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Abstract
Let f̂n be the nonparametric maximum likelihood esti-
mator of a decreasing density. Grenander characterized
this as the left-continuous slope of the least concave
majorant of the empirical distribution function. For a
sample from the uniform distribution, the asymptotic
distribution of the L2-distance of the Grenander esti-
mator to the uniform density was derived in an article
by Groeneboom and Pyke by using a representation of
the Grenander estimator in terms of conditioned Pois-
son and gamma random variables. This representation
was also used in an article by Groeneboom and Lopuhaä
to prove a central limit result of Sparre Andersen on
the number of jumps of the Grenander estimator. Here
we extend this to the proof of the main result on the
L2-distance of the Grenander estimator to the uniform
density and also prove a similar asymptotic normal-
ity results for the entropy functional. Cauchy's formula
and saddle point methods are the main tools in our
development.
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2 GROENEBOOM

1 INTRODUCTION

The Grenander estimator is the (nonparametric) maximum likelihood estimator of a mono-
tone decreasing density. It was introduced in Grenander (1957), where it was proved that it is
the left-continuous slope of the least concave majorant of the empirical distribution function.
Some properties and limit results are discussed in Groeneboom and Jongbloed (2014) and also in
Groeneboom and Jongbloed (2018) in the special issue on nonparametric inference under shape
constraints of the journal Statistical Science. The Grenander estimator is shown in Figure 1 for a
sample of size n = 100 from the uniform distribution on [0, 1]. It can be improved by using bound-
ary penalties (in fact, the estimator is inconsistent at the boundary points 0 and 1), but this is not
the concern of the present article.

The Grenander estimator is a piecewise constant function with downward jumps at locations
that correspond to the changes of slope (“kinks”) of the least concave majorant of the empirical
distribution function. Although the Grenander estimator is defined as the left-continuous slope
of the empirical distribution function, we can make the Grenander estimator right-continuous
by taking the limits on the right at its points of jump. This does not change the probability mass
of the induced (absolutely continuous) probability distribution, which is absolutely continuous
w.r.t. Lebesgue measure.

The number of jumps of the Grenander estimator is of order log n if the sample is from a
uniform distribution (see Section 2), if the sample comes from a strictly decreasing smooth density
like the exponential density, then the number of jumps is of order cn1/3, for some constant c > 0.
The limit behavior of the Grenander estimator for these situations is rather different. For a sample
from the uniform distribution, we have for t ∈ (0, 1):

√
n
{

f̂n(t) − 1
} 
→ St, (1)
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(A) empirical distribution function (black) and its
least concave majorant (red)
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(B) Grenander estimator

F I G U R E 1 Left: the empirical distribution function and its least concave majorant and right: the
Grenander estimator, on the basis of a sample of size n = 100 from the uniform distribution on [0, 1] [Color figure
can be viewed at wileyonlinelibrary.com]
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GROENEBOOM 3

where St is the slope of the least concave majorant of the standard Brownian Bridge on [0, 1], see
remark 2.2, p. 543 of Groeneboom (1985). The density of St is a function of the standard normal
distribution function Φ and the standard normal density 𝜙, see (3.11) in Groeneboom (1983).

In contrast with the result (1), we get for a sample from a decreasing density f on [0,∞) at a
point t ∈ (0,∞), where f is differentiable and f ′(t) < 0, the following result, due to Prakasa Rao
in Prakasa Rao (1969):

n1∕3||4f (t)f ′(y)||−1∕3
{

f̂n(t) − f (t)
} 
→Z, (2)

where Z = argmaxt{W(t) − t2}, that is, Z is the (almost surely unique) location of the maximum
of two-sided Brownian motion minus the parabola y(t) = t2. For further details, see, for example,
Groeneboom and Jongbloed (2014) and Groeneboom and Jongbloed (2018).

Recently, integrated functionals of a monotone density were studied in Mukherjee and Sen
(2019). Using the same notation as in Mukherjee and Sen (2019) the following functionals were
studied:

𝜇(h, f ) = ∫
1

0
h(f (x)) dx,

where f is a nonincreasing function on R+ and h satisfies some regularity conditions. In the case
that the underlying distribution is uniform, the following central limit result is proved:

Theorem 1 (theorem 3.2 in Mukherjee & Sen, 2019). Let f be the uniform density on [0, 1].
Moreover, let h ∈ C4([0,∞)) and let h

′ ′
(1) ≠ 0. Then:

n
{
𝜇(h, f̂n) − 𝜇(h, f )

}
− 1

2
h′′(1) log n√

3
4

h′′(1)2 log n


→N(0, 1), (3)

where N(0, 1) denotes the standard normal distribution.

We prove an analogous result for analytic functions h, defined on the positive open complex
half plane. Hence, our functions h have a lot more smoothness, but are on the other hand defined
on the open complex half plane, which makes the result applicable to functions that are not cov-
ered by the conditions in Mukherjee and Sen (2019). We assume that h satisfies the following
condition.

Condition 1. The function h is analytic on the complex half plane {z ∈ C ∶ Re(z) > 0} and
satisfies the following conditions.

(i) h
′′
(1) ≠ 0.

(ii) For t ∈ R: |h(1 − it)| = O(t2), |t|→ ∞, (4)

and
(iii) For t ∈ R: ||h′′(1 − it)|| = O(1), |t|→ ∞. (5)

We now have the following result.
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Theorem 2. Let f be the uniform density on [0, 1]. Moreover, let h satisfy Condition 1 and let f̂n be
the Grenander estimator. Then

n
{
𝜇(h, f̂n) − 𝜇(h, f )

}
− 1

2
h′′(1) log n√

3
4

h′′(1)2 log n


→N(0, 1), (6)

where N(0, 1) denotes the standard normal distribution.

