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Abstract

With the current transition towards renewable and high-tech solutions, the world is becoming increas-
ingly complex. Consequently, the challenges faced by firefighters also intensify. For that reason, fire-
fighting robots are rising in popularity despite being far from perfect. An important area of improvement
is the perception capabilities of those robots, given the fact that firefighting robots suffer from occluded
camera views in environments filled with smoke. To overcome this challenge a LiDAR sensor may
be used but experiments in this work show that even those point clouds are adversely affected by
smoke. Consequently, this work presents a method for real-time reconstruction of ground surfaces in
occluded environments filled with smoke. The developed method functions in ROS Noetic and merges
segmented ground points, when available, with ground surfaces which are reconstructed based on
information from segmented wall points. In this way, the method works even without the presence of
ground points. To achieve this, a combination of established techniques from scientific literature, along
with newly developed techniques were implemented. Doing so gives the robot’s operator an improved
representation of the ground surface within environments filled with smoke. Ultimately the developed
method may allow for autonomous navigation based on LiDAR data within environments filled with
smoke. This research shows that a method consisting of techniques which tackle the independent
sub-challenges arising from the use of LiDAR in indoor environments filled with smoke can effectively
reconstruct the ground surfaces within those environments. Furthermore, the developed method has
the potential to do so in a real-time manner.
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1
Introduction

In today’s increasingly complex and electrified world, firefighting is becoming increasingly complex as
well. To enhance firefighters’ safety and expand the array of dangerous environments to operate in, the
fire brigade of region Rotterdam-Rijnmond in The Netherlands, called ”MIC Veiligheidsregio Rotterdam-
Rijnmond” has started to use a remotely controlled firefighting vehicle called ”Brutus” (Figure 1.1). This
robot is used in situations which would be too dangerous for the firefighters to work in and is equipped
with CCTV cameras and a water canon for fire extinguishing purposes. The cameras allow the operator
to see and navigate Brutus inside dangerous environments, hence obtaining valuable information.

The problem in these situations is that the smoke encountered during operation can occlude the view of
the cameras. For that reason, MIC Veiligheidsregio Rotterdam-Rijnmond is interested in the implemen-
tation of a LiDAR sensor on Brutus. However, as will be shown in this thesis, environments filled with
heavy smoke result in degraded point clouds, which limits the amount of useful information available
to the operator. For that reason, the goal of the fire department is to leverage the limited information
from those degraded point clouds to aid the operator - and consequently firefighters - with additional
spatial information about smoke-filled environments. This can help to improve the operator’s control
of Brutus and also be an important step toward the fire department’s longer-term ambition of enabling
autonomous navigation on Brutus, even in these smoke-filled environments.

Following the fire department’s goal regarding the use of a LiDAR sensor, this introduction will begin by
presenting the goal of this thesis as well as the main research question and associated subquestions.
Next, the scope of this research is defined and the main contributions are presented. Finally, the
structure of the report will be outlined.

Figure 1.1: Firefighting robot Brutus [1].

1
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1.1. The thesis goal and research question
In line with the goal outlined by the fire department and in consideration of the requirements for an MSc
Robotics master’s thesis, the goal of this work is to develop a method which can reconstruct ground
surfaces using point clouds obtained in indoor environments filled with smoke. The reason to focus
on ground surface reconstruction is that this can provide useful, additional information to the opera-
tor. Furthermore, the obtained ground surfaces can form a basis for ultimately enabling autonomous
navigation on Brutus. The thesis goal is visualised in Figure 1.3 and can be summarised as follows:

• Developing a method which can leverage the limited information from degraded point clouds
obtained in environments filled with smoke, to reconstruct indoor ground surfaces in real-time.

In order to facilitate smooth integration between the developed method in this thesis and future de-
velopments on Brutus, such as autonomous navigation algorithms, it was decided to implement this
method in ROS Noetic [2]. Furthermore, a Jetson Orin Nano single-board computer [3] running on
Ubuntu 20.04 [4] was used given its unique trade-off between computational performance and size.
The LiDAR sensor used in this research is the Hesai QT128 mechanical LiDAR [5] which has a 360◦

horizontal field of view. The LiDAR was chosen after carefully considering multiple LiDAR models
based on their field of view, resolution, range, operational temperature and price. This procedure can
be found in Appendix A.4. An overview of the developed method in the broader context of Brutus’
components is presented in Figure 1.2 and more details about the exact functionality of the developed
method can be found in Chapter 3.

Figure 1.2: Simplified overview of the different components involved when operating Brutus. Image of the operator via
RFGFotografie [6].
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Following the thesis goal presented above, a main research question and associated subquestions are
formulated. These subquestions are established to address the main research question as effectively
as possible.

Main research question

• How to enable real-time reconstruction of indoor ground surfaces in occluded environments filled
with smoke based on point clouds obtained using LiDAR?

Subquestions

• How does smoke affect the visibility of ground points in a point cloud obtained with LiDAR?
• What method can be developed to tackle the main research question?

To answer the first subquestion, experiments are performed using the LiDAR sensor in a room filled
with artificial smoke. This is done to assess how the smoke affects the point clouds obtained by the
LiDAR sensor. The results obtained by these experiments can be found in Section 2.1. Furthermore,
the second subquestion is answered by analysing the challenges caused by the smoke on point clouds
and finding independent solutions to those challenges. This process will be described by Section 2.2
and the remaining sections of Chapter 2.
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1.2. Scope definition and illustration
Following the research question presented above, it is important to clearly define the scope of the
project - what this research aims to include and, consequently, what it does not include. Within this
thesis project, a method has been developed for reconstructing ground surfaces in both clear indoor
environments as well as indoor environments filled with smoke. Consequently, it is important to note
that this method aims to reconstruct the full indoor ground surface, disregarding any objects on top of
it (Figure 1.3) and therefore the output shall not be confused with a traversable map. For clarification,
a traversable map shows the ground with the exact locations of where the robot can or cannot drive,
hence including objects on the ground surface. Furthermore, in this research reconstructing the full
indoor ground surface means that the ground points are reconstructed according to the characteristics
of the LiDAR. This means reconstructing the points according to the LiDAR’s horizontal resolution and
with the same amount of vertical channels (rings). Finally, this research is only conducted in artificial
smoke, so not in actual smoke. The included and excluded scope considerations for this thesis are
summarised in Table 1.1.

Scope considerations Included
Full ground surface reconstruction Yes
Creating a traversable map No
Reconstructing the expected ground points Yes
Operational in clear and smoke-filled environments Yes
Testing and designing for indoor usage Yes
Testing and designing for outdoor usage No
Testing and designing on real smoke No
Testing and designing on artificial smoke Yes

Table 1.1: Summary of the included and excluded scope considerations.

The included scope considerations are chosen based on a combination of time constraints and the
available resources throughout this project. The rationale behind choosing for the full indoor ground
surface reconstruction is that this will directly help the operator’s understanding of a smoke-filled en-
vironment. Additionally, when eventually combining the obtained results with object detection, it can
be an important step towards enabling autonomous navigation in occluded indoor environments using
LiDAR.

Figure 1.3: The ground points lying on the pink surface shall be reconstructed by the method.
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1.3. Main contributions
• Visualisation of the adverse effects caused by artificial smoke on the quality of point clouds ob-
tained using LiDAR.

• A novel method - functioning in ROS Noetic [2] - for real-time reconstruction of ground surfaces
in occluded environments filled with smoke, which works even without the presence of ground
points.

– Reproduction of the leading AGDOR denoising technique by L. Minh-Hai et al. [7] including
proof of effectiveness in environments filled with smoke.

– Extension and reproduction of the channel-based ground segmentation work by C. Phuong
et al. [8]. Resulting in more precise ground point segmentation for environments filled with
smoke.

– Design and development of a wall-based ground surface reconstruction technique in both
Python and C++ to enhance speed and ease future development of this technique.

– Developed a technique for combining the results of ground point segmentation with those
of reconstructed ground surfaces on a per-segment basis. This is done to obtain the best
possible representation of the ground in environments filled with smoke.

1.4. Report structure
Next to this introduction chapter, this report consists of several chapters. In the chapter hereafter
(Chapter 2), the effects of smoke on point clouds obtained using LiDAR are introduced. Additionally,
the state-of-the-art techniques and process behind selecting the techniques used in the developed
method are presented. Next, in Chapter 3, the developed method is presented and explained in detail.
After that, Chapter 4 introduces the experiments which were conducted and Chapter 5 will present the
qualitative and quantitative results from the experiments. Finally, Chapter 6 discusses the results ob-
tained after which Chapter 7 concludes the findings of this research and Chapter 8 presents the future
work.



2
State of the art and selection of

techniques

This chapter describes the relevant techniques and the selection thereof regarding the developed
method in this thesis. This chapter will first assess and present the challenges caused by smoke
on LiDAR sensors. This is useful because there is no directly relevant scientific literature or solution
available related to the overarching goal of this thesis. Knowing the independent challenges caused by
smoke on LiDAR sensors, the relevant scientific research direction for each of the challenges is iden-
tified. These scientific research directions contain potential solutions to the independent challenges
caused by smoke on LiDAR sensors and are therefore presented as dedicated sections within this
chapter. For each scientific research direction related to an independent challenge, the most relevant
(state-of-the-art) techniques/solutions are presented as subsections. Finally, per scientific research di-
rection, a second subsection describes how the most suitable technique was selected, hence clarifying
how the design and techniques used in the developed method have come about.

2.1. The effects of smoke on point clouds
Scientific research on the effect of smoke on point clouds is very scarce, for that reason an evaluation of
these effects has been performed as part of this thesis. These tests have been performed in a dedicated
training room at fire station ’Slotlaan’ in Capelle aan den IJssel (The Netherlands). An important side
note here is that the tests conducted here were performed using artificial smoke instead of real smoke.
This means that the precise effect of smoke on LiDAR remains uncertain while at the same time, this
environment is the closest representation of actual smoke given the resources available throughout this
research. Looking back at the first subquestion, namely: How does smoke affect the visible ground
surface in a point cloud obtained using LiDAR technology?. The following may be concluded when
looking at results obtained using LiDAR in smoke as shown in Figure 2.1:

• Ground points exhibit significantly lower intensity levels when compared to other points. This
can be explained by the typically darker colour of ground surfaces as well as the shallower angle
made between the LiDAR sensor and the ground compared to other objects. Both of these can
cause less light to be reflected onto the LiDAR’s receiver.

– Vice versa, the vertically oriented wall points exhibit higher intensity levels.

