
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2008

MSc THESIS

First Approach for a Decentralized Resource
Allocation in Ad Hoc Grids

Shervin Haji Amini

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2008-09

As more people and organizations use computers, the demands on
computer systems have changed. Therefore, with increasing the
number of participants, the scalability has become an important is-
sue for managing resource allocation. A centralized system relies on
one computer node that processes the whole application. In such
systems, a small number of nodes provide the resources that can
only serve a limited number of clients. On one hand, if the cen-
tralized system becomes large enough, load balancing will create too
much overhead. On the other hand, limitation on the network band-
width increases the network bottleneck which affects the system per-
formance. Decenralizing control, distributing processing loads and
network bandwidth among all participating nodes will reduce the
overhead in very large systems. In this light, Peer-To-Peer(P2P)
systems offer an alternative solution to old server-based approach.
Generally, a P2P system must have three essential properties. First,
the system needs to be scalable. That is, it does not rely on single
points of failures and bottlenecks. Second, the P2P system needs to
be self-organized when peers join and leave the system arbitrarily.
Third, the system needs to be fault-tolerant. In other words, the
system must be robust when subjected to faults. In this thesis, we

propose a dynamic decentralized P2P resource allocation method having as many resource allocators as
required given the number of nodes, tasks and resources. In spite of the capability of the proposed resource
allocation scheme for implementing on any structured overlay system, we implemented our application on
Pastry as the underlying structured overlay system.
We investigated the matchmaking process in the fully populated system when all resource allocators are
active as well as the non-fully populated system when only some resource allocators perform resource allo-
cation process. As we wanted to have a self-organized system in terms of resource allocators, we defined a
mechanism that dynamically segment/desegment the ad hoc grid by promoting/demoting resource alloca-
tor(s) according to the workload of the existing resource allocator(s). This mechanism enables the ad hoc
grid to adapt itself to the changing environment from a centralized to a decentralized form and back to the
centralized form.

First Approach for a Decentralized Resource
Allocation in Ad Hoc Grids

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Shervin Haji Amini
born in TEHRAN, IRAN

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

First Approach for a Decentralized Resource
Allocation in Ad Hoc Grids

by Shervin Haji Amini

Abstract

A
s more people and organizations use computers, the demands on computer systems have
changed. Therefore, with increasing the number of participants, the scalability has be-
come an important issue for managing resource allocation. A centralized system relies on

one computer node that processes the whole application. In such systems, a small number of
nodes provide the resources that can only serve a limited number of clients. On one hand, if the
centralized system becomes large enough, load balancing will create too much overhead. On the
other hand, limitation on the network bandwidth increases the network bottleneck which affects
the system performance. Decenralizing control, distributing processing loads and network band-
width among all participating nodes will reduce the overhead in very large systems. In this light,
Peer-To-Peer(P2P) systems offer an alternative solution to old server-based approach. Generally,
a P2P system must have three essential properties. First, the system needs to be scalable. That
is, it does not rely on single points of failures and bottlenecks. Second, the P2P system needs
to be self-organized when peers arbitrarily join and leave the system. Third, the system needs
to be fault-tolerant. In other words, the system must be robust when subjected to faults. In
this thesis, we propose a dynamic decentralized P2P resource allocation method having as many
resource allocators as required given the number of nodes, tasks and resources. In spite of the
capability of the proposed resource allocation scheme for implementing on any structured overlay
system, we implemented our application on Pastry as the underlying structured overlay system.
We investigated the matchmaking process in the fully populated system when all resource allo-
cators are active as well as the non-fully populated system when only some resource allocators
perform resource allocation process. As we wanted to have a self-organized system in terms of re-
source allocators, we defined a mechanism that dynamically segment/desegment the ad hoc grid
by promoting/demoting resource allocator(s) according to the workload of the existing resource
allocator(s). This mechanism enables the ad hoc grid to adapt itself to the changing environment
from a centralized to a decentralized form and back to the centralized form.

Laboratory : Computer Engineering
Codenumber : CE-MS-2008-09

Committee Members :

Advisor: Koen Bertels, CE, TU Delft

Chairperson: Stamatis Vassiliadis, CE, TU Delft

Member: Koen Bertels, CE, TU Delft

i

Member: Stephan Wong, CE, TU Delft

Member: Luc Onana Alima, DSL, Universite de Mons-Hainaut

ii

This thesis is dedicated to my family, specially my parents for their
love and support, and to my brother, Shahriar, who has given me
his endless guidance, advice and support in all aspects of my life.

iii

iv

Contents

List of Figures vii

List of Tables ix

Acknowledgements xi

1 Introduction 1
1.1 Motivation and Problem Definitions . 1
1.2 Thesis Framework . 3

2 Related Research 5
2.1 Basic Schemes for Peer-To-Peer Overlay Networks 5

2.1.1 Unstructured P2P . 5
2.1.2 Structured P2P . 6
2.1.3 What is better? . 8

2.2 An Overview and Comparison of Structured P2P Networks 9
2.2.1 Comparison Criteria . 9
2.2.2 Structured P2P Overlay Networks 10
2.2.3 Discussion on Structured P2P Overlay Networks 22

2.3 Overview of Grid Recource Discovery mechanisms 25
2.3.1 Fully Decentralized Resource Discovery in Grid Environments . . . 25
2.3.2 Distributed Grid Resource Discovery with Matchmakers 26
2.3.3 Hybrid Resource Discovery in Ad Hoc Grids 28

2.4 Conclusion . 29

3 Adaptive Overlay Networks 31
3.1 Algorithm Definition . 31
3.2 Overlay network status for connection between client and matchmaker . . 34

3.2.1 Fully populated overlay network 35
3.2.2 Non fully populated overlay network 36

3.3 Overlay network decentralization with multiple matchmakers 37
3.3.1 Matchmaker promotion: segmentation 37
3.3.2 Matchmaker demotion: desegmentation 38

3.4 Conclusion . 39

4 Experiments and Results 41
4.1 Experimental Setup . 41
4.2 Evaluation Criteria . 42
4.3 Experimental Results Analysis . 43

4.3.1 One Matchmaker . 43

v

4.3.2 Multiple Adaptive Matchmakers 45
4.4 Conclusions . 48

5 Conclusion 49
5.1 Summary . 49
5.2 Future Work . 49

Bibliography 53

vi

List of Figures

1.1 Centralized resource allocation . 2
1.2 Decentralized peer to peer resource allocation 2

2.1 Example of a Distributed Hash Table [10]. 7
2.2 Example of an address space with 5 items and 5 nodes [10]. 8
2.3 The status of CAN before(1) and after(2) node z joins [16]. 11
2.4 Chord ring (identifier circle) consisting of 10 nodes storing five keys. The

path for locating the key 54 by a look up query at node 8 is depicted in
this figure [16]. 13

2.5 Pastry node state with node identifier 10233102, b = 2, and l = 8[23]. . . . 16
2.6 Message routing in Pastry from node with identifier 65a1fc with key

d46alc[9]. 17
2.7 A DKS with k = 4 and N = 64. The left most part of the figure shows

the intervals on first level. The intervals of second and third levels are
shown in center and right most parts of the figure respectively [10]. 20

2.8 Example of a lookup search from node 0 for key identifier 27 in a DKS
ring with N = 64 and k = 4. 21

2.9 Request message forwarding with peripheral nodes in ad hoc grid[18] . . . 29

3.1 An overlay network with N=64 and M=4. 34
3.2 Connection between client and matchmaker in a fully populated system. . 36
3.3 Connection between client and matchmaker in a non-fully populated system. 37
3.4 Ad hoc grid segmentation process when MM3 promotes MM2. 39
3.5 Ad hoc grid desegmentation process when MM3 is demoted. 40

4.1 Matchmaking transaction cost for ad hoc grid with one matchmaker. . . . 44
4.2 Matchmaking efficiency for ad hoc grid with one matchmaker. 44
4.3 Matchmaking response time for ad hoc grid with one matchmaker. 45
4.4 Average transaction cost for ad hoc grid with multiple matchmakers. . . . 46
4.5 Average response time for ad hoc grid with multiple matchmakers. 47
4.6 Average efficiency for ad hoc grid with multiple matchmakers. 47

vii

viii

List of Tables

2.1 Comparison of Structured and Unstructured Overlay Networks 6
2.2 Comparison of Different Structured P2P Location Schemes(RT and

nodeId represent Routing Table and node Identifier respectively) 24
2.3 Qualitative comparison of resource discovery systems 30

ix

x

Acknowledgements

I would like to express my deepest gratitude towards my supervisor Prof. Koen Bertels
for his endless guidance, affection, attention, and support he has given me during my
master thesis project. This thesis would not have been possible without his immense
help, guidance and encouragement. I am forever indebted to him and I shall remember
him always.