The result is a corollary to theorem 6 in Section 4, see the remark at the end of Section 4.
Examples of the application of Theorem 2 are:

Example 1. Let h(z) = (z − 1)2. Then h′(z) = 2(z − 1) and h
′′
(z) = 2. The function h is obviously

analytic on the positive complex half plane. Condition 1 is fulfilled, so we get

1√
3 log n

{
n∫

1

0

{
f̂n(t) − 1

}2
dt − log n

} 
→N(0, 1), n → ∞. (7)

This is the main result of Groeneboom and Pyke (1983). Since in Mukherjee and Sen (2019),
theorem 3.2 is deduced from this result, we also get theorem 3.2 in Mukherjee and Sen (2019)
back from Theorem 2.

Example 2. Let h(z) = z log z. Then h′(z) = 1 + log(z) and h
′ ′
(z) = 1∕z. The function h is again

analytic on the positive complex half plane. Condition 1 is fulfilled, and we get:

1√
3
4

log n

{
n∫

1

0
f̂n(t) log f̂n(t) dt − 1

2
log n
} 

→N(0, 1), n → ∞. (8)

For this example, the conditions of theorem 3.2 in Mukherjee and Sen (2019) are not satisfied.
The result follows from Theorem 2 and can be applied to the theory on a likelihood ratio test for
monotonicity in Chan, Tang, and Yam (2018).

To derive limit results for the uniform distribution, a special representation in terms of gamma
and Poisson random variables was given in Groeneboom and Pyke (1983), with the purpose of
proving a limit result for a two-sample rank statistic introduced in the dissertation of Behnen
(1974) and also for a test statistic in the combination of tests in Scholz (1983). We describe this
representation now.

Let X1,… ,Xn be a sample from the uniform distribution, and let 0 = 𝜉n0 < 𝜉n1 < · · · < 𝜉nm <

𝜉n,m+1 = 1 be the locations of the jumps of the Grenander estimator f̂n for this sample, augmented
with the points 0 and 1. Note that [𝜉n,0, 𝜉n,1], (𝜉n,1, 𝜉n2], (𝜉n,2, 𝜉n3], …, (𝜉n,m, 1] are the successive
intervals of constancy of the Grenander estimator if we take the estimator to be left-continuous.

Furthermore, let Dni, Jni, and Qnj be defined by:

Dni = 𝜉ni − 𝜉n,i−1, i = 1,… ,m + 1,

Jni = n
{
Fn(𝜉ni) − Fn(𝜉n,i−1)

}
, i = 1,… ,m + 1,

Qnj = # {i ∶ Jni = j} ,



GROENEBOOM 5

where Fn is the empirical distribution function of the sample X1,… ,Xn, and where m is the
number of jumps of the Grenander estimator.

Next, let {Nj ∶ j ≥ 1} be independent Poisson random variables with ENj = 1∕j, and let, for
each i, {Sji, i, j ≥ 1} be a collection of independent gamma random variables, independent of the
Nj, where Sji is Gamma(j, 1) (the sum of j independent standard exponentials). We define:

Sn =
n∑

j=1

Nj∑
i=1

Sji, Tn =
n∑

j=1
jNj. (9)

and

S(n) =
(

S11,… , S1,N1 ,… , Sn1,… , Sn,Nn

)
, N (n) = (N1,… ,Nn) .

Note that there are N1 induced spacings 𝜉ni (intervals of constancy of f̂n) of length 1, N2 induced
spacings 𝜉ni (intervals of constancy of f̂n), consisting of two consecutive original spacings between
locations of jumps of the least concave majorant, and so forth, where Nj can be zero.

We now have the following representation theorem:

Theorem 3 (theorem 2.1 in Groeneboom & Pyke, 1983).

(
nDn1,… ,nDn,m+1;Qn1,… ,Qn,m

) 
=
(

S(n),N (n)|Sn = n,Tn = n
)
.

Remark 1. For specificity, the random variables Sji, i = 1,… ,Nj, and Dji, i = 1,…Qnj, are ordered
in theorem 2.1 in Groeneboom and Pyke (1983). There is also a zero-step spacing introduced in
Groeneboom and Pyke (1983), but this does not seem to be necessary.

Using this representation, we can reduce the proofs of the limit behavior of global functionals
of the Grenander estimator to a theorem for gamma and Poisson random variables, under the
condition (Tn, Sn) = (n,n). For convenience in later proofs, we also use a further standardization
of (Sn,Tn):

Vn = n−1∕2

{
Sn −

n∑
j=1

jNj

}
= n−1∕2 {Sn − Tn} , Wn = Tn

n
, (10)

where Sn and Tn are defined by (9). A conditional central limit theorem for functionals of the
Grenander estimator can then be proved under the condition:

Vn = 0, Wn = 1. (11)

The infinitely divisible limit distribution of the pair (Vn,Wn) was given in lemma 3.1 of
Groeneboom and Pyke (1983), but unfortunately lemma 3.1 of Groeneboom and Pyke (1983) con-
tains a rather silly error (the u2 in the representation of the characteristic function should be
u). The correct version of this result is given in Lemma 1, where also the origin of the error is
explained. The proof in Groeneboom and Lopuhaä (1993) does not use the result on the limit dis-
tribution of (Vn,Wn), so is not influenced by the erroneous Lemma 3.1 in Groeneboom and Pyke
(1983).