• Depending on the density of smoke, most ground points are absorbed by the smoke, creating
false negative points. This can be explained due to the lower intensity reflections caused by the
often darker coloured ground surface in combination with the light-absorbing effect of the water-
based artificial smoke [9].

• The absorbed (ground) points by the artificial smoke create (orange-coloured), low-intensity false
positive points around the LiDAR sensor.

6
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(a) Raw point cloud without any smoke in the room. (b) Raw point cloud occluded by heavy smoke in the room.

(c) Visibility in the room without smoke. (d) Visibility in the room occluded by heavy smoke.

Figure 2.1: Visual impression regarding the effect of artificial smoke on point clouds obtained using LiDAR technology.

With an understanding of how ground points disappear in the presence of smoke and create false posi-
tives, it is reasonable to investigate whether addressing this challenge is covered in scientific literature.
Unfortunately, it is not when looking at this challenge as a whole. Therefore, to effectively deal with the
challenge caused by smoke, the main research question is tackled by developing a method which com-
bines themost suitable - often already existing - techniques for solving the independent (sub)challenges
caused by smoke. This is done because the challenge for LiDAR sensors in the presence of smoke can
also be seen as multiple independent challenges and for those independent challenges, solutions do
exist within scientific literature. Using this perspective, the following independent challenges introduced
by smoke on point clouds have been identified:

1. False positives: As can be seen in Figure 2.1, smoke introduces a dense layer of (orange-
coloured) false positive points. This means that these points imply the presence of objects while
in reality, there are none.

2. False negatives: At the same time, ground points are not present at the places where you would
expect them. This takes away to chance to identify any ground points at those locations.

3. Irregular presence of ground points: Some parts of the point cloud do contain actual ground points
(true positives) and are thus of significant value. Effectively filtering out those ground points can
be very challenging.
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Knowing the independent challenges caused by smoke on LiDAR sensors, the scientific research direc-
tions for each of these challenges are identified and presented below. After presenting these scientific
research directions, dedicated sections will introduce, for each research direction, the concept, and the
most relevant (state-of-the-art) techniques, followed by an explanation of how a technique was selected
for eventual implementation in the developed method.

1. For the challenge of false positives, numerous scientific papers are available under the phrase of
”point cloud denoising techniques”.

2. For the challenge of false negatives, a multitude of scientific literature is available albeit mostly
in an aerial or outdoor context [10], [11]. Techniques which deal with missing points are often
referred to as ”surface reconstruction techniques” but also as ”semantic scene completion”.

3. For the problem regarding irregular presence of ground points, numerous scientific papers are
available. Techniques which can identify those ground points are often referred to as ”ground
segmentation techniques”.

2.2. Point cloud denoising
With the rise of autonomous driving-related research, the LiDAR sensor gained popularity within the
scientific community as well [12]. Consequently, LiDAR sensors have been tested in different adverse
weather conditions such as rain and snow. By doing so, the challenge of false positives caused by
reflections from snow and rain became more widely known and as a result point cloud denoising meth-
ods for adverse weather conditions started to be developed. With the first variants being introduced
with the launch of the popular C++ based ROS package called Point Cloud Library [13]. In essence,
the goal of a point cloud denoising method is identifying and removing the false positive points caused
by unwanted reflections of the LiDAR’s pulses from for example, snow and rain. Many different point
cloud denoising methods exist but roughly six different types can be identified:

• Radius outlier removal: These methods filter out points when the number of neighbouring points -
within a certain radius of a point - is below a specific threshold. Figure 2.2 illustrates this concept
with the orange dot being the points around which a radius outlier removal is performed.

• Statistical outlier removal: These methods filter out points based on the statistical characteristics
of the surrounding points. For example, it may calculate for each point, the mean distance and
standard deviation of the neighbouring points. Points which fall outside of a certain multiple of
the standard deviation from the mean of a given point will be filtered out.

• Intensity-based methods: Like the name suggests these methods filter out points with an intensity
below a certain threshold.

• Dynamic methods: These methods are often based on radius outlier removal methods but allow
points at large distances to have fewer neighbouring points within a certain search radius. This
results in improved performance because the density of a LiDAR’s point cloud decreases with in-
creasing distance and therefore one expects to find fewer neighbouring points at larger distances
when using the same search radius. This concept is illustrated in Figure 2.2b.

• Hybrid methods: The more novel and best-performing methods are often a combination of the
denoising method types presented above.

• Machine learning-based methods: These types of point cloud denoising methods work primarily
by being trained on large datasets of labelled point clouds. Doing so, these models leverage the
data in order to create effective point cloud denoising strategies.
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(a) Illustration of the radius outlier removal principle. (b) Illustration of why a constant search radius results in fewer
neighbour points over an increasing distance.

Figure 2.2: Visualisation of the radius outlier removal and dynamic methods.

2.2.1. State of the art
Regarding the state of the art, four different denoising methods are identified: two hybrid methods and
two machine learning-based methods.

Hybrid denoising methods:

• AGDOR: This method is developed by Mukhopadhyay et al. [7], and is made of two parts, an
intensity threshold filter and a dynamic radius outlier removal method. The method starts by using
an intensity threshold below which points are filtered out. The authors suggest this threshold to
be the mean between the obstacles’ mean intensity value and that of the snow’s reflections (the
false positives) which would require some prior knowledge about the environment. Otherwise,
this threshold value shall be chosen empirically. After the points below the intensity threshold
are filtered out, the second part of the method will place back some of the points which had just
been removed. It does so by leveraging the sparse characteristics of falling snowflakes using
a dynamic radius outlier filter. This means that the method only keeps a point if it contains a
certain amount of neighbours within the search radius, but this search radius increases linearly
with an increasing point’s distance to the LiDAR sensor. Unfortunately, this method does not
directly compare its performance to that of other state-of-the-art methods which are described in
this section but it does show outperformance compared to other well-known denoising methods.

• AORI: In this method created by Donny et al. [14], the observation is used that LiDAR channels
are often not uniformly distributed meaning that fewer neighbour points have to be expected for
the LiDAR’s sparser top and bottom channels. To deal with this non-uniform distribution the point
cloud is converted into a range image and next, a dynamic radius outlier removal filter is used
in the form of a kernel to filter out the false positives. After filtering out the false positives, the
range image is converted back into a point cloud. Unfortunately, this method does not compare
itself to the machine learning-based methods but it does show a slight out-performance in terms
of accuracy and F1 scores compared to AGDOR while lagging in precision. Additionally, it shows
a computational speed of 4 FPS compared to 2 FPS for AGDOR using a 2.20 GHz CPU and 32
GB of RAM.
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Machine learning-based methods:

• WeatherNet: Heinzler et al. [15] proposed a CNN method which is based on the semantic seg-
mentation network called LiLaNet [16]. The method is adjusted so it only segments 3 different
classes namely: clear, rain and fog. The class ’clear’ refers to any point of the point cloud which
is not classified as rain or fog. Additionally, a dropout layer was added to improve the methods’ ro-
bustness. As input the method uses a point cloud converted into an intensity image and distance
matrix. Unfortunately, this method does not compare itself to any of the state-of-the-art methods
mentioned in this subsection but it is reasonable to say that it outperforms hybrid denoising meth-
ods given the impressive runtime of only 34 ms per frame.

• 4DenoiseNet: This deep learning-based denoisingmethodwas developed by Seppänen et al. [17]
uses time as a fourth dimension - next to a point cloud’s 3D characteristics - to improve its de-
noising performance. More specifically, the method uses a spatial and a temporal branch both
of which use a kNN-convolution module. Later, the two branches are fused back together. The
work by the authors shows how their method outperforms WeatherNet on their own SnowyKITTI
dataset in terms of IoU and computational speed.

With the state-of-the-art methods presented, it is important to emphasize that the methods presented
here are often trained or tuned on a limited amount of datasets while also being designed for adverse
weather conditions such as snow and rain instead of smoke. Additionally, the hardware specifications
and programming languages used with these methods are often unknown.

2.2.2. Selection of the technique
To select the most promising techniques for point cloud denoising within this research’s method, dif-
ferent denoising methods have been assessed. The main considerations to make in this selection
process are speed, accuracy and chances of successful implementation. For example, AORI seems
very promising in terms of precision and recall but has a low chance of successful implementation since
very limited pseudo-code is provided and because of added complexity given that the point cloud is
converted and processed as a range image. Similarly, the machine learning-based denoising methods
have not been implemented because they require a lot of labelled point clouds which are simply not
available in the context of indoor environments occluded by smoke and did not seem feasible to ob-
tain during this project. The intensity-based methods, on the other hand, are easy to implement and
fast but only provide limited accuracy. All things considered, the AGDOR denoising technique created
by L. Minh-Hai et al. [7] seems to provide the best trade-off between speed, accuracy and chances
of successful implementation. Additionally, it offers a leading combination of precision, accuracy and
recall scores compared to more ’classical’ methods such as DROR [18], DSOR [19] and LIOR [20].
Furthermore, an acceptable processing speed is achieved compared to ’classical’ point cloud denois-
ing techniques.

To prove the added value of the AGDOR denoising technique, an evaluation was performed in which
a simplistic intensity threshold filter was compared to the AGDOR technique. The intensity threshold
method was chosen for comparison because it allows for very fast processing as well as the observation
that the false positives caused by dense smoke all seem to have a significantly lower intensity compared
to other points. As can be seen in Figure 2.3, the AGDOR denoising technique manages to retrieve
ground points which were initially filtered out based on the intensity threshold. This intensity threshold
filter works by removing all points below a certain intensity value. The optimal value is obtained by
empirically testing different intensity threshold values. A detailed explanation of the AGDOR method
can be found in the section 3.2.
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(a) Filtering points based on an intensity threshold. (b) The result of applying AGDOR denoising technique [7].

Figure 2.3: Overview of results when applying two different types of filters (intensity threshold versus AGDOR).

2.3. Ground segmentation
The concept of ground segmentation means identifying which points from a point cloud belong to the
ground surface. Ground segmentation serves two main purposes [21]. First of all, it determines the
area on which a robot or vehicle may be able to move. Secondly, knowing where the ground is helps
with identifying and/or tracking moving objects and can lower the computational complexity of doing so.
After all, when knowing which points belong to the ground surface, there are a lot fewer points left to
access. Within the scientific literature, a lot of research has been done in the context of ground seg-
mentation. This results in a wide variety of different techniques which can be divided into the following
four categories [22]:

• Ground modelling methods: This refers to all the techniques that try to fit one or multiple planes -
to the point cloud - which overlaps with as many ground points as possible. Well-known ground
modelling methods include, among others, RANSAC and PCA, as well as methods extending on
those techniques. The concept of RANSAC ground segmentation is illustrated in Figure 2.4a,
with the green dots representing the segmented ground points since they lie on the grey plane
which is fitted to the point cloud using RANSAC.

