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Abstract

Heating, Ventilation and Air-Conditioning (HVAC) units in commercial buildings account
for a huge portion of global energy consumption. There is an ever growing need to optimize
the energy consumption of an HVAC system along with a system-of-subsystems entity that
must be accurately integrated and controlled by the building automation system to ensure
the occupants’ comfort with reduced energy consumption.

To achieve these goals, it is necessary that accurate models be developed that describe the
internal dynamics of the system to employ a satisfactory control architecture. This thesis
work aims at provide sufficiently accurate models which are able to estimate the temperature,
humidity and CO2 dynamics in an occupied room. A simplified linear model which describes
the dynamics was developed by reformulating the physical equations into a linear regression
format. This was followed by the employment of a suitable identification technique to estimate
the physical parameters of the system.

The second part of this thesis involves the formulation of a two level control architecture to
optimize comfort and energy. In this work we propose a model-based framework to maximize
the comfort of the occupants using the Predicted Mean Vote (PMV) index. In particular,
the set-point control is based on a predictive controller based on a joint optimization of PMV
and energy consumption; the low-level Proportional Integral HVAC controllers are autotuned
based on simulations of a thermal model. A simulation based validation via a three room test
case is presented: the results show the potential for good temperature tracking with a high
degree of comfort while also reducing overall energy consumption.
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“A learning experience is one of those things that says, ’You know that thing you
just did? Don’t do that.”
— Douglas Adams, The Salmon of Doubt
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Chapter 1

Introduction

Heating, Ventilation and Air-Conditioning (HVAC) systems, widely used in residential and
commercial buildings, are responsible for a large part of the global energy consumption [7].
According to the EC’s Joint Research Center, Institute for Energy (2009), HVAC systems in
the European Union member states were estimated to account for approximately 313 TWh
of electricity use in 2007, about 11% of the total 2800 TWh consumed in Europe that year
[8]. Energy savings in HVAC systems was therefore identified as a key element to fulfill the
target of reducing energy consumption by 20% by 2020. Increased attention has been focused
on the reduction of HVAC energy costs while catering to comfort requirements [9] in the form
of more efficient equipment [10, 11, 12], novel approaches to HVAC energy storage [13] or
supervisory control techniques [14, 15, 16].

In this chapter, we introduce the typical modelling and control techniques employed in state of
the art HVAC systems and describe its limitations. We organize this chapter as follows: Sec-
tion 1-1 gives a brief introduction to climate control in conventional office buildings. Section
1-2 presents the state-of-the-art research that exist in HVAC modelling and control. Sec-
tion 1-3 summarizes the research objectives and contributions of this MSc thesis and finally
Section 1-4 concludes this chapter by presenting the outline of the proposed work.

1-1 Climate control in office buildings - an introduction

Occupancy based control of HVAC systems has gained increased attention over the coming
years. This tends to ensure that the user is considered as a part of the control loop rather
than an external factor which influences HVAC control, with an example demonstrated in
1-2.

Out of these factors shown in Figure 1-2, Temperature, Humidity and CO2 are important
thermodynamic variables in commercial air conditioning. On a large scale, they influence
the rate of biochemical reactions, and thereby contribute to overall comfort of the occupant.
In general HVAC applications and literature, modelling and control is mostly based around
controlling the indoor temperature of the room while ignoring the control of humidity and
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2 Introduction

Figure 1-1: Breakdown of energy consumption in commercial buildings [1]

CO2, or in general, assuming that they would be regulated or stay within predetermined
bounds. This could lead to a suboptimal comfort level of the occupants. This necessitates a
need to decouple and formulate a model structure these dynamics individually in an occupant
zone. Once, decoupling for this is achieved, it would be possible to use any of the widely
available control strategies to ensure that these can be controlled effectively.

1-2 Testbeds - Rijkswaterstaat and 3mE, TU Delft - A brief overview

The models outlined in this thesis were initially developed for the Rijskwaterstaat building
located in Rijswijk as a part of the Program Green Technologies (PGT 3.0) to understand
occupant behaviour and optimize the HVAC system for enhanced control.

The testbed is equipped with a Variable Air Volume (VAV) based HVAC system which takes
care of the heating and cooling loads for all the occupants in the building. All occupant rooms
and common areas are equipped with a inidividual VAV boxes to control each of the thermal
zones according to the occupant’s demands. Moreover, as a part of the research program, all
rooms in the seventh floor of the testbed is equipped with temperature, humidity, CO2 and
occupancy sensors. The current control strategy in the building consists of PI controllers to
control all the components within the HVAC system.

Figures 1-4 and 1-5 show a simplified schematic of a single zone VAV system, similar to the one
emloyed in the Rijkswaterstaat testbed. In this system, exhaust air from the room is pumped
out using a Return air pump. A portion of this is ventilated out to the external atmosphere
and another portion is mixed with inlet air from the atmosphere. The percentage of return air
that is mixed with the incoming outside is decided based on the temperature of this return

Siva Subramanian Swaminathan Master of Science Thesis



1-2 Testbeds - Rijkswaterstaat and 3mE, TU Delft - A brief overview 3

Figure 1-2: Zone level comfort control architecture [2]

Figure 1-3: The Rijkswaterstaat Rijswijk Testbed

air and are regulated using dampers. Depending on the demand and current conditions
within the room, air is heated or cooled using heating or cooling coils respectively. These
heating or cooling coils are usually gas powered although the current trend is increasingly
shifting towards electric heaters. Once the air has been sufficiently heated/cooled, it is sent
in to the room where the flow is finally regulated using a VAV unit. The air flow regulation
of the VAV is ultimately dependent upon the internal temperature of the room and the
temperature differential between the current set-point and instantaneous room temperature.
Further detailed information about the working of VAV HVAC systems is detailed in the
Appendix.

For the sake of validation of these models and since there was unavailability of data from
Rijkswaterstaat, some of the proposed models in this thesis are evaluated using data from
the 3mE (Faculty Mechanical, Maritime and Materials Engineering) building. The classroom
facility in the building consists of a setup similar to the testbed available in Rijswijk, with the

Master of Science Thesis Siva Subramanian Swaminathan



4 Introduction

Figure 1-4: Single Zone VAV System -Air Handling Unit level [3]

Figure 1-5: Single Zone VAV System -Room level [3]

exception that there are no CO2, humidity and occupancy data available and different physical
characteristics. The control system architecture and Building Management System (BMS) for
the HVAC system at 3mE is provided by Johnson Controls, with a sample interface as shown
in Figure 1-6. The temperature dynamics models that were developed for the Rijkswaterstaat
testbed were retrofitted and modified according to the measurements available in TU Delft
and shall be clearly detailed in the following chapters.

Siva Subramanian Swaminathan Master of Science Thesis



1-3 State of the art 5

Room Temperature, Hall L

HVAC Inlet Air Temperature
VAV Hall L Inlet Open %

HVAC Inlet Air Pressure

HVAC Outlet Temperature

Figure 1-6: Screen shot of Building Management System interface

1-3 State of the art

1-3-1 Modelling techniques

While there exists extensive literature on the modelling of HVAC systems, they are almost
always based on the on modelling of thermal dynamics of the system. However, dynamics
of other variables such as humidity and CO2, factors that are almost as equally important
as temperature, are largely ignored or are considered as a band that is assumed not to be
violated.

Modelling and identification of general HVAC dynamics have been discussed extensively in
literature. Most of these fall under 3 main categories: black box modelling, where no physical
information of the physics of the system is available; white box modelling, where complete
information of the physics of the system is available; grey box modelling, which falls in
between these two approaches and the physical parameters are obtained using appropriate
system identification techniques.

HVAC system generally comprise of multiple subsystems, such as boilers, chillers, cooling
and heating coils, pumps, Air Handling Units (AHUs), Variable Air Volume (VAV) boxes,
pipes and ducts. Due to inherent complexities in the overall modelling of these subsystems,
designers generally tend to model these subsystems individually, and overall, using black box
techniques. With the advent of powerful computing tools and techniques such as machine
learning, increasing amount of research is focused on data mining with techniques such as
Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs) [17] [18] [19]. They
also have the ability to model complex non-linear relationships between the inputs and the
outputs, mimicking the kind of relationships that exist in the real world. The other pri-
mary model structure used in blackbox modelling comes under the family of multavariable
regression, under which there exists Autoregressive exogenous (ARX), Autoregressive moving
average exogenous (ARMAX), Autoregressive integrated moving average, Finite Impulse Re-
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6 Introduction

sponse (FIR), Box Jenkins (BJ) and Output Error (OE) models. [20] compared these model
structures to identify the humidity and temperature models of a building over various seasons,
where the BJ model outperformed the ARX and ARMAX model.

