimation

Both the direct and indirect HC identification methods
considered in this paper utilize multi-input-single-output
(MISO) ARX models for identification (Ljung, 1999), see
Fig. 4. Signals i1 and i2 are the two input signals, and o
is the output signal to be modeled. The input and output
signals last 81.92 s and are sampled at 25 Hz, such that
each signal consists of 2048 samples. The subscript m used
throughout this section denotes signals measured under
closed-loop conditions, either from computer simulations
(here) or from a human-in-the-loop experiment.

B1 (q;nb1) /A (q;na)

B2 (q;nb2) /A (q;na)

1
A(q;na)

i1 (k − nk1
)

i2 (k − nk2
)

ǫ(k)

o(k)
+

Fig. 4. Generic ARX model structure.

The ARX model is described by the discrete-time differ-
ence equation in (6), with k the discrete time samples:

A(q;na)o(k) = B1(q;nb1)i1(k − nk1
)+

B2(q;nb2)i2(k − nk2
) + ǫ(k)

(6)

Here, ǫ is a white noise signal and q is the discrete time
shift operator. Polynomials A, B1, and B2 are defined as:

A(q;na) = 1 + a1q
−1 + . . .+ ana

q−na

B1(q;nb1) = b1,1 + b1,2q
−1 + . . .+ b1,nb1

q(−nb1
+1)

B2(q;nb2) = b2,1 + b2,2q
−1 + . . .+ b2,nb2

q(−nb2
+1)

(7)

Each ARX model is defined by three model orders: the
number of parameters in the A polynomial na, the B1

polynomial nb1 , and the B2 polynomial nb2 . For each of
the two input signals a delay parameter also needs to be
set: nk1

, and nk2
. The model orders and delay parameters

are not known a priori ; in both methods many candidate

models are evaluated and the best model is chosen by
means of a model selection criterion.

The ARX models are estimated on a subset of the available
time traces: the estimation data set, ranging from ke,s to
ke,e, such that Ne = ke,e − ke,s + 1 samples are used
to fit the models. After estimation, each ARX model is
evaluated by simulating the input signals through the
estimated ARX model over all samples to obtain ô: the
modeled estimate of the true output signal o. The model
quality is calculated over a subset of the available time
traces: the validation data set, ranging from kv,s to kv,e:

V =
1

Nv

kv,e
∑

k=kv,s

(ôm(k)− o(k))
2
, (8)

with Nv = kv,e − kv,s + 1 the number of samples used to
measure model quality.

In all identification steps of the direct and indirect meth-
ods, the target signal ft is shifted forward in time by 1 s,
to account for possible anticipatory feedforward control,
i.e., negative HC delays in the feedforward response. To
obtain the true time delay in the path associated with ft,
one should substract 25 samples from the estimated nkft

.

3.2 Indirect two-stage method

The indirect two-stage method of (van den Hof and
Schrama, 1993) involves two identification steps. In stage
1, a high-order model is used to obtain an accurate, noise-
free estimate er of the tracking signal em for use in stage
2. The forcing functions ft and fd are used as inputs i1
and i2, respectively, and the tracking error signal em as
output o. Thus, in stage 1 all inputs are uncorrelated with
the output noise and closed-loop effects do not play a role.

It was found that in stage 1 one cannot use just any high-
order ARX model, because not all model order and delay
parameter combinations result in a stable ARX model.
Therefore, a range of ARX model orders is considered, see
Table 1, and the ‘best’ model is the one with minimum V .
In stage 1, ke,s = 1, ke,e = 2048, kv,s = 1, and kv,e = 2048,
i.e., all data is used for both estimation and validation.

In stage 2, a direct estimation is performed with i1 = ft,
i2 = er, and o = um. Here, the input signal er is not
correlated with output noise in um and closed-loop effects
should not play a role. In stage 2, ke,s = 129, ke,e = 1088,
kv,s = 1089, and kv,e = 2048.

The range of evaluated model orders and delay parameters
is given in Table 1. Bounds of stage 1 and 2 were chosen
such that the selected model orders did not ‘hit’ these
bounds with a margin of at least 2. For stage 1, however,
it was not possible to choose the bounds of nbft

following
this rule, because model selection is based on V only. It
was found that the lowest V is always obtained by the
model with the maximum value of nbft

. Therefore, a very
large value (25) was chosen as upper bound of nbft

.

3.3 Direct method

The direct method involves one identification step only,
with i1 = ft, i2 = em, and o = um. The direct method does
not explicitly deal with closed-loop effects, and assumes



Table 1. ARX model order ranges.

na nbft
nbe nkft

nke

Indirect stage 1 [1..10] [0..25] [0..10] [1..5] [1..5]
Direct and indi-
rect stage 2

[1..7] [0..7] [0..7] [1..50] [1..10]

that measurements were in fact taken in an open-loop
experiment. Each ARX model is fit on the data from
ke,s = 129 to ke,e = 1088, to be consistent with the indirect
method. Model quality is evaluated over the data from
kv,s = 1089 to kv,e = 2048.