I am very grateful to my mentor, Tariq Abdullah, for his continuous help, assis-
tance, patience, and useful advice during all the time with this thesis work. I would like
to thank him for his constructive suggestions which have been always helpful.

Shervin Haji Amini
Delft, The Netherlands
September 22, 2008

xi

xii

Introduction 1
Distributed computing is a type of computing by which different parts of a program
can be run in parallel on different computing nodes. These nodes are connected by
a communication medium that are placed in different geographic locations. Solving
large-scale communication problems at affordable cost is the main motivation for
organizing distributed networks. Advances in distributed computing has resulted in
widely applicable grid network environment which provides large resource sharing,
secured access, balanced resource usage in which the distance must not make difference
for efficiently access to the computer resources.
As the grid computing system is developed, the number of the users which are
interacting with each other affects the behavior of the network. In other words, when
such network is used in a local environment, there is not such a big deal to have only
one resource allocator that satisfies providing resources for the different clients in the
system. However, when the grid network is considered in large scale environments, some
issues have to be taken into account such as the system throughput in terms of the
efficiency and the response time, the bandwidth, the scalability and the fault resiliency.
In this case, it becomes necessary to have sufficient number of resource allocators who
can share responsibilities between themselves for providing services to the requesting
clients. In order to achieve the above mentioned management strategies, there should
be some predefined criterions by which a processing node could be nominated for being
a resource allocator. In addition to the importance of the role of the resource allocator,
another important issue which will be focused in this project is how the network is
segmented among the resource allocators. This goal defines the procedure that assigns
each resource allocator a certain number of clients that exchange data locally. If a
request message can not be replied due to insufficient knowledge of a resource allocator
in a segment, the message must be routed to an appropriate segment to have its request
matched by the corresponding resource allocator. The message routing is one of the
most important factors in every grid network due to its impact on grid performance.

In this chapter the motivation of this research is first identified. After that the framework
of this thesis is presented.

1.1 Motivation and Problem Definitions

In large distributed and heterogeneous systems like grid, one of the important issues to
be addressed is the system scalability. Scalability indicates that the performance and
reliability of the system is not influenced when increasing the number of participating
client nodes.
In conventional resource management, a centralized resource allocator matches jobs and

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Centralized resource allocation

Figure 1.2: Decentralized peer to peer resource allocation

resources based on a relatively static model where the number of the clients do not
change during the matchmaking process time (Figure 1.1). In addition, in such systems
the resources are dedicated in the sense that the central controller is aware of the client
nodes whose computational jobs are going to be executed on its resources at any given
point in time.

In spite of the advantageous this scheme has such as easy administration and imple-
mentation as well as finding the best match for a job/resource in acceptable response
time, this approach fails to work in dynamic systems, known as ad hoc grids, where the
distribution of jobs and availability of resources may change at any time [19]. Moreover,
maintaining a central directory for information in ad hoc grid is expensive and the whole
system may fail mainly due to failure of the resource allocator. In this case, the resource
allocation process has to be decentralized in such a way that the matchmaking efficiency
is preserved and still be able to get the benefits of the centralized approach.
In this thesis project, we achieved decentralization of the resource allocation by intro-
ducing/removing the resource allocators to dynamically segment/desegment the ad hoc
grid environment. The workload of the resource allocator is used as a criterion for intro-
duction/removal of the resource allocator(s) who can communicate with each other in a
P2P manner in order to route messages to different segments of the ad hoc grid (Figure
1.2).

1.2. THESIS FRAMEWORK 3

1.2 Thesis Framework

This section discusses the framework of this thesis. The thesis is organized as follows:
Chapter 2 reviews the background research of this thesis. First, a comparison between
two types of P2P overlay systems is presented. Second, an overview of structured P2P
overlay networks is discussed. Finally, some resource discovery methods utilized in P2P
system are discussed and compared with each other.

Chapter 3 introduces the proposed algorithm by which the resource allocation
process is decentralized. First, we present the description of the algorithm in detail.
Second, we discuss about how a client node can find a responsible resource allocator in
the ad hoc grid. Third, we investigate about the mechanism that enables the ad hoc
grid to dynamically self-organize with respect to the changing environment.

Chapter 4 discusses about the results of the experiments conducted in Planet-
Lab, the test bed for our experiments. First, we define the experimental setup. Then,
we define the evaluation criteria for analyzing the decentralized resource allocation.
Finally, we present the results.

Chapter 5 presents the conclusion of the thesis and describes the future research
steps regarding the obtained results.

4 CHAPTER 1. INTRODUCTION

Related Research 2
Peer-to-peer (P2P) overlay networks are distributed systems which are composed of large
number of distributed heterogeneous, autonomous and highly dynamic peers. In this
environment, the peers share their resources with other participating peers. The shared
resources can be the processing power(CPU time) or the storage capacity(memory). Each
client in P2P network can act as a client and a server at the same time. In other words,
the P2P system is fully decentralized. The term overlay network reflects the fact that the
peers are connected to each other over an existing network, such as Internet, by which the
overlay routes messages between the nodes. A self-organizing overlay network is formed
by the peers on the Internet infrastructure which provides scalability, self-managing and
fault resiliency. Scalability indicates avoiding dependency on centralized points. Self-
managing deals with the adaptation of the overlay network to the changing environment
in terms of arrival/departure of the peers. Fault resiliency represents the capability of
the overlay network to be recovered when a failure occurs. The defects of client/server
systems become obvious in large scale distributed environments. In client/server model,
the resources are placed on limited number of nodes. In addition, the performance of
such systems is degraded due to limitation of network bandwidth. Peer-to-peer overlay
networks offer a solution to the limitations of the client/server systems at the cost of
applying complex methods for improving system performance. However, the P2P overlay
networks have several advantages such as decentralization of control and replication of
data items that makes P2P systems very fault tolerant [10].
In this chapter, the P2P overlay networks are discussed as follows: Section 2.1 talks
about two types of overlay networks in P2P systems. Section 2.2 reviews and compares
some well known structured overlay networks. Section 2.3 discusses about the resource
discovery mechanisms in P2P systems and finally section 2.4 concludes this chapter.

2.1 Basic Schemes for Peer-To-Peer Overlay Networks

Based on the procedure for storing data items in a peer, the basic infrastructure and
the search method for locating data items, two main design approaches can be identified
for building P2P overlay networks. They can either be structured or unstructured. With
respect to the criteria mentioned in Table 2.1, we compare these two types of overlay
networks in the following sections.

2.1.1 Unstructured P2P

In unstructured overlay networks, peers join the network by contacting any other exist-
ing peers. Thus, the peers are organized in a random graph. If a peer wants to find

5

6 CHAPTER 2. RELATED RESEARCH

Criterion
Peer to Peer Overlay Networks

Structured Unstructured
Overlay Architecture Structured graph Random graph

Data Placement
Each data item is mapped
to a responsible node.

Arbitrarily data placement

Routing method Key-based Flooding
Routing Performance O(log(number of peers) Limited by Time-To-Live

Neighbor Table
(per node) O(log(number of peers) Not limited

Lookup Query Type
Simple lookup for rare
items

Complex lookup for popu-
lar items

Maintenance Cost Very high Very low

Scalability
High for locating popular
items

High for locating rare
items

Table 2.1: Comparison of Structured and Unstructured Overlay Networks

a desired data item in the network, the query is flooded through the network because
the peer does not know where the data item is stored. Even if Time To Live(TTL) is
used to limit the lookup search domain, it is not easy to find an appropriate TTL value.
When a peer receives the flood query, it sends all the content that match the query. The
matched data items are selected based on the local data items stored on the peer. The
main disadvantage of such search method is that the queries may not always be resolved.
The search is successful when a data item is replicated on several peers, but if a peer
looks for a data item which is shared by only a few other peers, that search may not be
effective. Thus, unstructured systems do not scale well with growing number of queries
and sudden increase in system size.
Unstructured overlay networks have some advantages. Such networks support complex
queries and there is no constraint on data placement, for example each node chooses
any other node as its neighbor in the overlay network and it can store the data item it
owns. However, this approach tends to be inefficient as the flooding is used for search.
Unstructured networks have very low maintenance traffic in terms of peers joining/leav-
ing because there is no correlation between a peer and the data item managed by it
and the flooding-based technique is used to easily update the peers about the changes
in the overlay network. Most of popular file sharing P2P networks such as Napster [3],
Gnutella [1] and KaZa [2] are unstructured.

