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Summary 
Introduction:  Over the past two decades deep brain stimulation (DBS) has emerged as an important 

therapeutic option for Parkinson’s disease (PD). However, the current DBS programming method, 

monopolar review (MPR), is time-consuming, requires highly trained personnel and causes discomfort 

for patients. This study aimed to predict the optimal stimulation contact(s) based on local field 

potential (LFP) recordings by the implanted leads and a sensing enabled DBS system, and as such, 

improve the efficiency of DBS programming in PD patients. 

Methods: Level-based LFP recordings (OFF-medication) within the first two post-operative weeks in PD 

patients implanted with directional Sensight leads® and the Percept PC® neurostimulator in the Haga 

Teaching Hospital were retrospectively analysed. Time and frequency domain data were inspected for 

artefacts. From the individual theta (4-7 Hz), alpha (8-12 Hz), beta (13-35Hz) and gamma (≥36 Hz) 

bands the maximum power (Max.) and area under the curve above 1/frequency (AUC_flat) were 

extracted. The clinically chosen contact during MPR served as reference for all predictions. Machine 

learning models using AUC_flat features from frequency band combinations were evaluated using 

nested cross-validation. Two custom ranking methods, pattern based and decision tree, were 

developed for both beta band features individually. The predictive accuracy (Acc.) of the 1st and 2nd 

prediction combined was evaluated on a training and unseen test set, considering all data and 

subgroups based on amount of symptoms during MPR and amount of beta activity above 1/frequency. 

The ranking methods were additionally compared to an existing algorithm (DETEC). Sub-analyses were 

conducted to evaluate the impact of time, disease, and recording-related factors on the Acc., as well 

as the Acc. of segment-based LFP recording predictions. 

Results: Recordings from 34 patients (68 subthalamic nuclei) were analysed. Artefacts did not overlap 

with frequencies of interest or were sporadic of nature. The machine learning model with the highest 

performance was a linear discriminant analysis combining raw beta and alpha features (AUC: Design: 

0.86, Test: 0.69). For the 1st and 2nd predicted contacts combined, the two best performing ranking 

models were pattern based using AUC_flat (Acc. training set: 86.2%; test set: 100%) and decision tree 

using Max. (Acc. training set: 87.9%; test set: 100%). Correct pattern based (AUC_flat) predictions 

were more often 1st opposed to 2nd predictions than correct decision tree (Max.) predictions (Tr = 

55.2%, T = 90% vs. Tr = 10.3%, T = 10%). Acc. obtained for subgroups based on amount of symptoms 

during MPR and amount of beta activity above 1/frequency were similar across all subgroups for the 

custom ranking methods. The Acc. of the DETEC algorithm was inferior to all custom ranking methods. 

No significant differences were found for the sub-analyses, with the exception that segment-based LFP 

predictions were significantly inferior to level-based LFP predictions.  

Conclusions: This study demonstrates the feasibility of using level-based LFP recordings to predict the 

optimal stimulation contact in patients with PD. The best results were obtained using the pattern 

based (AUC_flat) and decision tree (Max.) custom ranking methods. For clinical implementation the 

decision tree (Max.) ranking method is expected to be favoured. Although prospective research is 

required to identify the true Acc. of the models in clinical practice, these results show potential to 

halve the required DBS programming time (only two out of four contacts require evaluation), and can 

thus improve DBS programming efficiency. 
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1. Introduction 

1.1 Parkinson’s disease 
Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorder 

worldwide (1). The frequency of PD increases with age, however, specific gene mutations can lead to 

young onset PD at ages between 21 and 45 (2).  Nevertheless, most cases of PD are sporadic and not 

hereditary. The precise cause of PD currently remains unknown, however, a combination of genetics 

and exposure to one or more unknown environmental factors are expected to trigger the disease (3).  

In PD, the protein α-synuclein accumulates in Lewy bodies and Lewy neurites leading to cell death (4). 

This degeneration mainly takes place in the nigrostriatal dopaminergic system of the basal ganglia (4). 

This system is responsible for the production of dopamine, the neurotransmitter for transmitting 

signals which normally lead to the initiation of smooth and purposeful movements. An impaired 

nigrostriatal dopaminergic system causes a loss of dopamine production, which causes abnormal 

nerve firing patterns resulting in impaired movement (3).  

However, the neurodegeneration caused by PD is not limited to the nigrostriatal pathway. The disease 

process of PD is multifocal and heterogenic, therefore specific motor and non-motor symptoms vary 

between individuals. Bradykinesia (slowness), rigidity (stiffness) and tremor are the most common 

motor symptoms of PD. Next to these key motor symptoms, other motor symptoms such as gait 

dysfunction, freezing of gait, postural instability, speech difficulties, swallowing impairments and 

autonomic disturbances can been seen in PD. Non-motor symptoms can include sensory alterations, 

mood disorders, sleep dysfunction, cognitive impairment, dementia and others (5). 

Diagnosing PD can be a difficult process as the disease has a gradual onset which is similar to the onset 

of several other forms of parkinsonism. According to the diagnostic criteria of the International 

Parkinson and Movement Disorder Society the diagnosis of PD can only be made when bradykinesia is 

present in combination with either rigidity, tremor or both (6). This diagnosis can be strengthened by 

the presence of supportive criteria such as responsiveness to dopaminergic therapy. However, 

absolute exclusion criteria and red flags, which eliminate or decrease the likelihood of PD, are also 

important to investigate (6). 

1.2 PD therapy options 
Over the last 25 years the prevalence of PD has doubled. In 2019 global estimates indicated that PD 

affected over 8.5 million people (7). Additionally, disability and death due to PD are increasing faster 

than for any other neurological disorder worldwide. Nonetheless, currently, only symptomatic 

treatments exist. 

The primary, and traditionally most effective, treatment of PD consists of dopaminergic therapy often 

including a combination of Levodopa and Carbidopa (8, 9). Levodopa is a natural precursor of 

dopamine that can pass through the blood brain barrier. By combining Levodopa with Carbidopa early 

conversion to dopamine outside the brain is prevented, leading to more efficient dopaminergic 

therapy (8, 9). 

An alternative to dopaminergic therapy is the use of dopamine agonists. These substances mimic 

dopamine effects. However, dopamine agonists have shown to be less effective than Levodopa (9, 10). 

As the effect of dopamine agonists lasts longer than that of Levodopa it is often used as an additional 

therapy to smoothen the possible fluctuations in the effect of Levodopa (9). Another medicinal 

therapy option includes MAO-B inhibitors and/or COMT inhibitors which reduce the activity of specific 

enzymes that break down dopamine in the brain, prolonging the neuronal dopamine exposure time 

(9, 10). Further medicinal therapy options include amantadine (to limit levodopa-induced dyskinesia 
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and reduce PD symptoms), anticholinergics (to help reduce tremor) and adenosine (A2A) receptor 

antagonists (to increase response to dopamine and allow more natural dopamine release) (9, 10). 

However, as mentioned before, medicinal therapies often lead to fluctuations during the day, referred 

to as on-and-off or wearing-off effects. Next to this, all of these medicinal treatments have side-

effects. Due to progression of PD, increased dosages of pharmaceutical treatments are required over 

time, which can cause an increase of these side-effects (11, 12). Furthermore, for a proportion of PD 

patients, symptoms cannot be adequately controlled by medication (13). 

To overcome these drawbacks, over the last two decades, deep brain stimulation (DBS) in the 

subthalamic nucleus (STN) has emerged as an effective additional treatment for patients with PD. It 

has the potential to reduce therapy fluctuations, improve motor outcomes and/or allow a decrease in 

medication dosages (13, 14). DBS can be used to stimulate the STN (one of the basal ganglia), which in 

turn, through a certain pathway, leads to an increase of stimulation towards the (motor-)cortex. An 

overview of the effect of PD and DBS on the basal ganglia pathways is provided in Figure 1. 

Figure 1. Overview of basal ganglia pathways in a) healthy subject, b) subject with Parkinson’s disease, and c) 
subject with Parkinson’s disease and deep brain stimulation within the subthalamic nucleus (15). 

1.3 Deep brain stimulation 
The origin of DBS lies within the ablative surgeries such as thalamotomies and pallidotomies (16). 

During these surgeries it was identified that high frequency stimulation could achieve similar effects as 

the ablative treatments for patients with PD (17). However, as these surgical interventions became 

less popular with the introduction of Levodopa in 1969, the possibilities of this high frequency 

stimulation were never thoroughly researched (18). Only when the drawbacks of Levodopa, such as 

motor fluctuations and Levodopa-induced dyskinesias, became more prominent and advances took 

place in the field of stereotactic surgery the possibility of applying DBS revived. Opposed to ablative 

surgery the effects of DBS are generally reversible by turning off the stimulation, making it a safer and 

potentially more effective alternative (19).  

a)                                                        b)                                                                 c)    
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In DBS chronic stimulation is applied within the brain using implanted electrodes. The effects of the 

stimulation depend on the anatomical location of the electrodes. Therefore, DBS can be used for a 

variety of neural disorders such as PD, essential tremor, dystonia and possibly also epilepsy, obsessive 

compulsive disorder and major depression (20). As mentioned earlier, for PD the electrodes are most 

often implanted within the STN but the internal globus pallidus is a possible alternative (21). 

Traditionally, DBS systems use four-contact stimulating electrodes (i.e. leads) that are stereotactically 

implanted in a certain target area within the brain. These leads are most often placed bilaterally and 

connected to an implantable pulse generator (IPG), a pacemaker-like device implanted within the 

chest wall, via a subcutaneous wire. Recently, directional leads, such as the Medtronic Sensight lead® 

or Boston Scientific Vercise Cartesia lead®, have increased in popularity. These leads consist of 2 ring 

electrodes, one above and one below two segmented electrodes. Each segmented electrode consists 

of 3 individual 120 degrees electrode segments, see Figure 2 (22). Segmented electrodes allow current 

steering, which can be useful in overcoming side-effects caused by DBS (23). 

 

Figure 2. Medtronic Sensight directional lead®, including 4 stimulation levels, 1) the middle two levels contain 3 
individual 120 degrees segments, 2) with either 1.5mm or 0.5mm spacing between levels, 3) including 
completely insulated orientation markers to guide directional programming (24). 

After lead and IPG implantation the neurologist uses a handheld device to wirelessly communicate 

with the IPG, allowing adjustment of the stimulation parameters (21). An important element of 

effective DBS, next to a precise implantation, is appropriate DBS programming. The programming of 

DBS starts by identifying the single most ideal stimulation contact. Currently, this contact selection is 

often achieved by performing a monopolar review (MPR) (25). During MPR the effects and side-effects 

are tested for each individual contact by gradually increasing the stimulation current. After this 

evaluation, the contact with the largest therapeutic window (window between the stimulation current 

that produces adverse effects and the stimulation current required to produce a beneficial effect) is 

initially chosen for chronic stimulation. Next, other parameters such as stimulation frequency, 

stimulation pulse width and stimulation amplitude are set (26).  

This contact selection process is, however, time-consuming (20-30 minutes per hemisphere), requires 

highly trained personnel and can be exhausting and uncomfortable for patients (27). This is especially 

the case for directional DBS leads, which often contain at least 8 (instead of 4) individual contacts, 

doubling the required programming time (23). Furthermore, MPR can be influenced by several 

confounders such as patient fatigue, the ‘stun’ effect caused by lead implantation and the fact that 

several therapeutic effects of DBS have a latency period (28).  
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1.4 Local field potentials  
A possible solution to these problems may lie within the measurement of local field potentials (LFPs). 

LFPs are transient electrical signals generated in nervous tissues by the summed and synchronous 

electrical activity of individual neurons (29). These signals can be recorded using an extracellular 

electrode at any specific location within the brain and can provide direct insight into, for instance, the 

functioning of basal ganglia (29, 30).  

LFPs are generally analysed and interpreted within the frequency domain. LFP activity within the beta-

frequency band (13-35 Hz) has been shown to correlate well with PD symptoms such as rigidity and 

bradykinesia and can be modulated by several PD therapies (e.g. medication/DBS) (31). Suppression of 

the beta-frequency band has been shown to correspond with motor improvement in PD patients (32). 

LFP activity within other frequency bands such as the theta (4-7 Hz), alpha (8-12 Hz) and gamma (36-

200 Hz) bands as well as high frequency oscillations (>200 Hz) have also shown potential connections 

to certain PD symptoms and/or disease states (33).  

 

Figure 3. Percept PC® internal pulse generator in combination with the patient remote and clinical programming 
interface which allow the recording of various local field potential measurements (34). 

In November 2020 the Medtronic Percept PC® IPG was introduced, see Figure 3. This device has the 

ability to record LFPs within a frequency range of 0 to 96.68 Hz via the macroelectrodes of the 

implanted DBS leads (34). The Percept PC® has multiple recording modes enabling in clinic as well as 

at home LFP recordings. A summary of all Percept PC® recording modes has been provided by 

Thenaisie et al. (2021) (35).  

In the past in clinic LFP recordings have shown the potential to aid the optimal stimulation contact 

selection during DBS programming (13, 35-39). However, this potential has not yet been thoroughly 
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researched for LFP recordings performed using an implanted IPG. Furthermore, to date, no method 

for using LFP recordings during the initial contact selection has been implemented in clinical practice.   

1.5 Thesis objective 
The main objective of this study was to predict the optimal stimulation contact(s) based on LFP 

recordings performed using an implanted lead and sensing enabled IPG, and as such, improve the 

efficiency of DBS programming in PD patients. To do so, LFP recordings were retrospectively used to 

predict a single, multiple or a ranking of the optimal stimulation contact(s). Predictions were made 

using several machine learning models, custom ranking methods as well as by means of one existing 

ranking method. The contact chosen for stimulation by the clinician during MPR served as a reference 

for all predictions. As a secondary objective it was investigated whether the lack of symptoms during 

MPR or the lack of beta activity above 1/frequency (1/f) affects the predictive accuracy of the 

developed methods. Finally, several sub-analyses were conducted to evaluate the impact of time after 

surgery, tremor as main symptom, recording impedances, on the predictive accuracy, as well as the 

predictive accuracy of segment-based LFP recording predictions. 
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2. Methods 

2.1 Study design 
This concerns a retrospective study of data gathered as part of the clinical routine amongst patients 

implanted with the Percept PC® neurostimulator in combination with directional Sensight leads®, for 

the treatment of PD. Patients were implanted in the Haga Teaching Hospital between November 1st, 

2021 and June 5th, 2023. Only those patients that did not object to the use of their data for research 

purposes and for which the required measurements were available were included in the study. Ethics 

approval was obtained from the regional Dutch medical ethical committee (METC-LDD). 

2.2 Data acquisition 
2.2.1 LFP measurements 

Predictions for the optimal stimulation contact were made using LFP recordings obtained through a 

BrainSense Survey conducted in the OFF medication state within the first two weeks after surgery. 

A Survey measures the differential power signal between all possible contact combinations available 

on a single directional Sensight lead®, including rings as well as segments. The results are measures of 

how similar or different two regions within a single hemisphere of the brain are. This measurement is 

always performed in the stimulation OFF mode with a sample frequency of 250 Hz and a total duration 

of approximately 90 seconds. For each channel the time domain data (approximately 21 seconds per 

channel) is converted to the frequency domain using a Fast Fourier Transform and 0.98 Hz bins. The 

resulting frequency signal ranges from 0 to 96.68 Hz. The Survey measurement is always conducted in 

two individual passes. The first pass includes all stimulation compatible LFP recording pairs (e.g. 

channels: 0-2, 0-3, 1-3), while the second pass includes all immediately adjacent LFP recording pairs 

(e.g. channels: 0-1, 1-2, 2-3) (40). Survey measurements need to be performed for each hemisphere 

separately. Furthermore, to collect data for the segments, an additional Survey tailored to the 

segments has to be performed. 

The user interface (tablet) only displays LFP magnitude (micro volts peak (μvp)) compared to 

frequency (Hz). However, offline, both frequency domain and time domain data are available and can 

be downloaded as part of a .json file.  

2.2.2 Reference contact 

The contact chosen for chronic stimulation by the clinician during MPR in the OFF medication state at 

approximately 10 days post-operatively was used as a reference for all the LFP based predictions.  

 

2.3 Data analysis 
Matlab (version R2023a) was used to perform all data preprocessing and data analysis steps. 

2.3.1 Data preprocessing 

Available Survey measurements were visually inspected for potential artefacts in the frequency as well 

as time domain. For the frequency domain both the readily available Percept PC® frequency domain 

data as well as a custom conversion of the Percept PC® time domain data to the frequency domain 

were used. The custom time to frequency conversion was performed using Welch’s method, 

employing a Hanning window with 256 samples and 50% overlap. The frequency domain data 

obtained through this custom conversion had a higher resolution (5288 samples) than the readily 

available Percept PC® frequency domain data (100 samples). However, it should be noted that the 

frequency domain data provided by the Percept PC® system generally contains fewer artefacts, as the 

system already applies a form of automatic artefact removal, see Appendix A, Figure 1. The readily 

available Percept PC® frequency domain data was used for all predictions.  
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The frequency bands considered here were the theta (4-7 Hz), alpha (8-12 Hz), beta (13-35 Hz) and 

gamma (≥36 Hz) frequency bands. From each frequency band two features were extracted per 

measurement channel. The first feature was the maximum power (Max.) within the respective 

frequency band, which is commonly used in clinical practice. The second feature was the area under 

the curve (AUC_flat) within the respective frequency band after removing the aperiodic 1/f 

component of the data by means of the existing FOOOF algorithm (41), see Figure 4.  

2.3.2 Machine learning models  

To obtain the prediction of a single optimal stimulation contact several machine learning models in 

combination with several preprocessing methods were evaluated. These models were developed 

using either beta frequency features alone, a combination of beta with either theta, alpha or gamma 

band features and for a combination of features from all four frequency bands. 

All machine learning models were evaluated using nested k-fold cross-validation. K-fold cross-

validation splits the group into k parts, all of these parts are used as the test set once amongst the k 

repetitions of the analysis. This allows all the data to be used for training as well as testing whilst 

ensuring that testing is only performed using unseen data. In the nested form two k-fold cross-

validations are applied within each other. This allows hyperparameter optimisation and thus model 

optimisation within the inner-loop. In general, k is set to 3, 5 or 10, taking into account the bias-

variance trade-off (42). Here k was set to 10 for the outer-loop as this prevents excessive variance 

within the testing procedure whilst still minimising bias (42). As the complexity of one of the used 

classifiers is high, a high running time was expected. To minimise this k was set to 3 for the inner-loop. 