Recent advancements in identification and modelling techniques has resulted in users mod-
elling these systems with a greybox framework. Greybox models typically provide better
accuracy than whitebox models and also require lesser datapoints than blackbox models.
However, since these models require knowledge of physics of the building and measurement
datasets, they are generally the hardest to be developed out of the three. The most commonly
used framework for greybox modelling is the Resistance Capacitance (RC) method where the
physical parameters of the building such as thermal resistance and conductance and made
analogous to an electrical circuit. [21] developed a RC based modelling structure for a 3 room
test, modelling the physical parameters of the building such as wall temperature and window
temperature as states of the system. [22] developed a lumped capacitance model of a room
using energy balance equations. [23] extended this framework to a polynomial regression
with an ARMAX structure to describe the room temperature of the model. [24] extended
this modelling framework even further to develop mass balance equations for the description
of humidity and CO2 dynamics. Both these works converted a continuous time model de-
veloped using thermodynamics equations and discretized them to create a linear regression
model which was then identified using suitable techniques. These structures gave an intuitive
understanding of the physics of the system while also providing the advantage that existing
identification structures could be used to identify physical parameters.

1-3-2 Control techniques

The second part of this thesis proposed an integrated control framework which can be applied
the models developed in the first half to have a control system that is both energy efficient,
and for the sake of this work, centered around the user.

Typically, thermal comfort is only defined through a band of temperature that is not to
be violated. This generally means that the control input tries to track the lower or upper
bounds of this band to ensure other energy minimization and other applicable objectives
are optimized. However, as thermal comfort of the users is season dependent and highly
subjective, recent research has focused towards quantifying this comfort according to the
physical characteristics of both the occupants and their surroundings. The most widely used
among these are the Adaptive Comfort Model [25] and the Predicted Mean Vote (PMV) [26],
where the latter is more suited in the absence of natural ventilation.

Furthermore, while there exist many intelligent control algorithms, these require the deploy-
ment of a completely new control system capable of handling their computational demands,
thereby increasing overhead costs. However, most of the HVAC low-level controllers commis-
sioned in the field today, including the test case in this paper are of Proportional-Integral-
Derivative (PID) type. Therefore, there exists a need to integrate modern controllers with ex-
isting PID controllers to ensure that the control objectives are met. Much of current research
in Building Management Systems (BMS) have turned towards Model Predictive Controllers
(MPC) for optimal control of building systems. MPCs generally tend to be well posed for such
problems: they can handle external disturbances [27]; can handle both linear and nonlinear
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1-4 Research questions 7

models [28] [29], with multiple constraints. This structure allows the facilitation of thermal
comfort indices into the cost function along with energy minimization.

1-4 Research questions

Based on the above state of the art, it is clear that there exist various way to model and
control HVAC systems in commercial buildings. The main criteria that were used to choose
an approach in this thesis are:

• Scalability: The modelling and control technique employed should be easily scalable to
multiple rooms.

• Low order: The model developed should be linear and low order to facilitate control
design while not at the expense of reducing the overall accuracy of the prediction.

• Occupant-oriented design: The controller should be oriented around maximizing com-
fort of the user while also decreasing the overall energy consumption of the HVAC
system.

With these considerations and available literature, the following research questions were posed
as a statement of this thesis:

1. Is it possible to reformulate the nonlinear dynamics of temperature, humidity and CO2
in a linear way so that linear identification techniques can be implemented, sometimes
even in the absence of input measurements?

2. Can a control strategy be developed based on the developed models whose control action
is based on the external weather conditions and thermal comfort of the users?

3. Can the control strategy be customized for occupant in each room so that rooms are
heated/cooled only when the occupant is present in the room?

1-5 Outline of the thesis

In the forthcoming chapters, various techniques possible to model and control building systems
will be discussed.

Chapter 2 discusses the physics that describes the dynamical evolution of the variables and
formulates a linear model using mass balance and energy balance equations.

Chapter 3 describes the ARMAX based greybox identification procedure that was employed
in obtaining the parameters of the temperature dynamics of the system.

Chapter 4 discusses the concept of an integrated control framework and presents the simula-
tion results.

Chapter 5 presents conclusions from the research that was carried out and future recommen-
dations on this work.

Master of Science Thesis Siva Subramanian Swaminathan
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Chapter 2

Occupant-oriented modelling of
building dynamics

This chapter is organized as follows, Section 2-1 discusses the assumptions and simplifications
that were considered for modelling the dynamics. Section 2-2 gives a brief introduction to
the physical principles that govern thermal modelling of building. Section 2-3 details the
modelling approach for temperature dynamics. Section 2-4 discusses the modelling approach
for humidity dynamics. Section 2-5 discusses the modelling approach for CO2 dynamics.
Section 2-5 summarizes and concludes the results from the chapter and sets the base for the
identification procedure for the forthcoming chapter.

2-1 Modelling Assumptions and list of symbols used for modelling

Before proceeding to develop the thermodynamic equations for the indoor dynamics of the
building, there are a few assumptions that have been for modelling each of the dynamics.
These are detailed here:

1. The air in the room is perfectly mixed and the temperature, humidity and CO2 values
that would be measured represent the average of the whole room.

2. The heat conductivity of the wall and window, kwa and kwd are constant.

3. Under steady-state conditions, the heat transfer through the wall is only along one
dimension.

4. The convection on both sides of the wall is equal to the conduction through the surface
of the wall.

5. The exchange of air between the inlet, outlet and the room under steady state conditions
is isobaric. In other words, the air mass in the room does not change over time.

Master of Science Thesis Siva Subramanian Swaminathan



10 Occupant-oriented modelling of building dynamics

6. Under steady state-conditions, diffusion of water vapour through building components
such as walls and windows is negligible compared to the change that is caused due to
fresh air inlet.

7. There is no absorption of CO2 from any of the elements in the room, including walls,
windows and furniture.

For brevity, the list of symbols used in the following section are detailed in Table 2-1.

Table 2-1: List of symbols used for thermodynamical modelling

Symbol Description
T Temperature
u mass flow rate of fresh air (kg/s)
c Specific heat capacity (kJ/kgK)
ρ Density (kg/m3)
V Volume (m3)
h Heat transfer coefficient (W/m2.K)
A Area (m2)
q Thermal load
Cp Thermal Mass of the room( J/K)
R Thermal resistance (K/W )
Subscripts Description
wd window
wa wall
rm room
s supply air
a air
w water
i Index for room number

2-2 Principles of building thermal modelling

Thermal Mass or Thermal Capacitance In building terminology, thermal mass is known
as the property of the mass of a given building which allows it to store heat, thereby pre-
venting the building from experiencing huge temperature fluctuations. This is analogous to
be behavior of a capacitor in an electrical circuit. It is typically measured in units of J/K.
The thermal mass of a body is given by the equation

Cp = ρV c

where, ρ represents the density of the body, V represents the volume occupied by the body
and c is the specific heat capacity of the material.

Thermal Resistance Thermal resistance is a heat property and a measurement of a temper-
ature difference by which an object or material resists a heat flow. It is typically measured in
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2-2 Principles of building thermal modelling 11

units of K/W . This is analogous to the behaviour of a resistor in an electrical circuit. The
analog of the heat flow, q is current, and the analog of the temperature difference, T1 − T2
, is voltage difference. With this complete thermal-electrical analogy, Thermal resistance R
can be defined as ,

R = T1 − T2
q

This is equivalent to the result that is derived using Fourier’s Law of Heat Conduction, where,

Rcond = L

kA

where L is the length of the material, k is the thermal conductivity of the material and A is
the cross sectional area perpendicular to the direction of heat flow and Rcond is the resistance
due to conduction.
This concept of analogy of thermal resistance for conductance can also be extended to heat
convection at a surface through Newton’s law of cooling, which states that:

q = hA(Ts − T∞)

With the analogy to thermal potential modelling, the thermal resistance due to convection
can be defined as,

Rconv = Ts − T∞
q

= 1
hA

where h is the heat transfer coefficient.