6 GROENEBOOM

We use methods different from those in Groeneboom and Pyke (1983). The conditional cen-
tral limit theorem was proved in Groeneboom and Pyke (1983) using Le Cam's article (Le Cam,
1958; an article apparently published without his permission, as became clear in a conversation
of the author with him). In the present context, where we clearly have to deal with nonstandard
asymptotics, Le Cam (1958) does not seem to be the right tool to use. We replace this by a direct
analysis of the characteristic function. The crucial tools here are Cauchy's formula and saddle
point methods, using contour integration in the complex plane. To illustrate our method in a sim-
ple setting, we give a shortened version of the proof in Groeneboom and Lopuhaä (1993) of Sparre
Andersen's result (Sparre Andersen, 1954) in Section 2.

2 SPARRE ANDERSEN'S RESULT

To illustrate our method in the simplest setting, we give a short version of the proof in Groene-
boom and Lopuhaä (1993) of the following remarkable result of Sparre Andersen in Sparre
Andersen (1954).

Theorem 4 (Sparre Andersen's result). Let X1,… ,Xn be a sample from the Uniform(0, 1)
distribution and let Njumps be the number of jumps of the Grenander estimator for this sample. Then

Njumps − log n√
log n


→N(0, 1),

where N(0, 1) is the standard normal distribution.

Proof. Let, for the sample X1,… ,Xn, Un be defined by:

Un =
∑n

j=1 Nj − log n√
log n

,

and let Tn be defined as in (9). Using (part of) the representation, introduced in Section 1, we
only have to prove that (Un|Tn = n) tends in law to a standard normal distribution. To this end,
we consider the conditional characteristic function

E
{

eisUn |Tn = n
}
.

Lemma 3.2 of Groeneboom and Pyke (1983) implies:

P {Tn = n} = exp

{
−

n∑
j=1

1
j

}
.

Hence we get, by Fourier inversion and using the notation bn =
√

log n,

E
{

eisUn |Tn = n
}
= exp

{ n∑
j=1

1
j

}
1

2𝜋 ∫
𝜋

u=−𝜋
E eisUn+iuTn−inu du

= exp

{ n∑
j=1

1
j

}
1

2𝜋 ∫
𝜋

u=−𝜋
exp

{
−isbn +

n∑
j=1

1
j
(

eiju+is∕bn − 1
)
− inu

}
du

= e−isbn
1

2𝜋 ∫
𝜋

u=−𝜋
exp

{
eis∕bn

n∑
j=1

1
j

eiju − inu

}
du.
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Denoting the contour u → eiu, u ∈ [−𝜋, 𝜋), by C, we write this in the form

e−isbn
1

2𝜋i∫C
exp

{
𝛿n

n∑
j=1

zj

j

}
z−n−1 dz, (12)

where 𝛿n is given by:

𝛿n = eis∕bn .

The expression in (12), multiplied by eisbn , is by Cauchy's formula equal to the coefficient of zn in
the power series around z = 0 of the function:

z → exp

{
𝛿n

n∑
j=1

zj

j

}
.

Comparing this with the power series of the function z → (1 − z)−𝛿n , we see that the coefficient of
zn is the same in both series. This coefficient is:

(−1)n
(−𝛿n

n

)
=
∏(

1 + 𝛿n − 1
j

)
= exp

{ n∑
j=1

log
(

1 + 𝛿n − 1
j

)}
.

Hence we get:

E
{

eisUn |Tn = n
}
= exp

{
−isbn +

n∑
j=1

log
(

1 + 𝛿n − 1
j

)}

= exp

{
−isbn +

n∑
j=1

log
(

1 + eis∕bn − 1
j

)}

= exp

{
−isbn +

n∑
j=1

eis∕bn − 1
j

+ o(1)

}
= exp

{
− s2

2b2
n

n∑
j=1

1
j
+ o(1)

}
= exp

{
−1

2
s2 + o(1)

}
.

▪

3 THE LIMIT DISTRIBUTION OF THE CONDITIONING
VARIABLES (Vn,Wn)

Let the pair (Vn,Wn) be defined by (10). We prove the following lemma, which corrects lemma
3.1 in Groeneboom and Pyke (1983).

Lemma 1. The pair (Vn,Wn) converges in distribution to (V,W), where (V,W) has the infinitely
divisible characteristic function

𝜙(V ,W)(t,u) = exp
⎧⎪⎨⎪⎩∫

1

0

e−
(

1
2

t2−iu
)

y − 1
y

dy
⎫⎪⎬⎪⎭ .
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Proof. We have:

E exp {itVn + iuWn} = exp

{ n∑
j=1

eiuj∕n𝜙Sj1−j(tn−1∕2) − 1
j

}

= exp

{ n∑
j=1

eij(u∕n−tn−1∕2)(1 − itn−1∕2)−j − 1
j

}
, (13)

where 𝜙Sj1−j is the characteristic function of the centered gamma variable Sj1 − j, see (3.9) of
Groeneboom and Pyke (1983).

Writing yj,n = j∕n, and noting that for y ∈ (0, 1):

einy(u∕n−tn−1∕2)(1 − itn−1∕2)−ny − 1
y

= eiyu− 1
2

t2y − 1
y

− 1
3

ie−
1
2

t2y+iuyt3n−1∕2 + O
(

n−1) ,
and that the limit of the expression on the left for y↓0 is equal to:

i(−t
√

n + u) − n log(1 − it∕
√

n) = iu − 1
2

t2 + O
(

n−1∕2) , n → ∞,

we can write the exponent in the form

n∑
j=1

e−
1
2

t2yj,n+iuyj,n − 1
nyj,n

+ O
(

n−1∕2) ,
(it is here that the mistake was made in Groeneboom & Pyke, 1983, in the formula after (3.9) on
p. 333), hence we get a Riemann sum converging to the integral

∫
1

0

e−
1
2

t2y+iuy − 1
y

dy.

