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ABSTRACT

Motivation: Traffic forecasting is becoming a vital component
of our travel experience. It plays a key role in intelligent
transportation systems that allow us to make smarter use of
existing transportation networks. This study focuses on the
possible role of artificial neural networks in these systems
and what data can be best feed in to them to retrieve the best
results.
Aim: The goal of this study is to see whether two layered
feed forward neural networks outperform the statistical
ARIMA model in motorway traffic forecasting. In specific,
whether or not the usage of upstream and multivariate data
decreases the forecasting errors of the neural network, how
this relates to the amount of samples used as input, and how
this relates to the amount of time steps that is forecasted
ahead.
Results and conclusions: Two different traffic networks
are used to train and test the models. The testing results
show that, when doing predictions using time steps covering
10 minutes of traffic data and forecasting one time step
ahead, the optimal amount of samples used as input is 4.
Increasing the input length after this does not result in better
predictions, it even slightly increases the prediction errors.
Moreover, it became clear that up to 3 or 4 time steps
forecasting in the future, the neural networks using upstream
data outperform the ARIMA model. After this an ARIMA
model that uses deseasonalized data or a neural network that
uses deseasonalized data is a better option. There is always
a two layered neural network that outperforms the ARIMA
models. Furthermore, the usage of upstream data almost
always decreases the prediction errors. This is different with
the usage of multivariate data, which hardly contributes to a
better prediction in the used form.
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I. INTRODUCTION

Traffic forecasting plays a key role in intelligent
transportation systems (ITSs). Work on intelligent
transportation systems started in 1994 when the first
ITS World Congress was held [1]. A key element in an ITS
is the ability to forecast traffic.

There growing need for ITSs. We cannot rely on road
adjustments only, figure 1 shows why. From this figure we
can conclude that the amount of motor vehicles on the Dutch
road is growing rapidly, after a stagnation between 2012 and
2015 it has picked up the pace with a growth rate of 19,7%
in 2018. Based on this growth the Dutch ministry of transport
estimates a growth in travel time loss of 35% [2].
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Fig. 1: Size of the Dutch motor vehicle park1.

Besides the development of ITSs, short term traffic
forecasting can for example be used to develop applications
that calculate the departure times with the shortest travel time
for a given route. Where short term prediction deals with the
network in its current state, long term traffic prediction can
also be used to predict future bottlenecks and the need for
road adjustments.

This paper focuses on the sort term prediction of motorway
traffic, in specific 10, 20, or 30 minutes ahead. The statistical
ARIMA model is compared to two layered artificial neural
networks. The networks differ in the size of the input layer and
the form of the input data. Previous work done on this topic

1Numbers retrieved from the Dutch government institute CBS (Statistics
Netherlands) Retrieved April 25, 2019 from https://statline.cbs.nl/StatWeb/
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mainly focuses on new implementations of neural networks.
They make use of different input lengths, upstream data and
multivariate data. A study on the possible combination or a
comparison between these models/techniques is missing.

This study tries to explore the boundaries regarding to
what is possible with a two layered neural network in the
field of motorway traffic forecasting.

This paper will address the following: 1) the effects of
increasing the input length on the prediction capabilities of a
model, 2) the effects of using upstream data in downstream
predictions, 3) the effects of using multivariate data, and
4) how this all relates to the amount of time steps that is
predicted in the future.

II. CONCEPTS

A. Time series

The analysis and predictions in this study are based on
time series. A time series is a collection of observations
xt ∈ Rd, recorded at times t = 0, 1, ..., n. A whole sequence of
measurements is denoted by {xt} and by {Xt} when viewed
as a realization of random variables.

There are various definitions for a multivariate time series.
In this paper we refer to a multivariate time series as a time
series with values of multiple different features per time step.
To be specific, a multivariate time series is in this paper a
collection of the form xt ∈ R2 i.e. two features per time step,
vehicle flow rate (number of vehicles per hour) and average
vehicle speed (km\h).

In other papers both the usage of upstream data and the
amount of time steps used for a sample are also referred to
as multivariate or multivariate time series. In this paper, the
usage of upstream data is explicitly mentioned and the amount
of time steps used for a sample is referred to as input length.