2-2-1 Thermal modelling applied to simplified wall

A typical heat transfer profile from the external environment to a room consists of both
convection and conduction as indicated in the Figure 2-1. As the thermal resistances are in
series, the total resistance,Rtot can be expressed as,

Rtot = 1
h1A

+ 1
h2A

+ L

kA
(2-1)

The heat transfer due to convection in medium 1 is given by the equation,

qx = T∞,1 − Ts,1(h1A)

Similarly, heat transfer in medium 2 is given by,

qx = Ts,2 − T∞,2(h2A)

and heat conduction due to the wall surface is,

qx = kA

L
(Ts,1 − Ts,2)

Using the above results and expressing heat transfer in terms of overall temperature difference
and the total Thermal Resistance,Rtot, the expression can be obtained as:

qx = T∞,1 − T∞,2
Rtot

(2-2)
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12 Occupant-oriented modelling of building dynamics

Figure 2-1: Heat transfer through a wall [4]

2-3 Modelling the temperature dynamics

Transmission and storage of heat constitute the heat dynamic properties of the building. The
ability of a building element to store energy is proportional to its specific heat capacity. Apart
from acting as a storage element, building walls and windows also act as a transmitter where
they transfer heat between the room and the external environment. At the room level, the
sources and sinks that affect the evolution of temperature in a room are quantified, as shown
in Figure 2-2, the energy balance in steady state can be expressed as:

Cp
dTrmi

dt
= urmica(Ts − Trmi)︸ ︷︷ ︸

Cooling Load due to HVAC

+hwaiAwai(Twai − Trmi)︸ ︷︷ ︸
Conduction through walls

+ hwdi
Awdi

(Twdi
− Trmi)︸ ︷︷ ︸

Conduction through windows

+

qsol︸︷︷︸
solar radiation

+ qint︸︷︷︸
Occupants and Equipment

(2-3)

From equation 2-3, Twa and Twd constitute unmeasurable variables.

The temperature of these surfaces can be estimated by a combination of conductive and
conductive heat transfer equations and can be expressed as:

Twa = Trm + Tout − Trm
RwaAwahrm1

(2-4)

where hrm1 and hout1 are the convective heat transfer coefficient of the inner wall and outer
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solar radiation Qs

Figure 2-2: Schematic of Heat gains contributing to temperature change in a room

wall surface respectively and

Rwa = 1
hrm1Awa

+ l

kwaAwa
+ 1
hout1Awa

Similarly the window temperature Twd can be expressed as,

Twd = Trm + Tout − Trm
RwdAwdhwd

(2-5)

where hrm2 and hout2 are the convective heat transfer coefficient of the inner window and
outer window surface respectively and

Rwd = 1
hrm2Awd

+ l

kwdAwd
+ 1
hout2Awd

Now that these unmeasurable variables have been defined, Equation 2-3 now reads as,

dTrm
dt

= K1Trm +K2Ts +K3Tout +K4(qsol + qint) (2-6)

where,

K1 = −1(
urmica

Cp
+ 1

RwaCp
+ Rwd

Cp

)
K2 = urmica

Cp

K3 = 1
RwaCp

+ 1
RwdCp

K4 = 1
Cp

From 2-6, it can be seen that the term K1 contains the control control input is multiplied by
the state which results in the formation of a bilinear system. This continuous-time bilinear
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14 Occupant-oriented modelling of building dynamics

model is discretized with ∆t = 10 min using a Backward Euler approach, which is well suited
for systems with low sampling rates, such as HVAC systems [30]. For the testbed available
in 3mE, it was not possible to obtain supply air flow rate values. Therefore, it is proposed
to ’hide’ this input air flow rate term into the constant K1. Once K1 is computed and the
states are known, urmi can be derived using a simple inversion, under the conditions [31]:

uminrmi
(k)(Ts(k)− Trmi(k)) ≤ K1(Ts(k)− Trmi(k)) ≤ umaxrmi

(k)(Ts(k)− Trmi(k)) (2-7)

With these simplifications, the discrete time model can be written as:

Trm(k + 1)− a1Trm(k) = b1Ts(k + 1) + b2Tout(k + 1) + b3(qs(k + 1) + qint(k + 1)) (2-8)

where,

a1 = 1
1−∆tK1

b1 = ∆tK2
1−∆tK1

b2 = ∆tK3
1−∆tK1

b3 = ∆tK4
1−∆tK1

2-4 Modelling of the CO2 dynamics of the building

The CO2 concentration in a room can be computed using 2 approaches; the first approach
being a direct white box based model for the ideal condition where there is assumed to be no
infiltration from neighbouring conditions and the second one is a system identification based
approach assuming non-ideal conditions. Please note that unlike other sections in this report,
in this section, the symbol C refers to CO2 concentration and not thermal mass.

In the development of physics based HVAC system models, dynamic models are commonly
utilized for the slow moving temperature and humidity processes (e.g., zone temperature
dynamics and zone humidity dynamics), and static models are utilized for the fast moving
dynamics and energy consumption (fan or pump energy consumption). However, there exists
very few dynamic modelling strategies to model the CO2 dynamics in a room. In this section,
a simplified mass balance based equation is developed to compute the CO2 dynamics within
a room.

As was the strategy with the previous section, the sources for the change in CO2 content in
a room are outlined. The main source of CO2 is through the fresh air from the VAV box.
Another main source of CO2 occupancy is through the respiration of the users present in the
room. This is depicted in Figure 2-3.

Modelling CO2 dynamics is challenging due to the inherent complexity of air dynamics.
However, under the consideration that the CO2 sensor is placed at the level of the head of a
seated occupant, this could give a sufficiently good response of the dynamics of CO2 centered
around the user. This positioning is important to measure the exact CO2 level at the user
level since a warm breath from the occupant acts as a bubble of gas that rises to the ceiling.
This is because CO2 is more buoyant than cooler ambient air [5]. This internal difference in
the CO2 levels within a room is highlighted in Figure 2-4.

With these considerations, under normal HVAC operation the CO2 evolution can be described
as,
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Figure 2-3: Schematic of sources and sinks for CO2 in an office room

Figure 2-4: Evolution of CO2 within a room [5]

dCrm
dt

= urmi(Cs − Crm)︸ ︷︷ ︸
due to ventilation

+ Cocc︸︷︷︸
occupants

+uout(Cout − Crm)︸ ︷︷ ︸
window infiltration

+ e︸︷︷︸
infiltration from nearby zones

(2-9)

where Crm is the CO2 concentration in the room, Cs is the CO2 concentration of inlet air,
Cout is the CO2 concentration of outside air, uout is the mass flow rate of outside air into
the room, e accounts for infilitration through nearby zones, and Cocc is CO2 generated by
occupants of the room. A simplified equation for CO2 generated by occupants is given as:

Cocc(t) = n(t)Cn(t)

with n(t) as the number of occupants at a given time instant and Cn as the exhalation rate
per occupant.
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16 Occupant-oriented modelling of building dynamics

2-4-1 White box modelling of CO2 dynamics

In this section, a fixed amount of CO2 exhalation of each occupant is assumed, considering
standard office conditions. The primary factors which affect the rate of CO2 generation by
an average human are dependent on size, diet, level of physical activity. According to [32],
the average rate of an occupant CO2 perspiration can be estimated by first estimating the
average oxygen consumption VO2 .
This is done by:

VO2 = 0.00276AdM
0.23RQ+ 0.77

where Ad is DuBois surface area, M is the metabolic rate per unit of surface area, and RQ
is the respiratory quotient. Once this is obtained, the relationship between CO2 generation
rate and O2 consumption rate is given by:

Cn = RQ.VO2 (2-10)

Based on this information, the average CO2 generation rate corresponding to an average adult
can be estimated, with Ad = 1.8m2, engaged on light activity in an indoor office environment,
with M = 69.78W/m2 and average respiratory quotient of 0.83, thereby generating an CO2
at the rate of 0.0052L/s (0.0052kg/s). This simplifies the model procedure since the volume
of the room is fixed and using occupancy sensors, the amount of CO2 generated per person
can be determined and the model described in 2-11 can be obtained.

dCrm
dt

= urmi(Cs − Crm)︸ ︷︷ ︸
due to ventilation

+ 0.0052n︸ ︷︷ ︸
occupants

(2-11)