The infinite divisibility of the limit distribution is shown below. ▪

Remark 2. In Groeneboom and Pyke (1983) first, the limit distribution of Un is computed,
using moment conditions (going up to the eighth moments). Next, the limit distribution of
(Vn,Wn) is computed and it is stated that this distribution is infinite divisible and has no nor-
mal component, implying that therefore the limit (Vn,Wn) has to be independent of the limit
of Un.

The s2u2 in the exponent of the characteristic function of the limit distribution of (Vn,Wn)
in lemma 3.1 of Groeneboom and Pyke (1983) should be s2u. The incorrect u2 arose on p. 333
of Groeneboom and Pyke (1983), where the limit of the characteristic function of the rescaled
gamma random variable (Sj − j)∕

√
n was given by exp{−s2u2∕2} instead of exp{−s2u∕2}. This

also invalidates the ensuing remarks on p. 333 of Groeneboom and Pyke (1983). We correct these
remarks below.

The distribution of (V,W) is infinitely divisible, as we now show. A general characterization
of infinitely divisible distributions in Rd is given in Sato (2001) and given below for convenience.
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Theorem 5 (theorem 1.3 in Sato, 2001, Lévy-Khintchine representation). If the distribution 𝜇 is
infinitely divisible, then its characteristic function �̂�(s) = ∫

Rd exp{i⟨s, z⟩} d𝜇(z) is given by:

�̂�(z) = exp
{
−1

2
sTAs + ∫Rd

(
ei⟨s,z⟩ − 1 − i⟨s, z⟩1{||z||≤1}(z)

)
d𝜈(z) + i⟨𝜹, s⟩} , (14)

where A is a symmetric nonnegative-definite d × d matrix, || ⋅ || is the Euclidean norm, 𝜈 is a measure
on Rd satisfying 𝜈({0}) = 0, ∫

Rd

(||z||2 ∧ 1
)

d𝜈(z) < ∞, and where 𝜹 ∈ Rd. The representation (14)
by A, 𝜈, and 𝜹 is unique. Conversely, for any choice of A, 𝜈, and 𝜹 satisfying the conditions above,
there exists an infinite divisible distribution 𝜇 having characteristic function (14).

In the present situation, we can take A the 2 × 2 matrix with zeroes, 𝜹 = (0, 0)T and define 𝜈

by the density

𝜕2𝜈(v,w)
𝜕v𝜕w

= 𝜙

(
v∕
√

w
)

w−3∕21(0,1)(w),

where𝜙 is the standard normal density. With these choices of A,𝜹, and 𝜈 we get, using the notation
s = (t,u)T and z = (v,w)T ,

exp
{
−1

2
sTAs + ∫R2

(
ei⟨s,z⟩ − 1 − i⟨s, z⟩1{||z||≤1}(z)

)
d𝜈(z) + i⟨𝜹, s⟩}

= exp

{
∫

1

y=0

e−
1
2

t2y+iuy − 1
y

dy

}
.

We note that the computer package Mathematica evaluates the characteristic function for
(V,W) in the following way:

exp

{
∫

1

y=0

e−
1
2

t2y+iuy − 1
y

dy

}
= exp

{
−𝛾 − Γ(0, 1

2
t2 − iu) − log

(1
2

t2 − iu
)}

, (15)

where 𝛾 is Euler's gamma and Γ(0, 1
2

t2 − iu) is the complementary incomplete gamma function,
defined by:

Γ
(

0, 1
2

t2 − iu
)
= exp

{
−1

2
t2 + iu

}
∫

∞

0
exp
{
−
(1

2
t2 − iu

)
x
}
(1 + x)−1 dx, t ≠ 0.

see, for example, (2.01) on p. 109 of Olver (1974).

4 CENTRAL LIMIT THEOREM FOR ∫ h(f̂n(x)) dx

In this section, we use the notation

bn =
√

3
4

h′′(1)2 log n, cn =
√

n. (16)



10 GROENEBOOM

Using the conditioning of Section 1, the statistic ∫ h(f̂n(x)) dx has the following representation:

∫ h(f̂n(x)) dx = n−1
n∑

j=1

Nj∑
i=1

h
(

j
Sji

)
Sji,

where the Poisson random variables Nj and the gamma random variables Sji are defined as in (9),
and where we condition on (Vn,Wn) = (0, 1), where (Vn,Wn) is defined by (10). We define

Un = 1√
3
4

h′′(1)2 log n

⎧⎪⎨⎪⎩
n∑

j=1

Nj∑
i=1

[(
h
(

j
Sji

)
− h(1)

)
Sji + h′(1)

(
Sji − j

)]
− 1

2
h′′(1) log n

⎫⎪⎬⎪⎭ . (17)

Remark 3. The terms h′(1)
(

Sji − j
)

are present in Un as variance reducing terms and give, after
the summation over i and j, a zero contribution to Un if (Vn,Wn) = (0, 1). Also note that

h(1)
n∑

j=1

Nj∑
i=1

Sji = nh(1) = n𝜇(h, f ),

if the condition (Vn,Wn) = (0, 1) is satisfied.

We assume that the function h satisfies Condition 1 and first consider the conditional density
of Vn, given Wn = 1.

Lemma 2. The conditional density of Vn, given Wn = 1, is the density of a centered and standard-
ized Gamma(n, 1) variable:

fVn|Wn=1(x) = Γ(n)−1nn−1∕2e−n−x
√

n
(

1 + x∕
√

n
)n−1

, x ∈ R.

The density fVn|Wn=1(x) converges uniformly to the standard normal density, as n → ∞.