2.1.2 Structured P2P

The first generation of P2P overlay networks, including Napster and Gnutella, had one
basic limitation that was their inscalability due to sending the lookup queries to a large
number of nodes in order to find items that are not widely replicated. Therefore, struc-
tured P2P networks has been proposed to make routing queries more efficient. The term
“Structured” refers to the content location strategy in the sense that the data items (e.g.,
files) are inserted not at random peers but at specified locations. In this category, the

2.1. BASIC SCHEMES FOR PEER-TO-PEER OVERLAY NETWORKS 7

Figure 2.1: Example of a Distributed Hash Table [10].

peers are organized in a controlled manner so that any peer can be reached in a certain
number of hops, typically logarithmic in the size of the network [16, 20]. In order to
achieve this, structured P2P networks use the Distributed Hash Table(DHT) as a basic
building stone.
A distributed hash table is a hash table which is distributed among the cooperating peers
which we refer to as nodes. A hash table is a data structure that contains key/value pairs
which are generally known as items. DHT supports lookup as a primary operation to find
the value associated with any given key. This operation is performed by transforming the
key using a hash function into a hash value that is used as an index to find the location
having the desired value. Each node maintains a routing table consisting of pointers
to other nodes(its neighbors). By means of the routing tables, a query is routed to a
neighbor whenever it is not under responsibility of a receiving node. Figure 2.1 depicts
a distributed hash table consisting of (filename, URL) item pairs that are distributed
among the nodes a, b, c, d and e having routing pointers to each other [10].
The foundation of DHT is an abstract address space consisting of N identifiers where

N = {0, 1, 2, . . . , N − 1} such that nodes and data objects to be stored are given iden-
tifiers in the same address space. The identifiers associated with nodes are called node
identifiers and the ones associated with data objects are called keys. The overlay net-
work organizes its peers into a structured graph such that each key is mapped to a
unique responsible node and an item is stored at the node responsible for its key. Node
identifiers are selected randomly in such a way that two nodes whose node identifiers are
numerically similar are not physically close to each other on the address space.
Because of the cost for maintaining the address space such as inserting and updating
items, each node takes the responsibility for a part of the items, which it stores locally.
Different DHT-based systems have different schemes for assigning items to the nodes.
For instance, an item may be assigned to its successor node whose node identifier is
numerically closest to the item’s key (Figure 2.2)[10].
As mentioned above, structured overlay networks utilize keys for efficient discovery of

items. When a node wants to retrieve a certain data item, it constructs a lookup query
for the key associated with that data item. The lookup query is forwarded by the peers
whose node identifiers are numerically closer to the given key in the address space until

8 CHAPTER 2. RELATED RESEARCH

Figure 2.2: Example of an address space with 5 items and 5 nodes [10].

a responsible node is met for the data item. Assuming N is the total number of nodes
in DHT-based systems, any data item can be found in O(logN) overlay hops on average
using O(logN) neighbors per node [16].
In spite of finding exact match for lookup queries, structured overlay networks do not
support complex lookup queries. Moreover, the structured networks have much more
maintenance overhead than unstructured ones because there is a strong correlation be-
tween the location of data items and network topology. As structured P2P networks
can efficiently find rare items using key-based routing, they do not scale well for locating
highly replicated items. Although DHT-based systems offer various features such as de-
centralization and scalability, they have a drawback in terms of data item lookup latency.
Despite of the closeness of two nodes with numerically similar node identifiers on the
overlay address space, these nodes can be far from each other with respect to physical
topology of the underlying network. Therefore, the latency of the lookup queries can
be quite high in structured P2P overlay networks [16]. Some well known structured
P2P networks are Content Addressable Network (CAN) [22], Chord [26], Pastry [23],
Tapestry [29] and Distributed K-ary Search (DKS) [7].

2.1.3 What is better?

With respect to the above mentioned characteristics for both structured and unstruc-
tured P2P overlay networks, no definite decision can be made about which of the two
types of the overlay networks outperforms the other. The reason for this acknowledgment
is that the application, that we want to deploy an overlay network, and its performance
requirements such as scalability, routing latency and the cost of network maintanance
affects our desire to select the most suitable P2P overlay network [16]. However, de-
spite the interesting properties of the structured networks, over the Internet today, the
unstructured P2P overlay networks are more commonly used. The argument is that

2.2. AN OVERVIEW AND COMPARISON OF STRUCTURED P2P NETWORKS 9

although structured overlay networks guarantee to find an item if it exists, they are
less suitable for current mass-market data sharing applications than unstructured over-
lays due to some reasons as follows. First, the need for finding extremely rare items is
not required in mass-market data sharing applications. Second, P2P data sharing envi-
ronments have not widely deployed DHT-based routing methods for their applications.
Third, more tests are required to prove the ability of the structured overlay networks to
implement key-based routing method [8]. Large body of research studies are ubderway
to determine which overlay architecture is better for today’s P2P applications.
As our application was implemented on a structured overlay, we investigate and compare
the structured P2P overlay networks: CAN [22], Chord [26], Pastry [23] and DKS [7].

2.2 An Overview and Comparison of Structured P2P Net-
works

Structured P2P systems use the Distributed Hash Table (DHT) structure by which the
location information about an item is placed at the peers with identifiers corresponding
to the data item’s unique key. The interesting feature of DHTs is that the uniform
random node identifiers(nodeIds) are assigned to the set of peers in an identifier space.
Unique identifiers, known as keys, are attributed to data items. The keys are selected
from the same identifier space. The overlay network maps the keys to the active peers
in the identifier space. Each peer keeps a neighbor table containing the nodeIds as well
as the IP addresses of its neighboring nodes. The general approach for locating an item
in DHTs is to route the message to the nodes with nodeIds closer to the given key in
the identifier space [16].

2.2.1 Comparison Criteria

The comparison between the Structured Overlay Networks presented in this report is
based on different criteria [?]. Some of these criterions have been briefly explained as
follows:

• Overlay network. In this criterion, the architecture of the overlay system is
described. The building block of an overlay network affects the routing table
structure used by each peer for contacting other peers.

• Lookup protocol. This criterion indicates how a lookup process is performed.
In addition, the lookup protocol determines the performance of an overlay network.

• Responsibility of nodes for data items. It is important to know how the
identifiers of both nodes and data items are related with each other. In other
words, we want to know which node takes the responsibility for which data item
in an overlay network.

• Nodes’ joining, leaving and routing maintenance. One of the most impor-
tant features of the overlay networks is to specify the way a node follows to join

10 CHAPTER 2. RELATED RESEARCH

or leave the system. As these operations change the network, some maintenance
policies are required to update the information stored on the nodes. However, the
cost of the routing maintenance has to be taken into account.

• Reliability and fault resiliency. This feature shows the robustness of the
overlay system when subjected to nodes’ departures or failures.

• Applications and implementation. For each P2P overlay system, some of the
developed applications using that overlay network are presented in this section.
Furthermore, the available implementations for each overlay system are named as
well.

2.2.2 Structured P2P Overlay Networks

As was mentioned in section 2.1.2, the keys are assigned to data items and the nodes are
organized in the overlay network in such a way that each pair is mapped to a peer in the
network. In spite of efficient locating of items by the given keys, performing complicated
lookups is not supported in this type of networks. In general, this type of network
topology supports precise-match queries. In this section, some well known structured
overlay networks are described and compared using the above mentioned comparison
criteria.

2.2.2.1 Content Addressable Network(CAN)

The Content Addressable Network (CAN) is a purely decentralized P2P infrastructure
with the hash table structure. The CAN is designed to be scalable (nodes store
information about their local neighbours), fault-tolerant (recovering after nodes failure),
and self-organizing [22].

• Overlay network. The CAN is designed as a d-dimensional torus where the
basic operations performed on its hash table are the lookup, the insertion and the
deletion for (key, value) pairs. Each CAN node possesses a zone which is a part
of the entire hash table indeed. The information about the adjacent zones is also
included in the corresponding node table.

• Responsibility of nodes for data items. To store a pair (k, v), key k is mapped
onto a point P in the coordinate space by a hash function. A node, owning the
zone containing point P, then stores the corresponding (key, value) pair.

• Lookup protocol. Routing in a CAN is performed by nodes’ routing tables
holding the IP addresses of their adjacent peers as well as their coordinate sets.
The lookup query for retrieving an entry corresponding to key k rehashes the key
to obtaining the value from point P. If the requesting node or its neighbours do
not have point P, the CAN routes the message through the zones until it reaches
the node within a zone where P is placed. Given a CAN message, the message is
routed to a destination whose coordinates are resided in the message such that the

2.2. AN OVERVIEW AND COMPARISON OF STRUCTURED P2P NETWORKS 11

Figure 2.3: The status of CAN before(1) and after(2) node z joins [16].

destination address matches closely a neighbour’s coordinate set. If d represents
the number of dimensions in the coordinate space, each message is routed towards
its destination in (d/4)(n1/d) hops and each node maintains 2d neighbours in its
routing table. As there may be several paths between two nodes in the coordinate
space, a node can route the message towards a next available path when some
neighbours of the requesting node fail to response [16].