The outer-loop was used to randomly split the data into a design and test set. Stratification was 

applied to ensure even distribution of the outcome classes amongst the design and test set. In case of 

the application of a preprocessing method the design set was used to fit this model. The preprocessing 

model was thereafter applied on the unseen test set. Within the inner-loop the design set was 

randomly split into a training and validation group whilst, once again, applying stratification. The 

training group was used to fit the machine learning models with different hyperparameter settings. 

The performance of each hyperparameter setting was evaluated on the unseen validation set. The 

median of the optimal hyperparameters for each model (i.e. the hyperparameter that resulted in the 

Figure 4. Example of removing aperiodic (1/frequency)  information from data. a) Original data in logarithmic scale with 
corresponding aperiodic fit by the existing FOOOF algorithm. b) Resulting data in logarithmic scale after subtracting 
FOOOF-based aperiodic fit. 

a)  b)  
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smallest error for the validation sets), was thereafter chosen and used to train the model using the full 

design dataset within the outer-loop. The eventual model performance was evaluated by means of  

application of the model on the unseen test data and comparing the predicted outcome to the true 

outcome. An overview of the nested cross-validation method can be found in Figure 5.  

Figure 5. Overview of the nested cross-validation method, where the 10-fold outer-loop splits all available data 

into a design and test set and the 3-fold inner-loop split the design set into a train and validation set. The train 

and validation sets served for hyperparameter optimisation whilst the design and test set were used for fitting 

and evaluating the preprocessing and machine learning models. 

The preprocessing methods evaluated here were: principal component analysis (PCA), partial least 

squares regression (PLSR) and lasso regularisation (L1). An in depth explanation of the characteristics 

and applied cut-offs for each method can be found in Appendix A, Table 1. Three machine learning 

models were evaluated in combination with each of the three preprocessing methods as well as 

without applying preprocessing. The machine learning models evaluated were: linear discriminant 

analysis (LDA), k-nearest neighbours (K-NN) and random forest (RF). An in depth explanation of the 

characteristics and hyperparameter ranges used for optimisation are provided in Appendix A, Table 2.  

The model performance of the method with the best performance for all data was also trained and 

evaluated for three subgroups: a subgroup of data from hemispheres where PD symptoms were 

present during MPR, data of hemispheres showing beta activity in AUC_flat for at least one channel, 

and hemispheres with both of these aspects (symptoms during MPR as well as beta activity in 

AUC_flat for at least one channel).  

2.3.3 Ranking models  

To allow prediction of an optimal ranking of contacts instead of a single optimal contact several 

custom ranking methods were developed and evaluated together with an existing ranking model. For 

the design all data available up to March 13th, 2023 was used, this was considered as training data. 

Data that became available after this period and before June 5th, 2023 was used for evaluation of the 

predictive accuracy, and was considered as unseen test data. All ranking models were evaluated for all 

available data (training and test set separately) as well as for subgroups of hemispheres of patients 

with/without symptoms during MPR and hemispheres of patients with clear/little/no beta activity 

above 1/f. The amount of beta activity was evaluated by means of the AUC_flat feature. Hemispheres 

were considered as “clear beta above 1/f” when at least one channel showed an AUC_flat value above 

0.6 µV. The label “little beta above 1/f” was given when one or more channels showed an AUC_flat 

value above 0.0 µV but below 0.6 µV. Finally, the label “no beta above 1/f” was appointed when all 
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channels had AUC_flat values below 0.0 µV. In the case of little or no beta above 1/f there remained 

an order in the power of the recording channels, therefore, ranking was still possible in these cases.  

2.3.3.a Pattern based (custom) 

For the pattern based ranking method the beta power for either the Max. or AUC_flat feature of all 

the bipolar measurements was captured within a single greyscale grid. This grid was used to visualise 

the distribution of the measured bipolar powers across the possible monopolar stimulation contacts. 

Furthermore, it was used as a method to predict the optimal stimulation contact, see Figure 6. For the 

latter, two methods were combined. The first method was calculating the average power per contact 

for all rows and columns that include this particular contact (e.g. contact 1 = average of 0-1, 1-2, 1-3).  

 

Beta AUC after 1/f removal 

Average of rows and columns                    

Maximum average per contact 

Average of crossing diagonals 

+ 

Figure 6. Working mechanism of pattern based ranking method using the area under the curve beta feature 
after removing the aperiodic component. a) greyscale grid is constructed using level-based LFP recordings. b) 
Two methods (averaging over rows/columns and averaging of crossing diagonals) are applied to obtain power 
per contact choice. c) Maximum of two methods is used to obtain and rank power value per contact choice.  

Red dot: clinically chosen contact 

Green dot: predicted optimal contact 
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The second method was to calculate the average power for the diagonals that cross each contact (e.g. 

contact 1 = 0-2), this is only available for contact 1 and 2. These methods were combined by taking the 

maximum possible result for each contact, resulting in a single value per contact choice. The contact 

with the highest value was thereafter considered as the most optimal stimulation contact. Second, 

third and fourth most optimal stimulation contacts were deducted by means of the same method. 

2.3.3.b Decision tree (custom) 

For the decision tree based ranking method two sets of decision trees were applied. In the first set the 

two or three bipolar channels with the lowest beta power were used to eliminate one or two 

stimulation contacts (see Appendix B, Part I for elimination decision trees). In the second set the two 

or three bipolar channels with the highest beta power were used to select two eligible stimulation 

contacts (see Appendix B, Part II for selection decision trees). By combining the results of both 

methods the single or two most eligible as well as the two or three least eligible stimulation contacts 

could be selected, see the example in Figure 7. This method was incorporated in a standalone MATLAB 

GUI using the App Designer functionality to allow easy implementation in clinical practice (Appendix B, 

Part III) and was evaluated for both the Max. and AUC_flat beta-band features individually. 

Results 

Contact 1 and 2 selected 

Contact 0 and 3 eliminated 
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Figure 7. Working mechanism of decision tree ranking method using the area under the curve beta feature 
after removing the aperiodic (1/frequency) component. a) level-based LFP recordings and corresponding 
ranking in bar graph. b) route for contact elimination (not contact 0 and 3) using lowest (0-1) and 2nd lowest 
(2-3) ranked channels. c) route for contact selection (contact 1 or 2) using highest (1-2), 2nd highest (1-3) and 
3rd highest (0-3) ranked channels. d) decision tree ranking results: possibly contact 1 or 2, not contact 0 and 3. 
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2.3.3.c DETEC algorithm (Strelow et al. (2022)) 

The DETEC algorithm is an existing algorithm published by J. Strelow et al. (2022) (38). This method 

calculates the weighted average beta (13-35Hz) power per monopolar contact based on bipolar 

recordings whilst correcting for the distance between the contacts using Equation(1). Before doing so 

the aperiodic 1/f component is removed by the FOOOF algorithm (41). Furthermore, an automated 

function determining the local maxima is implemented. If the algorithm detects a peak in at least one 

recording in a certain hemisphere, normalised activity at this peak is used for the analysis of this 

hemisphere. If no peak is detected, the algorithm uses normalised activity within the low beta range. 

Eventually, the result of the algorithm is a single “monopolar” power value per contact. The contact 

with the highest power is considered most eligible and the one with the lowest power is considered 

least eligible, this allows the ranking of all contacts. The DETEC algorithm was separately applied on 

the training and testing datasets to allow a better comparison with the pattern based and decision 

tree methods, however, for this existing method no additional training was required. 

PSDweighted =  
∑ 𝑃𝑆𝐷𝑖 ∗

1
𝑑𝑖

𝑛
𝑖=1

∑
1
𝑑𝑖

𝑛
𝑖=1

 

 

(1) 

 
In Equation(1), PSDi is the power spectral density (PSD) from bipolar recording ί of the n bipolar 

recordings involving the investigated contact. dί is the distance between the centre of the investigated 

contact and its bipolar recording partner for bipolar recording ί (mm).  

2.3.3.d Fixed ranking (reference) 

The final ranking method that was evaluated was a fixed ranking. This was constructed based on the 

frequency of clinically choosing each contact in the Haga Teaching Hospital. This resulted in the 

following ranking method: contact #2 → contact #1 → contact #3 → contact #0. This method was not 

considered as a prediction method but was used to gain additional insight in the choices that are 

currently made for the chronic stimulation contact in the Haga Teaching Hospital.  

2.4 Sub-analyses 
Factors that may be of influence to the predictive accuracy of the evaluated methods were 

investigated in several sub-analyses. One sub-analysis was used to investigate whether there is a 

difference in predictive accuracy between groups where LFP recordings are performed within 5 days 

or at more than 5 days post-operatively. This analysis also allowed the comparison of recording LFPs at 

a time difference of either <5 days or ≥5 days from the moment of the clinical contact choice during 

MPR (10 days post-operatively). Another factor of which the effect on the predictive accuracy was 

evaluated is the effect of (one of) the patients dominant symptoms being tremor. To this end 

predictive accuracies were compared between subgroups with and without tremor as main symptom. 

A third sub-analysis was performed to evaluate whether differences in impedances affect the 

predictive accuracy of the developed ranking methods. This was done by comparing the results of STN 

for which all channels had bipolar impedances <5000 Ω to STN with one or more channels with bipolar 

impedances ≥5000 Ω.  

Predictions based on segment LFP recordings were evaluated in a final sub-analysis. This was possible 

for cases where contact 1 or 2 were clinically chosen for chronic stimulation. These cases could only 

be included in the analysis if segment LFP Survey recordings were available for this specific case. Two 

techniques were evaluated to predict whether contact 1 or 2 should be preferred according to the 

segment LFP recordings. The first technique used the average power of all segment LFPs across one 

level to determine the optimal level (e.g. if average of 1a-1b, 1a-1c and 1b-1c is higher than average of 
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2a-2b, 2a-2c and 2b-2c then level 1 is chosen). The second used the level location of the segment LFP 

with the highest power (e.g. if highest among 1a-1b, 1a-1c, 1b-1c, 2a-2b, 2a-2c and 2b-2c is 1a-1b 

then level 1 is chosen). Both methods were tested using the Max. as well as the AUC_flat feature of 

the beta-frequency band. Results were additionally compared to the performance of the best 

performing level-based LFP method when considering the prediction of a single contact.  

2.5 Statistical analysis 
2.5.1 Machine learning models 

The performance of machine learning models was evaluated across the design set as well as the 

unseen test set. In both cases the total area under the receiver operator curve (ROC-)AUC across all 10 

outer cross-validation loops was identified in combination with the corresponding confusion matrix 

using the “perfcurve()”and “confusionchart()” Matlab functions, respectively. The lower limit for 

considering the model performance as promising, was an ROC-AUC of 0.7. This boundary was chosen 

as it can provide a first indication of whether predicting the stimulation contact based on a certain 

machine learning method is feasible (43). If this result is achieved it is expected that additional data 

and tuning can improve the model performance. False predictions are not expected to negatively 

influence the patient outcomes. If the required effect is not achieved by means of the predicted 

contact alternative contacts will be tested, similar to the current clinical practice. By means of a 

confusion matrix additional insight will be gained in which classes are being predicted correctly and 

what type of errors are being made.  

2.5.2 Ranking models 

To evaluate the performance of the ranking models the frequency of the 1st, 2nd, 3rd and 4th predicted 

contact being the clinically chosen contact was documented. In addition the combined frequency of 

the clinically chosen stimulation contact being either the 1st or 2nd predicted contact was calculated. 

This allows a more equal comparison between the decision tree method, where often two optimal 

contacts are selected simultaneously, and the other ranking models, where a single optimal contact 

can be selected. Furthermore, the 1st and 2nd prediction combined represent the percentage of cases 

where the required programming time can be halved, as only two out of four contacts require testing, 

which is a clinically relevant result. The percentage of the 1st, 2nd, 3rd and 4th ranked contact being the 

clinically chosen stimulation contact is provided per contact option as well, as this can provide 

additional insight in which classes are being predicted correctly more often than others. 

2.5.3 Sub-analyses 

For each of the factors potentially influencing the predictive accuracy of the level-based LFP 

predictions, the performance of the best performing prediction methods was compared across all sets 

of sub-analysis subgroups. The difference in average model performance between each set was tested 

on statistical significance by means of a N-1 chi squared test, which was recommended by Campbell et 

al. (2007) (44). For obtaining 95% confidence intervals (CI) the unpaired method recommended by 

Altman et al. (2000) was used (45).  

For evaluation of the difference in the average model performance between the best performing 

level-based LFP prediction method (providing a single contact prediction) and the best performing 

segment-based LFP prediction method the McNemar’s test was applied, as this required comparison 

of the paired proportions of correct predictions (46). Here, for obtaining 95% CI the paired method 

recommended by Altman et al. (2000) was applied (45).  

In all statistical evaluations a p-value smaller than 0.05 was considered significant.   
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3. Results 

3.1 Subject characteristics 
Between November 1st 2021 and June 5th 2023 a total of 62 (124 STN) patients were implanted with 

the Percept PC® neurostimulator in combination with directional Sensight leads®. For 34 (68 STN) of 

these 62 patients an OFF medication BrainSense Survey measurement was available within the first 

two post-operative weeks. An overview of the patient characteristics is provided in Table 1. 

Table 1. Patient characteristics (n=34) 

Age (years) 63.1 (SD 7.9) 

Gender (male) 23 (67.6%) 

Disease duration (years) 9.8 (SD 4.8) 

Time since DBS placement (months) 23.9 (SD 13.7) 

Abbreviations: n: number of patients; SD: standard deviation; DBS: deep brain stimulation 

For each patient the UPDRS-III scores per contact as well as the corresponding stimulation amplitude 

were documented during MPR (Appendix C, Table 1). The contact for each hemisphere chosen during 

MPR and the contact with the best performance based on the UPDRS-III scores are provided in Table 

2. This table also shows the amount of time between surgery and the LFP measurement as well as the 

post-operative timepoint at which MPR took place.  

Table 2. Measurement and stimulation information per patient and hemisphere.                       

Patient 
Post-op time 

LFPs (days) 

Post-op time 

MPR (days) 
UPDRS-III best contact Clinically chosen contact 

NL_007 10 10 LH:2 RH:NA LH:2 RH:2 

NL_008 10 10 LH:NA RH:NA LH:1 RH:1 

NL_016 10 10 LH:0 RH:1 LH:2 RH:1 

NL_017 8 8 LH:1 RH:1 LH:1 RH:1 

NL_018 0 10 LH:NA RH:NA LH:2 RH:2 

NL_019 0 10 LH:1 RH:2 LH:1 RH:2 

NL_020 8 8 LH:1 RH:1 LH:1 RH:2 

NL_022 10 10 LH:NA RH:0/1 LH:2 RH:2 

NL_023 7 7 LH:NA RH:2 LH:2 RH:2 

NL_024 10 10 LH:NA RH:NA LH:2 RH:2 

NL_027 10 10 LH:2 RH:3 LH:1 RH:2 

NL_028 10 10 LH:NA RH:1 LH:3 RH:2 

NL_031 10 10 LH:2/3 RH:2 LH:3 RH:2 

NL_037 7 7 LH:1 RH:2 LH:1 RH:1 

NL_042 10 10 LH:2 RH:2 LH:2 RH:2 

NL_044 8 8 LH:2 RH:1/2 LH:2 RH:2 

NL_045 2 10 LH:2 RH:NA LH:2 RH:2 

NL_046 5 8 LH:0/1 RH:NA LH:2 RH:2 

NL_048 10 10 LH:1/2 RH:2/3 LH:2 RH:2 

NL_049 8 8 LH:2 RH:1 LH:2 RH:1 

NL_051 8 8 LH:2/3 RH:1/2 LH:2 RH:1 

NL_052 10 10 LH:NA RH:NA LH:2 RH:2 

NL_053 10 10 LH:1 RH:2 LH:2 RH:2 

NL_054 10 10 LH:3 RH:2 LH:3 RH:2 

NL_055 10 10 LH:3 RH:3 LH:2 RH:2 
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NL_056 8 8 LH:3 RH:2 LH:3 RH:2 

NL_057 10 10 LH:NA RH:1 LH:1 RH:1 

NL_058 10 10 LH:NA RH:NA LH:2 RH:2 

NL_059 10 10 LH:NA RH:2 LH:1 RH:2 

NL_065 8 8 LH:NA RH:NA LH:2 RH:2 

NL_068 8 8 LH:2 RH:NA LH:2 RH:1 

NL_069* 10 10 LH:NA RH:NA LH:2 RH:2 

NL_070 8 8 LH:NA RH:NA LH:2 RH:2 

NL_071 10 10 LH:2 RH:NA LH:1 RH:2 
* For this patient no MPR UPDRS-III scores were available in the electronic patient documentation, however, 

MPR was performed and an initial contact choice remained available. 

Abbreviations: Post-op: post-operatively; LFPs: local field potentials; MPR: monopolar review; UPDRS: unified 

Parkinson’s disease rating scale; LH: left hemisphere; RH: right hemisphere 

 

3.2 Preprocessing 
All data was visually inspected in the time as well as frequency domain to allow detection of potential 

artefacts. In 18 STN no segment recordings were available. Artefacts were present in 60 out of 68 STN 

for level-based LFP recordings and in 42 out of 50 STN for segment-based LFP recordings. The most 

common artefact found in the LFP recordings was a periodic artefact at a frequency below the 

frequencies of interest (<4 Hz), see Figure 8. After removing this artefact from the time domain data 

by means of a 4Hz high pass filter sporadic artefacts remained within other frequency bands for level-

based recordings in 3 STN and for segment-based recordings in 6 STN, examples are provided in 

Appendix D, Figure 1. However, because of the sporadic nature of these artefacts, the fact that they 

did not occur across all channels within a single STN, and the expectation that these artefacts will also 

be present in the future clinical practice, no manual artefact removal was performed. Potential 

artefacts across the entire time domain recording above the 4Hz cut-off were present in 2 STN for 

level-based recordings and 1 STN for segment-based recordings. When looking at the frequency 

domain of this data a large peak in the recording power was present up to approximately 10Hz, see 

Appendix D, Figure 2. In signals without these potential artefacts these large power peaks were not 

present, see Appendix D, Figure 3. However, as it was difficult to confirm that these signals are of non-

physiological origin no further artefact removal was applied.  

a) 
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3.3 Machine learning models 
For all machine learning results and corresponding hyperparameter settings see Appendix E, Table 1-2.  