Proof. By Fourier inversion, the conditional characteristic function is given by:

1
P{Wn = 1}

1
2𝜋 ∫

𝜋

−𝜋
E exp {itVn + niuWn − niu} du

= 1
P{Wn = 1}

1
2𝜋 ∫

𝜋

−𝜋
exp

{ n∑
j=1

eij(u−t∕cn)(1 − it∕cn)−j − 1
j

− niu

}
du,

where cn =
√

n, see (13). Denoting the contour w → eiw, w ∈ [−𝜋, 𝜋), by C, we write this in the
form

P{Wn = 1}−1 exp

{
−

n∑
j=1

1
j

}
1

2𝜋i∫C
exp

{ n∑
j=1

(𝛽n(t)z)j

j

}
z−n−1 dz

= 1
2𝜋i∫C

exp

{ n∑
j=1

(𝛽n(t)z)j

j

}
z−n−1 dz, (18)
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where 𝛽n(t) is given by:

𝛽n(t) = e−
it

cn

(
1 − it

cn

)−1

,

and where we use:

P{Wn = 1} = exp

{
−

n∑
j=1

1
j

}
,

by lemma 3.2 of Groeneboom and Pyke (1983). An application of Cauchy's formula yields:

1
2𝜋i∫C

exp

{ n∑
j=1

(𝛽n(t)z)j

j

}
z−n−1 dz = 𝛽n(t)n,

where we use that the coefficient of zn in the power series around z = 0 of the function z →
exp{
∑n

j=1 (𝛽n(t)z)j∕j} is the same as the coefficient of zn in the power series of the function
z → (1 − 𝛽n(t)z)−n.

Hence,

E
{

eitVn |Wn = 1
}
= 1

P{Wn = 1}
1

2𝜋 ∫
𝜋

−𝜋
E exp {itVn + niuWn − niu} du

= 𝛽n(t)n = exp {−nit∕cn}
(

1 − it
cn

)−n

.

This is just the characteristic function of the sum of n standardized exponential variables, and
hence its density tends uniformly to the standard normal density by theorem 2 on p. 516 of Feller
(1971). ▪

Hence, in particular, we get:

P{Wn = 1}fVn|Wn=1(0) =
1√
2𝜋

exp

{
−

n∑
j=1

1∕j

}
(1 + o(1)) = e−𝛾

n
√

2𝜋
(1 + o(1)), n → ∞,

where 𝛾 is Euler's gamma. The characteristic function of (Un|Vn = 0,Wn = 1) is therefore given by

1
4𝜋2 ∫

∞

t=−∞ ∫
𝜋

−𝜋
EeisUn+itVv+iuWn−inu du dt

/ (
P{Wn = 1}fVn|Wn=1(0)

)
∼ ne𝛾

(2𝜋)3∕2 ∫
∞

t=−∞ ∫
𝜋

−𝜋
EeisUn+itVv+iuWn−inu du dt. (19)

We now consider the characteristic function 𝜙nj, defined by:

𝜙nj(s, t) = E exp

{
is
{

h(j∕Sj1) − h(1)
}

Sj1 + h′(1)
(

Sj1 − j
)

bn
+ it

Sj1 − j
cn

}
. (20)

which involves the components of the random variables Un and Vn. Its asymptotic behavior is
determined using a saddle point method.
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Lemma 3. The characteristic function (20) satisfies

𝜙nj(s, t) ∼ 1
j

exp
{
−

jt2

2n
+ O
(

j
nbn

)}{
1 + ish′′(1)

2bn
− 3s2h′′(1)2

8b2
n

}
, j → ∞. (21)

uniformly for t in a bounded interval.

Proof. After a change of variables, 𝜙nj(s, t) can be written:

j j

Γ(j) ∫
∞

x=0
exp
[

j
{

is
{h(1∕x) − h(1)}x + h′(1)(x − 1)

bn
+ it(x − 1)

cn
− x + log x

}]
x−1 dx

=
j j

Γ(j) ∫
∞

x=0
exp
{

jfn,s,t(x)
}

x−1 dx,

where fn,s,t is defined on the right half plane by:

fn,s,t(z) = is
{

h(1∕z) − h(1)}z + h′(1)(z − 1)
}

bn
+ it(z − 1)

cn
− z + log z, Re(z) > 0, (22)

The derivative of fn,s,t is given by

f ′n,s,t(z) =
is{h(1∕z) − h(1)}

bn
−

ish′(1∕z)
bnz

+ ish′(1)
bn

+ it
cn

− 1 + 1
z
. (23)

A saddle point is given by the equation

f ′n,s,t(z) = 0.

Multiplying both sides of this equation with z, we get the equation

z = gn(z), gn(z)
def
=
(

1 − it
cn

)−1{
1 +

is{h(1∕z) − h(1)}z
bn

−
ish′(1∕z)

bn
+ ish′(1)z

bn

}
. (24)

This equation has, for sufficiently large n, a unique solution in a neighborhood of z0(t) =(
1 − it

cn

)−1
, as is clear from the following properties.

(i)

g′n(z) =
(

1 − it
cn

)−1

b−1
n

{
ish(1) + ish(1∕z) + ish′(1) −

ish′(1∕z)
z

+
ish′′(1∕z)

z2

}
→ 0, n → ∞.

(ii) For z0(t) =
(

1 − it
cn

)−1
we have:

gn(z0(t)) − z0(t) = −
is
{

h(1) − h(1 − it∕cn) − h′(1)∕cn + (1 − it∕cn)h′(1 − it∕cn)
}

bn(1 − it∕cn)2 → 0, n → ∞,
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see, for example, (3.3), p. 56 of Dieudonné (1968). Hence, the saddle point is given by a solution
of Equation (24) and can be found by the simple iteration zk+1 = gn(zk), starting at z0(t). We can,
however, also take z0(t) itself instead of the real saddle point for the asymptotic expansion, since
this gives us the same terms in the expansion we need.