2-4-2 Greybox modelling of CO2 dynamics and occupancy estimation

The modelling technique in this section is motivated by the work done in [24]. The whitebox
model in the previous section generate models of sufficient accuracy. This approach, however,
does come with a few limitations since the metabolic rates and physical characteristics are
generalized. This approach also assumes that the occupancy status is always known, which
might not always be the case in most buildings. Therefore, this work also incorporates a
greybox modelling structure to estimate the dynamics of CO2 evolution and also estimate
occupancy status based on this measurements.
To formulate a linear model suitable for system identification, Equation 2-9 is discretized
using Implicit Euler method to obtain:

Crm(k + 1) = Crm(k) + ∆t
(
urmi(Cs(k + 1)− Crm(k + 1))+

N(k + 1)Cn + uout(Cout(k + 1)− Crm(k + 1)) + e(k + 1)
)

Simplifying this expression, the discrete time dynamics for CO2 in a room is given by:

Crm(k + 1) = G1Crm(k) +G2Cs(k + 1) +G3Cout(k + 1) +G4n(k + 1) +G5e(k + 1) (2-12)
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2-5 Modelling of the humidity dynamics of the building 17

where,

G1 = 1
1 + ∆t(urmi + uout)

G2 = ∆turmi

1 + ∆t(urmi + uout)

G3 = ∆tuout
1 + ∆t(urmi + uout)

G4 = ∆tCn
1 + ∆t(urmi + uout)

G5 = ∆t
1 + ∆t(urmi + uout)

The model described in Equation 2-12 can be estimated using a suitable identification tech-
nique such as Prediction Error Method (PEM) or Maximum Likelihood Estimation (MLE).
With the identified model, a simple inversion can be performed on Equation 2-12 to estimate
the number of occupants n using the equation:

dn(k + 1)e ≈ Crm(k + 1)−G1Crm(k)−G2Cs(k + 1)−G3Cout(k + 1)−G5e(k)
G4

(2-13)

With this framework for occupancy estimation, it is possible to design a framework for De-
mand Controlled Ventilation (DCV) so that the cooling/heating strategy of the room can be
decided based on the occupancy status of the room.

2-5 Modelling of the humidity dynamics of the building

As with the modelling strategy for temperature and CO2, the strategy can be duplicated to
modelling the humidity dynamics of the room as well. The internal sources for the rate of
change in humidity are the Cooling and Heating air from the Variable Air Volume (VAV) box
of the HVAC and moisture generated from humans and devices present in the room. The
external sources are outside air and air from corridor and adjacent rooms.
As in the previous section, mass balance equations are used to obtain the model for Humidity
as shown in 2-14:

dHrm

dt
= urm(Hs −Hrm) + uout(Hout −Hrm) + δHd (2-14)

where where Hrm is the humidity in the room, Hs is the humidity of inlet air, Hout is the
humidity of outside air and δHd

is modelled as a disturbance which can be attributed secondary
sources of moisture such as water supplies, infiltration from neighbouring zones present in the
room and human respiration.
Post discretization, the humidity dynamics of the room can be written as:

Hrm(k + 1) = K1Hrm(k) +K2Hs(k + 1) +K3Hout(k + 1) +K4δHd(n+ 1) (2-15)

where,

K1 = 1
1 + ∆t(urm + uout)

K2 = ∆turm
1 + ∆t(urm + uout)

K3 = ∆tuout
1 + ∆t(urm + uout)

K4 = 1
1 + ∆t(urm + uout)
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18 Occupant-oriented modelling of building dynamics

2-6 Summary

Strategies capable of estimating the dynamics of the room temperature, humidity, CO2 and
occupancy estimation have been constructed in this chapter. Reformulating the system dy-
namics in a regression format has allowed the use of well defined system identification tools,
with potential for realizing accurate models. Decoupling of these dynamics has also ensured
that these variables can be controlled individually.
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Chapter 3

Identification and validation of
dynamic models

This section deals with the experiments to identify and validate the proposed models. Sec-
tion 3-1 deals with the description of the model structure and Identification methods that
can potentially be used for the graybox identification. Section 3-3 discusses some of the re-
sults achieved during the experimental validation and comparison with standard identification
methods.

3-1 Model structure and Identification methods

To realize the objectives proposed in Chapter 2, it is imperative that a suitable model structure
be chosen, in such a way that this structure is flexible enough to incorporate both deterministic
dynamics and stochastic dynamics. Available methods and techniques that are currently in
use will be discussed in this section.

One of the most common methods to describe a discrete system is by using the Linear Poly-
nomial model. This is generally represented by the equation:

y(k) = G(z, θ)u(k) +H(z, θ)e(k) (3-1)

Where u(k) and y(k) are the inputs and outputs of the system respectively and e(k) is the
disturbance (modelled as a zero mean, white noise). G(z, θ) and H(z, θ) represent the transfer
functions of the deterministic and stochastic parts of the system respectively. z−1 represents
a backward shift operator, that is, it defines the number of the delay samples between the
input and the output signals.

Furthermore, we can define the transfer functions G and H as:
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20 Identification and validation of dynamic models

G(z, θ) = B(z, θ)
A(z, θ)F (z, θ) (3-2)

H(z, θ) = C(z, θ)
A(z, θ)D(z, θ) (3-3)

Here, the vector θ is the set of parameters that need to be identified. Thus, writing the system
in a more general form, we can express it as,

A(z)y(k) = B(z)
F (z)u(k − n) + C(z)

D(z)e(k) (3-4)

Using this general polynomial equation and setting one or more of A(z), C(z), D(z) and F (z)
to 1, we obtain well known model structures such as ARX (Autoregressive with exogenous
terms), ARMAX (Autoregressive Moving Average with exogenous terms), Box-Jenkins model
and output error models.

3-1-1 ARMAX Models

Thus, the equation reduces to:

A(z)y(k) = B(z)u(k − n) + C(z)e(k) (3-5)

The regression involves finding the co-efficients A(z), B(z) and C(z), such that the residual er-
ror e(k) contains only a Gaussian white noise of minimal variance σ2

e . Traditionally, ARMAX
based model have always fallen into the category of Black box modelling techniques. Since we
have already framed the dynamics of the systems developed in Equations 2-8,2-12 and 2-15
in the format given in 3-5 with n = 1, this system is suitable for ARMAX identification.

To ensure that the model is estimated correctly, we identify the parameters using PEM. For a
linear model given in the form 3-4, PEM uses a numerical optimization to minimize the cost
function, a weighted norm of the prediction error, defined as follows for scalar outputs. The
one-step prediction ŷ[k|k − 1] and prediction error are given as:

ŷ[k|k − 1] =
∞∑
j=0

g̃(n)u(k − n) +
∞∑
j=1

h̃(n)y(k − n)

ε[k|k − 1] = y(k)− ŷ(k|k − 1) = H−1(z)(y(k)−G(z)u(k))
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3-2 Experimental Setup 21

Identification problem

Given Zn = y(k), u(k)]N−1
k=0 , identify the values of the polynomials (A,B,C,D, F ) and

variance σ2
e .

3-2 Experimental Setup

Experiments to evaluate the proposed models were done in a test-bed setup in Rooms I, K and
M of the Faculty of Mechanical, Maritime and Materials engineering in TU Delft Campus.
Table 3-1 enlists the physical characteristics of each of the rooms that were evaluated. All
physical dimensions for the testbed were either obtained manually or with consultation from
facility management. A floor plan with the rooms used for system identification is given in
Figure 3-1.

Table 3-1: Physical characteristics of the room

Room Name Volume (m3) Window Area (m2)
I 396 65
K 360 57
M 396 65

All data for the simulations were obtained from the building management system provided by
Johnson Controls, with a sample interface shown in Figure 1-6. The building is equipped with
a VAV based HVAC system, where each VAV box controls the zone temperature individually.
Temperature sensors are located on the ceiling of the room, and there are individual sensors
placed in the AHU from where measurements are sampled. Data was measured from April
5 for a period of 4 weeks and sampled at a fixed rate of 10 minutes from the rooms. The
outside temperature and solar radiation was retrieved from a weather station in the TU Delft
campus.

From 2-8, we can easily deduce that the dynamics of system has a MISO ARMAX structure.
For the validation of the experiments, we shall consider two scenarios to validate the identified
models. This is because the model developed 2-8 does not considered the effect of neighbouring
room since it was initially developed keeping a concrete wall in mind. In that case, due to
extremely high thermal mass, it was considered that the effect of the neighbouring zones
would not significantly affect the room temperature. However, since the 3mE testbed consists
of partition walls with no concrete in between, it is believed that the thermal resistance is
significantly higher thereby the room temperature would be far more sensitive to nearby
temperature changes. The list of inputs and outputs considered for each of the scenarios are
described in Table 3-2.