Among the different combinations of features, preprocessing techniques and machine learning 

methods that were evaluated here, the model with the highest overall ROC-AUC on the unseen test 

data was a LDA on the raw data of the beta and alpha frequency based AUC_flat features (D = 0.86, T 

= 0.69), see Figure 9. For this model the LDA type was set to “linear” 7 times and to “diaglinear” 3 

times out of the 10 outer cross-validation loops. The second best performance was achieved by an RF 

model using raw data from a combination of beta and theta AUC_flat features (D = 1.00 / T = 0.64), 

however as the ROC-AUC for the design data was equal to 1.00 overfitting occurred. Furthermore, this 

model never predicted contact 3 as optimal stimulation contact, see Appendix E, Figure 1. The median 

number of trees applied in this model was 75 (range 25-100). The third best performance, without 

clear overfitting (i.e. without D = 1.00), was achieved by a LDA model in combination with PCA as 

preprocessing method on the AUC_flat features from all four frequency bands combined (D = 0.70, T = 

0.63). Here contact 3 was, however, also never predicted as optimal stimulation contact. Additionally, 

only in 6 cases predictions were other than contact 2, see Appendix E, Figure 2. The applied LDA type 

was “linear” in all 10 outer cross-validation loops.  

For the LDA method no preprocessing and preprocessing by means of PCA outperformed PLSR and L1 

for all combinations of the beta and a single other frequency band when considering the ROC-AUC on 

the test data. For beta only and all frequency bands combined PCA outperformed the other 

preprocessing methods. For KNN models the combination with L1 showed the best results. However, 

KNN models generally performed worse than the LDA or RF models. For the RF models using 

combinations of the beta and a single other frequency band no preprocessing or PLSR showed the 

best performance. For beta only and all frequency band features combined the RF methods without 

preprocessing stood out. All RF based models achieved an ROC-AUC of 1.00 on the design data, 

indicating overfitting, this could not be resolved by decreasing the range for the hyperparameter. 

 

b) 

Figure 8. Example of time domain data from level-based LFP recordings across all 6 recording channels in right 
hemisphere of patient NL 019 a) before and b) after 4Hz high pass filter.  
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Figure 9. Receiver operator curve and confusion matrix for linear discriminant analysis model using the raw 
features from the beta as well as alpha band.  

Training the best performing method (LDA on raw beta and alpha features) for data from hemispheres 

without stun effect during MPR and/or data from hemispheres showing beta activity in AUC_flat only 

did not improve the model performance compared to training on all data, see Table 3. The model 

using only data from hemispheres without stun effect during MPR did however, outperform the model 

that only used data from hemispheres with beta activity in AUC_flat and, especially, the models using 

only data from hemispheres without stun effect during MPR which also had beta activity in AUC_flat. 

Table 3. Model performance of best method (linear discriminant analysis on raw feature data of beta 
and alpha frequency bands) when train on either data from hemispheres without stun effect during 
monopolar review, data from hemispheres with beta activity after 1/f removal or data from 
hemispheres with both of these aspects.  

  No stun (n=42) Beta in AUC_flat (n=61) No stun & beta in AUC_flat (n=40) 

LDA AUC Type AUC Type AUC Type 

Raw 
D = 0.92 

/ 
T = 0.63 

8x lin., 
2x diag. 

D = 0.86 
/ 

T = 0.61 

7x lin., 
3x diag. 

D = 0.81 
/ 

T = 0.51 

3x lin., 
7x diag. 

Abbreviations: LDA: linear discriminant analysis; n: amount of hemispheres included; AUC: area under the 
receiver operator curve; D: design set (90% of data); T: test set (10% of data); lin.: linear; diag.: diaglinear 

 

3.4 Ranking models 
Predictive accuracy of the 1st and 2nd prediction of the pattern based, decision tree and reference 

(DETEC algorithm) ranking methods categorised for either all data, with/without stun effect during 

MPR and clear/little/no beta activity above 1/f, is provided in Table 4. When considering all data the 

decision tree method using the Max. feature performed best on the training data (n=58), with 51/58 

correct predictions (87.9%) for the 1st and 2nd predicted contact combined. The second best result was 

achieved by the pattern based method using the AUC_flat feature, with 50/58 correct predictions 

(86.2%). On the test set (n=10) both decision tree methods (AUC_flat and Max.) as well as the pattern 

based (AUC_flat) methods showed 100% predictive accuracy when considering the 1st and 2nd 

predicted contact. The existing ranking method (DETEC algorithm) showed the lowest predictive 

accuracy among the ranking methods when considering the 1st and 2nd predicted contact of all data for 

Beta & alpha frequency-bands – Raw data – Linear discriminant analysis 
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the training as well as test set (Tr = 33/58 (56.9%), T = 7/10 (70.0%)). As the decision tree method 

often provides two contacts as prediction, correct predictions were often considered 2nd predicted 

contacts (AUC_flat: Tr = 43/58 , T = 9/10 ; Max.: Tr = 43/58 , T = 7/10). For the pattern based methods 

most correct predictions were 1st predicted contacts (AUC_flat: Tr = 32/58 , T = 9/10; Max.: Tr = 35/58 

, T = 8/10) as this method provides a single optimal contact, Appendix F, Table 2-6.  

Subdivisions were made for data with and without stun effect during MPR as well as for data with 

clear, little or no beta activity above 1/f. For both pattern based methods as well as both decision tree 

methods in general no decrease in performance was visible for data with stun effect during MPR or 

data with little or no beta activity above 1/f compared to data without stun effect during MPR and 

data with clear beta activity above 1/f. For the DETEC algorithm the performance on the training data 

did appear to decrease due to the presence of a stun effect or little to no beta activity above 1/f. This 

was not the case for the test set.  

Table 4. Frequency of 1st  or 2nd predicted contact being the clinically chosen contact per ranking model 
for all patients and subcategorised for with/without stun effect and clear/little/no beta above 1/f. 

 AUC_flat Max. Reference 

  Pattern based Decision tree Pattern based Decision Tree DETEC algor. 

All data 
(Tr=58/T=10) 

Tr = 50 (86.2%)      
/  

T = 10 (100%) 

Tr = 49 (84.5%)      
/  

T = 10 (100%) 

Tr = 43 (74.1%)      
/  

T = 9 (90.0%) 

Tr = 51 (87.9%)      
/  

T = 10 (100.0%) 

Tr = 33 (56.9%)      
/  

T = 7 (70.0%) 

Without stun 
(Tr=38/T=2) 

Tr = 34 (89.5%)                
/  

T = 2 (100%) 

Tr = 33 (86.8%)                
/  

T = 2 (100%) 

Tr = 31 (81.6%)                
/  

T = 2 (100%) 

Tr = 32 (84.2%)                
/  

T = 2 (100%) 

Tr = 25 (65.8%)                
/  

T = 1 (50.0%) 

With stun 
(Tr=20/T=8) 

Tr = 16 (80.0%)      
/  

T = 8 (100%) 

Tr = 16 (80.0%)      
/  

T = 8 (100%) 

Tr = 12 (60.0%)      
/  

T =7 (87.5%) 

Tr = 19 (95.0%)      
/  

T = 8 (100%) 

Tr = 8 (40.0%)      
/  

T = 6 (75.0%) 

Clear beta 
above 1/f 

(Tr=43/T=9) 

Tr = 38 (88.4%) 
/  

T = 9 (100%) 

Tr = 37 (85.4%) 
/  

T = 9 (100%) 

Tr = 35 (81.4%) 
/  

T = 8 (88.9%) 

Tr = 37 (86.1%) 
/  

T = 9 (100%) 

Tr = 27 (62.8%) 
/  

T = 6 (66.7%) 

Little beta 
above 1/f 
(Tr=9/T=0) 

Tr = 7 (77.8%) 
/  

T = NA 

Tr = 8 (88.9%) 
/  

T = NA 

Tr = 3 (33.3%) 
/  

T = NA 

Tr = 8 (88.9%) 
/  

T = NA 

Tr = 4 (44.4%) 
/  

T = NA 

No beta 
above 1/f 
(Tr=6/T=1) 

Tr = 5 (83.3%)    
/  

T  = 1 (100%) 

Tr = 4 (66.7%)    
/  

T  = 1 (100%) 

Tr = 5 (83.3%)    
/  

T  = 1 (100%) 

Tr = 6 (100%)    
/  

T  = 1 (100%) 

Tr = 2 (33.3%)    
/  

T  = 1 (100%) 
Abbreviations: AUC_flat: area under the receiver operator curve after removing 1/frequency; Max.: maximum; 
Algor.: Algorithm; Tr: training set (size); T: test set (size); NA: not available; 1/f: 1/frequency (aperiodic signal) 

Table 5 provides an overview of the predictive accuracy of the 1st and 2nd predicted contacts combined 

for each ranking model per clinically chosen contact. An overview of the predictive accuracy of the 1st, 

2nd, 3rd and 4th predictions separately is provided in Appendix F, Table 7-11, for all models. As contact 0 

was never chosen clinically there were no predictive accuracy results for this contact. Furthermore, as 

in none of the test data contact 3 was clinically chosen this predictive accuracy could not be evaluated 

for the test set either. When considering the prediction results per clinically chosen contact, clinically 

chosen contact 1 and 2 were predicted with similar accuracies. However, predictions for chosen 

contact 3 showed lower accuracies for all pattern based and decision tree methods. For the reference 

method (DETEC algorithm) predictive accuracy of chosen contact 3 was higher than for contacts 1 and 

2 (75% vs. 59% and 46.7%, respectively). Nevertheless, contact 3 was clinically only chosen in four 

hemispheres whereas contact 1 and 2 were clinically chosen in 15 and 39 hemispheres, respectively.  



23 
 

Table 5. Frequency of 1st  or 2nd predicted contact being the clinically chosen contact per ranking model 
for all patients and subcategorised for the clinically chosen contact. 

 AUC_flat Max. Reference 
 Pattern based Decision Tree Pattern based Decision Tree DETEC algor. 

Contact #3 
(Tr=4/T=0) 

Tr = 3 (75.0%)      
/  

T = NA 

Tr = 3 (75.0%)      
/  

T = NA 

Tr = 2 (50.0%)      
/  

T = NA 

Tr = 0 (0.0%)      
/  

T = NA 

Tr = 3 (75.0%)      
/  

T = NA 

Contact #2 
(Tr=39/T = 8) 

Tr = 35 (89.7%)                
/  

T = 8 (100%) 

Tr = 35 (89.7%)                
/  

T = 8 (100%) 

Tr = 29 (74.4%)                
/  

T = 7 (87.5%) 

Tr = 37 (94.9%)                
/  

T = 8 (100%) 

Tr = 23 (59.0%)                
/  

T = 6 (80%) 

Contact #1 
(Tr=15/T = 2) 

Tr = 12 (80.0%) 
/  

T =2 (100%) 

Tr = 11 (73.3%) 
/  

T =2 (100%) 

Tr = 12 (80.0%) 
/  

T = 2 (100%) 

Tr = 14 (93.3%) 
/  

T = 2 (100%) 

Tr = 7 (46.7%)   
/  

T =1 (50%) 

Contact #0   
(Tr = 0/T = 0) 

Tr = NA 
 /  

T  = NA 

Tr = NA 
 /  

T  = NA 

Tr = NA 
 /  

T  = NA 

Tr = NA 
 /  

T  = NA 

Tr = NA 
 /  

T  = NA 
Abbreviations: AUC_flat: area under the receiver operator curve after removing 1/frequency; Max.: maximum; 
Algor.: Algorithm; Tr: training set (size); T: test set (size); NA: not available 

The results of the 1st and 2nd predicted contact combined for the fixed ranking (contact #2 → #1 → #3 

→ #0) are shown in Table 6. This method achieved a predictive accuracy on all data of 93.1% in the 

training set and 100% in the test set for the 1st and 2nd predicted contacts, illustrating that in the Haga 

Teaching hospital contact 2 and 1 are almost always chosen for stimulation. When comparing data 

with and without stun effect during MPR as well as data with clear or little beta activity above 1/f to 

data without beta activity above 1/f the fixed ranking technique shows better results for data with 

stun effect and without beta activity above 1/f, indicating that when the clinical choice is difficult 

contact 1 or 2 are always chosen. For the predictive accuracy of the 1st, 2nd, 3rd and 4th prediction 

separately for the fixed ranking model as well as the predictive accuracy of this method per clinically 

chosen contact, see Appendix F, Table 12 and Table 13. 

Table 6. Frequency of 1st and 2nd predicted contact being the clinically chosen contact for fixed ranking 
#2→#1→#3→#0 subcategorised for with/without stun effect and clear/little/no beta above 1/f. 

All data 
(Tr=58/T=10) 

Without stun 
(Tr=38/T=2) 

With stun 
(Tr=20/T=8) 

Clear beta 
above 1/f 

(Tr=43/T=9) 

Little beta 
above 1/f 
(Tr=9/T=0) 

No beta  
above 1/f 
(Tr=6/T=1) 

Tr = 54 (93.1%) 
/ 

T = 10 (100%) 

Tr = 34 (89.5%)                
/ 

T = 2 (100%) 

Tr = 20 (100%)      
/ 

T = 8 (100%) 

Tr = 40 (93.0%) 
/ 

T = 9 (100%) 

Tr = 8 (88.9%) 
/ 

T = NA 

Tr = 6 (100%)    
/ 

T  = 1 (100%) 
Abbreviations: Tr: training set (size); T: test set (size); 1/f: 1/frequency (aperiodic signal) 
 

3.5 Sub-analyses 
Several sub-analyses were performed using the two best performing ranking methods, pattern based 

(AUC_flat) and decision tree (Max.), for all available data (train and test set combined). No significant 

difference in predictive accuracy of the 1st and 2nd predicted contact combined was found for either 

model when comparing predictive accuracy results of LFP recordings performed ≤5 days post-

operatively to predictive accuracy results for LFP recordings performed > 5 days post-operatively, see 

Table 7. The percental difference was 13.3% (95% CI: -19.74% to 24.17%, p = 0.275) for the pattern 

based (AUC_flat) method and 11.7% (95% CI: -21.31% to 22.18%, p = 0.311) for the decision tree 

(Max.) method. 
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Table 7. Comparison of predictive accuracy for 1st&2nd predictions of pattern based (AUC_flat) and 
decision tree (Max.) methods between subgroups with LFP recordings ≤5 days / >5 days post-op. 

 LFP ≤5 days 
post-op (n=8) 

LFP >5 days 
post-op (n=60) 

Percental difference 
(95% CI, p-value*) 

Pattern based 
(AUC_flat) 

1st&2nd prediction 
8 (100%) 52 (86.7%) 

13.3% 
(95% CI: -19.74% to 24.17%, p = 0.275) 

Decision tree 
(Max.) 

1st&2nd prediction 
8 (100%) 53 (88.3%) 

11.7% 
(95% CI: -21.31% to 22.18%, p = 0.311) 

*N-1 chi-square test 
Abbreviations: LFP: local field potential; post-op: post-operatively; n: number of subthalamic nuclei; CI: 
confidence interval; AUC_flat: area under the receiver operator curve after removing 1/frequency; Max.: 
maximum 

Additionally, no significant difference in predictive accuracies was found when comparing results of 

LFP recordings performed in patients with tremor as main symptom to results for LFP recordings 

performed in patients with either bradykinesia or rigidity as main symptom, see Table 8. The percental 

difference was 4.2% (95% CI: -23.61% to 17.23%, p =0.687) for the pattern based (AUC_flat) method 

and 12.5% (95% CI: -12.56% to 23.63%, p =0.199) for the decision tree (Max.) method. In some 

patients without symptoms during MPR the main symptom remained unclear, in these cases the main 

symptom was considered to be either bradykinesia or rigidity and not tremor. 

 Table 8. Comparison of predictive accuracy for 1st&2nd predictions of pattern based (AUC_flat) 
and decision tree (Max.) methods between subgroups with tremor as main symptom or not. 

 Tremor main 
symptom (n=12) 

 

Bradykinesia/ 
rigidity main 

symptom (n=56) 

Percental difference 
(95% CI, p-value*) 

Pattern based 
(AUC_flat) 

1st&2nd prediction 
11 (91.7%) 49 (87.5%) 

4.2% 
(95% CI: -23.61% to 17.23%, p =0.687) 

Decision tree 
(Max.) 

1st&2nd prediction 
12 (100%) 49 (87.5%) 

12.5% 
(95% CI: -12.56% to 23.63%, p =0.199) 

*N-1 chi-square test 
Abbreviations: n: number of subthalamic nuclei; CI: confidence interval; AUC_flat: area under the receiver 
operator curve after removing 1/frequency; Max.: maximum 

Furthermore, no significant difference in predictive accuracies was found when comparing results of 

STN with one or more channels with bipolar impedance(s) ≥ 5000 Ω to results for STN with all 

impedances < 5000 Ω, see Table 9. The percental difference was 12.2% (95% CI: -5.31% to 38.85%, p = 

0.211) for the pattern based (AUC_flat) method and 14.0% (95% CI: -3.15% to 40.56%, p = 0.127) for 

the decision tree (Max.) method. For the individual impedance measurements per channel for all STN 

with one or more impedance(s) ≥ 5000 Ω see Appendix G, Table 1.  

Table 9. Comparison of predictive accuracy for 1st&2nd predictions of pattern based (AUC_flat) and 
decision tree (Max.) methods between subgroups with bipolar impedances ≤5000 Ω / >5000 Ω. 

 Impedance 
 ≥ 5000 Ω (n=14) 

Impedance  
< 5000 Ω (n=54) 

Percental difference 
(95% CI, p-value*) 

Pattern based 
(AUC_flat) 

1st&2nd prediction 
11 (78.6%) 49 (90.7%) 

12.2% 
(95% CI: -5.31% to 38.85%, p = 0.211) 
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Decision tree 
(Max.) 

1st&2nd prediction 
11 (78.6%) 50 (92.6%) 

14.0% 
(95% CI: -3.15% to 40.56%, p = 0.127) 

*N-1 chi-square test 
Abbreviations: n: number of subthalamic nuclei; CI: confidence interval; AUC_flat: area under the receiver 
operator curve after removing 1/frequency; Max.: maximum 

Finally, the predictive accuracy of segment-based LFP recordings for the optimal stimulation level was 

calculated and compared to the predictive accuracy for the optimal stimulation level of the best level-

based ranking method providing a single optimal contact (pattern based using the AUC_flat feature). 