B. Upstream traffic

Some of the predictions in this paper make use of upstream
traffic data. This refers to the usage of measurement sites
that lie on the same road and measure traffic that still has
to pass the measurement site that is used as target. The ”Data
- Selection and retrieval” section in the research method gives
the exact measurement sites that are included when predictions
are made with upstream data.

C. Statistical models

In this section the ARIMA (autoregressive integrated mov-
ing average) model is discussed. ARIMA is a statistical
model used for time series analysis, either to get a better
understanding of the data or to do forecasting.
A time series Xt can be decomposed in the following way
Xt = mt + st + Yt where:

• mt: a slowly changing trend component
• st: a periodic function that reflects a seasonal component
• Yt: a random noise term that is assumed to be stationary

In order to fit such a statistical model to a time series, it needs
to be stationary. A stationary time series has constant expec-
tation and variance over time, so trends and in some cases
seasonality indicate nonstationarity. A more formal definition
is the following: A time series {Xt}, with E[Xt

2] < ∞ is
stationary if the following holds:

• E[Xt] = µ is independent of t.
• Cov(Xt+h, Xt) is independent of t for each h.

A traffic time series is likely to contain trends2 and
seasonality. If needed, the data can be transformed such that
the stationarity assumption is more reasonable. This is done
by differencing as explained in the next section.

The last step in the process is to find a suitable probabilistic
model to fit the time series. This is done using the ACF3

(Autocorrelation function) and PACF4 (Partial autocorrelation
function). Details about this process can be found in
Introduction to Time Series and Forecasting (Brockwell and
Davis, 2002).

The forecasting can now be achieved by: 1) fitting the model
based on the ACF and PACF, 2) making a forecast based on the
input data, and finaly (if the data was differenced) 3) inverse
differencing the predictions.

D. Differencing

Differencing (∇(Xt) = Xt −Xt−i, with interval i) can be
used to remove trends and/or seasonality and thus to make a
time series stationary. This process can be repeated until the
time dependence is removed.
After the predictions have been made, the seasonality
and/or trends can be brought back into the data by inverse
differencing (∇−1(Xt) = Xt + Xt−i, with interval i). By
doing this the predicted values can be compared with the non
differenced targets.

Figure 2 shows an example of this process without the
forecasting, with interval i = 2. So if we follow the value at
time step t = 3 we get: differencing 8 − 2 = 6 and inverse
differencing 6 + 2 = 8.

non-differenced value 2 4 8 16 32
time step 1 2 3 4 5

differenced value 6 12 24
time step 3 4 5

inverse differenced value 8 16 32
time step 3 4 5

Fig. 2: Differencing process without forecasting

2This depends on the term, short term data will most likely not contain any
trends.

3ρx(h) =
Cov(Xt+h,Xt)

V ar(Xt)
4As defined in Introduction to Time Series and Forecasting [3]
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E. Artificial neural networks
Artificial neural networks (ANN) are computing systems

that contain many non-linear computing nodes interconnected
by directed edges. An ANN can be partitioned into layers, in
which every node in a layer has directed edges connected to
the nodes in the next layer. The first and the last layer are
called the input layer and the output layer respectively. The
layers in between are called the hidden layers. Every edge
has a weight and the network is trained by modifying these
weights. The network is basically a function that maps the
input layer onto the output layer.
The simplest form of an ANN is a so called ”feed forward”
neural network (FNN). In a FNN the information always
moves in one direction, the graph does not contain cycles. A
two-layer FNN is shown in Figure 3.
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Fig. 3: Structure of a two layer feed forward neural network
model

All layers have an activation function. An activation func-
tion calculates the output of a layer based on its input and the
weights. Activation functions add non-linearity properties to
the network. They allow the network to learn complex function
mappings. The networks learns by finding the minimum of the
loss function, the metric that is minimized during the training.
This is done by taking derivatives. The optimizer function
then determines at what rate the weights of the network are
changed.
Two other types of neural networks that pass by in the
literature study are: Convolutional neural networks (CNN), and
recurrent neural networks (RNN). CNNs are fully connected
and their layers often have higher dimensions. RNNs contain
cycles, which allows for more dynamic behavior.

F. Metrics
1) Mean squared error: The mean squared error (MSE) is

the average of the squares of the errors, where the error is

the difference between what is to be estimated and what is
estimated. The squaring is done such that the negative values
do not cancel positive values.

