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SUMMARY

Litter, particularly plastic, accumulating in water bodies is a challenging environmen-
tal issue that affects ecosystems, human health and the economy. Rivers are the main
pathways of land-based plastic waste to the ocean, but they also act as potential tempo-
rary and long-term plastic sinks, where significant amounts of plastic waste accumulate,
and even remain trapped for decades. The detection and quantification of floating lit-
ter in rivers and urban waterways is thus essential for evaluating pollution levels and
informing mitigation actions. However, traditional monitoring methods, such as sam-
pling with nets and booms, are not suitable for large-scale structured monitoring across
multiple geographic locations in extensive river systems. Deep Learning (DL) methods
have shown great promise in automatic detection and quantification of floating litter
from images or videos. Given that this specific field is still in its early stages, this the-
sis aims to enhance the understanding of DL-based litter detection and quantification
in riverine environments, identify key knowledge gaps, and explore methodologies to
address these gaps and drive further advancements in this field.

This thesis presents a critical review outlining the state-of-the-art of DL-based de-
tection and quantification of litter in water bodies, highlighting key knowledge gaps in
this field, as detailed in Chapter 2. The review results indicate that only a few stud-
ies have not achieved satisfactory model generalization performances on new, unseen
images under different geographic, environmental, and device setup conditions. Addi-
tionally, developing robust models using conventional supervised learning (SL) methods
requires a large amount of labeled data for training, that is expensive and laborious. Fi-
nally, few studies have used DL methods to measure floating litter fluxes across rivers
with broader cross-section, with a limited amount of labeled data. However, a robust
detection model with strong generalization capability is particularly crucial for accu-
rately quantifying litter fluxes in large-scale river systems, that is essential for evaluating
pollution levels. These gaps are synthesized into the main question of this thesis:

• How to develop robust DL-based methods for detecting floating litter and quantify-
ing cross-sectional floating litter fluxes in rivers, particularly in contexts with lim-
ited labeled data?

To answer this main research question, three sub-questions are defined based on
three knowledge gaps, and then addressed in Chapter 4-6 contained within this thesis:

1. How to build robust DL models to detect floating litter in rivers, leveraging a rela-
tively large amount of labeled data? (Gap 1, Chapter 4)

2. How to build robust DL models to detect floating litter in rivers, leveraging a limited
amount of labeled data? (Gap 2, Chapter 5)

xxv
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3. How to develop DL-based methods to quantify cross-sectional floating litter fluxes
in rivers, leveraging a limited amount of labeled data? (Gap 3, Chapter 6)

To answer the above questions, we needed to evaluate multiple DL methods on dif-
ferent datasets for litter detection and quantification. Thus, we created multiple datasets
by collecting data from multiple locations in canals and waterways in the Netherlands
and Vietnam, as detailed in Chapter 3. The remainder of this thesis mainly focuses on
(1) enhancing generalization performances of litter detection models, while reducing
the dependence on large-scale labeled dataset, and (2) developing DL-based methods
for quantifying cross-sectional floating litter fluxes using these datasets and two existing
openly available datasets.

To enhance model generalization performances for litter detection, we first exploited
various DL methods including transfer learning (TL) methods and data-centric artificial
intelligence (AI) approaches. The tested data-centric AI approaches mainly include data
augmentation (DA) and adding new images from new conditions, as detailed in Chapter
4. We evaluated these methodologies using around 4,000 labeled images from a canal in
the Netherlands. We found that the most effective TL method for improving detection
accuracy involved using a model pre-trained on a large general dataset (i.e., ImageNet)
and subsequently fine-tuning the entire network on floating litter images. Among the
tested DA techniques, flipping DA techniques improve generalization performances the
most, i.e., augmenting the training set with flipped versions of the original images. We
also found that trained models generalize well to similar condition (i.e., same camera
heights but different viewing angle), but do not generalize well to more complex scenar-
ios (i.e., different camera heights and different viewing angle). Adding a limited num-
ber of images from new device setups can significantly improve generalization in such
complex scenarios. While these methodologies are effective to achieve robust model
performances, developing such models requires a large amount of labeled data, that is
labor-intensive and time-consuming to obtain.

To overcome this issue and maintain robust performances, we proposed a semi-
supervised learning (SSL) method to detect floating litter, based on a self-supervised
learning method, as detailed in Chapter 5. We validated this method on images from
canals and waterways in the Netherlands, Indonesia, and Vietnam. When developing
litter detection models, we also used the best-performing TL method identified in the
previous evaluation. The results show that our method matches or surpasses the super-
vised learning (SL) benchmark in performance on unseen data collected from the same
geographic locations as the training data, and yields more notable improvement when
limited labeled data is available for fine-tuning. More importantly, it achieves superior
performance on unseen data sourced from different geographic locations as the training
data.

Considering the effectiveness of SSL and data-centric AI approaches, we proposed
a SSL-based framework to quantify cross-sectional floating litter fluxes in river systems,
leveraging a limited amount of labeled data, as detailed in Chapter 6. Additionally, we
used the best-performing DA approach identified in the previous evaluation. We devel-
oped this framework using images from waterways of the Netherlands, Indonesia and
Vietnam, and evaluated flux quantification performances on a Vietnam case study, that
was not used for model development. We benchmarked our results against the SL meth-
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ods and human visual counting methods. The results indicate that the SSL-based frame-
work substantially underestimates fluxes compared to human measurements. However,
the SSL-based framework quantifies litter fluxes nearly twice as high as the baseline
SL-based framework, offering estimates that align more closely with human-measured
fluxes.

The main contributions of this thesis are: (1) providing insights of the use of TL and
data-centric AI approaches to improve generalization capability of models for litter de-
tection, (2) proposing a SSL method for litter detection to improve generalization ca-
pability while reducing dependence on large-scale labeled dataset, and (3) proposing a
SSL-based framework to quantify cross-sectional floating litter fluxes in river systems,
while minimizing the need for extensive labeled data. The methodological innovations
and research findings offer valuable insights for both the scientific community and prac-
titioners from industry in mitigating litter pollution in rivers. Further research should fo-
cus on: (i) developing a more robust litter detection model, (ii) quantifying floating litter
mass fluxes and hotspots in rivers, and (iii) developing DL-based monitoring strategies
for riverine litter, as detailed in Chapter 7.





SAMENVATTING

Zwerfafval, met name plastic, dat zich ophoopt in waterlichamen is een complex mili-
euprobleem dat ecosystemen, de volksgezondheid en de economie beïnvloedt. Rivie-
ren vormen de belangrijkste transportroutes voor landafkomstig plastic afval naar de
oceaan, maar fungeren ook als tijdelijke en langdurige opslagplaatsen waar aanzienlijke
hoeveelheden plastic zich kunnen ophopen en zelfs tientallen jaren vast kunnen blijven
zitten. Het detecteren en kwantificeren van drijvend zwerfafval in rivieren en stedelijke
waterwegen is daarom essentieel om vervuilingsniveaus te beoordelen en gerichte maat-
regelen te nemen. Traditionele monitoringsmethoden, zoals bemonstering met netten
en drijvende barrières, zijn echter niet geschikt voor grootschalige, gestructureerde mo-
nitoring over meerdere geografische locaties binnen uitgestrekte riviersystemen. Diep-
gaande leertechnieken (Deep Learning, DL) bieden veelbelovende mogelijkheden voor
de automatische detectie en kwantificatie van drijvend zwerfafval op basis van beelden
of video’s. Aangezien dit onderzoeksveld zich nog in een vroege fase bevindt, richt deze
thesis zich op het vergroten van inzicht in DL-gebaseerde detectie en kwantificatie van
zwerfafval in rivieromgevingen. Daarnaast worden belangrijke kennishiaten geïdenti-
ficeerd en worden methodologieën onderzocht om deze hiaten te dichten en verdere
vooruitgang in dit vakgebied te stimuleren.

Deze thesis presenteert een kritische beoordeling die de stand van zaken van DL-
gebaseerde detectie en kwantificatie van afval in waterlichamen schetst, met nadruk op
belangrijke kennishiaten in dit veld, zoals beschreven in Hoofdstuk 2. De resultaten van
de review geven aan dat slechts enkele studies erin zijn geslaagd om bevredigende pres-
taties in modelgeneralizatie te behalen op nieuwe, niet eerder geziene beelden onder
verschillende geografische, milieu- en apparaatomstandigheden. Bovendien vereist het
ontwikkelen van robuuste modellen met behulp van conventionele supervised learning
(SL)-methoden een grote hoeveelheid gelabelde data voor training, wat kostbaar en ar-
beidsintensief is. Ten slotte hebben slechts enkele studies DL-methoden gebruikt om
drijvend afvalfluxen over rivieren met een bredere dwarsdoorsnede te meten, met een
beperkte hoeveelheid gelabelde data. Een robuust detectiemodel met een sterke gene-
ralisatiecapaciteit is echter bijzonder cruciaal voor het nauwkeurig kwantificeren van
afvalfluxen in grootschalige riviersystemen, wat essentieel is voor het evalueren van ver-
vuilingsniveaus. Deze hiaten worden samengevat in de hoofdvraag van deze thesis:

• Hoe kunnen robuuste DL-gebaseerde methoden worden ontwikkeld voor het detec-
teren van drijvend afval en het kwantificeren van dwarsdoorsnede van drijvende
afvalfluxen in rivieren, vooral in contexten met beperkte gelabelde gegevens?

Om deze hoofdonderzoeksvraag te beantwoorden, worden drie deelvragen gedefi-
nieerd op basis van drie kennisleemtes, die vervolgens worden behandeld in Hoofdstuk
4-6 van dit proefschrift:

xxix
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1. Hoe bouw je robuuste DL-modellen om drijvend afval in rivieren te detecteren, door
gebruik te maken van een relatief grote hoeveelheid gelabelde gegevens? (Kloof 1,
Hoofdstuk 4)

2. Hoe bouw je robuuste DL-modellen om drijvend afval in rivieren te detecteren, met
behulp van een beperkte hoeveelheid gelabelde gegevens? (Kloof 2, Hoofdstuk 5)

3. Hoe ontwikkel je DL-gebaseerde methoden om dwarsdoorsnede van drijvend afval-
fluxen in rivieren te kwantificeren, door gebruik te maken van een beperkte hoeveel-
heid gelabelde gegevens? (Kloof 3, Hoofdstuk 6)

Om de bovenstaande vragen te beantwoorden, moesten we verschillende DL-methoden
evalueren op verschillende datasets voor afvaldetectie en kwantificatie. Daarom hebben
we meerdere datasets gecreëerd door gegevens te verzamelen op verschillende locaties
in kanalen en waterwegen in Nederland en Vietnam, zoals gedetailleerd in Hoofdstuk 3.
De rest van deze thesis richt zich voornamelijk op (1) het verbeteren van de generalisatie-
prestaties van afvaldetectiemodellen, terwijl de afhankelijkheid van grootschalige gela-
belde datasets wordt verminderd, en (2) het ontwikkelen van DL-gebaseerde methoden
voor het kwantificeren van dwarsdoorsnede-drijvend afvalfluxen met behulp van deze
datasets en twee bestaande, openbaar beschikbare datasets.

Om de generalisatieprestaties van het model voor afvaldetectie te verbeteren, heb-
ben we eerst verschillende DL-methoden onderzocht, waaronder transfer learning (TL)
en data-centrische kunstmatige intelligentie (AI) benaderingen. De geteste data-centrische
AI-benaderingen omvatten voornamelijk data-augmentatie (DA) en het toevoegen van
nieuwe afbeeldingen van nieuwe omstandigheden, zoals gedetailleerd in Hoofdstuk 4.
We hebben deze methodologieën geëvalueerd met behulp van ongeveer 4.000 gelabelde
afbeeldingen van een kanaal in Nederland. We ontdekten dat de meest effectieve TL-
methode voor het verbeteren van de detectieprecisie het gebruik van een model dat
vooraf is getraind op een groot algemeen dataset (d.w.z. ImageNet) en vervolgens het
fijn-afstemmen van het gehele netwerk op afbeeldingen van drijvend afval betrof. Van
de geteste DA-technieken verbeterde de flip DA-techniek de generalisatieprestaties het
meest, d.w.z. het vergroten van de trainingsset door de originele afbeeldingen te spie-
gelen. We ontdekten ook dat getrainde modellen goed generaliseren naar vergelijkbare
omstandigheden (d.w.z. dezelfde camerahoogtes maar een andere kijkhoek), maar niet
goed generaliseren naar complexere scenario’s (d.w.z. verschillende camerahoogtes en
verschillende kijkhoeken). Het toevoegen van een beperkt aantal afbeeldingen van nieuwe
apparaatinstellingen kan de generalisatie in dergelijke complexe scenario’s aanzienlijk
verbeteren. Hoewel deze methodologieën effectief zijn voor het bereiken van robuuste
modelprestaties, vereist het ontwikkelen van dergelijke modellen een grote hoeveelheid
gelabelde gegevens, die arbeidsintensief en tijdrovend zijn om te verkrijgen.

Om dit probleem te overwinnen en robuuste prestaties te behouden, hebben we een
semi-supervised learning (SSL) methode voorgesteld voor het detecteren van drijvend
afval, gebaseerd op een self-supervised learning methode, zoals gedetailleerd in Hoofd-
stuk 5. We hebben deze methode gevalideerd op afbeeldingen van kanalen en waterwe-
gen in Nederland, Indonesië en Vietnam. Bij het ontwikkelen van afvaldetectiemodel-
len hebben we ook de best presterende TL-methode gebruikt die werd geïdentificeerd
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in de vorige evaluatie. De resultaten tonen aan dat onze methode de prestaties van de
supervised learning (SL) benchmark evenaart of overtreft op onzichtbare gegevens die
zijn verzameld uit dezelfde geografische locaties als de trainingsgegevens, en een meer
merkbare verbetering oplevert wanneer beperkte gelabelde gegevens beschikbaar zijn
voor fine-tuning. Belangrijker nog, het behaalt superieure prestaties op onzichtbare ge-
gevens die afkomstig zijn uit verschillende geografische locaties dan de trainingsgege-
vens.

Gezien de effectiviteit van SSL- en data-centric AI-benaderingen, hebben we een op
SSL gebaseerd raamwerk voorgesteld om de dwarsdoorsnede van de drijvende afvalf-
luxen in rivier-systemen te kwantificeren, door gebruik te maken van een beperkte hoe-
veelheid gelabelde gegevens, zoals gedetailleerd in Hoofdstuk 6. Daarnaast hebben we
de best presterende DA-benadering gebruikt die werd geïdentificeerd in de vorige evalu-
atie. We hebben dit raamwerk ontwikkeld met afbeeldingen van waterwegen in Neder-
land, Indonesië en Vietnam, en de prestaties van de flux-kwantificatie geëvalueerd op
een Vietnam-case study, die niet werd gebruikt voor de modelontwikkeling. We hebben
onze resultaten vergeleken met de SL-methoden en de visuele tellingen door mensen.
De resultaten geven aan dat het SSL-gebaseerde raamwerk de fluxen aanzienlijk onder-
schat in vergelijking met menselijke metingen. Het SSL-gebaseerde raamwerk kwanti-
ficeert de afvalfluxen echter bijna twee keer zo hoog als het basis SL-gebaseerde raam-
werk, en biedt schattingen die dichter in de buurt komen van door mensen gemeten
fluxen.

De belangrijkste bijdragen van dit proefschrift zijn: (1) het bieden van inzichten
in het gebruik van TL- en data-centric AI-benaderingen om de generalisatiecapaciteit
van modellen voor afvaldetectie te verbeteren, (2) het voorstellen van een SSL-methode
voor afvaldetectie om de generalisatiecapaciteit te verbeteren, terwijl de afhankelijk-
heid van grootschalige gelabelde datasets wordt verminderd, en (3) het voorstellen van
een SSL-gebaseerd raamwerk om de dwarsdoorsnede van drijvende afvalfluxen in rivier-
systemen te kwantificeren, terwijl de behoefte aan uitgebreide gelabelde gegevens wordt
geminimaliseerd. De methodologische innovaties en onderzoeksresultaten bieden waar-
devolle inzichten voor zowel de wetenschappelijke gemeenschap als praktijkmensen uit
de industrie in het verminderen van afvalvervuiling in rivieren. Verder onderzoek zou
zich moeten richten op: (i) het ontwikkelen van een robuuster afvaldetectiemodel, (ii)
het kwantificeren van drijvende afvalmassa-fluxen en hotspots in rivieren, en (iii) het
ontwikkelen van DL-gebaseerde monitoringstrategieën voor rivieren-afval, zoals gede-
tailleerd in Hoofdstuk 7.
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1.1. LITTER POLLUTION IN RIVERS
Plastic pollution in water bodies is a challenging global concern, that negatively affects
aquatic ecosystems and human livelihood (Bellou et al., 2021; Borrelle et al., 2020). Kaan-
dorp et al. (2023) estimated an initial amount of floating marine plastics of 3.2 million
tonnes in 2020. Rivers are the main pathways of land-based plastic waste to the ocean
(Meijer et al., 2021; Schmidt et al., 2017). Lebreton et al. (2017) estimated that the yearly
plastic flux transport from rivers to oceans is 1.15 to 2.41 million tonnes, while this es-
timation comes with large uncertainties (Roebroek et al., 2022). Furthermore, marine
plastic litter may wash up on beaches and shores, and substantial amounts of discarded
plastic litter has also been detected in lakes (Imhof et al., 2018; van Emmerik & Schwarz,
2020). They become micro- and nanoplastics over the years, associated with severe en-
vironmental and health risks (Liu et al., 2021b).

Recent studies indicate that river systems act as plastic reservoirs, where the major-
ity of plastics accumulates, and even retains for decades (van Emmerik et al., 2022b; van
Emmerik et al., 2023). Plastic pollution in rivers is a significant concern due to its po-
tential to harm aquatic life and human health, increase flood risk, and break down into
microplastics (Al-Zawaidah et al., 2021; van Emmerik & Schwarz, 2020). Recognizing the
urgent need to address this issue, 175 countries have agreed to endorse a legally-binding
agreement on plastic pollution by 2024 at the UN Environment Assembly (UNEA-5.2). It
aims to regulate the full life cycle of plastics, including production, usage, and disposal
(Walker, 2022).

Regardless of waste type, detecting and quantifying floating litter (items >5 mm) is
key to assess pollution levels in river systems. Such assessment is essential for develop-
ing effective pollution reduction measures, such as source reduction and targeted clean-
ing campaigns (van Emmerik et al., 2019a, 2022c).

1.2. LITTER DETECTION AND QUANTIFICATION METHODS

1.2.1. IN SITU METHODOLOGIES
The in situ methodologies mainly include: (1) physical interception-based sampling,
and (2) observation-based sampling (Hurley et al., 2023). Physical interception-based
sampling entails the active entrapment and collection of waste from the rivers using
tools (e.g., nets and booms), followed by subsequent quantification and categorization
of litter. In contrast, observation-based sampling involves the monitoring, quantifica-
tion, and categorization of visible litter in rivers without physically collecting waste.

PHYSICAL INTERCEPTION-BASED SAMPLING

Nets are commonly used tools for intercepting and collecting floating, submerged, or
benthic litter transporting in rivers. They can be installed at fixed points (e.g., bridges,
riverbanks, and riverbeds) or towed by boats moving along the rivers (Haberstroh et al.,
2021; Munari et al., 2021). They can be placed at specific depths within the water col-
umn using buoys or weights, allowing for targeted interception of debris at various lev-
els (Hurley et al., 2023). When the measurement period is finished, the nets are removed
from the rivers. Then, the collected litter is analyzed to count, categorize, or weigh the
litter items, aiding in the further estimation of fluxes. These nets, typically around 1 m
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wide and 0.5 m tall, are easily operated by one or two people. This enables frequent
and flexible measurements at various locations across the river width (van Emmerik &
Schwarz, 2020). Nets are applied to sample litter in various river systems, such as the
Saigon river in Vietnam (van Emmerik et al., 2018a) and the Seine in France (van Em-
merik et al., 2019b). However, the effectiveness of these nets is limited to specific flow
velocity ranges. High water velocities increase the risk of net damage and the drag force
exerted on the nets, making manual deployment and retrieval unsafe. Low water ve-
locities result in insufficient force to keep the nets horizontal, hindering their ability to
collect litter.

Booms are floating barriers that act as vertical screens, accumulating floating debris
on the river surface, including litter and non-litter materials. While usually employed for
clean-up activities, booms can also serve as a sampling method by incorporating proce-
dures to isolate, to count, categorize, or weigh the litter items from the collected debris.
Booms can measure floating litter fluxes, covering the entire river width or a partial sec-
tion. They also can measure near-surface litter fluxes under the floating line by includ-
ing meshes or screens (Vriend et al., 2020b). This sampling method is most effective in
rivers with low flow velocities. At higher velocities, litter items may pass beneath the
booms (Roy et al., 2021). Another issue is the potential capture of a large amount of non-
litter materials, making measurement complicate. For example, Gasperi et al. (2014)
installed booms on the Seine River to collect macroplastics and investigated the amount
and composition of plastics. They found that above 90% of the mass of the collected de-
bris was vegetation. This sample composition poses significant challenges in separating
the macroplastic component, especially for macroplastic litter items with smaller sizes.
It requires additional labor to remove the sorted debris.

OBSERVATION-BASED SAMPLING

Human visual counting methods are the most frequently employed approaches to mea-
sure litter fluxes in river systems (Hurley et al., 2023). They involve observers standing
at appropriate points (e.g., bridges) and recording the amount of visible litter items over
a specified measurement period. Then, the observation results can be used to estimate
the fluxes for the entire river at a specific moment in time (van Emmerik & Schwarz,
2020). With the availability of additional litter mass statistics (e.g., the mean mass per
litter item), the estimation of litter fluxes can be converted to that of litter mass fluxes
(e.g., the mass of litter items across the river width per unit of time) (van Emmerik et
al., 2018a). These straightforward methods do not require the specialized equipment,
allowing for frequent and inexpensive data collection in various river systems, e.g., the
Rhone River in France (Castro-Jiménez et al., 2019) and the Saigon river (van Emmerik
et al., 2018a). While visual observation is effective, it is limited to the availability of an
appropriate point for observing rivers, such as bridges or other infrastructures that pass
over the river. Such locations can be riverbanks for observing narrow rivers (Hurley et al.,
2023). Additionally, it is not feasible for monitoring rivers with high litter fluxes, where
human counters face challenges in accurately tracking debris over time (van Lieshout
et al., 2020). It may be dangerous during extreme events, such as floods (van Emmerik
et al., 2023).

Sensor-assisted observation methods involve collecting data with imaging devices,
and manually detecting and counting litter items from collected data. The imaging
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devices include cameras (van Lieshout et al., 2020), unmanned aerial vehicles (UAVs)
(Rocamora et al., 2021; Schreyers et al., 2021) and sonar technologies (Broere et al.,
2021). For example, van Lieshout et al. (2020) collected videos using cameras mounted
on bridges in Jakarta, Indonesia. Then, they manually counted the floating macroplas-
tic litter items from one-minute video clips and calculated the macroplastic fluxes. Ro-
camora et al. (2021) collected images by flying a drone at various points along the Segura
River in Spain, and then manually counted floating litter items in images. The count-
ing results are subsequently processed to estimate the total volume of floating waste
along the river. Broere et al. (2021) used sonar technologies to identify and quantify sub-
merged macroplastic litter items in the Guadalete river, Spain. These imaging devices
enable continuous long-term measurements with high consistency, particularly when
mounted cameras are used. UAVs are particularly effective in monitoring river sections
that are difficult for humans to access. In addition, they are suitable for monitoring rivers
with high flow velocities or high litter fluxes by carefully counting items in images or
videos (van Lieshout et al., 2020). While these methods eliminate the need for observers
to continuous monitor litter in target rivers, detecting and visually counting litter from
sensor-collected data remains labor-intensive and time-consuming.

1.2.2. AUTOMATIC DETECTION AND QUANTIFICATION METHODOLOGIES

While the above in situ methodologies are effective, the time-consuming and labor-
intensive procedures limit their applicability to long-term structured monitoring sys-
tems, including the monitoring of multiple geographic locations with varying environ-
mental conditions in extensive river system (van Emmerik & Schwarz, 2020). Therefore,
an automatic and efficient litter detection and quantification approach is needed.

Automated methods based on Computer Vision (CV) have been proposed to auto-
matically detect and quantify litter from images. For example, Kataoka and Nihei (2020)
installed a video camera at the Noda Bridge across the Edo River in Japan, and devel-
oped an image processing algorithm based on the color difference of the floating litter.
This algorithm can detect and quantify the area fluxes of the litter (i.e., the area covered
by litter per unit time). Then the area fluxes are further processed to estimate the litter
mass flux.

Automated methods based on machine learning (ML) for CV have been applied to
efficiently detect litter in water bodies from various types of data, ranging from drone
images to satellite imagery. Existing ML applications include models based on Random
Forest (Martin et al., 2018), Support Vector Machine (Basu et al., 2021), and Naive Bayes
(Biermann et al., 2020). Nevertheless, traditional ML methods usually require time-
consuming manual feature engineering and substantial data preprocessing (Bengio et
al., 2013). These methods are also known to reach a performance plateau regardless of
the amount of data available (Zhu et al., 2016).

Currently, researchers have suggested using Deep Learning (DL)-based CV methods,
especially Convolutional Neural Networks (CNNs), for developing efficient alternatives
(Garcia-Garin et al., 2021; Jakovljevic et al., 2020; van Lieshout et al., 2020). DL, a sub-
set of ML based on deep biologically inspired artificial neural networks (Granger, 2006),
has now superseded traditional ML techniques in many fields of science and technol-
ogy, including water resources applications (Sit et al., 2020). DL belongs to the family of
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representation learning techniques, which replace manual feature engineering via auto-
matic discovery of the representations needed for feature detection from raw data (Le-
Cun et al., 2015). In addition, DL models can lead to increasingly better performances
as more data is fed to the models (Wang, Perez, et al., 2017). These characteristics allow
DL models based on CNNs to reach state-of-the-art performances in all CV tasks such as
image classification (IC), object detection (OD) and image segmentation (IS). A detailed
literature review on DL-based litter detection and quantification in rivers is presented in
Chapter 2. While preliminary results are promising, this specific field is still in its infancy
(van Emmerik & Schwarz, 2020). The researchers must increase their efforts to devise
DL-based applications that can help tackle pollution in river systems.

1.3. THESIS RESEARCH FRAMEWORK

1.3.1. KNOWLEDGE GAP STATEMENT
While DL methods offer efficient alternatives for detection and quantification of float-
ing litter in rivers, this specific field is still in its early stages, with many challenges re-
maining. We conducted a literature review outlining the state-of-the-art of DL-based
detection and quantification of litter in rivers, as well as other water bodies. The de-
tailed review and discussion are shown in Chapter 2. Based on findings in Chapter 2, we
identified three key knowledge gaps, as follows:

1. The lack of robust DL models to detect floating litter in rivers. There is a lack
of DL-based detection models with robust out-of-domain generalization perfor-
mances. This includes models that can detect floating litter in rivers on new, un-
seen images under the different geographic, environmental, and device setup con-
ditions. Such models are especially crucial for large-scale structured monitoring,
enabling the monitoring of multiple geographic locations with varying environ-
mental conditions in extensive river system, without well-labeled and location-
specific data for further refinement of DL models.

2. The requirement of a large amount of labeled data for developing robust mod-
els. All reviewed papers used supervised learning (SL) methods to develop litter
detection models. These methods require a large amount of labeled data for train-
ing. The labeling work is expensive and laborious. While the community has re-
leased a open dataset on floating litter in rivers (van Lieshout et al., 2020), the
amount of annotated data available is far below that of comprehensive datasets.
While transferring the representations learned from general datasets can reduce
the data requirement, these representations are not sufficiently effective to gen-
eralize across different locations and environmental conditions. This operation,
known as transfer learning, is discussed in more detail in Chapter 2.

3. The lack of DL methods to quantify cross-sectional floating litter fluxes in rivers,
leveraging a limited amount of labeled data. The current literature mainly fo-
cuses on detecting floating litter in rivers, but few studies focus on quantify float-
ing litter fluxes in rivers with wide cross-sections. However, the fluxes quantifica-
tion is important for assessing pollution levels, thereby facilitating the design of
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effective pollution mitigation strategies (van Emmerik et al., 2019a, 2022c). Ad-
ditionally, existing studies rely on supervised learning models for litter quantifi-
cation. They require a large amount of labeled data, that is time-consuming and
costly to obtain.

While the third research gap highlights the lack of DL methods for quantifying lit-
ter fluxes in rivers, it is equally important to quantify litter mass fluxes and litter mass
in hotspots (Tasseron et al., 2020; van Emmerik et al., 2022a), as these metrics are also
critical for assessing pollution levels in some scenarios. This thesis focuses on DL-based
litter flux quantification, due to the time constraints of the doctoral research. Details on
litter mass flux and hotspot quantification, along with directions for future research, are
presented in Chapter 7.

1.3.2. RESEARCH QUESTIONS
These key gaps are synthesized in the primary objective of this thesis: to develop robust
DL-based methods for detecting floating litter and quantifying cross-sectional floating
litter fluxes in rivers, particularly in contexts with limited labeled data.

This objective is further synthesized into the main research question:

• How to develop robust DL-based methods for detecting floating litter and quantify-
ing cross-sectional floating litter fluxes in rivers, particularly in contexts with lim-
ited labeled data?

To answer this main research question, three sub-questions are defined based on
the three knowledge gaps in Chapter 2.4, and then addressed in Chapter 4-6 contained
within this thesis:

1. How to build robust DL models to detect floating litter in rivers, leveraging a rela-
tively large amount of labeled data? (Gap 1, Chapter 4)

2. How to build robust DL models to detect floating litter in rivers, leveraging a limited
amount of labeled data? (Gap 2, Chapter 5)

3. How to develop DL-based methods to quantify cross-sectional floating litter fluxes
in rivers, leveraging a limited amount of labeled data? (Gap 3, Chapter 6)

1.3.3. RESEARCH METHODOLOGY AND THESIS OUTLINE
Fig. 1.1 shows the thesis outline, including the mapping of the research sub-questions
and chapters.

Chapter 2 presents a critical review outlining the state-of-the-art of DL-based detec-
tion and quantification of litter in water bodies, identifying key knowledge gaps. Based
on these gaps, we formulated the main research question and sub-questions, that are
addressed in Chapter 4-6 of this thesis.

To address these research questions, we need to evaluate multiple DL methods on
datasets for litter detection and quantification. However, the available open datasets are
limited in size, as highlighted in Chapter 2. Thus, we need to generate multiple datasets
with sufficient data from rivers.
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Figure 1.1: Structure of the thesis.

Chapter 3 presents multiple datasets generated by us. We collected data from mul-
tiple locations in canals and waterways in the Netherlands and Vietnam. Additionally,
this chapter presents two existing openly available datasets used in this thesis.

Chapter 4 presents the studies and findings addressing the first research sub-question.
Based on the review findings in Chapter 2, we identified transfer learning and data-
centric AI methods as potentially effective approaches for enhancing model generaliza-
tion capability. Thus, we developed DL models in a supervised manner, and evaluated
the benefits of these methods on model out-of-domain generalization capability using a
dataset with 4,000 labeled images (see Chapter 3). It is aimed at exploring the potential
of various methodologies for building robust DL models to detect floating litter in rivers,
leveraging a relatively large amount of labeled data (e.g., 4000 labeled images).