• Case 1: Considering the temperature of neighbouring room as an input to the model
(high thermal mass of walls)

• Case 2: Ignoring the effects of the temperature of the neighbouring room (low thermal
mass of walls) For this case, the thermodynamical equation describing heat transfer
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22 Identification and validation of dynamic models

Figure 3-1: Floor plan of building with rooms used for identification highlighted in blue

is a slight modification of the original equation given in Equation 2-8. The modified
equation incorporating heat transfer due to neighbouring zone is given as:

Cp
dTrmi

dt
= urmica(Ts − Trmi)︸ ︷︷ ︸

Cooling Load due to HVAC

+ Rwao(Touti − Trmi)︸ ︷︷ ︸
Conduction through building walls/windows

+

Rwaj (Tj − Trmi)︸ ︷︷ ︸
Conduction through neighbouring zone

+ qsol︸︷︷︸
solar radiation

+ qint︸︷︷︸
Occupants and Equipment

(3-6)

where Tj is the temperature of the neighbouring zone, Rwao is combined the thermal
resistance of the wall and window facing the outside and Rwaj is the thermal resistance
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3-3 Experimental results 23

of the wall facing the neighbouring zone.
The discretized form of this can be written as:

Trm(k+1)−a1Trm(k) = b1Ts(k+1)+b2Tout(k+1)+b3Tj(k+1)+b4(qs(k+1)+qint(k+1))
(3-7)

a1 = 1
1 + ∆t(urmica

Cp
+ 1

Rwao
+ 1

RjCp
)

b1 = ∆turmica

Cp

(
1 + ∆t(urmica

Cp
+ 1

RwaoCp
+ 1

RjCp
)
)

b2 = 1

RwaoCp

(
1 + ∆t(urmica

Cp
+ 1

RwaoCp
+ 1

RjCp
)
)

b3 = 1

RjCp

(
1 + ∆t(urmica

Cp
+ 1

RwaoCp
+ 1

RjCp
)
)

b4 = 1

Cp

(
1 + ∆t(urmica

Cp
+ 1

Rwao
+ 1

RjCp
)
)

Table 3-2: Inputs and outputs for case based scenarios

Scenario Inputs Outputs
Case 1 Tout, Ts, qsol Trm
Case 2 Tout, Ts, Tj , qsol Trm

The obtained data was generally unfit for estimation due to missing samples in a few intervals
and mismatch of timestamps. These were therefore pre-processed using interpolation and data
resampling to ensure all data had the same timestamps. Using the above datasets, a series of
simulations was run on MATLAB to determine the validity of the structure, the number of
data points required for a good fit and also improvements over the obtained model. Figure
3-2 shows the temperature input variables that were used for identification process and the
3-3 shows the solar irradiance values that were used.

The results from Figures 3-4 and 3-5 compare these 2 models. It confirms our suspicion that
the the room temperature of the neighbouring zones (corridor and neighbouring classrooms
in this case) significantly affect the temperature of the modelled zone. Therefore, for the rest
of this chapter, the models with heat transfer due to neighbouring walls included shall be
considered.

3-3 Experimental results

Assuming that the parameterized model is suitably well defined, the k-step ahead prediction
error, for a reasonable value of k is nothing but a white noise sequence. To simplify the

Master of Science Thesis Siva Subramanian Swaminathan



24 Identification and validation of dynamic models

1 2 3 4 5 6 7 8 9 10 11

Training data time (in days)

0

5

10

15

20

25

30
T

em
p

er
at

u
re

 (
in

 d
eg

 C
)

Input temperature values for identification

Neighbouring Zone temperature T
z

Outside air temperature T
out

Supply air temperature T
s

Figure 3-2: Input Temperature variables used for identification
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Figure 3-3: Solar Irradiance values used for identification

analysis, only ARX type models are considered (Equation 3-5 with C=A), to ensure that only
the deterministic part of the equation are estimated. This also ensures that the prediction
error is linear in parameters. To validate the model, 2 metrics to evaluate the accuracy of
prediction are used: mean squared error (MSE) of predicted data and variance accounted for
(VAF) of estimated data. These can be defined as:

MSE = 1
n

n∑
i=1

(Trmi − T ∗rmi
)2

VAF =
(

1− var(Trmi − T̂rmi)
var(Trmi)

)
· 100%
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Figure 3-4: Model output for Case 1, Tj not considered as an input
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Figure 3-5: Model output for Case 2, Tj considered as an input

where Trmi , T ∗rmi
and T̂rmi are the measured, predicted and estimated values of room tem-

perature respectively and var denotes variance.

As a measure to select the minimum size of training data to ensure a good fit while also
ensuring that the data is not overfitted. The VAF of model output is computed for a validation
dataset was used of 2000 samples (≈ 14 days). The training dataset size which corresponds
to maximum VAFs is selected. An indicative plot showing the evolution of VAF with the
training days for test case Room M is given in Figure 3-6.

From Figure 3-6 we notice that a good VAF after 1100 (≈ 9 days) samples, peaking at ≈ 85%
around 1300 samples (≈ 11 days). Figures 3-7 and 3-8 are 2 indicative plots which show
the validation of the rest of the models that were considered for identification. In general,
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Figure 3-6: Evolution of VAF with training samples

the results of the identification indicate a good fit overall and the estimated model is able to
capture the dynamics of the overall room.
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Figure 3-7: Comparison of Measured and Estimated Response - Room I

Table 3-5 summarizes the results of the identification problems along with validation pa-
rameters and length of validation and training data. The overall Variance Accounted For
(VAF) varies between 69 and 83 percent, which indicates a reasonably good prediction of
the model. Even during ’set-back’ times, i.e. when temperature setpoints are lowered during
night or in the weekend, the system tracks the model dynamics quite well. This is inspite
of the presence of stochastic disturbances such as use of radiators (whose temperature could
not be monitored), occasional opening of windows, infiltration through doors and heat gen-
erated internally through occupants, indicating the effectiveness of the discrete time system
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Figure 3-8: Comparison of Measured and Estimated - Room K

identification approach.

Table 3-3: Results obtained after System Identification

Room Name MSE VAF (%)
I 0.0083 80.27
K 0.0016 69.41
M 0.0090 83.24

The obtained coefficients from the system identification procedure for system given in Equa-
tion 2-8 are shown in Table 3-4. The high values of the identified parameter due to neighbour-
ing zones, b3, indicates that the neighbouring zones have a large impact on the temperature
of the rooms. This means that these zones have very low thermal mass, thereby possessing
poor thermal insulation and is easily susceptible to temperature fluctuations from outside.

Table 3-4: Identified parameters from Equation 3-7 for Individual rooms

Room a1 b1 b2 b3 b4
Room I 0.9627 -0.0043 0.005 0.033 0.001
Room K 0.9614 -0.0039 0.004 0.038 0.004
Room M 0.9512 -0.002 0.0073 0.043 0.0007

3-3-1 Comparison with blackbox models

To indicate the effectiveness of the greybox modelling technique, it was compared with a
system identified using Multivariable Output Error State Space (MOESP), a well known
Subspace system identification technique. Based on the Singular Value Decomposition plot
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28 Identification and validation of dynamic models

of the block Hankel matrices created for multiple orders, an order of 2 was chosen as the this
was the least order with which the system could be described accurately.

As Figure 3-9 shows, the response of these systems is almost exactly the same, with the
MOESP based model performing only marginally better. A comparison of model validation
parameters is shown in Table 3-5. Various other techniques yielded similar results, thereby
reaffirming our notion that the ARMAX based greybox model is suitable both in terms of
system order and model fit. It can also be noted that the model identified through MOESP
cannot be inverted to estimate the input mass air flow values, as described in 2-7.
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Figure 3-9: Comparison of Fit between Greybox and MOESP estimated blackbox model

Table 3-5: Comparison between Greybox ARMAX and MOESP Subspace Identification - room
M

Method System Order MAE MSE VAF (%)
ARMAX 1 0.0692 0.0080 83.24
MOESP 2 0.0640 0.0076 88.48

3-4 Improvement of prediction results with a Kalman filter

The above model, however, is a simplified linear prediction of the dynamics of the system,
and can only simulate the response of the system to a moderate degree. Further accurate
predictions of the system would require the definition of additional states to the system, such
as neighbouring wall temperatures, ceiling and floor temperature, and heat influx through
other sources such as the corridor. However, this could lead to an high number of states,
making it highly unsuitable for control design, considering that a typical building has a lot of
rooms. Furthermore, these additional states also have complex relationships between them,
leading us back to a nonlinear model.