The value of fn,s,t at z0(t) has the following expansion:

fn,s,t(z0(t)) = −1 −
t2 + ist2h′′(1)∕(2bn) + o

(
b−1

n
)

2n
= −1 − t2

2n
+ O
(

1
nbn

)
. (25)

Furthermore,

f ′′n,s,t(z) =
−bnz + ish′′(1∕z)

bnz3 .

hence,

f ′′n,s,t(z0(t)) = −1 + ish′′(1)
bn

+ O
(

c−1
n
)
.

It follows that we get:

𝛼n|f ′′n,s,t(z0(t))|1∕2 ≈ 1 + ish′′(1)
2bn

− 3h′′(1)2s2

8b2
n

+ O
(

c−1
n
)
= 1 + ish′′(1)

2bn
− s2

2 log n
+ O
(

c−1
n
)
,

where 𝛼n = exp
{

ish′′(1)∕(2bn)
}

is a complex number with absolute value 1, corresponding to
the argument of the main axis of the saddle point (note that the argument of this axis is 1

2
𝜋 −

1
2

arg f ′′n,s,t(z0(t)), see de Bruijn, 1981, p. 84).
Evaluating the integrand at z0(t), and applying Stirling's formula on Γ(j), we obtain the

following asymptotic representation:

𝜙nj(s, t) =
j j

Γ(j) ∫
∞

x=0
exp
{

jfn,s,t(x)
}

x−1 dx ∼
𝛼n
√

2𝜋ej{fn,s,t(z0(t))+1}√
2𝜋j
√

j|f ′′n,s,t(z0(t))|
∼ 1

j
exp
{
−

jt2

2n
+ O
(

j
nbn

)}{
1 + ish′′(1)

2bn
− 3s2h′′(1)2

8b2
n

}
, j → ∞. (26)

see, for example, de Bruijn (1981), (5.10.3) on p. 92 for the first asymptotic equivalence. The second
asymptotic equivalence holds uniformly for t in a bounded interval. Note that this corresponds to
changing the path of integration for x to a path in the complex plane, going through the saddle
point. ▪

We can now prove the following property of the characteristic function of (Un,Vn,Wn). This
is “almost” the Fourier inversion for (Vn,Wn), but we still have to extend the inversion for Vn to
the whole real line. Cauchy's formula is an essential ingredient of the proof of Lemma 4.

Lemma 4. Let Un be defined by (17) and let h satisfy Condition 1. Then, for each M > 0:

ne𝛾

(2𝜋)3∕2 ∫
M

t=−M ∫
𝜋

−𝜋
EeisUn+itVv+niuWn−inu du dt → e−

1
2

s2√
2𝜋 ∫

M

t=−M
e−

1
2

t2
dt, n → ∞,

where 𝛾 is Euler's gamma.
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Proof. Let 𝜙nj be defined by (20). Since, by (16) and (17),

Un = 1√
3
4

h′′(1)2 log n

⎧⎪⎨⎪⎩
n∑

j=1

Nj∑
i=1

[(
h
(

j
Sji

)
− h(1)

)
Sji + h′(1)

(
Sji − j

)]
− 1

2
h′′(1) log n

⎫⎪⎬⎪⎭
= b−1

n

⎧⎪⎨⎪⎩
n∑

j=1

Nj∑
i=1

[(
h
(

j
Sji

)
− h(1)

)
Sji + h′(1)

(
Sji − j

)]
− 1

2
h′′(1) log n

⎫⎪⎬⎪⎭ ,
where

bn =
√

3
4

h′′(1)2 log n,

we get, evaluating the probabilities for the Poisson random variables Nj in the third line:

E exp {isUn + itVn + iuWn} = exp
{
−1

2
ish′′(1)(log n)∕bn

}
E

{ n∏
j=1

{
𝜙nj(s, t)

}Nj eiuNj∕n

}

= exp

{
−1

2
ish′′(1)(log n)∕bn +

n∑
j=1

1
j
{
𝜙nj(s, t)eiju∕n − 1

}}

= exp

[
−1

2
ish′′(1)(log n)∕bn +

n∑
i=1

1
j

{
exp
(
−

jt2

2n
+

iju
n

)
− 1
}

+
{

ish′′(1)
2bn

− 3s2h′′(1)2

8b2
n

} n∑
j=1

1
j

exp
(
−

jt2

2n
+

iju
n

)
+ o(1)

]
. (27)

As in the proof of Lemma 2, we consider the contour w → eiw, w ∈ [−𝜋, 𝜋), and denote this
contour by C. Hence, integrating (27) w.r.t. u and changing variables we get:

1
2𝜋 ∫

𝜋

u=−𝜋
E exp {isUn + itVn + inuWn − inu} du (28)

= exp

{
−1

2
ish′′(1)(log n)∕bn −

n∑
j=1

1
j

}
1

2𝜋i∫C
exp

{ n∑
j=1

𝛿n(𝛽n(t)z)j

j

}
z−n−1 dz, (29)

where

𝛽n(t) ∼ exp
(
− t2

2n

)
, (30)

and

𝛿n(t) =
𝛼n√|f ′′n,s,t(z0(t))| = 1 + ish′′(1)

2bn
− 3s2h′′(1)2

8b2
n

+ O
(

b−3
n
)
, (31)
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and where 𝛼n is a complex number of absolute value 1, corresponding to the angle of the main
axis through the (approximate) saddle point z0(t).