While the results in Chapter 4 show that the aforementioned methods are effective to
improve model generalization capability, developing robust supervised models requires
a large number of labeled images. Obtaining these labeled images for model develop-
ment is costly and labor-intensive. Therefore, we need to explore alternative approaches
to improve model generalization performance with a limited amount of labeled data in
Chapter 5.
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Chapter 5 proposes and evaluates a two-stage semi-supervised learning (SSL) method
for improving model out-of-domain generalization capability, leveraging a limited num-
ber of labeled images (1.8k images with 2.6k annotated litter items), and a large amount
of unlabeled images (100k). When developing litter detection models, we used the best-
performing transfer learning strategy in Chapter 4. This chapter aims at exploring the
potential of SSL methods for building robust DL models to detect floating litter in rivers,
leveraging a limited amount of labeled data.

Chapter 6 proposes a SSL-based framework to quantify cross-sectional floating litter
fluxes in rivers, leveraging a limited amount of labeled data, considering the effective-
ness of SSL methods demonstrated in Chapter 5. When developing models, we also used
a data-centric AI method to enhance model performance, as highlighted in Chapter 4.
Additionally, we further optimized SSL models to obtain better performances, an aspect
not explored in the experiments of Chapter 5. This chapter aims at exploring the poten-
tial of SSL-based framework to quantify cross-sectional floating litter fluxes in rivers.

Most importantly, we also addressed the main research question of this thesis in
Chapter 6 by integrating the explored methodologies presented in Chapter 4-6, i.e., a
SSL-based framework combined with the appropriate transfer learning and data-centric
AI approaches for floating litter detection and quantification, leveraging a limited amount
of labeled data.

Chapter 7 summaries the conclusions and scientific contribution, and presents the
future research outlook.



2
LITERATURE REVIEW

We conducted a systematic review of papers on deep learning(DL)-based detection and
quantification of litter in water bodies. The results show that the researchers have em-
ployed a variety of DL architectures implementing different CV techniques to detect litter
in various aquatic environments. While limited attention has been given to to detecting
and quantifying floating litter in rivers, we recommend increasing efforts toward riverine
ecosystems, considering their major role in transport and storage of litter. We identified
three key knowledge gaps in the study of riverine ecosystems: (i) the lack of robust DL
models to detect floating litter in rivers, (ii) the requirement of a large amount of labeled
data for developing robust detection model, and (iii) the lack of DL-based quantification
of cross-sectional floating litter fluxes in rivers.

This chapter is based on:

Jia, T., Kapelan, Z., de Vries, R., Vriend, P., Peereboom, E. C., Okkerman, I., & Taormina, R. (2023). Deep learning
for detecting macroplastic litter in water bodies: A review. Water Research, 231, 119632.

9
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2.1. INTRODUCTION
The number of publications on DL-based detection and quantification of litter in rivers
remains limited, since research in this field is still in its early stages. Therefore, we ex-
amined papers, focusing on various water bodies polluted by litter, such as marine sur-
face, beaches, lakes, and rivers. By reviewing these studies, we could identify common
methodologies, techniques, and significant gaps. Moreover, we could better identify the
opportunities to address riverine pollution issues by understanding the broader con-
text of litter detection and quantification. Based on the review of these publications, we
identified key knowledge gaps in the study of riverine ecosystems.

The chapter is structured as follows. The methodology used to select and analyze the
reviewed papers is described in Chapter 2.2. Chapter 2.3 thoroughly reviews the selected
papers with critical discussion points. Finally, Chapter 2.4 identifies key knowledge gaps.

2.2. METHODOLOGY

2.2.1. SEARCH METHODOLOGY
In this review, we analyzed 34 peer-reviewed journal papers and conference proceedings
published up to 2021, sourced from the “Scopus” and “Web of Science” databases. We
employed the following steps to identify these papers. Firstly, we searched for papers
published until the end of 2021 by employing three sets of keywords: (1) Deep learning-
related keywords included “deep learning”, “neural network”, “artificial intelligence” and
“machine learning”; (2) Litter-related keywords included “plastic”, “trash”, “litter”, “de-
bris” and “garbage”; (3) Water bodies keywords included “marine”, “sea”, “ocean”, “beach”,
“shore”, “river”, “channel”, “canal”, “waterway” and “lake”. The literature search identified
papers containing combinations of these terms in their titles, keywords, and abstract.
After reviewing the abstracts of all papers matching the inclusion criteria, we selected 33
papers, with the first publication dating back to 2016 (Valdenegro-Toro, 2016). Finally,
we conducted a snowball search by checking the citations of these publications. The
procedure yielded a total of 34 papers, which are listed in Table 2.1 along with the most
important details. These papers are ordered by the type of water bodies and then by pub-
lication year within type in Table 2.1. If the study features different computer vision (CV)
tasks, the review considers each of these tasks separately. When multiple architectures
are tested, we report only the architecture achieving the highest performances, which is
listed in the “Model architecture” column of Table 2.1.
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Table 2.1: Details of reviewed papers

Reference
Water
body

Dataset CV task

TL DA GC

Performance evaluationa

Source Size
(#images)

Split
(%)

No.
classes

Type Model
architecture

Metric Performance

Wu et al.
(2020)

AE phone,
camera
und.b

1,400 80/
0/
20

3 OD YOLO v4 ✓ ✓ mAP mAP=82.7%

Valdenegro-
Toro (2016)

AE sonar 22,446
70/
15/
15

2, 6

IC CNN

✓

OA, recall,
confusion

matrix

OA=97.1%
(6 object
classes)

OD CNN with
sliding

windows

recall recall=80.8%
(binary OD)

Xue et al.
(2021b)

marine
und.

camera
und.b

10,000 85/
0/
15

7 OD YOLO v3 with
ResNet50

backbonec

✓ ✓ mAP, AP,
F1-score,

kappa,
confusion

matrix

mAP50=53.8%

Bajaj et al.
(2021)

marine
und.

camera
und.b

2,900 85/
0/
15

3 OD Inception-
ResNetV2

✓

Tian et al.
(2021)

marine
und.

camera
und.

6,600 94/
6/
0

3 OD Improved
YOLO v4c

mAP, AP
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Table 2.1: Details of reviewed papers (Continued)

Hegde et al.
(2021)

marine
und.

camera
und.b,
camerab

10,000 80/
20/

0

4 OD SSD
MobileNet

V2

✓ ✓ precision,
recall,

F1-score

Marin et al.
(2021)

marine
und.

camera
und.b

2,395 80/
20/

0

6 IC Inception-
ResNetV2c

✓ ✓ OA,
F1-score,

kappa,
confusion

matrix,
macro

precision,
macro
recall,
macro

F1-score,
weighted
precision,
weighted
F1-score

OA=91.4%

Politikos
et al. (2021)

marine
und.

camera
und.

635 80/
15/

5

11 OD R-CNN with
MobileNetV1

backbone

✓ ✓ mAP, AP mAP50=62%
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Table 2.1: Details of reviewed papers (Continued)

Xue et al.
(2021a)

marine
und.

camera
und.b

13,914 70/
15/
15

7 IC Shuffle-
Xceptionc

✓ OA,
average

accuracy,
precision,

recall,
F1-score,

kappa,
confusion

matrix

Deng et al.
(2021)

marine
und.

camera
und.b

7,212 22
OD Improved

Mask
R-CNNc

✓ mAP
mAP50=65%

IS mAP50=60.2%

Musić et al.
(2020)

marine
und.

camera
und.b

~2,600
60/
20/
20

5
IC VGG16c

✓ ✓
OA OA=85%

OD YOLO v3

Panwar et al.
(2020)

marine
und.,
shores

camerab 369 80/
0/
20

4 OD RetinaNet
with

ResNet-101-
FPN

backbone

✓ N mAP, AP mAP88=81.48%

Fulton et al.
(2019)

marine
und.

camera
und.b

6,540 87/
0/
13

3 OD YOLO v2c ✓ mAP, AP,
Average

IoU

mAP=47.9%
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Table 2.1: Details of reviewed papers (Continued)

Mifdal et al.
(2021)

marine
sur.

satelliteb 2 IS U-Net ✓ pixel
accuracy,
F1-score,

kappa

pixel accu-
racy=84.28%

Garcia-Garin
et al. (2021)

marine
sur.

airborne 796 90/
0/
10

2 IC CNN ✓ OA,
precision,

recall,
F1-score

OA=81%

de Vries et al.
(2021)

marine
sur.

camera 100,000 2 OD YOLO v5c ✓

Kylili et al.
(2020)

marine
sur.,

shores

camerab 1,600 79/
20/

1

8 IC VGG16 ✓ ✓ OA OA=90%

Battula et al.
(2020)

marine
sur.

camerab 2,467 2 OD Resnet-50 N

Watanabe
et al. (2019)

marine
sur.,

shores

camera,
phone

189 80/
0/
20

4 OD YOLO v3 mAP mAP50=77.2%

Kylili et al.
(2019)

marine
sur.

camera 750 79/
20/

1

3 IC VGG16 ✓ ✓ OA OA=86%

Kylili et al.
(2021)

shores camerab 2,000
67/
16/
17

7
OD YOLO v5

✓ ✓
IS YOLACT++
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Table 2.1: Details of reviewed papers (Continued)

Song et al.
(2021)

shores phone 846 70/
17/
13

7 OD YOLO v5 D AP, mAP

Martin et al.
(2021)

shores airborne 750d 2, 14 OD Faster
R-CNN

G precision,
recall,

F1-score

F1-
score=44.2%
(binary OD)

Papakonst-
antinou et al.

(2021)
shores airborne 22,760d 54/

13/
33

2 IC VGG19c ✓ ✓ G OA,
precision,

recall,
F1-score

OA=77.6%

Wolf et al.
(2020)

shores,
rivers

airborne 12,918d 80/
0/
20

6, 18 IC CNN ✓ ✓ OA,
precision,

recall,
F1-score,
confusion

matrix

OA=83%
(6 class

objects),
OA=71%
(18 class
objects)

Gonçalves
et al. (2020)

shores airborne 2 IC DenseNet G precision,
recall,

F1-score

Kako et al.
(2020)

shores airborne 64/
36/

0

2 IS MLP G pixel
accuracy
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Table 2.1: Details of reviewed papers (Continued)

Fallati et al.
(2019)

shores airborne 2 OD CNN G, E precision,
recall,

F1-score

recall=67%

Thiagarajan
and

Satheesh
Kumar
(2019)

shores camera 135 2

IC CNN

✓

OA,
precision,

recall

OD CNN with
sliding

windows

Putra and
Prabowo

(2021)

rivers phone 90/
10/

0

2 OD YOLO v3 with
darknet-53
backbone

✓ AP, mAP

Lin et al.
(2021)

rivers camera 2,400 91/
0/
9

8 OD FMA-YOLO
v5sc

✓ AP, mAP mAP=79.41%

Tharani
et al. (2021)

rivers camera 13,500
93/
7e

3 OD M2Det(VGG)c

✓

AP, mAP mAP=45.8%

IS Improved
U-Netc

van Lieshout
et al. (2020)

rivers camera 1,272 85/
0/
15

2 OD Faster
R-CNN with
Inception V2

✓ ✓ G, D recall recall=68.7%
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Table 2.1: Details of reviewed papers (Continued)

Jakovljevic
et al. (2020)

rivers,
lakes

airborne 2,608 80/
20/

0

IS ResUNet50c ✓ ✓ precision,
recall,

F1-score

Acronyms: Transfer learning (TL), Data augmentation (DA), Generalization capability (GC), Artificial Environment (AE), Image classifi-
cation (IC), Object detection (OD), Image segmentation (IS), Geographical generalization capability (G), Environmental generalization
capability (E), Device setup generalization capability (D), Non-aquatic generalization capability (N), overall accuracy (OA), average
precision (AP), mean average precision (mAP), Intersection Over Union (IoU).

a The “Metric” column is not populated when the study does not report common CV metrics. The “Performance” column is populated
with the test value of the most representative metric.

b Part of or all the images in studies are retrieved from public databases or internet.
c The study features multiple deep learning architectures for computer vision tasks.
d The authors in studies cut the raw images into image tiles. In the “Dataset size” column, we report the total number of image tiles in

datasets.
e Tharani et al. (2021) split their dataset into 93% for training and validation and 7% for testing.
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2.2.2. REVIEW METHODOLOGY
Fig. 2.1 shows the most relevant factors used to classify and analyze the selected 34 pa-
pers. The factors are: (i) the water body(ies) polluted by litter (reviewed and discussed
in Chapter 2.3.1; (ii) dataset on litter in water including the dataset source(s), dataset
label(s), the dataset size and dataset split (Chapter 2.3.2); (iii) details on the CV task(s)
performed to detect litter, including the type of CV task(s) and model architecture(s) for
each CV task (Chapter 2.3.3); (iv) the machine learning paradigms used for developing
model to detect litter, including traditional supervised learning and zero-shot learning
methods (Chapter 2.3.4); (v) whether the authors resorted to data augmentation (DA)
and transfer learning (TL) techniques to improve model performances (Chapter 2.3.5);
(vi) the generalization capability of litter detection models (Chapter 2.3.6); and (vii) de-
tails on the metric(s) used for performance evaluation (Chapter 2.3.7).

It is noted that the review and discussion in the following chapters are primarily
based on the 34 studies in Table 2.1. Additionally, we searched and reviewed papers
published after 2021 using the same methodologies. However, we only reported per-
spectives and findings from these newer studies, that are different from those of the 34
papers. These findings are presented in Chapter 2.3.4.

Figure 2.1: Factors reviewed in the reviewed literature.

2.3. REVIEW AND DISCUSSION

2.3.1. WATER BODIES POLLUTED BY LITTER
Fig. 2.2 shows the distribution of water bodies and dataset sources in the reviewed litera-
ture. Some papers are counted multiple times since they either consider multiple water
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bodies (Jakovljevic et al., 2020; Kylili et al., 2020; Panwar et al., 2020; Watanabe et al.,
2019; Wolf et al., 2020) or employ multiple dataset sources (Hegde et al., 2021; Watanabe
et al., 2019; Wu et al., 2020). Most studies dealt with litter pollution in real settings, with
the exception of two studies that considered a controlled artificial environment (AE).
Valdenegro-Toro (2016) and Wu et al. (2020) collected data in a water tank for model
training and test, which is time-saving and cost-effective. However, they did not inves-
tigate the generalization capability of DL models from studies in AE to field case stud-
ies. Field applications are different from studies in AE, because it is generally difficult to
replicate the wide variety of litter and environmental conditions (e.g., natural lighting)
witnessed in real settings (Valdenegro-Toro, 2016). We encourage further studies to test
the performance of DL models trained with AE data when applied to real scenarios to as-
sess the overall suitability of this approach and to allow future benchmarking of different
methods.

Figure 2.2: Distribution of water bodies and dataset sources. Some papers are counted multiple times since
they either consider multiple water bodies or multiple dataset sources.

We categorized the bodies of water examined in the reviewed papers into (i) beaches
and shores, (ii) marine underwater, (iii) marine surface, (iv) rivers (including natural
rivers, waterways, urban channels and their banks), and (v) lakes. Most of the studies
(18 out of 34 papers) focused on litter pollution in marine environments, including ma-
rine underwater (11 papers), marine surface (7 papers), and beaches and shores (12 pa-
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pers). Fewer studies were concerned with river pollution (6 papers), and only one study
dealt with litter in lakes. This is somewhat expected since, contrary to the consolidated
body of knowledge for litter pollution in marine environments, the first scientific studies
on the quantification of riverine litter date only to the early 2010s (Blettler et al., 2018;
van Emmerik & Schwarz, 2020); the first studies concerning lakes are even more recent
(Imhof et al., 2018).

2.3.2. DATASETS ON LITTER

EMPLOYED DATASET SOURCES

Researchers collected input data using imaging devices such as standard digital cam-
eras, underwater cameras, cameras mounted on unmanned aerial vehicles (UAVs) or
manned aircrafts, cameras mounted on phones, as well as satellite cameras and sonar
technologies. As shown in Fig. 2.2, camera images (12 out of 34 papers), underwater
camera images (11 papers), and airborne imagery (8 papers) are the three most popular
dataset sources, while 4 studies have used phone images and only 1 study resorted to
sonar images or satellite imagery.

Due to affordable costs and user-friendliness, digital cameras are popular data gath-
ering devices regardless of the studied body of water (Mustafah et al., 2013). Fixed cam-
eras are installed on bridges to monitor floating litter on the river surface (van Lieshout
et al., 2020). One disadvantage is the limited coverage due to their fixed positions and
limited viewpoints. Cameras attached to a vessel can survey broader areas (de Vries et
al., 2021; Kylili et al., 2019) , although these surveying activities are time-consuming
and labor-intensive compared to fixed installations. Five studies used camera images
which were partially or completely retrieved from structured databases, such as Ima-
geNet dataset (Deng et al., 2009) or via internet (e.g., Google). Two of these studies (Kylili
et al., 2020, 2021) extracted images from the ImageNet dataset. Panwar et al. (2020) re-
trieved images from the TACO dataset (Proença & Simoes, 2020), and directly utilized the
images with annotations from the dataset. Battula et al. (2020) extracted images from a
Kaggle dataset1 and labeled images with bounding boxes to train and test object de-
tection (OD) model. Hegde et al. (2021) retrieved unlabelled images from Google and
manually created the annotations to develop and test their models.

Researchers mainly used underwater cameras to collect images under the water sur-
face, e.g., cameras attached to remotely operated vehicles (ROVs) (Wu et al., 2020) or
vessels (Politikos et al., 2021). Nine studies used underwater camera images which were
partially or completely retrieved from public databases or internet. This drastically re-
duces the cost of sampling activities in marine underwater environments where sam-
pling requires laborious diving operations, expensive ROVs and/or autonomous under-
water vehicles (AUVs) (Valdenegro-Toro, 2016). Five of these studies (Bajaj et al., 2021;
Fulton et al., 2019; Marin et al., 2021; Xue et al., 2021a, 2021b) extracted data from the
deep-sea debris database2 provided by Japan Agency for Marine-earth Science and Tech-
nology. Four studies (Hegde et al., 2021; Marin et al., 2021; Musić et al., 2020; Wu et al.,
2020) retrieved images from internet. While authors of these studies had to manually

1https://www.kaggle.com/asdasdasasdas/garbage-classification
2Japan Agency for Marine Earth Science and Technology, “Deep-sea Debris Database”, available at http://www.

godac.jamstec.go.jp/catalog/dsdebris/e/index.html

https://www.kaggle.com/asdasdasasdas/garbage-classification
http://www.godac.jamstec.go.jp/catalog/dsdebris/e/index.html
http://www.godac.jamstec.go.jp/catalog/dsdebris/e/index.html
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produce the annotations, one study (Deng et al., 2021) directly utilized the images with
annotations from the TrashCan dataset (Hong et al., 2020).

Researchers collected airborne imagery using cameras mounted on UAVs (7 papers)
or placed under manned aircrafts (1 paper). UAVs grant versatility since operators can
easily customize the flight route and flight height to obtain images at different loca-
tions and with different ground sample distances (Fallati et al., 2019). Furthermore,
UAVs allows surveying otherwise hard-to-reach locations (Zhang et al., 2017) and elimi-
nate the limitations of fixing sensors on bridges or other infrastructure. However, no-
fly zones restrict flying UAVs (e.g., nearby airports). Researchers may also need spe-
cial training and licenses to operate UAVs, thus increasing the operational costs and,
in some cases/countries, making the use of UAVs difficult, if not impossible. As shown in
Fig. 2.2, UAVs are particularly suitable for field sampling activities along beaches, since
these present fewer flight restrictions and obstacles that can potentially interfere with
the UAVs flight (e.g., buildings).

Only four studies used mobile phones to collect images. Phones are easily available
for citizens, thus could substantially contribute to citizen science initiatives for data col-
lection. Modern smart phones with high-resolution cameras can obtain high-quality
images and thus meet the needs of accurate sampling.

While sonar devices are preferred instruments for target and object recognition in
underwater environments, e.g., fish classification and fishery assessment (McCann et
al., 2018), only one study in the reviewed literature applied sonar devices to collect un-
derwater images (Valdenegro-Toro, 2016). Although the relatively higher sampling costs
hinder the development of autonomous detection and classification directly using sonar
images (Qin et al., 2021), sonar devices are promising for underwater litter monitoring as
suggested by a recent study (Broere et al., 2021). Sonar sampling can cover a larger area
underwater where ROVs or divers cannot safely dive (Neupane & Seok, 2020) because
sound waves travel further in water. For these reasons, we encourage further studies to
assess their suitability for detecting litter under water surface, especially in real-world
settings.

One study (Mifdal et al., 2021) retrieved Sentinel 2 imagery on floating marine litter
from the Google Earth Engine dataset catalog. These data are globally available and free
of charge, but do not contain specific annotations for litter. After collecting and labeling
the satellite imagery, the authors trained DL models to detect floating objects on the sea
surface. Compared with other dataset sources, satellite imagery can provide broader ge-
ographical coverage that is significant for hotspots monitoring and global environmental
monitoring. On the other hand, satellite imagery is not appropriate to detect small and
isolated litter floating on the vast sea surface, and cannot be used for observing under-
water litter (Watanabe et al., 2019).

DATASET LABELS

Authors do not usually categorize macroplastic litter and other types of litter in their
datasets using labels that reflect international guidelines and standards. If we consider
the categories defined by the Oslo and Paris Conventions (OSPAR) (Wenneker & Oost-
erbaan, 2010), we identify 12 categories of macroplastic litter (i.e., bags, bottles, nets,
caps/lids, industrial packaging/plastic sheeting, cups, buckets, cutlery/trays/straws, con-
tainers, shoes/sandals, rope, and floats/buoys), and 5 categories of other litter (i.e., glass,
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paper/cardboard, rubber, metal, and cloth) across all surveyed datasets. When OSPAR
defines multiple sub-categories of one plastic product and the specific sub-category
is unclear in reviewed papers, we only report its general category. For example, while
“bags” is categorized into 6 sub-categories in OSPAR (e.g., small plastic bags and fertil-
izer/animal feed bags), we only report “bags” in this chapter.

Several studies (13 out of 34 papers) detected plastic in a binary fashion. Among
these, only three studies (Garcia-Garin et al., 2021; Kako et al., 2020; van Lieshout et al.,
2020) specifically detected the presence of macroplastic litter in images. The remain-
ing studies detected macroplastic litter by including it in a generic “litter” or “trash” or
“debris” category. A larger group of studies detected more than 2 classes (22 papers).
Among these, one study (Kylili et al., 2019) detected different types of plastic products.
Nine studies provided a refined categorization for other types of litter. For example, Pan-
war et al. (2020) categorized the objects into glass, metal, paper, and plastic. One study
(Tharani et al., 2021) detected macroplastic litter by considering three different sizes, in-
cluded in three generic categories (i.e., small trash, medium trash and large trash). The
remaining studies (11 papers) detected different plastic products as well as other object
categories. For instance, Watanabe et al. (2019) classified the objects as plastic bottles,
plastic bags, drift wood, and other debris. Gathering a balanced dataset with accurate
labels becomes challenging as the number of classes increases. We identify 9 studies
(Marin et al., 2021; Martin et al., 2021; Musić et al., 2020; Politikos et al., 2021; Tharani
et al., 2021; Thiagarajan & Satheesh Kumar, 2019; Tian et al., 2021; Wolf et al., 2020; Xue
et al., 2021b) working with unbalanced datasets, featuring classes with very scarce data
(e.g., shoes, plastic cups, string and cord). Depending on the sensor used and its resolu-
tion, small objects (e.g., straws, toothpicks, and cotton buds) may be far less visible than
others (Tharani et al., 2021). To improve detection of rare items or small items, we need
to collect more data at higher resolutions (Wolf et al., 2020). Additionally, we can use the
Slicing Aided Hyper Inference (SAHI) method (Akyon et al., 2022) to enhance accuracy
of small litter detection. The implementation details and performance evaluation of this
method are presented in Chapter 6.

DATASET SIZE AND SPLIT

The “Dataset size” column of Table 2.1 reports the size of dataset used in the reviewed
papers, not including the data generated via DA. For one study (Wu et al., 2020), only
the dataset size including the data generated with DA could be reported. Fig. 2.3 shows
the distribution of dataset sizes (the number of images) per dataset source, as reported
in 29 of the reviewed papers (see Table 2.1). The dataset size of phone images is small
because two other datasets containing phone images and another kind of dataset source
(Watanabe et al., 2019; Wu et al., 2020) are featured in the “multiple” category. The size of
another dataset containing phone images (Putra & Prabowo, 2021) is unclear, thus it was
not reported in Fig. 2.3. One dataset containing 100,000 images (de Vries et al., 2021) is
much larger than all the others. These time-lapse images were collected at intervals be-
tween 2 s and 10 s during The Ocean Cleanup’s North Pacific Mission 3 research expedi-
tion. The average dataset length is of around 9000 images. According to Arya et al. (2020),
Image classification (IC) generally requires more than 5000 labeled images for each class
to train a model with acceptable performances. For binary detection problems, this en-
tails that at least 10,000 images are needed to develop a sufficiently robust detection



2.3. REVIEW AND DISCUSSION

2

23

model. In the reviewed literature, 11 studies conducted IC tasks (see Table 2.1). Apart
from two studies (Gonçalves et al., 2020; Thiagarajan & Satheesh Kumar, 2019), all other 9
studies reported both the specific dataset size and the number of classes in datasets. Ac-
cording to the suggestions of Arya et al. (2020), with the exception of (Papakonstantinou
et al., 2021; Valdenegro-Toro, 2016), these studies did not collect sufficient raw data for
model training and validation considering the number of classes. Therefore, all studies
lacking sufficient data adopted TL and/or DA to improve the performances (see Chap-
ter 2.3.5). Similar considerations may be drawn also for studies presenting OD and image
segmentation (IS) applications.

Figure 2.3: Distribution of dataset size (the number of images) per dataset source identified in 29 reviewed
papers. Each different block identifies a different dataset. The label “multiple” identifies datasets obtained
from multiple dataset sources.

Multiple researchers (e.g., Martin et al. (2021) and van Lieshout et al. (2020)) stressed
the importance of a large-scale dataset for DL-based detection of macroplastic litter.
Furthermore, three studies (Kylili et al., 2019; Musić et al., 2020; van Lieshout et al.,
2020) showed that the increase of training dataset size leads to superior detection perfor-
mance. For example, van Lieshout et al. (2020) developed a DL model to detect floating
macroplastic litter in rivers across Jakarta, Indonesia using a binary classification ap-
proach. The precision (i.e., the proportion of objects correctly identified as macroplas-
tic litter with respect to total detections) raised from 49.4% to 59.4% when increasing
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the number of labels in the training dataset from about 2000 to 10,000. This study also
showed that increasing dataset size further (from 10,000 to 24,000) resulted in smaller
improvements (from 59.4%). Indeed, after training with sufficient data to learn basic
representations, performance for CV tasks tend to grow logarithmically with dataset size
(Sun et al., 2017). Therefore, we suggest gathering and labeling training data with respect
to the level of performance required to address the specific challenge.

The “Dataset split” column of Table 2.1 reports the train/validation/test splits of the
dataset used. Among 26 papers reporting dataset split, 10 reported the use of both a val-
idation and a test dataset. The validation dataset is commonly used to select the best
model by monitoring overfitting during training; on the other hand, the test dataset is
employed to assess the generalization capability of the model for “unseen” data. It is
not clear whether the remaining studies used part of the training data for validation and
model selection, or if they used the test dataset for that purpose. Similarly, some pa-
pers report the use of a validation dataset, but not that of a test dataset. In general, we
recommend to split the dataset into training (≈80%), validation (≈10%) and test (≈10%)
datasets to facilitate robust model selection and unbiased estimation of the generaliza-
tion error on unseen data.

2.3.3. COMPUTER VISION TASKS FOR LITTER DETECTION

CV TASK TYPES

General CV tasks are image classification, object detection and image segmentation (Chai
et al., 2021). Fig. 2.4 shows an example of DL model architecture, and the output of dif-
ferent CV tasks.

IC is the process of classifying the entire image into one category (single-label clas-
sification) or multiple categories (multi-label classification) (Wei et al., 2014). The label-
ing procedure of IC includes annotating a given image with one class label or multiple
class labels (see Fig. 2.4, top panel). On the other hand, OD algorithms automatically
identify the class and location of different objects in images. The labeling task of OD
requires the annotation of objects with class labels and bounding boxes (see Fig. 2.4,
middle panel). Consequently, the output of OD models are bounding boxes and class la-
bels for each detected instance. IS divides an image into multiple segments with similar
characteristics, enabling a pixel-by-pixel identification of objects of interest. The label-
ing task requires assigning corresponding labels and pixel-wise masks to target objects
(see Fig. 2.4, bottom panel) (Chai et al., 2021). We identify two types of IS among re-
viewed papers: semantic segmentation (Jakovljevic et al., 2020; Kako et al., 2020; Mifdal
et al., 2021; Tharani et al., 2021) and instance segmentation (Deng et al., 2021; Kylili et al.,
2021). Semantic segmentation assigns category labels to each pixel in images, while in-
stance segmentation assigns category labels and instance identities to each object pixel
(Chai et al., 2021). Thus, semantic segmentation is more suitable to quantify the area
occupied by litter, while instance segmentation is more appropriate to discriminate dif-
ferent litter items.

Table 2.1 shows that researchers prefer OD methods to detect litter in aquatic envi-
ronments (23 out of 34 papers). OD can concurrently identify the type and location of
objects in images, thus estimating the number of litter items in an image (van Lieshout
et al., 2020). IC (11 papers) is also popular since it is simpler to implement, especially
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Figure 2.4: Labeling procedure, selected typical model architecture and output of different computer vision
tasks. The “IC” row shows an example of binary classification, while the “IS” row shows an example of instance
segmentation. Acronyms used: Convolutional layer (CONV), Pooling layer (POOL), Fully connected layer (FC),
Bounding boxes (BBOXs), Convolutional neural network (CNN), Region Proposal Network (RPN), Image clas-
sification (IC), Object detection (OD), Image segmentation (IS).

by deploying one of the many successful architectures already available from the CV lit-
erature. Only 6 studies resorted to IS, arguably because of the substantial amount of
time required to properly label the datasets (Jabari et al., 2021). Referring to IC models,
all reviewed papers employed single-label algorithms, i.e., binary classifiers and multi-
class classifiers. These methods can only process images containing one type of object
at a time. On the other hand, multi-label classifiers can identify multiple categories of
objects in one image (e.g., macroplastic litter, metal, and rubber) (Chai et al., 2021). Al-
though these classifiers can better capture the diversity of litter in natural environments,
no reviewed paper resorted to multi-label IC.