MSE =
1

n

n∑
i=1

(yi − ŷi)2

2) Root mean squared error: The root mean squared error
(RSME) is similar to the MSE, but it has the same units as
the quantity that is that is predicted and is therefore easier to
interpret.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

3) Mean absolute error: Similar to the metrics above, the
mean absolute error (MAE) also avoids that negative values
cancel out positive values but takes the absolute value of
the error instead of squaring the error. Just as the RMSE, it
expresses the average prediction error in the same units as the
quantity that is predicted.

MAE =
1

n

n∑
i=1

|yi − ŷi|

Both the RMSE and the MAE express the average prediction
error in the same units as the quantity that is predicted. There
are however some differences. The RMSE squares the errors
before the average is taken and gives therefore relatively heavy
weights to bigger errors in comparison to the MAE.

III. LITERATURE REVIEW

With the rise of intelligent transportation systems, research
in traffic forecasting increased in popularity. A lot of previous
research mainly focussed on univariate linear statistical models
such as Kalman filtering and various combinations and ver-
sions of autoregressive integrated moving average (ARIMA)
models.

A. ARIMA Techniques

Besides univariate models researchers have searched for
increased predicting performance by using upstream traffic
and splitting components:

The papers of Williams [4] and Kamarianakis and Prastacos
[5] brought up the idea to include upstream traffic in the
ANN forecasts.

Williams investigated a multivariate ARIMAX forecast
model in which upstream data is used to improve forecasts
at downstream locations. The upstream traffic flow time series
are treated as transfer function inputs into the ARIMA model
for the forecast location. This model is compared to an
univariate ARIMA model. He concludes that the trade-off
between increased complexity and increased forecast accuracy
must be carefully weighed in any decision between univariate
and multivariate forecasting.

Kamarianakis and Prastacos compared the univariate
ARIMA with the multivariate VARMA (vector ARMA) and
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STARIMA (space-time ARIMA). Although the multivariate
models are expected to be more accurate they found that the
different models have similar forecasting performance.

Note that, for both studies, multivariate refers the
amount of measurement sites used for prediction, i.e.
upstream/downstream, and not to multivariate time series.

Ghosh et al. [6] developed a multivariate short-term
traffic forecasting algorithm that is parsimonious and
computationally simple. The structural time series model they
use models the different components of the time series, such
as trends and seasonal components separately.

This sparked the idea to remove trends with differencing
before forecasting, instead of modeling the trends and com-
ponents seperately as the paper suggests.

B. ANNs

More recently the research on forecasting multivariate time
series is shifting to artificial neural networks (ANNs), many
researchers have claimed to reduce the prediction errors with
ANNs. Examples of which are:

One of the papers that together with the papers of Williams
[4], Kamarianakis and Prastacos [5] and Ghosh et al. [6]
form the base of this comparision study is the paper of
Charkraborty et al. [7].

Charkraborty et al. are using simple FNNs to predict floor
prices. They performed three experiments: separate modeling,
combined modeling and single modeling. Without going into
the details about these experiments, they concluded that the
combined modeling, i.e. using multivariate time series with
flattening, gives the best performance. Finally they compared
this model to an ARMA model to conclude that the combined
model is better. Claiming that: the root mean squared errors (in
prediction) obtained using this approach are better than those
obtained from the statistical model by at least an order of
magnitude. The graphs that are included show that especially
the multi-lag prediction is more accurate.

The study of Raman et al. [8] confirms this. It uses FNNs
to predict water resources. They trained the networks to
learn the patterns in the multivariate time series. The results
from this model show similar results to [7]. They conclude
that neural networks are a good alternative compared to
autoregressive models for the multivariate modelling of water
resources time series.

More traffic related examples are the studies of Kumar
et al. [9] and Gltekin et al. [10].

Kumar et al. use ANNs to predict non urban highway
traffic volume using average speeds and quantities of vehicles.
The study compares ANNs with different transfer functions,
different learning methods and different amounts of neurons
in the hidden layer. The results that ANNs are able to predict
traffic volumes with a consistent performance.

Gltekin et al. use ANNs to model historical traffic data and
to predict traffic volume. The research uses two different FNN

structures to forecast 5 minutes and 1 hour ahead. The results
of the study show that the features used: day of the week,
hour, minute and last cases were very effective in predicting
the traffic volume.