Hence we get, by Cauchy's formula, for t ∈ [−M,M] and M arbitrarily large,

1
2𝜋 ∫

𝜋

−𝜋
E exp {isUn + itVn + inuWn − niu} du

∼ exp

{
−1

2
ish′′(1)(log n)∕bn −

n∑
j=1

1
j

}
(−1)n

(−𝛿n(t)
n

)
𝛽n(t)n

= exp

{
−1

2
ish′′(1)(log n)∕bn −

n∑
j=1

1
j

} n∏
j=1

(
1 + 𝛿n(t) − 1

j

)
𝛽n(t)n

∼ exp

{
−1

2
ish′′(1)(log n)∕bn −

n∑
j=1

1
j

}
exp

{
−1

2
t2 +

n∑
j=1

log
(

1 + 𝛿n(t) − 1
j

)}

= exp
{
−1

2
ish′′(1)(log n)∕bn − log n − 𝛾

}
exp

{
−1

2
t2 + {𝛿n(t) − 1}

n∑
j=1

1
j
+ o(1)

}

= 1
n

exp
{
−1

2
ish′′(1)(log n)∕bn − 𝛾

}
exp

{
−1

2
t2 +
{

ish′′(1)
2bn

− 3s2h′′(1)2

8b2
n

} n∑
j=1

1
j
+ o(1)

}
.

(32)
Thus:

ne𝛾

(2𝜋)3∕2 ∫
M

t=−M ∫
𝜋

−𝜋
EeisUn+itVv+niuWn−inu du dt

= 1√
2𝜋 ∫

M

t=−M
exp

{
−1

2
t2 − 3s2h′′(1)2

8b2
n

n∑
j=1

1
j
+ o(1)

}
dt

= exp
{
−1

2
s2 + o(1)

} 1√
2𝜋 ∫

M

t=−M
exp
{
−1

2
t2
}

dt.

▪

We still have to prove that the remaining part of integral w.r.t. the integration variable t can be
made arbitrarily small by choosing M large. To this end, we split the remaining region into two
regions: A1 = {t ∈ R ∶ M < |t| ≤ 𝛿n1∕2} and A2 = {t ∈ R ∶ |t| > 𝛿n1∕2}. This split-up is familiar
from inversion theorems for densities, see, for example, the proof of theorem 2 on p. 516 of Feller
(1971). We start with the region A1 = {t ∈ R ∶ M < |t| ≤ 𝛿n1∕2}.

Lemma 5. Let h satisfy Condition 1. Then there exists for each 𝜀 > 0 an M > 0 and 𝛿 > 0 such that

|||||∫t∶M<|t|≤𝛿n1∕2 ∫
𝜋

u=−𝜋
E exp {isUn + itVn + inuWn − niu} du dt

||||| < 𝜀,

Proof. We consider again the expansion of the function fn,s,t defined by (22) at the point z0(t) =
(1 − it∕cn)−1. We get:

fn,t,u (z0(t)) = −1 − t2

2n
− ist2h′′(𝜃)

2nbn
,
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where 𝜃 is a point on the line segment between 1 and 1∕(1 − it∕cn). Likewise

f ′′n,t,u (z0(t)) = −1 + ish′′(1)
bn

+ 2i𝜃′
cn

,

where 𝜃′ is a point on the line segment between 1 and 1∕(1 − it∕cn).
Hence we have a local expansion

𝜙nj(s, t) ∼ 1
j

exp
{
−

jt2

2n
+ O
(

jt2

nbn

)}{
1 + ish′′(1)

2bn
− 3s2h′′(1)2

8b2
n

+ O
(

c−1
n
)}

, j → ∞. (33)

as in (26). This means that we can follow the same steps as in the proof of Lemma 4 and that we
can choose M and 𝛿 > 0 in such a way that

||||| ne𝛾

(2𝜋)3∕2 ∫M<|t|≤𝛿n1∕2 ∫
𝜋

−𝜋
EeisUn+itVv+niuWn−inu du dt

|||||
≤ exp

{
−1

2
s2 + o(1)

} 1√
2𝜋∫M<|t|≤𝛿n1∕2

exp
{
−1

2
t2 + 1

4
t2
}

dt

= exp
{
−1

2
s2 + o(1)

} 1√
2𝜋∫M<|t|≤𝛿n1∕2

exp
{
−1

4
t2
}

dt < 𝜀.

▪

The following lemma deals with the region A2 = {t ∈ R ∶ |t| > 𝛿n1∕2}.

Lemma 6. Let h satisfy Condition 1. Then, for each 𝛿 > 0:

∫|t|>𝛿cn
∫

𝜋

u=−𝜋
E exp {isUn + itVn + inuWn − niu} du dt → 0, n → ∞.

Proof. We consider the characteristic function:

𝜙nj(s, t) = E exp

{
is
{

h(j∕Sj1) − h(1)
}

Sj1 + h′(1)
(

Sj1 − j
)

bn
+ it
(

Sj1 − j
)}

,

so we replace cn by 1 in (20). This means that, for the saddle point analysis, the constant cn is
replaced by 1 in the function (22). Hence we now define

f n,s,t(z) = is
{

h(1∕z) − h(1)}z + h′(1)(z − 1)
}

bn
+ it(z − 1) − z + log z, Re(z) > 0. (34)

The saddle point equation (24) now turns into

z = gn(z), gn(z)
def
= (1 − it)−1

{
1 +

is{h(1∕z) − h(1)}z
bn

−
ish′(1∕z)

bn
+ ish′(1)z

bn

}
(35)

and has a unique solution in a neighborhood of (1 − it)−1 for the same reasons as before.
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We define:

z0(t) = 1∕(1 − it).