For a total of 46 STN the clinically chosen contact was either contact 1 or 2 and segment LFP 

recordings were available. Level predictions based on the level with the highest segment LFP peak 

achieved higher predictive accuracies than level predictions based on the level with the highest 

segment LFP average, see Table 10. For prediction comparisons between all segment LFP predictions 

techniques as well as the best performing level-based ranking method that can provide a single 

optimal contact per patient hemisphere see Appendix G, Table 2. 

Table 10. Predictive accuracy of 1st prediction based on either the level of the highest segment-
based LFP peak or the level of the highest segment LFP average (both AUC_flat & Max.). 

 Level highest segment LFP peak  Level highest segment LFP average 

 AUC_flat Max. AUC_flat Max. 

Correct 1st 
prediction 
# STN (%) 

18 (39.1%) 18 (39.1%) 15 (32.6%) 17 (37.0%) 

Abbreviations: LFP: local field potential; AUC_flat: area under the receiver operator curve after removing 
1/frequency; Max.: maximum; # STN: number of subthalamic nuclei. 

When comparing the best performing level prediction based on segment LFPs to the performance of 

the best level-based LFP method, the latter significantly outperformed the former (difference in 

predictive accuracy: -30.43% (95 CI: -47.92% to -9.57%, p = 0.006). 

Table 11. Comparison of predictive accuracy of 1st prediction between the best segment-based LFP 
technique (level with highest segment LFP peak (AUC_flat)) and the best level-based LFP technique 
for single contact predictions (pattern based (AUC_flat)). 

 Best segment1  
correct 1st prediction 

#STN (%) 

Best segment  
incorrect 1st prediction 

#STN (%) 

Total best level #STN 
(%) correct/incorrect 

Best level2 correct 1st 
prediction #STN (%) 

12 (26.1%) 20 (43.5%) 32 (69.6%) 

Best level incorrect 1st 
prediction #STN (%) 

6 (13.0%) 8 (17.4%) 14 (30.4%) 

Total best segment  
#STN (%) 

correct/incorrect 
18 (39.1%) 28 (60.9%) 

McNemar’s test: 
Diff -30.43% (95% CI: 
 -47.92% to -9.57%,  

p = 0.006) 
1 Best segment: Level highest segment peak (Max.) 
2 Best level: Patter based (AUC_flat) 
Abbreviations: # STN: number of subthalamic nuclei; Diff: difference in predictive accuracy 
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4. Discussion 
The aim of this research was to predict the optimal stimulation contact(s) based on LFP recordings, 

and as such, improve the efficiency of DBS programming in PD patients. To achieve this, several  

prediction methods based on LFP recordings obtained using the implanted leads and a sensing 

enabled DBS system were developed. Furthermore, the performance of these methods was evaluated 

by means of comparing the outcomes to the clinically chosen stimulation contact during MPR.  

4.1 Ranking based predictions  
4.1.1 Custom ranking methods 

The most promising methods in this research were found to be two of the custom developed ranking 

methods. For the development of these custom ranking methods the level-based LFP recording data 

for each hemisphere was visualised using a greyscale grid. By means of this grid it was easier to 

visually interpret the LFP recording data in relationship to the clinically chosen contact. This allowed 

the development of two individual methods, one automatic (pattern based) and one manual (decision 

trees). The advantage of ranking based methods over methods providing a single contact prediction 

lies within the fact that side-effects can occur due to DBS. Side-effects may require deviation from the 

contact predicted based on LFP recordings and from the contact with lowest threshold for improving 

symptoms (theoretical best clinical contact). Ranking methods allow an informed alternative contact 

selection by providing 2nd, 3rd and 4th best contact options. 

The decision tree (Max.) method achieved the best results among the ranking based methods for a 

combination of the 1st and 2nd prediction, a predictive accuracy of 87.9% and 100% on all training and 

testing data, respectively. The pattern based (AUC_flat) method achieved the second best result with 

a predictive accuracy of 86.2% and 100% on all training and testing data, respectively. However, while 

the pattern based (AUC_flat) method provides a single optimal contact prediction (1st prediction 

correct: Tr = 55.2%, T = 90.0%), the decision tree (Max.) method, due to the applied technique, often 

provides the two most optimal contacts, reducing the amount of correct 1st predictions (1st prediction 

correct: Tr = 10.3%, T = 10.0%). Furthermore, as the aperiodic (1/f) signal was fit and removed per 

individual channel before obtaining the AUC_flat feature, this feature is expected to be more robust 

against artefacts and potential differences in the amplitude of the background signal between 

channels than the Max. feature. Despite these advantages of the pattern based (AUC_flat) method the 

decision tree (Max.) method may be favoured for clinical implementation as the Max. feature is 

already determined in the current clinical practice whereas manual determination of the AUC_flat 

feature is currently challenging. 

4.1.2 DETEC algorithm 

The performance of the custom ranking methods was evaluated on the training data, test data and in 

comparison with an existing ranking method, the DETEC algorithm. In contrast to the custom 

developed methods, the DETEC algorithm corrects for the difference in distance between the contacts 

within the different bipolar channels. In the research by Strelow et al. (2022) the DETEC algorithm 

resulted in a predictive accuracy of 71.4% (n=14 STN) for the 1st and 2nd prediction combined (38). 

When applied to our data, however, this algorithm only achieved 56.9% for the combination of the 1st 

and 2nd prediction based on the training data (n=58 STN). The difference in these results may be due 

to the fact that they compared their results to the contact providing the best clinical efficacy and not 

the clinically chosen stimulation contact. There might be a difference between the contact providing 

the best efficacy and the clinically chosen stimulation contact as the possible presence of side-effects 

might make the examiner choose for another contact. In addition the clinically chosen contact might 

be examiner-dependent. Furthermore, the number of sides in which no symptoms were measured 
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(stun effect) could also influence the accuracy of the clinically chosen contact. In those cases the 

examiner might choose a contact based on previous experience, (presumed) anatomical location of 

the lead, or other factors. Other reasons for a dissimilarity in DETEC algorithm performance could be a 

difference in lead placement location during surgery, a difference in the preprocessing methods or the 

difference in the amount of STN that were researched.  

Although the DETEC algorithm showed a performance inferior to the pattern and decision tree based 

ranking methods on the data from the current study, the concept of considering the difference in 

distance between the contacts for LFP recordings is understandable. From electroencephalography 

measurements it is a known concept that the distance between two electrodes influences the spatial 

resolution and amplitude of a bipolar measurement (47). However, as the precise influence of this 

difference in distance as well as the correct correction method currently remain unknown for LFP 

recordings this could not be taken into account in a standard manner and was therefore not included 

here. Furthermore, as the distance between contacts is expected to be similar for all patients, it would 

be expected that the effect on LFP recordings is similar between patients as well. Additionally, in this 

research, prediction methods were trained in a supervised manner. Therefore, the effect of distance 

between contacts is expected to have had minimal effect on the predictive accuracy of the evaluated 

methods. 

4.1.3 Ranking without symptoms or beta activity above 1/frequency 

One significant finding of this study is that predictions for patients with no symptoms during MPR or 

with little or no beta activity above 1/f achieved similar accuracies as those for patients with 

symptoms during MPR and patients with clear beta activity above 1/f. This suggests that, by means of 

the presented ranking methods, accurate contact choices can potentially be made for patients who 

are currently difficult to programme in the initial post-operative period. This may provide a solution to 

the current problems of early DBS programming in patients who exhibit a stun effect, and thus have 

little to no symptoms that can be used to inform MPR (48).  

4.2 Multi-factor predictions 
4.2.1 Machine learning models 

The literature reviewed prior to this master thesis showed that a combination of multiple frequency 

factors within machine learning models may provide promising results when predicting the optimal 

stimulation contact based on LFP recording. For instance the research performed by A.T. Connolly et 

al. (2015) in 28 STN showed that a support vector machine based on theta and low-beta frequency 

features could achieve a predictive accuracy of 91% (49). Furthermore, research by S.S. Xu et al. 

(2022) in 92 STN showed that an RF model based on average power of evoked resonant neuronal 

activity, beta and anatomy obtained a mean predictive accuracy of 80% (50). Here, the best 

performance among the machine learning models was achieved by a LDA model using raw beta and 

alpha frequency data. The performance obtained by this model was an AUC of 0.69 for the unseen 

test data using nested 10- and 3-fold cross-validation. This result did not surpass the predefined limit 

for the AUC of 0.7, however, it was very close to meeting this criterion. Furthermore, considering the 

limited amount of available data and the high frequency of the reference contact being contact 2, this 

result is expected to allow improvement in the future.  

In general the results obtained by the machine learning methods in this study appeared to be inferior 

to those obtained in the aforementioned literature. However, predictive accuracy often overestimates 

model performance in comparison to the ROC-AUC, as the former does not account for precision 

(positive predictive value) or recall (true positive rate). Because of this the performance scores 

obtained by the models in literature, using predictive accuracy, may have been higher than those 
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obtained here, using the ROC-AUC. This does however not necessarily indicate that these models 

achieved a more optimal, and in particular more generalisable, model performance than those 

developed here.  

4.2.2. Frequency factors 

Beta frequency features are considered to be most predictive of PD symptoms (51). Furthermore, 

according to literature, theta and gamma frequency features are considered more predictive of PD 

motor-symptoms than alpha frequency band features (51). However, for this to be true reliable 

recordings are expected to be essential. The fact that the best machine learning performance in this 

research was obtained by the combination of the beta and alpha frequency band features may, 

therefore, be due to the unreliability of the low (and possibly high) frequency recordings of the 

Percept PC®. These frequency bands are known to be susceptible to motion artefacts and may also be 

influenced by the relatively low sampling frequency (250 Hz) of the Percept PC® system (35). 

Nonetheless, the fact that a combination of frequency features outperforms predictions based on 

beta frequency features alone highlights that combining features from different frequency bands can 

improve the predictive accuracy of machine learning models when predicting the optimal stimulation 

contact in PD. This could indicate that more complex synchronisation patterns might explain the 

clinical symptoms better than a single frequency band. This is in accordance with the findings by A.T. 

Connolly et al. (2015), they showed that predictions based on a combination of theta and beta band 

features outperforms predictions based on features from the beta band alone (49). 

Additionally, in literature a distinction between the low and high beta frequency band is often made 

(52). Several articles have shown that the low beta frequency shows better correlation with PD 

symptom fluctuations and/or levodopa treatment than the high beta frequency (53, 54). Nevertheless, 

others have shown that in some cases the high beta band shows better correlation than the low beta 

band (52), and in some cases only a high beta peak and no low beta peak is present (37). As it 

currently remains unclear which of these two bands is most useful for contact selection (55), and as 

the beta peak within this research was sometimes located at a frequency in between the low and high 

beta band, only features from the total beta band were used here. 

4.3 Limitations 
4.3.1 Number of subjects 

Because of the retrospective nature of this research the required level-based LFP recordings were only 

available for a subset of 34 out of 62 patients within the first two post-operative weeks, OFF 

medication. Furthermore, segment-based LFP recordings were only performed in 25 of these 34 

patients.  

The fact that each patient had two individual leads implanted, one in each STN, made that for each 

patient two contact choices were made, resulting in 68 contact choices that could be used for the 

development of prediction methods. However, the fact that two predictions were evaluated per 

patient may have biased the results. Furthermore, although this is one of the largest samples so far, a 

sample size of 68 is still relatively small, especially when evaluating machine learning models (56). 

Additionally, the unbalanced subdivision among subgroups of this small dataset within the subgroup 

analyses of the machine learning and custom ranking methods as well as the secondary analyses may 

have decreased the reliability of the presented results.  

4.3.2 Measurement and subject-related factors 

Several LFP measurement and subject-related factors may have been of influence as well. For 

instance, patients with tremor as main symptom may show other patterns in LFP recordings, such as 

less beta and more theta activity, than those with bradykinesia or rigidity as main symptom (57). 
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Furthermore, tremor can potentially induce movement artefacts in LFP recordings (58). This may have 

led to different patterns and/or predictions in this subgroup of patients. The sub-analysis performed 

here did, however, not confirm a difference between these subgroups. Nevertheless, this research is 

not conclusive as only a small subset (12 out of 68 STN) had tremor as main symptom here. 

Another factor that could potentially influence the results is the fact that a difference in impedances 

between recording channels may create a difference in the amount of background signal which 

influences the LFP recordings (i.e. LFP recordings can be biased by a difference in aperiodic 1/f signal 

between channels) (59). The sub-analysis performed here did not show a significant difference in 

predictive accuracy between subgroups with and without relatively high (≥5000Ω) bipolar 

impedances, for either the decision tree (Max.) or the pattern based (AUC_flat) method. Although this 

was not seen here, differences in impedances are expected to mainly influence the results for ranking 

based predictions made using the Max. feature and less for the AUC_flat feature, as for the latter the 

aperiodic 1/f signal is already removed.  

LFP recordings and the prediction results based on these measurements can also be influenced by the 

amount of time between the surgery and the LFP recordings. For instance, the amplitude of the LFP 

recordings can be reduced in the first days and/or weeks after surgery due to the stun effect (60, 61). 

This effect may last for two weeks up to three months after surgery (62, 63). The occurrence of a stun 

effect was confirmed here as 28 out 68 STN (41.2%) showed no symptoms during MPR. In patients 

who did show symptoms during MPR a minimal microlesion effect could not be excluded. 

Furthermore, in 16 out of 68 STN (23.5%) little or no beta activity was present above 1/f within the LFP 

recordings. Of the 16 cases, with little or no beta activity above 1/f, 11 overlapped with those showing 

no symptoms during MPR. Nevertheless, the sub-analysis performed here did not show significant 

differences in predictive accuracy between predictions based on recordings within or more than 5 

days after surgery. This may have been due to the small time difference between the two groups. 

However, this may also be due to the fact that prediction results are not drastically influenced by the 

occurrence of stun effect. The fact that prediction results obtained within subgroups without 

symptoms during MPR or with little or no beta activity above 1/f were similar to the results of 

subgroups with symptoms during MPR or clear beta activity above 1/f may provide evidence for this 

hypothesis.  

Examples of other factors that were not evaluated in a sub-analysis but may have been of influence to 

the results obtained here are: the amount of movement performed by the patient during the LFP 

measurements; whether the patient was fully OFF medication during the LFP recordings; the type and 

intensity of symptoms present prior to (and after) lead implantation as well as the precise location of 

the lead within the STN.  

4.3.3 LFP measurement reliability 

The reliability of LFP recordings can be influenced by several factors. For instance, for the Percept PC® 

neurostimulator recordings of the lower frequency may be less reliable due to movement artefacts 

(35, 58). A comparison performed here showed that the readily available Percept PC® frequency 

domain data contains less artefacts than the manual time to frequency domain conversion. However, 

it remains unknown how the Percept PC® system filters or alternatively alters the frequency domain 

data. Furthermore, the custom time to frequency domain data has a higher signal resolution. 

Nevertheless, the signal resolution was thought to be of less importance than the occurrence of 

artefacts when obtaining the channel with highest Max. or AUC_flat. Additionally, only the readily 

available Percept PC® frequency domain data is available during DBS programming in the current 

clinical practice. Therefore, the readily available Percept PC® frequency domain data was used to 

perform all analyses within this study. 
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4.3.4 Reference method 

The fact that the clinically chosen contact during MPR was used as the reference for the prediction 

techniques may have influenced the results. One of the reasons for this is the fact that the clinician 

may have been biased towards a certain contact choice. For instance, the fixed ranking method 

showed that in the Haga Teaching Hospital contact 2 or 1 are chosen in 93.1% of the training set and 

100% of the test set. In part this is expected to be due to the planned lead implantation location 

during surgery. However, this may also have caused bias towards the prediction of contact 2 and 1 in 

all techniques, making it unclear whether the results presented here are generalisable for other 

centres. Furthermore, the motivation behind the clinical contact choice in patients without symptoms 

during MPR remains unclear and could have been influenced by the presence and pattern of side-

effects.  

Even in patients with symptoms, during the clinical contact choice, side-effects are taken into account, 

however, these are not reflected by LFP recordings. This may have led to the identification of incorrect 

or non-existent relationships between LFP recordings and clinical contact choices. Therefore, a 

reference contact which was chosen based on symptoms alone, for instance by using the contact with 

the best UPDRS-III score, may have shown better correlation with the LFP recordings. However, as 24 

out of 68 included STN showed no symptoms during MPR this would have greatly limited the amount 

of available data. Additionally, in 9 STN two or more contacts were equally promising according to the 

UPDRS-III scores, whereas in clinical practice this may have been more nuanced (i.e. preference of 

patient or clinician due to particular improvements). Furthermore, when using only the UPDRS-III 

based contact choice we would not have gained the insight that in cases of no symptoms during MPR 

LFP recordings can still provide reliable predictions of the optimal stimulation contact. 

As symptoms may return over time long-term contact choices may form a better representative of the 

true optimal contact. However, as there was a large variation in the time after surgery for the included 

patients and almost no LFP recordings are performed after the first two weeks post-operatively the 

long-term contact choice was considered to be sub-optimal as reference in this retrospective 

research. 

4.3.5 Multi-class classification  

One of the reasons for evaluating these 3 specific machine learning methods was the fact that multi-

class classification with a categorical outcome variable was required. This made that several machine 

learning methods were not applicable or required a one vs. rest approach complicating the 

comparison with the currently evaluated models. As this was only a first evaluation of the feasibility of 

using machine learning models for the prediction of the optimal stimulation contact this was not 

attempted here. The three evaluated machine learning models, that vary in methodology and 

complexity, were chosen as a categorical multi-class prediction was required, which is not a standard 

option for all machine learning methods (64) and because the required model complexity remained 

unknown. However, other machine learning methods that were not evaluated, such as support vector 

machines, may result in a higher performance (49). One of the limitations of the machine learning 

models evaluated here, as well as of those evaluated with a similar aim in literature, is the fact that 

these methods only provide a single prediction for the most optimal stimulation contact. Whereas, in 

clinical practice, this potentially optimal stimulation contact may lead to undesired side-effects. 

Therefore, an optimal ranking of the stimulation contacts may be more useful in clinical practice. 