C. RNNs and CNNs

Other papers related to traffic forecasting that use more
advanced neural networks include:

The paper of Ishak et al. [11] which is an example of
a comparison study. They present an approach that use
Jordan-Elman networks, partially RNNs, and time-lagged
FNNs to predict short term traffic. They compare their
findings to several ARIMA models proposed in other studies.
The three proposed network topologies outperformed in most
cases the statistical models.

Another interesting studies on this topic are:
The research of Li et al. [12]. They use a Diffusion

Convolutional Recurrent Neural Network (DCRNN) to capture
the spatiotemporal dependencies in the traffic data. This way
recurring events such as rush hours or accidents can be cap-
tured. They observed a consistent improvement of 12% - 15%
over state-of-the-art baselines. Among these were ARIMA and
FNN models.

The study of Yun et al. [13], which studied the relation in
forecasting traffic volume between data characteristics and the
forecasting accuracy of different models. They conclude that
a time-delayed RRN gives the best results.

The paper of Dia [14] which uses a TLRN (time-lag
recurrent network) to predict traffic speed

And the paper of Ma et al. [15] which proposes a CCN
based method that learns traffic as images to forecast traffic
speeds.

D. Combinations

Furthermore research has been done in the combination of
statistical models and/or artificial neural networks:

Van der Voort et al. [16] introduce the KARIMA method,
this method uses a self organizing neural network as an
initial classifier in which each class has an individually tuned
ARIMA model associated to it. This method is compared
a method called ATHENA, a complicated method that is
superior to ARIMA but suffers from practical difficulties
since it is more of a brute force approach. They conclude
that the level of performance of the KARIMA method is
equal to the ATHENA method and is substantially better than
straightforward ARIMA modeling.

Zheng et al. [17] designed a method that tries to combine
several predictors based on the bayes rule. The method com-
bines two neural networks into one.

E. Conclusion

From the literature study it became clear that there is a lot
of research in the combination of traffic forecasting and neural
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networks. What is missing however is a comparison between
models that used different ways to prepare their data and
seemed successful, i.e. studies on input length, multivariate
data, upstream data. For example Charkraborty et al. [7] do not
compare their multivariate model to model that use upstream
data.

IV. RESEARCH METHOD

A. Research Questions

The main research question is formulated as follows: Which
approach for the neural network, upstream/local, multivari-
ate/univariate would give the best motorway traffic predic-
tions? With this question in mind I defined four sub questions
that I will try to answer. The questions are answered using
motorway traffic data, each time step covers 10 minutes of
traffic data. Some testing pointed out that this suited the
experiments best. The amount of noise is relatively low, the
same holds for the amount of networks that have to be trained
to reach a conclusion.

RQ1. What are the effects of increasing the input length
on the prediction capabilities of the different models? - The
answer to this question gives us a starting point in this
research. The input length (the amount of samples used for
prediction) is one of the variables that can be used to improve
the predictions and is therefore worth looking at. Is there
possibly an optimal input length and how does this relate to
the sample skip size (the amount of time steps predicted in the
future)? To get an idea of the effects, an upstream multivariate
model was trained using different input lengths ranging from
1 to 6 and sample skips 1, 3, and 5.

RQ2. What is the effect of increasing the number of time
steps on the prediction capabilities of the different models? -
The goal of this question is to get an overview of which model
performs best in relation to the sample skip size. In particular:
Does the order of best performing models change when the
sample skip size is increased? This sub question is answered
by training all the models on samples skips ranging from 1
to 3. After this the best models and the models with the least
prediction decay are selected to be trained on sample skips
ranging from 1 to 10.

RQ3. What are the effects of using upstream data in
downstream predictions? - Previous results [4], [5], and [16],
have shown that the usage of upstream traffic data is useful
for the prediction of downstream traffic. The networks used
in this research are of a different scale size. It is therefore
interesting to see if the same holds for a network which
consist of solely a motorway traffic junction and a network
from which we include the on-ramps and off-ramps. To answer
this question we have a look at the results produced for the
previous questions.

RQ4. What are the effects of using multivariate time series
instead of univariate time series? - The goal of this question is
to see whether the usage of both the vehicle flow rate and the
average vehicle speed gives better predictions than the usage
of solely vehicle flow rate. The question is answered using the
data obtained from answering the questions above.