• Elevation maps: These techniques divide the point cloud into a grid of cells when looking at the
points cloud’s xy-plane. In this grid representation of the point cloud, each cell contains a certain
height value assigned to it. This can be e.g. the median height value of all points lying within
that cell or even the largest height value within the cell. Next, the ground cell can be identified
based on different techniques such as clustering adjacent cells with similar low height values.
These techniques provide advantages in terms of robustness to noise but are known to struggle
with sparse/occluded point clouds and lag in terms of computational speed. In Figure 2.4b, an
elevation map is visualised using a side view. The cells highlighted in green represent the ground
whereas the grey cells contain larger height values and are therefore not considered ground
surface.

• Adjacent points: Techniques in this category, segment ground points by looking at characteristics
such as distance or the elevation angle between adjacent points. Most of these techniques eval-
uate points from consecutive LiDAR channels. This concept is illustrated in Figure 2.4c, where
the h represents the difference in height between two consecutive points and α represents the
angle formed between the next consecutive pair of points. For points to be considered ground
points, both the h and α values have to stay below certain threshold values.

• Deep learning: These techniques use convolutional neural networks and a lot of labelled data to
learn how to identify ground points. These methods can be fast and accurate but also require
a lot of resources, often in the form of NVIDIA GPUs as well as large amounts of labelled point
clouds.
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(a) RANSAC ground segmentation illustrated. (b) Illustration of elevation map-based ground segmentation.

(c) Illustration of adjacent points ground segmentation.

Figure 2.4: Different ground segmentation techniques visualised.

2.3.1. State of the art
Considering the state-of-the-art ground segmentation techniques, four are found to excel. This con-
cerns one ground modelling technique, two deep learning-based techniques and one adjacent point
technique.

Ground modeling method:

• Patchwork++: This method created by L. Seungjae et al. [23] is state of the art with an F1 score of
96% and recall of 98% on the SemanticKITTI dataset [24]. While no direct comparison is made
with the other state-of-the-art methods in the section it does show out-performance compared
to older methods in terms of F1 score and recall. In general terms, the method works by first
filtering out reflected noise and subsequently diving the point cloud into different polar grid cells.
To each of these cells, a wall plane is fitted using the PCA method and the points lying on those
planes are considered ground points. The reason for fitting planes to the different polar grid cells
is because this allows for more robust ground fitting (e.g. also working for segmenting uneven
ground surfaces).

Deep learning-based methods:

• GnDNet: This method developed by A. Paigwar [25], uses the well-known PointNet network[26]
in combination with a pillar feature encoding network to extract height features from the point
cloud. The authors augment the SemanticKITTI point cloud dataset [24] upon which they train
their model. Doing so, they claim their method achieves state-of-the-art performance compared
to older methods which are not included in this state-of-the-art overview.

• RangeNet++: Created by A. Milioto [27], their work claims to achieve state-of-the-art performance.
The developed method works by first converting the input point cloud into a range image and
performing 2D convolution semantic segmentation on those range images. Next, the processed
2D range image is converted back into a point cloud.
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Adjacent points method:

• Fast ground segmentation: Developed by C. Phuong et al. [8], this method stands out due to its
exceptional processing speed of just 4.7 ms per frame, making it the fasted ground segmentation
method by a large margin. This state-of-the-art processing speed is the reason for including this
technique in this section. Additionally, the design of this method is well documented making it
easier to implement. While no other quantitative metrics have been provided about the method,
its qualitative results look very promising as well. Albeit reasonable to assume that the state-of-
the-art methods mentioned earlier will perform better in terms of the other qualitative metrics.

2.3.2. Selection of the technique
After knowing the most promising ground segmentation methods, the most suitable one - in the context
of this research - had to be selected. To get up to speed with ground segmentation the most simple
and common ground segmentation technique called RANSAC was initially assessed on some of the
point clouds obtained during the experiments of the LiDAR in artificial smoke. To do so, the Scikit-learn
Python version of the RANSAC model [28] was tested in ROS Noetic. Python version of the RANSAC
model is based on the original RANSAC model created by M. Fischler et al. [29]. Unfortunately, it did
not lead to promising results. This is because applying it to the full point cloud leads to a plane which
crosses the cloud and therefore does not (at all) represent the surface on which the ground points lie.
Using knowledge such as the sensor height, a better estimation was achievable but this method re-
mains prone to unevenness and sudden changes in the surface. After performing the initial tests with
the ”classic” RANSAC ground modelling method, the state-of-the-art methods presented above were
tested on some of the clean point clouds obtained during the experiments.

Evaluating the state-of-the-art techniques started with implementing the deep learning methods. A lot
of time was spent trying out these methods but unfortunately, all of these methods required CUDA
software as well as an NVIDIA GPU which is beyond the reach of this project. Furthermore, most of
those methods are designed and trained for automotive and thus outdoor purposes which increases
the chances of lagging performance within the assessed environments in this research. Choosing such
a method would also mean that a lot of additional indoor data would have to be collected and manually
labelled which is very hard to do.

Next up was the leading ground modelling work model created by L. Seungjae [23] called ”Patch-
work++”. This method was well documented and therefore the implementation of this method in ROS
Noetic was successful. Results of the method on indoor Point Clouds obtained with our LiDAR can be
seen in Figure 2.5a. The figure shows how the Patchwork++ method seems to struggle with properly
segmenting the ground points. While some ground points were correctly identified, many vertical points
(false positives) were also included and at the same time, segments of ground points have not been
segmented at all (false negatives). One reason for this can be that the method is designed towards
more outdoor environments and may therefore be less robust within indoor environments. For example,
the input point cloud did not contain all the ground points one may expect to see (many false negatives)
because they were located behind certain objects.
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(a) Results using the Patchwork++ segmentation technique [23]. (b) Results using the channel-based segmentation technique [8].

Figure 2.5: Comparison of the Patchwork++ and channel-based segmentation method in a smoke-free environment.

Finally, the channel-based ground segmentation technique created by C. Phuong et al. [8] was recre-
ated and successfully implemented in ROS Noetic. The evaluation of this method led to very promising
results both in terms of speed as well as accuracy as can be seen in Figure 2.5b. In contrast, to Patch-
work++, the ’channel-based’ technique shows significantly more correctly identified ground points (true
positives). Unfortunately, it still shows false positives (noise) throughout the point cloud. To mitigate
those unwanted false positives as effectively as possible, the problem was evaluated in more detail and
a new feature was developed and added to the channel-based segmentation technique was developed.
The mechanics behind this new feature as well as the original version are explained in section 3.3. The
differences in the obtained results between the original ’channel-based’ segmentation technique and
the newly developed (updated) version are visualised in Figure 2.6.

As can be seen in Figure 2.6, the version with the new feature shows fewer false positives compared
to the original version, hence indicating an increase in the technique’s precision. The improved per-
formance of this newly created feature on top of the channel-based segmentation technique resulted
in the decision to use this combination of techniques as the ground segmentation approach within the
method.

(a) Results using the original channel-based segmentation technique
as created by C. Phuong et al. [8].

(b) Results using the updated channel-based segmentation
technique.

Figure 2.6: Visualisation of the different results using the original and updated channel-based segmentation technique.

Given the obtained results of the different ground segmentation methods in combination with practical
implementation limitations of other state-of-the-art methods, the channel-based ground segmentation
method was selected as it seemed to be the most suitable method in the context of this research.
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2.4. Ground surface reconstruction
Smoke can lead to false negative (ground) points [30], which can be a problem because those ground
points provide the information on which the robot (or its operator) eventually determines where it can
or can not drive. The reason that ground points are missing is often due to either the presence of
dense smoke which absorbs the emitted signal [9] or because the emitted signal is blocked by another
object so that the actual ground is never reached. To properly deal with these false negative points,
(ground) surface reconstruction techniques exist of which the two main categories can be identified
within scientific literature. Additionally, the exact output created by these (ground) surface reconstruc-
tion techniques depends on the category to which the technique belongs.

• Physics-based reconstruction: These methods are often used for reconstructing the exterior sur-
faces of houses based on point clouds obtainedwith LiDAR. Thesemethods, often use incomplete
point clouds as input (e.g. from the outside of the house) and obtain an output in the form of some
3D CAD model consisting of several intersecting planes which represent the estimated exterior
surfaces (e.g. from the house used as input). These methods estimate those exterior surfaces
based on the input point cloud, by leveraging high-level, often physics-based knowledge about
the object of interest. For example, when many points are vertically aligned over a large sur-
face, it assumes that those points represent a wall. Using that assumption, it is then known that
this wall has to intersect with a ground surface since a wall cannot float. Using high-level logical
reasoning like just described, these methods use the limited knowledge from the point clouds to
make educated guesses about surfaces to accurately reconstruct them. The main disadvantage
of these techniques in the context of this research is the large runtime they require which is often
in the tens of seconds.

• Semantic scene completion: The second and final category of ground surface reconstruction
techniques identified within the scientific literature is that of semantic scene completion. These
techniques are used in the context of self-driving cars because they enable an improved under-
standing of the scenes given that these methods outperform sole segmentation-focused meth-
ods [31]. In the context of these methods, ground surface reconstruction refers to reconstructing
point clouds with false negatives. In other words, it is about turning the false negative into true
positive ground points. These semantic scene completion techniques are types of deep learning
networks which use encoders and decoders to reconstruct the point clouds. These techniques
can be very accurate and offer real-time performance but do require a lot of labelled point clouds
to train upon as well as expensive hardware like NVIDIA GPUs.

(a) Example of the input used by the semantic scene completion
method developed by X. Yang et al. [31].

(b) Example of the output created using the semantic scene
completion method developed by X. Yang et al. [31].

(c) Example of the input, processing steps and output using the physics-based surface reconstruction method PolyFit [10].

Figure 2.7: Visual impression of two different categories of point cloud-based surface reconstruction methods.
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2.4.1. State of the art
When looking at the state-of-the-art methods, two physics-based and two semantic scene completion
techniques are identified and discussed in this subsection.