• Nodes’ joining, leaving and routing maintenance. When a new node joins
the system, it must obtain a chunk (zone) of the coordinate space. The contacted
peer splits the entire zone in half and transfers the ownership of a half to the new
joining node. The CAN construction process takes the following three steps [22]:

1. The new node must first find the IP address of one or more bootstrap nodes
in the system. The joining node then gets the IP addresses of a number of
live nodes provided by the bootstrap node.

2. A point P is randomly chosen at identifier space and a request message is
sent via any available CAN node. By exploiting the CAN routing strategy,
the message is routed until it reaches the node in whose zone P lies.

3. The zone of the contacted node is then split between the contacted node and
the new node. Upon the split, the new node learns the IP addresses of its
neighbors from the previous owner. The neighbors of the newly joining node
include the neighbors of the previous owner plus the previous owner itself.
Figures 2.1 and 2.2 show the CAN status when a peer z joins the overlay
network [22].

When a node leaves a CAN, its zone and associated (key,value) pairs has to be
merged with a neighbour to create a valid zone. If no node is found for zone
merging, then the zone is transferred to a neighbor owning the smallest zone.

12 CHAPTER 2. RELATED RESEARCH

Under normal conditions, a node sends periodic update messages to each of its
neighbors. These updates contain the node’s zone coordinates and the coordinate
zones of its neighbors.

• Reliability and fault resiliency. When a node can not receive the periodic
update messages from its neighbor for a long time, all the failed node’s neighbor-
ing nodes try to take over the zone of the failed node. Among the failed node’s
neighbors, a node with the smallest zone takes over the failed node’s zone.
Replication in CAN is achieved by creating multiple instances of the coordinate
space. Each instance is called a reality in which each peer owns a different zone
from the owning zones in other realities. Thus, the data availability is improved
by replicating of each (key,value) pair at distinct nodes on different realities.

• Applications and implementation. Some applications have been implemented
on CAN regarding efficient insert and retrieval of file contents in a large storage
system. Moreover, a DNS-like application has been constructed on CAN which is
utilized for wide area name resolution services [22].

2.2.2.2 Chord

Chord uses consistent hashing to assign keys to its peers. As each node is assigned
the same number of keys, the total workload is evenly distributed among the nodes by
utilizing consistent hashing functionality. If there are N nodes in the system, each node
maintains routing information about O(log2N) other nodes, and all lookups are resolved
in O(log2N) hops. Simplicity, provable performance and correctness are the features
that differentiate Chord from other structured P2P overlay networks [26].

• Overlay Network. The overlay graph of the Chord ring is assumed to be a circular
identifier space of size N . An m-bit node identifier is obtained by hashing the
node’s IP address whereas a key identifier is generated by hashing the key. The
identifiers are ordered on an identifier circle (Chord ring) modulo 2m. If identifiers
are represented as a circle of numbers from 0 to 2m−1, a Chord node has a pointer
to the first following node as well as the first preceding node on the identifier space.
In addition, a node maintains O(log2N) pointer to the corresponding following
nodes in the Chord ring.

• Responsibility of nodes for data items. A key k is stored at the first node
that follows clockwise on the identifier space. This node is called the successor
node of k, denoted as successor(k).

• Lookup protocol (Simple Key Location). In order to perform a simple and
slow lookup procedure, each node tries to contact its current successor node on
the identifier circle. The successor nodes pass the query lookups around the chord
ring based on a given identifier until the desired identifier is found to be between
a pair of nodes. In this case, the query is mapped to the second node for resolving
the query [26].

2.2. AN OVERVIEW AND COMPARISON OF STRUCTURED P2P NETWORKS 13

Figure 2.4: Chord ring (identifier circle) consisting of 10 nodes storing five keys. The
path for locating the key 54 by a look up query at node 8 is depicted in this figure [16].

• The lookup protocol (Scalable Key Location). If m is the number of bits
in the key/node identifiers, each chord node n maintains a routing table, known as
finger table consisting of m entries. The identity of the first node s that follows n
by at least 2i−1 is specified to be the ith entry in the node’s table on the identifier
circle, i.e., s = successor(n + 2i−1), where 1 ≤ i ≤ m. Node s is known as the ith

finger of node n , and is denoted as n.finger[i]. Figure 2.4 depicts the finger table
of node 8(N8). Node 14 is the first entry in the finger table because node 14 is the
first node that succeeds (8 + 20)mod26 = 9 [20, 26].
This lookup protocol design has some important characteristics. The most impor-
tant aspect of the lookup procedure is that the information about a small number
of nodes is stored in the node’s routing state. Moreover, the node in the context has
more information about the other nodes which are closer to itself on the identifier
circle than the nodes which are farther away.

• Nodes’ joining, leaving and routing maintenance. The correctness of the
Chord lookups depends on how each node’s successor pointer is updated. To
achieve this goal, the stabilization protocol is used. This maintenance protocol
is run periodically by each node in which the Chord’s finger tables and successor
pointers are updated.
According to [26], when node n wants to join the Chord ring, n.join(n

′
) is called,

where n
′
is a known Chord node. If no node is present in the system, then n.create()

14 CHAPTER 2. RELATED RESEARCH

is invoked to make n be the starting node in the Chord network. Node n
′

is asked
by join() method to find the immediate successor of n. In addition, the procedure
notify is called inside the stabilize function to notify node n’s successor of n’s
existence which gives the successor the opportunity to change its predecessor to
n. The procedure fix fingers is periodically called to initialize the newly joined
nodes’s finger tables and updating existing nodes’ finger tables with new joins as
well. If the node’s predecessor has failed, the procedure check predecessor is called
by each node to clear the node’s predecessor pointer.
The above mentioned stabilization scheme guarantees the reachability of existing
nodes when adding nodes to the Chord ring, even if some nodes are joined or lost
concurrently [26].

• Reliability and fault resiliency. Knowing which node is going to be a successor
of a Chord node causes the correctness of the Chord protocol. When some peers
fail, it is possible that a node does not know its new successor, and it has no chance
to learn.
To increase robustness, a successor list of size r , which contains the peer’s first
r successors, is maintained in each Chord node. When the peer’s successor does
not respond, the peer contacts the next node on its successor list. If p be the
probability of each node failure, p

′
is the probability that all r peer’s successors

fail simultaneously. The system will be more robust by increasing the parameter
r. It is important to note that when a node leaves the network, its effect on the
system can be treated as a node failure. In this case, the leaving node may transfer
its keys to its successor and notify its predecessor as well as its successor about
its departure. If log2N + 1 successive nodes fail simultaneously, the Chord ring is
disconnected or a data item is lost [26, 16].

• Applications and implementation. Chord has been used as a basis for a
number of subsequent research projects. The Chord File System (CFS) is one
of the important research projects in which several content providers cooperate
to store and serve each other’s data. In this application the total workload is
distributed evenly among the hosts which will lower the system cost.
In Chord-based DNS, a look up service is provided with host names as keys and
their IP addresses as values. In such service, each host name is hashed to a key.
While the conventional DNS systems depend on a set of central servers, Chord
based DNS operates without relying on any root servers since it is accounted as a
pure decentralized P2P network.
The original implementation of Chord is in C++. However, the Chord has also
been implemented in C] as it was supplied with a file sharing application.

2.2.2.3 Pastry

Pastry is a decentralized, scalable distributed object location and routing substrate
in a very large network of nodes connected via the internet [23]. Pastry performs the
application-level routing and query lookups in a large scale overlay network based on
the Internet infrastructure. Pastry takes into account the network locality by which the

2.2. AN OVERVIEW AND COMPARISON OF STRUCTURED P2P NETWORKS 15

distance traveled by each message is minimized according to a scalar proximity metric
such as the number of IP routing hops. It is important to know that Pastry can be
automatically adapted to the arrival, departure and failure of nodes.