B. Data - Selection and retrieval

The Dutch motorway system is closely monitored by the
traffic control stations of Rijkswaterstaat5. Rijkswaterstaat is
responsible for the management of the main infrastructure
facilities in the Netherlands. The traffic measurements are
made using detection loops, see figure 4.

Fig. 4: A motorcycle passing a detection loop6.

The loops measure how much traffic and how fast traffic is
passing by. The data retrieved from these measurement sites
is collected by the NDW7 (the Dutch national data bank for
traffic data). The NDW has made their data publicly available,
it gathers data from 20.000 measurement sites covering 10700
km of roads8. The measurement sites of the NDW measure
every minute (for every lane) both the vehicle flow rate in
vehicles per hour and the average vehicle speed in kilometers
an hour.

The amount of data offered, the availability of the data,
and the acurracy of the data make the NDW data base a good
data source for this research.

For this paper, two motorway networks, Junction Kethelplein
and A4 Delft, see Appendix A, are composed to compare
the different forecasting methods. The names indicate the
approximate locations of the chosen measurement sites,
the exact locations and measurement sites can be found in
Appendix B.

A specific measurement site is referred to as
Name Direction1 when the traffic on the lane(s) enters
the network and Name Direction0 when the traffic on the
lane(s) leave the network. So for example, Rijswijk S1 refers
to a measurement site located on the on-ramp of the Rijswijk
ramp in southerly direction.

5Traffic control stations Rijswaterstaat: https://www.rijkswaterstaat.nl/over-
ons/onze-organisatie/organisatiestructuur/verkeer-en-
watermanagement/index.aspx

6Google. (n.d.). [Google Street View, Den Haag, Utrechtsebaan, hec-
tometer pole 3.7, north-west direction]. Retrieved June 17, 2019, from
https://www.google.nl/maps

7NDW: https://www.ndw.nu/pagina/nl/103/datalevering/120/open data/
8Numbers retrieved from the NDW. Retrieved April 25, 2019 from

https://www.ndw.nu/pagina/nl/4/databank/31/actuele verkeersgegevens/
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For the network Junction Kethelplein, local predictions refer
to the prediction of East E0 only using data of East E0.
Upstream predictions refer to the prediction of East E0 using,
East E0, North S1, West E1, and South N1.
For the network A4 Delft, local predictions refer to the
prediction of South S0 only using data of South S0. Up-
stream predictions refer to the prediction of South S0 using,
Delft S0, Delft S1, Den Haag-Zuid S0, Den Haag-Zuid S1,
Rijswijk S0, Rijswijk S1, and North S1.

C. Data - Preparation
Having well prepared data reduces the modeling errors and

the subsequent prediction errors. The data preparation is done
in two parts.
Part one, which defines the problem, will explain how different
predicting problems can be created using four variables: the
differencing interval, the usage of multivariate data or not,
the input length and the sample skip.

1) Differencing
2) Vectorizing

a) Multivariating
b) Timeseriealizing
c) Flattening

And part two, which prepares the samples and targets for
training:

3) Normalizing
4) Splitting

1) Defining the problem - Differencing: The usage of an
ARIMA model requires the data to be stationary, see the
”Concepts - Statistical models” section. This means that if an
ARIMA model is used and the data is not stationary, trends
and in some cases seasons have to be removed. The raw traffic
data that is used to make the predictions does not contain
trends. For traffic data this is something that comes in to play
when the predictions are made over longer periods of time,
say weeks, months or years. The raw data that is used does
however contain strong seasonality: there is an early morning
rush hour when people tend to go to work and an evening rush
hour when people return to their homes. See Figure 5.

Fig. 5: Raw traffic data, vehicle flow rate per 10 minutes for
19 days at the A4 near Delft

In our case the data is already reasonably stationary: the
expectation and variance are almost constant over time. We are
therefore able to do ARIMA predictions without differencing
the data.

The data is however differenced in some cases, this is
explicitly mentioned. In these cases, the differencing is used
to remove the seasonality.

To remove the seasonality in our traffic data, the interval
parameter i is set to the size of a season. The raw traffic data
used in this paper is collected per ten minutes, there are 24 ∗
60/10 = 144 ten minutes in a day so parameter i equals 144.
After the differencing the data does not contain any seasons
and the stationary assumption is stronger. The data now looks
like Figure 6.