Although most studies (24 out of 34 papers) conducted CV tasks only for detection
purposes, 10 studies also attempted the quantification of litter. Of these, 9 papers quan-
tified the number of litter items via OD (de Vries et al., 2021; Martin et al., 2021; Song
et al., 2021; van Lieshout et al., 2020), IC (Garcia-Garin et al., 2021; Gonçalves et al., 2020;
Papakonstantinou et al., 2021; Wolf et al., 2020) or IS (Kylili et al., 2021). For example,
Gonçalves et al. (2020) cut one original image into small portions, and performed IC to
classify each portion into “litter” or “no litter”. The number of litter items in one image
was then calculated by the sum of the number of “litter” portions. However, if there are
portions containing more than one item, performing IC tasks will lead to the deviation
between the predicted results and the ground truth. Some studies also post-processed
the model results to compute spatial litter concentrations (in items/m2 or items/km2,
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5 papers), fluxes (in items/min/m, 1 paper), mass concentrations (in g/m2, 1 paper) or
mass (in kg, 1 paper). For instance, Martin et al. (2021) computed the concentrations of
plastic bottles in beaches by averaging the number of correctly detected bottles over the
tested area, and computed its mass concentrations by multiplying concentrations with
respect to the median weights of bottles retrieved from Martin et al. (2019). Kylili et al.
(2021) computed the total mass of litter in beaches by tallying the known mass of all litter
items predicted by the DL model. van Lieshout et al. (2020) computed the macroplastic
fluxes floating in rivers by dividing the number of items detected per time unit by the
river width. Kako et al. (2020) computed macroplastic volumes via IS. They first detected
the edges of macroplastic litter on images, which were then superimposed on a digital
surface model containing location and altitude data over a beach. This allowed the litter
volume to be computed from the heights and base area surrounded by the edges.

MODEL ARCHITECTURES FOR EACH CV TASK

Most reviewed publications (33 out of 34 papers) used Convolutional Neural Networks
(CNNs) based architectures, such as YOLO networks (Xue et al., 2021b) and VGG net-
works (Kylili et al., 2020). Only one study (Kako et al., 2020) used a more conventional,
three-layered Multilayer Perceptron (MLP) neural network. Compared with MLP, CNN
can take advantage of the spatial patterns implicit in raw images. Besides, the proper-
ties of CNN (i.e., local connections and weight sharing) enable it to learn representations
with fewer trainable parameters than MLP (Liang & Hu, 2015).These characteristics have
allowed CNN to outperform MLP (Zhang et al., 2018) and to be more widely used for CV.
However, none of the reviewed papers featured current state-of-the-art architectures
such as Vision Transformers, e.g., Swin Transformer (Liu et al., 2022a) and ConvNeXts
(Liu et al., 2022b).

In IC tasks, four studies employed the VGGNet architecture, probably because this ar-
chitecture was proposed in 2014, and has been applied since then successfully in many
fields (Ajit et al., 2020). Custom CNN architectures (4 papers) are also popular, mainly to
develop parsimonious models with limited parameters that better match data availabil-
ity and largely reduce computational efforts. For example, one study (Valdenegro-Toro,
2016) employed a custom 4-layered CNN with 930,000 parameters, much less than the
143.47 million parameters of a deeper VGG model with 19 layers (Martin et al., 2021).

CNN-based OD algorithms are divided into two-stage algorithms and one-stage al-
gorithms. In two-stage algorithms, the first stage generates a set of bounding box pro-
posals that are classified and detected in the second stage (Chai et al., 2021). On the
other hand, one-stage algorithms perform classification and bounding box prediction
concurrently in a single forward pass of the network. YOLO networks (11 papers) are the
most frequently used OD architectures among the reviewed papers. YOLO networks are
popular one-stage architectures thanks to their fast processing speed, which can reach
the standards required for real-time video processing (Redmon et al., 2016). Although
YOLO networks are faster than other architectures, its accuracy may be lower than that
of some two-stage OD algorithms such as Faster R-CNN, which has been used in two
reviewed papers.

U-Net (3 papers) is the most frequently employed IS architecture (Huang et al., 2020).
One study (Jakovljevic et al., 2020) employed ResUNet50, which is based on a hybrid



2.3. REVIEW AND DISCUSSION

2

27

between the popular ResNet (He et al., 2016) and U-Net architectures. Building blocks of
ResNet pre-trained on the ImageNet dataset are added to the U-Net.

Two studies deployed DL models, Resnet-50 neural network (Battula et al., 2020) and
SSD MobileNet V2 (Hegde et al., 2021) to perform OD in edge computing devices, e.g.,
processing boards connected to fixed cameras or installed in ROVs. For example, Hegde
et al. (2021) stored a trained detection model in a Raspberry Pi board. The device used
the model to detect litter from the surrounding environment as sampled by the attached
underwater camera.

Model complexity plays an important role for DL models that will eventually run in
real-time or on edge computing devices. Researchers should thus further investigate
the suitability of small architectures with good classification performances, such as Mo-
bileNetV2 (≈2.4 million parameters) (Dong et al., 2020), and SqueezeNetV1 (≈1.2 million
parameters) (Gholami et al., 2018). These “light” architectures can be easily transferred
to edge devices and play a significant role in tackling litter pollution in water bodies.
Pruning algorithms can successfully reduce model complexity and enable edge com-
puting. For instance, Tian et al. (2021) proposed a pruned YOLO v4 capable of accurate
OD for underwater camera images with only 7% of the original parameters.

2.3.4. MACHINE LEARNING PARADIGMS

All reviewed studies in Table 2.1 resorted to traditional supervised learning approaches
for developing the detection models. In supervised learning, the model is trained to per-
form its task from examples of paired input/output data, where the output data is care-
fully labeled, or annotated, by humans. The typical labeling procedure used for each CV
task is shown in Fig. 2.4). However, such models can not recognize objects that unseen
for models during training. This limitation poses a challenge for developing models with
high generalization capability used for structural monitoring of floating litter in rivers, as
further discussed in Chapter 2.3.6.

In 2024, Nguyen and Dang (2024) proposed a zero-shot segmentation framework to
detect seafloor litter, leveraging the zero-shot learning method, a transformative ma-
chine learning paradigm that allows models to identify categories they have never en-
countered during model training (Sun et al., 2021). It offers a promising solution to
address the challenges of collecting sufficient labeled data for the wide variety of litter
categories, as discussed in Chapter 2.3.2. More importantly, this approach demonstrates
significant potential for developing a robust model that generalizes well to new litter
category in a zero-shot (or few-shot) manner, with minimal prior data on new litter cat-
egory. It is noted that the importance on zero-shot generalization capability highlighted
by this publication, supports our argument in Chapter 2.4.1.

This zero-shot segmentation framework mainly include two modules: (1) an inter-
pretable Contrastive Language–Image Pre-training (iCLIP) model for point prompt gen-
eration (Li et al., 2022), and (2) Segment-Anything Model (SAM) for zero-shot segmenta-
tion (Kirillov et al., 2023). Further details on these modules can be found in Nguyen and
Dang (2024). Most interestingly, the iCLIP model is trained on image samples paired
with text supervision (e.g., "a photo of a glass"), rather than on images with mask anno-
tations indicting the shape and location of objects of interest (see Fig. 2.4). Then, the
SAM predicts segmentation masks for each object category, based on the point prompt
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generated by the iCLIP model. This allows the framework to identify and segment new
litter categories (e.g., plastic bottle) simply by providing text prompts (e.g., "a photo of a
plastic bottle"), without retraining models on new images with mask annotations, that
are expensive to obtain.

2.3.5. TECHNIQUES TO IMPROVE DL MODEL PERFORMANCES

TRANSFER LEARNING

Transfer learning (TL) involves the transfer of prior knowledge from a related task to a
new task (Pan & Yang, 2009). The usual TL approach involves (1) pre-training a base net-
work on a base dataset and task (e.g., image classification on ImageNet), and (2) trans-
ferring the learned feature knowledge to a target network to be fine-tuned on a target
dataset and task. In the base task, the first few layers of the base network extract generic
low-level features (e.g., edges, lines, and corners), that generalizes to many datasets and
tasks. The remaining layers extract more high-level, complex and abstract feature knowl-
edge (e.g., object boundaries and contours), that specializes to a target dataset and task
(Yosinski et al., 2014). This operation improves learning of the target task by: (1) provid-
ing a better starting point for training and preventing the model from falling into local
minima (Fulton et al., 2019); (2) limiting the number of parameters to be optimized to
a subset of the layers of the network; and (3) reducing data-labeling efforts by reducing
the amount of training data needed to reach satisfactory performances on the new task.

Most of the reviewed papers (19 out of 34 papers) adopted TL, regardless of the CV
task performed. For example, Musić et al. (2020) performed IC task to detect five cat-
egories of litter, i.e., plastic, glass, metal, paper and cardboard. They pre-trained the
VGG16 on ImageNet dataset and fine-tuned the final layers of the VGG16 on a new dataset
containing images from these five categories of litter. Although the objects in ImageNet
are quite different from the detected litter, the pre-trained model improves detection
because it recognizes generic features (e.g., edges, and basic shapes) in its early layers.

Researchers usually used models pre-trained on the ImageNet dataset or the Com-
mon Objects in Context (COCO) dataset (Lin et al., 2014). ImageNet is preferred for IC
(5 papers), but also applied for OD (2 papers) and IS (2 papers). The COCO dataset is
a common choice for OD (6 papers). The CIFAR-10 dataset (Recht et al., 2018) and the
PASCAL VOC dataset (Everingham et al., 2010) have also been used.

While several authors resorted to TL to develop their models, with the exception of
(Marin et al., 2021), no studies have thoroughly assessed its benefits with respect to train-
ing from scratch or fine-tuning the entire architecture (not just the classifier). Such in-
vestigations can be justified by the reported good performances of small architectures
such as MobileNetV2 and SqueezeNetV1. Furthermore, the representation learned on
large open source datasets may not always reflect typical features of images with litter
(e.g., variety of litter, presence of water in the background).

DATA AUGMENTATION

Data augmentation (DA) reduces model overfitting by increasing the amount of available
training data via augmentation or transformation of the images in the original training
dataset (Shorten & Khoshgoftaar, 2019). This technique can also improve the perfor-
mances of models when dealing with imbalanced datasets by creating more samples of
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underrepresented classes.
DA usually involves automatic procedures performing geometrical transformations

as well as color space transformations on available images. The DA methods used in
reviewed papers include flipping (11 papers), rotation (10 papers), zooming in/out (4
papers), shifting (4 papers), noise addition (3 papers), cropping (2 papers), shearing (2
papers), copy-paste augmentation (2 papers), changes in brightness (1 paper), and mo-
saic data augmentation (1 paper). Fig. 4.1 shows an example of several DA techniques.
Copy-paste augmentation is an advanced DA technique, whose purpose is to copy ob-
jects from a source image and paste them to a target image (Ghiasi et al., 2021). For ex-
ample, Lin et al. (2021) employed such technique to superimpose labeled target objects
cropped from real-world images against realistic backgrounds. Mosaic data augmenta-
tion combines 4 cropped images to create a synthetic image, that is often used for data
augmentation in OD tasks (Lin et al., 2021).

Figure 2.5: Examples of data augmentation techniques used in reviewed papers to improve model perfor-
mances. Left: original images; Right: images generated by performing geometrical transformations (e.g., flip-
ping, rotation, zooming in, shifting, cropping, and shearing), and other basic (e.g., changes in brightness, and
noise addition), or advanced transformations (e.g., copy-paste augmentation, and mosaic data augmentation).

Flipping is the most popular choice as it preserves the original features of litter in the
images and maintains fidelity with respect to the original label. On the other hand, the
addition of noise or changes in brightness may alter the original images too much, thus
degrading model performances. Rotation, zooming in, shifting, cropping, shearing, and
mosaic data augmentation may instead lead to the omission of some of the originals ob-
jects of interest in the new images, forcing relabeling and partially nullifying the benefits



2

30 2. LITERATURE REVIEW

of DA (Shorten & Khoshgoftaar, 2019).

While most studies (20 out of 34 papers) applied DA (see Table 2.1), only three stud-
ies have thoroughly evaluated the benefits of DA with respect to training the same archi-
tecture on the original dataset. van Lieshout et al. (2020) showed that model precision
marginally raised from 59.4% to 63.4% when using flipping data augmentation methods.
Lin et al. (2021) also showed the model performances increased slightly when employing
mosaic data augmentation. Musić et al. (2020) used copy-paste augmentation by super-
imposing computer-generated litter on realistic backgrounds. However, adding these
images to the training dataset resulted in poorer prediction performances on the real-
world dataset. Thus, researchers should discuss the benefits of different DA method for
litter detection models in more depth.

2.3.6. GENERALIZATION CAPABILITY

DL models for CV exploit spatial inductive biases and shared weights to recognize fea-
tures and objects regardless of their position in the image (Battaglia et al., 2018). While
this favors generalization to unseen data, good detection performances at a single lo-
cation or for similar environmental conditions do not guarantee that the model can be
successfully applied or “transferred” to other situations and case studies. Achieving sat-
isfactory out-of-domain generalization capability is a prerequisite for deploying large
scale monitoring strategies based on DL, especially with respect to transferability across
different bodies of water, locations, and device setups.

We identify four different forms of out-of-domain generalization capability in the
reviewed papers: (1) geographical generalization capability, (2) environmental general-
ization capability, (3) non-aquatic generalization capability, and (4) device setup gen-
eralization capability. Geographical generalization capability represents the generaliza-
tion capability of the model at different locations under roughly the same environmental
conditions (such as weather, presence of waves, wind conditions, and terrain shading).
Environmental generalization capability refers model testing in different environmen-
tal conditions. Non-aquatic generalization capability involves models trained with data
from non-aquatic environments and tested on aquatic environments (or vice versa).
Lastly, device setup generalization capability represents the generalization capability for
different device setups, such as the flight altitude of UAVs, or the setting angle between
a fixed camera and the water surface.

Despite the importance of generalization, only few studies (9 out of 34 papers) di-
rectly addressed these aspects, with two studies (Fallati et al., 2019; van Lieshout et al.,
2020) considering two different forms of generalization capability (see Table 2.1). The
majority of these 9 studies are with respect to geographical generalization capability (6
papers). Five papers (Fallati et al., 2019; Kako et al., 2020; Martin et al., 2021; Papakon-
stantinou et al., 2021; van Lieshout et al., 2020) studied geographical generalization ca-
pability by training and testing on different case studies, respectively. For example, Pa-
pakonstantinou et al. (2021) trained DL models on UAV images captured from certain
beaches, and tested it on UAV images collected from different beaches. Compared with
geographical generalization capability, there are less studies concerning non-aquatic
generalization capability (2 papers), device setup generalization capability (2 papers),
and environmental generalization capability (1 paper). For instance, Panwar et al. (2020)
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trained a model on images of macroplastic litter gathered across streets and forests, and
tested it on images with macroplastic litter under the sea surface and on beaches. Song
et al. (2021) assessed device setup generalization capability by using a phone mounted
on a tripod to collect training and test data from different heights at one beach. Fallati et
al. (2019) evaluated environmental generalization capability by collecting training and
test data at different time of the day. The authors also used a UAV to collect training and
test data at different beaches to assess the geographical generalization capability of the
model.

Among the 9 papers addressing generalization capability, 4 papers (Battula et al.,
2020; Kako et al., 2020; Panwar et al., 2020; Song et al., 2021) did not discuss the perfor-
mances of DL models trained and tested in different conditions. Only 1 paper (Papakon-
stantinou et al., 2021) reported promising geographical generalization capability, with a
precision metric of 83%. The models in the remaining studies did not show satisfactory
generalization performances when tested for different geographical, environmental, or
device setup conditions with reported precision between 20% and 63.8%. For exam-
ple, van Lieshout et al. (2020) showed that the performances of a trained model working
reasonably well for one location deteriorated quickly for an unseen location, with a de-
crease in precision from 68.7% to 54%. These new images featured substantially more
organic material (e.g., leaves and branches) than those used for training. The presence
of organic material, unaccounted for during training, thus hindered robust detection of
floating litter. The authors also showed that the generalization performances increased
when including images from different locations in the training dataset. In general, we
believe the community should increase efforts to develop DL models with robust gener-
alization that can operate well across different conditions.

2.3.7. PERFORMANCE EVALUATION

The “Metric” column of Table 2.1 reports the performance metrics used by the authors
when these reflect common options used for CV (Padilla et al., 2020; Wambugu et al.,
2021) and are unambiguous.

For IC tasks, the majority of studies used the overall accuracy (OA) metric (9 out of
11 papers) to evaluate performances over all classes. Precision (6 papers), recall (7 pa-
pers), and F1-score (6 papers) were the most popular choices to evaluate performances
for each class. These metrics should be preferred for imbalanced datasets since OA mis-
represents the minority classes. For example, Wolf et al. (2020) worked on an imbalanced
dataset including 18 categories of objects. Although good average performance were re-
ported for all classes (OA=71%), minority classes such as carton (25 images in total) were
poorly detected (F1-score=0.46).

For binary OD, common metrics include recall (4 out of 8 papers), precision (2 pa-
pers), and F1-score (2 papers). For multi-class OD, the majority of studies employed av-
erage precision (AP, 8 out of 17 papers) and mean average precision (mAP, 11 papers) to
assess performances for each class object and over all classes, respectively. The value of
these metrics depends largely on the selected threshold for determining the Intersection
Over Union (IoU), a number that quantifies the degree of overlap between the predicted
and ground-truth bounding boxes. With some exceptions (Deng et al., 2021; Panwar et
al., 2020; Politikos et al., 2021; Putra & Prabowo, 2021; Song et al., 2021; Watanabe et al.,
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2019; Xue et al., 2021b), these important thresholds are rarely reported in reviewed pa-
pers. Based on common benchmarks (e.g., COCO and PASCAL VOC), we recommend
using a threshold IoU=0.5 when estimating fluxes (e.g., number of items across the river
width per unit of time), while higher thresholds (e.g., up to 0.95) should be used to quan-
tify mass concentrations (e.g., hotspot areas).

For binary semantic segmentation tasks, two studies (Kako et al., 2020; Mifdal et al.,
2021) used pixel accuracy metrics to assess performances on detecting macroplastic lit-
ter. For multi-class semantic segmentation tasks, one paper (Jakovljevic et al., 2020) used
precision, recall, and F1-score metrics to evaluate performances for each class. No pa-
pers reported results in terms of IoU or mean IoU, which are the preferred metrics for se-
mantic segmentation as they account for unbalanced datasets. For multi-class instance
segmentation, one paper (Deng et al., 2021) employed mAP to evaluate performances
over all classes.

The “Performance” column of Table 2.1 reports the test value of the most repre-
sentative metric across all classes. However, since the proposed methodologies have
been tested on different macroplastic datasets in disparate experimental settings, a di-
rect comparison is unfeasible. More interestingly, some papers report encouraging evi-
dence on the effectiveness of DL methods with respect to accurate, but time-consuming,
sampling methods. For instance, de Vries et al. (2021) found a satisfactory correlation
(R2=0.7) between DL-detected spatial concentrations of macroplastics on the sea sur-
face and manta-trawling ground truth observations. Song et al. (2021) reported a small
error (<5%) between the number of litter items on a beach yielded by actual counting and
those detected by Yolo v5. Kako et al. (2020) reported similar figures (<5%) for the vol-
umetric difference of beached plastic debris between surveys and MLP-based IS. These
results suggest that using DL for automatic detection and quantification of litter is a valid
alternative to traditional sampling methodologies.

2.4. SUMMARY OF KEY KNOWLEDGE GAPS
Our review shows that the majority of reviewed papers focus on detecting litter in ma-
rine environments, while less attention is devoted to detecting freshwater litter. Recent
research indicated that most debris leaking into the environment does not reach the
oceans, but instead accumulates in river systems (Tramoy et al., 2020; van Emmerik et
al., 2022b; Weideman et al., 2020), resulting in damaged ecosystems (Blettler et al., 2018).
Monitoring the source, transport, and sink points of riverine litter is thus essential to
quantify global litter pollution transport and effectively reduce pollution (van Emmerik
& Schwarz, 2020). Therefore, we advocate for greater efforts on applying DL to tackle
riverine litter pollution problems in the future.

Based on the findings reported in Chapter 2.3 and the significance of monitoring
litter in rivers, we identified three major knowledge gaps:

1. The lack of robust DL models to detect floating litter in rivers

2. The requirement of a large amount of labeled data for developing robust detection
model
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3. The lack of DL-based quantification of cross-sectional floating litter fluxes in rivers,
leveraging a limited amount of labeled data

2.4.1. ROBUST DL MODEL TO DETECT FLOATING LITTER IN RIVERS

Despite some promising initial efforts, research on the generalization capability of DL
models for detecting floating litter is insufficient. Most studies have evaluated in-domain
generalization performances, while only a few studies have assessed out-of-domain gen-
eralization performances. In-domain generalization refers to the model performance
on new, unseen images under the same geographic, environmental, and device setup
conditions, while out-of-domain generalization refers to unseen images from different
conditions, as well as different case studies (e.g., waterway networks within a country).
Besides, review results show that the models proposed so far do not retain satisfactory
out-of-domain generalization performances under different geographical, environmen-
tal, or device setup conditions.

We argued that DL-based detection models with robust zero-shot out-of-domain
generalization capability should be developed. This capability enables DL models to
detect previously unseen objects from different geographic, environmental, and device
setup conditions, without requiring training data of these unseen objects. Such mod-
els are especially crucial for large-scale structured monitoring, enabling the monitor-
ing of multiple geographic locations with varying environmental conditions in extensive
river system, without well-labeled and location-specific data for further refinement of
DL models.

2.4.2. REQUIREMENT OF LARGE AMOUNT OF LABELED DATA FOR MODEL

DEVELOPMENT

All reviewed papers employed supervised learning methods to develop DL models. These
methods require large quantities of annotated training data for supervised learning to
achieve robust performance. As reported in Chapter 2.3.2, the average dataset size across
34 reviewed papers is around 9,000 labeled images. The manual labeling work is costly,
time-consuming and relies on domain-specific knowledge on floating litter detection.
The community has released a open dataset (van Lieshout et al., 2020), with 1,272 images
and 14,968 annotated floating macroplastic litter items in rivers. However, the amount of
annotated data available is far below that of comprehensive datasets, e.g., ImageNet with
over 14 million images and almost 20,000 categories. This may hinder achieving broad
model generalization and effective transferability, which underpins robust and versatile
computer vision systems for structural monitoring of floating litter.

To partially overcome this limitation, researchers often used transfer learning ap-
proaches (see Chapter 2.3.5), that transfer knowledge from a related task to a new task.
While transfer learning is a powerful technique, its effectiveness declines when the base
and target tasks become less similar (Yosinski et al., 2014). To develop DL models for
floating litter detection, reviewed studies pre-trained models on comprehensive datasets,
such as ImageNet. However, the high-level features in these datasets have limited rele-
vance with respect to floating litter imagery. This may hinder performances and gener-
alization capability.
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2.4.3. DL-BASED QUANTIFICATION OF CROSS-SECTIONAL FLOATING LITTER

FLUXES, LEVERAGING A LIMITED AMOUNT OF LABELED DATA
The current literature mainly focuses on detecting litter in rivers, and only few studies
link DL-based detection to the quantification of litter, mainly with respect to the num-
ber of litter items. However, stakeholders require this information to design cleaning
campaigns, and mitigate the impact of pollution on the environment and human health
(Tasseron et al., 2020; van Emmerik et al., 2018b).

Only one study (van Lieshout et al., 2020) quantifies the floating litter fluxes in rivers.
They used a supervised learning model with a single bridge-mounted camera, to es-
timate plastic fluxes in a narrow waterway in Jakarta, Indonesia. The development of
their model requires a large amount of labeled data, that is time-consuming and costly
to obtain. Additionally, van Calcar and van Emmerik (2019) reported that the horizontal
distribution of floating litter fluxes along some wider rivers is highly uneven, based on
observations from 24 locations in rivers across seven countries in Europe and Asia, e.g.,
the Saigon River (300 m wide), in Vietnam. Relying on observation from a single or low
number of locations to estimate litter fluxes across a wide river may lead to significant
under- or overestimation (van Emmerik et al., 2019a). Therefore, more efforts should go
into developing better DL-methods for quantifying cross-sectional floating litter fluxes
in wide rivers, leveraging a limited amount of labeled data.
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3.1. INTRODUCTION
To answer the research questions in this thesis, we needed to evaluate multiple deep
learning methods on different datasets for litter detection and quantification. However,
the community has released open datasets with limited data, as highlighted in Chapter
2. To overcome this limitation, we generated multiple datasets by collecting data from
multiple locations in canals and waterways in the Netherlands and Vietnam. This chap-
ter presents these datasets, along with two existing openly available datasets used in this
thesis for model development and evaluation.

3.2. DATASETS AND CASE STUDIES
We collected data from five locations (1) The TU Delft - Green Village (TUD-GV), the
Netherlands, (2) Oostpoort, the Netherlands, (3) Amsterdam, the Netherlands, (4) Gronin-
gen, the Netherlands, and (5) the TU Delft - Ho Chi Minh City (TUD-HCMC), Vietnam.
We also present two open datasets in this chapter: (1) Jakarta, Indonesia (van Lieshout
et al., 2020), and (2) Wageningen UR - Ho Chi Minh City (WUR-HCMC) (van Emmerik
et al., 2024). The details of these datasets are shown in Table 3.1.

Table 3.1: Details on 7 datasets used in this thesis

Name Collection location Collection device
Image resolution
(pixel×pixel)

Device height (m) No. images 1

TUD-GV
Delft,
the Netherlands

GoPro Hero 4,
GoPro MAX 360,
Huawei P30 Pro

1920×1080 2.7 7,965

Oostpoort
Delft,
the Netherlands

GoCam3,
GoPro MAX 360

3840×2160,
1920×1440

5 562

Amsterdam
Amsterdam,
the Netherlands

GoPro Hero 10 5568×4176 1-2 92

Groningen
Groningen,
the Netherlands

Obscape HQ 2592×1944 4 63

TUD-HCMC
Ho Chi Minh City,
Vietnam

Pentax K-serie 6016×4000 508

Jakarta
Jakarta,
Indonesia

Dahua Easy4ip
2560×1440,
1920×1080

4.5 526

WUR-HCMC
Ho Chi Minh City,
Vietnam

GoPro Hero 11,
DJI Phantom 4 Pro

5568×4872,
5464×3070

7.4-18.6 (cameras)
11-14 (drones)

935

1 In these columns, we only reported the maximum number of images used for model development in this thesis.

3.2.1. THE TU DELFT - GREEN VILLAGE DATASET
We created the TUD-GV dataset from experiments conducted during 10 days in Febru-
ary and April 2021 in a small drainage canal at The Green Village —a field lab facility in
the TU Delft Campus, the Netherlands. Fig. 3.1 shows the monitoring setup. We cap-
tured data using two action cameras (GoPro HERO4 and GoPro MAX 360) and a phone
(Huawei P30 Pro) mounted on four different locations on a bridge. All devices recorded
videos with a resolution of 1080p, a linear field of view, and a FPS (frame per second)
of 24 (for the action cameras) or 30 (for the phone). We opted for data collection in a
semi-controlled environment as it is time-saving and cost-effective.

First, we collected the litter objects from canals in Alkmaar (the Netherlands) with
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Figure 3.1: Monitoring setup at The Green Village: (a) view from the top with the four different filming locations
(1-4) on the bridge; (b) details of some camera installation on Location 1 and Location 2.

the help of volunteers, as well as from household waste from nearby neighborhoods. In
total, we gathered 626 items, including plastic bottles, plastic bags, miscellaneous plastic
objects, as well as metal tins, paper and cardboard items. Examples of litter objects can
be found in Fig. 3.2. Then, we placed the collected litter on the water surface of the canal
at The Green Village and captured images as the floating litter moved on the water sur-
face due to wind. Finally, we used floating barriers (see Fig. 3.1 (a)) to intercept floating
litter after data collection to prevent water pollution.

Table 3.2 shows the details of the TUD-GV dataset, including device specifications,
weather condition, litter class and the number of images. We recorded a total of 165
videos, from which we selected 9473 images (703 phone images and 8770 camera im-
ages) to create the TUD-GV dataset. These images contain canal and household floating
litter under two different weather conditions (sunny and cloudy), taken from two de-
vice heights above the water surface (2.7m and 4.0m) and two viewing angles (0 and 45
degrees).

Fig. 3.3 provides examples of images from different device settings (device height and
viewing angle). The collected images reflect all possible combinations of device used,
device settings, type of litter, and environmental conditions. The set of household litter
from the 2.7 m/45° setup is comprised solely of cloudy weather images, while some im-
ages from the 4 m/45° and 4 m/0° setups contain sun glints, as shown in Fig. 3.3 (c) and
(d). Images from the 4 m/0° setup were cropped to exclude the bridge, as shown in Fig.
3.3 (c).
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Figure 3.2: Monitoring setup at The Green Village: (a) view from the top with the four different filming locations
(1-4) on the bridge; (b) details of some camera installation on Location 1 and Location 2.

Table 3.2: TUD-GV dataset details

Device
Device

degree (°)
Device

height (m)
Weather

conditions
Litter class

No. images per class
No. images

No litter Little litter Moderate litter Lots of litter

GoPro HERO4,
GoPro MAX 360,
Huawei P30 Pro

0 2.7

Sunny,
Cloudy

Canal litter,
Household waste

1151 1429 1971 1305 5856

0 4 555 331 350 124 1360

45 2.7 399 293 348 166 1206

45 4 302 246 298 205 1051

Inspired by the categorization scheme of CrowdWater (van Emmerik et al., 2020), we
manually labeled the images in the TUD-GV dataset into four classes: no litter (0 items),
little litter (1-2 items), moderate litter (3-5 items), and lots of litter (6-10 items) according
to the number of litter items in images (see Fig. 3.3). The images and labels are available
for download from Zenodo at https://doi.org/10.5281/zenodo.7636124.

Additionally, we annotated litter items in 1,501 images using bounding boxes to in-
dicate their locations. These images and bounding box annotations are available for
download from Zenodo at https://doi.org/10.5281/zenodo.13730228.

3.2.2. THE OOSTPOORT DATASET
We generated the Oostpoort dataset from experiments conducted during 26 days from
February to March 2022, in a canal at Oostpoort, Delft, the Netherlands. We collected
data employing two action cameras (GoCam3 and GoPro MAX 360). Fig. 3.4 shows
monitoring setups including cameras that are mounted outside the windows of a tower
at Oostpoort, at a height of about 5m above the water surface. We recorded video se-
quences with a time-lapse recording (1 image/30 sec), and a FPS (frame per second) of
17.98. We generated the Oostpoort dataset by saving images from these videos. The

https://doi.org/10.5281/zenodo.7636124
https://doi.org/10.5281/zenodo.13730228
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Figure 3.3: Examples of images from the TUD-GV dataset captured from four device setups including (a)
2.7m/0°, (b) 2.7m/45°, (c) 4m/0°, and (d) 4m/45°. The captions for the four images are (a) no litter, (b) little
litter, (c) moderate litter, and (d) lots of litter, respectively. The image (c) was cropped to omit the bridge.

Oostpoort images and bounding box annotations are available for download from Zen-
odo at https://doi.org/10.5281/zenodo.13730298.

Figure 3.4: Monitoring setups at the Oostpoort.

Examples of images can be found in Fig. 3.5. Some images in this dataset contain
fauna and various extents of organic material (e.g., leaves and branches), that increases
the complexity of the environment owing to their diverse range of color patterns, shapes
and sizes. Organic material and floating litter clutter together in garbage patches in some
images, making litter harder to detect (van Lieshout et al., 2020).

https://doi.org/10.5281/zenodo.13730298
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Figure 3.5: Examples of Oostpoort images.