Although ranking methods exist in machine learning, these methods do not allow insight in the 

reasoning behind a certain ranking and/or are not easily tweaked or interpreted (65). To overcome 

these issues custom ranking methods were developed. 
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Another limitation of machine learning models is the risk of overfitting on the training data, which 

decreases the generalisability of the model. The risk for overfitting was relatively high in this research 

because of the limited amount of data, and especially the lack of equally distributed data among the 

possible classes. An attempt was made to limit overfitting and reduce training time by means of 

preprocessing techniques that allow dimensionality reduction (66). However, since it was unknown 

which features or feature combinations are of highest value for the predictions 3 different techniques 

as well as no preprocessing were evaluated in combination with each model. Nevertheless, all the RF 

models were subject to overfitting. This was proven by the fact that they achieved a predictive 

accuracy of 100% on the training data and a far lower predictive accuracy (≤64%) on the unseen test 

data. This overfitting did not decrease when decreasing the amount of features and/or number of 

trees. Therefore, the fact that overfitting occurred, was expected to be due to the relatively small 

amount of available data, indicating that the test set performance could increase by adding additional, 

more equally distributed, training data (67).  

4.4 Future directions 
4.4.1 Monopolar LFP recordings 

The identification of the single optimal stimulation contact is complicated by the fact that all 

recordings are bipolar (38). Bipolar recordings only provide a difference in beta activity between the 

two included regions and not the absolute beta activity of a specific location. It is therefore expected 

that in the future, different recording approaches will be evaluated. For instance, monopolar LFP 

recordings may provide a more direct representation of the activity at an exact location among the 

contacts available for stimulation. Nevertheless, bipolar measurements have the advantage that 

common noise can be discarded. Therefore, a semi-monopolar approach, where there is still a 

reference but one common to all contacts within one hemisphere, may have the greatest potential. It 

is expected that a LFP recording option of this type will be added to the Percept PC® system in the 

future. However, as recording via the stimulating electrode is not possible during stimulation, a bipolar 

measurement configuration around the stimulating electrode is expected to remain for recordings 

during stimulation. This bipolar approach will also allow reduction of the stimulation artefact. As the 

at-home recordings, which are performed during stimulation, are expected to guide adaptive/closed-

loop DBS in the future, a comprehensive understanding of the bipolar recording modalities remains 

important. 

4.4.2 Directional leads 

The directional Sensight leads® investigated here are an example of the current commercially available 

directional leads. Due to the segmentation of the middle two contacts current steering is enabled. The 

application of current steering has shown the potential to reduce side-effects caused by DBS (37). 

However, using a directional lead to its fullest potential requires the evaluation of additional contacts 

during MPR. As even leads with 32 contacts have been tested intra-operatively, (68) future use of 

similar devices in clinical practice would drastically increase the amount of contacts requiring 

evaluation. Currently, due to the limited amount of available time, segmented contacts are only tested 

individually in case limiting side-effects occur during level-based stimulation or when the results of 

DBS remain suboptimal after trying several level-based configurations over a longer period of time. 

The automation of the contact selection process by means of a prediction method based on LFP 

recordings could help reduce the amount of time required for DBS programming and thus allow the 

use of directional leads to their full potential. This would help decrease side-effects due to DBS and 

potentially even improve DBS efficacy (37). Nevertheless, the finding of this research that segment 

LFPs predictions are significantly inferior to level-based LFP predictions for predicting a stimulation 

level should be taken into account. This finding may provide evidence that future research on the 
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predictive accuracy of segment LFPs should focus on predicting the most optimal stimulation direction 

and not (only) the most optimal stimulation level.   

4.4.3 Other neural disorders 

In this research only patients with PD were considered. However, DBS is currently used for several 

other neuromuscular diseases such as dystonia and essential tremor. Furthermore, applications for 

epilepsy, obsessive compulsive disorder and major depression are currently being researched (20). To 

date, most of the research on potential physiomarkers to inform DBS programming has been 

performed for PD. However, DBS programming in other disorders may also benefit from the use of LFP 

recordings (20, 51). An example is the use of LFP recordings as predictor for the occurrence of an 

epileptic seizure (69). Information from LFP recordings is, however, not yet used for this purpose as 

there is currently an insufficient amount of clinical evidence on the predictive accuracy of LFP based 

physiomarkers (69). Nevertheless, as DBS amplitude allows quick activation or adjustment patients 

with sudden onset diseases such as epilepsy or certain subtypes of dystonia may potentially benefit 

more from predictions based on LFP recordings than patients with relatively slow changing diseases 

such as PD. Performing additional research on LFP based physiomarkers may therefore provide 

important insights for achieving better symptom control in patients with neural disorders other than 

PD. 

4.4.2 Generalisability and prospective research 

Future research on the topic of this study should focus on evaluation of the generalisability of the 

proposed techniques. This can be achieved by evaluating the performance of the methods on 

additional data from the Haga Teaching Hospital as well as from other clinics. Furthermore, an 

attempt should be made to improve the methods and models by means of prospective research and 

the use of the contact chosen based on UPDRS-III scores as a reference instead of the clinical contact 

choice (which may have been influenced by side-effects which are not captured by LFP recordings). 

For the machine learning methods additional training data is required to identify the true potential of 

the evaluated and other, non-evaluated, techniques. This additional data will also help identify the 

most promising combination of feature(s), preprocessing technique(s) and a machine learning 

method(s). Eventually, to properly assess generalisability for all methods, the performance of the most 

promising techniques should be evaluated on an external validation set. 

For the most promising method feasibility of clinical application should be evaluated by performing 

prospective clinical research. This research should evaluate whether DBS efficacy achieved by using 

this new technique is non-inferior to the DBS efficacy achieved by means of the current clinical 

practice. Furthermore, the amount of time required for DBS programming should be compared. This 

could be achieved by means of a randomised controlled trial, preferably with a cross-over design.  

Within this research it should also be evaluated whether the predictive accuracy of the most 

promising technique improves when LFPs and the clinical contact choice are performed after the stun 

effect period (i.e. after LFP stabilisation). However, to do so, a more precise estimate of the moment 

of LFP stabilisation in time is required. In future research Survey and/or Setup measurements should, 

therefore, be repeated at multiple moments within the first 3 post-operative months, allowing more 

precise identification of the moment that LFP amplitudes stabilise (63).  
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5. Conclusion 
By this research it was demonstrated that prediction of the optimal stimulation contact(s) in patients 

with PD using level-based LFP recordings is feasible and has the potential to improve DBS 

programming efficacy. The best results were obtained using the pattern based (AUC_flat) and decision 

tree (Max.) custom ranking methods. For clinical implementation the decision tree (Max.) ranking 

method is expected to be favoured. Prospective research is, however, required to identify the precise 

predictive accuracy of this technique in clinical practice as well as provide insight in the clinical 

limitations and potential of the developed model. Furthermore, challenges such as the limited amount 

of available data and bias in the reference method should be addressed in further evaluations. Despite 

these considerations, the advancements presented here show the potential to halve the required DBS 

programming time, which could play an important role in improving DBS programming efficiency as 

well as reducing patient discomfort. 
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Appendices 

A. Methodology for preprocessing and machine learning models 
 

 

 

 

 

Table 1. Overview of preprocessing methods and corresponding applied cut-off values. 

Method Mechanism Advantages Disadvantages Cut-offs 

Principle 
component 
analysis (70) 
 
Matlab function: 
“pca()” 

Constructs new 
predictor 
variables as 
linear 
combinations of 
the original 
variables 
without taking 
the response 
variable into 
account 

• Prevents 
overfitting 

• Removes 
correlated 
features 

• Speeds up 
machine learning 
algorithms 

• Loss of 
information 

• Data 
standardisation 

• Difficult to 
identify most 
significant 
features 

• Unsupervised 
technique 

85% variance 
included  

Partial least 
squares 
regression (70) 
 
Matlab function: 
“plsregress()” 
 

Constructs new 
predictor 
variables as 
linear 
combinations of 
the original 
variables whilst 
taking the 
response 
variable into 
account.  

• Requires few 
components 

• Supervised 
technique 

• Removes 
correlated 
features 

• Speeds up 
machine learning 
algorithms 

• Prone to 
overfitting 

• Loss of 
information 

• Data 
standardisation 

• Difficult to 
identify most 
significant 
features 

75% of 
maximum 
variance 
included  

Lasso 
regularisation 
(71) 
 

Assists in the 
elimination of 
irrelevant 
parameters, 

• Robust to outliers 

• Prevents 
overfitting 

• Loss of features 

• Only one feature 
selected from a 
group of 

75th lambda  

Figure 1. a) LFP level-based recordings left hemisphere NL048 as provided by the Percept PC®. b) LFP level-based 

recordings left hemisphere NL048 after manual conversion from time to frequency domain using Percept PC® 

time domain data. 

a) b) 
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Table 2. Overview of machine learning methods and corresponding applied hyperparameter ranges. 

Model Mechanism Advantages Disadvantages Hyperparameter 
ranges 

Linear discriminant 
analysis (72) 
 
Matlab function: 
“fitcdiscr()” 

finds a linear 
combination of 
features that 
characterises or 
separates two 
or more classes 
of objects. 

• Simple 

• Robust 
classification 
easy to 
implement 

• Low overfitting 
due to inherent 
dimensional 
reduction 

• Linear 
boundaries 
may separate 
classes 

• Uses too many 
parameters in 
high-
dimensional 
setting 

 

Discriminant 
type: 
‘linear’, 
‘pseudolinear’, 
‘diaglinear’ 

K-nearest 
neighbours (73) 
 
Matlab function: 
“fitcknn()” 

Finds k number 
of samples 
closest to point 
needing 
prediction. 
Evaluates which 
label is most 
frequent 
amongst these 
samples and 
classifies the 
point needing 
prediction as 
this label. 

• Simple 

• Intuitive 

• New data is 
easy to add 

• Multiple 
distance 
metrics 

• High sensitivity 

• Non-linear 
performance 

• Poor 
performance 
on imbalanced 
data/large 
datasets/high 
dimensions 

• Costly 
computation 

• Sensitive to 
noise/missing 
values/outliers 

Number of 
neighbours: 
1, 2, 3…20 

Random forest (74) 
 
Matlab function: 
“TreeBagger()” 

Combination of 
large number of 
decision trees. 
Each decision 
tree calculates 
the class 
prediction and 
the class with 
the highest 
amount of votes 
becomes 
prediction.  

• Robust to 
outliers/missing 
data 

• Lower 
overfitting (vs. 
decision trees) 

• Suitable for 
large datasets 

• Non-linear 
performance 

• Biased when 
dealing with 
categorical 
variables 

• Slow training 

• Parameter 
complexity 

• Overfitting risk 
remains 

Number of trees: 
25, 50, 75….500 

  

Matlab function: 
“lassoglm()” 

thus helping in 
the 
concentration of 
selection and 
regularises the 
models. 

• Speeds up 
machine learning 
algorithms 

• Most important 
features can be 
identified 

correlated 
features 
(combinations 
not evaluated) 
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B. Decision Trees 
Part I.    Decision Trees for contact elimination  
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Part II.    Decision Trees for contact selection  

  



44 
 

 

 

 



45 
 

 

 

 



46 
 

Part III.    Decision Tree MATLAB GUI 

For an example of the Matlab decision tree assistant interface see Figure 1.  

To run with Matlab (2023a): 

- Running: Open Matlab (2023a) → Type “appdesigner” in the command window → Click 

“Enter” button on keyboard → Open “DecisionTreeAssistant.mlapp” → Click “Run” 

(green arrow) → select ranking according to BrainSense Survey data → Click “Confirm 

ranking” → Repeat for other hemisphere by clicking “Run” (green arrow) again, select 

ranking according to BrainSense Survey data and click “Confirm ranking”. 

To run without Matlab (2023a): 

- In case Matlab is not available on the device install “Matlab Runtime” version 2023a via: 

https://nl.mathworks.com/products/compiler/matlab-runtime.html, this is open access 

software. If Matlab (2023a) is installed on your device no “Matlab Runtime” installation 

is required. 

- Double click DecisionTreeAssistant.exe → wait for window from Figure 1. to open (this 

can take a while) →  select ranking according to BrainSense Survey data → Click 

“Confirm ranking” → Repeat for other hemisphere by double clicking 

DecisionTreeAssistant.exe again, select ranking according to BrainSense Survey data and 

click “Confirm ranking”. 

  

Figure 1. Matlab decision tree GUI example for case from Figure 7. 

https://nl.mathworks.com/products/compiler/matlab-runtime.html
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C. UPDRS-III scores 
Table 1. UPDRS-III scores per patient and hemisphere scored during MPR per contact and stimulation amplitude. 
  Contact 0 Contact 1 Contact 2 Contact 3 

Patient 
Hemi- 
sphere 

UPDRS 
(R/B/T) 

mA 
(R/B/T) 

UPDRS 
(R/B/T) 

mA 
(R/B/T) 

UPDRS 
(R/B/T) 

mA 
(R/B/T) 

UPDRS 
(R/B/T) 

mA (R/B/T) 

NL007  LH ?/?/3 ?/?/4 ?/?/0+ ?/?/4.5 ?/?/0 ?/?/5 ?/?/2 ?/?/5 

  RH                 

NL008  LH                 

  RH                 

NL016  LH 0/0/? 1.5/1.5/? 0/1-/? 2/1/? 0/0/? 2.5/2.5/? 0/0+/? 1.5/1.5/? 

  RH 1+/1+/? 2.5/2.5/? 0+/0+/? 3/3/? 0+/1/? 4/3.5/? 1/0+/? 2.5/3/? 

NL017 LH 1-/?/? 2/?/? 0/?/? 1/?/? 0/?/? 1.5/?/? 0/?/? 1.5/?/? 

  RH 0/0/? 3/2.5/? 0/0/? 3/2/? 0-1/0-1/? 3.5/4/? 1+/2-/? 2/2/? 

NL018 LH                 

  RH                 

NL019 LH 1/2/? 2.5/2/? 1-/1-2/? 3.5/3.5/? 1/2-3/? 3/2/? 1-2/2-3/? 4/4/? 

  RH 1/2-3/? 2/2/? 1/2+/? 4/4/? 0-1/0+/? 4/4/? 0-1/1+/? 3/4/? 

NL020 LH 0/1/? 1.5/2/? 0/0+/? 1/4/? 0/1/? 2/3/? 0/1/? 2/3/? 

  RH 0/1-2/? 2/4.5/? 0/1-2/? 1.5/3.5/? 0/1-2/? 1.5/5/? 0/2+/? 1.5/2.5/? 

NL022 LH                 

  RH ?/1/? ?/2/? ?/1/? ?/2/? ?/1/? ?/4/? ?/1/? ?/4/? 

NL023 LH                 

  RH ?/?/0 ?/?/4 ?/?/0 ?/?/3 ?/?/0 ?/?/2.5 ?/?/0 ?/?/4 

NL024 LH                 

  RH                 

NL027 LH 0/2-/1 1.5/1.5/1.5 0/1/1 1.5/1.5/1.5 0/1-/1 2/2.5/1.5 0/2--/1 1.5/2.5/1.5 

  RH 3/3/? 2/2/? 3-/3-/? 2/2/? 2-/2-/? 4.5/4.5/? 1/1+/? 5/5/? 

NL028 LH                 

  RH 1/2/? 2.5/2.5/? 1-/1/? 2/2/? 1/1/? 2/2/? 1-/1-2/? 2/2/? 

NL031 LH 1/3/2 2.5/2.5/2.5 1/1-2/2- 2.5/4/3 1/1-2/1+ 3/3/4. 1/1-2/1+ 3/3/4. 

  RH 0/0-1/0-1 4/4/4 0/1/0 2.5/2.5/2.5 0/0-1/0 2.5/3.5/2.5 0/1+/0 2.5/3/2.5 

NL037 LH 0+/0+/? 1.5/2.5/? 0/0/? 2/3.5/? 0/0+/? 1.5/3.5/? 0+/0+/? 1.5/4.5/? 

  RH 0/1/? 1.5/2/? 0/0/? 2.5/2.5/? 0/0/? 2/2/? 0/2/? 2/3.5/? 

NL042 LH ?/0+/? ?/2/? ?/0+/? ?/2/? ?/0+/? ?/1.5/? ?/1/? ?/1.5/? 

  RH 0/1-/? 2.5/2.5/? 0+/1-/? 2/2.5/? 0/1-/? 2/2/? 0/1+/? 4.5/4.5/? 

NL044 LH ?/0-1/0-1 ?/1.5/2.5 ?/0/0 ?/4/4 ?/?/0 ?/?/1 ?/?/0-1 ?/?/3.5 

  RH ?/0/? ?/3.5/? ?/0/? ?/3/? ?/0/? ?/3/? ?/2/? ?/4/? 

NL045 LH 0/2/? 3/3/? 0/1-/? 1.5/4/? 0/0/? 2/2/? 0/0-1/? 1.5/1.5/? 

  RH                 

NL046 LH ?/3/? ?/1.5/? ?/3/? ?/1.5/? ?/3/? ?/3/? ?/3/? ?/3/? 

  RH                 

NL048 LH ?/2--/? ?/3.5/? ?/1-/? ?/1.5/? ?/1-/? ?/1.5/? ?/2-3/? ?/2/? 

  RH 2/1/? 2/2/? 0/1/? 1.5/2/? 0/0+/? 1.5/2/? 0/0+/? 1.5/2/? 

NL049 LH 1/1+/? 2.5/2.5/? 1/0/? 2/3/? 0/0/? 2/2.5/? 0+/0+/? 3/3/? 

  RH 0+/0/? 3.5/3.5/? 0+/0/? 2.5/2.5/? 0+/1-/? 3.5/3.5/? 0+/1-/? 3/4/? 

NL051 LH 0/2+/? 0/2.5/? 0/1-/? 0/3/? 0/0+/? 0/2.5/? 0/0+/? 0/2.5/? 

  RH 0/0/? 0/2.5/? 0/0/? 0/2/? 0/0/? 0/2/? 0/2/? 0/2/? 
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NL052 LH                 

  RH                 

NL053 LH 1/1-2/? 3.5/3.5/? 0+/0-1/? 3/3/? 0-1/1/? 4/3/? 1/2/? 3/4/? 

  RH 1/1/? 3/4/? 0-1/0-1/? 3/3/? 0+/0/? 2.5/4/? 1/1/? 2/2/? 

NL054 LH ??? 3.5 1-/1-/0 3.5/3.5/3 0-1/0-1/? 3/3/? 0/0/? 2.5/2/? 

  RH 1-0/2-/1 3/3/2.5 0/0/? 1.5/2/? 0/0/? 1.5/1/? 0/0/? 2/1/? 

NL055 LH 1/0/? 2/2.5/? 0+/0/? 2/2/? 0+/0/? 2/2/? 0+/0/? 1.5/2/? 

  RH 3-/2/? 1.5/1.5/? 2/1/? 2/2/? 1/0/? 2.5/2.5/? 1-/0/? 4/2.5/? 