Fig. 6: Differenced traffic data, vehicle flow rate per 10
minutes for 19 days at the A4 near Delft

2) Defining the problem - Vectorizing: The next step is to
create samples and targets out of the time series. Some of
the predictions will make use of multivariate data, however
the input layer of our models consist of a 1d tensor (a vector)
containing the features. So our samples have to be vectors too.

When transforming the data into vectors two important
parameters come into play, the input length and the sample
skip. The input length is the amount of time steps that are
included in the sample. The sample skip is the amount of time
steps difference between the samples and the corresponding
targets, this determines the amount of time the model predicts
in the future.

Figure 7 shows this process with an input length of 2 and
a sample skip of 2. The values of time step 1 and 2 from
the multivariate time series (2 time steps: input length 2) are
used to predict the value of time step 4 from the univariate
time series (4 - 2 = 2: sample skip 2). The raw data is
now transformed in usable samples and targets that reflect the
problem.

vfr A B C Dmultivariate ts avs E F G H

univariate ts vfr A B C D

time step 1 2 3 4

vfr A
avs E
vfr Bsamples

avs F

targets vfr D

time step 4

Fig. 7: Vectorization process

There are only univariate predictions made with ARIMA,
e.g. the samples and targets were made out of the same time
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series.

3) Train preparation - Normalizing: The normalization of
the samples, subtracting the mean and dividing by the standard
deviation, is only done for data used by ANNs. All features
have to be normalized independently to have a mean of 0 and
a standard deviation of 1.

Normalizing the data ensures that the values that are feed
into the neural network do not have wildly varying ranges,
most values should be in the 0-1 range. It also ensures
that the features to predict are take values in roughly the
same range, i.e. made homogeneous. This are both important
characteristics that help to prevent large gradient updates
such that the network is able to converge. Figure 8 shows the
differencing and normalization in one graph.

4) Train preparation - Splitting: The final step in the data
preparation is the splitting of the data in a training and test
set. The samples and targets from the training set are used
to train the model. The samples from the test set are used to
make the prediction and the targets from the test set are used
as the truth to compare the predictions with.

Fig. 8: Raw, Differenced and Normalized differenced traffic
data, vehicle flow rate per 10 minutes for 19 days at the A4
near Delft

D. Training

1) Folding: To be able to reliably evaluate the model
during the training, k-fold cross-validation is used. K identical
models are initialized and trained with different training and
validation data.

The training and validation data are retrieved from the
train set of data. It is used to validate the model during the
training. The test set of data is only used for testing and not
for training or validation during the training. The test set of
data (test samples and test targets) is the set of data that is
used to make predictions and to calculate the errors.

The folding process works as follows, the data (training

samples and training targets) is split into k partitions. Every
”fold” k - 1 partitions are used to train the model of the fold
and 1 partition is used to validate this model. After the folds
have been ”folded”, the average validation score of these
models then taken as the validation score of the model and
can be used to analyze the training process. Figure 9 shows
an example of a 3 fold cross-validation.

Fig. 9: Folding process9

2) Model: As explained in the concepts section a two
layered FNN model is used to make the predictions. The
network consists of 1d tensors.

The amount of neurons per layer is as follows:
• input layer: input length * dimension of the data10

• hidden layer: 64 if not explicitly specified
• output layer: 1

The only variable here is the amount of neurons in the hidden
layer. The hidden layer and the output layer are dense layers
that work the following way: output = activation(dot(input,
weights) + bias). Where bias is a bias vector that is able to
change the mapping of the activation function. Which can
improve the learning.

The model parameters where chosen on their usage.
They are all widely used for regression problems and it
provides a nice base for the experiments. Parameters

• activation function: rectified linear unit
• optimization function: rmsprop,
• loss function: mean squared error
The batch size for training the model is chosen to be 1, this

resulted from some testing. The batch size that delivered the
best results was chosen. The same holds for the number of
neurons.

3) Early stopping: Early stopping is the action of stopping
the training when the amount of change in the monitored
quantity is less then a specified value. The number of epochs
that a model will run is therefore determined by this action.
The training of the models used for this study are stopped
when the amount of change in the valuation loss is zero. In

9Figure retrieved from Deep Learning with Python [18].
101 for univariate data and 2 for multivariate data.
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practice this happens somewhere before 500 epochs. Seldom
all epochs (5000) were used.