• The Overlay Network. A unique identifier, chosen in a circular identifier space
ranging from 0 to 2128 − 1, is assigned to each Pastry node. Given a message and
a key, the Pastry node routes the message to the node whose identifier is closest
to the key in less than logBN hops where B (B = 2b) is a configuration parameter
with b = 4 and N represents the number of nodes in the overlay system. As the
node identifiers are randomly generated by hashing the IP addresses/Public keys,
the corresponding nodes may seem near each other geographically whereas they
communicate with each other through a node in a totally different place because
the hash of their identifiers are far apart in the identifier space.
Figure 2.5 shows an example of a pastry routing state that uses 16-bit node
identifier(b = 2) in a Pastry node with identifier 10233102. The node identifiers
in this table have been represented as “common prefix with local node identifier +
next digit + rest of node identifier”. According to this Figure, each node keeps a
routing table, a neighborhoodset and a leafset.
The leafset provides correctness. It consists of a set of nodes with |L| /2 numer-
ically closest larger and smaller node identifiers respectively with regard to the
present node’s identifier. The value of L is generally set to 24. Thus, around 12
closest neighbors to the left and the same to the right are stored in the leafset. If
only leafset was to be used for accomplishing routing, the message would always
send to the furthest left or the furthest right entry of the leafset if the key is not
within the extents of the leafset. However, this would cause O(N) hops(N is the
number of nodes in the network) besause a message has to traverse N/k nodes(k
is 1/2 number of nodes in the leafset) to reach to the other side of the ring. Thus,
it would be correct, but not scalable, to only use the leafset for routing.
The routing table provides the scalability as it gives O(logN) routing hops to reach
the destination node. The routing table is consisted of blog2bNc rows each one has
2b − 1 entries. As can be seen in Figure 2.5, each entry in row n refers to a node
whose identifier is common with the present node’s identifier in the first n digits,
but whose (n + 1)th digit is different form that of the present node. The top rows
in the routing table are the furthest away nodes in the ring that are known to
a node. As we move down the rows of the routing table, each row represents a
magnitude closer than the row above. For example, all nodes in row 6 are closer
than any node in row 7 (the top row of the routing table is 7, and the bottom row
is 0). Most, if not all, of the entries in the lowest rows of the routing table will
also be found in the leafset. Sometimes there is hole(s) in some rows the routing
table. This can be because there is no node in the network with an identifier that
matches the prefix, or because the node that is known with an appropriate prefix
recently failed.
The node idetifiers and IP addresses of |M | nodes which are physically closest to
the local node are maintained in the neighborhood set where the value of M is

16 CHAPTER 2. RELATED RESEARCH

Figure 2.5: Pastry node state with node identifier 10233102, b = 2, and l = 8[23].

usually set to 24. The neighborhoodset is populated based on a proximity metric
such as the number of IP routing hops or geographic distance.

• Responsibility of nodes for data items. In pastry, a key is under responsibility
of a node whose identifier is the closest to the given key. As the identifiers in the
leafset are the closest ones to the local node’s identifier, the key is also replicated
to a certain number of nodes with such identifiers in the leafset.

• Lookup protocol. The node identifiers and keys are considered as a sequence of
digits with base B. In order to forward the message to its destination, the message
is routed to the node whose node identifier is numerically closest to the given key.
According to [23], the node first checks the message key to see if it falls within the
range of node identifiers in its leaf set. If it is in the range, the node whose node
identifier is closest to the key is selected to receive the message as the destination
node.
If the leaf set can not satisfy finding the right node, then the common prefix of
the key with the node’s identifier is computed and the routing table is searched for
the node whose identifier shares a longer prefix with the key than the present node
shares with the key.
If the corresponding entry in the table is empty or its associated node can not
be reached, the message is forwarded to a node whose identifier has at least a
common prefix with the local node’s one but is closer to the key than the local
node’s identifier. Pastry guarantees that such a node exists in the leafset if it exists
in the network. In other words, if no node can be found with a better prefix match
in the routing table, then there is a guarantee that either:

1. the local node knows of a node who is closer than itself in the identifier
space(using the routing table or the leafset) or

2.2. AN OVERVIEW AND COMPARISON OF STRUCTURED P2P NETWORKS 17

Figure 2.6: Message routing in Pastry from node with identifier 65a1fc with key d46alc[9].

2. the local node is the root(closest node to the key) or

3. There was a massive simultaneous failure in leafset.

Figure 2.6 depicts the routing path of a message in Pastry. Using the routing table,
the message is forwarded by the local node to a node whose node identifier shares
a prefix with the key which is at least one digit(or b digits) longer than the prefix
that the key shares with the identifier of the local node. If no such node is found
in the routing table, the message is forwarded to a node whose identifier shares
the same prefix with the key as the local node does, but whose node identifier is
numerically closer to the key. As we mentioned above, two nodes having adjacent
node identifiers on the overlay network are far away from each other in terms of
geographic distance. The reason for such an observation can be explained by the
populating of entries in the routing table. In fact, each hop that a message travers
to reach the destination moves down a row in the routing table. The more we go to
the lower rows of the routing table, a longer common prefix is needed for a match
and the fewer candidates in the network are allowed to go into the routing table
entries. Pastry uses proximity measurements to try to select the closest node in
each routing table spot. As the higher rows are more populated than the lower
ones, there is a high probability to choose a close neighbor(in terms of network
delay) for routing a message whereas we have the “average network delay” which
is much higher when dealing with the lower rows of the routing table. So, each
row gets us 1 digit closer in “identifier space”, but because there are exponentially
fewer candidates, we get exponentially further in “physical” network space.

• Nodes’ joining, leaving and routing maintenance. Since upon arriving a
new node its state table has to be initialized, it is assumed that the new node, with
identifier X, knows initially about a neighbor node A. This node is presumed to
be close with respect to the underlying physical network. By means of the above
described routing algorithm, a join message with the key equal to X is routed by

18 CHAPTER 2. RELATED RESEARCH

node A until it reaches the node Z whose identifier is closest to X. Node X then
initializes its route state with as physically close nodes as possible using the route
states sent by the nodes who already forwarded the join message. The route state
initialization process takes place as follows.
Node X’s neighborhood set is initialized with the one in node A as node A is
nearby X. The leafset of node X is also affected by the one in node Z as its
identifier is the closest one to node X. The row entries of X’s routing table are
initialized according to the nodes which are placed along the path from A to Z
[23]. A copy of X’s constructed state is finally sent to its corresponding nodes in
its neighborhood set, the leaf set and the routing table as well. These nodes can
update their route states as well. The cost of the above mentioned joining process
is estimated to be 3× 2blog2bN [23].

When a Pastry node can not communicate with its immediate peer in the
network, that peer is considered as a failed node. In order to recover from a
failure, the failed node’s entry in the leafsets needs to be replaced by the neighbor
nodes. To acheive this goal, the failed node’s neighbor asks for the leafset of the
furthest live node on the side of the failed node [23]. Among the nodes which are
not common in both leafsets of the present node and that furthest node, the most
appropriate one is inserted into the present node’s leafset.
For repairing a failed node entry Rd

l in a node’s routing table, where Rd
l refers to

an entry at column d and row l, the node first contacts a node in the same row
but with different column number (i.e., Ri

l , i 6= d) and asks for the failed entry Rd
l

in their routing table. If no appropriate entry is found, the present node tries to
find a node in next higher rows in its routing table [23].
In order to update the neighborhood set, a node tries to contact all its neighbors
periodically. If a failed node is detected in the neighborhood set, the detecting
node requests the neighborhood tables from all its neighbors to keep its neighbor-
hood set up to date.

• Reliability and fault resiliency. In Pastry, a copy of a requested information
is stored on k nodes in a node’s leafset having numerically closest identifiers to a
key in the identifier space. Thus, the queries for the same information can be first
found on a node closer to the requesting node than the responsible node.

• Applications and implementation. A variety of peer-to-peer applications can
be supported by Pastry such as data sharing and global data storage. In PAST,
for instance, the hash of the file’s name is computed as a fileId and considered as
a Pastry key for a file. A file can be looked up by sending a message via Pastry,
using the fileId as the key. The Pastry nodes having the closest identifiers to the
fileId can store the replicas of the file, despite nodes failure and arrival.
The SCRIBE publish/subscribe system is another application in which a node with
an identifier closest to the topicId of a topic stores a list of subscribers. This node
acts like a meeting node where a message is sent by subscribers via Pastry using
the topicId as a key. A publisher sends data to that meeting node via Pastry using

2.2. AN OVERVIEW AND COMPARISON OF STRUCTURED P2P NETWORKS 19

the topicId. Then, the data is forwarded along the multicast tree from the meeting
node to all subscribers.
FreePastry, written in java, is the platform on which the Pastry nodes can route
their messages.

2.2.2.4 DKS

The DKS(N,k,f), standing for Distributed k -ary Search, is a fully decentralized overlay
network where N represents the maximum number of nodes in the network; k is the
number of the search areas inside the network and f is the fault tolerance degree. It
provides a distributed hash table as an infrastructure for distributed inserting and re-
trieving (key,value) pairs. The maximum number of the nodes in the network is N = kL

where k, an integer, is equal or greater than 2 and L is a parameter which represents the
number of levels in the search. [7, 28].