NL056 LH 0/3-/? 1/2/? 0/3-/? 1/2/? 0/1/? 1/3/? 0/0/? 1/4.5/? 

  RH 0/2/? 1/2/? 0/1-/? 1/3.5/? 0/0/? 1/3/? 0/1/? 1/2.5/? 

NL057 LH                 

  RH ?/?/3 ?/?/3 ?/?/0 ?/?/4 ?/?/0+ ?/?/3.5 ?/?/0+ ?/?/4 

NL058 LH                 

  RH                 

NL059 LH                 

  RH 0/1-/2 1.5/0/0 0/1/? 1.5/0/? 0/0+/2 1/1/2.5 0/0+/? 1.5/2/? 

NL065 LH                 

  RH                 

NL068 LH 0/0+/? 1/2/? 0/0+/? 1/1/? 0/0/? 1/1.5/? 0/0+/? 1.5/1.5/? 

  RH                 

NL069 LH NA NA NA NA NA NA NA NA 

  RH NA NA NA NA NA NA NA NA 

NL070 LH                 

  RH                 

NL071 LH ?/0+/0 ?/2/2 ?/0+/0 ?/2/2.5 ?/?/0 ?/?/2.5 ?/?/0 ?/?/2.5 

  RH                 

Abbreviations: UPDRS: unified parkinson’s disease rating scale; R/B/T: rigidity/bradykinesia/tremor; mA: milli Ampère; LH: left 
hemisphere; RH: right hemisphere; NA: not available 

 

Legend 

  Best UPDRS & Chosen contact  

  Best UPDRS (no chosen contact) 

  Chosen contact but not best UPDRS 

  No symptoms     

  Chosen contact when no symptoms 
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D. Non-artefact recording 

Figure 1. Time domain data after 4Hz high pass filtering from segment recordings across all 9 channels in the left 

hemisphere of two patients, a) NL022 and b) NL056, with sporadic artefacts remaining across several channels.  

b) 

a) 
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Figure 2. a) Time domain and b) frequency domain data after 4Hz high pass filtering from level-based recordings 

across all 6 channels for the right hemisphere of patient NL023, with a remaining artefact throughout all the 

time domain data and below 10Hz for all channels in the frequency domain data.  

 

 

 

 

 

 

 

 

 

 

b) a) 

a) 

Figure 3. a) Time domain and b) frequency domain data after 4Hz high pass filtering from level-based recordings across all 6 
channels for the left hemisphere of patient NL016, without a remaining artefact throughout the time domain data and 
above 4Hz for channels in the frequency domain data. 

b) 
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E. Machine learning results 

Table 1. Machine learning model performance for models with beta frequency only 
and all frequencies combined. 

  Beta only Theta + Alpha + Beta + Gamma 

LDA ROC-AUC Type  ROC-AUC  Type  

Raw D = 0.72/T = 0.53 7x lin.,3x diag. D = 0.95/T = 0.59 8x lin.,2x diag. 

PCA D = 0.67/T = 0.61 10x lin. D = 0.70/T = 0.63 10x lin. 

PLSR D = 0.72/T  = 0.55 10x lin. D = 0.81/T = 0.60 8x lin., 2x diag. 

L1 D = 0.72/T = 0.59 8x lin.,2x diag. D = 0.82/T = 0.54 6x lin.,4x diag. 

KNN ROC-AUC Median type 
(range) 

ROC-AUC Median type 
(range) 

Raw D = 0.72/T = 0.46 6 (4-12) D = 0.70/T = 0.48 6.5 (4-9) 

PCA D = 0.80/T = 0.52 4.5 (3-7) D = 0.77/T = 0.47 6 (3-7) 

PLSR D = 0.73/T = 0.45 7.5 (4-9) D = 0.78/T = 0.50 5.5 (4-11) 

L1 D = 0.74/T = 0.52 6.5 (4-9) D =  0.76/T = 0.55 5 (3-7) 

RF ROC-AUC Median type 
(range) 

ROC-AUC Median type 
(range) 

Raw D = 1.00/T = 0.55 25 (25-200) D = 1.00/T = 0.55 62.5 (25-325) 

PCA D = 1.00/T = 0.58 25 (25-150) D = 1.00/T = 0.54 50 (25-250) 

PLSR D = 1.00/T= 0.59 50 (25-75) D = 1.00/T = 0.55 62.5 (25-125) 

L1 D = 1.00/T = 0.53 50 (25-100) D = 1.00/T = 0.57 50 (25-425) 

Abbreviations: ROC-AUC: area under the receiver operator curve; PCA: principle component 
analysis; PLSR: partial least square regression; L1: lasso regression; D: design set (90% of 
data); T: test set (10% of data); lin.: linear; diag.: diaglinear 

 

Table 2. Machine learning model performance for models with the beta frequency combined with either the 
theta, alpha or gamma frequency. 

  Beta + Theta Beta + Alpha Beta + Gamma 

LDA ROC-AUC Type  ROC-AUC  Type  ROC-AUC Type 

Raw D = 0.80/T = 0.59 5x lin.,5x diag. D = 0.86/T = 0.69 7x lin.,3x diag. D = 0.73/T = 0.56 5x lin.,5x diag. 

PCA D = 0.67/T = 0.62 10x lin. D = 0.68/T = 0.62 9x lin.,1x diag. D = 0.67/T = 0.60 8x lin.,2x diag. 

PLSR D = 0.75/T = 0.57 8x lin.,2x diag. D = 0.78/T = 0.52 5x lin.,5x diag. D = 0.78/T = 0.56 7x lin.,3x diag. 

L1 D = 0.77/T = 0.56 6x lin.,4x diag. D = 0.84/T = 0.59 8x lin.,2x diag. D = 0.76/T = 0.49 6x lin.,4x diag. 

KNN ROC-AUC Median type 
(range) 

ROC-AUC Median type 
(range) 

ROC-AUC Median type 
(range) 

Raw D = 0.75/T = 0.53 5 (3-8) D = 0.75/T = 0.54 7 (3-11) D = 0.68/T = 0.40 6 (3-10) 

PCA D = 0.80/T = 0.53 5 (3-7) D = 0.75/T = 0.53 6 (4-7) D = 0.74/T = 0.48 6 (3-9) 

PLSR D = 0.76/T = 0.46 6.5 (4-8) D = 0.75/T = 0.53 5.5 (3-10) D = 0.92/T = 0.48 5 (2-8) 

L1 D = 0.74/T = 0.61 7 (4-9) D = 0.76/T = 0.53 6.5 (5-8) D = 0.77/T = 0.56 6 (4-8) 

RF ROC-AUC Median type 
(range) 

ROC-AUC Median type 
(range) 

ROC-AUC Median type 
(range) 

Raw D = 1.00/T = 0.64 75 (25-100) D = 1.00/T = 0.60 75 (25-125) D = 1.00/T = 0.51 50 (25-275) 

PCA D = 1.00/T = 0.55 50 (25-150) D = 1.00/T = 0.53 50 (25-75) D = 1.00/T = 0.50 75 (25-175) 

PLSR D = 1.00/T = 0.63 50 (25-250) D = 1.00/T = 0.58 50 (25-75) D = 1.00/T = 0.55 50 (25-125) 

L1 D = 1.00/T = 0.58 75 (50-125) D = 1.00/T = 0.57 50 (25-225) D = 1.00/T = 0.41 50 (25-200) 

Abbreviations: ROC-AUC: area under the receiver operator curve; PCA: principle component analysis; PLSR: partial least 
square regression; L1: lasso regression; D: design set (90% of data); T: test set (10% of data); lin.: linear; diag.: diaglinear 
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Figure 1. Receiver operator curve and confusion matrix for random forest model using the raw features from the 
beta as well theta band.  

Figure 2. Receiver operator curve and confusion matrix for linear discriminant analysis model in combination 
with principle component analysis on the features from the theta, alpha, beta as well as gamma frequency 
bands.  

  

All four frequency-bands – Principle component analysis – Linear discriminant analysis 

Beta & theta frequency-bands – Raw data – Random forest 
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F. Ranking method results 
Table 1. Overview of ranking method results as well as the presence of stun effect and beta peak activity after 
removal of aperiodic signal per hemisphere for all patients. 

     Pattern based Decision trees DETEC algorithm 

 Patient 
Hemi-
sphere 

Stun 
effect? 

Beta 
peak? 

AUC_flat Max. AUC_flat Max. 
Norm-

low 
Norm-
peak 

 

NL_007 LH Yes Little 2-3-0-1 0-1-2-3 1 or 2 (or 0) 1 or 2 2-0-1-3 0-1-3-2 
 RH Yes Little 3-2-0-1 1-0-3-2 2 or 3 1 or 2 0-2-3-1 0-1-2-3 

NL_008 LH Yes No 2-1-3-0 2-1-3-0 1 or 2 (or 3) 1 or 2 3-2-0-1 3-2-0-1 
 RH Yes No 2-1-3-0 2-3-0-1 1 or 2 (or 3) 1 or 2 3-0-1-2 0-1-2-3 

NL_016 LH No Yes 2-3-1-0 2-3-1-0 2 or 3 (or 1) 2 or 3 (or 1) 3-2-1-0 3-2-1-0 
 RH No Yes 3-2-1-0 1-3-2-0 2 or 3 (or 1) 2 or 3 (or 1) 3-2-0-1 3-2-0-1 

NL_017 LH No Yes 2-1-3-0 2-1-3-0 1 or 2 1 or 2 2-1-3-0 1-2-3-0 
 RH No Yes 1-0-3-2 1-0-3-2 0 or 1 0 or 1 0-1-2-3 0-1-2-3 

NL_018 LH Yes Little 2-3-0-1 3-1-2-0 2 or 3 (or 1) 2 or 3 (or 1) 3-0-1-2 3-2-0-1 
 RH Yes Little 3-2-0-1 1-0-3-2 2 or 3 (or 1) 1 or 2 2-0-3-1 0-3-1-2 

NL_019 LH No Yes 1-2-0-3 2-1-3-0 1 or 2 1 or 2 1-2-3-0 2-1-3-0 
 RH No Yes 2-1-3-0 2-1-3-0 1 or 2 1 or 2 3-1-0-2 3-1-2-0 

NL_020 LH No Yes 2-1-3-0 2-3-1-0 1 or 2 1 or 2 0-3-2-1 3-2-1-0 
 RH No Yes 3-2-0-1 2-3-0-1 2 or 3 1 or 2 3-2-0-1 3-2-0-1 

NL_022 LH Yes No 2-3-1-0 2-3-0-1 1 or 2 1 or 2 3-0-2-1 1-2-0-3 
 RH No Yes 2-3-1-0 2-1-3-0 1 or 2 1 or 2 2-1-3-0 3-2-0-1 

NL_023 LH Yes Little 0-1-2-3 3-2-0-1 1 or 2 1 or 2 3-0-1-2 1-2-0-3 
 RH No Yes 2-1-3-0 2-1-3-0 1 or 2 1 or 2 2-3-1-0 0-2-1-3 

NL_024 LH Yes Yes 2-3-1-0 2-1-3-0 2 or 3 2 or 3 (or 1) 1-0-2-3 1-0-2-3 

 RH Yes Yes 1-2-0-3 1-0-2-3 
0 or 1 (or 2 

or 3) 
1 or 2 3-1-2-0 2-0-1-3 

NL_027 LH No No 3-2-1-0 2-1-3-0 2 or 3 (or 1) 1 or 2 3-0-2-1 2-1-3-0 
 RH No Yes 1-2-3-0 1-0-2-3 1 or 2 1 or 2 0-3-1-2 0-1-3-2 

NL_028 LH Yes No 1-2-0-3 2-3-0-1 0 or 1 (or 2) 1 or 2 3-0-2-1 3-2-0-1 
 RH No Yes 2-3-1-0 2-3-0-1 2 or 3 1 or 2 3-0-2-1 3-2-1-0 

NL_031 LH No Yes 2-3-0-1 2-3-0-1 2 or 3 2 or 3 3-2-0-1 3-2-1-0 
 RH No Yes 2-1-3-0 2-3-1-0 2 or 3 (or 1) 2 or 3 (or 1) 3-1-2-0 3-1-2-0 

NL_037 LH No Yes 0-1-2-3 1-0-3-2 0 or 1 0 or 1 1-2-0-3 1-2-0-3 
 RH No Yes 2-1-0-3 1-2-0-3 1 or 2 0 or 1 (or 2) 1-2-3-0 1-2-3-0 

NL_042 LH No Yes 2-3-1-0 2-3-1-0 2 or 3 (or 1) 2 or 3 (or 1) 1-3-2-0 0-1-2-3 
 RH No Yes 2-3-1-0 2-3-1-0 2 or 3 2 or 3 (or 1) 3-1-2-0 1-0-3-2 

NL_044 LH No Yes 2-1-3-0 2-1-0-3 2 or 3 (or 1) 1 or 2 (or 0) 0-3-2-1 3-2-0-1 
 RH No Yes 2-1-3-0 1-0-2-3 1 or 2 (or 0) 1 or 2 3-2-1-0 3-2-1-0 

NL_045 LH No Yes 2-3-1-0 2-3-1-0 2 or 3 2 or 3 3-2-1-0 3-2-1-0 
 RH Yes Yes 2-1-3-0 2-3-0-1 1 or 2 1 or 2 3-2-1-0 3-2-1-0 

NL_046 LH No No 1-2-3-0 2-3-0-1 1 or 2 1 or 2 3-2-0-1 2-0-1-3 
 RH Yes Yes 1-2-3-0 1-2-3-0 1 or 2 1 or 2 0-3-1-2 2-3-1-0 

NL_048 LH No Yes 2-1-3-0 2-3-1-0 1 or 2 2 or 3 (or 1) 3-2-1-0 0-1-2-3 
 RH No Yes 2-3-1-0 2-3-0-1 2 or 3 2 or 3 3-2-0-1 3-2-0-1 

NL_049 LH No Yes 2-3-1-0 2-3-1-0 2 or 3 2 or 3 (or 1) 3-2-0-1 3-2-1-0 
 RH No Yes 2-1-3-0 2-3-1-0 2 or 3 2 or 3 (or 1) 3-1-2-0 1-3-2-0 

Tr
ai

n
 d

at
a 
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NL_051 LH No Yes 2-1-3-0 2-3-0-1 2 or 3 1 or 2 3-0-2-1 1-2-3-0 
 RH No Yes 1-2-0-3 1-2-0-3 0 or 1 (or 2) 1 or 2 3-2-0-1 3-2-1-0 

NL_052 LH Yes Yes 2-3-1-0 2-3-1-0 2 or 3 (or 1) 2 or 3 (or 1) 3-0-1-2 3-0-2-1 
 RH Yes Yes 3-2-1-0 2-3-1-0 2 or 3 (or 1) 2 or 3 3-2-1-0 3-0-2-1 

NL_053 LH No Yes 1-0-3-2 1-0-2-3 0 or 1 0 or 1 0-2-1-3 0-2-1-3 
 RH No Yes 2-3-1-0 2-1-3-0 2 or 3 2 or 3 (or 1) 3-2-1-0 3-2-1-0 

NL_054 LH No Yes 2-3-1-0 2-3-1-0 2 or 3 1 or 2 0-1-2-3 3-1-2-0 
 RH No Yes 2-3-1-0 2-3-1-0 2 or 3 (or 1) 2 or 3 (or 1) 0-2-3-1 3-1-2-0 

NL_055 LH No Yes 2-3-1-0 2-3-0-1 2 or 3 1 or 2 3-2-1-0 3-2-1-0 
 RH No Little 3-2-1-0 2-3-0-1 2 or 3 1 or 2 3-2-1-0 0-1-2-3 

NL_056 LH No Little 3-0-1-2 2-1-0-3 1 or 2 (or 3) 1 or 2 3-1-0-2 1-2-3-0 
 RH No Little 2-3-1-0 1-0-3-2 2 or 3 (or 1) 1 or 2 0-2-3-1 3-1-2-0 

NL_057 LH Yes Yes 1-0-2-3 1-0-3-2 0 or 1 (or 2) 0 or 1 3-2-1-0 2-1-0-3 
 RH Yes Yes 1-2-0-3 1-0-3-2 1 or 2 1 or 2 0-2-1-3 3-1-0-2 

NL_058 LH Yes Yes 1-0-2-3 1-0-3-2 0 or 1 1 or 2 3-2-0-1 1-0-3-2 
 RH Yes Yes 1-0-2-3 1-0-2-3 1 or 2 0 or 1 1-0-2-3 3-2-1-0 

NL_059 LH Yes Little 2-3-1-0 1-0-3-2 2 or 3 0 or 1 2-1-3-0 2-1-3-0 
 RH No Yes 2-3-1-0 2-3-1-0 2 or 3 (or 1) 2 or 3 (or 1) 3-2-1-0 3-2-1-0 

 NL_065 LH Yes Yes 2-3-1-0 2-3-1-0 2 or 3 2 or 3 1-2-0-3 3-0-2-1 

 

 RH Yes Yes 1-2-3-0 1-0-2-3 1 or 2 1 or 2 3-2-1-0 1-2-3-0 

NL_068 LH No Yes 2-3-1-0 1-2-3-0 1 or 2 1 or 2 3-2-0-1 3-2-0-1 

 RH Yes Yes 1-2-0-3 1-0-2-3 
0 or 1 (or 2 

or 3) 
0 or 1 2-1-0-3 0-1-2-3 

NL_069 LH NA Yes 2-3-1-0 2-3-1-0 2 or 3 2 or 3 3-2-1-0 3-2-1-0 
 RH NA Yes 2-3-1-0 2-3-0-1 2 or 3 2 or 3 3-2-1-0 3-2-1-0 

NL_070 LH Yes Yes 2-1-3-0 2-1-3-0 1 or 2 (or 0) 2 or 3 (or 1) 3-2-1-0 3-2-1-0 
 RH Yes No 2-1-3-0 2-3-1-0 1 or 2 1 or 2 3-2-1-0 2-0-1-3 

NL_071 LH No Yes 1-2-0-3 1-2-0-3 1 or 2 
0 or 1 (or 2 

or 3) 
2-3-1-0 2-3-0-1 

 RH Yes Yes 2-3-1-0 2-3-0-1 2 or 3 1 or 2 3-2-1-0 0-1-2-3 

Abbreviations: LH: left hemisphere; RH: right hemisphere; NA: not available 

 

 

 

 

 

 

 

 

  

Legend 

   1st prediction = clinically chosen contact 

  2nd prediction = clinically chosen contact 
/ no stun effect / beta peak present 

  3rd prediction = clinically chosen contact 
/ little beta peak present 

  4th prediction = clinically chosen contact 
/ stun effect / no beta peak present 

2 or 1 or 3 Clinically chosen contact number 

 Red number(s) Contact eliminated / Not used for DETEC 

Te
st
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at
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Table 2. Pattern based ranking method results per ranked prediction using AUC_flat for all data as well 
as the with/without stun effect and clear/little/no beta above 1/f subgroups.  