E. Prediction and analysis

1) Predicting: The predicting it self relatively straightfor-
ward. In the case of an ANN, the test inputs are provided to
the trained model and the prediction is calculated. In the case
of an ARIMA model, there can only be one value predicted
at the time. After this prediction the model has to be trained
again to be able to predict the next time step. The use of
an ARIMA model takes therefore more effort and needs to
be maintained while an ANN model can be used without the
need for further training or adjustment.

2) Inverse differencing: The predicted values are inversed
differenced when the input of the model was differenced
before the prediction. It brings the seasonality back into the
data, so that the model predicts the actual targets and not the
differenced version of the targets. The full differencing process
with an example can be found in the concepts section.

3) Analysis: For the analysis the same metrics as defined
in the ”Concepts - Metrics” section are used except the mean
squared error.

V. RESULTS

The plots in this section refer to the data in the following
way: MV multivariate, UV univariate, UP upstream, LO local
(does not include upstream data), DIF differenced.

A. Input length

One of the variables that can be used to possibly improve
the predictions is the input length, i.e. the amount of samples
used for the prediction. One of the questions that rises is the
following: What are the effects of increasing the input
length on our prediction capabilities? or more specifically:
To what extend does the increase of input length improve the
predictions, or does it not improve the predictions at all?

To get a feeling for this question we first have to look
at the time interval between time steps. In this paper, the time
in between two time steps is 10 minutes. Since it concerns
traffic vehicle flow and average vehicle speed, it is expected
that the improvement of the prediction will stop. The speed
of a vehicle that passed the measurement site one day ago
will probably tell you nothing about a vehicle that currently
passes the measurement site. It is however more likely that in
some cases, the speed of a car that passed the measurement
site 20 minutes ago does give you some information about
the vehicle that is currently passing by.

In order to find an answer to this question, all the variables
except the input length and the sample skip have been frozen.
Firstly ANNs containing 64 neurons have been trained with
samples of different input lengths ranging from 1 to 5. This
is done with multivariate samples that include upstream data
from the Junction Kethelplein network.

Figure 10 shows that both the MAE and RMSE agree that
the improvement of the predictions stops after the input length
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(a) Mean absolute error
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(b) Root mean squared error

Fig. 10: Increasing input length, 64 neurons

has reached a length of 4 or 5, i.e. when 40/50 minutes of data
is used to predict the next 10 minutes. It is interesting to see
how the input length relates to the sample skip size. Increasing
the input length has bigger effects when the amount of time
steps that is predicted in the future is larger.

B. Sample skip

With the answering of the above posed questions, new
questions raise. We now know that there is an ”optimal” input
length after which the error stops decreasing. However we do
not know yet what the effects of the sample skip size are on
the prediction capabilities of the different models. i.e. Does
the order of best predicting models change when the sample
skip size is increased?
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250

300

350

400

450

1 2 3

MV_UP

MV_LO

UV_UP

UV_LO

ARIMA

ARIMA
_DIF

Naive

Naive_
Dif

(b) Root mean squared error

Fig. 11: Increasing sample skip, 64 neurons

Figure 1111 shows a plot of the errors of all models, pre-

11ARIMA is fitted with p = 1 and q = 3, this resulted from ACF and
PACF analysis after which the surrounding values, e.g. in the case of q = 3:
1, 2, 4, and 5, where tested to confirm the right fit.
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dicting the next time step (1 sample skip), up to and including
3 time steps in the future (3 sample skips). The forecasts are
made on the Junction Kethelplein network with input length 3.
The plot also includes a naive (NAIVE) implementation where
simply the samples where used as a prediction.

In this figure we can see that the error of the ANN based
models increases at a higher pace than the error of the
deseasonalized ARIMA model (ARIMA DIF).

The question now is: does the deseasonalized ARIMA
model outperform the ANNs at higher sample skips?
Before the deseasonalized ARIMA model is fitted, the data
is differenced. This is not the case for the ANNs used so far.
Differencing the data on the one hand, removes seasonality
from the data and thereby removes the possibility for a
neural network to learn the seasonality, but on the other
hand it also removes a changing component and should
therefore make the training simpler since there is less to
learn. Therefore it seemed reasonable to include a ANN
that is trained with differenced samples on differenced targets.