• The Overlay Network. The DKS can be counted as a generalization of the
Chord overlay network. The identifier space in DKS is a circular space modulo
N. Each identifier (node) is a root of a virtual k -ary tree that spans the whole
identifier space. The height of such a tree is the logarithm of the system size.
Each node in DKS mainatains a routing table. The routing table consists of L =
logk(N) levels which consists of k intervals each. Moreover, each node maintains
a reponsible(contact) node for every interval in its routing table. The responsible
node is defined to be the first node encountered, moving in clockwise direction,
starting at the begining of the interval [7]. For any level l, each node is itself
responsible for the first interval. Assuming that the search area is first equal to
the whole identifier space, it is divided into k equal parts in each search step until
there are k equal parts each containing only one node. Figure 2.7 illustrates the
division of the identifier space performed by node 0, for N = 64 and k = 4. The
routing tables containing the levels, intervals and respective responsible nodes is
also shown in this Figure [10]. At each level, the intervals are represented as Ii

where 0 ≤ i ≤ k − 1.

• Responsibility of nodes for data items. Like other Peer-To-Peer overlay
networks, the nodes as well as the data items are assumed to be identified by the
same logical name space. The logical name space is known as the identifier space
consisting of identifiers {0, 1, 2, . . . , N − 1}. Once N is defined, all nodes and keys
are mapped onto the identifier space by means of a hash function. In this identifier
space, a key/value pair, denoted as (k, v), is under responsibiity of a node with the
closest matching identifier to the key.

• Lookup protocol. When a node n wants to search for a key with identifier
id in the network, it first finds the interval within the first level(l = 1) where id
belongs to. If the node is itself responsible for that interval, the node tries to find
an appropriate interval at the second level and so on until it finds an interval for
which the checking node is not responsible. The lookup message is then forwarded
to that node. When the lookup message is received by a node n

′
for key identifier

20 CHAPTER 2. RELATED RESEARCH

Figure 2.7: A DKS with k = 4 and N = 64. The left most part of the figure shows the
intervals on first level. The intervals of second and third levels are shown in center and
right most parts of the figure respectively [10].

id, n
′

checks if id is between itself and its predecessor. If so, then n
′

returns the
value associated with id to n. Otherwise, it attempts to find an interval at level
l + 1 within which id exists. This process continues until the responsible node for
id is found. In this case, the responsible node returns the associated value to the
message originator recursively. In general, a lookup is resolved in logkN routing
hops [7].
Figure 2.8 shows an example of a lookup search with key identifier 27 from node 0
in DKS when all the nodes are alive. Message level indicates the level size in the
routing table by which a correct interval is found for a key. As can be observed
from the routing tables in Figure 2.7, the size of the interval is divided by k for
each successive level. Thus, the receiving node tries to find an interval whose size
in not larger than the the previous interval size. So, at each routing step, the size
of the level is increased by one.

• Nodes’ joining, leaving and routing maintenance. The joining process
in DKS is performed in an atomic manner in such a way that the join message,
initiated by the joining node n, is routed to a known node n

′
in the network.

This node performs the lookup search and sends the reply, which is the closest
successor node S(n) in DKS ring, back to the joining node n. After that n asks
S(n) for insertion into the DKS ring. S(n) calculates the initial routing table for
the new node n so that it can join the network.
The leaving process is first initiated when the leaving node n informs its successor
node S(n) of its departure and asks him to grant permission for leaving the DKS
ring. Thus, every received message by leaving node n intended for performing an

2.2. AN OVERVIEW AND COMPARISON OF STRUCTURED P2P NETWORKS 21

Figure 2.8: Example of a lookup search from node 0 for key identifier 27 in a DKS ring
with N = 64 and k = 4.

operation such as a lookup search, joining a new node or inserting a key/value
pair is queued at n. Then S(n) sends a message to n granting him permission to
leave the DKS ring. Finally, n sends all its queued messages to S(n) and leaves
the network without any additional messages [7].
The routing information maintenance in DKS is performed in a way that the least
communication overhead is generated during the nodes’ arrivals and departures
and the correctness of the look up queries is guaranteed in case of simultaneous
node failures. However, the novelty of this Peer-To-Peer overlay network is that
the maintenance of the routing paths is not performed in a separate phase which is
the case in most DHT-based systems. For instance, Chord and Pastry periodically
run seperate stabilize routines to ensure the accuracy of the lookups when the set
of participating nodes changes [6].
Although any incorrect routing information can be quickly detecetd by stabalize
technique, it consumes unnecessary bandwidth when the the rate of joining,
leaving or failure process is low. However, in DKS, the process of updating the
routing information is done when the overlay network is in operation. In other
words, DKS uses the information embedded in the lookup messages to correct
the invalid information. In this way, the bandwidth consumption can be saved
significantly in DKS network.

The routing table in DKS are maintained using the correction-on-use strat-
egy. Each lookup message carries information about the position of the receiver
node including the level and the interval that the receiver can be found there.

22 CHAPTER 2. RELATED RESEARCH

This information helps a receiver node to notify the sender about a better
candidate for the lookup process according to the receiver node’s knowledge.
However, the benefit of utilizing the correction-on-use is dependant on the ratio
of the total traffic (e.g., number of lookup messages) over the dynamism in the
network. That is, if the corresponding ratio is low, the system converges slowly
towards its expected performance (logkN). In order to overcome this problem,
a complementary mechanism, called correction-on-change, has been introduced
in DKS [6]. The novelty of correction-on-change is that the overlay network is
corrected only when there is a change in the network due to join, leave and failure.
Thus, no extra cost is paid when there is no dynamism(change) in the system.
[7, 6].

• Reliability and fault resiliency. A node m is considered failed if it can not
respond within a given time. In this case, the detecting node n tries to replace the
failed node m in its routing table. In order to achieve this goal, a list of nodes is
stored at node n containing the first (f + 1) nodes that succeed node n (f is the
fault-tolerance of the network). There are two scenarios for handling node failure
depending on whether m is in n’s successor list or not. If m is in the successor list
of n, it is replaced by a node in the list that follows m. Otherwise, n replaces failed
node m by a node which is the first successor of m [7]. Furthermore, every node
replicates its information on the nodes in its succesor list to ensure the reliable
lookup even if f nodes in successor list fail simultaneously.

• Applications and implementation. The broadcast and the multicast appli-
cations have been deployed on DKS. The main implementation of DKS is in Java
programming language.

2.2.3 Discussion on Structured P2P Overlay Networks

DHT-based systems used in overlays’ query routing have strong theoretical foundations.
These P2P systems guarantee that if a key exists in the network, it can be found in
certain amount of time. However, a message may be routed to a requesting node’s
immediate neighbor which can be far away from the present node in terms of proxim-
ity metric. This causes a high latency lookup search which affects the network delay.
Moreover, DHT-based systems are deployed in purely decentralized systems in which all
peers take part in sharing their data items. This can result in a bottleneck for peers with
low routing state. It is also important to note that the nodes in the above structured
P2P overlay networks route lookup messages in a greedy manner. That is, each node
forwards a message based on the information that it stores locally. This increases the
routing distance at each routing step.
In Pastry the routing algorithm works towards matching longer prefixes until the respon-
sible node or a nearby node having the desired data item is found. Coping with excessive
dynamism in one of the challenges a DHT-based system may face. Pastry overcomes this
problem by using its locality properties. [16]. By means of this feature, Pastry measures
the Round Trip Time (RTT) delay to a number of peers when populating each routing
table entry. So, the closest nodes, in terms of underlying network, with appropriate

2.2. AN OVERVIEW AND COMPARISON OF STRUCTURED P2P NETWORKS 23

identifiers are selected when building the routing tables. [23].
In Chord, the keys and peers are mapped to an identifier ring. The queries are guaranteed
to reach the destination in a logarithmic number of hops and the keys will be distributed
in the ring uniformly by means of Consistent Hashing in spite of arrivals/departures. The
routing maintenance of Chord in terms of updating the finger tables is preserved because
each node runs the stabilization routine periodically. The stabilization process needs to
only update the predecessor and successor nodes [26]. The communication cost incurred
by the Chord’s stabilization protocol is dramatically reduced in DKS by exploiting the
correction-on-use technique. As was mentioned in section 2.2.2.4, the routing table en-
tries in DKS are corrected by carrying the routing information with respect to a node
to which a lookup message is forwarded. It is important to note that DKS is applicable
for P2P systems when the number of lookups and key/value insertions are much higher
than the total number of nodes in the system.
The main motivation for designing CAN was to keeping the network performance (re-
solving lookup messages) at a constant level. To achieve this goal, each node maintains
a routing table including its immediate neighbors. This key design helps CAN to cope
with high dynamism rate which affects the routing performance.
Table 2.2 summarizes the comparison of structured P2P overlay networks which have
been discussed in section 2.2.2.