To avoid this, a Kalman filter is used to estimate the time varying unknown internal loads.
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3-4 Improvement of prediction results with a Kalman filter 29

The Kalman filter can effectively estimate unmeasurable states using knowledge of the system,
while also accounting for measurement and system noise. It follows from theory that the
Kalman filter is the optimal linear filter in cases where the model matches the real system
and the entering noise is white. Since the ARMAX estimated model follows the dynamics of
the system quite well, it can be said that in an ideal case, ignoring unmeasurable disturbances,
the model would matches the dynamics of real system. Furthermore, it has been assumed
that the estimate of the unmeasurable parameters as a white noise. If these assumptions are
valid, the model must fit perfectly to the measured system. To verify we, we perform k-step
ahead predictions of k = 1 (= 10 mins), 12 (= 2 hours) and 24 (= 4 hours).

1 2 3 4 5 6 7 8 9 10 11 12 13

Time (days)

14

15

16

17

18

19

20

21

22

23

24

25

R
o

o
m

 T
em

p
er

at
u

re
 (

in
 d

eg
 C

)

Comparison of Original Model vs One Step Ahead predicted model

Kalman Filter Estimate

ARMAX estimated model

Measured Temperature

Figure 3-10: Comparison of Predicted, Estimated and Measured model

Figure 3-10 shows the output of the system for the a one-step ahead prediction horizon.
Figure 3-11 shows the output of the system for k = 12 and k = 24. It is clear that even
for prediction steps as large as 4 hours, the k-step ahead Kalman predictor can estimate the
system very closely to the actual model. Therefore, it can be concluded that the ARMAX
based modelling procedure gives very good and intuitive understanding of the temperature
dynamics.
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Figure 3-11: Comparison of Predicted, Estimated and Measured model for k = 12 and k = 24

3-5 Summary

In this chapter, the dynamical models developed in Chapter 2 were experimentally tested in
the testbed for 3 sample rooms. The results indicate a good degree of fit with the experimental
data validating the modelling methodology. It is important to note that the modelling strategy
for CO2 dynamics, occupancy estimation and Humidity were not validated experimentally
due to unavailability of datasets. Therefore, further conclusions cannot be made about these
dynamics. The next chapter gives a simulation based setup of an integrated control model
that optimizes energy usage and comfort of the occupant.
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Chapter 4

Strategies for improved control in
office buildings

The previous sections dealt with the modelling and identification method for the temperature,
humidity and CO2 dynamics of a room. Using the developed model for these rooms, this
section outlines the design of a supervisory control strategy. This control strategy involves
an upper layer MPC which determines the setpoints for the room temperature and a lower
level Proportional Integral (PI) control which controls individual rooms using these setpoints.
This chapter is a proof-of-concept of how thermal comfort dynamics can be integrated into
controller design.

4-1 Integrated modelling of HVAC dynamics

For this work, the focus will be on a cooling test case, as shown in Fig. 4-1, which models
the dynamic interactions between 3 rooms and 1 corridor. Fig. 4-1 highlights the interacting
structure of the HVAC system, with a Chiller that drives both a cooling coil of an AHU. The
AHU is further connected to a VAV system which supplies fresh air into the rooms and the
corridor. In this work, these controllers are minimizing the difference between the respective
room temperature, Trmi and Room set-point temperature, Tset.

There are a few assumptions that are made while developing the above modelling framework:

1. The air and water in the subsystem units are well mixed and have the same temperature

2. There is no heat loss through ducts and pipes in the system

3. Thermal conductivity of wall is constant and the heat conduction through it is one-
dimensional.

For brevity, the list of symbols used in the following section are detailed in Table 4-1.
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Figure 4-1: Schematic of the Test case HVAC System

Table 4-1: List of symbols used for integrated modelling

Symbol Description
T Temperature
u control input (mass flow rate in kg/s)
c Specific heat capacity (kJ/kgK)
ρ Density (kg/m3)
V Volume (m3)
A Area (m2)
U Thermal transmittance of envelope (W/m2K)
Q Power (kW )
Subscripts Description
out outside air
rm room
s supply air
a air
w water
i Index for room number
f fan

For each of the rooms shown in the test case HVAC system shown in Figure 4-1, the simplified
model for the room temperature dynamics is considered. A standard room made of concrete
walls, gypsum boards and thick windows as construction materials is considered. These are
fairly standard construction materials used in modern buildings. All of these considerations
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4-2 Optimization problem formulation 33

were made with the properties of a typical office room in mind. The physical properties of
these rooms are elaborated in Table 4-2.

Table 4-2: Physical parameters of the test case setup

Physical parameter Room 1 Room 2 Room 3 Corridor
Area (m2) 20 25 30 30
Height (m) 3 3 3 3
Thermal mass (kJ/K) 144 180 216 216
Thermal transmittance (kW/m2K) 0.0110 0.0115 0.0120 0.0120

The equations describing the system with the physical parameters can be written in the
following bilinear form :

[Room]dTrm
dt

= urm
ρaVrm

(Ts − Trm) + UeAe
caρaVrm

(Tout − Trm) (4-1)

The discretized (nonlinear) model for the room temperature is linearized around the point
of 24°C for the room temperature since the temperature and input range is quite small and
this is sufficient for our control purpose [4, 33]. The resulting discrete time LTI model can be
represented using the standard state-space structure:

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k) (4-2)

where x =
[
Trm1 Trm2 Trm3 Trm4

]T
in R4 is the state, u =

[
urm1 urm2 urm3 urm4

]T
in R4 is the input. For the sake of simplicity, the controller is designed ignoring disturbances.
The numerical values of the state space matrix has been inserted in the Appendix.

4-2 Optimization problem formulation

The optimization involves: optimization of the low-level PI controls (in order to achieve
acceptable tracking of the set points); optimization of the set-points (in order to minimize
energy consumption and thermal discomfort). An intuitive schematic of the overall control
strategy is represented in Fig. 4-2.

4-2-1 Optimization for low-level controllers

The four Proportional and Integral terms for the individual subsystem controllers (in the
four VAV boxes) are generated through an offline optimization to track the desired set points
while minimizing energy consumption of fan and pumps. With a common duct distributing
airflow to all 3 rooms and the corridor, the total mass airflow that is blown by the fan is the
sum of the individual inlet airflow rates in each room. Therefore, the equation for energy
consumption by the fan is given as:

Qf = ∆Pua
1.0× 103 (4-3)
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Figure 4-2: Schematic of proposed control strategy

where ua(k) = urm1(k) + urm2(k) + urm3(k) + urm4(k) is the sum of inlet flow rates of all the
4 rooms at any given time instant. The four controllers are optimized in a simulation-based
fashion, with the command ‘fmincon’, to minimize the following multi-objective function

J =
τf∑
k=1

( 4∑
i=1

(Trmi(k)− Tset(k))2
)

+ 10−2(Q2
f )

where Tset is the desired zone temperature and τf represents the total duration of the simu-
lation (in this case, 24 hours). The weight was chosen as 10−2 as a trade-off between good
tracking and reasonable energy consumption. The number of optimization parameters are
eight (four proportional and four integral gains). The optimal PI gains for each of the rooms
are given in Table 4-3.