  1st 2nd 3rd 4th 1st or 2nd 

All data 
(Tr=58/T=10) 

Tr = 32 (55.2%)      
/ 

 T = 9 (90.0%) 

Tr = 18 (31.0%) 
/  

T = 1 (10.0%) 

Tr = 7 (12.1%) 
/  

T = 0 (0.0%) 

Tr = 1 (1.7%) 
/ 

 T = 0 (0.0%) 

Tr = 50 (86.2%)      
/  

T = 10 (100%) 

Without stun 
(Tr=38/T=2) 

Tr = 24 (63.2%)      
/ 

 T = 2 (100%) 

Tr = 10 (26.3%)      
/  

T = 0 (0.0%) 

Tr = 3 (7.9%)           
/ 

 T = 0 (0.0%) 

Tr = 1 (2.6%)           
/ 

 T = 0 (0.0%) 

Tr = 34 (89.5%)                
/  

T = 2 (100%) 

With stun 
(Tr=20/T=8) 

Tr = 8 (40.0%)         
/ 

 T = 7 (87.5%) 

Tr = 8 (40.0%)         
/  

T = 1 (12.5%) 

Tr = 4 (20.0%)         
/  

T = 0 (0.0%) 

Tr = 0 (0.0%)           
/  

T = 0 (0.0%) 

Tr = 16 (80.0%)      
/  

T = 8 (100%) 

Clear beta  
above 1/f 

(Tr=43/T=9) 

Tr = 27 (62.8%) 
/  

T = 8 (88.9%) 

Tr = 11 (25.6%) 
/  

T = 1 (11.1%) 

Tr = 4 (9.3%)       
/  

T = 0 (0.0%) 

Tr = 1 (2.3%)      
/ 

 T = 0 (0.0%) 

Tr = 38 (88.4%) 
/  

T = 9 (100%) 

Little beta  
above 1/f 
(Tr=9/T=0) 

Tr = 4 (44.4%) 
/  

T = NA 

Tr = 3 (33.3%) 
/ 

 T = NA 

Tr  = 2 (22.2%)  
/  

T = NA 

Tr = 0 (0.0%) 
/  

T = NA 

Tr = 7 (77.8%) 
/  

T = NA 

No beta 
above 1/f 
(Tr=6/T=1) 

Tr = 1 (16.7%) 
/  

T = 1 (100%) 

Tr = 4 (66.7%) 
/  

T = 0 (0.0%) 

Tr = 1 (16.7%) 
/  

T = 0 (0.0%) 

Tr = 0 (0.0%)      
/  

T = 0 (0.0%) 

Tr = 5 (83.3%)    
/  

T  = 1 (100%) 
Abbreviations: AUC_flat: area under the receiver operator curve after removal of 1/frequency; 1st/2nd/3rd/4th: 
1st/2nd/3rd/4th prediction; Tr: training set (size); T: test set (size); NA: not available; 1/f: 1/frequency (aperiodic 
signal) 

 

Table 3. Pattern based ranking method results per ranked prediction using Max. for all data as well as 
the with/without stun effect and clear/little/no beta above 1/f subgroups. 

  1st 2nd 3rd 4th 1st or 2nd 

All data 
(Tr=58/T=10) 

Tr = 35 (60.3%)      
/ 

 T = 8 (80.0%) 

Tr = 8 (13.8%) 
/  

T = 1 (10.0%) 

Tr = 8 (13.8%) 
/  

T = 1 (10.0%) 

Tr = 7 (12.1%) 
/ 

 T = 0 (0.0%) 

Tr = 43 (74.1%)      
/  

T = 9 (90.0%) 

Without stun 
(Tr=38/T=2) 

Tr = 26 (68.4%)      
/ 

 T = 1 (50%) 

Tr = 5 (13.2%)      
/  

T = 1 (50.0%) 

Tr = 4 (10.5%)           
/ 

 T = 0 (0.0%) 

Tr = 3 (7.9%)           
/ 

 T = 0 (0.0%) 

Tr = 31 (81.6%)                
/  

T = 2 (100%) 

With stun 
(Tr=20/T=8) 

Tr = 9 (45.0%)         
/ 

 T = 7 (87.5%) 

Tr = 3 (15.0%)         
/  

T = 0 (0.0%) 

Tr = 3 (15.0%)         
/  

T = 1 (12.5%) 

Tr = 4 (20.0%)           
/  

T = 0 (0.0%) 

Tr = 12 (60.0%)      
/  

T =7 (87.5%) 

Clear beta  
above 1/f 

(Tr=43/T=9) 

Tr = 30 (69.8%) 
/  

T = 7 (77.8%) 

Tr = 5 (11.6%)    
/  

T = 1 (11.1%) 

Tr = 6 (14.0%)       
/  

T = 1 (11.1%) 

Tr = 2 (4.65%)     
/ 

 T = 0 (0.0%) 

Tr = 35 (81.4%) 
/  

T = 8 (88.9%) 

Little beta 
above 1/f  
(Tr=9/T=0) 

Tr = 2 (22.2%) 
/  

T = NA 

Tr = 1 (11.1%) 
/ 

 T = NA 

Tr  = 2 (22.2%)  
/  

T = NA 

Tr = 4 (44.4%) 
/  

T = NA 

Tr = 3 (33.3%) 
/  

T = NA 

No beta  
above 1/f 
(Tr=6/T=1) 

Tr = 3 (50.0%) 
/  

T = 1 (100%) 

Tr = 2 (33.3%) 
/  

T = 0 (0.0%) 

Tr = 0 (0.0%) 
/  

T = 0 (0.0%) 

Tr = 1 (16.7%)     
/  

T = 0 (0.0%) 

Tr = 5 (83.3%)    
/  

T  = 1 (100%) 
Abbreviations: Max.: maximum; 1st/2nd/3rd/4th: 1st/2nd/3rd/4th prediction; Tr: training set (size); T: test set (size); 
not available; 1/f: 1/frequency (aperiodic signal) 
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Table 4. Decision tree ranking method results per ranked prediction using AUC_flat for all data as well 
as the with/without stun effect and clear/little/no beta above 1/f subgroups. 

  1st* 2nd 3rd 4th 1st or 2nd 

All data 
(Tr=58/T=10) 

Tr = 6 (10.3%)      
/ 

 T = 1 (10.0%) 

Tr = 43 (74.1%) 
/  

T = 9 (90.0%) 

Tr = 4 (6.9%) 
/  

T = 0 (0.0%) 

Tr = 5 (8.6%) 
/ 

 T = 0 (0.0%) 

Tr = 49 (84.5%)      
/  

T = 10 (100%) 

Without stun 
(Tr=38/T=2) 

Tr = 5 (13.2%)      
/ 

 T = 0 (0.0%) 

Tr = 28 (73.7%)      
/  

T = 2 (100%) 

Tr = 2 (5.3%)           
/ 

 T = 0 (0.0%) 

Tr = 3 (7.9%)           
/ 

 T = 0 (0.0%) 

Tr = 33 (86.8%)                
/  

T = 2 (100%) 

With stun 
(Tr=20/T=8) 

Tr = 1 (5.0%)         
/ 

 T = 1 (12.5%) 

Tr = 15 (75.0%)         
/  

T = 7 (87.5%) 

Tr = 2 (10.0%)         
/  

T = 0 (0.0%) 

Tr = 2 (10.0%)           
/  

T = 0 (0.0%) 

Tr = 16 (80.0%)      
/  

T = 8 (100%) 

Clear beta  
above 1/f 

(Tr=43/T=9) 

Tr = 6 (14.0%)   
/  

T = 1 (11.1%) 

Tr = 31 (81.6%) 
/  

T = 9 (88.9%) 

Tr = 2 (4.7%)       
/  

T = 0 (0.0%) 

Tr = 4 (9.3%)     
/ 

 T = 0 (0.0%) 

Tr = 37 (85.4%) 
/  

T = 9 (100%) 

Little beta 
above 1/f 
(Tr=9/T=0) 

Tr = 0 (0.0%) 
/  

T = NA 

Tr = 8 (88.9%) 
/ 

 T = NA 

Tr  = 0 (0.0%)     
/  

T = NA 

Tr = 1 (11.1%) 
/  

T = NA 

Tr = 8 (88.9%) 
/  

T = NA 

No beta 
above 1/f 
(Tr=6/T=1) 

Tr = 0 (0.0%) 
/  

T = 0 (0.0%) 

Tr = 4 (66.7%) 
/  

T = 1 (100%) 

Tr = 2 (33.3%) 
/  

T = 0 (0.0%) 

Tr = 0 (0.0%)     
/  

T = 0 (0.0%) 

Tr = 4 (66.7%)    
/  

T  = 1 (100%) 
* Decision tree techniques often leads to prediction of the two most optimal contacts, which were in this case 
places under “2nd” predictions and not “1st” predictions,  leading to less “1st" predictions and more “2nd" 
predictions. Abbreviations: AUC_flat: area under the receiver operator curve after removal of 1/frequency; 
1st/2nd/3rd/4th: 1st/2nd/3rd/4th prediction; Tr: training set (size); T: test set (size); NA: not available; 1/f: 
1/frequency (aperiodic signal) 

 

Table 5. Decision tree ranking method results per ranked prediction using Max. for all data as well as 
the with/without stun effect and clear/little/no beta above 1/f subgroups. 

  1st* 2nd 3rd 4th 1st or 2nd 

All data 
(Tr=58/T=10) 

Tr = 8 (13.8%)      
/ 

 T = 3 (30.0%) 

Tr = 43 (74.1%) 
/  

T = 7 (70.0%) 

Tr = 1 (1.7%) 
/  

T = 0 (0.0%) 

Tr = 6 (10.3%) 
/ 

 T = 0 (0.0%) 

Tr = 51 (87.9%)      
/  

T = 10 (100%) 

Without stun 
(Tr=38/T=2) 

Tr = 7 (18.4%)      
/ 

 T = 1 (50%) 

Tr = 25 (65.8%)      
/  

T = 1 (50.0%) 

Tr = 1 (2.6%)           
/ 

 T = 0 (0.0%) 

Tr = 5 (13.2%)           
/ 

 T = 0 (0.0%) 

Tr = 32 (84.2%)                
/  

T = 2 (100%) 

With stun 
(Tr=20/T=8) 

Tr = 1 (5.0%)         
/ 

 T = 2 (25.0%) 

Tr = 18 (90.0%)         
/  

T = 6 (75.0%) 

Tr = 0 (0.0%)         
/  

T = 0 (0.0%) 

Tr = 1 (5.0%)           
/  

T = 0 (0.0%) 

Tr = 19 (95.0%)      
/  

T = 8 (100%) 

Clear beta 
above 1/f 

(Tr=43/T=9) 

Tr = 8 (18.6%)   
/  

T = 3 (33.3%) 

Tr = 29 (67.4%)    
/  

T = 6 (66.7%) 

Tr = 0 (0.0%)       
/  

T = 0 (0.0%) 

Tr = 5 (11.6%)     
/ 

 T = 0 (0.0%) 

Tr = 37 (86.1%) 
/  

T = 9 (100%) 

Little beta 
above 1/f 
(Tr=9/T=0) 

Tr = 0 (0.0%) 
/  

T = NA 

Tr = 8 (88.9%) 
/ 

 T = NA 

Tr  = 0 (0.0%)    
/  

T = NA 

Tr = 1 (11.1%) 
/  

T = NA 

Tr = 8 (88.9%) 
/  

T = NA 

No beta 
above 1/f 
(Tr=6/T=1) 

Tr = 0 (0.0%) 
/  

T = 0 (0.0%) 

Tr = 6 (100%) 
/  

T = 1 (100%) 

Tr = 0 (0.0%) 
/  

T = 0 (0.0%) 

Tr = 0 (0.0%)      
/  

T = 0 (0.0%) 

Tr = 6 (100%)    
/  

T  = 1 (100%) 
* Decision tree techniques often leads to prediction of the two most optimal contacts, which were in this case 
places under “2nd” predictions and not “1st” predictions,  leading to less “1st" predictions and more “2nd" 
predictions. Abbreviations: Max.: maximum; 1st/2nd/3rd/4th: 1st/2nd/3rd/4th prediction; Tr: training set (size); T: 
test set (size); NA: not available; 1/f: 1/frequency (aperiodic signal) 
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Table 6. DETEC algorithm reference method results per ranked prediction for all data as well as the 
with/without stun effect and clear/little/no beta above 1/f subgroups. 

  1st 2nd 3rd 4th 1st or 2nd 

All data 
(Tr=58/T=10) 

Tr = 10 (17.2%)      
/ 

 T = 0 (0.0%) 

Tr = 23 (39.7%) 
/  

T = 7 (70.0%) 

Tr = 17 (29.3%) 
/  

T = 2 (20.0%) 

Tr = 8 (13.8%) 
/ 

 T = 1 (10.0%) 

Tr = 33 (56.9%)      
/  

T = 7 (70.0%) 

Without stun 
(Tr=38/T=2) 

Tr = 7 (18.4%)      
/ 

 T = 0 (0.0%) 

Tr = 18 (47.4%)      
/  

T = 1 (50.0%) 

Tr = 9 (23.7%)           
/ 

 T = 1 (50.0%) 

Tr = 4 (10.5%)           
/ 

 T = 0 (0.0%) 

Tr = 25 (65.8%)                
/  

T = 1 (50.0%) 

With stun 
(Tr=20/T=8) 

Tr = 3 (15.0%)         
/ 

 T = 0 (0.0%) 

Tr = 5 (25.0%)         
/  

T = 6 (75.0%) 

Tr = 8 (40.0%)         
/  

T = 2 (25.0%) 

Tr = 4 (20.0%)           
/  

T = 0 (0.0%) 

Tr = 8 (40.0%)      
/  

T = 6 (75.0%) 

Clear beta 
above 1/f 

(Tr=43/T=9) 

Tr = 8 (18.6%)   
/  

T = 0 (0.0%) 

Tr = 19 (44.2%)    
/  

T = 6 (66.7%) 

Tr = 12 (27.9%)       
/  

T = 2 (22.2%) 

Tr = 4 (9.3%)     
/ 

 T = 1 (11.1%) 

Tr = 27 (62.8%) 
/  

T = 6 (66.7%) 

Little beta 
above 1/f 
(Tr=9/T=0) 

Tr = 1 (11.1%) 
/  

T = NA 

Tr = 3 (33.3%) 
/ 

 T = NA 

Tr  = 3 (33.3%)    
/  

T = NA 

Tr = 2 (22.2%) 
/  

T = NA 

Tr = 4 (44.4%) 
/  

T = NA 

No beta 
above 1/f 
(Tr=6/T=1) 

Tr = 1 (16.7%) 
/  

T = 0 (0.0%) 

Tr = 1 (16.7%) 
/  

T = 1 (100%) 

Tr = 2 (33.3%) 
/  

T = 0 (0.0%) 

Tr = 2 (33.3%)     
/  

T = 0 (0.0%) 

Tr = 2 (33.3%)    
/  

T  = 1 (100%) 
Abbreviations: 1st/2nd/3rd/4th: 1st/2nd/3rd/4th prediction; Tr: training set (size); T: test set (size); NA: not available; 
1/f: 1/frequency (aperiodic signal) 

 

 

Table 7. Pattern based ranking method results for each clinically chosen contact per ranked prediction 
using AUC_flat for all data. 

  1st 2nd 3rd 4th 1st or 2nd 

Contact #3 
(Tr=4/T=0) 

Tr = 1 (25.0%)      
/ 

 T = NA 

Tr = 2 (50.0%) 
/  

T = NA 

Tr = 1 (25.0%) 
/  

T = NA 

Tr = 0 (0.0%) 
/ 

 T = NA 

Tr = 3 (75.0%)      
/  

T = NA 

Contact #2 
(Tr=39/T = 8) 

Tr = 26 (66.7%)      
/ 

 T = 7 (87.5%) 

Tr = 9 (23.1%)      
/  

T = 1 (12.5%) 

Tr = 3 (7.7%)           
/ 

 T = 0 (0.0%) 

Tr = 1 (2.6%)           
/ 

 T = 0 (0.0%) 

Tr = 35 (89.7%)                
/  

T = 8 (100%) 

Contact #1 
(Tr=15/T = 2) 

Tr = 5 (33.3%)   
/  

T = 2 (100%) 

Tr = 7 (46.7%)    
/  

T = 0 (0.0%) 

Tr = 3 (20.0%)       
/  

T = 0 (0.0%) 

Tr = 0 (0.0%)     
/ 

 T = 0 (0.0%) 

Tr = 12 (80.0%) 
/  

T =2 (100%) 

Contact #0   
(Tr = 0/T = 0) 

Tr = NA 
/  

T = NA 

Tr = NA 
/  

T = NA 

Tr = NA 
/  

T = NA 

Tr = NA 
/  

T = NA 

Tr = NA 
 /  

T  = NA 
Abbreviations: AUC_flat: area under the receiver operator curve after removal of 1/frequency; 1st/2nd/3rd/4th: 
1st/2nd/3rd/4th prediction; Tr: training set (size); T: test set (size); NA: not available 
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Table 8. Pattern based ranking method results for each clinically chosen contact per ranked prediction 
using Max. for all data. 