Physics-based reconstruction:

• Vectorized indoor surface: As the name suggests, this method developed by J. Han et al. [11]
focuses on reconstructing indoor door surfaces. It does so by first segmenting permanent struc-
tures from the scene and completing the walls and floors using Integer Linear Programming. In
general terms, the wall structures are detected using k-nearest neighbours which determine which
points are below a certain threshold in terms of the curvature they form. To the points below the
threshold, RANSAC plane fitting is applied to determine which points form a wall surface. Addi-
tionally, RANSAC plane fitting is applied to the bottom and top points in the points cloud. The
precise threshold values for this are determined based on the height of the wall points obtained
earlier. Finally, the resulting planes are converted into a 3D CAD model which is the eventual
output of this technique.

• PolyFit: This technique developed by L. Nan et al. [10], uses RANSAC plane fitting to fit a multi-
tude of planes to the point cloud. Cleverly enough, it does so using the principle that intersecting
planes have to meet watertight constraints which ensures physically valid models. Finally, the
optimal number of planes is obtained using an objective function which takes into account, among
other things, the model complexity and point coverage of the planes. This technique is visualised
in Figure 2.7c.

Semantic scene completion:

• SSA-SC: While this method developed by X. Yang et al. [31] is already surpassed in terms of
mIoU, it is still included as state-of-the-art because it does offer the best trade-off between mIoU
and speed. In the context of this research, the trade-off between performance and speed is very
important since the goal is to obtain a method which works in real-time. Their method is a network
which consists of a 2D completion branch and and 3D semantic segmentation branch. Probably
themost significant contribution is the 2D completion branchwhich turns the point cloud into a BEV
feature map upon which the reconstruction of missing points is performed. The BEV feature map
turns the point cloud into a 2D representation which leads to significant computational benefits.
Their technique achieved a mIoU of 23.5%, giving it the third rank on the SemanticKITTI semantic
scene completion challenge [32]. At the same time, this technique achieves a speed of up to 20
FPS. The input and output of this method are visualised in Figure 2.7a and b.

• SCPNet: Without going into too much detail about how the functionality of the method created
by Z. Xia et al. [33], it works by having not one but two networks (a student and a teacher),
each consisting of a 3D completion method as well as an encoder and decoder for segmentation
purposes. By having these two networks, the features identified by both networks are matched
which makes the method more robust to moving objects. These moving objects are what other
semantic scene segmentation methods struggle with, resulting in unwanted false positives. Doing
so, this method has the first rank in the SemanticKITTI semantic scene completion challenge with
a mIoU of 36.7% [32]. Furthermore, this technique achieves speeds of up to 5.8 FPS.
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2.4.2. Selection of the technique
To choose the ground surface reconstruction technique which is best for the method developed in the
research, a couple of practical observations about the state-of-the-art techniques presented in Sub-
section 2.4.1 were assessed. The first one was that the physics-based methods take very long to
compute which is understandable as they focus purely on reconstruction accuracy and are not designed
for real-time applications. The runtime of these techniques is in the tens of seconds which in essence
makes them unsuitable for implementation within the developed method in the research.
Next, there are the semantic scene completion methods which are designed for real-time application
and also achieve impressive performance in terms of mIoU. Numerous attempts have been made to
successfully implement these methods. Unfortunately, this did not lead to any success because these
semantic scene completion techniques all require NVIDIA GPUs to run them. Even if these techniques
would successfully run there was still the uncertainty of how to obtain enough relevant indoor point
cloud for those techniques to train upon.
With both states of the categories showing serious practical limitations, it was decided to develop a
novel ground surface reconstruction technique. This technique is designed to work in the context of
the research assignment as presented in more detail within Section 3.4.



3
Method

In order to leverage the limited information from degraded point clouds obtained in environments filled
with smoke for the reconstruction of indoor ground surfaces in a real-time manner, a method is devel-
oped based on the challenges caused by smoke as described in Section 2.1. The identified solutions
to these challenges are point cloud denoising to remove the false positives, ground segmentation to
identify the irregular presence of ground points and finally, ground surface reconstruction to better visu-
alise where to ground is despite the many false negatives in the point clouds. After selecting the most
suitable techniques for dealing with the independent challenges caused by smoke, an actual method
which combines these techniques has to be created. This chapter will start by presenting an overview
of the developed method. Next, each main component of the developed method will be explained in
more detail using dedicated sections.

18
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3.1. Overview
The developed method works using a degraded 3D point cloud obtained from an indoor environment
filled with smoke as input. The output is a reconstructed point cloud of the full indoor ground surface
reaching up to the surrounding walls. Depending on the amount of segmented ground points despite
the smoke, this reconstructed point cloud consists of segmented ground points and/or reconstructed
ground surfaces in the form of a point cloud. With the input and output explained, it is relevant to
look at the different components of which the method consists in order to better understand how the
output is obtained. The developed method consists of three main components namely, the point cloud
denoising, ground and wall segmentation, and finally the ground surface reconstruction and merging
of results. All these components will be described in more detail in dictated sections within the chapter
but first, they will be briefly introduced in this section. Furthermore, a visualisation of all functionalities
within the method is presented in Figure 3.1.

• Point cloud denoising: The first step of this method is to properly filter out the false positive
points created by the smoke. These (noise) points are characterised by their dense distribution
close to the LiDAR sensor as well as by their low-intensity values. The denoising of the point
cloud is done by reproducing and implementing a leading point cloud denoising filter.

• Ground and wall segmentation: As the second step, ground segmentation is applied on the
denoised point cloud. This is useful because true positive ground points which are still visible
in smoke remain the most accurate representation of the ground surface. The selected ground
segmentation technique for this component of the method is known for its leading processing
speed. Next, segmentation of wall points is performed using the same technique but with different
parameters. The segmentation of wall points is relevant since those points contain valuable
information for the reconstruction of ground surfaces and are often among the points with the
highest intensities which keep these points visible in even the heavier smoke conditions.

• Ground surface reconstruction and merging results: This third and final step uses the seg-
mented wall points and divides them into multiple angular segments - when looking at the xy-
plane - using a polar grid. Next, per angular segment: the method checks how many ground
points it expects to find and compares that with the actual number of segmented ground points
found for that segment. If the number of segmented ground points is above the threshold for
that segment, those segmented ground points are shown. Otherwise, the method reconstructs
the ground surface for that segment using the information from the wall points in that segment in
order to determine to what distance and height, the ground points shall be reconstructed.

Figure 3.1: Overview of the different steps within the developed method.
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3.2. Point cloud denoising
As the first step of this method, the leading point cloud denoising technique called AGDOR [7] is recre-
ated in Python, fine-tuned and implemented to work in ROS. This technique works by first filtering out
points based on a user-defined intensity threshold. This is done with the high-level knowledge that
noise (false positives) caused by adverse conditions, have mostly lower intensities compared to re-
flections from objects. Now, the low-intensity points may also include points of objects such as the
actual ground. To retrieve low-intensity points from actual objects (true positives), a KDTree neighbour
search [13] is performed. This is done with the rationale that adverse conditions (for example rain and
snow) often create sparse noise in point clouds. In smoke, it is the other way around namely: false
positives are often the denser points since they arise close to the LiDAR sensor and because they
concern reflections from very fine particles. Therefore in this context, a KDTree neighbour search is
used to filter out the false positive points - which are assumed to be denser compared to reflections
from actual objects. Normally, a KDTree search is performed with a fixed search radius. However,
as described in sub-section 2.2.1, the search radius in AGDOR scales linearly with the distances of
the point from which the KDTree neighbour search is performed. Figure 3.2b, shows the point cloud
obtained after denoising. Additionally, the pseudo-code in Algorithm 1 shows the functioning of the
implemented denoising method.

(a) Raw point cloud occluded by heavy smoke. (b) Denoised point cloud obtained using AGDOR [7].

Figure 3.2: Visualisation of output from point cloud denoising.

Algorithm 1 AGDOR cloud denoising method [7].
Input: P = p1, p2, ...pn; pi = xi, yi, zi, intensityi, timestampi, ringi
Output: Pnoise, Pdenoised

1: ITh← defined intensity threshold
2: neighborsthreshold← defined number of neighbors threshold
3: Step 1:
4: for p ∈ P do
5: if p[′intensity′] < IThi then
6: Plow ← p
7: else
8: Pdenoised ← p
9: end if
10: end for
11: Step 2:
12: for p ∈ Plow do
13: ri =

√
x2
i + y2

i + z2
i

14: SR = α ∗ θ ∗ ri
15: number of neighbors← KDTreeNeighborSearch(SR)
16: if number of neighbors > neighbors threshold then
17: Pdenoised ← p
18: else
19: Pnoise ← p
20: end if
21: end for
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3.3. Ground and wall segmentation
Ground segmentation: In the second step of the method, ground points are identified using an ad-
justed version of the channel-based ground segmentation technique created by C. Phuong et al. [8].
This method analyses the denoised point cloud Pdenoised based on each of the vertical segments. For
example, the LiDAR used in this research has a 360◦ horizontal field of view and a vertical resolution
of 0.4◦ which means that the ground segmentation technique will assess 360◦

0.4◦ = 900 vertical segments.
These vertical segments can be obtained by grouping points based on similar timestamps or by dividing
the points using a certain angular resolution. Next, an elevation angle α, height h and distance for each
of the consecutive point pairs within a vertical segment are determined. In the original work, the ele-
vation angle α, may not exceed a certain αmax threshold. Also, if the height between two consecutive
points exceeds are certain hmin threshold, the second point is considered a non-ground point. Finally,
the distance between the sensor and point i + 1 has to exceed the distance between the sensor and
point i. This technique is illustrated in Figure 3.3a.

The new feature which is developed and added to the original technique involves adding a different
distance requirement. Given a vertical segment with n points, the distance requirement used to be
about requiring the distance between the sensor and point i + 1 to exceed the distance between the
sensor and point i. With the new feature, the distance requirement is updated and says that for two
consecutive points, the distance between the sensor and point i+1must be at least 30mm larger than
the distance between the sensor and point i. This requirement is added because, as illustrated in Fig-
ure 3.3b, smoke can create a false positive point (marked in red) which is seen as noise by the original
method because the angle it creates exceeds the maximum allowed threshold value. However, the
second false positive point (marked in orange) caused by smoke does not exceed the threshold angle
and is thus included as a false positive. In smoke the distance between such points is often very small
and via empirical testing, a minimum difference in distance between the LiDAR and subsequent points
was found to be 30 mm. Adding this new feature significantly reduces the number of false positives
(noise) caused by smoke within the segmented ground points. The resulting point cloud containing just
the segmented ground points is called: Pground. The technique is also described using pseudo-code
by Algorithm 4 within the Appendix.

Wall segmentation: Using the same technique but with different values for the threshold parameters
αmax and hmin, the wall points have been segmented which results in the following point cloud: Pwallseg.