Table 4-3: Autotuned PI parameters computed through optimization

Gain Room 1 Room 2 Room 3 Corridor
Kp 0.15 0.13 0.11 0.11
Ki 2 ×10−4 1.8 ×10−4 1.8 ×10−4 1.8 ×10−4
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4-2-2 Optimization for set-point control

Thermal comfort quantification

The sense of thermal comfort of a human is a highly subjective sensation which could be
attributed to various factors such as general health, geographical upbringing and general
physical composition. Fanger proposed to quantify such factors and created a predictive model
for whole body thermal comfort via the PMV index [34]. The PMV index is now standardized
in the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
thermal sensation scale [26]: this thermal scale runs from Cold (-3) to Hot (+3) where 0
indicates maximum user comfort. The equation for PMV index is

PMV = [0.303e−0.036M + 0.028]L (4-4)

where L is the thermal load, defined as the difference of metabolic heat generation and the
calculated heat loss from the body to the actual environmental conditions, assuming optimal
comfort conditions:

L = M −W − 3.96× 10−8fcl[(tcl + 273)4 − (tr + 273)4]
− fclhc(tcl − Trm)− 3.05[5.73− 0.007(M −W )− ρa]
+ 0.42[(M −W )− 58.15]− 0.0173M(5.87− ρa)
− 0.0014M(34− Trm)

(4-5)

where fcl is the clothing factor, hc is the convective heat transfer coefficient,M is the metabolic
rate [W/m2], ρa is the vapor pressure [kPa], trm is the room air temperature, tcl is the
temperature of the clothing surface [°C], tr is the mean radiant temperature [°C], W is the
external work (taken as 0 for normal office conditions).

The mean radiant temperature is a difficult quantity to measure, since it involves measurement
of the wall envelope and window temperature [35]. It is also a highly nonlinear function,
which can be computationally expensive when included in the cost of the optimization. To
overcome this, Rohles [36] proposed an adapted model of the PMV which expresses the
thermal sensation as a function of parameters easily sampled in an office environment, such
as air temperature and relative humidity. The boundary conditions of the modified PMV
index were: clothing insulation level Icl = 0.6clo, metabolic rate M = 70W/m2, air velocity
va = 0.2m/s. With these approximations, the PMV equation from (4-4) can be expressed as
a function of Temperature Trm and water vapour pressure ρa, and given by

PMVrm = atr + bρa − c (4-6)

where a, b and c are Rohles’ experimental coefficients, and are dependent on the gender of
the occupants. For a male occupant, a = 0.212, b = 0.293, c = 5.949 and for a female it is
a = 0.275, b = 0.255, c = 8.62. This modified PMV index given in (4-6) was used in the
generation of the cost function of the MPC.

Cost function for set-point controller

In this section, the controller formulation is based on the work done in [37]. For the formation
of a higher level controller, an augmented state space matrix with the PI controller states and
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the plant states is formulated, which yields an augmented state vector x̄ =
[
x xc

]T
, where

xc(k) ∈ R4 represents the PI controller states. Substituting for input uc(k) in (4-2),
x̄(k + 1) = Ainx̄(k) +Bine(k)

uc(k) = Cinu x̄(k) +Dinue(k)
y(k) = Ciny x̄(k) +Dinye(k) (4-7)

with uc(k) ∈ R4 being the PI controller inputs and e(k) ∈ R4×1 being the error vector and

Ain =
[
A BCc
0 Ac

]
Bin =

[
BDc

Bc

]
Cinu =

[
0 Cc

]
Dinu = Dc

Ciny =
[
C DCc

]
Diny = DDc.

Substituting back for e(k), the overall closed-loop equations with PI controllers are obtained.
Aout = Ain −Bin(I +Diny )−1Ciny

Bout = Bin −Bin(I +Diny )−1Diny

Coutu = Cinu −Diny (I +Diny )−1Cinu

Doutu = Dinu −Dinu(I +Diny )−1Dinu

Couty = (I +Diny )−1Ciny

Douty = (I +Diny )−1Diny (4-8)
which finally gives us the complete state space dynamics of the discrete-time closed-loop
system (the blue dashed box in Fig. 4-2)

x̄(k + 1) = Aoutx̄(k) +Boutw(k)
uc(k) = Coutu x̄(k) +Doutuw(k)
y(k) = Couty x̄(k) +Doutyw(k) (4-9)

where w(k) is a vector of set-point temperatures with w = [Tset1 Tset2 Tset3 Tset4 ]T . The
numerical values of the closed loop matrices that were calculated for this design have been
attached in the Appendix.
Using (4-6) and the closed loop state space derived in (4-9), the optimization problem for the
formulation of the MPC is as follows:

minimize
w̃(kp),ỹ(kp)

Np−1∑
k=0

(
(||Ky(y(k)− w(k))||∞︸ ︷︷ ︸

error minimization

+

||Kpmv(PMVrm(k))||1︸ ︷︷ ︸
comfort

+ ||Ku∆u||1︸ ︷︷ ︸
input minimization

)

subject to: Equation(4− 9)
−0.2 ≤PMVrm(k) ≤ 0.2,

0.001 ≤ u(k) ≤ 0.03
18 ≤y ≤ 30

(4-10)
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4-3 Simulation of proposed strategy 37

where n = {0, 1} indicates occupancy status, s is a slack variable. A prediction horizon of
Np = 4 is chosen for the optimization problem. Control input is generated every 10 minutes,
to make it as close as possible to a real life scenario. For this work, values chosen were
Ky = diag([1 1 1 1]), Kpmv = diag([0.5 0.5 0.5 0.5]) and Ku = diag([0.1 0.1 0.1 0.1]) based on
trial and error. Since the parameters for the optimization were of similar order, there was no
need for scaling of the objective function.

The infinity norm (||.||∞) is chosen to minimize the first term, so that the worst case error is
minimized. The one norm (||.||1) is used for changes in the input and in the PMV. As can
be seen from 4-10, it is seen that the constraints of the MPC are computed dynamically to
ensure that there is minimum fresh air input when there is no occupancy, thereby minimizing
the overall efficiency of the system.

4-3 Simulation of proposed strategy

A model of the building was constructed from (4-1) with the controller structure controlling
the test case as described by the physical equations. The MPC problem was formulated and
solved using YALMIP [38]. The inlet air temperature has been selected as 16 °C as suggested
by the facility management. To ensure that there is no accumulation of CO2 in the room,
there is a minimal airflow input of 0.001 kg/s when there is an occupant in the room.

0 3 6 9 12 15 18 21

Time (in hours)

20

21

22

23

24

25

26

27

28

A
m

b
ie

n
t 

a
ir
 t

e
m

p
e

ra
tu

re
 (

in
 d

e
g

 C
)

Figure 4-3: Ambient weather temperature for June 19th, 2017

The proposed MPC+Autotuned PI strategy is simulated in . To highlight energy savings,
this strategy is compared with a baseline control that tracks a constant set point of 24°C
and where no knowledge of the occupancy is known. Simulations are run for a span of 24
hours, with weather profile taken from June 19th, 2017, as shown in Fig. 4-3. The tracking
performance of the controller when the setpoint is constant is shown in Figure 4-4.

Figs. 4-5 and 4-6 show the temperature tracking for 2 rooms (the other room and the
corridor have a similar behavior to the one shown here and are shown in the appendix). The
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Figure 4-4: Controller performance for tracking of constant setpoint, corridor

maximum error in set-point tracking when the occupants are in the room is around ±1°C,
even accounting for quantization error in measurement by sensors.

Figure 4-5: Set-point tracking, Room 1

Figure 4-6: Set-point tracking, Room 2

Figs. 4-7 and 4-8 show the PMV profile for 2 rooms (as with the previous case, the other
room and corridor have similar behavior to the one shown here and have been attached in
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the Appendix). When occupants are present in a room, it can be seen that the setpoints are
dynamically changed to ensure PMV is almost always maintained within ±0.2, falling under
’Class A’ of thermal comfort criterion, indicating maximum possible thermal comfort [39].

Figure 4-7: Evolution of PMV vs Occupancy, Room 1

Figure 4-8: Evolution of PMV vs Occupancy, Room 2

When the occupants are not present in the room, the controllers are switched off, ensuring that
there is no air flow. In this case, temperature evolution in the room/corridor is mainly due to
conduction through the walls and windows. The variation of input airflow and temperature
and along with the occupancy is shown in Figs. 4-9 and 4-10. Once the user is back in the
room, the optimal set-points are once again generated to ensure maximum comfort.