24
C

H
A

P
T

E
R

2.
R

E
L
A

T
E

D
R

E
S
E

A
R

C
H

P2P
Overlay
Network

Structured Peer-to-Peer Overlay Network Comparison Criteria

Overlay
Architecture

Lookup
Protocol

Routing
Hops

Routing
State

Maintenance
Policy

Assignment
Policy

Reliability Route
Location

CAN

Multi
dimensional
identifier
space.

Mapping key/-
value at point
P using hash
function.

O(d.N1/d) 2d Stabilization

Key to zone
owner.

Multiple
nodes
responsible
for each
data item.

RT,node
table.

Chord

m-bit circu-
lar identifier
space.

Matching key
and a successor
nodeId.

O(log2b N) log N Stabilization

Key to
successor
node.

Replicate
data on
consecutive
successor
nodes.

Finger
table,
successor
list.

Pastry

128-bit circu-
lar identifier
space.

Matching key
and nodeId
prefixes. O(log2b N) 2b log2b N + 2b

Determinism
+ Stabiliza-
tion

Key to
numerically
closest
node.

Replicate
data on
nodes with
closest
nodeIds to
a data key.

RT,
leaf set,
neighbor-
hood
set.

DKS

Circular
identifier
space like
Chord.

Searching rout-
ing table at
level l for inter-
val I l

i such that
key ∈I l

i .

O(logk N) (k − 1) logk N

Correction on
use +
Correction on
change

Key to
successor
node.

Replicate
data on
dispersed
well chosen
nodes.

RT, suc-
cessor
list.

Table 2.2: Comparison of Different Structured P2P Location Schemes(RT and nodeId represent Routing Table and node Identifier
respectively)

2.3. OVERVIEW OF GRID RECOURCE DISCOVERY MECHANISMS 25

2.3 Overview of Grid Recource Discovery mechanisms

Efficient resource discovery is a crucial problem in the development of computing
Grids[27]. There are methods in computational grids that are used for sharing large
and different types of resources such as processing power, storage capacity, software and
file contents as shared resources or scientific instruments and sensors as dedicated de-
vices. Resource discovery is a basic service in grids. The resources (or contact addresses
of resources) are identified based on a given set of desired attributes. The adaptation of
grid technology to ad-hoc networks has caused to the development of ad-hoc grids which
enable mobile users to share computing resources and information. The remainder of
this section reviews some proposed systems that adopt an unstructured P2P architecture
to grid resource discovery. A comparison of such systems is presented in Table 2.4 at
the end of the section.

2.3.1 Fully Decentralized Resource Discovery in Grid Environments

A resource discovery mechanism in [14] has been proposed which utilizes a peer-to-peer
approach for selecting the resources in a dynamic environment. Four request-forwarding
algorithms have been evaluated where three of them improves search performance by
using past experience (i.e., remembering a neighbor which was most helpful in providing
required resources). In contrast to the typical resource discovery methods which use
name as a search key for using a resource, the proposed resource discovery algorithm
determines its requests by means of the resource attribute and the associated quantity,
for example the name and the capacity of the memory and the CPU amount time.
It is assumed that each participating user can communicate with one or more nodes
known as peers in a local environment. These nodes store and provide access to the
information with respect to the shared resources in the local environment. Users send
their requests to their local peers(nodes). If the requested information can be found
locally, it will be returned to the user by the contacted peer. If not, the peer contacts
another node. The process of request forwarding may be performed by the intermediate
nodes until a match can be found by a node, which will be sent back directly to the
first forwarding node, or the message’s time-to-live (TTL) expires. The framework is
defined by two basic concepts. The first one is the membership protocol which provides
each node with information about other nodes. A node(peer) can join the system by
contacting any other node who sends its membership information to the joining node.
The second concept is the request forwarding algorithm that is used to decide to which
node (among the known nodes) the requests must be forwarded. Because the quantity
of a resource offered by a node may change ovet time, the nodes store the addresses
of the other peers and not their available resource amount. In addition to the contact
addresses, nodes may store information regarding the type of the requests that were
answered previously by a particular node. This information can help a node to forward
next requests to more appropriate nodes.
[14] proposes four request forwarding algorithm which are employed based on the avail-
ability of past information and the reputation of the node(s) for answering previous
requests. The algorithms are as follows:

26 CHAPTER 2. RELATED RESEARCH

1. Random forwarding: the request is forwarded randomly to a node because no
information is initially stored on the grid nodes.

2. (Experience + random) based forwarding: nodes send their requests based on
the information they have already collected about the other nodes who responded
to the past similar requests. If no such an experience is found, the message is
forwarded to a random node.

3. Best-neighbor based forwarding: Each node maintains the number of re-
sponses(regardless of their associated request types) received from each peer. A
node sends its request to a peer who responded the largest number of requests.

4. (Experience + best-neighbor) based forwarding: when there is experience infor-
mation about a node, the request is forwarded to that node, otherwise the best
neighbor is selected.

The performance of the above mentioned request forwarding algorithms have been eval-
uated in terms of response time which is the number of hops a request has to traverse
to find its required resource. In the set of experiments, the fairness of distribution of
resources on nodes has also been taken into account: some nodes offer a large number
of resources while others may offer just one [14]. Based on the degree of fairness, the
experiments were excecuted in balanced and unbalanced resource distributions.
According to [14, 15, 13], (Experience + random) forwarding algorithm performs the
best in terms of response time in both balanced and unbalanced distributions though it
is expensive with respect to storage space. The reason for being expensive is that each
node records the requests responded by other nodes. Best-neighbor forwarding algorithm
works well only in unbalanced distribution due to ununiform distribution of resources
on nodes. Random forwarding algorithm is the least efficient and the least expensive
approach as it does not need storage space on nodes to maintain requests.

2.3.2 Distributed Grid Resource Discovery with Matchmakers

Centralized resource discovery mechanism does not scale well when the number of users
increases in the grid. To overcome this problem, grid resource discovery mechanism
has to be supplemented with peer-to-peer concept. Based on this idea, a distributed
resource discovery method has been suggested in [25] in which the resource information
is distributed among some local servers (matchmakers). Resource buyers/providers send
their resource requests/offers to their local matchmakers. A matchmaker is responsible
for providing available resource information which is stored locally.
According to the proposed framework in [4], the grid is considered as a set of distributed
matchmakers each having the list of neighbors in a neighbor list. The neighbor lists are
updated whenever a node joins/leaves the grid or a response on behalf of a matchmaker
is received by a requesting matchmaker. A matchmaker either finds a match for a
given resource request or forwards the request to a best neighbor matchmaker if no
resource match is found locally. So, the matchmakers are cooperative for finding non
local resource matches [25].
Request forwarding can have important effect on the resource discovery success rate.

2.3. OVERVIEW OF GRID RECOURCE DISCOVERY MECHANISMS 27

As mentioned above, if a resource request can not be satisfied by a matchmaker, it
is forwarded to another matchmaker who has a good reputation to the forwarding
node. If a match(address of the responsive matchmaker) is found for a request, it is
directly sent back to the matchmaker who initiated forwardig the request. Deciding to
which neighbor a request message should be forwarded can be made upon the previous
experience with the neighbor. In order to achieve this goal, each node maintains a
repository called experience-cache which consist of neighbor address, number of matches
found by a neighbor and the average response time taken by a neighbor to respond a
request message. In addition, each matchmaker maintains the information about the
request messages in its request-cache repository. This information include the request
identifier, the matchmaker who forwarded the request, the number of times the request
is sent from the requesting matchmaker and the request message time to live(TTL).
The goal of the requesting forwarding algorithm is to select the best neighbor, a match-
maker which has the highest probability to find match(es) and also has the minimum
response time. The algorithm works as follows. After receiving a request message, if no
experience-cache repository is provided with the node, a random matchmaker is selected
to forward the message. Otherwise, the receiving matchmaker tries to find a neighbor
with maximum number of responded requests and minimum response time. The request
forwarding algorithm consideres the maximum number of responded requests as the
highest priority to select the best matchmaker neighbor.
The proposed distributed grid resource discovery [25] is characterized by its request
forwarding algorithm. Three scenarios may happen when a node receives a message.
First, if the TTL of the message is expired, a discarded message is sent to the requesting
matchmaker. the requesting matchmaker forwards the same message with respect to
the number of neighbors in its neighbor list. If the matchmaker has only one neighbor,
the message is sent to that neighbor again while the TTL is increased. Otherwise, the
message is sent to a different neighbor provided that the number of times this message
has been already forwarded is less than a predefined threshold. In the second scenario,
the matchmaker receives the message which shows that a match has been found for the
request. Thus, the responsive matchmaker is recorded in the matchmaker’s neighbor
list and the match result is sent back to the requesting matchmaker node. The third
scenario happens when the node receives a forwarded request message, meaning that
the previous matchmaker has not succeeded to find a match for that request. Thus, the
receiving matchmaker tries to find a match locally. If the match can not be found, it
decreases the message TTL and forwards the message to its best neighbor [25].