(a) Schematic of the ground segmentation technique created by C.
Phuong et al. [8].

(b) Visualisation of the newly added functionality.

Figure 3.3: Illustrations of the original (left) and updated (right) channel-based ground segmentation techniques.
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Clustering: After the wall points Pwallseg have been identified, clustering of the different walls has to
take place. This way, the different wall segments can be distinguished from each other. Which allows
for independent analysis of the points per wall. The clustering method is implemented using the KDTree
function from the PCL library [13] which is available for both Python and C++ scripts used in ROS. The
KDtree takes the Pwallseg as input after which the min, max cluster size and search radius have to be
specified. The output of the KDTree clustering function will be referenced as Pclusters and like the name
suggests this output consists of multiple clusters, each of which can be accessed independently.

Creating the polar grid representation: Now that each wall in the point cloud is represented as a unique
cluster of points, the point cloud is divided into a multitude of angular segments also known as a polar
grid, this idea is visualised in Figure 3.4a. This is relevant because later on, this allows for effective
reconstruction of ground surfaces between the LiDAR and the wall clusters in case ground points are
missing. The precise angle of the segments and therefore number of angular segments can be set by
the user. The smaller this angle, the more precise the ground surface reconstruction can become but
also the higher its computational complexity.
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3.4. Ground surface reconstruction and merging results
The final step of this work’s method involves reconstructing ground surfaces and merging them with the
results from the ground segmentation step (Section 3.3). To do so, four independent steps have been
taken which are described in this section. To enable a more in-depth understanding of these steps,
a description of steps one and three using pseudo-code (Algorithm 5) can be found in Appendix A.1.
Furthermore, step two is illustrated using Equation 3.1 and a description of step four in the form of
pseudo-code (Algorithm 3) can be found within this section.

First, the lowest z and ring values are extracted from the clusters of wall points Pclusters on a per-
segment basis. This means that an array with the lowest z values and subsequently lowest ring values
is obtained - and saved for later use - for each of the angular segments using the information of the
corresponding wall point clusters.

As a second substep, the number of segmented ground points is compared on a per-segment basis
with the expected number of ground points for that segment. If the actual number of segmented ground
points is above a percentage (gain) of the expected number of ground points for that segment, the
segmented ground points are stored inside an array of points which will be part of the actual output.
When the threshold is not met for a specific segment, it means that very few ground points are present
and therefore the ground points are reconstructed for that segment using a wall-based ground surface
reconstruction function. The number of expected ground points per segment is calculated as follows:

expected points = min(ring value) ∗ segment angle◦

horizontal resolution◦
∗ gain (3.1)

(a) The creation of a polar grid in the xy-plane with
user-defined angular segments.

(b) Visualisation with the blue striped lines indicating the segment
on which the threshold is being applied.

Figure 3.4: Visualisation of the polar grid creation (left) and segmented ground points threshold (right).
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The third step is the adjustment of z-values for segments which did not meet the threshold. This works
by comparing per segment: the z-values of segment i with those of adjacent segments i− 1 and i+ 1.
Additionally, the sensor’s floor height (which is known) is used to obtain the elevation angle between
the lowest z-value assigned to segment i, this elevation angle shall remain below a certain threshold.
This is done to prevent any unrealistic wall-based ground surface reconstruction. In case the z-values
assigned to a segment which will be reconstructed differ more than a certain amount from those of adja-
cent segments, it will adjusted to the lowest z-value of the adjacent segment (but only after all segments
have been assessed). If the assigned elevation angle obtained for this segment is (still) more than a
’global’ threshold, the z-value assigned to the segment will be set to the sensor’s floor height since that
is the only actual ground truth available. In other cases, the segment’s z-value is left untouched. A
simplified illustration of this function is presented in Figure 3.5a, where the continuous black lines with
letters represent the clusters of wall points.

The fourth step is the actual wall-based ground surface reconstruction using the adjusted z-values ob-
tained in the previous step. By and large, this works as follows: First of all, the lowest ring value per wall
segment is known and the assumption is made that the lowest ring value of a wall-cluster, has a high
probability of representing the edge of the ground surface which intersects with the wall. Furthermore,
the distance to the wall is known as well as the horizontal resolution of the LiDAR. The script which
uses this information for the reconstruction of likely ground surface points between the sensor’s ground
point and wall segments is shown in Algorithm 2.

Algorithm 3 Pseudo-code of basic functioning of the wall-based ground surface reconstruction.
Input: Psegments_vec, segment_angles, adjusted_lowest_z, originz, lowest_ring
Output: Preconstructed

1: Preconstructed ← [...]
2: for i,∈ Pclusters do
3: distances← r[1, ..., n]; ri =

√
x2
i + y2i + z2i

4: R← an array from 0 to min(distances) , in lowest_ring[i] number of steps
5: zvalues ← an array from originz to adjusted_lowest_z[i] , in lowest_ring[i] number of steps
6: angles← segment_angles[i] to segment_angles[i+ 1] , in increments of 0.4◦

7: for j ∈ R do
8: xj ← r[j] ∗ cos(angles)
9: yj ← r[j] ∗ sin(angles)

10: zj ←an array with the same length as x and y, filled with: z_values[i]
11: end for
12: Preconstructed ← (x, y, z, intensity, t, r)
13: end for

This function is also visualised in Figure 3.5b, where the pink dots represent the reconstructed ground
surface points and the striped blue lines resemble the segment in which points are reconstructed. Fur-
thermore, in the visualisation of Figure 3.5b, the lowest ring value found in the wall cluster for that
angular segment is four, hence rings 1-3 are being reconstructed. Furthermore, the segment’s angle is
twice that of the LiDAR’s vertical resolution and therefore three points are created on each of the added
rings. In short, this surface reconstruction technique uses high-level knowledge about the intersection
of walls with the ground surfaces in combination with LiDAR’s characteristics such as the horizontal
resolution and the available ring/channel information in the points to create realistic ground surface
reconstructions.
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(a) The mechanism behind modifying z-values of adjacent wall
segments.

(b) The reconstruction of ground surface points per segment.

Figure 3.5: Visualisation of the z-value adjustment and ground surface reconstruction techniques.

Finally, the segmented ground points and reconstructed ground surfaces are merged. This is done a
on per-segment basis meaning that when the number of segmented ground points within that section
is above the expected threshold number, those points are shown within that segment. Otherwise, the
wall-based reconstructed ground surface is shown.



4
Experiments

To prove the effectiveness and robustness of the developed method, experiments are conducted in two
different dedicated training rooms at fire station ’Slotlaan’ in Capelle aan den IJssel (the Netherlands):
(1) inside a square-shaped basic training room and (2) within a more atypically shaped complex train-
ing room. These rooms are chosen because they represent realistic environments of operation for the
firefighting robot. Furthermore, actual experiments with artificial smoke were allowed within these train-
ing rooms. This chapter first presents the equipment used for performing the experiments after which
the conducted experiments in the basic training room and complex training room will be explained and
visualised using dedicated sections.

4.1. Equipment used
Within these experiments, the following equipment is used:

• LiDAR sensor: In this research the Hesai QT128 mechanical LiDAR [5] is used. This Lidar has
128 channels (also known as rings) giving it a 105.2◦ vertical field of view, while also having a
360◦ horizontal field of view. Furthermore, this LiDAR has an effective range of 20 meters at 10%
reflectivity and can operate in temperatures between −40◦C and 85◦C. Additional specifications
can be found in Appendix A.4.

• Smoke machine: The Antari Z 1000 MKII DMX smoke machine [34] is used, which can output
283 m3 of (water-based) artificial smoke per minute. This high-volume output makes the smoke
machine very suitable for quickly filling the training rooms with thick smoke.

• Computer: The point clouds obtained during the experiments are recorded as ’rosbag’ files via
ROS Noetic [2] for later evaluation. The computer used during these experiments is the Lenovo
Ideapad 5 laptop [35] with the Ubuntu 20.04 [4] operating system.
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4.2. Experiments in the basic training room
The experimental setup used for the experiments performed in the basic training room is shown in
Figure 4.1c. As can be seen in this figure, relatively few obstacles are present in the room, with the main
ones being two black office chairs and a standing flipover board. Furthermore, the smoke machine is
placed on the ground and the LiDAR sensor is placed on top of a white-coloured support. In this training
room, six different tests are performed:

• Without smoke: First of all, without the presence of smoke, the LiDAR is placed in five different
locations throughout the room as shown in Figure 4.1b. Positions 1-4 make up the first four tests
and are used to capture the environment from very different locations so that later, these point
clouds can be merged to establish the most complete point cloud of the ground surface. Next,
a fifth position is used to obtain a reference point cloud from a more centralised position in the
room.

• With smoke: Finally, in the presence of heavy smoke, the room is captured with the LiDAR located
in position five which makes this the sixth test.

(a) The basic training room, showing a black office chair, smoke
machine and flipover board.

(b) The five different positions from which point clouds have been
recorded in the basic training room.

(c) Visualisation of the experimental setup in position four, showing the
LiDAR sensor on its support as well as the smoke machine.

Figure 4.1: Overview of the basic training room from multiple angles, including the experimental setup.
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4.3. Experiments in the complex training room
Before performing the experiments in the basic training room, experiments were conducted in the com-
plex training room. This is done to see how well the developed method can deal with environments
which contain more and differently shaped objects. The visualisation of this room, including the ex-
perimental setup can be seen in Figure 4.2. Within this figure, it can be observed how the LiDAR is
positioned on top of a sofa, with the smoke machine being positioned on the ground next to a wall.
Additionally, this room contains a wide range of different objects, including, but not limited to: two red
chairs, a sofa, a display cabinet, two smaller cupboards, a desk and an office chair. In this experiment,
the position of the LiDAR remains the same and therefore, two tests are performed in this training room:

• Without smoke: First of all, a test is performed without the presence of smoke. During this test,
the LiDAR captures the room from the position on the sofa as shown in Figure 4.2a. This is done
to obtain a ground truth of what the (ground) points look like without any degrading effects on the
point clouds caused by smoke.

• With smoke: Next, the room is captured by the LiDAR in the presence of heavy smoke which
makes this the second and final test in the complex training room.

(a) Visualisation of the LiDAR’s position within the complex training
room.

(b) The LiDAR’s position within the complex training room, shown from
a different angle.

(c) The experimental setup with the LiDAR on the sofa and smoke
machine positioned on the ground.

(d) The complex training room in very light smoke.