3.2.3. THE AMSTERDAM DATASET

We created the Amsterdam dataset from one experiment conducted on 1st March 2023,
in canals and ponds at Amsterdam, the Netherlands. We recorded images using an ac-
tion camera (GoPro Hero 10). All images used in this study are captured by the device
positioned at a distance of maximum 2 m from the water surface. Examples of these im-
ages can be found in Fig. 3.6. The Amsterdam images and bounding box annotations are
available for download from Zenodo at https://doi.org/10.5281/zenodo.13730370.

Figure 3.6: Examples of Amsterdam images.

3.2.4. THE GRONINGEN DATASET

We conducted several experiments in a canal in Groningen, the Netherlands, in 2023.
We captured data employing a security cameras (Obscape HQ time-lapse). Fig. 3.7 shows

https://doi.org/10.5281/zenodo.13730370
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monitoring setups including cameras mounted on a bridge at a height of 4m. We recorded
images with a time-lapse recording (1 image/6 sec). Examples of images are shown in
Fig. 3.8. The Groningen images and bounding box annotations are available for down-
load from Zenodo at https://doi.org/10.5281/zenodo.13730384.

Figure 3.7: Monitoring setups at Groningen.

Figure 3.8: Examples of Groningen images. The images used in the experiments are cropped to omit the struc-
ture.

3.2.5. THE TU DELFT - HO CHI MINH CITY DATASET
We conducted measurements at two bridges across the Saigon River in Ho Chi Minh
City, Vietnam: (1) Binh Loi and (2) Thu Thiem over two days during the wet season in
September 2023. Fig. 3.9 shows the location of these bridges in the Saigon River, and our

https://doi.org/10.5281/zenodo.13730384
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sampling points on each bridge. The Binh Loi bridge is located in the central part of the
city, while the Thu Thiem bridge is situated at the downstream end.

Figure 3.9: The location of Binh Loi and Thu Thiem bridges in the Saigon River (left) and sampling points for
each bridge (right).

Table 3.3 shows the details of the measurements. We divided each bridge into five
transects, and monitored floating litter at the center of each transect. The length of these
transects was carefully selected to ensure that the bridge piers were not visible within
the camera’s field of view during sampling. All measurements were performed in the
southernmost side of bridges during the ebb tide.

Table 3.3: Details of the measurements at Thu Thiem and Binh Loi bridges on the Saigon River

Bridge
River

width (m)
Date

Sampling
point

Transect
width (m)

Observation
area width (m)

No. measurement
rounds

Sampling duration
per point (s)

Time-lapse
interval (s)

No. images
No. litter

items
No. annotated

litter items

Thu Thiem 285 09/09

1 35

7 4 130 10 199 51 64

2 58

3 70

4 60

5 62

Binh Loi 228 12/09

1 28

7 6 130 10 309 108 114

2 33

3 69

4 85

5 12

On each measurement day, we conducted 4 or 6 rounds of measurements. Dur-
ing each round, we captured images (6016×4000 pixels) sequentially from the sampling
point 1 to 5, using a handheld camera (Pentax K-series) over a period ∆ti ,m of 120 or 130
seconds. The camera was oriented nearly vertically with respect to the water surface,
with a time-lapse recording (1 image/10 seconds). The observation area width for each
sampling point is 7 m, and the ground sampling distance (GSD) of each image is 0.12
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cm/pixel. Due to instability in the operation of the handheld camera, we only selected
the images without heavy blur for measuring litter fluxes, as reported in Table 3.3. Fi-
nally, we built the TUD-HCMC dataset, including the TestThu Thiem and TestBinh Loi sub-
sets with 199 and 309 images collected from the Thu Thiem and Binh Loi bridge, re-
spectively. We annotated litter items in images using bounding boxes to indicate their
locations. Since some items appear in multiple consecutive images, the number of an-
notated litter items exceeds the actual number of litter items in the rivers (see Table 3.3).
Examples of images are shown in Fig. 3.10.

Figure 3.10: Examples of images from TUD-HCMC dataset, including (a) Thu Thiem and (b) Binh Loi images.
Ground-truth litter is shown in red bounding boxes.

3.2.6. THE JAKARTA DATASET

The Jakarta Dataset is an object detection dataset with 526 images and 11064 annotated
floating macroplastic litter items. van Lieshout et al. (2020) collected these images using
a camera mounted mounted on bridges at five different waterways in Jakarta, Indonesia,
from 30 April to 12 May 2018. These images were taken from the view angle of 6 degrees,
under various levels of organic material on river surface (i.e., no organic debris, some
organic debris, and many organic debris). Most images (1,108) have relatively still water
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surfaces, but the remaining images (164) have waves. Examples of images are shown in
Fig. 3.11.

Figure 3.11: Examples of images from Jakarta dataset.

3.2.7. THE WAGENINGEN UR - HO CHI MINH CITY DATASET
The Wageningen UR - Ho Chi Minh City (WUR-HCMC) dataset was created by van Em-
merik et al. (2024) from WUR. It includes 15,495 images collected from experiments con-
ducted during 8 weeks from February to April 2023, at five locations of the Saigon river
at Ho Chi Minh City, Vietnam. They captured images using drones (DJI Phantom 4 Pro)
at the Thanh Ho and Quy Kien locations, as well as bridge-mounted cameras (Gopro
Hero 11) at the Phu Long, Binh Loi and Thu Thiem bridges. They flew drones across the
river width at the altitude ranging from 11 to 14m above the river surface. They installed
bridge-mounted cameras with a time-lapse recording (31 image/10 sec) at the height
ranging from 7.4 to 18.6m above the river surface. Examples of images are shown in Fig.
3.12.
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Figure 3.12: Examples of WUR-HCMC images collected by (a) drones and (b) cameras.





4
IMPROVING FLOATING LITTER

DETECTION PERFORMANCE WITH

TRANSFER LEARNING AND

DATA-CENTRIC AI

To improve floating litter detection performances, we first tried transfer learning (TL)
methods and data-centric artificial intelligence (AI) approaches, based on the findings in
literature review. We evaluated three data-centric artificial AI approaches: (1) data aug-
mentation (DA), (2) adding new images to original training data (ANI), and (3) adding
new images and performing DA (ANI-DA). We developed models with five deep learn-
ing architectures for a multi-class image classification using about 4000 labeled images
from the TU Delft-Green Village dataset. We evaluated the benefits of TL and DA on
models’ in-domain generalization capability. Additionally, we assessed the benefits of
three data-centric AI approaches on models’ out-of-domain generalization capability,
to unseen litter items and new device settings, such as increasing the cameras’ height
and tilting them to 45°. The results show that fine-tuning all layers is more effective than
the common approach of fine-tuning the classifier alone. Among the tested DA tech-
niques, simple image flipping boosts models’ in-domain generalization capability the
most, while other methods have little impact on the performance. Models retain good
out-of-domain generalization capability which drops significantly only for the most com-
plex scenario tested, but the overall accuracy raises significantly to around 75% when
adding a limited amount of images to training data, combined with flipping augmenta-
tion (i.e., ANI-DA methods).

This chapter is based on:

Jia, T., Vallendar, A. J., de Vries, R., Kapelan, Z., & Taormina, R. (2023). Advancing deep learning-based detection
of floating litter using a novel open dataset. Frontiers in Water, 5, 1298465.
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4.1. INTRODUCTION
While some studies have applied deep learning (DL) methods to detect floating litter in
rivers with promising results, there is a lack of DL-based detection models with robust
generalization performances, as discussed in Chapter 2. This includes models that can
detect floating litter for different geographical, environmental or device setup conditions
as well as models that can generalize across different case studies (e.g., waterway net-
works within a country). One major challenge in developing such robust models is the
need of large annotated datasets to train and validate robust DL models. These datasets
should include images collected from in-situ experiments, with different devices and
instrumental settings across various sampling locations under different environmental
conditions. Acquiring a sufficiently large dataset can be time-consuming, tedious, and
costly.

To partially address this challenge, we found that researchers often utilize techniques
such as transfer learning (TL), as discussed in Chapter 2. Moreover, they usually used
data-centric artificial intelligence (AI) approaches to improve model performance, such
as data augmentation (DA) (see Chapter 2). We do not present the details of TL and DA
in this chapter. Readers are referred to Chapter 2.3.5 for more details.

Data-centric AI aims to improve model performances by training on cleaner and
more informative datasets (Motamedi et al., 2021). Several studies have shown the ben-
efits of employing these approaches for a wide variety of computer vision-related indus-
trial applications (Im et al., 2021; Tang et al., 2020; Zhou et al., 2019). These approaches
usually entail improving the quality of existing data by resorting to pre-processing tech-
niques, systematic labeling, and expert knowledge. For instance, sun glints on the sur-
face of rivers can lead to the misclassification of floating objects (Jakovljevic et al., 2020).
Some pre-processing techniques can dilute the effects of these unwanted reflections and
boost model performances, as shown already for applications in defect detection and
eye tracking (Im et al., 2021; Singvi et al., 2012).

We identified two data-centric AI methods used to improve model detection per-
formance: (1) DA, and (2) Adding New Images (ANI) to the training dataset, from the
literature review in Chapter 2. ANI methods involve adding new images collected from
new geographical or environmental or device setup conditions to the original training
dataset, which improves model generalization in these new conditions. Only one study
(van Lieshout et al., 2020) in the literature has evaluated the benefits of ANI methods
(see Chapter 2.3.6). van Lieshout et al. (2020) found that a model that performed well
for one location in Jakarta, Indonesia, did not generalize well to a different location of
the same city, resulting in a drop in precision from 68.7% to 54.0%. This degradation in
performance was attributed to the presence of a large amount of organic material (e.g.,
leaves and branches) in the new images, which was not accounted for during training.
They also demonstrated that the generalization performances to different locations im-
proved when the ANI methods were used, by including images from different locations
in the training dataset.

TL and data-centric AI approaches are particularly important to develop models with
good out-of-domain generalization capability, which is essential for deploying large scale
monitoring campaigns. Therefore, we selected these methodologies to improve model
generalization capability to detect floating litter in rivers, leveraging a relatively large
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amount of labeled data. However, only a few studies (Maharjan et al., 2022; van Lieshout
et al., 2020) evaluated their benefits compared to alternatives (e.g., training models from
scratch or with non-augmented datasets). Additionally, no study exists on DL-based
litter detection reporting a rigorous comparison of TL strategies, DA techniques, ANI
methods, and their effects on generalization.

To fill this gap, this chapter evaluates the benefits of these approaches in enhancing
model generalization capability to detect floating litter in rivers using the TU Delft-Green
Village (TUD-GV) dataset (see Chapter 3). The findings presented in this chapter con-
tribute to answering the first research sub-question of this thesis:

• How to build robust DL models to detect floating litter in rivers, leveraging a rela-
tively large amount of labeled data?

The remainder of the chapter is structured as follows. Chapter 4.2 presents the method-
ology used in this study, including the DL architectures, TL methods, DA techniques, and
three data-centric AI approaches to improve generalization capability. Chapter 4.3 de-
scribes three sets of experiments, including the datasets used, the experimental setup,
and performance evaluation. In Chapter 4.4, we presented and discussed the experi-
mental results. Finally, we summarized the conclusions in Chapter 4.5.

4.2. METHODOLOGY

4.2.1. DEEP LEARNING ARCHITECTURES
We framed the problem of floating litter detection as a multi-class image classification
task. We employed five major CNN architectures that have demonstrated good perfor-
mance on ImageNet classification: ResNet50 (25.6M parameters) (He et al., 2016), In-
ceptionV3 (23.9M) (Szegedy et al., 2016), DenseNet121 (8.1M) (Huang et al., 2017), Mo-
bileNetV2 (3.5M) (Sandler et al., 2018), and SqueezeNet (1.2M) (Iandola et al., 2016). The
reader is referred to the literature for more details on the employed architectures.

A typical CNN for image classification consists of several convolutional blocks and
a classifier. The convolutional blocks are made up of convolutional and pooling layers,
which are used to extract features from images. The classifier typically consists of fully
connected dense layers that are used to classify images based on the features extracted
by the convolutional base (Subramanian et al., 2022). For the purpose of this study, we
replaced the original classifier in each CNN architecture with a global average pooling
layer followed by a dense layer with a softmax activation function for multi-class classi-
fication (i.e., 4 classes). Global average pooling summarizes the feature maps produced
by the convolutional base to reduce overfitting and computational costs.

4.2.2. TRANSFER LEARNING
We evaluated the benefits of the most common TL strategies (Guo et al., 2020): (1) fine-
tuning the classifier alone (FTC), and (2) fine-tuning all layers (FTAL). We evaluated the
effect of transferring features learned on the ImageNet IC task to floating litter detec-
tion, a common approach in the field (see Chapter 2). The ImageNet dataset is a widely
used benchmark dataset for IC tasks, with more than 20,000 categories (e.g., balloon and
strawberry) and over 14 million images. In the FTC strategy, we first loaded the model
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pre-trained on ImageNet, then replaced and fine-tuned the classifier on the TUD-GV
dataset while freezing the convolutional base (i.e., weights remain fixed during training).
In the FTAL strategy, we fine-tuned all layers of the model on the TUD-GV dataset after
loading the ImageNet weights as the starting point and replacing the classifier. We com-
pared the effectiveness of FTC and FTAL against the performances obtained by training
the models from scratch, that is with random weight initialization.

4.2.3. DATA-CENTRIC AI APPROACHES
We applied three data-centric AI methods to improve the models’ generalization capa-
bility, including (1) DA; (2) ANI; and (3) using the best DA method after adding new im-
ages to the training dataset (ANI-DA).

We evaluated the benefits of four different DA techniques separately, including (1)
flipping, (2) brightening, (3) darkening, and (4) adding random salt-and-pepper noise;
we also tested (5) mixing all the four aforementioned techniques, an approached here-
after identified as MIX DA. Fig. 4.1 shows examples of each DA technique. Flipping
has been shown to be effective on benchmark datasets, such as ImageNet and CIFAR-
10 (Recht et al., 2018). Since lighting biases often hinder image classification and ob-
ject detection (Shorten & Khoshgoftaar, 2019), we also assessed the effect of variations
in brightness on model performances. Furthermore, adding noise to images can help
CNN models discover more robust features in images (Shorten & Khoshgoftaar, 2019).
Techniques such as cropping, rotation, or zooming were not assessed because they may
cause the omission of original objects of interest in the new images, leading to undesir-
able label transformations (Shorten & Khoshgoftaar, 2019).

Figure 4.1: Examples of data augmentation techniques used. Left: an original image; Right: images generated
by performing horizontal flipping (top row, left), vertical flipping (top row, right), combined horizontal and
vertical flipping (middle row, left), brightening (middle row, right), darkening (bottom row, left), and adding
salt-and-pepper noise (bottom row, right).
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We adopted three types of flipping methods: horizontal flipping (i.e., reversing pixels
of an image in the horizontal direction), vertical flipping (i.e., reversing pixels in the verti-
cal direction), and combined horizontal and vertical flipping (i.e., reversing pixels in the
horizontal direction and then reversing those in the vertical direction). Each type of flip-
ping was performed to generate one new image from one original image. For brightness
augmentation, we used the function provided in the Python Imaging Library (Hadi et al.,
2016) by changing the brightness parameter. We generated three new images with dif-
ferent brightness levels by using three random brightness parameters (range [1.1, 1.4]).
A brightness parameter value of “0" creates an image with a black color, while a value
of “1" returns the original image. Values above “1" create brighter images. Similarly,
we employed three random brightness parameters (range [0.6, 0.9]) for darkness aug-
mentation. To add random salt-and-pepper noise, we used the function provided in the
Scikit-image library (van der Walt et al., 2014) by changing noise ratio values. We created
three new images with different levels of noise by using three random noise ratio val-
ues (range [0.01, 0.15]). The noise ratio is the proportion of salt-and-pepper noise in the
range [0, 1]. A higher noise ratio value means that there is more salt noise than pepper
noise (Azzeh et al., 2018). Each DA method mentioned above was applied to generate
three new images for each original training image. MIX DA includes all images gener-
ated by the other four DA methods, resulting in a total of 12 new images for each original
training image.

4.3. EXPERIMENTS

We conducted three experiments using the TUD-GV dataset. Fig. 4.2 shows the flowchart
of them. Experiment 1 aims to compare the in-domain generalization capability of the
five DL architectures on the same types of litter items (i.e., canal litter) and device set-
tings (i.e., cameras’ height is 2.7m and cameras’ angle is 0°), with and without TL. Exper-
iment 2 aims to assess the improvement in in-domain generalization of the five different
DA approaches on the two best performing models from Experiment 1. Experiment 3
aims to evaluate and improve the out-of-domain generalization capability of the best
models trained on images from 2.7m/0°, for unseen litter (i.e., household waste) and
different device setups (camera height/angle: 2.7m/45°, 4m/0°, and 4m/45°).

4.3.1. EXPERIMENT 1: TRANSFER LEARNING IN IN-DOMAIN GENERALIZA-
TION

With the first experiment we compared the detection performances of the five chosen DL
architectures (i.e., ResNet, InceptionV3, DenseNet121, MobileNetV2, and SqueezeNet)
and we assessed the benefits of the FTC and FTAL strategies described in Chapter 4.2.2.
We used a shuffled subset of 4005 images with canal litter for model development. Fol-
lowing the split ratio recommended in Chapter 2, we subdivided into training, valida-
tion, and test datasets following the 80/10/10 split detailed in Table 4.1. Ratios between
the different classes is kept constant across the different datasets. All images have been
recorded from the action cameras with the 2.7m/0° setup.
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Figure 4.2: The flowchart of three experiments. Acronyms used: Fine-tuning the classifier alone (FTC), Fine-
tuning all layers (FTAL), Overall accuracy (OA), Mixing all the four aforementioned techniques (MIX DA), Data
augmentation (DA), Adding new images to original training dataset (ANI), Adding new images and performing
DA (ANI-DA).

Table 4.1: Datasets for Experiment 1

Dataset name
Device setup

(device height/angle)
Litter source No. images

No. images per class

No litter Little litter Moderate litter Lots of litter

Train 2.7m/0° canal litter 3203 508 752 1088 855

Validation 2.7m/0° canal litter 399 63 94 136 106

Test 2.7m/0° canal litter 403 64 95 136 108

4.3.2. EXPERIMENT 2: DATA AUGMENTATION TECHNIQUES IN IN-DOMAIN

GENERALIZATION

We applied the five different DA techniques in Chapter 4.2.3 to the two top performing
baseline models emerging from Experiment 1. These were retrained on the augmented
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datasets yielded by applying each DA techniques, resulting in 12812 or 41639 training
images (MIX DA). For a fair comparison against the baselines, we used the same Valida-
tion and Test datasets of Experiment 1 (see Table 4.1).

4.3.3. EXPERIMENT 3: DATA-CENTRIC AI APPROACHES IN OUT-OF-DOMAIN

GENERALIZATION

To assess the out-of-domain generalization capability to unseen litter items and different
device setups, we evaluated the two selected baseline models on the four test datasets
reported in Table 4.2. These datasets include camera images of household waste (dif-
ferent from the canal litter present in the original training dataset), filmed with 2.7m/0°,
2.7m/45°, 4m/0°, and 4m/45° device setups, respectively. We performed a misclassifica-
tion analysis for the best performing baseline model to better understand which features
in the test datasets posed challenges to generalization. Next, we evaluated the effects of
the methods presented in Chapter 4.2.3 to improve the out-of-domain generalization ca-
pability. We implemented the ANI and ANI-DA methods by retraining the two baseline
models on the TrainANI and TrainANI-DA datasets of Table 4.2, respectively. We created the
TrainANI dataset by adding 1523 images (4726 total) of canal litter to the Train dataset of
Experiment 1, from the three missing device setups (2.7m/45°, 4.0m/0°, and 4.0m/45°).
These 4726 images still featured canal litter, but were captured from three missing se-
tups to better represent the out-of-domain distributions. The TrainANI-DA dataset was
created by performing DA on TrainANI, resulting in a total of 18904 training images. We
validated the models for both ANI and ANI-DA cases on the ValidationANI dataset, ob-
tained by adding 188 images of canal litter to the Validation dataset of Experiment 1. We
compared these models against the baselines of Experiment 1 and the best performing
models with DA of Experiment 2.

Table 4.2: Datasets for Experiment 3

Dataset name
Device setup

(device height/angle)
Litter source No. images

No. images per class
No litter Little litter Moderate litter Lots of litter

TrainANI All1 canal litter 4726 1099 1106 1500 1021
TrainANI-DA All1 canal litter 18904 4396 4424 6000 4084

ValidationANI All1 canal litter 587 136 138 187 126
Test2.7m/0° 2.7m/0° household waste 574 145 126 207 96
Test2.7m/45° 2.7m/45° household waste 689 242 193 173 81
Test4.0m/0° 4.0m/0° household waste 610 213 163 165 69
Test4.0m/45° 4.0m/45° household waste 376 61 71 121 123

1 “All" device setups includes 2.7m/0°, 2.7m/45°, 4.0m/0°, and 4.0m/45°.

4.3.4. TRAINING SETUP AND PROCEDURE

We resized the RGB images from their original size of 1980 x 1080 x 3 to 224 x 224 x 3 pixels
to match the input dimensions of the original pre-trained models. Similarly, we rescaled
the input values from a range of 0 to 255 per pixel to a range of 0 to 1. After preliminary
trials, we trained all models using a batch size of 16 for 100 epochs. To prevent over-
fitting, we selected the model parameters from the epoch with the highest validation
accuracy. In Experiment 1, we compared five different learning rates (0.1, 0.01, 0.001,
0.0001, and 0.00001) for each model architecture, and only used the best learning rate
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in Experiments 2 and 3. We introduced class weights to the cross-entropy loss function
used during training to address the slightly imbalanced datasets we created (Wolf et al.,
2020). The weight of each class was calculated as the ratio of the total number of images
to the number of images in that particular class.

To minimize the effect of randomization, we repeated the training 10 times for each
model in all experiments. All the results reported in Chapter 4.4 are mean values cal-
culated from these runs, unless we discuss the outcomes of misclassification analysis,
which we conducted on the best performing models out of the 10 runs.

We implemented the DL architectures using the Python programming language (ver-
sion 3.8.5) and the Keras DL framework (version 2.6.0). We used the implementations
and pre-trained weights from tf.keras.applications for all architectures, except for SqueezeNet,
retrieved from Malli (2019). Model development was performed on a local NVIDIA GeForce
RTX 3090 GPU (24GB).

4.3.5. PERFORMANCE EVALUATION
To evaluate model performances of floating litter detection, we used four metrics com-
monly employed in multi-class IC tasks: overall accuracy (OA), precision, recall, and F1-
score (see Chapter 2). We used OA to summarize model performance across all classes.
This metric measures the percentage of correctly identified images out of the total im-
ages in the dataset. It is calculated as follows:

O A =
∑K

i=1 Ci ,i

N
(4.1)

where N is the total number of images; K represents the number of classes; and Ci ,i

denotes the number of images that are actually in class i and identified as such.
We used precision, recall and F1-score to assess the performances for each class. Pre-

cision for class i is written as follows:

Pr eci si oni = T Pi

T Pi +F Pi
(4.2)

where T Pi (True Positive) represents the number of correctly classified images of class i ;
and F Pi (False Positive) represents the number of images misclassified as class i.

Recall for class i is expressed as follows:

Recal li = T Pi

T Pi +F Ni
(4.3)

where F Ni (False Negative) represents the number of images that are actually in class
i but classified as other classes. Precision reflects how accurate is the model in identi-
fying relevant samples. It identifies the percentage of correctly identified positive sam-
ples over the total identified positive samples. On the other hand, recall represents the
model’s ability to identify all relevant samples. It is the percentage of correctly identified
positive samples over the total positive samples. F1-score combines the two metrics by
computing their harmonic mean. It is expressed as follows:

F1-scorei = 2∗Pr eci si oni ∗Recal li

Recal li +Pr eci si oni
(4.4)
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4.4. RESULTS AND DISCUSSION

4.4.1. EXPERIMENT 1: TRANSFER LEARNING IN IN-DOMAIN GENERALIZA-
TION

Table 4.3 reports the average training time and OA on the Test dataset for the five archi-
tectures trained from scratch or fine-tuned after TL. In this table, we only reported the
learning rate that yields the best average OA on the validation set for each architecture.
The full evaluation of the five architectures with all tested learning rates can be found
in Table 8.1 in Appendix 8. The FTAL method consistently outperforms the other meth-
ods in in-domain generalization, regardless of the architecture. When using the FTAL
method, we obtained OA ranging from 85.0% to 87.6% on the Test set. Training models
from scratch performs slightly worse than the FTAL method, with OA ranging between
77.8% and 83.5%. The FTC method performs the worst, with OAs varying between 62.3%
and 73.3% depending on the architecture. For example, switching from FTC to FTAL
with ResNet50 yields a significant improvement of +22.7% in OA. Although less perform-
ing, the FTC method consistently takes the least training time, costing between 2 to 9
seconds for each training epoch. That is approximately 2 to 5 times faster than using
the FTAL method or training the models from scratch. This is expected since training or
fine-tuning the entire network takes significantly more time than fine-tuning the classi-
fier alone.

Table 4.3: Learning rate, training time, and overall accuracy of all architectures for Experiment 1

Model Scheme
Learning

rate
Training time
per epoch (s)

Overall
accuracy (%)

ResNet50
from scratch 0.001 22 83.3

FTC 0.01 8 62.3
FTAL 0.001 13 85.0

InceptionV3
from scratch 0.001 21 83.0

FTC 0.0001 7 66.5
FTAL 0.001 20 85.7

DenseNet121
from scratch 0.0001 28 83.5

FTC 0.001 9 73.3
FTAL 0.0001 18 87.6

MobileNetV2
from scratch 0.01 19 81.7

FTC 0.0001 4 72.7
FTAL 0.001 19 86.2

SqueezeNet
from scratch 0.00001 5 77.8

FTC 0.0001 2 65.8
FTAL 0.0001 4 87.6

These results suggest that, while the features learned from ImageNet may not fully
transfer to the task of classifying floating litter, initializing model parameters with pre-
trained weights on the ImageNet dataset provides a better starting point for the models
than random initialization. Thus, the FTAL method may enable models to achieve bet-
ter performance faster. This aligns with the findings of other studies demonstrating a



4

56
4. IMPROVING FLOATING LITTER DETECTION PERFORMANCE WITH TRANSFER LEARNING

AND DATA-CENTRIC AI

decrease in the transferability of learned features when the base task (e.g., classification
on ImageNet) differs significantly from the target task (Yosinski et al., 2014).

Our findings are similar to those reported by Marin et al. (2021) for a study on CNN
architectures detecting underwater litter. The authors classified images into six classes:
glass, metal, plastic, rubber, other trash, and no trash. Even for this case, the FTAL strat-
egy proved more successful than resorting to FTC, with best performance on the test
dataset of OA=91.4% compared to 83.0%.

We found that DenseNet121 outperforms the other architectures, regardless of the
the training procedure adopted, with a maximum OA of 87.6%. The superior perfor-
mances of DenseNet121 may stem from the dense connectivity patterns in its architec-
ture, which favors feature propagation and reuse across layers, while reducing the total
number of trainable weights (Huang et al., 2017). Despite having only 1.2M parameters,
SqueezeNet also achieves the highest OA of 87.6%. Due to its size, SqueezeNet is the
fastest to train, however its detection performance depends significantly on the train-
ing procedure adopted, with a difference of +21.8% between FTC and FTAL. SqueezeNet
requires less trainable parameters to achieve high accuracy due to its innovative archi-
tecture that makes use of 1x1 filters (9X fewer parameters than common 3x3 filters) and
“fire modules" (Iandola et al., 2016). These results might have practical implications for
distributed monitoring of litter on edge computing devices (e.g., Raspberry Pi or other
single-board computers connected to a camera), where litter recognition is performed
locally using with limited resources (Liu et al., 2021a).

Table 4.4 presents the F1-score per class for the five architectures using the FTAL
method. Precision and recall can be found in Table 8.2 in Appendix 8. All models per-
form similarly across different classes, showing best performances for “no litter" or “lots
of litter" with F1-scores of up to 0.98 and 0.89, respectively. The models show good but
lower accuracy for the other two classes, with F1-scores ranging from 0.79 to 0.86. The
features for these two intermediate classes may not be highly distinctive, leading to a
higher probability of misclassification. For example, Table 4.5 shows the confusion ma-
trix for DenseNet121 using FTAL. We observed a relatively high number of errors for im-
ages belonging to the “moderate litter" class, are sometimes confused with “little litter"
(14 case) or “lots of litter" (5 case), resulting in the lowest F1-scores for this class across
all architectures, ranging from 0.79 to 0.83.

Table 4.4: F1-score per class of all architectures trained using the FTAL strategy for Experiment 1

Model
F1-score

No litter Little litter Moderate litter Lots of litter
ResNet50 0.98 0.83 0.79 0.87

InceptionV3 0.98 0.84 0.80 0.87
DenseNet121 0.97 0.86 0.83 0.89
MobileNetV2 0.97 0.86 0.81 0.86
SqueezeNet 0.98 0.88 0.83 0.87
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Table 4.5: Confusion matrix of the best performing DenseNet121 trained with the FTAL strategy for Experiment
1

True label
Predicted label

No litter Little litter Moderate litter Lots of litter
No litter 63 1 0 0

Little litter 3 84 8 0
Moderate litter 0 14 117 5

Lots of litter 0 0 12 96

4.4.2. EXPERIMENT 2: DATA AUGMENTATION TECHNIQUES IN IN-DOMAIN

GENERALIZATION

Fig. 4.3 compares the average in-domain generalization performances of the best con-
figurations of SqueezeNet and DenseNet121 from Experiment 1 against that obtained
by retraining these baselines using the different DA techniques in Chapter 4.2.3. The
baseline performance is indicated by a horizontal dashed line at OA=87.6% since the
performances on the Test dataset is the same for both models. The results show that the
flipping technique is the most effective in improving model performances, with a signif-
icant improvement in OA (+2.0% for SqueezeNet and +4.1% for DenseNet121) compared
to the baseline models. This confirms that flipping augmentation is recommended as
it does not distort the features in the images with respect to the original label. The
other techniques show a slight increase or decrease in OA (from -0.1% to +0.8%), possi-
bly due to the excessive transformation of the original images (Shorten & Khoshgoftaar,
2019). Although using brightening and darkening techniques should increase model ro-
bustness to different lighting conditions, these techniques may not be as effective in
this particular case since the original images in the TUD-GV dataset were taken in both
sunny and cloudy weather. The MIX DA strategy results in a good increase in OA (+1.9%
for SqueezeNet and +3.4% for DenseNet121), however, these gains are lower than those
achieved by flipping alone. Additionally, the training times for MIX DA are approximately
three times longer (see Table 8.3 in Appendix 8).