The large range of evaluated nkft
delay parameters in the

direct method and in step 2 of the indirect method, see
Table 1, is a result of shifting the target signal forward in
time to account for anticipatory feedforward control.

3.4 Model selection

A model selection criterion is used to select the ‘best’
model from the set of considered models. Model selection
criteria (MSC) make a trade off between model quality
measured by V , and model complexity measured by the
number of model parameters d, penalized by a factor W :

MSC = log V +Wd (9)

For the AIC WAIC = 2/Nf , and for the BIC WBIC =
log(Nf )/Nf . Here, we will present results as a function of
W to investigate the effect of utilizing a particular criterion
or penalty value on model quality and complexity. The
number of parameters d is the sum of na, nbft

, and nbe ,
plus the total number of delays in the model, which is
equal to the number of responses with nb > 0.

4. COMPUTER SIMULATIONS

Computer simulations are performed utilizing the HC
model of Section 2.2 with two sets of model parameter
values, referred to here as ‘models’, see Table 2. First,
the purely feedback model (FB) is used to investigate
false-positive feedforward identification. The feedforward
gain Kpt

is set to zero; only feedback control is present.
Second, simulations with the feedforward model (FF) with
parameter values representative for this control task (Lau-
rense et al., 2015) are performed to investigate the meth-
ods’ ability to identify the feedforward-feedback multi-loop
model structure and dynamics. The feedforward gain Kpt

is set to 0.8, which is a ‘conservative’ value: a slightly larger
value, closer to the ideal value of 1, was estimated from ex-
perimental data (Drop et al., 2013; Laurense et al., 2015).
For both models, ωnms = 10.1 rad/s and ζnms = 0.35.

Table 2. Model parameters values.

Kpt TI τpt Kpe TL τpe RMS(e)
- s s - s s deg

FB 0 - - 0.75 0.4 0.24 2.43
FF 0.8 0.25 0.35 0.75 0.4 0.24 1.22

The RMS(e) reflects the performance level of each model
for this control task, see Table 2. The RMS(e) of the FF
model is around 50% of the FB model, illustrating the po-
tential performance improvement of utilizing feedforward
control (Wasicko et al., 1966; Drop et al., 2013).

Each model is simulated for fifty different realizations of
the signal n. Both identification methods are applied to
each realization.

5. RESULTS

5.1 Model fit quality

The model fit quality of the selected models is assessed
here by means of the Variance Accounted For (VAF):

VAF =



1−

∑kee

k=kes
(um(k)− ûm(k))

2

∑kee

k=kes
ûm(k)2



× 100% (10)

Note that the VAF is different from V , but more intuitive
to interpret.

Fig. 5(a) depicts the VAF obtained for all models with
both methods, averaged over all remnant realizations, as
a function of W . Errorbars depict one standard deviation.
For W < 0.1 the VAF is approximately constant and close
to 98% for all conditions, which illustrates that the models
obtained from both methods describe the data very well.
The VAF is always higher for the direct method (D) than
for the indirect method (I), for both models.

W , -

V
A
F
,
%

10−3 10−2 10−1 100
97
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(a) W < 1.
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FF, DFF, I

FB, DFB, I

W , -

V
A
F
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%

10−1 100 101
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90
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(b) W > 0.1.

Fig. 5. Model fit quality as a function ofW . Vertical dashed
lines mark the value of W for AIC and BIC.

Fig. 5(b) shows the VAF for much larger values of W ; note
the ordinate axis scaling. The VAF reduces dramatically
for W > 0.5, albeit at different values for different condi-
tions, suggesting that model complexity was penalized too
much and important dynamics were left out.

5.2 False-positives and false-negatives

Fig. 6 shows the number of parameters in the feedforward
path nbft

of the selected ARX models, averaged over all
remnant realizations, as a function of W . To describe
the low-frequency feedforward response (the inverse of Yc,
which is equal to a differentiator) nbft

should be ≥ 2.

For the FB model nbft
should be 0; any non-zero result

is a false-positive feedforward identification. For the direct
method, false-positives are found up to W < 1.2 × 10−2,
but for the indirect method up to a much higher value:
3.7 × 10−2. The penalty that would be imposed by both
the AIC and BIC is too small to prevent false-positives,
and thus both model selection criteria are unsuited.

For the FF model n̄bft
≥ 2 up to W < 2.6× 10−1 for both

the direct and indirect method. n̄bft
rapidly decreases to

zero for larger values of W , these are false-negative results:
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Fig. 6. n̄bft
as a function of W .

feedforward is present in the true model, but not in the
identified model.

5.3 Frequency response of identified models

Fig. 7 shows the frequency responses of the identified
models for all remnant realizations, selected for W =
WBIC, compared to the true FB dynamics. Vertical dashed
lines mark the lowest and highest frequency component in
fd, outside this region inaccurate estimates are expected.
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Fig. 7. Bode plot of the feedforward and feedback paths of
the selected models for the FB model, W = WBIC.