Figure 4.2: Overview of the complex training room from multiple angles, including the experimental setup.
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Results

In this chapter, the results obtained from the experiments as described in Chapter 4 are presented.
These results are all obtained by processing the point clouds from the performed experiments using a
Jetson Orin Nano single-board computer [3]. This chapter first presents the qualitative results followed
by the quantitative results, each of which will be presented in dedicated sections. The qualitative results
consist of a visual comparison between the LiDAR’s point clouds obtained in different conditions and
the output created by the developed method. Finally, the quantitative results consist of a grid-based
area and height comparison between the ground points of the point clouds obtained directly using the
LiDAR and the output created by the developed method. Additionally, a break-down of the developed
method’s computational speed is presented.

5.1. Qualitative results
The qualitative type of results have been obtained since they form an effective way of assessing to what
extent the method performs as expected. As described in Chapter 4, to obtain insightful qualitative
results, the following four scenarios have been assessed:

1. The basic training room without smoke
2. The basic training room filled with heavy smoke
3. The complex training room without smoke
4. The complex training room filled with heavy smoke
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Please note: the parameters used by the method as well as enlarged pictures of the results shown in
this section can be found in Appendix A.2 and A.3 respectively. Furthermore, besides the reconstructed
ground surface, sub-figures 5.2c, 5.3c and 5.4c, all show some outlines of wall points as well. This is
done for visualisation purposes only, since it helps to judge how accurately the surface is reconstructed.

1. Basic training room without smoke
To assess the performance in a relatively straightforward environment, tests were performed in the
basic training room without any smoke. In Figure 5.1, the results obtained using a camera (a), merging
the ground points of the LiDAR’s point clouds from position 1-4 (b) and the output of the ground surface
reconstruction method based on the point cloud from position 3 (c) are shown. The merging of the point
clouds from four different locations is done to obtain a ground truth point cloud of the ground surface.

(a) Picture of the basic training room from a
similar perspective as the point clouds.

(b) The ground truth ground points obtained
by merging point clouds from four locations.

(c) The output point cloud obtained using
the ground surface reconstruction method.

Figure 5.1: Visualisation of the different results obtained in the basic training room without smoke.

2. Basic training room filled with heavy smoke
Next, the results obtained in the basic training room filled with heavy smoke are shown. This is done
as a way to show the robustness of the method in challenging conditions caused by smoke. Figure 5.2
shows the results obtained using a camera (a), the LiDAR’s point cloud from position 5 (b) and the
output of the ground surface reconstruction method based on the point cloud from position 5 (c).

(a) Picture of the basic training room filled
with smoke.

(b) The point cloud obtained in the basic
training room filled with smoke.

(c) The output point cloud obtained using
the ground surface reconstruction method.

Figure 5.2: Visualisation of the different results obtained in the basic training room filled with heavy smoke.
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3. Complex training room without smoke
Next to the basic training room, results obtained in the complex training room are shown. These results
are relevant since they show how the developed method deals with more complex environments. In
Figure 5.3, the results obtained using a camera (a), the LiDAR’s point cloud (b) and the ground surface
reconstruction method (c) are shown.

(a) Picture of the complex training room
from a similar perspective as the point

clouds.

(b) The point cloud obtained in the complex
training room without heavy smoke.

(c) The output point cloud obtained using
the ground surface reconstruction method.

Figure 5.3: Visualisation of the different results obtained in the complex training room without smoke.

4. Complex training filled with heavy smoke
Finally, the results of the complex training room filled with heavy smoke were obtained. Figure 5.4
shows the results obtained using a camera (a), the LiDAR’s point cloud (b) and the ground surface
reconstruction technique (c).

(a) Picture of the complex training room
filled with smoke.

(b) The point cloud obtained in the complex
training room filled with heavy smoke.

(c) The output point cloud obtained using
the ground surface reconstruction method.

Figure 5.4: Visualisation of the different results obtained in the complex training room filled with heavy smoke.
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5.2. Quantitative results
In this section, the quantitative results obtained using point clouds from the ”basic training room” are
presented. Only this ”basic training room” is used for the quantitative evaluation since the point clouds
obtained in the ”complex training room” contain too many false negative ground points (even without
smoke) resulting from large amounts of the LiDAR’s emitted laser pulses being blocked by objects.
The many blocked points added significant uncertainty about the actual area of the ground surface,
hence making it unrealistic to obtain an accurate and usable ground truth point cloud of the actual
ground surface. Consequently, this would give an inaccurate and misleading comparison between the
occupancy grids obtained using the method’s output and those obtained from the point clouds.
The quantitative results in the section will be presented in the following order. First, the method’s
ability to reconstruct the ground surface is assessed using occupancy grids obtained from point clouds
in different scenarios. Next, the height of the reconstructed surface is compared to that of the ground
truth based on the occupancy grids obtained earlier. Finally, a breakdown of themethod’s computational
speed is presented.

5.2.1. Occupancy grid evaluation
To evaluate how well the developed method reconstructs the ground surface, 2D (binary) occupancy
grids have been created which are based on different types of point clouds as input. To create these
occupancy grids from the LiDAR’s point clouds, z-value thresholds were used to extract all the ground
points present in the point cloud. Furthermore, the xy-plane is divided into a fixed number of cells
and if one or more points lie within the xy-limits of a cell, that cell’s area will be coloured black in the
grid. In case, no ground points were present within a cell, the area is coloured white. These obtained
occupancy grids are presented in Figure 5.5.

(a) Occupancy grid based on
ground truth data.

(b) Occupancy grid of the point
cloud obtained without smoke.

(c) Occupancy grid of the point
cloud obtained in smoke.

(d) Occupancy grid of the
reconstructed ground surface.

Figure 5.5: Visualisation of the four different binary occupancy grids.

The occupancy grids presented in Figure 5.5 are obtained in the following manner:
(a) Ground truth (ideal) occupancy grid: This occupancy grid uses a point cloud from the LiDAR

without the presence of any smoke as a basis. To create an occupancy grid which forms the most
ideal representation of the actual ground surface, false positive points and outliers were identified
and removed from this point cloud. Furthermore, pictures of the room have been analysed to
remove any additional false positives and to fill in possible false negative points manually.

(b) Occupancy grid of the LiDAR’s point cloud without smoke: This occupancy grid is obtained directly
from the LiDAR in an environment without any smoke. Only the false negatives created by the
support on which the LiDAR stands have been filled in to create a fair comparison with the result
from the ground surface reconstruction method.

(c) Occupancy grid of the LiDAR’s point cloud in smoke: This occupancy grid is obtained directly
from the LiDAR in an environment filled with smoke. Only the false negatives created by the
support on which the LiDAR stands have been filled in to create a fair comparison with the result
from the ground surface reconstruction method.

(d) Occupancy grid of reconstructed ground surface in smoke: This occupancy grid is obtained using
the ground surface reconstruction method developed in this thesis. The input used by this method
was the same as used for the ”occupancy grid in smoke”, namely: a point cloud obtained in an
environment filled with smoke.
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By overlapping the different occupancy grids with the ”ground truth (ideal) occupancy grid”, it was
determined what cells make up the true positives, true negatives, false positives and false negatives
for each of the different occupancy grids. The resulting grids will be referred to as ”classification grids”
(Figure 5.6). Using these grids, performance metrics such as precision, accuracy, recall, F1 and IoU
have been obtained. These metrics are presented in Table 5.1 and indicate how well the developed
method reconstructs the ground surface from a purely xy-plane perspective.

(a) Classification grid of the point cloud
without smoke.

(b) Classification grid of the point cloud in
smoke.

(c) Classification grid of the reconstructed
ground surface in smoke.

Figure 5.6: Visualisation of the three different classification grids.

Classification grid Precision Accuracy Recall F1 IoU
Point cloud without smoke 0.95 0.95 0.99 0.97 0.95
Point cloud in smoke 0.99 0.69 0.63 0.77 0.63
Reconstructed ground surface in smoke 0.97 0.86 0.86 0.91 0.84

Table 5.1: Table showing the performance metrics obtained using the three classification grids.

5.2.2. Reconstructed height evaluation
Next to the method’s ability to reconstruct the ground surface from a xy-plane perspective, the ability
to estimate the correct height of a ground surface has also been assessed on a per-cell basis for all
the true positive cells. This height evaluation is done for the classification grid which is obtained by
overlapping the ”ground truth (ideal) occupancy grid” with the ”occupancy grid of the reconstructed
ground surface in smoke”, since this comparison most accurately resembles the difference in height of
the reconstructed ground surface from the actual ground surface. The obtained results are visualised
in Figure 5.7 with sub-figure a, showing the combined height differences for all true positive cells in the
form of a boxplot and sub-figure b, showing the height difference on a per-cell basis using a heatmap. In
this heatmap, cells which were not true positives were given a 0.0 mm height difference. The resulting
mean and median height differences for all true positive cells are -27 mm and -23 mm as indicated by
the green triangle and orange line respectively in Figure 5.7a.



5.2. Quantitative results 34

(a) Boxplot of all true positive height differences. (b) Heatmap of the height differences for all true positive cells.

Figure 5.7: Visualisation of height differences between the ground truth and reconstructed surfaces.

5.2.3. Computational speed
In this subsection, the total computational speed of the developed method is presented together with
the speed of the components on which the method depends. These results are the ’net’ speeds and
contributions to the total runtime, meaning that if for example, component B uses component A’s output,
the runtime of A is subtracted from that of B. This way the ’net’ computational speed of component B,
excluding the impact of component A on which it does depend, is obtained. An overview of these results
is presented in Table 5.2:

Component Script type Runtime (s) Hz Contibution to total runtime
LiDAR N/a 0.10 10.0 4.0%
Denoiser Python 1.48 0.7 59.2%
Ground segmentation C++ 0.01 196.9 0.2%
Wall segmentation C++ 0.01 196.9 0.2%
Ground surface reconstruction C++ 0.91 1.1 36.4%
Full method C++ & Python 2.50 0.40 100%

Table 5.2: Overview of the computational speed per main component of the developed method.



6
Discussion

This chapter will focus on the main limitations of this work and in doing so, also give an interpretation
of the obtained qualitative and quantitative results. To effectively discuss these limitations, they will
be discussed per stage of this research. Therefore this chapter covers the limitations concerning the
selection of techniques, followed by the developed method and finally, the conducted experiments. In
addition to the limitations, this chapter will end with a section dedicated to this work’s implications.