DenseNet121 outperforms SqueezeNet when using flipping or MIX DA techniques,
with an increase in OA of +2.1% and +1.4%, respectively. The OA of DenseNet121 is also
higher when using the other DA techniques, although the difference is not as significant.
It is generally accepted that a more complex model, such as DenseNet121, can benefit
more when trained on a sufficiently large dataset, as it has more capacity to learn and
capture patterns in the data. In comparison, a lightweight model like SqueezeNet may
not be able to fully take advantage of additional training data generated through DA (Zhu
et al., 2016). Therefore, it may be necessary to increase model complexity in order to
fully leverage the benefits of additional training data. However, the training times for
DenseNet121 are five to six times longer than for SqueezeNet (see Table 8.3 in Appendix
8). This trade-off should be considered when choosing a model for a particular specific
litter detection task.
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Figure 4.3: In-domain performances of SqueezeNet and DenseNet121 using different DA techniques for Ex-
periment 2. The horizontal dashed line represents the OA of the baseline models, trained without DA. DA
techniques include (1) flipping, (2) brightening, (3) darkening, (4) adding noise, and (5) mixing the four above-
mentioned techniques (MIX DA).

4.4.3. EXPERIMENT 3: DATA-CENTRIC AI APPROACHES IN OUT-OF-DOMAIN

GENERALIZATION

Fig. 4.4 compares the out-of-domain generalization performances of the baseline mod-
els against that of the models modified using three data-centric AI approaches described
in Chapter 4.2.3. We implemented DA and ANI-DA by applying flipping augmentation
alone, due to its demonstrated effectiveness in Experiment 2. The results show that both
SqueezeNet and DenseNet121 trained on data with canal litter captured with the 2.7m/0°
setup (i.e., Train dataset in Table 4.1) can generalize well to household waste litter under
the same device setup (i.e., Test2.7m/0° of Table 4.2), achieving OA of 84.4% and 85.3%,
respectively. Although the generalization capability in this case is already satisfactory, it
can be further improved. Specifically, DenseNet121 models trained with DA and ANI-DA
show significant increases is OA of +5.4% and +6.2%, respectively, while ANI alone does
not provide a similar boost. Lesser improvements are also measured for SqueezeNet. Al-
though ANI-DA performs the best, it requires the time-consuming and costly collection
of new data. Therefore, simple flipping augmentation may be the most cost-effective
method to improve the generalization capability under the same device setup.

The SqueezeNet and DenseNet121 baselines exhibit good performances on Test2.7m/45°,
with OA of 90.7% and 83.8%, respectively. Overall, results are similar or better than for
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Figure 4.4: Out-of-domain generalization performances of SqueezeNet (a) and DenseNet121 (b) on Experi-
ment 3, featuring baseline models and models leveraging techniques for improved generalization. Compari-
son performed on datasets of four device setups (2.7m/0°, 2.7m/45°, 4m/0°, and 4m/0°) with household litter.
Acronyms used: Data augmentation (DA), Adding new images to original training dataset (ANI), Adding new
images and performing DA (ANI-DA).

the simpler Test2.7m/0° because Test2.7m/45° consists exclusively of images taken in cloudy
weather. Sunny weather images are harder to classify due to the presence of sun glints
(Jakovljevic et al., 2020). The three approaches significantly improve the generalization
capability of DenseNet121, with OA=94.1% for ANI-DA. On the other hand, we could not
improve the performances of SqueezeNet further, suggesting that this small architecture
cannot incorporate larger amount of data effectively. Nonetheless, SqueezeNet still re-
tains good generalization capability with OAs above 86.7%.

The generalization of the baseline models drops significantly for the more complex
device setups, i.e., Test4m/0° and Test4m/45°. SqueezeNet achieves an OA of 69.8% and
63.1% on these test datasets, respectively; while DenseNet121 obtains an OA of 78.1%
and 64.2%. To gain insight into the factors contributing to these poor performances,
we conducted a qualitative inspection of 192 and 147 images misclassified by the best
baseline SqueezeNet model. Fig. 4.5 shows common errors, including (a) identifying sun
glints as extra litter (126 cases in Test4m/0°), (b) undetected items of small size (41 and 79
cases in Test4m/0° and Test4m/45°, respectively), and (c) unseen objects during training
(e.g., a PVC pipe and a wood stick, 40 cases in Test4m/45°). DL models are known to suffer
from sun glints, changes in the scale and in the distribution of items (Jakovljevic et al.,
2020; Singh & Davis, 2018; van Lieshout et al., 2020).

The ANI method outperforms simple flipping augmentation on these harder datasets,
with improvements of around +11% for both architecture in each setup. While flipping
grants significant increases of up to +9.4% in Test4m/0°, it fails to support generalization
for the more complex Test4m/45°. This suggests that simple DA fails to boost generaliza-
tion when the out-of-domain distribution is significantly different from the training one
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Figure 4.5: Common misclassified examples in the Test4m/0° and the Test4m/45° datasets for the best baseline
SqueezeNet model. Common misclassification include identifying sun glints as litter, failure to detect small-
sized litter, and detection of background objects or external items.

(e.g., different items, camera heights, and viewing angle). In these cases, collecting new
data from the new setup is necessary to achieve satisfactory performances. Performing
DA after gathering new images can result in further improvements, as demonstrated in
Test4m/0° for both SqueezeNet and DenseNet121 (i.e., OA of 87.2% and 93.4%, respec-
tively) and in Test4m/45° for DenseNet121 (OA=77.7%).
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4.4.4. LIMITATIONS
We acknowledge some limitations in the TUD-GV dataset used in this study and ap-
proach, that necessitate further developments for real-world applications. First, although
the TUD-GV dataset features items collected from canals, the level of litter degradation
does not fully represent the situation encountered in many real contexts. Second, the
current research does not account for the interference of vegetation and natural debris,
that are intrinsically present in real-world scenarios. Similarly, images gathered from
our semi-controlled experiments in a stagnant canal—although representative of urban
areas— do not account for the complexity of dynamic environments such as rivers and
coastal areas where litter interaction with flow, waves, and other factors is common-
place. Third, the TUD-GV dataset does not include images collected during nighttime,
thus it can not be used for developing models to detect and quantify the floating litter
items during nighttime. Fourth, this study does not focus on maximizing model perfor-
mance by pre-processing the raw input images before DA. Tiling images into smaller
patches (e.g., 224*224) will likely boost performances by retaining the original image
quality (Wolf et al., 2020), although this would require relabeling all tiles. Lastly, real-
world applications demand more sophisticated computer vision tasks than the image
classification performed here. Object detection and image segmentation methods are
preferred approaches to identify, quantify and track floating litter in water bodies from
images or videos.

4.5. CONCLUSIONS
In this chapter, we carried out a thorough evaluation of different transfer learning (TL)
methods and three different data-centric AI approaches to improve in-domain and out-
of-domain generalization performances for floating litter detection, using the TU Delft-
Green Village dataset. Three data-centric AI approaches include: (1) data augmentation
(DA), (2) adding new images to original training data (ANI), and (3) adding new images
and performing DA (ANI-DA). The main findings of this study are as follows:

1. We obtained the best in-domain generalization performances by loading models
pre-trained on ImageNet, replacing the classifier, and fine-tuning the entire net-
work on floating litter images. The benefits of this TL approach in terms of detec-
tion performance outweigh the shorter training times required by fine-tuning the
classifier alone. Transferring the convolutional base from ImageNet seems a better
approach than training the models from scratch, at least for our experiments.

2. We recommend flipping DA to improve model in-domain generalization perfor-
mances at relatively low cost, since the additional images are easy to generate, and
maintain high fidelity to the original labels while providing extra training informa-
tion. On the other hand, brightening, darkening, and adding noise do not show a
significant improvement in detecting floating litter.

3. The trained models generalize well to similar conditions, such as detecting un-
seen litter items from images captured at the same height, but with different view-
ing angles (i.e., 45°). Flipping DA may boost out-of-domain generalization per-
formances in these circumstances, but it is insufficient when transferring to more
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complex scenarios (e.g., different camera heights and different viewing angle). We
demonstrated that adding a limited amount of images from these new settings
to the original training dataset can substantially improve generalization in these
cases.



5
SEMI-SUPERVISED LEARNING FOR

FLOATING LITTER DETECTION

While previous analysis show that the transfer learning and data-centric artificial in-
telligence approaches are effective to improve model generalization capability, develop-
ing robust models in a supervised manner requires a large number of labeled images.
Obtaining these labeled images for model development is costly and labor-intensive.
To address this issue, we proposed a two-stage semi-supervised learning method to de-
tect floating litter based on the Swapping Assignments between multiple Views of the
same image (SwAV). SwAV is a self-supervised learning approach that learns the under-
lying feature representation from unlabeled data. In the first stage, we used SwAV to
pre-train a ResNet50 backbone architecture on about 100k unlabeled images. In the
second stage, we added new layers to the pre-trained ResNet50 to create a Faster R-
CNN architecture, and fine-tuned it with a limited number of labeled images (up to
≈1.8k images with 2.6k annotated litter items). We developed and validated our semi-
supervised floating litter detection methodology for images collected in canals and wa-
terways of Delft (the Netherlands) and Jakarta (Indonesia). We tested for out-of-domain
generalization performances in a zero-shot fashion using additional data from Ho Chi
Minh City (Vietnam), Amsterdam and Groningen (the Netherlands). We benchmarked
our results against the same Faster R-CNN architecture trained via supervised learning
alone by fine-tuning ImageNet pre-trained weights. The findings indicate that the semi-
supervised learning method matches or surpasses the supervised learning benchmark
(e.g., average precision and F1-score) when tested on new images from the same train-
ing locations. We measured better performances when little data (up to ≈200 images
with about 300 annotated litter items) is available for fine-tuning and with respect to
reducing false positive predictions. More importantly, the proposed approach demon-
strates clear superiority for generalization on the unseen locations, with improvements

This chapter is based on:

Jia, T., de Vries, R., Kapelan, Z., van Emmerik, T. H. M., & Taormina, R. (2024). Detecting floating litter in
freshwater bodies with semi-supervised deep learning. Water Research, 266, 122405.
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in average precision of up to 12.7%. We attribute this superior performance to the more
effective high-level feature extraction from SwAV pre-training from relevant unlabeled
images.
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5.1. INTRODUCTION
The results in Chapter 4 show that the transfer learning and data-centric artificial intelli-
gence approaches are effective to improve model generalization capability. However, our
findings show that even using the best-performing transfer learning method and devel-
oping supervised models (SL) on a relatively large amount of labeled data (4000 images),
their generalization capability is still limited. The main reason is that the effectiveness of
transfer learning declines when the base and target tasks become less similar (Yosinski et
al., 2014). The literature review in Chapter 2 indicates that previous studies pre-trained
models on one of the following comprehensive datasets: (i) ImageNet, (ii) COCO (Lin et
al., 2014), (iii) CIFAR-10 (Recht et al., 2018), and (iv) Pascal VOC (Everingham et al., 2010).
However, the high-level features in these datasets have limited relevance with respect to
floating litter imagery. This may hinder performances and generalization capability.

Moreover, obtaining these and additional labeled images for model development
and refinement is costly and labor-intensive, and relies on domain-specific knowledge
on floating litter detection (Guo et al., 2021). Although previous studies have not re-
ported the time required for manually generating labels for a litter detection dataset,
studies from other fields indicate significant time involved. For example, annotating
1000 instances across 91 common categories (e.g., car) using pixel-level segmentation
masks in the COCO dataset requires more than 22 worker hours (Lin et al., 2014).

To overcome the limitations associated with SL, the deep learning research com-
munity is increasingly investigating self- and semi-supervised learning methods due to
their data efficiency and generalization capability (Liu et al., 2021c). Self-supervised
learning operates by using the unlabeled input data to automatically generate its own
labels, learning the underlying representations from the data itself without explicit guid-
ance (Misra & Maaten, 2020). The mainstream self-supervised learning approaches in-
clude two categories: generative and discriminative. The generative self-supervised ap-
proach learns feature representations by performing pixel-level reconstruction, but re-
quires extensive computational resources (Goodfellow et al., 2014; Kingma & Welling,
2013). Discriminative self-supervised learning approaches learns feature representa-
tions using objective functions which are similar to those used in supervised learning
method. This is achieved by employing pretext tasks, where both inputs and labels are
derived from an unlabeled dataset (Chen et al., 2020).

Typical pretext tasks include relative position prediction (Doersch et al., 2015), Jigsaw
puzzle (Noroozi & Favaro, 2016), and rotation prediction (Gidaris et al., 2018). However,
these heuristic tasks might limit the generality of the learned representations (Chen et
al., 2020). More recently, discriminative approaches based on contrastive learning have
gained momentum (Jaiswal et al., 2020). Contrastive self-supervision obtains represen-
tations by distinguishing between positive pairs (similar instances) and negative pairs
(dissimilar instances) (Jaiswal et al., 2020). For example, the Simple framework for Con-
trastive Learning of visual Representations (SimCLR) generates two different views from
each input image by performing data augmentation (Chen et al., 2020). The positive
pairs include two augmented views from the same image, while the negative pairs are
formed by sampling two augmented views from different images. Other successful al-
ternatives include Swapping Assignments between multiple Views of the same image
(SwAV) (Caron et al., 2020), and Momentum Contrast (MoCo) (He et al., 2020).
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Semi-supervised learning (SSL) enhances self-supervised pre-trained models regard-
less of the method used. SSL leverages a small amount of labeled data to address spe-
cific downstream tasks such as image classification, object detection, and image seg-
mentation (Reddy et al., 2018). This operation can also be regarded as a form of transfer
learning, where knowledge is transferred from pretext tasks using unlabeled data. Re-
cent studies have shown that SSL methods outperform traditional supervised learning
approaches for applications on large-scale datasets (e.g., ImageNet), as well as domain-
specific applications, including agriculture (Güldenring & Nalpantidis, 2021) and medi-
cal imaging (Miller et al., 2022). While SSL approaches are promising, they have not been
applied to detect floating litter.

In this chapter, we proposed a two-stage semi-supervised learning method based on
the SwAV approach for detecting floating litter in rivers. In the first stage, we use SwAV to
pre-train a ResNet backbone architecture on about 100k unlabeled images with floating
litter. First, SwAV uses data augmentation methods to create multiple augmented views
from the input unlabeled image. Then, SwAV enables models to learn data represen-
tations using a “swapped” prediction mechanism, leveraging the inherent similarities
between the views. In the second stage, we create a Faster R-CNN architecture for object
detection by adding new deep learning layers to the backbone, and fine-tune them using
only a limited number of labeled images (≈1.8k) with 2.6k annotated litter items. This
process facilitates the transfer of knowledge learning from SwAV pre-training is trans-
ferred to the Faster R-CNN for litter detection task. Based on the analysis of the effec-
tiveness of transfer learning and data augmentation presented in Chapter 4, we believe
that the proposed SSL method, integrates these methods, can enhance model general-
ization capability for litter detection.

In this chapter, we developed and validated the methodology for images collected in
canals and waterways of the Netherlands, Indonesia, and Vietnam. These images were
sourced from in six datasets, where four were generated by us, while the other two were
obtained from publications (see Chapter 2.3.2). Furthermore, we assessed the transfer-
ability of low-level (e.g., edges) and high-level (e.g., entire objects and shapes) represen-
tations learned via SwAV pre-training. The findings presented in this chapter contribute
to answering the second research sub-question of this thesis:

• How to build robust deep learning models to detect floating litter in rivers, leverag-
ing a limited amount of labeled data?

5.2. METHODOLOGY

5.2.1. OVERVIEW OF THE SEMI-SUPERVISED LEARNING APPROACH
We propose a two-stage semi-supervised learning method for detecting floating litter
based on Swapping Assignments between multiple Views of the same image (SwAV).
The approach includes a self-supervised learning stage and supervised learning stage.
Fig. 5.1 shows the schematic illustration of the proposed SSL method. In the first stage,
we used SwAV to pre-train a ResNet50 network (He et al., 2016) with a large quantity
of unlabeled data. We used the ResNet50 as the backbone of our methods since most
of the studies in contrastive learning successfully employ variants of this architecture
(Jaiswal et al., 2020). To obtain the final model, we first created a Faster R-CNN architec-
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ture for object detection (Ren et al., 2015) by adding extra deep learning layers after the
pre-trained ResNet50. Then, we fine-tuned the resulting deep learning model using a
limited amount of labeled data to perform the specific litter detection downstream task.
We describe SwAV and Faster R-CNN in Section 5.2.2 and Section 5.2.3, respectively.
Section 5.2.4 presents details on the implementation of the self-supervised pre-training
methods, while the supervised stage is illustrated in Section 5.2.5.

Figure 5.1: The schematic illustration of the proposed two-stage semi-supervised learning method. In the
self-supervised learning stage (c), we used SwAV to pre-train a ResNet50 encoder network combined with a
projection head, using a large number of unlabeled images (a); Then, we added additional deep learning net-
work to ResNet50 backbone to create a Faster R-CNN architecture. In the supervised learning stage (d), we
fine-tuned the Faster R-CNN to learn a specific litter detection downstream task in a supervised manner, using
a limited amount of labeled data (b).

5.2.2. SWAPPING ASSIGNMENTS BETWEEN MULTIPLE VIEWS OF THE SAME

IMAGE (SWAV )
SwAV is a cluster-based self-supervised contrastive learning method (Caron et al., 2020).
Models learn the underlying representations from the data by performing a clustering
assignment prediction between various augmentations (or “views”) of the same input
image. Fig. 5.2 shows the schematic illustration of SwAV. The process begins with data
augmentation (e.g., multi-crop and flipping) to generate multiple views of the input im-
age X . In Fig. 5.2, we only show the multi-crop augmentation method, that crops an im-
age randomly into two global views with standard resolution crops (e.g., 224×224 pixels)
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and several local views with smaller resolution crops (e.g., 96×96 pixels). For simplic-
ity, we only present two views (x1, x2). These views are processed by the same encoder
network f θ (e.g., ResNet50) followed by a projection head (e.g., 2-layer multilayer per-
ceptron) to generate two corresponding feature vectors (z1, z2). To perform the online
clustering assignment, SwAV uses the Sinkhorn−Knopp algorithm (Cuturi, 2013) to map
the feature vectors to a set of prototypes C comprising K prototype vectors. Each proto-
type represents a cluster in the feature space. This operation results in the generation of
the codes Q1 and Q2. The uniqueness of SwAV lies in its “swapped” prediction mecha-
nism. Here, the code Q2, derived from the view x2, is predicted using the characteristics
of the view x1 and vice versa. This prediction method leverages the inherent similarities
between the views, as they originate from the same image. Consequently, SwAV refines
its learning of data attributes by forecasting the code of one image view based on the
features of its counterpart. This is achieved by minimizing the loss of the following func-
tion:

L (z1, z2) = l (z1,Q2)+ l (z2,Q1) (5.1)

where l (z,Q) measures the fit between the feature z and the code Q. It can be computed
as follows:

l (z1,Q2) =−∑
k

Q(k)
2 log p(k)

1 (5.2)

l (z2,Q1) =−∑
k

Q(k)
1 log p(k)

2 (5.3)

p(k)
1 = exp

( 1
τz⊤1 ck

)∑
k ′ exp

( 1
τz⊤1 ck ′

) (5.4)

p(k)
2 = exp

( 1
τz⊤2 ck

)∑
k ′ exp

( 1
τz⊤2 ck ′

) (5.5)

where C k is the k-th prototype vector in C , and τ denotes the temperature parameter
that controls the sharpness of the probability distribution (Caron et al., 2020).

Two major core components of SwAV are clustering assignment and multi-crop aug-
mentation strategy. SwAV’s clustering assignment avoids the direct comparison of neg-
ative and positive pairs in contrastive learning. That reduces the computational over-
head and potential noise introduced by large sets of negative samples, leading to more
efficient and robust model training compared to other contrastive learning methods.
The multi-crop augmentation strategy improves performance of self-supervised meth-
ods with only a small increase in the memory and computational cost. These allow SwAV
outperform other recent and successful contrastive learning methods (e.g., SimCLR and
MoCo) on the ImageNet classification benchmark (Caron et al., 2020).

5.2.3. FASTER R-CNN FOR LITTER DETECTION
Fig. 5.3 shows the detailed architecture of the Faster R-CNN with a ResNet backbone.
The Faster R-CNN is a two-stage detection network, including four modules: (1) feature
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Figure 5.2: The schematic illustration of SwAV adapted from (Caron et al., 2020). First, each image X is aug-
mented into two different views (x1, x2), that are processed by the encoder f θ to obtain two feature vectors (z1,
z2). Then, the codes of these two features (Q1, Q2) are computed by mapping them to prototypes C . Finally,
SwAV learns data representations by solving a “swapped” prediction problem, where the code Q2 is predicted
using the view x1 and vice versa.

extraction; (2) object proposal generation; (3) Region of Interest (RoI) pooling; and (4)
classification with a confidence level and location prediction (Li et al., 2019). Confidence
refers to the probability assigned by the Faster R-CNN when classifying each bounding
box. In the first stage of the Faster R-CNN, the backbone extracts relevant feature maps
from the input data. Then, the region proposal network, a fully convolutional network,
generates region proposals from the shared feature maps. These region proposals to-
gether with the feature maps are fed into the RoI pooling layer, performs the pooling
operation to integrate feature maps of region proposals with different scales into fixed
size feature maps. In the second stage, the extra-network predicts the category with a
confidence level and the precise location of objects from each region proposal in the
fixed size feature maps.

Figure 5.3: The schematic illustration of the Faster R-CNN with ResNet backbone. The basic ResNet (yellow
blocks) mainly includes two parts: (1) convolutional blocks Conv1 to Conv4, and (2) Conv5. In the first stage
of the Faster R-CNN, the backbone first extracts feature maps from the input data. Then, the Region Proposal
Network produces region proposals from these feature maps. Furthermore, the feature maps and region pro-
posals are fed into the RoI Pooling layer, that converts the feature maps of proposals into fixed size feature
maps for the final classification and location prediction in the second stage.
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The ResNet mainly includes two parts: (i) convolutional blocks Conv1 to Conv4, and
(ii) Conv5 (He et al., 2016). Both parts are pre-trained by SwAV in the self-supervised
learning stage. Then, the Faster R-CNN is constructed by using Conv1 to Conv4 as the
backbone and adding Conv5 after the RoI pooling layer.

5.2.4. SWAV PRE-TRAINING

To evaluate the benefits of self-supervised pre-training, we used two pre-training meth-
ods for all experiments: (1) SwAV-FTAL, and (2) SwAV-Scratch, as inspired by two trans-
fer learning strategies in Chapter 4. The SwAV-FTAL method first initializes the ResNet
backbone with ImageNet weights, and then uses SwAV to fine-tune all the layers (FTAL)
of the backbone on the unlabeled images. ImageNet weights used in this study were cre-
ated by training the ResNet50 on 1.2 million images (1,000 categories) from the full Im-
ageNet dataset. We selected ImageNet weights since transferring features learned from
the ImageNet image classification task to other domain tasks is a widely used approach
to detect floating litter, as highlighted in the literature review in Chapter 2. The SwAV-
Scratch method uses SwAV to pre-train the ResNet50 from scratch. It involves initializing
the ResNet50 backbone with random weights, and then using SwAV to pre-train all the
layers of the backbone on the unlabeled images.

5.2.5. FINE-TUNING FOR LITTER DETECTION

To perform the litter detection downstream task, we fine-tuned Faster R-CNN archi-
tectures built on the pre-trained ResNet50 backbone. We compared two different ap-
proaches for fine-tuning, that entail freezing either 4 convolutional blocks (F4, from
Conv1 to Conv4 in Fig. 5.3) or 2 (F2, Conv1 and Conv2) of the ResNet backbone, re-
spectively. During fine-tuning, only the unfrozen layers of the Faster R-CNN are up-
dated. The F2 method is a common method used to transfer low-level feature knowledge
learned from pre-training to the downstream task. In contrast, the F4 method trans-
fers both low-level and high-level feature knowledge. In situations where only a small
dataset is available for model fine-tuning, maintaining relevant high-level features be-
comes crucial as it drastically reduces the number of weights to fine-tune. By examining
the F4 modality, we aim to evaluate whether the high-level features learned via SwAV
pre-training enhances the model’s generalization capabilities in data scarce conditions.
This investigation can help understand whether this approach can lead to the develop-
ment of foundational models for litter quantification across multiple locations (Oquab
et al., 2023).

5.3. EXPERIMENTS
We conducted multiple experiments to investigate the potential of SSL for floating litter
detection using images from: (1) The TU Delft - Green Village (TUD-GV), the Nether-
lands, (2) Oostpoort, the Netherlands, and (3) Jakarta, Indonesia (see Chapter 3). More-
over, we tested the generalization capability of our proposed method using images cap-
tured in three other locations: (1) Amsterdam and (2) Groningen, the Netherlands, and
(3) The Wageningen UR - Ho Chi Minh City (WUR-HCMC), Vietnam (see Chapter 3).

We evaluated both in-domain as well as out-of-domain generalization capability. In-
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domain generalization refers to the model performance on new, unseen images from the
same geographic locations, while out-of-domain generalization refers to unseen images
from other geographic locations. We compared the results with those obtained from
a supervised learning benchmark, providing a robust reference point. Additionally, we
investigated how the litter detection performance varies with the availability of labeled
data for fine-tuning. This aspect is crucial for assessing the models’ practical applica-
bility in scenarios with limited annotated resources. Complementing this analysis, we
evaluated the relevance of low-level and high-level representations learned from SwAV
pre-training with respect to generalization. This examination can share further insights
on the suitability of SSL for developing large-scale monitoring networks for quantifying
floating litter across multiple locations.

5.3.1. DATA SELECTION

Table 5.1: Data used in this chapter, sourced from TU Delft-Green Village (TUD-GV), Oostpoort, and Jakarta
dataset.

Subset
Total

TUD-GV Oostpoort Jakarta

Total images 1,501 562 526 2,589

Total image tiles 44,188 71,445 16,762 132,395

No. image tiles with litter annotated 1,969 401 1,399 3,769

No. annotated litter items 2,542 457 2,531 5,530

We created the Delft-Jakarta dataset by selecting random images from the TUD-GV,
Oostpoort, and Jakarta locations, as reported in Table 5.1. These images were sliced into
tiles with a standard size of 224×224 pixels, to match the input dimensions of ResNet50
(Pham et al., 2021). Example image tiles are shown in Fig 9.1 in Appendix 9. We used
the Delft-Jakarta dataset to train and validate the models, and to test their in-domain
generalization performance. In total, we extracted a total of 132,395 image tiles from the
Delft-Jakarta datasets. These were used to randomly create the non-overlapping sub-
sets for self-supervised pre-training (116,286 tiles), supervised fine-tuning (1,756 tiles),
validation (164 tiles), and testing (14,189 tiles), detailed in Table 5.2. Almost 90% of the
tiles were used for self-supervised pre-training with SwAV (Trainself). These tiles have no
labels. We used a maximum of 1,756 image tiles for supervised fine-tuning (Train100%),
containing a total of 2,628 annotated litter items. The annotations are bounding boxes
representing the location of floating litter items, without further categorization. To bet-
ter assess model performance with respect to the availability of labels, we created six
smaller fine-tuning datasets by reducing the number of tiles and annotations down to
5% (Train80% to Train5%). We used a maximum of 164 image tiles and 282 annotations
for model validation (Validation100%), maintaining a 9-to-1 ratio with respect to the data
available for fine-tuning. For consistency, we created six smaller validation datasets
(Validation80% to Validation5%). We created a Test dataset by including 1,849 tiles with
2,620 annotations. To better evaluate the models performance with respect to false pos-
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itives, we included 12,340 image tiles with no floating litter.

Table 5.2: The Delft-Jakarta subsets used in the experiments.

Learning method

Training dataset Validation dataset Test dataset
No. tiles

without litterName
No. annotated

litter items
No. tiles Name

No. annotated
litter items

No. tiles Name
No. annotated

litter items
No. tiles

Self-supervised Trainself 0 116,286

Semi-supervised and supervised

Train100% 2,628 1,756 Validation100% 282 164

Test 2,620 1,849 12,340

Train80% 2,076 1,389 Validation80% 224 117

Train60% 1,594 1,059 Validation60% 171 100

Train40% 1,013 702 Validation40% 115 70

Train20% 527 368 Validation20% 62 55

Train10% 282 180 Validation10% 27 22

Train5% 124 84 Validation5% 13 9

To evaluate out-of-domain generalization, we sliced randomly selected images from
the Amsterdam, Groningen and WUR-HCMC datasets, as detailed in Table 5.3. The tiles
in these subsets contain both images with annotated litter and without litter. Example
image tiles are shown in Fig 9.2 in Appendix 9.

Table 5.3: The Amsterdam, Groningen and WUR-HCMC datasets used to evaluate out-of-domain generaliza-
tion.

Subset
Total

Amsterdam Groningen WUR-HCMC

Total images 9 63 27 99

Total image tiles 3,623 5,544 13,032 22,199

No. image tiles with litter annotated 152 439 766 1,357

No. annotated litter items 204 525 1,091 1,820

No. image tiles without litter 3,471 5,105 12,266 20,842

5.3.2. DEVELOPED MODELS AND EXPERIMENTS
For brevity, we indicated models built via pre-training with the SwAV-FTAL method and
fine-tuning with the F2 method, as SwAV-FTAL-F2 across all experiments. Other models
are named in the same way, e.g., SwAV-FTAL-F4, SwAV-Scratch-F2, and SwAV-Scratch-
F4. We compared the effectiveness of SSL against baseline supervised learning mod-
els which are developed without the SwAV pre-training step. These models are Faster
R-CNNs fine-tuned on labeled data, built on ResNet50 backbones initialized with Ima-
geNet weights (see Fig. 5.1 (b) and (d)). For consistency, we used two types of baseline
models: (1) Baseline-F2, and (2) Baseline-F4, that uses the F2 and F4 methods for fine-
tuning, respectively.

We developed all models by using the Delft-Jakarta subsets in Table 5.2. Specifi-
cally, we built the SSL models by first pre-training a ResNet50 encoder with a projection
head of 2-layer multilayer perceptron on the Trainself subset. We then fine-tuned the
Faster R-CNN derived from the ResNet50 backbone on all the seven available subsets
for supervised learning, i.e., Train100% to Train5%. We performed model validation on
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the respective Validation subsets. The Baseline supervised learning models are devel-
oped in the same fashion, but without SwAV pre-training. The Delft-Jakarta Test subset
is used for evaluating the in-domain generalization. On the other hand, we evaluated
out-of-domain generalization using the image tiles from Amsterdam, Groningen and
WUR-HCMC detailed in Table 5.3. For out-of-domain generalization, we tested only the
models fine-tuned using the maximum amount of the Delft-Jakarta labeled data, i.e.,
Train100%. We used the SwAV-FTAL-F2, SwAV-Scratch-F2 and Baseline-F2 methods to
evaluate the quality of transferred low-level representations. Similarly, we investigated
the relevance of high-level representations by implementing the SwAV-FTAL-F4, SwAV-
Scratch-F4 and Baseline-F4 methods.