Fig. 7(a) shows the false-positive feedforward results, com-
pared to the true feedforward response of FF, but with
Kpt

= 0.2. The magnitude response of these false-positives
resemble the FF feedforward dynamics very well, albeit
with a rather small static gain. This nevertheless increases
the likelihood of falsely interpreting such results as a
‘real’ feedforward identification. The phase response is
180 degrees different from the FF feedforward dynamics,
by which false-positive results could be recognized. Note,
however, that this statement relies on knowledge of the
true model, which is not known for a real human controller.

The identified feedback dynamics, see Fig. 7(b), resemble
the true FB dynamics very well. At higher frequencies,
some responses rapidly increase in magnitude to fit the
noise. Surprisingly, also models identified by the indirect
method suffer from this effect.

Fig. 8(a) shows that for the FF model, the identified
feedforward dynamics resemble the true FF dynamics very
well for ω < 3 rad/s. Above 3 rad/s the identified responses
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Fig. 8. Bode plot of the feedforward and feedback paths of
the selected models for the FF model, W = WBIC.

show a neuromuscular peak, although these dynamics are
not present in the true model’s feedforward path. The
apparent identification of NMS dynamics is caused by
the denominator polynomial A, that is shared by the
feedforward and feedback paths (see Fig. 4). The identified
feedback dynamics of the FF model, see Fig. 8(b), are very
similar to the true dynamics.

5.4 False-negative feedforward results

Upon closer inspection of Fig. 5(b) and Fig. 6 for the FF
model, it becomes clear that for 0.4 < W < 1 models
without a feedforward path are selected, that nevertheless
provide a VAF similar to the VAF of models with a
feedforward path (selected for W < 0.1). Fig. 9 reveals
that models selected for 0.4 < W < 1 contain a feedback
path that partly describes the feedforward dynamics. That
is, the feedback dynamics are a leaky integrator at low
frequencies, whereas the true feedback dynamics are a gain
at low frequencies. This leaky integrator integrates the
steady-state tracking error during the parabola segments,
thereby generating a control signal that is similar to the
real control signal (Drop et al., 2013).
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Fig. 9. Bode plot of the feedback path of the selected ARX
models for the FF model, W = 0.47.

To conclude, models exist with very different dynamics
from the true dynamics that nevertheless describe the
data with high accuracy. This clearly demonstrates the
importance of choosing the correct value for W when
analyzing experimental human-in-the-loop data for which
the true model is not known.



5.5 Comparison between direct and indirect methods

To compare the direct and indirect methods, we compute
two error metrics between the identified dynamics and the
true dynamics. The absolute error in magnitude εmagnitude

and the absolute error in phase εphase is calculated as:

εmagnitude(jω) = ||Y best
p (jω)| − |Y hyp

p (jω)|| (11)

εphase(jω) = | 6 Y best
p (jω)− 6 Y hyp

p (jω)| (12)

Fig. 10 shows the mean and maximum values of these
metrics, taken over all 50 realizations, for the FF model.
Fig. 10(a) shows that the direct method provides a bet-
ter estimate of the true feedforward dynamics than the
indirect method, for ω < 8 rad/s. For instance, at low
frequencies the error averaged over all remnant realiza-
tions in both magnitude and phase is smaller; and the
maximum error is smaller too. Both methods perform
worse at higher frequencies than at low frequencies, caused
by the appearance of a neuromuscular peak in the ARX
model which is not present in the true model. The indirect
method provides a slightly smaller error at certain higher
frequencies.
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Fig. 10. The average and maximum error in magnitude
and phase between the estimated and true dynamics
for W = WBIC.

Fig. 10(b) shows that the direct method also provides a
smaller average error for the feedback dynamics for ω < 7
rad/s for the FF model. The same is true for the feedback
dynamics of the FB model (not shown).

Note that for W = WBIC the models identified by the
indirect method are generally more complex than those
identified by the direct methods, see Fig. 6. Hence, one
would expect the results of the indirect method to be more
accurate, but the opposite is true.

6. CONCLUSIONS

This paper evaluated a direct and an indirect identification
method for identifying the feedforward and feedback con-

trol dynamics of the HC from closed-loop measurements.
The ‘best’ of all possible models was chosen by means of a
model selection criterion that makes an explicit trade-off
between model quality and model complexity.

We conclude that 1) both methods identify models with
dynamics similar to the true dynamics, but that 2) the
direct method provides more accurate estimates in the fre-
quency range of interest. We demonstrated the occurence
of false-positive and false-negative results, and conclude
that 3) the AIC and BIC model selection criteria do not
prevent false-positive feedforward identification.

We suggest two methods, to be investigated further in
future research, to deal with the issue of possible false-
positive results. First, the correct value of the model
complexity penalty parameter is obtained from computer
simulations for which the true model is known and highly
similar to the expected HC control dynamics. Second, the
identification results of experimental human-in-the-loop
data will be analyzed as a function of the model complexity
penalty parameter, to make the model selection more
insightful and objective to the reader.
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