  1st 2nd 3rd 4th 1st or 2nd 

Contact #3 
(Tr=4/T=0) 

Tr = 0 (0.0%)      
/ 

 T = NA 

Tr = 2 (50.0%) 
/  

T = NA 

Tr = 0 (0.0%) 
/  

T = NA 

Tr = 2 (50.0%) 
/ 

 T = NA 

Tr = 2 (50.0%)      
/  

T = NA 

Contact #2 
(Tr=39/T = 8) 

Tr = 27 (69.2%)      
/ 

 T = 6 (75%) 

Tr = 2 (5.1%)      
/  

T = 1 (12.5%) 

Tr = 6 (15.4%)           
/ 

 T = 1 (12.5%) 

Tr = 4 (10.3%)           
/ 

 T = 0 (0.0%) 

Tr = 29 (74.4%)                
/  

T = 7 (87.5%) 

Contact #1 
(Tr=15/T = 2) 

Tr = 8 (53.3%)   
/  

T = 2 (100%) 

Tr = 4 (26.7%)    
/  

T = 0 (0.0%) 

Tr = 2 (13.3%)       
/  

T = 0 (0.0%) 

Tr = 1 (6.7%)     
/ 

 T = 0 (0.0%) 

Tr = 12 (80.0%) 
/  

T = 2 (100%) 

Contact #0   
(Tr = 0/T = 0) 

Tr = NA 
/  

T = NA 

Tr = NA 
/  

T = NA 

Tr = NA 
/  

T = NA 

Tr = NA 
/  

T = NA 

Tr = NA 
 /  

T  = NA 
Abbreviations: Max.: maximum; 1st/2nd/3rd/4th: 1st/2nd/3rd/4th prediction; Tr: training set (size); T: test set (size); 
NA: not available 
 

 

Table 9. Decision tree ranking method results for each clinically chosen contact per ranked prediction 
using AUC_flat for all data. 

  1st* 2nd 3rd 4th 1st or 2nd 

Contact #3 
(Tr=4/T=0) 

Tr = 0 (0.0%)      
/ 

 T = NA 

Tr = 3 (75.0%) 
/  

T = NA 

Tr = 0 (0.0%) 
/  

T = NA 

Tr = 1 (25.0%) 
/ 

 T = NA 

Tr = 3 (75.0%)      
/  

T = NA 

Contact #2 
(Tr=39/T = 8) 

Tr = 4 (10.3%)      
/ 

 T = 8 (100%) 

Tr =31 (79.5%)      
/  

T = 0 (0.0%) 

Tr = 2 (5.1%)           
/ 

 T = 0 (0.0%) 

Tr = 2 (5.1%)           
/ 

 T = 0 (0.0%) 

Tr = 35 (89.7%)                
/  

T = 8 (100%) 

Contact #1 
(Tr=15/T = 2) 

Tr = 1 (6.7%)     
/  

T =  1(50.0%) 

Tr = 10 (66.7%)    
/  

T = 1 (50.0%) 

Tr = 2 (13.3%)       
/  

T = 0 (0.0%) 

Tr = 2 (13.3%)     
/ 

 T = 0 (0.0%) 

Tr = 11 (73.3%) 
/  

T =2 (100%) 

Contact #0   
(Tr = 0/T = 0) 

Tr = NA 
/  

T = NA 

Tr = NA 
/  

T = NA 

Tr = NA 
/  

T = NA 

Tr = NA 
/  

T = NA 

Tr = NA 
 /  

T  = NA 
* Decision tree techniques often leads to prediction of the two most optimal contacts, which were in this case 
places under “2nd” predictions and not “1st” predictions,  leading to less “1st" predictions and more “2nd" 
Abbreviations: AUC_flat: area under the receiver operator curve after removal of 1/frequency; 1st/2nd/3rd/4th: 
1st/2nd/3rd/4th prediction; Tr: training set (size); T: test set (size); NA: not available 
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Table 10. Decision tree ranking method results for each clinically chosen contact per ranked prediction 
using Max. for all data. 

  1st* 2nd 3rd 4th 1st or 2nd 

Contact #3 
(Tr=4/T=0) 

Tr = 0 (0.0%)      
/ 

 T = NA 

Tr = 0 (0.0%) 
/  

T = NA 

Tr = 0 (0.0%) 
/  

T = NA 

Tr = 4 (100.0%) 
/ 

 T = NA 

Tr = 0 (0.0%)      
/  

T = NA 

Contact #2 
(Tr=39/T = 8) 

Tr = 6 (15.4%)      
/ 

 T = 2 (20.0%) 

Tr = 31 (79.5%)      
/  

T = 6 (80.0%) 

Tr = 0 (0.0%)           
/ 

 T = 0 (0.0%) 

Tr = 2 (5.1%)           
/ 

 T = 0 (0.0%) 

Tr = 37 (94.9%)                
/  

T = 8 (100%) 

Contact #1 
(Tr=15/T = 2) 

Tr = 1 (6.7%)     
/  

T = 1 (50.0%) 

Tr = 13 (86.7%)    
/  

T = 1 (50.0%) 

Tr = 1 (6.7%)       
/  

T = 0 (0.0%) 

Tr =  (0.0%)        
/ 

 T = 0 (0.0%) 

Tr = 14 (93.3%) 
/  

T = 2 (100%) 

Contact #0   
(Tr = 0/T = 0) 

Tr = NA 
/  

T = NA 

Tr = NA 
/  

T = NA 

Tr = NA 
/  

T = NA 

Tr = NA 
/  

T = NA 

Tr = NA 
 /  

T  = NA 
* Decision tree techniques often leads to prediction of the two most optimal contacts, which were in this case 
places under “2nd” predictions and not “1st” predictions,  leading to less “1st" predictions and more “2nd" 
Abbreviations: Max.: maximum; 1st/2nd/3rd/4th: 1st/2nd/3rd/4th prediction; Tr: training set (size); T: test set (size); 
NA: not available 
 

 

Table 11. DETEC algorithm reference method results for each clinically chosen contact per ranked 
prediction for all data. 

  1st 2nd 3rd 4th 1st or 2nd 

Contact #3 
(Tr=4/T=0) 

Tr = 2 (50.0%)      
/ 

 T = NA 

Tr = 1 (25.0%) 
/  

T = NA 

Tr = 1 (25.0%) 
/  

T = NA 

Tr = 0 (0.0%) 
/ 

 T = NA 

Tr = 3 (75.0%)      
/  

T = NA 

Contact #2 
(Tr=39/T = 8) 

Tr = 5 (12.8%)      
/ 

 T = 0 (0.0%) 

Tr =18 (46.2%)      
/  

T = 6 (80.0%) 

Tr = 13 (33.3%)           
/ 

 T = 2 (20.0%) 

Tr = 3 (7.7%)           
/ 

 T = 0 (0.0%) 

Tr = 23 (59.0%)                
/  

T = 6 (80%) 

Contact #1 
(Tr=15/T = 2) 

Tr = 3 (20.0%)     
/  

T =  0 (0.0%) 

Tr = 4 (26.7%)    
/  

T = 1 (50.0%) 

Tr = 3 (20.0%)       
/  

T = 0 (0.0%) 

Tr = 5 (33.3%)     
/ 

 T = 1 (50.0%) 

Tr = 7 (46.7%)   
/  

T =1 (50%) 

Contact #0   
(Tr = 0/T = 0) 

Tr = NA 
/  

T = NA 

Tr = NA 
/  

T = NA 

Tr = NA 
/  

T = NA 

Tr = NA 
/  

T = NA 

Tr = NA 
 /  

T  = NA 
Abbreviations: 1st/2nd/3rd/4th: 1st/2nd/3rd/4th prediction; Tr: training set (size); T: test set (size); NA: not available 
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Table 12. Fixed ranking #2→#1→#3→#0 method results per ranked prediction for all data as well as 
the with/without stun effect and clear/little/no beta above 1/f subgroups. 

  1st 2nd 3rd 4th 1st or 2nd 

All data 
(Tr=58/T=10) 

Tr = 39 (67.2%)      
/ 

 T = 8 (80.0%) 

Tr = 15 (25.9%) 
/  

T = 2 (20.0%) 

Tr = 4 (6.9%) 
/  

T = 0 (0.0%) 

Tr = 0 (0.0%) 
/ 

 T = 0 (0.0%) 

Tr = 54 (93.1%)      
/  

T = 10 (100%) 

Without stun 
(Tr=38/T=2) 

Tr = 24 (63.2%)      
/ 

 T = 1 (50%) 

Tr = 10 (26.3%)      
/  

T = 1 (50.0%) 

Tr = 4 (10.5%)           
/ 

 T = 0 (0.0%) 

Tr = 0 (0.0%)           
/ 

 T = 0 (0.0%) 

Tr = 34 (89.5%)                
/  

T = 2 (100%) 

With stun 
(Tr=20/T=8) 

Tr = 15 (75.0%)         
/ 

 T = 7 (87.5%) 

Tr = 5 (25.0%)         
/  

T = 1 (12.5%) 

Tr = 0 (0.0%)         
/  

T = 0 (0.0%) 

Tr = 0 (0.0%)           
/  

T = 0 (0.0%) 

Tr = 20 (100%)      
/  

T = 8 (100%) 

Clear beta 
above 1/f 

(Tr=43/T=9) 

Tr = 29 (67.4%)   
/  

T = 7 (77.8%) 

Tr = 11 (25.6%)    
/  

T = 2 (22.2%) 

Tr = 3 (7.0%)       
/  

T = 0 (0.0%) 

Tr = 0 (0.0%)     
/ 

 T = 0 (0.0%) 

Tr = 40 (93.0%) 
/  

T = 9 (100%) 

Little beta 
above 1/f 
(Tr=9/T=0) 

Tr = 7 (77.8%) 
/  

T = NA 

Tr = 1 (11.1%) 
/ 

 T = NA 

Tr  = 1 (11.1%)    
/  

T = NA 

Tr = 0 (0.0%) 
/  

T = NA 

Tr = 8 (88.9%) 
/  

T = NA 

No beta 
above 1/f 
(Tr=6/T=1) 

Tr = 3 (50.0%) 
/  

T = 1 (100%) 

Tr = 3 (50.0%) 
/  

T = 0 (0.0%) 

Tr = 0 (0.0%) 
/  

T = 0 (0.0%) 

Tr = 0 (0.0%)     
/  

T = 0 (0.0%) 

Tr = 6 (100%)    
/  

T  = 1 (100%) 
Abbreviations: 1st/2nd/3rd/4th: 1st/2nd/3rd/4th prediction; Tr: training set (size); T: test set (size); NA: not available; 
1/f: 1/frequency (aperiodic signal) 
 

Table 13. Fixed ranking #2→#1→#3→#0 method results for each clinically chosen contact per ranked 
prediction for all data. 

  1st 2nd 3rd 4th 1st or 2nd 

Contact #3 
(Tr=4/T=0) 

Tr = 0 (0.0%)      
/ 

 T = NA 

Tr = 0 (0.0%) 
/  

T = NA 

Tr = 4 (100.0%) 
/  

T = NA 

Tr = 0 (0.0%) 
/ 

 T = NA 

Tr = 0 (0.0%)      
/  

T = NA 

Contact #2 
(Tr=39/T = 8) 

Tr = 39 (100%)      
/ 

 T = 8 (100%) 

Tr = (0.0%)         
/  

T = 0 (0.0%) 

Tr = 0 (0.0%)           
/ 

 T = 0 (0.0%) 

Tr = 0 (0.0%)           
/ 

 T = 0 (0.0%) 

Tr = 39 (100%)                
/  

T = 8 (100%) 

Contact #1 
(Tr=15/T = 2) 

Tr = 0 (0.0%)     
/  

T =  0 (0.0%) 

Tr = 15 (100%)    
/  

T = 2 (100%) 

Tr = 0 (0.0%)       
/  

T = 0 (0.0%) 

Tr = 0 (0.0%)     
/ 

 T = 0 (0.0%) 

Tr = 15 (100%)   
/  

T =2 (100%) 

Contact #0   
(Tr = 0/T = 0) 

Tr = NA 
/  

T = NA 

Tr = NA 
/  

T = NA 

Tr = NA 
/  

T = NA 

Tr = NA 
/  

T = NA 

Tr = NA 
 /  

T  = NA 
Abbreviations: 1st/2nd/3rd/4th: 1st/2nd/3rd/4th prediction; Tr: training set (size); T: test set (size); NA: not available 
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G. Sub-analyses results 
Table 1. Individual bipolar impedance measurements per channel for all subthalamic nuclei with one or more channels with bipolar impedance(s) ≥ 5000 Ω. 

Channel NL022_R NL024_L NL024_R NL027_R NL028_L NL045_L NL049_L NL053_L NL053_R NL054_R NL055_L NL058_R NL058_R NL071_L 

0 1a 4784 3839 3090 2661 4989 3829 3461 4593 3705 3667 3802 2639 3846 3988 

0 1b 4545 3322 2301 2729 5516 4436 4447 3462 3312 4241 3816 3247 4096 3073 

0 1c 4440 3403 3594 3847 5146 3785 3529 3612 4245 4169 2852 2798 5404 3333 

0 2a 5217 3703 2600 2606 4951 4002 3488 4514 3692 4172 4388 3251 5180 3729 

0 2b 4389 4406 2396 2988 5612 4324 4041 3667 3230 4323 3981 3881 5081 3004 

0 2c 4055 4600 3050 3851 5081 3580 3051 3913 3852 4446 2990 3927 5810 3210 

0 3 2699 2287 1647 1666 3143 2289 2327 2383 2110 2444 1998 1994 2823 2061 

1a 1b 6563 5002 3662 3928 7535 6017 5113 5319 4538 5634 5505 3968 5367 4541 

1a 1c 6280 5117 5019 4788 7408 5172 3983 5319 5678 5497 4642 3845 6471 4865 

1a 2a 7213 5440 3934 3833 7121 5742 4017 6398 5084 5419 6164 3964 6522 5299 

1a 2b 6471 6124 3852 4297 8083 6169 4731 5483 4572 5736 5843 4696 6508 4667 

1a 2c 6160 6281 4563 5095 7487 5213 3789 5705 5330 5781 4891 4965 7221 4944 

1a 3 4808 4086 3199 3001 5649 4092 3065 4343 3602 3868 4003 3110 4409 3823 

1b 1c 6290 4641 4127 4839 7918 6142 5103 4012 5261 6047 4571 4370 6566 4001 

1b 2a 7220 5049 3267 3983 8007 6526 5059 5292 4712 6105 6372 4754 6665 4660 

1b 2b 6266 5498 2981 4260 8421 6746 5509 4197 4077 6122 5645 5224 6372 3948 

1b 2c 6051 5788 3675 5146 8110 5851 4621 4490 4859 6320 4871 5565 7238 4165 

1b 3 4716 3594 2355 3070 6241 4739 3877 3243 3229 4415 4081 3777 4420 3141 

1c 2a 7098 5151 4726 4778 7641 5817 4195 5384 5712 6030 5467 4492 8239 4978 

1c 2b 6256 5716 4508 5149 8271 6129 4802 4357 5104 6160 4887 5054 8035 4206 

1c 2c 5816 5815 5053 5871 7408 4992 3707 4456 5732 6075 3838 5132 8710 4377 

1c 3 4593 3730 3947 3796 5858 3990 3133 3284 4073 4316 3133 3407 5994 3483 

2a 2b 6631 5716 2913 3956 7374 5895 4437 5241 4214 5795 6130 4894 7309 4343 

2a 2c 6235 5716 3662 4737 6724 4680 3325 5357 5077 5808 5122 5313 7841 4561 

2a 3 5067 3703 2287 2647 5092 3932 2792 4053 3734 3923 4485 3527 5329 3701 

2b 2c 5527 6220 3430 5190 7634 5046 4044 4384 4487 6160 4473 5952 7831 3988 

2b 3 4324 4273 2150 3206 5873 4216 3461 3283 2833 4200 3913 4020 5227 2908 

2c 3 4123 4545 2978 3922 5375 3464 2369 3651 3598 4343 2922 4418 6263 3249 



62 
 

 

 

 

 

 

Table 2. Segment LFP recordings predictions based on either the level with the highest segment LFP 
peak of highest segment LFP average, as well as clinically chosen contact and best level-based LFP 
prediction method with a single optimal prediction per hemisphere for a total 46 STN, for which the 
clinically chosen contact was either contact 1 or 2 and segment LFP recordings were available. 

    Pattern 
based (level) 

Level with highest segment 
LFP peak 

Level with highest segment 
LFP average 

STN MPR contact AUC_flat AUC_flat Max. AUC_flat Max. 

NL_007_L 2 2 2 1 2 1 

NL_007_R 2 3 1 1 1 1 

NL_008_L 1 1 1 2 1 2 

NL_008_R 1 1 2 2 2 2 

NL_016_L 2 2 2 2 2 2 

NL_016_R 1 3 2 2 1 2 

NL_017_L 1 2 1 1 1 1 

NL_017_R 1 1 1 1 1 1 

NL_018_L 2 2 2 1 1 1 

NL_018_R 2 3 1 1 1 1 

NL_019_L 1 1 2 1 2 1 

NL_019_R 2 2 2 2 2 2 

NL_020_L 1 2 1 1 1 1 

NL_020_R 2 3 1 1 1 1 

NL_022_L 2 2 2 2 1 2 

NL_022_R 2 2 2 2 2 2 

NL_023_L 2 0 2 1 1 2 

NL_023_R 2 2 1 2 1 2 

NL_028_L 2 1 1 1 1 1 

NL_031_L 2 2 2 2 2 2 

NL_031_R 2 2 1 1 1 1 

NL_044_L 2 2 1 1 1 1 

NL_044_R 2 2 1 2 1 2 

NL_045_L 2 2 1 1 1 1 

NL_045_R 2 2 1 2 1 1 

NL_046_L 2 1 2 1 1 1 

NL_046_R 2 1 2 2 2 2 

NL_051_L 2 2 1 1 1 1 

NL_053_L 2 1 1 2 1 1 

NL_053_R 2 2 1 1 1 1 

NL_054_R 2 2 1 1 1 1 

NL_056_R 2 2 1 1 2 1 

Legend 

  Bipolar impedance < 3000 Ω 

  Bipolar impedance ≥ 3000 Ω & < 5000 Ω 

  Bipolar impedance ≥ 5000 Ω & < 7000 Ω 

  Bipolar impedance ≥ 7000 Ω  

Red text Incorrect prediction 
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NL_057_L 1 1 2 2 2 2 

NL_057_R 1 1 2 2 2 1 

NL_058_L 2 1 2 2 1 2 

NL_058_R 2 1 2 2 2 1 

NL_065_L 2 2 1 1 1 1 

NL_065_R 2 1 1 1 1 1 

NL_068_L 2 2 1 2 1 2 

NL_068_R 1 1 2 2 2 2 

NL_069_L 2 2 1 1 1 1 

NL_069_R 2 2 2 1 1 1 

NL_070_L 2 2 1 1 1 1 

NL_070_R 2 2 1 2 1 2 

NL_071_L 1 1 1 2 1 2 

NL_071_R 2 2 1 1 2 1 

Abbreviations: STN: subthalamic nucleus; MPR: monopolar review; AUC_flat: area under the receiver operator curve 
after removal of 1/frequency; LFP: local field potential; Max.: maximum; _L: left hemisphere; _R: right hemisphere 
 