5.3.3. PERFORMANCE ASSESSMENT
To assess model performance of floating litter detection, we used two commonly em-
ployed metrics in the literature review in Chapter 2: i) AP50, representing the Average
Precision (AP) with an Intersection over Union (IoU) threshold of 50% and ii) F1-score
computed using the same threshold. The IoU measures the ratio of the overlap area of
prediction and ground truth to their union area, which is described as follows (Chen et
al., 2024):

I oU = ar ea(bboxpr ed ∩bboxg t )

ar ea(bboxpr ed ∪bboxg t )
(5.6)

where bboxpr ed and bboxg t are the predicted bounding box and the ground-truth bound-
ing box, respectively. The larger the IoU, the greater the overlap of these two bounding
boxes (Xue et al., 2021b). After setting an IoU threshold, we can compute the elements of
the confusion matrix for the object detection task. For each ground-truth box, we have
a True Positive (TP) if there is at least one overlapping predicted box with IoU equal or
above the threshold. Predicted boxes overlapping the ground-truth with IoU less than
the threshold are marked as False Positives (FP). If more bounding boxes sufficiently
overlap with the ground truth, we mark as TP only the one with the highest confidence
(Dollár & Lin, 2014). The others are marked as FP. FPs also include incorrect detection
of nonexistent objects. False Negatives (FN) are the undetected ground-truth bounding
boxes.

The AP is the average precision of the models for a given IoU threshold. It is com-
puted as the area under the precision-recall curve (Padilla et al., 2020). The precision p
and recall r are expressed as follows:

p = T P

T P +F P
(5.7)

r = T P

T P +F N
(5.8)

Precision measures the accuracy of the positive predictions, denoted by the ratio of
correctly identified positive cases (TP) to the total number of cases identified as posi-
tive (TP + FP). On the other hand, recall is the ratio of correctly identified positive cases
(TP) to the actual total positive cases (TP + FN). It assesses the model’s ability to detect
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all relevant instances. For object detection, the precision-recall curve is computed by i)
sorting all detections in descending order based on their confidence level, ii) accumu-
lating all TPs and FPs, iii) and computing p and r for each cumulative detection (Dollár
& Lin, 2014; Padilla et al., 2020). In the computation of r for the accumulated detec-
tions, the denominator term is constant and equal to the total amount of ground-truth
boxes. After creating the precision-recall curve, we can calculate AP by integrating the
area under it:

AP =
∫ 1

0
p(r )dr (5.9)

AP is an average measure that can sometimes obscure model weaknesses, e.g., a
model might achieve good AP through a few highly accurate detections but perform
poorly on others. The computation method for the precision-recall curve can also in-
troduce challenges since the precision at each recall level can be subject to fluctuations
due to the model’s varying confidence levels across different detections (Padilla et al.,
2020). The F1-score may provide a more balanced metric of precision and recall at the
same IoU threshold. The F1-score is computed as the harmonic mean of p and r , is
calculated as follows:

F 1− scor e = 2∗p ∗ r

p + r
(5.10)

The F1-score captures a model’s accuracy in detecting objects (recall) while minimiz-
ing incorrect detections (precision), making it crucial for contexts where false positives
and false negatives have significant implications. Thus, combining AP50 and F1-score
allows for a more thorough assessment of both localization accuracy and overall detec-
tion efficacy.

5.3.4. BOUNDING BOX REFINEMENT WITH NON-MAXIMUM SUPPRESSION

Before making the final predictions and computing performances, we refined the output
bounding boxes via Non-Maximum Suppression (NMS) (Hosang et al., 2017). NMS is a
post-processing technique often applied after object detection to eliminate redundant
bounding boxes, and ensure that each detected object is represented by the single most
probable box. It compares the overlap of boxes using IoU and suppresses all boxes except
the one with the highest confidence score when the overlap exceeds a specific threshold.
For all our experiments and developed models, we set the IoU NMS threshold equal to
0.5 for consistency. This is a common value that balances the need to reduce box overlap
against the risk of missing closely spaced objects.

5.3.5. TRAINING SETUP AND PROCEDURE

We implemented all experiments with the Python programming language (version 3.8.16),
using the PyTorch deep learning framework (version 1.8.1), in combination with the
VISSL (Goyal et al., 2021) and the Detectron2 (Wu et al., 2019) libraries. We trained and
tested all deep learning models on a NVIDIA Tesla V100S PCIe GPU (32 GB) ((DHPC),
2022).
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We used default VISSL hyperparameters for SwAV pre-training, including a cluster
with 3000 prototype vectors. We pre-trained for 100 epochs, using the SGD optimizer
with cosine annealing learning rate scheduling (Loshchilov & Hutter, 2016), with the ini-
tial rate of 0.075 and the minimum value of 7.5×10−5. We applied four default VISSL
data augmentation methods: (1) multi-crop with 8 views (2×[224×224]+6×[96×96]), (2)
horizontal flipping, (3) color distortion, and (4) Gaussian blur.

In the supervised learning stage, we fine-tuned the Faster R-CNN with default Detec-
tron2 hyperparameters, including an SGD optimizer with a fixed learning rate of 0.02, a
weight decay of 0.0001 and a momentum of 0.9. Before being fed into Faster R-CNN, the
input images were resized while preserving the aspect ratio. The shortest side of each
image was randomly scaled to one value among {640, 672, 704, 736, 768, 800} pixels,
while ensuing that the longest side did not exceed 1333 pixels. We fine-tuned all Faster
R-CNN models for 100 epochs, and selected the model yielding the highest validation
accuracy for further model evaluation. Before being fed into Faster R-CNN for inference,
input images were resized while preserving the aspect ratio. The shortest edge of image
was resized to a length between 800 and 1333 pixels, ensuring the longest edge does not
exceed 1333 pixels.

We implemented the Baseline methods using the same fine-tuning hyperparame-
ters. We trained all models for 100 epochs, saving the learned parameters yielding the
highest validation accuracy.

5.4. RESULTS AND DISCUSSION

5.4.1. IN-DOMAIN DETECTION PERFORMANCES FOR VARYING DATA AVAIL-
ABILITY

Fig. 6.3 compares the AP50 detection performance on Delft-Jakarta Test subset for the
SwAV-FTAL-F2, SwAV-Scratch-F2 and Baseline-F2 methods. The three methods perform
similarly when relatively more data is available for fine-tuning (i.e., Train60% to Train100%

subsets), with an AP50 ranging from 62.8% to 65.8%. When less labeled data is avail-
able (i.e., Train5% to Train40% subsets), the SwAV-FTAL-F2 method performs best in most
cases, obtaining an AP50 ranging from 44.3% to 60.4%. This yields a slight improve-
ment in AP50 of up to 2.3%, compared to the baseline method (AP50=44.4%∼59.3%).
The SwAV-Scratch-F2 method performs worst (AP50=37.3%∼57.4%), yielding a slight de-
crease in AP50 varying from 5% to 7.1%, compared to the baseline method in half of
these cases. Fig. 6.3 also indicates a general upward trend in performance with increas-
ing amount of labeled data, regardless of the approach used. The observed performance
plateau could be attributed not only to the limited size of our labeled dataset, but also to
the lack of hyper-parameter tuning and the fact that only a single training run was con-
ducted, due to computational limitations (SwAV pre-training time: 12 min/epoch). The
stochastic nature of neural network training means that multiple runs yields different
results, possibly influencing the observed performance ceiling (Punjani & Fleet, 2021).

At first glance, these results suggest that transferring low-level representations learned
by SwAV on unlabeled, but relevant data, does not yield substantial improvements with
respect to simple transfer from ImageNet. In particular, learning from scratch via SwAV
hinders performance when little data is available for fine-tuning, although the situa-
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Figure 5.4: AP50 detection performance of the SwAV-FTAL-F2, SwAV-Scratch-F2 and Baseline-F2 methods on
the Test subset with different proportion of labeled data for fine-tuning.

tion rapidly improves when more labels are available. However, one must consider that
the ImageNet dataset (1.2 million images) contains over 10 times more images than the
Trainself subset used for SwAV pre-training. The availability of large amounts of data
enables ResNet50 to learn robust low-level features that are used by the deeper layers
fine-tuned for the downstream litter detection task with Faster R-CNN. Furthermore,
the ImageNet pre-trained weights are the product of extensive optimization on substan-
tial computational resources, which contrasts sharply with our constrained SwAV pre-
training that involved limited runs and no hyper-parameter tuning. Despite these lim-
itations, we achieved comparable results, showcasing the potential effectiveness of our
methodology. Better performances can be obtained by scaling the datasets and the com-
putational efforts. Literature reports strong increases in SSL performances with larger
SwAV pre-training datasets, e.g., from 1.2 million to 14 million to 1 billion (Goyal et al.,
2022).

Regardless of the above limitations in our SwAV implementation, the SSL methods
outperform the baseline when considering other metrics. Table 5.4 reports the Test
dataset confusion matrix, precision, recall and F1-score for the three methods fine-tuned
on Train100%. The Baseline-F2, yields overall marginally better recall (0.74 vs 0.71), but
substantially lower precision (0.48 vs 0.57) than the SSL methods. This results in a lower
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F1-score (0.58 vs 0.63) due to a much higher number of FPs. Similar worse performances
are found for images without litter, where the number of FPs of the baseline is around
double that of the SSL methods.

Table 5.4: Confusion matrix, Precision, Recall and F1-score on the Delft-Jakarta Test subset for models fine-
tuned on the Train100% dataset. False positives are also reported for 12,340 additional images without litter.

Method
Test dataset

Images
without litter

TP FN FP Precision Recall F1-score FP

SwAV-FTAL-F2 1,850 770 1,391 0.57 0.71 0.63 3,666

SwAV-Scratch-F2 1,832 788 1,359 0.57 0.70 0.63 3,594

Baseline-F2 1,926 694 2,093 0.48 0.74 0.58 7,453

SwAV-FTAL-F4 1,775 845 2,024 0.47 0.68 0.55 6,788

SwAV-Scratch-F4 1,680 940 1,373 0.55 0.64 0.59 3,192

Baseline-F4 1,590 1,030 2,296 0.41 0.61 0.49 9,167

The benefits of SwAV pre-training clearly emerge when preserving the high-level fea-
ture representations, as reported in Fig. 5.5. The results show that both the SwAV-FTAL-
F4 and SwAV-Scratch-F4 methods significantly outperform the Baseline-F4 benchmark,
regardless of the amount of labeled data available for fine-tuning. The SwAV-FTAL-F4
method performs best in most cases, achieving an AP50 ranging from 39.9% to 60.5%.
The SwAV-Scratch-F4 method performs worse when very limited labeled data is avail-
able, but then achieves comparable or higher scores, with the highest reported score
of 60.9% for Train80%. The baseline method obtains AP50 varying between 19.3% and
51.1%. These values are particularly low when little data is available for fine-tuning (i.e.,
Train5 and Train10% subsets), where SwAV-FTAL-F4 and SwAV-Scratch-F4 yield improve-
ments in AP50 of up to 20%. The SSL approaches only requires 20% of the labeled data
(527 annotated litter items) to achieve similar or better performance (AP50=53.3%) than
what obtained by the baseline method with 100% of labeled data (2,628 annotated litter
items, AP50=51.1%). Similar to the plateau discussed in Fig. 6.3, the drop in performance
when moving from Train80% to Train100% can be linked to the limited overall size of
our labeled dataset, the randomness of single runs, and lack of hyper-parameterization.
For example, Bolton et al. (2023) reported a similar phenomenon caused by the lack of
hyper-parameterization. They trained DL models to identify aircraft engine types with
a learning rate of 0.01, but the performance drops as the size of training data. However,
when setting the learning rate to 0.001, they found the performance improvement with
the increase of training dataset size.

The better performance of the SSL methods are further detailed in Table 5.4 for the
three models fine-tuned on Train100%. The Baseline-F4 performs the worst in all met-
rics, with a substantial decrease in TP, followed by a detrimental increase in both FN and
FP. Interestingly, the SwAV-Scratch-F4 method retains the highest F1-score (0.59), due
to a substantially lower number of FP. The lower precision of Baseline-F4 suggests that
the high-level features learned from ImageNet are not sufficiently relevant to the specific
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Figure 5.5: AP50 detection performance of the SwAV-FTAL-F4, SwAV-Scratch-F4 and Baseline-F4 methods on
the Test subset with different proportion of labeled data for fine-tuning.

nuances of the litter detection task. Visual inspection of the predicted bounding boxes
highlights that Baseline-F4 wrongly identifies waves, organic material, and the reflection
of structures on banks and bridge as litter, as shown for example in Fig. 5.6. SwAV pre-
training helps the models distinguish between the features of litter and non-litter items,
as well as background characteristics. ImageNet initialization may partially hinder this
process if insufficient data is available for fine-tuning, as hinted by the lower precision
of SwAV-FTAL-F4 with respect to SwAV-FTAL-F2 and SwAV-Scratch-F4. Nonetheless, ini-
tializing SwAV with ImageNet weights seems useful when labeled data is particularly
scarce (e.g., Train5% to Train20% subsets).

5.4.2. OUT-OF-DOMAIN GENERALIZATION CAPABILITY

The results illustrated in Chapter 5.4.1 suggest that when sufficient fine-tuning data is
available, the SSL approach does not offer significant in-domain generalization advan-
tages with respect to simple transfer of ImageNet pre-trained models. This can change by
overcoming the discussed constraints on the small datasets used for SwAV pre-training
and the limited computational resources. Despite these limitations, the scenario shifts
favorably towards SSL when considering out-of-domain generalization, as done for zero-
shot floating litter detection to the unseen locations in Amsterdam, Groningnen and
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Figure 5.6: Example of predicted bounding boxes for the Faster R-CNN on the Delft-Jakarta Test subset and
images without litter using (1) SwAV-FTAL-F4, (2) SwAV-Scratch-F4, and (3) Baseline-F4 methods. The models
were fine-tuned on the Train100% subset. Common misdetections of Baseline-F4 include the identification
of waves ((a) and (e)), organic materials (b), and reflection of structures on banks (c) and bridge (d) as litter.
Ground-truth litter is shown in red bounding boxes in the top row.

WUR-HCMC. As shown in Fig. 5.7 for all models fine-tuned on Train100%, SwAV pre-
trained methods consistently match or surpass baseline performances. For example, in
the Amsterdam dataset, both SwAV-FTAL-F4 and Baseline-F2 achieved a AP50 of around
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45%. In Groningen, SwAV-FTAL-F4 outperforms the best baseline model by 12.7%, reach-
ing an AP of 49.5%. In WUR-HCMC, SwAV-FTAL-F2 exceeds the baseline by over 7.5%
with a 20.6% AP50. Further analysis on the confusion matrices and related metrics in
Table 9.1-9.3 in Appendix 9 reinforces SwAV’s advantage in out-of-domain scenarios. Ex-
cept for Baseline-F2 in Groningen, which exhibits high precision and fewer FPs due to
subpar sensitivity, the SSL models lead in all other metrics for all case studies.

Figure 5.7: Zero-shot generalization capability of the models fine-tuned on Train100% for the three unseen
locations: Amsterdam, Groningen, and WUR-HCMC.

The better performances of SSL are reflected also in the visual inspection of the de-
tections, done for SwAV-FTAL-F4 and Baseline-F4 on some example images of the three
unseen case studies in Fig. 5.8. The baseline method displays fewer correct detec-
tion and increased misdetections, especially with respect to organic material, waves
and other disturbances or reflective elements on the water surface. These findings col-
lectively suggest that SwAV pre-training notably aids in adapting to new environments,
particularly when retaining high-level features. The F4 SSL models are the best overall
performers, despite we did not employ the best models emerging from the Delft-Jakarta
Test dataset for the evaluation of out-of-domain generalization (i.e., those fine-tuned
on Train80%). Expectedly, performance dips in more challenging conditions, such as in
Ho Chi Minh City. Here, factors like lower resolution at the ground due to higher sen-
sor elevation and the introduction of drone imagery, which were not part of the training
dataset, further differentiate this dataset from the Delft-Jakarta dataset used for model
development.
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Figure 5.8: Detection results of the Faster R-CNN with ResNet50 backbone on Amsterdam, Groningen, and
WUR-HCMC subsets using SwAV-FTAL-F4 and Baseline-F4 methods. The models were fine-tuned on the
Train100% subset. Both methods can detect litter items in (b), (c) and (f), and only the SwAV-FTAL-F4 method
can detect the litter item in (a). Common misdetection of the Baseline-F4 method includes identifying organic
materials (d) and wave ((e) and (f)) as litter. Ground-truth litter is shown in red bounding boxes in the top row.

5.5. CONCLUSIONS
The previous studies show that the transfer learning and data-centric artificial intelli-
gence approaches are effective to enhance generalization capability of the supervised
learning (SL) model trained on a relatively large amount of labeled data (4000 images).
However, model’s generalization capability is still limited. Moreover, they require ex-
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tensive labeled data, a time-consuming and expensive process. Therefore, we need ex-
plore alternative approaches to improve model generalization performance with a lim-
ited amount of labeled data.

To overcome this challenge, we proposed a semi-supervised learning (SSL) approach
based on SwAV, a self-supervised method that pre-trains deep learning models by dis-
cerning data patterns without requiring annotated images. To demonstrate the suit-
ability of this new approach, we carried out experiments on camera images from the
Delft (the Netherlands) and Jakarta (Indonesia) using a Faster R-CNN with a ResNet50
backbone. We compared the performance of standard transfer learning from ImageNet
against the use of SwAV pre-training on around 100k unlabeled images. All models were
fine-tuned using a maximum of around 1.8k images from the same locations. Our re-
sults show that the SSL approach performs at par or better than the supervised learning
benchmark in average precision and F1-score, when tested on unseen images gathered
from the same locations of the training dataset. The improvements are more noticeable
when less data (up to ≈200 images with around 300 annotated litter items) is available
for fine-tuning and with respect to the prediction of false positives. More importantly,
testing for zero-shot generalization capability on unseen locations in Ho Chi Minh City
(Vietnam), Amsterdam and Groningen (Netherlands) shows the clear superiority of SSL.
This is mainly due to the extraction of better high-level representations via SwAV pre-
training on relevant unlabeled images. Better performances are reported when initializ-
ing the SSL models with ImageNet weights.
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Based on the previous analysis of the effectiveness of semi-supervised learning (SSL),
and data-centric artificial intelligence (AI) approaches, we propose a SSL-based frame-
work for quantifying cross-sectional floating litter fluxes in river systems, with the lim-
ited availability of labeled data. When developing models, we used a data-centric AI
method (i.e., flipping data augmentation) to enhance model performance. This frame-
work includes four steps: (a) collecting camera images of river surfaces from multiple
locations along the target river cross-section, (b) developing a robust litter detection
model using SSL methods, (c) applying the developed model to detect litter items in im-
ages, and (d) post-processing the detection results to quantify cross-sectional floating
litter fluxes. In step (c), we introduced a Slicing Aided Hyper Inference (SAHI) method
to enhance accuracy of small litter detection. We optimized SSL models developed in
our previous study by increasing pre-training epochs and pre-training dataset sizes, us-
ing images from waterways of the Netherlands, Indonesia and Vietnam, that were used
for model pre-training and fine-tuning. Additionally, we assessed the zero-shot out-of-
domain detection performance of SSL models and litter flux quantification performance
of the proposed framework on a Vietnam case study, that was not used for model pre-

This chapter is based on:

Jia, T., Taormina, R., de Vries, R., Kapelan, Z., van Emmerik, T. H. M., Vriend, P. & Okkerman, I. (2025). A Semi-
supervised Learning-Based Framework For Quantifying Litter Fluxes in River Systems (Submitted)
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training or fine-tuning. We benchmarked our results against the SL methods and human
visual counting methods. The results show that SSL models benefit from longer pre-
training time and larger pre-training dataset size. The SSL models outperforms baseline
SL models in zero-shot out-of-domain generalization in the case study, consistent with
our previous findings. Furthermore, the SAHI method correctly identifies 45 additional
small litter items (with areas below 1,000 cm2), compared to the results obtained without
the SAHI method, leading to improvement in the F1-score of up to 0.19. The flux mea-
surement results indicate that the SSL-based framework substantially underestimates
fluxes by a factor of 3-4 compared to human measurements, since the SSL model usu-
ally fails to detect transparent litter items and items entrapped in water hyacinths. How-
ever, the SSL-based framework quantifies litter fluxes nearly twice as high as the baseline
SL-based framework, offering estimates that align more closely with human-measured
fluxes.
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6.1. INTRODUCTION
Literature review in Chapter 2 highlights a key knowledge gap in deep learning (DL)-
based detection and quantification of litter in rivers: the lack of DL-based quantification
of cross-sectional floating litter fluxes in rivers. Our findings in Chapter 5 and Chap-
ter 6 indicate the effectiveness of data-centric artificial intelligence (AI) approaches and
semi-supervised learning (SSL) in improving model generalization capability. Especially
SSL methods reduces the reliance on large amounts of labeled data. Therefore, to fill
the above gap, we proposed a SSL-based framework for measuring cross-sectional float-
ing litter fluxes in river systems, with the limited availability of labeled data for model
development. When developing models, we used an effective data-centric AI method
(i.e., flipping data augmentation) to enhance model performances, as demonstrated in
Chapter 4. Additionally, we further optimized SSL models developed in Chapter 5 to
obtain better performances by increasing pre-training epochs and pre-training dataset
size. This optimization was not done in Chapter 5. Literature reports the significant im-
pact of these two factors on SSL performance on ImageNet classification tasks (Caron
et al., 2020; Goyal et al., 2022).

Litter detection results in Chapter 4 and Chapter 5 show that detecting small litter
or litter located far away from the imaging devices still remains a significant challenge.
These litter items are represented by a limited number of pixels in images, resulting in
insufficient details, that hinders their accurate detection with common object detection
models (e.g., Faster R-CNN and YOLO). Specifically, the input images are usually resized
to a smaller size (e.g., 640×640 pixel for YOLO network) by DL models before model train-
ing and inference, which causes small items to appear even smaller, further complicating
detection (van Emmerik et al., 2024). Thus, in this chapter, we introduced a Slicing Aided
Hyper Inference (SAHI) method to enhance the detection of small litter, by slicing input
images into small tiles and resizing them to a larger dimension.

We developed and validated the SSL-based framework and SAHI method using im-
ages collected from canals and waterways in the Netherlands, Indonesia, and Vietnam.
The findings presented in this chapter contribute to answering the third research sub-
question of this thesis:

• How to develop DL-based methods to quantify cross-sectional floating litter fluxes
in rivers?

6.2. METHODOLOGY

6.2.1. OVERVIEW OF THE SEMI-SUPERVISED LEARNING-BASED FRAMEWORK

FOR QUANTIFYING LITTER FLUXES

Fig. 6.1 shows the proposed SSL-based framework for quantifying cross-sectional float-
ing litter fluxes in flowing rivers. This framework includes four steps: (a) collecting data
from locations of target rivers with digital cameras; (b) developing a DL model for lit-
ter detection using SSL methods; (c) applying the DL model to detect and count litter
items in each collected image; and (d) post-processing the detection results to quantify
litter fluxes. In step (b), we can develop models using existing openly available plastic
datasets (e.g., see Chapter 3), parts of data from target rivers, or a combination of both.
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We described the details on data collection in Chapter 6.2.2. The methodology for model
development is presented in Chapter 6.2.3. Chapter 6.2.4 gives details on the litter flux
estimation.

Figure 6.1: The schematic illustration of deep learning-based framework for quantifying cross-sectional float-
ing litter fluxes. First, we used digital cameras to collect images at multiple sampling points on a bridge over
the river surface (a). These images capture all floating litter items in camera’s field of view (FOV). Second, we
developed a deep learning model for litter detection using a semi-supervised learning method (b). Third, we
used the developed model to detect litter from the collected images, providing the number of items detected in
each image (c). Lastly, we post-processed the detection results to measure cross-sectional floating litter fluxes
(d).

6.2.2. DATA COLLECTION FROM TARGET RIVERS

In this framework, we used digital cameras to capture images at multiple sampling points
on an infrastructure (e.g., a bridge) of target rivers over the river surface (see Fig. 6.1
(a)), due to their affordable costs and user-friendliness compared to other devices (e.g.,
drones), as highlighted in Chapter 2. Thus, we selected such devices to enhance the
practical applicability of the proposed framework. The cameras can either be: (1) fixed
on the bridge at each sampling point for continuous monitoring, or (2) handheld for a
pre-defined period to survey multiple sampling points, both with a time-lapse record-
ing. Among these, fixed cameras are more suitable for long-term structured monitoring,
as they can be deployed to automatically capture images at pre-defined time periods
and frequencies over extended periods of time, while requiring little equipment main-
tenance (e.g., camera power supply). The time-lapse interval (seconds per frame) is de-
termined based on the actual river plastic flow rate, ensuring that all floating litter items
within the observation area are captured in images. The width of the observation area,
that is smaller than the full river width, depends on the camera’s field of view (FOV) and
the height of the bridge above the water surface. Each sampling point can be measured
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multiple times during a pre-defined period∆ti ,m [h] on one measurement day (van Em-
merik et al., 2022a). For example, van Emmerik et al. (2024) mounted a single camera at
5 sampling points on three bridges along the Saigon River. They captured 31 images at
10-second intervals, up to 8 times for each sampling point.

6.2.3. METHODOLOGY FOR LITTER DETECTION MODEL DEVELOPMENT
Given that the effectiveness of flipping data augmentation method and SSL methods
shown in Chapter 4 and Chapter 5, we adopted the same SSL approach from Chapter 5
to develop a robust model for litter detection. Additionally, we applied flipping data aug-
mentation method to enhance model performance by increasing the number of labeled
images for model fine-tuning.

We applied a SAHI method (Akyon et al., 2022) to enhance the model’s generalization
to small litter in target rivers, as explained below. In this study, we did not develop DL
models capable of automatically identifying and counting the same litter item appearing
in multiple consecutive images as a single instance. Thus, we manually reviewed the
detected litter items and corrected the counts before estimating floating litter fluxes.

Fig. 6.2 shows the schematic illustration of the SAHI method for detecting floating
litter. First, the SAHI method slices the original input image into smaller overlapping
tiles with a width of W s and height of H s (e.g., 400×400 pixels) with an overlap ratio.
For simplicity, Fig. 6.2 (a) shows slicing process with the overlap ratio of 0. Then, each
sliced tile is resized into a larger dimension with a weight of W r and height of H r. Each
resized tile is fed into the Faster R-CNN. Finally, the predictions in tiles (i.e., the yellow
bounding boxes in Fig. 6.2 (c)) are mapped back to the original input image dimensions.
The SAHI method employs Non-Maximum Suppression (NMS) to refine duplicate pre-
dictions for the same object in overlapping regions of adjacent tiles (Hosang et al., 2017).
The NMS measures the overlap between the predicted bounding boxes in overlapping
regions using Intersection over Union (IoU), and filters out redundant boxes with higher
IoU overlap than a predefined IoU NMS threshold, retaining the boxes with confidence
score higher than a certain confidence threshold (Akyon et al., 2022).

6.2.4. LITTER FLUX ESTIMATION
We post-processed the detection results from the DL model to quantify cross-sectional
floating litter fluxes. First, we calculated the mean litter fluxes fi [items/h] for sampling
point i , using the following equation (Schreyers et al., 2023):

fi = 1

Mi

Mi∑
m=1

Ni ,m

∆ti ,m
(6.1)

where Ni ,m [items] is the total number of litter items detected by the model in the images
collected at sampling point i during the m-th measurement within the time period∆ti ,m

[h]. Mi denotes the total number of sampling events at sampling point i .
Then, we calculated the total cross-sectional floating litter fluxes F [items/h] using

the following equation, as derived from van Emmerik et al. (2022a):

F = 1

S

S∑
i=1

fi

wi
·W (6.2)
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Figure 6.2: The schematic illustration of Slicing Aided Hyper Inference (SAHI) for detecting floating litter. First,
the SAHI method divides the input images into smaller (overlapping) tiles (a), and resizes them into a larger
scale (b). Then, we used the Faster R-CNN to detect litter in each resized tile (c). Finally, these detections
(yellow bounding boxes) are merged back to the original input image (d).

where S is the total number of sampling points in a bridge. wi [m] is the width of the
observation area at sampling point i . W [m] is the total river width.

6.3. EXPERIMENTS
We conducted three experiments in this chapter. We trained and validated SSL models
using data from six locations: (1) The TU Delft - Green Village (TUD-GV), the Nether-
lands, (2) Oostpoort, the Netherlands, (3) Amsterdam, the Netherlands, (4) Groningen,
the Netherlands, (5) Jakarta, Indonesia, and (6) Wageningen UR - Ho Chi Minh City
(WUR-HCMC). We evaluated litter detection and quantification performances in a case
study, TU Delft - Ho Chi Minh City (TUD-HCMC). The details of these datasets are shown
in Chapter 3.

In Experiment 1, we optimized the SSL models developed in Chapter 5 with longer
pre-training time, and larger pre-training dataset size. We evaluated models’ improve-
ment in in-domain litter detection performances (see Chapter 6.3.2). In Experiment 2,
we evaluated SSL models’ zero-shot out-of-domain litter detection performances with
and without SAHI method (see Chapter 6.3.3). Moreover, we compared the litter de-
tection results against those obtained from a SL benchmark in these two experiments.
In Experiment 3, we evaluated the capability of the proposed SSL-based framework for
floating litter flux quantification (see Chapter 6.3.4). We compared the results of the SSL-
based framework with those of a SL-based framework and a conventional human visual
counting method.

In Experiment 1 and 2, we evaluated models’ in-domain and zero-shot out-of-domain
litter detection performance, respectively. In-domain generalization performance indi-
cates the model performance on new, unseen data collected from the same geographic
locations as the training data. In contrast, out-of-domain generalization performance
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indicates the performance on unseen data sourced from different geographic locations.
Zero-shot out-of-domain generalization refers to the capability of DL models to detect
previously unseen objects from different geographic locations, without requiring train-
ing data of these unseen objects. This capability is especially crucial for large-scale
structured monitoring, enabling the monitoring of multiple geographic locations with
varying environmental conditions in extensive river system, without well-labeled and
location-specific data for further refinement of DL models.

To evaluate model performance for litter detection, we used the same metrics as in
Chapter 5: (1) Average Precision (AP50), (2) F1-score, (3) precision, and (4) recall.

6.3.1. DATA SELECTION
For developing models, we randomly selected images from the TUD-GV, Oostpoort, Am-
sterdam, Groningen, Jakarta and WUR-HCMC dataset, as detailed in the “Total images”
column of Table 6.1. We aimed to evaluate models’ out-of-domain generalization perfor-
mance to a new TUD-HCMC case study in Experiment 2 and 3. Thus, we only selected
935 images collected at the Quy Kien and Thanh Ho location from the WUR-HCMC
dataset for model development. This selection ensures that images from the Binh Loi
and Thu Thiem location in the TUD-HCMC dataset remain unseen during model pre-
training and fine-tuning. We sliced the selected images into tiles and achieved a total
of 501,983 image tiles with a standard size of 224×224 pixels, matching the input size
required for ResNet50.