Figure 12, contains the predictions on the Delft A4
network up to and including 4 time steps in the future. The
ANNs with deseasonalized data are included. Here we see
similar results.
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Fig. 12: Increasing sample skip, 64 neurons

Taken all the previous in account we plot the interesting
models from 1 sample skip upto 10 sample skips12:

Figure 13 shows that a model using univariate and upstream
data gives the best predictions up a sample skip of 4. From
there on the models that use deseasonalized data outperform
the other models. There seems to be a slight advantage for
the neural networks although the difference is marginal.

12Both UV UP and UV UP DIF are plotted with values from sample skips
1, 2, 3, 4, 5 and 10.
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Fig. 13: Increasing sample skip, 64 neurons

C. Multivariate data

This paper focuses on different ways to predict traffic,
in specific the vehicle flow rate, the rate at which vehicles
pass a measurement point in terms of vehicles per hour.
One way of improving the predictions could be the usage of
features other than the vehicle flow rate to predict the traffic.
In this paper the term multivariate data refers to the usage
of both the vehicle flow rate and the average vehicle speed
in kilometers an hour. The research question formulated to
address this possible improvement is as follows: What are
the effects of using multivariate time series instead of
univariate time series?

To answer this question, we can have a look at the
figures that were introduced earlier. Figure 11 and 12 show
that in both networks multivariate outperforms univariate
only when local data is used. This means that the usage
of multivariate data in this form, i.e. by flattening it into a
1d tensor, does not increase the performance and only adds
complexity to the learning process.
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D. Upstream data

One of the sub questions posed to answer the research
questions is the following: What are the effects of using
upstream data in downstream predictions? The test done on
both networks give the same answers to this question, namely
it improves the predictions. All of the tests and figures show
that neural networks using upstream data have the smallest
prediction error. As noted before this changes after a sample
skip of 3. Quick testing showed that using all the measurement
sites in the networks (both in the direction of the target
measurement site and the opposite measurement site) does not
improve the results, only the measurement sites in the same
direction (as used above) improve the results.
It is likely that also in this case more data is not always better.
The measurement sites used in this research lie relatively close
to another, it would be interesting to see to what distance
the measurement sites add value to the predictions. This is
however left for future research.

VI. FUTURE WORK

This study tries to explore the boundaries regarding to what
is possible with a two layered neural network in the field
of traffic forecasting. There are however a lot of things left
to explore. Regarding the tests done in this paper, it would
be nice to see if the same results hold for time series that
cover 1 minute or 5 minutes of data per time step. On top of
that it would be nice to see to what distance from the target
measurement site adding a measurement site, i.e. increasing
the amount of measurement sites in the upstream prediction,
adds to the prediction accuracy.
Regarding the usage of multivariate data, it would be
interesting to see if it does improve the predictions if for
example a CNN is used, so that the flattening of the data is
unnecessary.

VII. CONCLUSION

The testing results show that, when doing predictions using
time steps covering 10 minutes of traffic data, the optimal
amount of samples used as input is 4. Increasing the input
length after this does not result in better predictions, it even
slightly increases the prediction errors.

Moreover, it became clear that up to 4 or 5 time steps
forecasting in the future, the neural networks using upstream
data outperform both the ARIMA model with seasons and
the differenced ARIMA model. After this the differenced
ARIMA model is might be the better choice. The ANNs
using differenced data are able to match the results from the
differenced ARIMA model, but they take a lot more time to
train.

The data also show that the usage of upstream data
almost always decreases the prediction errors. The neural
networks with the smallest prediction errors are the neural
networks that use upstream data.
We see a different result with the usage of multivariate data.

We cannot draw any conclusions other than that the usage of
multivariate data by flattening a multivariate time series into
a 1d tensor does not reduce the prediction errors. This might
be different with for time series with smaller time steps. It
could however also be that the average vehicle speed is not
a good predictor for the vehicle flow rate. Although linear
regression analysis shows that with a p value of less than
0.001 that the usage of the average vehicle speed could add
significant information to the model. It certainly not excludes
the option that it does add information to the model.
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APPENDIX A: NETWORKS
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APPENDIX B: MEASUREMENT SITES
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