6.1. The selection of techniques
When reflecting on the selection of techniques usedwithin this method, the first limitation to be remarked
concerns the trade-off between speed and accuracy which often had to be made when selecting one
of the considered techniques for implementation in the method. This was the case for all three of the
method’s main techniques namely: point cloud denoising, ground as well as wall segmentation and
ground surface reconstruction. The second limitation concerned the large inconsistency in datasets,
required hardware and programming languages used among these techniques. This makes it very hard
to create fair comparisons between the different techniques, hence making it hard to select the best
one. Especially because many techniques did not directly compare themselves to other state-of-the-art
techniques. The third and final limitation in this context concerns the implementation difficulties of the
different techniques. This was especially true for the machine learning-based point cloud denoising,
ground segmentation and ground reconstruction techniques. The requirements of these methods, in
terms of hardware (such as NVIDIA GPUs) and large amounts of labelled point clouds, exceeded the
available resources of this project. Therefore, they could not be successfully implemented. This is
unfortunate because when trained on relevant data, these techniques may lead to significant results.
Furthermore, many of the considered techniques had only very limited documentation available often
without actual code.
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6.2. The developed method
Next to the process of selecting the techniques, the developed method itself also has several note-
worthy limitations. In order to thoroughly discuss these limitations, they will be presented per main
component of the developed method.

Point cloud denoising: As shown by the results in Section 3.2, the point cloud denoising technique [7]
used in the developed method is an effective technique for reducing the number of false positives in the
point cloud while keeping valuable true positive ground points. However, it has two main limitations.
First of all, it filters out some true positive points as well. This can be explained because the tech-
nique used is designed for sparser false positive point clouds (e.g. those from snow and rain). In this
work, the technique’s parameters were tuned on the observation that false positives caused by artificial
smoke create denser (instead of sparser) false positives. Unfortunately, this has the consequence that
some true positive points are filtered out as well. The second and final limitation is the relatively low
processing speed of this method with a runtime of 1.48 seconds per point cloud (Table 5.2). This has
the additional downside of limiting the speed of the overall method since it depends on the output of
this point cloud denoising technique. The total contribution of this technique to the overall method’s
runtime is 59%, as is presented in Section 5.2.

Ground and wall segmentation: Within the developed method, the technique used for both ground and
wall segmentation is based on the work of C. Phuong et al. [8]. This technique is known to be one of
the fastest ones available without the need to train on large amounts of data. By assessing the results
in Figure 2.6 of Section 2.3, it can be observed how the technique effectively segments the ground,
albeit together with some false positive ground points. On the flip side, this segmentation technique
also comes with note-worthy limitations. The first one is that this technique requires three parameters
to be correctly chosen. Doing so comes down to a trade-off between more false positive points (and
more true positive ground points) or fewer false positive points (and fewer true positive ground points).
The next main limitation of this technique manifests itself during the segmentation of wall points. More
specifically, if the point clouds are obtained in rooms with smoke and/or a lot of windows. That is be-
cause in such scenarios the points representing those walls are more noisy and inaccurate compared
to point cloud representations of the actual walls. This may create misleading results later on when
per angular segment, the wall points closest to the LiDAR as well as the lowest wall point are used to
reconstruct the ground surface. This effect is also reflected in the quantitative results of the ground sur-
face reconstruction method where more false positive and false negative cells are visible in Figure 5.6c
compared to the ground truth scenario of Figure 5.6a.

Ground surface reconstruction: The custom ground surface reconstruction technique, aims to recon-
struct the ground points at their expected locations on the ground surface, disregarding possible inter-
ference from smoke or other objects which may reflect or absorb these points. When closely assessing
and comparing Figure 5.2b with c, it can be seen how the ground surface of the basic training room
is fairly accurately being reconstructed. The same comparison can be made by looking at Figure 5.4b
and c. These observations are underlined by the satisfactory results including, but not limited to, an
IoU of 84% - compared to 64% of the ground surface covered by the point cloud in smoke - and a
mean height difference of -27 mm compared to the ground truth. At the same time, the technique also
introduces several limitations given the assumptions made within the technique, which can differ from
reality.
Firstly, per segment: the technique assumes the number of channels it has to reproduce based on
the lowest ring value found within those wall points for that segment. In practice, the identified wall
points often do not contain the wall points which intersect with the ground surface. This is because,
especially in smoke, not all wall points are correctly reflected back towards the LiDAR. This has two
consequences: first of all, too many channels and consequently points can get reconstructed which
results in very dense reconstructions of the ground surfaces (Figure 5.1c). Secondly, this overesti-
mated the number of expected ground points which influences the merging of results (more on this
in the Merging the results bullet). Thirdly, the method assumes that per segment: the length of the
reconstructed surface equals that of the smallest distance from the wall points to the sensor. While this
is a reasonable estimate, reality often requires the length of the reconstructed surface per segment to
be adaptive to the detected walls. The false negative cells and false positive cells which are visible
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in Figure 5.6c can largely be explained by this effect. Finally, the method introduces a limitation by
reconstructing the ground surface linearly in an ascending or descending way from the sensor’s floor
height towards the lowest identified wall point for a given angular segment. This effect can also be
observed when looking at the quantitative results of Figure 5.7b. In reality, the height of the ground
surface may for example be curved, which weakens the robustness of this reconstruction approach.

Merging the results: The developed method chooses on a per-segment basis, whether to display the
segmented ground points or to reconstruct and display a ground surface. This choice is made based on
whether a given segment contains a certain minimum fraction of the amount of expected ground points.
This comes with two limitations: First of all, this decision-making approach can lead to a sub-optimal
output performance in cases where only a part of the ground points are available but still those are
shown as output instead of a reconstructed ground surface. The rationale for doing so is that the seg-
mented ground points (if available) are often still the most accurate representation of the actual ground
surface. Secondly, the number of expected ground points is often overestimated since the segmented
wall points within thick smoke may not accurately resemble the wall points which are close to intersect-
ing with the ground surface. In those cases, the identified lowest ring value for the reconstruction of a
certain segment is often too high which leads to an overestimation of the expected number of ground
points based on Equation 3.1.

6.3. The conducted experiments
The experiments performed during this research also introduce limitations which shall be taken into
consideration. First, these experiments have been conducted using artificial smoke, which consists of
water-based particles instead of the soot particles found in real smoke. This creates uncertainty about
how a LiDAR and the developed method will perform in actual smoke given the potentially differing
effects that such particles may have on the reflection and absorption of emitted LiDAR pulses. Finally,
the method has been tested in just two different rooms, both consisting of static environments. This
limits the proof of the developed method’s robustness given the uncertainty about the different, possibly
dynamic environments.

6.4. Research implications
To be best of my knowledge there is an absence of directly relevant scientific literature which deals with
the main research question of this work. For that reason, this work can be seen as a valuable contribu-
tion to the scientific literature related to surface reconstruction based on point clouds. More specifically,
the method developed in this work forms a (modular) foundation for fast and accurate ground surface
reconstruction without relying on machine learning techniques which may require large amounts of la-
belled point clouds.
The developed method in this work will provide the operator and firefighters with additional spatial infor-
mation about smoke-filled environments. This additional spatial information can be helpful information
for the operator to accurately and safely control the navigation of Brutus. Additionally, this information
can complement the fire brigade’s information-gathering procedure concerning environments filled with
smoke. Next to firefighting robots - with some minor modifications - the developed method in this re-
search may also be used for indoor drones equipped with a LiDAR sensor since these types of drones
are already being used by the fire department.
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Conclusion

This work aims to develop a method which can leverage the limited information from degraded point
clouds obtained in environments filled with smoke, to reconstruct indoor ground surfaces in real-time.
This goal comes from the desire of the fire department to use the limited information from degraded
point clouds to aid the operator - and consequently firefighters - with additional spatial information about
smoke-filled environments. This can be an important step towards the fire department’s longer-term
ambition of enabling autonomous navigation on Brutus, even in environments filled with smoke.

Following the desire presented above, the following main research question was obtained: How to
enable real-time reconstruction of indoor ground surfaces in occluded environments filled with smoke
based on point clouds obtained using LiDAR? The overall answer is: by constructing a method com-
posed of novel and existing techniques which tackles the independent sub-challenges introduced by
smoke on the point clouds obtained with LiDAR. These techniques include point cloud denoising, wall
and ground segmentation, and ground surface reconstruction. The effectiveness of this approach is
underlined by the satisfactory results obtained in the research which include, but are not limited to, an
IoU of 84% and a mean height difference of -27 mm compared to the ground truth. This main research
question will be further answered in the context of the obtained sub-questions. Additionally, it has to
be remarked that the conclusions presented here are based on artificial smoke instead of actual smoke.

Continuing with the first sub-question: How does smoke affect the visibility of ground points in a point
cloud obtained with LiDAR? This question is answered by Section 2.1 of this report, which found two
main effects caused by smoke on point clouds obtained with LiDAR: Firstly, ground points are among
the first points to be absorbed by smoke given their lower intensity values compared to other points.
Secondly, smoke creates many low-intensity, false positive points around the LiDAR sensor. Both ef-
fects degrade the quality of the point cloud and consequently the perception within environments filled
with smoke. Especially the ground points suffer from this effect given their low intensity values, which
underlines the importance of the second sub-question.

The second and final sub-question is as follows: What method can be developed to tackle the main
research question? As stated at the beginning of this chapter, the overall answer to this question
is a method which effectively tackles the independent sub-challenges introduced to the point clouds
obtained in environments filled with smoke. Following this very broad answer, the key takeaways from
the results obtained using the developed method give a more nuanced answer to this second sub-
question.
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The most important takeaways per component of the developed can be summarised as follows:

1. Point cloud denoising: As shown by the results in Section 3.2, the point cloud denoising technique
used is an effective technique for reducing the number of false positives in the point cloud while
keeping valuable true positive ground points. Therefore, this is an effective first step towards
enabling ground surface reconstruction. The downside of this technique is the relatively poor
runtime, which contributes to 59% of the method’s total runtime, as is presented in Section 5.2.

2. Ground segmentation: Based on the results presented in Figure 2.6 of Section 2.3, it can be
observed and concluded that the implement techniques effectively segment the ground with only
a limited number of false positive ground points.

3. Wall segmentation: The wall points are reasonably well segmented when looking at the qualitative
results (comparing Figure 5.2b and c). At the same time, there are some inaccuracies, of which
false positives have the most negative impact on the ground surface reconstruction performance.