Table 6.1: Details on the images for model development

Image source Total images
Total image

tiles
No. image tiles
without labels

No. image tiles
with litter annotated

No. annotated
litter items

TUD-GV 3,777 91,565 90,112 1,453 1,719

Oostpoort 562 78,043 77,710 333 342

Amsterdam 92 36,864 36,712 152 204

Groningen 63 5,350 5,193 157 167

Jakarta 526 16,789 16,433 356 501

WUR-HCMC 935 273,372 273,317 55 63

Total 5,955 501,983 499,477 2,506 2,996

In Experiment 1, we trained and validated models, and evaluated their in-domain
generalization capability using these 501,983 image tiles. We randomly sampled tiles
to create the non-overlapping subsets, including (1) 499,477 tiles (99.5%) for SwAV pre-
training, (2) 1,128 tiles for supervised fine-tuning, (3) 125 tiles for model validation, and
(4) 1,253 tiles for model testing, as outlined in Table 6.2. We used a maximum of 499,477
tiles without annotations for SwAV pre-training (Train500k). To further investigate model
performance regarding to the availability of unlabeled data for SwAV pre-training, we
generated five additional smaller pre-training subsets by gradually reducing the number
of tiles down to 25k (Train300k to Train25k). We used up to 1,128 image tiles for fine-
tuning SSL and baseline SL models in a supervised manner (Train100%). These tiles con-
tain 1,349 litter items annotated by bounding boxes indicating their locations, without



6

90
6. A SEMI-SUPERVISED LEARNING-BASED FRAMEWORK FOR QUANTIFYING

CROSS-SECTIONAL FLOATING LITTER FLUXES IN RIVERS

further classification. To evaluate model performance with respect to the availability of
labeled data, we generated two smaller fine-tuning subsets by decreasing the number
of labeled tiles down to 20% (Train60% and Train20%). We used a maximum of 125 tiles
containing 158 annotations to validate models (Validation100%), with a 9:1 ratio relative
to the tiles for fine-tuning (Train100%). For consistency, we generated two smaller valida-
tion subsets (Validation60% and Validation20%). We generated the Test subset with 1,253
tiles and 1,489 annotations for testing models’ in-domain generalization performance.

Table 6.2: The subsets for model development in Experiment 1

Learning method

Training dataset Validation dataset Test dataset

Name
No. annotated

litter items
No. tiles Name

No. annotated
litter items

No. tiles Name
No. annotated

litter items
No. tiles

Self-supervised

Train500k 0 499,477

Train300k 0 299,679

Train200k 0 203,454

Train100k 0 99,887

Train50k 0 49,941

Train25k 0 24,966

Semi-supervised
and supervised

Train100% 1,349 1,128 Validation100% 158 125

Test 1,489 1,253Train60% 800 677 Validation60% 91 75

Train20% 276 226 Validation20% 33 25

6.3.2. EXPERIMENT 1: IN-DOMAIN DETECTION PERFORMANCE

With the first experiment, we assessed the benefits of (1) varying pre-training epochs,
and (2) varying pre-training dataset sizes on the in-domain generalization performance
of SSL models. This examination is essential for assessing the effectiveness of represen-
tations learned from different scales of pre-training dataset for generalization. It also
offers insights into the effectiveness of SSL methods in scenarios with limited labeled
samples, but with abundant unlabeled images and sufficient computational resources
for extensive hyperparameter tuning.

For developing SSL models, we first initialized the ResNet50 backbone with Ima-
geNet weights, and then using SwAV to pre-train all the layers of the ResNet50 network
with a projection head of 2-layer multilayer perceptron on all six pre-training subsets,
(i.e., Train500k to Train25k subset) in the self-supervised learning stage. Due to the lim-
ited computational resources, we performed SwAV pre-training for 100, 200, and 300
epochs (Caron et al., 2020; Chen et al., 2020). In the supervised fine-tuning phase, we
fine-tuned the Faster R-CNN architecture derived from the SSL backbone on Train100%

to Train20% subset. Before fine-tuning, we performed horizontal flipping data augmen-
tation technique to the fine-tuning subset, generating one new image for each original
image (see Chapter 4). During fine-tuning, we froze the first four convolutional blocks
of the ResNet50 backbone network. It allows the Faster R-CNN to retain relevant low-
level features (e.g., edges and texture) in the first two blocks, as well as high-level fea-
tures (e.g., object shapes) in the last tow blocks, learned from SwAV pre-training. Most
important, these high-level features significantly improve the model’s in-domain and
out-of-domain generalization performance in data scarce conditions, as highlighted in
Chapter 5. Model validation was conducted on the respective Validation subsets, i.e.,
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Validation100% to Validation20% subset. We selected the SSL model that achieved the
highest validation accuracy across the three different pre-training epoch settings. Then,
we evaluated its in-domain performance on the Test subset.

We compared the effectiveness of SSL models with baseline SL models, developed
with the supervised fine-tuning phase (see Fig. 5.1 (d) in Chapter 5), but without the
SwAV pre-training phase (see Fig. 5.1 (c) in Chapter 5). These SL models are Faster
R-CNNs supervised fine-tuned on images with annotated litter, with ResNet50 back-
bones initialized using ImageNet weights. During fine-tuning, the first four convolu-
tional blocks of the ResNet50 backbone network were frozen. They were fine-tuned, val-
idated, and tested on the same subsets used for SSL model development.

6.3.3. EXPERIMENT 2: ZERO-SHOT OUT-OF-DOMAIN DETECTION PERFOR-
MANCE

To evaluate the zero-shot out-of-domain generalization performance for litter detection,
we tested the best-performing SSL and SL model developed in Experiment 1, on the
TestThu Thiem and TestBinh Loi subsets, as outlined in Table 3.3 in Chapter 3. We did not
re-train these models on any data from the Thu Thiem and Binh Loi location.

EVALUATION OF THE SAHI METHODS

We compared performance of the SSL model using the SAHI method and that without
SAHI during model inference on TestThu Thiem and TestBinh Loi subsets. Inspired by Akyon
et al. (2022) and Gia et al. (2024), we tested four configurations of width W s and height H s

for the selected SSL model: (1) 400×400, (2) 640×640, (3) 1280×1280, and (4) 1920×1920
pixels. The configuration yielding the best detection performance for each subset was
selected for subsequent steps of this experiment.

When applied to detect litter in the TUD-HCMC case study, models may produce a
high number of misdetections, due to the limited data available for SwAV pre-training
and supervised fine-tuning, as shown in Chapter 5. To reduce these misdetections, we
refined the output bounding boxes by setting a high confidence threshold value before
making the final predictions and computing performance metrics. This threshold de-
fines the minimum confidence level required for a detected object to be considered as a
valid detection. Increasing this threshold excludes low-confidence predictions, but may
also result in missing some true positives with confidence scores below the threshold.
Thus, we compared the SSL model’s performance using three confidence threshold val-
ues (0.5, 0.7 and 0.9) with the best W s and H s settings. The confidence threshold value
yielding the best performance for each subset was chosen for following steps of this ex-
periment.

It is noted that selecting optimal hyperparameters based on test performance is not
a standard practice in machine learning. However, the aim of this experiment was to
evaluate the benefit of the SAHI method, while utilizing as much data from TUD-HCMC
case study for testing as possible.

EVALUATION OF THE SSL AND SL METHODS

To minimize the influence of randomization, we repeated the fine-tuning process for
a total of 10 times for both SSL and SL models. Then, we evaluated the detection per-
formance of all models, using the SAHI method with W s, H s and confidence threshold
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settings that yielded the best performance in the previous evaluation, ensuring that the
pre-processed input images by SAHI were the same before being fed to both SSL and SL
models.

6.3.4. EXPERIMENT 3: LITTER FLUX MEASUREMENT
To evaluate the zero-shot out-of-domain flux quantification capability of the proposed
SSL-based framework, we used the best-performing SSL models for the Thu Thiem and
Binh Loi locations from the 10 runs conducted in Experiment 2. We estimated floating
litter fluxes, using the approach introduced in Chapter 6.2.4. Additionally, we evaluated
flux quantification capability of the SL-based framework similarly, but replacing the SSL
model with the best-performing SL model from 10 runs, as illustrated in Fig. 6.1 (a) and
(c). Furthermore, we compared these results against those obtained using the conven-
tional human counting method, where litter items were manually observed and counted
directly from the images. We used the Pearson correlation coefficient (r ) (Cohen et al.,
2009) to assess the linear correlation between fluxes measured by DL-based frameworks
(i.e., the SSL- and SL-based framework) and human counting methods across 10 sam-
pling points in the case study. This coefficient ranges from -1 to 1. A higher positive
value indicates a stronger positive correlation between two variables. The reader is re-
ferred to the work of Cohen et al. (2009) for more details on this coefficient. Litter items
appearing in multiple consecutive images were counted only once across all methods
and frameworks.

6.3.5. TRAINING SETUP AND PROCEDURE
We implemented model training and evaluation using Python 3.8.16 and PyTorch 1.8.1,
with the VISSL (Goyal et al., 2021), Detectron2 (Wu et al., 2019) and SAHI (Akyon et al.,
2021) libraries. In the self-supervised learning stage, we performed four data augmenta-
tion strategies: (1) multi-crop with 6 views (2×[160×160]+4×[96×96]), (2) horizontal flip-
ping, (3) color distortion, and (4) Gaussian blur. Other settings for SwAW pre-training
and fine-tuning are same with those in Chapter 5.

For SAHI, we used the default SAHI hyperparameters, including an overlap ratio of
0.2 and an IoU NMS threshold value of 0.5 for refining predictions in overlapping region
of adjacent tiles. During inference, we set W r and H r, following the default Faster R-CNN
setting in Detectron2 framework. The shortest edge of sliced tile was resized to a length
between 800 and 1333 pixels, while the longest edge was scaled by preserving the aspect
ratio, ensuring it did not exceed 1333 pixels.

6.4. RESULTS AND DISCUSSION

6.4.1. EXPERIMENT 1: IN-DOMAIN DETECTION PERFORMANCE

SSL MODEL PERFORMANCE FOR VARYING PRE-TRAINING EPOCHS

Table 6.3 presents the AP50 detection performance of the SSL methods on the Validation100%

subset, evaluated with varying pre-training epochs and pre-training dataset sizes. Re-
sults for the Validation60% and Validation20% subsets are shown in Table 10.1 in Appendix
10. We observed that increasing the pre-training epochs from 100 to 200 usually leads
to an improvement in model performance, as indicated by AP50 improvements rang-
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ing from 0.2% to 4.2%, while an additional 100 pre-training epochs requires substantial
computational resources (e.g., 278 hours per 100 epochs on the Train500k subset). This
finding is similar to that reported by Caron et al. (2020). The authors pre-trained the
ResNet50 using SwAV for 100, 200, 400, and 800 epochs on 1.28 million unlabeled im-
ages from the ImageNet dataset. Their results demonstrate a 3.2% improvement in top-
1 accuracy on the ImageNet classification task as pre-training epochs increase from 100
to 800. Furthermore, we found that this improvement is more noticeable, when a large
amount of data is available for pre-training. For example, the SSL models pre-trained on
Train200k and Train500k achieve an AP50 improvement ranging from 3.4% to 4.2% by in-
creasing epochs, while the SSL models pre-trained on Train50k and Train100k only obtain
a AP50 improvement ranging from 0.2% to 0.4%. We attribute this superior performance
to the more robust feature representations learned from SwAV pre-training from a larger
amount of data for longer training time, which enhance the performance of Faster R-
CNN for the downstream litter detection task.

Table 6.3: Pre-training time and validation accuracy (AP50) on the Validation100% subset of all SSL models for
Experiment 1. The bold entities are the best results for models pre-trained on each pre-training dataset

Pre-training
dataset

No.pre-training
epochs

Pre-training time
(h/100 epochs)

AP50

Train25k

100

17

80.2%

200 78.8%

300 77.1%

Train50k

100

33

80.2%

200 80.4%

300 79.4%

Train100k

100

56

81.8%

200 82.2%

300 81.9%

Train200k

100

117

78.0%

200 82.2%

300 80.7%

Train300k

100

168

82.4%

200 82.9%

300 81.0%

Train500k

100

278

80.2%

200 83.6%

300 80.5%

Table 6.3 also demonstrates a decline in AP50 ranging from 0.3% to 3.1%, when epochs
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increase from 200 to 300. It could be attributed to the limited size of pre-training dataset
(500k images). Caron et al. (2020) reported improved performance with longer pre-
training time, but used a significantly larger dataset (1.28 million). Another reason is
the single pre-training run conducted, due to computational limitations. The inher-
ent stochasticity of neural network training leads to variations in results across multiple
runs, potentially affecting the observed performance (Punjani & Fleet, 2021).

PERFORMANCE FOR VARYING PRE-TRAINING DATASET SIZES

The benefit of larger pre-training dataset on model performance is more noticeable from
the results shown in Fig. 6.3, that shows in-domain generalization performance of the
SSL and baseline SL methods on the Test subset, with varying proportion of labeled data
for fine-tuning. It reveals a general upward trend in AP50 and F1-score for SSL mod-
els, as the pre-training dataset size increases, irrespective of the amount of labeled data
available for fine-tuning. The performance improvement is particularly noticeable when
scaling the pre-training dataset from a small size (<100k) to a larger size, with AP50 in-
creasing by 5.6% to 14.7% and F1-score improving by 0.06 to 0.25. For instance, when
models are fine-tuned on the Train100% subset, the AP50 improves from 76.3% to 82.3%,
and the F1-score increases from 0.69 to 0.75, as the pre-training dataset size increases
from 25k to 500k. These findings underscore the advantages of large-scale datasets, en-
abling models to learn more effective low-level and high-level representations. This im-
provement is especially significant in scenarios with limited labeled data for fine-tuning
(i.e., Train20%), where AP50 increases by 14.7% and F1-score improves by 0.25.

Figure 6.3: AP50 (a) and F1-score (b) detection performance of the SSL and baseline SL methods on the Test
subset with different proportion of labeled data for fine-tuning. The six SSL models were pre-trained on
Train25k, Train50k, Train100k, Train200k, Train300k, and Train500k subset, respectively.

We observed a performance plateau when increasing the pre-training dataset size
from 100k to 500k. It could be attributed not only to the limited size of the pre-training
dataset (500k) and the limited pre-training epochs, but also to the constraints of con-
ducting only a single training run, imposed by computational resource limitations. Lit-
erature demonstrates notable performance improvements for SSL models with larger
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SwAV pre-training datasets, scaling from 1.28 million to over 1 billion images (Goyal et
al., 2022). Thus, we believe that better performance could be achieved by scaling the
unlabeled dataset size to over 1 million and conducting a large number of training runs.

Fig. 6.3 also demonstrate that the most SSL models significantly outperform the
baseline SL benchmarks, irrespective of the amount of data used for SwAV pre-training
or fine-tuning. The SSL method performs best in most cases, obtaining AP50 values
ranging from 59.3% to 82.3%, and F1-scores from 0.48 to 0.77. In comparison, the base-
line SL method achieves AP50 values varying from 61.8% to 72.5%, and F1-scores from
0.53 to 0.73. These values are particularly low when fine-tuning data is limited (i.e.,
Train20% subsets), where SSL models yield improvements of up to 12% in AP50 and 0.20
in F1-score. The SSL model requires only 20% of the labeled images (226 images with
276 annotated litter items) combined with 500k unlabeled images to achieve compa-
rable or superior performance (AP50=74.0%, and F1-score=0.72) to that of the baseline
SL method, which relies on 100% of labeled images (1,128 images with 1,349 annotated
litter items, AP50=72.5%, and F1-score=0.73). These findings highlight the benefits of
transferring low-level and high-level representations learned by SwAV from unlabeled
yet domain-relevant data, leading to notable improvements compared to simple trans-
fer from ImageNet. While the features extracted from ImageNet are general, they are not
sufficiently relevant to the specific litter detection task.

6.4.2. EXPERIMENT 2: ZERO-SHOT OUT-OF-DOMAIN DETECTION PERFOR-
MANCE

PERFORMANCE FOR SAHI METHODS

Table 6.4 and 6.5 present the performance of SSL models with or without SAHI methods
on the TestThu Thiem and TestBinh Loi subset, respectively. The SSL model achieving the
highest AP50 on the Test subset in Experiment 1, was selected for these evaluations (i.e.,
model pre-trained on the Train500k subset and fine-tuned on the Train100% subset). The
results demonstrate that SSL models using SAHI methods significantly outperform those
without SAHI in all metrics for the Thu Thiem location, and in recall and F1-score for the
Binh Loi location under the same confidence threshold settings (0.5). Especially, the
SAHI method achieves an improvement in F1-score of up to 0.19, compared to models
without SAHI across two locations.

Table 6.4 and 6.5 also present the performance of SSL models with SAHI, along with
the best W s and H s settings under varying confidence thresholds. Increasing confidence
threshold from 0.5 to 0.9 usually yields a slight decline in TP and a significant reduction
in FP, since a large number of low-confidence FPs are filtered out. This adjustment leads
to a slight decrease in recall, but a notable improvement in precision and F1-score. For
example, the model with SAHI (W s, H s = 1280 pixel) achieves a substantial increase in
precision of 0.13 and F1-score of 0.07, with a minor decrease in recall of 0.04 for the Thu
Thiem location, when the confidence threshold is raised from 0.5 to 0.9.

For the Thu Thiem location, the model without SAHI fails to detect any litter items
correctly (TP = 0) and produces 6 FPs, resulting in precision, recall, and F1-score values
of 0. In contrast, the SAHI method under the same confidence threshold settings (0.5)
correctly detects 9∼27 litter items (TP) depending on the W s and H s settings, achieving
higher precision (0.02∼0.22), recall (0.14∼0.42), and F1-score (0.05∼0.24), while it gen-
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Table 6.4: Confusion matrix, Precision, Recall and F1-score on the TestThu Thiem subset for SSL models, eval-
uated with varying inference hyperparameters (i.e., W s, Hs and confidence threshold score). The model was
fine-tuned on the Train100% subset. The bold entity is the best F1-score

W s × H s

(pixel × pixel)
Confidence
threshold

TP FP FN Precision Recall F1-score

No SAHI 0.5 0 6 64 0.00 0.00 0.00

400×400 0.5 21 838 43 0.02 0.33 0.05

640×640 0.5 27 539 37 0.05 0.42 0.09

1280×1280

0.5 22 95 42 0.19 0.34 0.24

0.7 21 74 43 0.22 0.33 0.26

0.9 19 40 45 0.32 0.30 0.31

1920×1920 0.5 9 32 55 0.22 0.14 0.17

Table 6.5: Confusion matrix, Precision, Recall and F1-score on the TestBinh Loi subset for SSL models, evaluated
with varying inference hyperparameters (i.e., W s, Hs and confidence threshold score). The model was fine-
tuned on the Train100% subset. The bold entity is the best F1-score

W s × H s

(pixel × pixel)
Confidence
threshold

TP FP FN Precision Recall F1-score

No SAHI 0.5 7 22 107 0.24 0.06 0.10

400×400 0.5 49 3438 65 0.01 0.43 0.03

640×640 0.5 68 2749 46 0.02 0.60 0.05

1280×1280 0.5 69 625 45 0.10 0.61 0.17

1920×1920

0.5 39 229 75 0.15 0.34 0.20

0.7 36 153 78 0.19 0.32 0.24

0.9 30 70 84 0.30 0.26 0.28

erates a significant number of false positives (FP = 32∼838). For the Binh Loi location,
the model without SAHI correctly detects only a few litter items (TP = 7) and generates
few FPs (22), resulting in a precision of 0.24, but with very low recall (0.06) and F1-score
(0.10). In contrast, the SAHI method detects a significantly higher number of litter items
(TP = 39∼69), but also generates a large number of FPs (229∼3438). This leads to lower
precision (0.01∼0.15), but higher recall (0.34∼0.61) and F1-score (0.03∼0.20), compared
to those obtained by the model without SAHI.

Fig. 6.4 shows the area of all litter items correctly detected by SSL models with or
without SAHI method in the TestThu Thiem (W s, H s = 1280 pixel) and TestBinh Loi (W s, H s

= 1920 pixel) subset. The area of each litter item is approximately calculated by multi-
plying its ground-truth bounding box area (pixel2) by the square of the GSD of images



6.4. RESULTS AND DISCUSSION

6

97

(cm2/pixel2). The results show that the model without the SAHI method only correctly
detect 7 “big” litter items with area above 1,000 cm2, while fails to detect all “small” lit-
ter items with area below 1,000 cm2. In contrast, the model with the SAHI method not
only correctly identifies these 7 “big” litter items, but also detects 9 additional “big” litter
items, and 45 additional “small” litter items.

Figure 6.4: The areas of litter items correctly detected by SSL models with or without SAHI method in the
TestThu Thiem (W s, Hs = 1280 pixel) and TestBinh Loi (W s, Hs = 1920 pixel) subset. The confidence threshold is
0.5.

Visual inspection of the predicted bounding boxes highlights the effectiveness of the
SAHI method in handling diverse object sizes, as shown for examples in Fig. 6.5 and 6.6.
The accurate detection of “small” litter by SAHI methods can be primarily attributed to
its slicing and resizing process, which enlarges these objects, thereby providing sufficient
details for the model to recognize them effectively.

The aim of this work was not to precisely measure the actual size of litter items de-
tected by models with or without the SAHI method, but to show clear evidence that the
SAHI method can correctly detect a large number of litter items with area smaller than
a specific threshold, that models without the SAHI method fail to identify. To the best
of our knowledge, no study has reported the precise value of specific threshold, as it de-
pends on the GSD, that is determined by sensor elevation and properties (Andriolo et
al., 2023). For example, a CNN model without the SAHI method may correctly detect
a plastic bottle in images captured by sensors at a low elevation, where the GSD is low
and the bottle appears relatively large (i.e., represented by many pixels). However, this
model may fail to detect the same bottle in images taken by the same sensors at a higher
elevation, where the GSD is higher, making the bottle appears relatively small (i.e., rep-
resented by fewer pixels). This issue arises from the lack of scale invariance in CNNs,
that refers to a model’s ability to maintain consistent outputs regardless of object scale
(Singh & Davis, 2018).
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Figure 6.5: Examples of predicted bounding boxes for models with and without the SAHI method on the
TestThu Thiem subset. The Faster R-CNN model was fine-tuned on the Train100% subset. During inference,
we set W s and Hs to 1280, with a confidence threshold score (Conf-thresh) of 0.5. Without the SAHI method,
the model usually fails to detect all “small” litter items with area below 1,000 cm2 in (a)-(c). With SAHI, the
model correctly detects some small, including two in (a), one in (b), and one in (c).
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Figure 6.6: Examples of predicted bounding boxes for models with and without the SAHI method on the
TestBinh Loi subset. The Faster R-CNN model was fine-tuned on the Train100% subset. During inference, we
set W s and Hs to 1920, with a confidence threshold score (Conf-thresh) of 0.5. Without the SAHI method, the
model correctly detects two “big” items with area above 1,000 cm2 in (b) and (c), but fails to detect “small”
items with area below 1,000 cm2. With SAHI, the model correctly detects some “small” items, as well as two
“big” items.
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PERFORMANCE FOR SSL AND SL METHODS

Fig. 6.7 illustrates the zero-shot generalization performance of SSL and baseline SL mod-
els with SAHI on the unseen Thu Thiem (W s, H s = 1280 pixel) and Binh Loi (W s, H s =
1920 pixel) location. The confidence threshold is 0.9. These models were fine-tuned on
the Train100% subset across 10 runs. The results demonstrate that SSL methods signif-
icantly outperform the baseline SL methods across all metrics for both locations. For
the Thu Thiem location, the SSL method achieves substantial improvements of 0.25 in
median precision, 0.11 in median recall and 0.14 in median F1-score, compared to the
baseline SL method. Similarly, for Binh Loi location, the SSL method show enhance-
ment of 0.09 in median precision, 0.09 in median recall, and 0.07 in median F1-score.
These superior performance are further reflected by visual inspection of the predicted
bounding boxes, as depicted in Fig. 10.3 and Fig. 10.4 in Appendix 10. The baseline SL
method yields few correct detections and a high misdetection probability, particularly
with respect to water hyacinth, reflective elements on the river surface, and other distur-
bances. These findings indicate that the feature representations learned through SwAV
pre-training significantly enhance the model’s out-of-domain generalization capability
to new environments, consistent with our findings in Chapter 5.

Figure 6.7: Zero-shot generalization performance on precision, recall, and F1-score metrics of SSL and baseline
SL methods for the two unseen locations: Thu Thiem and Binh Loi bridge. The models were fine-tuned on the
Train100% subset.

While the SSL methods achieve much better performance than the baseline SL meth-
ods, all metric values remain low for practical application purposes in the TUD-HCMC
case study. Specifically, the SSL method obtains a median F1-score of 0.33 and 0.16 for
the Thu Thiem and Binh Loi location, respectively. After conducting a quantitative anal-
ysis of litter items in TUD-HCMC images, we found that approximately 40% of all litter
items are transparent or are entrapped in water hyacinths, as shown in Fig. 6.8. The
developed model usually fails to detect transparent litter, due to the insufficient differ-
entiation between the features of transparent litter and water surface. This challenge is
further exacerbated under poor lighting conditions. Additionally, the water hyacinths
cover large areas of the litter, resulting in insufficient visible details of litter for accurate
detection. These occlusions can also distort the litter’s shape and texture, making recog-
nition even more difficult. For example, in the Thu Thiem, the SSL model fails to detect
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the majority of transparent litter items (14 out of 17 cases) and all entrapped items (5
cases). Similarly, in Binh Loi, all transparent litter items (8 cases) and most entrapped
items (26 out of 33 cases) remain undetected. Thus, we explained the low recall and in
turn the low F1-score, by the failure to detect these two types of litter. An additional con-
tributing factor may be dataset imbalance. While the pre-training dataset maintains a
relatively balanced distribution of samples between rivers in the Netherlands (42%) and
those in Vietnam (55%), the fine-tuning dataset shows a strong imbalance (81% vs. 2%,
see Table 6.1), which limits the model’s generalization capability to rivers in Vietnam.

Figure 6.8: Examples of litter items undetected by the Faster R-CNN on the TestThu Thiem and TestBinh Loi
subset using the SSL method. The models were fine-tuned on the Train100% subset. These include litter items
entrapped in water hyacinths (a) and transparent items (b). Ground-truth litter is shown in red bounding
boxes.

6.4.3. EXPERIMENT 3: LITTER FLUX MEASUREMENT

Fig. 6.9 shows the horizontal distribution of cross-sectional floating litter fluxes, mea-
sured by multiple frameworks and methods. We measured fluxes by including the cor-
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rectly detected litter items by models (i.e., TPs). For this measurement evaluation, we se-
lected the best-performing SSL and baseline SL models (achieving the highest F1-score)
across the 10 runs from Experiment 2. The results indicate that the SSL-based and base-
line SL-based frameworks yield identical flux measurements for most low-fluxes region
(human-measured fluxes < 50 items/h), such as 14 items/h for sampling point 2 at Thu
Thiem and 0 items/h for sampling point 1 at Binh Loi (see Fig. 3.9 in Chapter 3). How-
ever, for the high-flux region (human-measured fluxes > 50 items/h), the SSL-based
framework significantly outperforms the SL-based framework by consistently measur-
ing higher fluxes, aligning more closely with those measured by humans. For example,
at sampling point 5, fluxes measured by the SSL-based framework is 27 items/h and 37
items/h higher than that by the SL-based framework for the Thu Thiem and Binh Loi
bridges, respectively. This is mainly attributed to the higher recall achieved by the SSL
models compared to the baseline SL models, as described in Chapter 6.4.2.

Figure 6.9: Horizontal distribution of cross-sectional floating litter fluxes, measured by the SSL-based and
baseline SL-based framework, and human counting method. We measured the mean litter fluxes by including
the correctly detected litter items by models (i.e., true positives). The SSL and baseline SL models are best-
performing models in 10 runs from Experiment 2.

Fig. 6.9 also demonstrates that the concentration of litter items is highest near the
eastern riverbanks (i.e., sampling point 5), accounting for approximately 70% at Thu
Thiem and 60% at Binh Loi. This spatial distribution can be mainly explained by the
flow direction and river morphology. Floating litter fluxes are likely highest in the outer
curves of the river (van Emmerik et al., 2018a), as observed at sampling point 5 for the
Binh Loi and Thu Thiem bridges during ebb tides. van Emmerik et al. (2018a) also re-
ported a similar spatial distribution of litter fluxes based on measurement taken at 12
sampling points on the Thu Thiem bridge.

Fig. 6.10 presents the linear fit of fluxes measured by the SSL-based and SL-based
framework against those measured via human counting. The results indicate a strong
positive correlation between fluxes measured by human and that by DL-based frame-
works, regardless of whether the SSL or baseline models are used. However, the SSL-
based framework demonstrates a stronger correlation with human counting (the Pear-
son correlation coefficient r =0.99), compared to the SL-based framework (r =0.93).
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Figure 6.10: Comparison of the mean litter fluxes of 10 sampling points with linear fit analysis, including the
Pearson correlation coefficient (r ): SSL-based framework, baseline SL-based framework, and human counting
method.

Nevertheless, both DL-based frameworks significantly underestimates fluxes in high-
flux regions, compared to human measurements. Interestingly, van Lieshout et al. (2020)
reported contrasting findings, where DL models estimate relatively higher fluxes for video
clips with high litter fluxes, compared to human measurements. The high fluxes, reach-
ing up to 35 items/(min·m) in some video clips, poses a significant challenge for human
counters to accurately identify and count each transported litter item. Thus, this dis-
crepancy can be attributed to the limitation on how many objects per minute human
observers can realistically count. However, human observers in this study did not face
such challenge, since we counted litter items directly from images rather than videos,
ensuring reliable human measurements. The lower fluxes measured by DL-based frame-
works in this study is explained by the low detection accuracy of DL models, as discussed
in Chapter 6.4.2.

Fig. 6.11 shows the total cross-sectional floating litter fluxes at the Thu Thiem and
Binh Loi bridges. Both DL-based frameworks substantially underestimate the fluxes,
compared to human counting. Specifically, the fluxes measured by the SSL-based frame-
work is approximately 3 times lower than human measurements at the Thu Thiem bridge,
and 4 times lower at the Binh Loi bridge. Despite this underestimation, the fluxes mea-
sured by the SSL-based framework (858 items/h at Thu Thiem and 826 items/h at Binh
Loi) are nearly double those of the baseline SL-based framework (464 items/h and 413
items/h, respectively). This improvement also highlights the superior capability of the
SSL-based framework for flux measurement, compare to the SL-based framework.

Our human-measured cross-sectional fluxes at the Thu Thiem bridge align with the
findings of van Emmerik et al. (2019a). They reported fluxes measured by human visual
counting methods at 12 sampling points on this bridge in 2018, including data from 5
days in September. Using the approach presented in Chapter 6.2.4, we estimated cross-
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Figure 6.11: The cross-sectional floating litter fluxes at the Thu Thiem and Binh Loi bridge, measured by the
SSL-based and baseline SL-based framework, and human counting method.

sectional fluxes, and found that fluxes during ebb tides for these 5 days in September
ranged from 1,409 to 31,195 items/h. Our measured fluxes (2,885 items/h) in this study
falls within this range.

6.4.4. LIMITATIONS

The aim of this study is not to deploy and optimize an automated system for floating
litter flux measurement, but rather to demonstrate that self-supervision can serve as
an effective approach toward developing such a system. The performance improve-
ments achieved by SSL methods over SL methods further strengthen the findings of our
study in Chapter 5. While their zero-shot detection accuracy remains lower than the ex-
pensive and time-consuming human counting method in the TUD-HCMC case study,
their performance holds significant potential for improvement through cost-effective
approaches.