Then:

f n,s,t(z0(t)) = − t2 + 1
1 − it

− log(1 − it) − is h(1) − h(1 − it) + sth′(1)
bn(1 − it)

= − t2 + 1
1 − it

+ O
(

b−1
n |t|) ,

and

f
′′
n,s,t(z0(t)) = (t + i)2 − s(t + i)h′′(1 − it)

bn

= (t + i)2 + O
(

b−1
n |t|) ,

uniformly in |t| > 𝛿, using Condition 1. This implies that, uniformly for |t| > 𝛿,

𝜙nj(s, t) =
j j

Γ(j) ∫
∞

x=0
exp
{

jfn,s,t(x)
}

x−1 dx ∼ 𝛼n(t)ej{f n,s,t(z0(t))+1}

j
√|f ′′n,s,t(z0(t))|

=
𝛼n(t) exp

{
−j
(

it + log(1 − it) + O
(

b−1
n
))}

j|||(t + i)2 + O
(

b−1
n |t|)|||1∕2 , j → ∞, (36)

where 𝛼n(t) is a complex number with absolute value 1 and argument 1
2
𝜋 − 1

2
arg f

′′
n,s,t(z0(t)).

Hence we find, using Cauchy's formula again, as in the proof of Lemma 4, and using
Condition 1,

1
2𝜋 ∫

𝜋

−𝜋
E exp {isUn + itcnVn + inuWn − niu} du

∼ exp

{
−1

2
ish′′(1)(log n)∕bn −

n∑
j=1

1
j

}
(−1)n

(−𝛿n(t)
n

)
𝛽n(t)n

= exp

{
−1

2
ish′′(1)(log n)∕bn −

n∑
j=1

1
j

} n∏
j=1

(
1 + 𝛿n(t) − 1

j

)
𝛽n(t)n,

where

𝛽n(t) = exp
{
−(it + log(1 − it) + O

(
b−1

n
)}

,

and

𝛿n(t) =
𝛼n|||(t + i)2 + O
(

b−1
n |t|)|||1∕2 .
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Hence

exp

{
−1

2
ish′′(1)(log n)∕bn −

n∑
j=1

1
j

} n∏
j=1

(
1 + 𝛿n(t) − 1

j

)
𝛽n(t)n

= 1
n

exp
{
−1

2
ish′′(1)(log n)∕bn − 𝛾

}
⋅ exp
⎧⎪⎨⎪⎩−n
{

it + log(1 − it) + O
(

b−1
n
)}

+
𝛼n
∑n

j=1 1∕j|||(t + i)2 + O
(

b−1
n |t|)|||1∕2

⎫⎪⎬⎪⎭ ,
implying |||| 1

2𝜋 ∫
𝜋

−𝜋
E exp {isUn + itcnVn + inuWn − niu} du

||||
≤ 1

n
exp
⎧⎪⎨⎪⎩−n
{1

2
log(1 + t2) + O

(
b−1

n
)}

+
∑n

j=1 1∕j|||(t + i)2 + O
(

b−1
n |t|)|||1∕2

⎫⎪⎬⎪⎭
≤ |||1 + t2|||−n∕4

,

for large n, uniformly for |t| > 𝛿, using Condition 1. It now follows that

||||| 1
2𝜋∫|t|>𝛿cn

∫
𝜋

u=−𝜋
E exp {isUn + itVn + inuWn − niu} du dt

|||||||||| 1
2𝜋∫|t|>𝛿 ∫

𝜋

u=−𝜋
E exp {isUn + itcnVn + inuWn − niu} du dt

|||||
≤ ∫|t|>𝛿(1 + t2)−n∕4 dt → 0, n → ∞.

▪

This leads to the main result of this section.

Theorem 6. Let h satisfy Condition 1. Then Un|(Vn,Wn) = (0, 1) converges in law to a standard
normal distribution.

Proof. The preceding lemma's imply

ne𝛾

(2𝜋)3∕2 ∫
∞

t=−∞ ∫
𝜋

−𝜋
EeisUn+itVv+niuWn−inu du dt → e−

1
2

s2√
2𝜋 ∫

∞

t=−∞
e−

1
2

t2
dt = e−

1
2

s2
, n → ∞,

where 𝛾 is Euler's gamma. Hence

E
{

eisUn |(Vn,Wn) = (0, 1)
}
∼ ne𝛾

(2𝜋)3∕2 ∫
∞

t=−∞ ∫
𝜋

−𝜋
EeisUn+itVv+niuWn−inu du dt → e−

1
2

s2
, n → ∞.

▪

Theorem 2 now follows from the conditional representation from Section 1, definition (17) of
Un, Remark 3, and Theorem 6.
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5 CONCLUSION

We derived a general theorem (Theorem 2) for integrals of the Grenander estimator when the
distribution is uniform from a representation in terms of Poisson and gamma random variables in
Groeneboom and Pyke (1983). The result implies the main result of Groeneboom and Pyke (1983)
and gives also the limit behavior of the entropy functional. We corrected the limit distribution of
the conditioning variables given in lemma 3.1 of Groeneboom and Pyke (1983) in Section 3. The
methods used are rather different from the methods in Groeneboom and Pyke (1983), where a
result in Le Cam (1958) was used.

Our main result was inspired by Mukherjee and Sen (2019) who derived a similar result from
Groeneboom and Pyke (1983) under different conditions. The main tools are Cauchy's formula
and the saddle point method for integrals of analytic functions of a complex variable. A simple
version of the approach is given in Section 2 to illustrate the method without the complications
of the saddle point method.
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