4. Ground surface reconstruction: This technique significantly reduces the number of false negatives
and increases the number of true positives compared to the point cloud obtained in smoke. This
can be observed by comparing Figure 5.6b and Figure 5.6c and the obtained IoU of 84% versus
63% for the ground truth surface covered by the point cloud in smoke. This underlines the added
value of the developed technique. Despite these promising results, it remains the component
where the most significant advancements can be made in the context of accurate and real-time
ground surface reconstruction. As stated in the discussion, this mainly concerns the equation
which determines whether to display segmented ground points or reconstructed ground points,
the processing speed and finally, having adaptive surface lengths and heights.

In short, when looking at the results obtained using the method developed in this work, the answer to
the research question can be summarised as follows: The reconstruction of indoor ground surfaces in
occluded environments filled with smoke based on point clouds obtained using LiDAR can be realised
using a method consisting of different techniques which tackle the independent sub-challenges for
such environments. However, doing this in real-time will require additional processing power or an
accelerated way of point cloud denoising and ground surface reconstruction.
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Future work

Concerning the performance of the developed method, the most important drawbacks to be tackled
concern four categories: implementation of techniques, parameters, ground surface reconstruction
and speed.

• Implementation of techniques: As described within the ’Selection of techniques’ sections of Chap-
ter 2, several state-of-the-art techniques have not been implemented due to practical problems
encountered while trying to install, recreate, run or implement these techniques. This was espe-
cially true for the machine learning-based techniques. In case additional efforts do succeed in
implementing improved solutions for independent challenges introduced by the smoke, this can
and is likely to improve the output of the developed method.

• Parameters: The point cloud denoising, ground and wall point segmentation and ground surface
reconstruction techniques all require multiple parameters to be correctly set. The performance
and robustness of the developed method can be significantly improved by enhancing the tech-
niques so these parameters no longer have to be manually chosen.

• Ground surface reconstruction: The technique developed to enable this type of reconstruction
can still be improved. The primary areas of improvement are how per segment, the lowest z-
value and ring-value are extracted as well as finding an alternative for linearly reconstructing
points between such extracted points and the sensor’s floor height. Finding additional high-level
knowledge which can complement or even replace the current high-level reasoning may result in
notable performance gains and a more robust method.

• Speed: The drawback concerning speed comes from the point cloud denoising technique and
ground surface reconstruction technique used. Besides simply upgrading the available computa-
tional resources, the point cloud denoising technique as well as the ground surface reconstruction
technique can be developed in a more efficient manner which may significantly increase the com-
putational speed. Additionally, the point cloud denoising method may be converted into C++ to
improve its processing speed.

Next to these drawbacks, another area of future work would be to combine object detection with this
developed method in order to obtain traversable maps of the environment (even in the presence of
smoke). These traversable maps can eventually be used by Brutus to know precisely where it can and
cannot drive, hence being an important step towards enabling autonomous navigation for Brutus.
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A
Appendix

A.1. Additional pseudo-code
Since the method created in this thesis involves a combination of many different techniques, pseudo-
code is provided as well to help better understand the precise working of each of those techniques.
While some of the pseudo-code is presented within the actual chapters, not all were suitable for direct
placement within the text and therefore the remaining pseudo-code is presented here.

Algorithm 4 Channel-based ground segmentation method.
Input: P = p1, p2, ...pn; pi = xi, yi, zi, intensityi, timestampi, ringi
Output: Pground

1: R← r[1, ..., n]; ri =
√
x2
i + y2i + z2i

2: H ← h[1, ..., n− 1]; hi = zi+1 − zi
3: D ← d[1, ..., n− 1]; di =

√
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2

4: α← arcsin(H/D)
5: αmax, hmin, dmin ← 3◦, 0.05m, 0.03m

6: for i ∈ n− 1 do
7: if −hmax <= hi <= hmax

8: and
9: −αmax <= αi <= αmax

10: and
11: ri+1 − ri >= dmin then
12: Pground ← pi
13: end if
14: end for
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Algorithm 5 Combining wall-based ground surface reconstruction with segmented ground points.
Input: Pclusters, Pground

Output: Pfinal

1: Step 1: Create segment angles for the polar grid and assign the Pclusters points to the segments
in which they belong. Additionally, extract the minimum z and ring values per segment.

2: segment_angles←an array from 0◦ to 360◦ , in steps of 10◦

3: Psegment ← [...]
4: Psegments_vec ← [...]
5: lowest_z ← [...]
6: lowest_ring ← [...]

7: for i ∈ segment_angles do
8: for j ∈ Pclusters do
9: if segment_angles[i] ≤ arctan(

yj

xj
) ≤ segment_angles[i+ 1] then

10: Psegment ← pj
11: end if
12: end for
13: Psegments_vec ← Psegment

14: end for

15: for Psegment ∈ Psegments_vec do
16: lowest_z ← min(Psegment.z)
17: lowest_ring ← min(Psegment.ring)
18: end for

19: Step 2: Per segment, check if the number of segmented ground points exceeds the expected
amount as described by Equation 3.1 in Section 3.2. The segmented ground points which
exceed the threshold will eventually be part of the method’s output and are referred to as
gp_segments_included.

20: Step 3: Segments which did not contain the expected amount of segmented ground points, will
have their lowest z-values compared to, and if needed, adjusted to the lowest z-values of adjacent
segments.

21: originz ← −0.70m
22: for i ∈ Psegments_vec do
23: min_distance←the minimum distance value of the points inPsegments_vec[i]

24: elevation_angle← arctan( lowestz [i]−originz

min_distance )

25: adjusted_lowest_z ← [...]
26: if lowest_z[i− 1] < lowest_z[i] or lowest_z[i+ 1] < lowest_z[i]
27: and
28: −5◦ < elevation_angle < 5◦ then
29: adjusted_lowest_z ← min(lowest_z[i− 1], lowest_z[i+ 1)])
30: else
31: adjusted_lowest_z ← originz

32: end if
33: end for
34: Psegments_vec ← adjusted_lowest_z

35: Step 4: Reconstruct ground surface between the origin and lowest z values of the wall clusters as
described in more detail by Algorithm 3 in Section 3.4.

36: Preconstructed ← reconstruction_algorithm(Psegments_vec)

37: Step 5: Merge the segments with ground points gp_segments_included obtained in step 2, with
the segments containing the reconstructed ground surfaces Preconstructed.

38: Pfinal ← Preconstructed + gp_segments_included
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A.2. Parameters used by the developed method to obtain results
In Table A.1, the different parameters used to obtain the results are shown per component of the de-
veloped method.

Component Parameters Values

Point cloud denoiser

Search radius dynamic
Min. / max. cluster size 100 / 5000
Intensity threshold 25
Alpha 0,5

Ground and wall point segmentation and clustering

Search radius dynamic
Min. / max. cluster size 50 / 5000
Min. / max. ground angle -3 / 3 deg.
Min. / max. wall angle 60 / 120 deg.
Relative distance margin 15%

Ground surface reconstruction

Height difference threshold 0.05
Azimuth segment angle 10 deg.
Reconstruction threshold 15%
Min. wall points per segment 10
Max. global elevation angle 5%

Table A.1: Overview of the parameters used per component of the developed method.
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A.3. Enlarged qualitative results
In this section, the results obtained from the experiments are shown using larger image sizes.

A.3.1. Basic training room without smoke
This subsection shows in order: the results from the basic training room without smoke using a picture,
merged ground truth points and the reconstructed output.

Figure A.1: Picture of the basic training room, shown from a similar perspective as the point clouds.

Figure A.2: The ground truth ground points obtained by merging point clouds from four locations.



A.3. Enlarged qualitative results 47

Figure A.3: The output point cloud obtained using the ground surface reconstruction method.

A.3.2. Basic training room filled with heavy smoke
This subsection shows in order: the results from the basic training room filled with smoke using a
picture, the LiDAR’s point cloud and the reconstructed output.

Figure A.4: Picture of the basic training room filled with smoke.
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Figure A.5: The point cloud obtained in the basic training room filled with smoke.

Figure A.6: The output point cloud obtained using the ground surface reconstruction method.
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A.3.3. Complex training room without smoke
This subsection shows in order: the results from the complex training room without smoke using a
picture, the LiDAR’s point cloud and the reconstructed output.

Figure A.7: Picture of the complex training room, shown in a similar angle as the point clouds.

Figure A.8: Point cloud obtained in environments without smoke.
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Figure A.9: The output point cloud obtained using the ground surface reconstruction method.

A.3.4. Complex training filled with heavy smoke
This subsection shows in order: the results from the complex training room filled with smoke using a
picture, the LiDAR’s point cloud and the reconstructed output.

Figure A.10: Picture of the complex training room filled with smoke.



A.3. Enlarged qualitative results 51

Figure A.11: The point cloud obtained in the complex training room filled with heavy smoke.

Figure A.12: Reconstructed ground surface (merged result) in heavy smoke.
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A.4. LiDAR selection considerations
Since my thesis includes the implementation of a LiDAR sensor on a firefighting robot, this appendix
provides information on how the best possible LiDAR for this thesis was selected. Furthermore, this
section presents an overview of different well-known commercial LiDAR models including the technical
specifications.

A.4.1. Selection procedure for the LiDAR purchase
In order to make a well-considered choice when it comes to selecting the best LiDAR model for our
firefighting robot, a sequential procedure has been followed. This procedure consists of the following
steps:

1. Creating a long list of relevant LiDAR companies by:

• Writing down all LiDAR companies found in the relevant scientific literature.
• Adding additional relevant LiDAR companies via Goolge, video calls with LiDAR suppliers
and meetings with TU Delft staff from the intelligent vehicles group on 3mE.

2. List all of the commercially available LiDARmodels, both mechanical (only 128 layer models) and
solid-state models from the companies in the long list.

3. Collect the following (technical) selection criteria for all of the LiDAR models found thus far:

• Max. operating temperature (since we want to robot to be able to operate at high tempera-
tures).

• FoV horizontal (since we want to get a complete view of the operating environment).
• FoV vertical (since we want to get a complete view of the operating environment).
• Horizontal resolution (since we to get a detailed overview of the operating environment).
• Vertical resolution (since we to get a detailed overview of the operating environment).
• Range @ 10% reflectivity (since see at larger distances).
• Price (since there is a limited budget assigned to this project).

4. Narrow down the list of LiDAR models by only keeping the models for which all of the technical
selection criteria could be found (see Figure A.14)

5. Rank the LiDAR models using a weighted scoring method (see Figure A.13).

Eventually, the HESAI QT128 mechanical LiDAR received the highest score and has therefore been
purchased.
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Figure A.13: The weighted scoring method used for selecting the best LiDAR model for my thesis.
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A.4.2. Overview table of commercial LiDAR models

Figure A.14: Overview of well-known commercial LiDAR models including the relevant technical specifications.
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