We proposed several recommendations to further enhance model performance. First,
increasing the amount of unlabeled data and extending the training time are beneficial,
as shown in Chapter 6.4.2. Second, collecting a limited number of labeled images from
target rivers for fine-tuning SSL models and optimizing hyperparameters in SAHI could
further enhance model accuracy (van Lieshout et al., 2020). This is particularly effective
when using images containing specific litter types from target rivers, e.g., transparent
litter and litter entrapped in water hyacinths in the TUD-HCMC case study. Due to the
highly limited number of images we collected in the TUD-HCMC case study, we did not
perform standard hyperparameter optimization in this study. Third, we suggest apply-
ing data augmentation methods to increase the number of labeled instances of specific
litter types. For example, water hyacinths of varying sizes can be extracted from source
images, and pasted within the bounding boxes of litter items in target images, provided
that the hyacinth area is smaller than the corresponding bounding box. This operation
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simulates scenarios where litter is partially occluded by vegetation, thereby enhancing
the model’s robustness to such challenging scenarios. Lastly, the framework could also
benefit from replacing the ResNet50 backbone with state-of-the-art architectures, such
as transformers that have demonstrated their effectiveness in foundational models like
GPT, DINOv2, and Prithvi (Dosovitskiy et al., 2020).

A major shortcoming of developed models in this study is their inability to automat-
ically identify and count the same litter item appearing in multiple consecutive images
as a single item, resulting in overestimated fluxes. While we manually corrected the
number of litter items detected by models to avoid flux overestimation, more automated
methods are needed to address this issue, such as employing DeepSORT for tracking the
detected objects across consecutive images (Wojke et al., 2017).

6.5. CONCLUSIONS
Based on the previous analysis of the effectiveness of semi-supervised learning (SSL),
and data-centric artificial intelligence (AI) approaches, we proposed a SSL-based frame-
work to measure cross-sectional floating litter fluxes in river systems, with the limited
availability of labeled data. We incorporated a data-centric AI method (i.e., flipping data
augmentation) to enhance model performance. Additionally, we used a Slicing Aided
Hyper Inference (SAHI) method to enhance accuracy of small litter detection. To demon-
strate the effectiveness of the proposed framework, we conducted multiple experiments
on camera and drone images from canals and waterways of the Netherlands, Indonesia,
and Vietnam. We benchmarked our measurement results against the baseline SL and
human counting methods. Our main findings are as follows:

(1) The SSL models benefit from longer pre-training time and larger pre-training
dataset size. Especially, when a large amount of data (200k images) is available, increas-
ing pre-training epochs from 100 to 200 achieves an improvement in average precision
(AP50) of 4.2%. Moreover, scaling the pre-training dataset size from 20k to 500k yields
an improvement in AP50 of 14.7% and F1-score of 0.24, with a limited amount of labeled
data for fine-tuning (226 images with 276 annotated litter items).

(2) The SSL methods significantly outperform the baseline SL methods in in-domain
and out-of-domain detection performance. Compared to baseline SL benchmarks, SSL
methods achieve an in-domain AP50 increase of 12% and F1-score increase of 0.2, and
a zero-shot out-of-domain median F1-score increase of up to 0.14. It can be primar-
ily attributed to the extraction of more informative and robust feature representations
through self-supervised pre-training on relevant unlabeled images.

(3) The SAHI method enables the SSL models’ ability to accurately detect 45 addi-
tional “small” litter items (area < 1,000 cm2) in the Vietnam case study, compared to the
results obtained from the same SSL models without SAHI. This improvement also lead to
an increase in F1-score by 0.34 and 0.19 for two locations in the case study, respectively.

(4) The cross-sectional floating litter fluxes measured by the SSL-based framework
are nearly double those of the baseline SL-based framework, demonstrating closer align-
ment with human-measured fluxes in the Vietnam case study. While the SSL-based
framework exhibits a strong positive correlation with human-measured fluxes across 10
sampling points (the Pearson correlation coefficient r =0.99), it significantly underesti-
mates fluxes by a factor of 3 to 4, compared to human measurements. One of the main



6

106
6. A SEMI-SUPERVISED LEARNING-BASED FRAMEWORK FOR QUANTIFYING

CROSS-SECTIONAL FLOATING LITTER FLUXES IN RIVERS

reasons is the challenge of correctly detecting transparent litter and litter entrapped in
water hyacinth, which together account for around 40% of the litter items in the Vietnam
case study.

While we tested this new framework with cameras only for river surfaces, it can also
be used with drones. It can be even extended to measure litter fluxes under river surface,
provided that images are captured using similar devices (e.g., underwater cameras) or
sonar technologies. Additionally, combining SSL methods with images collected from
manned aircraft can enhance the detection of macroplastic hotspots on a larger scale,
e.g., marine surfaces (Garcia-Garin et al., 2021).
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7.1. THESIS SUMMARY
This thesis aims to enhance the understanding of the current state of deep learning (DL)-
based detection and quantification of floating litter in rivers, identify key knowledge
gaps, and exploit methodologies to address these gaps. Through a comprehensive litera-
ture review in this field, we identified three key knowledge gaps, which were synthesized
into the main research question of this thesis:

• How to develop robust DL-based methods for detecting floating litter and quantify-
ing cross-sectional floating litter fluxes in rivers, particularly in contexts with lim-
ited labeled data?

To answer this main research question, three sub-questions are defined based on
three knowledge gaps, and then addressed in Chapter 4-6 contained within this thesis:

1. How to build robust DL models to detect floating litter in rivers, leveraging a rela-
tively large amount of labeled data? (Gap 1, Chapter 4)

2. How to build robust DL models to detect floating litter in rivers, leveraging a limited
amount of labeled data? (Gap 2, Chapter 5)

3. How to develop DL methods to quantify cross-sectional floating litter fluxes in rivers,
leveraging a limited amount of labeled data? (Gap 3, Chapter 6)

To address research questions, we needed to assess multiple DL methods on different
datasets for litter detection and quantification. Thus, we generated multiple datasets
by collecting data from multiple locations in canals and waterways in the Netherlands
and Vietnam (Chapter 3), and proposed and evaluated multiple methodologies for litter
detection and quantification (Chapter 4-6) using these datasets and two existing openly
available datasets.

First, we evaluated multiple transfer learning and data-centric Artificial Intelligence
(AI) approaches to enhance model performance, leveraging a relatively large amount of
labeled data (Chapter 4). However, obtaining these labeled images for model develop-
ment is costly and labor-intensive. To overcome this challenge, we proposed and eval-
uated a semi-supervised learning (SSL) method to improve model performance, lever-
aging a limited number of labeled images (Chapter 5). When developing SSL models,
we also used the best-performing transfer learning method, as identified in the previous
analysis in Chapter 4. Moreover, we proposed and assessed a SSL-based framework for
quantifying cross-sectional floating litter fluxes in rivers, integrating the above explored
methodologies (Chapter 6). Finally, we addressed the main research question of this
thesis by integrating the explored methodologies presented in Chapter 4-6, i.e., a SSL-
based framework combined with the appropriate transfer learning and data-centric AI
approaches for floating litter detection and quantification, leveraging a limited amount
of labeled data.

7.2. THESIS FINDINGS

7.2.1. THESIS CONCLUSIONS
We present the main conclusions for each research question.
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• How to build robust DL models to detect floating litter in rivers, leveraging a rela-
tively large amount of labeled data?

We found that selecting effective transfer learning and data-centric AI approaches
can benefit in building robust SL models to detect floating litter in rivers, with a
relatively large amount of labeled data. Transferring the convolutional base from
ImageNet and fine-tuning the entire network on floating litter images is the best TL
method to improve in-domain generalization performance, compared to the other
two tested training methods. Additionally, data augmentation techniques such as
flipping augmentation can effectively enhance in-domain generalization perfor-
mance at a low cost. In contrast, augmentations such as brightening, darkening,
and adding noise do not lead to significant improvements. Moreover, adding a
limited number of images from new device settings to the original training dataset
can significantly enhance out-of-domain generalization performance in complex
scenarios, involving both different camera heights and different viewing angles.

• How to build robust DL models to detect floating litter in rivers, leveraging a limited
amount of labeled data?

We proposed a SSL method for floating litter detection to improve model general-
ization capability, leveraging a limited amount of labeled data. We benchmarked
our results against the same model architecture trained via SL alone. The results
show that our method performs on par or better than the SL method in terms of
in-domain generalization performances (i.e., at the same locations). Moreover,
the enhancements are particularly noticeable when only a limited amount of la-
beled data available for fine-tuning. More importantly, this method outperforms
the SL method in out-of-domain generalization performances (i.e., across unseen
locations).

• How to develop DL-based methods to quantify cross-sectional floating litter fluxes
in rivers, leveraging a limited amount of labeled data?

We proposed a SSL-based framework to estimate cross-sectional floating litter fluxes
in rivers, with the limited availability of labeled data for model development. We
incorporated a data-centric AI method (i.e., flipping data augmentation) to fur-
ther improve model performance. Moreover, we used a Slicing Aided Hyper Infer-
ence (SAHI) method to improve the accuracy of small litter detection. Our mea-
surement results were benchmarked against baseline SL models and human vi-
sual counting methods. The results show that the SAHI enables model to correctly
detect much more small litter items. The SSL-based framework demonstrates a
stronger correlation with human counting, compared to the SL-based framework.
Additionally, the SSL-based framework estimates fluxes nearly twice as high as
the baseline SL-based framework, offering estimates that align more closely with
human-measured fluxes.
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7.2.2. THESIS SCIENTIFIC CONTRIBUTION
The scientific contributions of this thesis are summarized as follows:

1. Proposing a novel DL-based framework for quantifying cross-sectional floating lit-
ter fluxes in rivers, with limited labeled data.

2. Proposing a novel method to enhance litter detection with limited labeled data.

3. Providing new insights to enhance floating litter detection performance with trans-
fer learning and data-centric AI.

4. Generating multiple new datasets for developing DL models for floating litter de-
tection and quantification.

The datasets generated by this thesis are accessible via Zenodo, as detailed in Chap-
ter 3. The source code corresponding to the models and methodologies presented in
Chapters 4, 5, and 6 is available at the following repositories:

(1) Chapter 4: https://github.com/TianlongJia/deep_plastic
(2) Chapter 5: https://github.com/TianlongJia/deep_plastic_SSL
(3) Chapter 6: https://github.com/TianlongJia/deep_plastic_Flux_SSL
Instructions for using the code are also provided in each of the repositories.

7.2.3. IMPLICATIONS FOR ENVIRONMENTALLY SUSTAINABLE DEVELOPMENT
The proposed methods and frameworks can be directly applied to develop litter moni-
toring methods in river networks worldwide. These monitoring methods can provide lit-
ter quantification results (e.g., litter fluxes) and pollution level assessments to stakehold-
ers aiming to reduce environmental pollution, including practitioners and researchers.
These assessments could support practitioners in devising mitigation strategies and tar-
geted cleanups. Moreover, researchers can leverage the quantification results to inves-
tigate litter sources, transport pathways, distributions, retention dynamics, and long-
term trends. These results can also facilitate the study of correlations between plas-
tic transport and influencing factors, such as discharge, tidal dynamics, and rainfall
(van Emmerik et al., 2019a, 2022a). These studies could contribute to the development
of effective mitigation strategies. For example, van Emmerik et al. (2024) conducted con-
tinuous sampling over two months along the Saigon river, Vietnam, collecting around
16,000 images. Manually detecting and counting litter items in such a large number of
images is impractical. Thus, they used the YOLOv8 deep learning model to detect and
count three objects: (1) litter free from water hyacinth, (2) litter entrapped in water hy-
acinth, and (3) water hyacinth. Their results illustrate litter distribution at five locations
along the river and reveal interactions between litter and water hyacinth, with over 73%
of all floating plastics found entrapped by water hyacinths. Based on these findings,
they suggested that the current removal practices of water hyacinths could be optimized
to also remove plastic litter.

7.3. RECOMMENDATIONS FOR ENGINEERING PRACTICE

• Developing models for floating litter detection with SSL methods

https://github.com/TianlongJia/deep_plastic
https://github.com/TianlongJia/deep_plastic_SSL
https://github.com/TianlongJia/deep_plastic_Flux_SSL
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When only a limited amount of labeled data from target rivers is available, we
suggest practitioners using our proposed SSL method to develop models for lit-
ter detection. These models can be pre-trained on a large amount of unlabeled
images (e.g., datasets generated in this thesis) using a self-supervising method
(e.g., SwAV). This approach overcomes the challenge of requiring extensive labeled
datasets for developing robust models. Additionally, it allows models to achieve
higher generalization capability by using more unlabeled data, that is more eas-
ily accessible and less costly to collect, compared to labeled data. It can signifi-
cantly reduce the cost and time required for data collection and annotation. This
presents a more cost-effective option for developing robust models for large-scale
structured monitoring in river systems.

• Enhancing floating litter detection through additional efforts

In addition to applying SSL methods when only a limited amount of labeled data
is available, we also suggest performing data augmentation techniques (e.g., flip-
ping) on the labeled data to further enhance SSL model performance. This ap-
proach leverages the existing labeled data to generate additional training samples,
thereby improving model performance without the need to collect new data from
the target rivers. In scenarios where numerous small litter items are present in
target rivers and cameras are positioned high above the water surface, resulting
in low-resolution images, we suggest using the SAHI method to improve the de-
tection of small litter items. If the above methods still do not achieve satisfactory
performance in target rivers with different geographic, environmental, and device
setup conditions, we finally suggest adding a small amount of labeled data col-
lected from these new conditions to further improve generalization.

• Enhancing cross-sectional floating litter flux quantification in rivers

We suggest practitioners considering our proposed SSL-based framework to quan-
tify litter fluxes as an alternative to human visual counting method, particularly in
scenarios requiring long-term and frequent monitoring where resources for hu-
man counting are limited, or where conditions become dangerous, such as during
extreme flood events. This framework can provide more accurate flux estimations
compared to conventional SL-based frameworks. Furthermore, this framework is
particularly effective, when the availability of labeled training data is limited. By
reducing the reliance on extensive labeled datasets, it significantly lowers the cost
and time required for data collection and annotation.

7.4. RECOMMENDATIONS FOR FUTURE WORK
To address a pollution problem of global scale, we recommend researchers focus further
efforts on:

1. Developing a more robust litter detection model.

2. Quantifying floating litter mass fluxes and hotspots in rivers.
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3. Developing DL-based monitoring strategies for riverine litter.

7.4.1. DEVELOPMENT OF A ROBUST FLOATING LITTER DETECTION MODEL
Following the transfer learning methods, data-centric AI approaches (see Chapter 4),
and the proposed SSL methods (see Chapter 5), we can build a robust DL model to de-
tect floating litter in rivers. To further develop more robust models, we recommend to
increase efforts to (1) develop foundational models for floating litter detection, and (2)
generate a labeled dataset using data-centric AI approaches, as suggested in the follow-
ing paragraphs.

TOWARDS FOUNDATIONAL MODELS FOR LITTER DETECTION

Foundational models are a recent transformative paradigm in DL. By leveraging vast
amounts of data via self-supervision (e.g., SwAV methods presented in Chapter 5), these
models achieve remarkable general understanding and adaptability, which allows them
to reach unprecedented performances when fine-tuned for specialized tasks. This paradigm
shift is exemplified by the OpenAI GPT series, a family of self-supervised foundational
models that, in their latest iterations, launched the current AI revolution by enabling
the development of ChatGPT via specialization (Achiam et al., 2023; Brown et al., 2020).
More importantly, our preliminary explorations in Chapter 5 shows the significant ben-
efits of self-supervised learning methods on models’ generalization. Thus, we believe
foundational models tailored for floating litter detection could significantly enhance
large-scale monitoring, and mitigate this environmental issue, whether from camera im-
agery or satellites.

To address a pollution problem of global scale, we must significantly expand our
dataset to include millions of images from diverse geographical locations. Based on the
experimental findings in Chapter 6, we argue that scaling this approach is necessary to
yield more robust models (Goyal et al., 2022). Gathering vast quantities of diversified
data is a necessary step, but not sufficient. Additional efforts must be directed towards
implementation strategies, hyper-parameter optimization, and the selection of suitable
DL architectures. For instance, considering the efficacy of transformers in state-of-the-
art foundational models like GPT, DINOv2, and Prithvi, adopting similar architectures
could be beneficial (Dosovitskiy et al., 2020).

GENERATING A LABELED DATASET USING DATA-CENTRIC AI APPROACHES

After developing the above foundational models, we can obtain robust floating litter de-
tection models by fine-tuning these foundational models using a labeled dataset (see
Chapter 5). To build such labeled dataset, we recommend using three data-centric AI ap-
proaches: (1) collecting additional data from in-situ experiments, (2) enforcing consis-
tency in the labeling procedure, and (3) using advanced data augmentation techniques.

The data-centric approach favors the collection of additional data from in-situ ex-
periments whenever possible. In particular, we suggest gathering more training images
at various sampling locations under different environmental conditions, and extending
the collection to different devices and instrumental settings for extensive monitoring ap-
plications (e.g., river networks, nation-wide initiatives). We also recommend collecting
more data about rare items, such as those entrapped in water hyacinths (see Chapter 6).
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Enforcing consistency in the labeling procedure can results in similar improvements
(Jain et al., 2021). Manual labeling may introduce significant human error and bias in
data, which in turn may severely undermine model performances. Clear guidelines (with
illustrative examples) and cross-checking between multiple labelers strengthen the con-
sistency of labeled data towards achieving reliable performances (Lavitas et al., 2021).

We should resort to advanced data augmentation techniques to increase the num-
ber of the images collected in the field, such as copy-paste augmentation described in
Chapter 2.3.5. Contrary to some traditional techniques (e.g., cropping), this augmenta-
tion procedure does not change the original features of target litter or omits objects in
the newly generated images. Studies form other fields suggest substantial benefits for
different CV tasks (Dwibedi et al., 2017; Ghiasi et al., 2021).

7.4.2. QUANTIFICATION OF FLOATING LITTER MASS FLUXES AND HOTSPOTS

IN RIVERS
Stakeholders need detailed information on floating litter mass fluxes or mass of litter in
hotspots to design more effective cleaning campaigns, and mitigate the impact of pol-
lution on the environment and human health (Tasseron et al., 2020; van Emmerik et al.,
2018b). Future studies should focus on the development of new methods for quantifying
litter mass fluxes and hotspots in rivers.

LITTER MASS FLUXES

Litter mass fluxes can be expressed as the mass of litter items across the river width
per unit of time (van Emmerik et al., 2018b). To quantify it, we recommend using the
proposed SSL-based framework to measure cross-sectional floating litter fluxes in tar-
get rivers, as highlighted in Chapter 6. Then, a limited number of experiments must be
conducted in target rivers by (i) sampling litter using nets, (ii) counting the number of
samples, and (iii) weighing them. The sampled average densities can be computed by di-
viding the weight of litter by the number of items in experiments. Finally, mass fluxes is
measured by multiplying fluxes with respect to sampled average densities (van Emmerik
et al., 2018b).

MASS OF LITTER IN HOTSPOTS

Litter hotspots are locations where a large amount of litter accumulates on the water
surface due to favorable morphological and environmental conditions (Moy et al., 2018).
We suggest collecting hotspot images at various locations along target rivers using UAVs,
that can provide an overview of pollution with low human labor costs and high-resolution
images. We suggest developing DL models for semantic segmentation tasks on these im-
ages using the SSL method. Such models can precisely quantify the area of target objects,
as shown in Chapter 2.3.3. Next, limited experiments are needed to (i) collect hotspot
images and measure the true area of them, (ii) sample litter in these hotspots (e.g., using
nets), and (iii) weigh litter. The spatial average densities of hotspots can be computed by
dividing the weight of the litter by the true area occupied by them. After accounting for
image resolution (e.g., pixel to area ratio), the mass of litter in hotspots can be obtained
by multiplying the pixels identified as hotspots by the image segmentation algorithm by
the spatial average densities.
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7.4.3. DL-BASED MONITORING OF RIVERINE LITTER
Monitoring riverine litter sources, transport, distribution, sinks, and trends is crucial for
decision-makers to devise mitigation strategies and targeted cleanups (van Emmerik et
al., 2022c; Vriend et al., 2020a). Effective monitoring methods enhance these efforts. To
enable automated, long-term monitoring, we recommend integrating machine learn-
ing operations (MLOps) (Ruf et al., 2021) into robust DL-based litter quantification in
river systems. MLOps is a continuous integration/continuous deployment process im-
plemented for machine learning-based solution. It enables long-term utilization and
refinement of machine learning-based solutions by automating all key phases such as
data management, model deployment, and model validation. The integration of MLOps
could results in the following steps leading to DL-based structural monitoring of litter.
The first step could include the selection of DL tasks (e.g., image classification, object
detection, and image segmentation), DL architectures (e.g., Faster R-CNN and U-Net)
and monitoring devices (e.g., cameras and drones) for the specific problem. In the sec-
ond step, the MLOps infrastructure could be initially deployed on selected pilot projects
to develop baseline DL models for litter quantification and validate their performance.
This will require systematic data gathering and ground truth measurements (e.g., visual
inspection of recordings, and comparison against visual counting). After establishing a
satisfactory baseline, long-term monitoring on the selected pilot studies can start.

Concurrently, the infrastructure can be strategically extended, employing the base-
line DL models for monitoring at new locations. Following the data-centric AI approaches
(see Chapter 4 and 7.4.1), we can add novel, accurately labeled images at these new (or
existing) locations to improve the generalization capability of the baseline models. This
could also include adding litter categories of interests underrepresented in the training
dataset or performing tailored ground truth validation for more accurate quantification.
As witnessed in other fields of application (Ruf et al., 2021), I believe several iterations of
the proposed MLOps approach may lead to robust and automated structural monitoring
of litter.
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8.1. MODEL PERFORMANCES AND TRAINING TIME IN EXPERI-
MENT 1

Table 8.1: Training time and overall accuracy of five architectures employing fine-tuning strategies or trained
from scratch in Experiment 1

Model
Learning

rate
From scratch FTC FTAL

Training time
per epoch (s)

Overall
accuracy (%)

Training time
per epoch (s)

Overall
accuracy (%)

Training time
per epoch (s)

Overall
accuracy (%)

ResNet50

0.1 13 76.0 8 62.0 22 68.7
0.01 20 80.5 8 62.3 19 81.6

0.001 22 83.3 8 56.0 13 85.0
0.0001 18 80.3 8 43.8 22 84.4

0.00001 22 65.0 8 36.5 22 72.0

InceptionV3

0.1 21 77.8 7 66.3 19 77.8
0.01 21 80.6 7 65.7 20 80.5

0.001 21 83.0 7 64.9 20 85.7
0.0001 19 80.3 7 66.5 15 85.5

0.00001 21 69.5 8 59.2 20 67.8

DenseNet121

0.1 26 75.3 9 69.3 29 80.2
0.01 29 81.0 9 70.7 28 82.0

0.001 29 83.4 9 73.3 29 87.2
0.0001 28 83.5 9 71.9 18 87.6

0.00001 29 74.8 9 61.2 29 71.9

MobileNetV2

0.1 19 33.8 4 70.3 18 34.7
0.01 19 81.7 4 70.4 19 81.5

0.001 19 81.1 4 72.0 18 86.2
0.0001 19 67.5 4 72.7 19 77.3

0.00001 19 42.7 4 65.6 19 69.7

SqueezeNet

0.1 5 33.7 2 61.0 4 33.7
0.01 5 33.7 2 63.5 5 33.7

0.001 5 33.7 2 64.7 5 33.7
0.0001 5 54.5 2 65.8 5 87.6

0.00001 5 77.8 2 57.2 4 84.2
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Table 8.2: Precision, recall and F1-score per class for five architectures using the FTAL method

Model Metric
Class

No plastic Little plastic Moderate plastic Lots of plastic

ResNet50
precision 0.98 0.81 0.78 0.91

recall 0.97 0.85 0.80 0.84
F1-score 0.98 0.83 0.79 0.87

InceptionV3
precision 0.97 0.84 0.80 0.89

recall 0.98 0.84 0.81 0.85
F1-score 0.98 0.84 0.80 0.87

DenseNet121
precision 0.97 0.85 0.82 0.92

recall 0.98 0.87 0.84 0.86
F1-score 0.97 0.86 0.83 0.89

MobileNetV2
precision 0.99 0.86 0.80 0.87

recall 0.96 0.85 0.82 0.86
F1-score 0.97 0.86 0.81 0.86

SqueezeNet
precision 0.98 0.86 0.80 0.94

recall 0.97 0.89 0.86 0.82
F1-score 0.98 0.88 0.83 0.87

8.2. MODEL PERFORMANCES AND TRAINING TIME IN EXPERI-
MENT 2 AND 3

Table 8.3: Training time, performances of data augmentation techniques (Experiment 2), and the evaluation
of generalization capability (Experiment 3) of SqueezeNet and DenseNet

Architecure Method
Training time
per epoch (s)

Overall accuracy on test dataset (%)
Test Test2.7m/0° Test2.7m/45° Test4m/0° Test4m/45°

SqueezeNet

flipping 19 89.6 86.5 90.5 76.8 65.4
brightening 18 88.0
darkening 18 88.1

adding noise 20 87.5
Mix DA1 52 89.5

ANI2 5 85.7 90.0 81.1 74.3
ANI-DA3 27 87.3 86.7 87.2 73.3

DenseNet121

flipping 110 91.6 90.7 88.7 87.6 63.4
brightening 113 87.5
darkening 103 88.3

adding noise 99 88.3
Mix DA 307 90.9

ANI 41 86.8 88.0 89.0 72.8
ANI-DA 164 91.5 94.1 93.4 77.7

1 "MIX DA": Mixing four data augmentation techniques, including flipping, brightening, darkening, and
adding noise.

2 "ANI": Adding new images.
3 "ANI-DA": Adding new images and performing data augmentation technique on the entire dataset.
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9.1. IMAGE EXAMPLES

Figure 9.1: Examples of images tiles (224×224 pixels) from TUD-GV, Jakarta and Oostpoort dataset.

Figure 9.2: Examples of images tiles (224×224 pixels) from Amsterdam, Groningen and WUR-HCMC dataset.
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9.2. CONFUSION MATRICES AND PERFORMANCE METRICS FOR

OUT-OF-DOMAIN GENERALIZATION

Table 9.1: Model performances of the Faster R-CNN with ResNet50 backbone using various methods on Ams-
terdam images. The model was fine-tuned on the Train100% dataset

Method
Images with litter annotated

Images
without litter

TP FN FP Precision Recall F1-score FP

SwAV-FTAL-F2 81 123 90 0.47 0.40 0.43 1,530

SwAV-Scratch-F2 83 121 109 0.43 0.41 0.42 1,839

Baseline-F2 114 90 160 0.42 0.56 0.48 2,617

SwAV-FTAL-F4 138 66 241 0.36 0.68 0.47 2,249

SwAV-Scratch-F4 104 100 129 0.45 0.51 0.48 1,695

Baseline-F4 95 109 180 0.35 0.47 0.40 2,115

Table 9.2: Model performances of the Faster R-CNN with ResNet50 backbone using various methods on
Groningen images. The model was fine-tuned on the Train100% dataset

Method
Images with litter annotated

Images
without litter

TP FN FP Precision Recall F1-score FP

SwAV-FTAL-F2 143 382 53 0.73 0.27 0.40 430

SwAV-Scratch-F2 117 408 56 0.68 0.22 0.34 401

Baseline-F2 165 360 28 0.85 0.31 0.46 67

SwAV-FTAL-F4 283 242 137 0.67 0.54 0.60 151

SwAV-Scratch-F4 227 298 99 0.70 0.43 0.53 219

Baseline-F4 208 317 167 0.55 0.40 0.46 468
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Table 9.3: Model performances of the Faster R-CNN with ResNet50 backbone using various methods on Ho
Chi Minh City images. The model was fine-tuned on the Train100% dataset

Method
Images with litter annotated

Images
without litter

TP FN FP Precision Recall F1-score FP

SwAV-FTAL-F2 340 751 1,128 0.23 0.31 0.27 5,889

SwAV-Scratch-F2 268 823 613 0.30 0.25 0.27 5,291

Baseline-F2 254 837 1,436 0.15 0.23 0.18 7,326

SwAV-FTAL-F4 310 781 954 0.25 0.28 0.26 4,009

SwAV-Scratch-F4 272 819 434 0.39 0.25 0.30 2,946

Baseline-F4 236 855 929 0.20 0.22 0.21 4,300
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10.1. VALIDATION ACCURACY OF ALL SSL MODELS FOR EXPER-
IMENT 1

Table 10.1: Validation accuracy (AP50) on the Validation60% and Validation20% subsets of all SSL models for
Experiment 1. The bold entities are the best results for models pre-trained on each pre-training dataset

Pre-training
dataset

No.pre-training
epochs

AP50
(Validation60%)

AP50
(Validation20%)

Train25k

100 77.8% 71.4%

200 80.9% 78.0%

300 76.5% 70.2%

Train50k

100 80.5% 68.4%

200 78.4% 81.1%

300 80.2% 68.8%

Train100k

100 80.5% 77.4%

200 83.4% 78.1%

300 82.1% 76.9%

Train200k

100 80.1% 77.2%

200 79.2% 78.9%

300 78.4% 73.6%

Train300k

100 83.2% 78.6%

200 80.8% 78.5%

300 83.5% 77.0%

Train500k

100 77.8% 83.9%

200 83.5% 80.2%

300 81.7% 82.4%
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10.2. EXAMPLE OF PREDICTED BOUNDING BOXES FOR TUD-
HCMC CASE STUDY IN EXPERIMENT 2

Figure 10.1: Examples of predicted bounding boxes for the Faster R-CNN model with the SAHI method on
the TestThu Thiem subset. We used the SSL method to develop the Faster R-CNN model, that was fine-tuned
on the Train100% subset. During inference, we used various W s and Hs hyperparameters, with a confidence
threshold score of 0.5. Acronyms used: Confidence threshold (Conf-thresh).
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Figure 10.2: Examples of predicted bounding boxes for the Faster R-CNN model with the SAHI method on the
TestBinh Loi subset. We used the SSL method to develop the Faster R-CNN model, that was fine-tuned on the
Train100% subset. During inference, we used various W s and Hs hyperparameters, with a confidence threshold
score of 0.5. Acronyms used: Confidence threshold (Conf-thresh).
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Figure 10.3: Example of predicted bounding boxes for the Faster R-CNN on the TestThu Thiem subset and using
the SSL and baseline SL methods. The models were fine-tuned on the Train100% subset. The baseline method
wrongly detects water hyacinth as litter in (a) and (b), and fails to correctly detect all litter items in (a), (b) and
(c). The SSL method correctly detects two litter items in (a) and (c), while fails to detect two submerged items
in (b) and (c), and two items entrapped in water hyacinth in (b). Ground-truth litter is shown in red bounding
boxes in the top row. Acronyms used: Confidence threshold (Conf-thresh).
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Figure 10.4: Example of predicted bounding boxes for the Faster R-CNN on the TestBinh Loi subset and using
the SSL and baseline SL methods. The models were fine-tuned on the Train100% subset. The baseline method
wrongly detects the reflection of trees (a and c) and water hyacinth (b) as litter, and fails to correctly detect all
litter items in (a), (b) and (c). The SSL method correctly detects four litter items, while fails to detect two items
in (a) and (b). Ground-truth litter is shown in red bounding boxes in the top row. Acronyms used: Confidence
threshold (Conf-thresh).
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