Table 4-4 shows the comparison of power consumption for the variable supply fan for the
baseline PI strategy with the PI with MPC. For the calculation of power, a static pressure of
∆P = 500 Pa and ideal efficiency is assumed. Results show potential for good tracking with
reduced cooling load. It can be seen that while the optimization only accounted for reduction
in fan power, this will also automatically mean that the pump and chiller load will also be
reduced.
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Figure 4-9: Evolution of temperature and mass flow rate vs occupancy, room 1

Figure 4-10: Evolution of temperature and mass flow rate vs occupancy, room 2

Table 4-4: Total energy consumption in [kWh] for a simulation length of one day

Controller Total Airflow (kg) Energy Consumption [kW]
Baseline PI 1132.5 12.770
MPC with optimized PI 1877.1 7.703 (-39.67%)

4-4 Summary

A controller structure that optimizes the airflow input into the individual rooms based on
comfort, energy consumption and occupancy schedule has been constructed. Incorporation
of the PMV into the optimization has ensured that the controller is modelled around the user
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and therefore the set-points could be dynamically adjusted according to external weather and
clothing conditions of the user. The proposed strategy is also a proof-of-concept of how the
decoupled models that were constructed in chapters 2 and 3 could be used to created an
integrated control structure. The advantage of the proposed controller structure is that it
can be scaled to a large number of rooms, and potentially even a whole building.
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Chapter 5

Conclusions and Recommendations

5-1 Conclusions

Referring back to the research questions that were posed in Chapter 1-4, we make the following
conclusions in this thesis:
The aim of this MSc thesis was to address the following aspects:

• Is it possible to reformulate the bilinear dynamics of temperature, humidity and CO2 in
a linear way so that linear identification techniques can be implemented ?
The physical equations describing the dynamics of temperature, CO2 and humidity
were restructured in an ARMAX format. The temperature dynamics were validated
with experimental data showing a good fit, even for limited datasets.

• Can a control strategy be developed based on the developed models whose control action
is based on the external weather conditions and thermal comfort of the users?
A hierarchical upper layer MPC with lower layer PI was formulated and simulated by
incorporating a linearized version of the PMV index thereby customizing the control
output according to the comfort of each user.

• Can the control strategy be customized for occupant in each room so that rooms are
heated/cooled only when the occupant is present in the room?
The control strategy accounted for incorporating the occupancy status in the optimiza-
tion to ensure that heating/cooling was done only when the occupants were present in
the room.

5-2 Recommendations and Future Work

For the purposes of this thesis, it was only possible to validate the temperature dynamics
due to limited availability of the datasets. Therefore, it leaves an opportunity to validate the
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models for CO2 and humidity dynamics. With information from these dynamics, it would
be possible to incorporate these dynamics, which have currently been assumed as a constant,
into the predictive controller design. Furthermore, with extended datasets, the model could
also be evaluated for its accuracy over various seasons.

The ARX/ARMAX based approach gives a simple and intuitive understanding of the physics
of the system in discrete time. In the case where the input mass flow rate was available as an
measurement, it would also be possible to estimate the parameters of the bilinear model for
temperature evolution using Nonlinear ARX (NLARX) structure.

In Section 2-3, the model was formulated with the assumption that the windows are always
closed. However, this not true in real world conditions, where users tend to open/close
windows based on external weather conditions and dim lighting. Therefore, under controlled
conditions, a Hybrid Piecewise Affine (PWA) could be created which could capture both the
effects based on the window opening status. Similar models could be created for humidity
and CO2 as well.

The test case considered for a hierarchical control algorithm only considers a simplified cooling
case, a more realistic future goal would be to extend the integrated control oriented model
to a heating test case as well, so that overall system gains could be tested. Furthermore,
the test case accounts for an ideal room where there is very high thermal mass and therefore
the effect of the external temperature is neglected for simplicity. Modelling the system while
estimating the disturbances, with say, a Kalman filter, would prove an even more realistic
model for control purposes.

With increasing complexity in building model, computing the predictive controller action
might become computationally expensive. There are 2 ways to overcome this, the first is
to use faster numerical solvers. The second would require the use of a Decentralized MPC
(DMPC), similar to the proposal by [40], but with the incorporation of thermal comfort
indices as done in this work, and weather forecasts, as was done in [27].
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Appendix A

System matrices and controller output
for control system

A-1 System Matrices

This section highlights the closed loop system matrices that were developed for the controller
design in Chapter 4:
A_out =

−1.0067 0 0 0 2.0067 0 0 0
0 −1.0067 0 0 0 2.0067 0 0
0 0 −1.0067 0 0 0 2.0067 0
0 0 0 −1.0067 0 0 0 2.0067
0 0 0 0 −7.0215 0.0005 0.0005 0.0005
0 0 0 0 0.0005 −6.0473 0.0005 0.0005
0 0 0 0 0.0003 0.0003 −2.9892 0.0003
0 0 0 0 −0.2289 −0.1927 −0.0789 −3.0274


B_out = 

−2.0067 0 0 0
0 −2.0067 0 0
0 0 −2.0067 0
0 0 0 −2.0067

7.8144 −0.0005 −0.0005 −0.0005
−0.0005 6.8401 −0.0005 −0.0005
−0.0003 −0.0003 3.7821 −0.0003
0.2903 0.2540 0.1403 3.8202



C_out_u = 1.0× 10−7 ×


0.3846 0.3846 0.3846 0.3846 0 0 0 0
0.3779 0.3779 0.3779 0.3779 0 0 0 0
0.3712 0.3712 0.3712 0.3712 0 0 0 0
0.3712 0.3712 0.3712 0.3712 0 0 0 0
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D_out_u =


−0.1725 0 0 0

0 −0.1469 0 0
0 0 −0.1221 0
0 0 0 −0.1221



C_out_y =


0 0 0 0 1 0 0 0
0 0 0 0 0 1.0000 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



D_out_y =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Figure A-2 shows the setpoint tracking for Room 3. Figures A-3 and A-4 show the evolution
of PMV with Occupancy for Room 3 and the Corridor. Finally, Figures A-5 and A-6 show
the evolution of inputs with temperature and occupancy.

Figure A-1: Set-point tracking, Room 3

Figure A-2: Set-point tracking, Room 3
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Figure A-3: Evolution of PMV vs Occupancy, Room 3

Figure A-4: Evolution of PMV vs Occupancy, Corridor
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48 System matrices and controller output for control system

Figure A-5: Evolution of temperature and mass flow rate vs occupancy, room 3

Figure A-6: Evolution of temperature and mass flow rate vs occupancy, corridor
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Appendix B

Preliminaries

B-1 VAV HVAC systems

B-1-1 VAV Air Handling Unit

The Air Handling Unit is responsible for filtering, mixing, supplying and exhausting air
throughout the building. A large building typically has multiple AHUs to facilitate mixing
individually for each floor. The return air from the building is mixed with outside air in the
mixing box. This ratio is dependant on the current temperature, humidity and CO2 levels of
the return and supply air. The ratio of mixing is controlled through the use of dampers. The
dampers mix a ratio of outside and return air to ensure temperature and indoor air quality
levels are satisfied. Once the air has been mixed and passed through the filters, it must be
conditioned before it enters the spaces within the building.

Figure B-1: Schematic of a typical VAV AHU [6]
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The next part of the air handling unit is the heat recovery unit. The primary function of
the heat recovery unit is to transfer moisture and heat from the exhaust air to the supply
air. After travelling through the heat recovery unit, the air passes through the condenser
coils, heating coils, and cooling coils. The condensor coil is used to condense any excess
moisture that maybe present in the incoming air by passing the incoming air through a
refrigerant. This excess moisture, condenses and its drained from the system. The heating
and cooling. Depending on the demand and current conditions within the room, air is heated
or cooled using heating or cooling coils respectively. Now we can say that the incoming air
has been sufficiently conditioned and can be sent to the occupant space. This is done so
through the use of creating a pressure differential using suction fans, also commonly known in
HVAC terminology as supply fans. These supply fans push the conditioned air to the supply
ductwork and eventually the VAV boxes. A simple schematic of a VAV Air Handling Unit is
shown in Figure B-1.

B-1-2 VAV Box

The VAV box consists of a motor operated damper, a reheat coil and a temperature sensor.
With inputs from the temperature sensor, the VAV box regulates the flow of conditioned air
into the occupied zone via control of the damper. Generally, there is a standard amount of
ventilation that has to be provided to a certain space and according to these requirements, a
minimum amount of fresh air has to be introduced into the occupant space. When the volume
of air from the supply duct needed to cool the zone is lesser than the fresh air requirement,
the reheat coil slightly heats up the fresh air entering the space so that the conditioned air
can still be supplied without adversely affecting the temperature of the room, i.e. there is no
over-cooling or over-heating of the occupant space. Finally, the occupant zone also consists
of an exhaust ductwork which has a suction fan, also called as exhaust fan, which sucks air
from the occupant space and sends it back to the AHU for mixing and/or vent it back to the
external environment.
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