The proposed framework has been evaluated based on whether the matchmakers
use the experience-cache repository for forwarding request messages or not. In case of
using experience-cache, it has been shown that for varying number of matchmakers, the
average TTL as well as the response time for each request is less than the case when
the matchmakers do not use experience-cache. The reason for such an observation is
that the matchmakers learn about their neighbors when no initial history is used for
forwarding the requests. Similarly, the number of found matches, using the proposed
request forwarding algorithm, is more than the case when the request messages are
forwarded randomly [25].

28 CHAPTER 2. RELATED RESEARCH

2.3.3 Hybrid Resource Discovery in Ad Hoc Grids

The emergence of ad-hoc grids as a means of a computing resource sharing community
is due to extension of grid technology to the ad hoc networks. The resource discovery is
one of the challenging issues when deploying the ad hoc grids in resource sharing envi-
ronments. Generally, the performance of a resource discovery mechanism is analyzed in
terms of scalability, response time, bandwidth consumption and self-managing to chang-
ing environment. Considering these criteria, [18] proposes a hybrid(mixed) approach for
resource discovery in ad hoc grids.
The principle idea for the proposed framework is based on the zone partitioning which
has been introduced by the zone routing protocol(ZRP) for ad hoc networks [12, 11]. In
ZRP, the network is divided into routing zones according to distances(in hops) between
the nodes. In this hybrid routing protocol, if the source and destination nodes are in
the same routing zone, routes are immediately available. However, when the source and
destination nodes reside in different zones, a route discovery message is initiated to de-
termine a route to the required destination.
The proposed resource discovery method takes the advantage of peer-to-peer mecha-
nisms to find resources as the maintanance cost of such systems is low and they are
self-organized. In this discovery scheme each node is assigned a zone, known as discov-
ery zone, with a certain radius. The discovery zone consists of all the neighbor nodes
whose distances from the node in the context must not exceed the radius. The radius of
a zone, centered at a node, is defined to be a certain number of hops from that node.
The discovery mechanism in the proposed framework is composed of two discovery meth-
ods with regard to the resource location in the ad hoc grid. If the resources are to be found
within a zone, each grid node multicasts its resource offer messages to the nodes inside
the zone. By means of this mechanism, every node in the zone has a complete information
about all its neighbors within that zone. If the required resources are not found within
the discovery zone, the requesting node sends its message to the nodes whose distances
from the requesting node equals the radius of the discovery zone. These nodes, known
as peripheral nodes, are responsible for getting information from the nodes existing in
the adjacent zones. The distance traveled by a message can be regulated using a param-
eter called Forwarding Distance. This parameter determines how many times a message
must be forwarded to the next adjacent peripheral nodes. Figure 2.9 depicts the message
routing process in ad hoc grid when a request message with ForwardingDistance = 1
and ForwardingDistance = 2 is forwarded to the peripheral nodes of the client’s zone
and the peripheral nodes of the neighboring zone respectively[18, 24].

There are three types of messages in the hybrid resource discovery mechanism. First,
Advertisement messages that a node uses to send its resource offer messages to other
nodes in the local zone. The resource provider controls sending its messages by means
of a parameter called Advertisement Period which specifies the number of times that a
message multicast through the discovery zone. In addition, each node knows how long
the resource information is maintained if no Advertisement message is received from
the respective resource provider. Second, the query request message that is sent by the
client to the peripheral nodes to find the required resource which do not exist within
the local zone. This type of message contains the Forwarding Distance parameter and

2.4. CONCLUSION 29

Figure 2.9: Request message forwarding with peripheral nodes in ad hoc grid[18]

the requested resource requirements such as the name and the quantity of the resource.
Finally, the query response message by which a responsive peripheral node returns the
matches with respect to the requested resource information.
The proposed hybrid approach for resource discovery is scalable in the sense that it
reduces the bandwidth consumption between the nodes due to restricting the Adver-
tisement message multicast to the client’s zone. Furthermore, the query messages are
forwarded by the peripheral nodes rather than using flooding scheme. The query re-
sponse time in hybrid resource discovery method is less than the fully decentralized
systems because each peripheral node has the complete information about all the nodes
within its zone. As each node in the ad hoc grid advertises its resources periodically, no
extra cost is paid for maintaining the resource information [18].

2.4 Conclusion

In this chapter, we discussed the related research on P2P overlay networks. The deploy-
ment of P2P systems depends on the application and the its required performance in
terms of scalability, fault resiliency and the cost for maintaining the system. We also
discussed about the structured P2P networks as good candidate for constructing large
scale and robust Internet applications for resource sharing environments [5, 17]. One
of the main challenges in P2P networks is discovering resources in a dynamic environ-
ment where resource providers and requesters join and leave the network arbitrarily. We
investigated some resource discovery strategies in this chapter as well.

30 CHAPTER 2. RELATED RESEARCH

Resource
discovery
mechanism

Architecture Resource
organization

Query resolution

Multiple
matchmakers

Within each orga-
nization, one node
acts as a match-
maker.

A matchmaker main-
tains resource infor-
mation of all nodes
in the local organiza-
tion.

Request forwarding is used
for routing a query. A for-
warding decision is made
based on the previous ex-
perience with the neighbor
matchmaker.

Hybrid

The network is
divided into dis-
covery zones based
on distances be-
tween nodes. Each
node has its own
discovery zone.

Each node has
complete informa-
tion about all the
neighbors within its
discovery zone.

Queries are resolved by
either: Advertisement
method to discover nodes
within the zone or Query
method to discover nodes
out of the zone.

Fully
decentralized

Flat P2P overlay
network where each
organization has
one or more peers.

Each peer provides
access to one or mul-
tiple resources locally.

Queries are resolved by
four request forwarding al-
gorithms: random walk,
learning, best neighbor,
learning + best neighbor.

Table 2.3: Qualitative comparison of resource discovery systems

Adaptive Overlay Networks 3
Ad Hoc Grids are a type of computing networks where the availability of resources and
tasks changes over the time. Distributing the tasks among the available resources in a
balanced way is a challenging task because all the nodes have to receive equal utilization
from the Grid resources.
In a decentralized environment, the processing loads and the network bandwidth is
completely distributed among the system nodes. In addition, the decision making
process, usually performed by the centralized controller in the client/server model,
is now performed individually for each peer in the ad hoc grid network. Thus, the
communication among the nodes is performed in a Peer To Peer(P2P) approach such
that the system becomes scalable, self organized and fault tolerant. The scalability
avoids single points of failure and bottlenecks. The self-managing property indicates
the capability of the system to be adaptive to dynamic environmental conditions and
the fault tolerance represents the system robustness in case of agents failures. In spite
of system decentralization, we still want to get the benefits of the centralized resource
allocation approach that is easy administration and implementation as well as good
system throughput. As the resource allocator is responsible for finding the matches
for the clients in the ad hoc grid, we use the term matchmaker instead of the resource
allocator throughout the remaining of this thesis project.

In this chapter we investigate how an ad hoc grid is decentralized among the
participating agents in the system. First, we present the algorithm by which the ad hoc
grid is decentralized. Then, we describe how decentralization process is achieved when
having two scenarios in the network. Finally, we discuss about how a system can be
adaptive to the dynamic environment.

3.1 Algorithm Definition

The proposed algorithm for decentralized matchmaking is implemented on the Pastry
underlying overlay system [23]. There are N agents in our experiments each one can
play the role of a consumer, a producer or a matchmaker agent. A node, known as
resource producer can offer a shared resource (disk space, CPU or network bandwidth).
A node which requests for a desired resource to execute its job is called resource
consumer. On the other hand, there are some other nodes in the overlay system that
are responsible for resource allocation(finding the suitable resources for execution of the
jobs). These nodes are known as the resource allocators(matchmakers). It is assumed
that the system has a maximum of M matchmakers each one has an identifier(id) by
which a client node (resource producer or resource consumer) can contact with. The
matchmaking is performed by using the Continuous Double Auction(CDA) mechanism

31

32 CHAPTER 3. ADAPTIVE OVERLAY NETWORKS

which has been proposed in [19]. CDA is a market-based matchmaking approach
which introduces money and prices for coordination between resource consumers and
producers [19]. Each node is granted a limited budget upon joining the ad hoc grid.
The budget is used by a node to buy required resources or to sell its idle resources.
In this project, the price indicates the matchmaker workload and is considered as the
Transaction Cost(TCost). The TCost value represents the number of request/offer
messages to be processed before processing the newly received request/offer message. As
each request/offer message has its own TCost, this value for a matched (request,offer)
pair is the average of their individual TCost values.
The consumer and producer nodes send their resource requests/offers to the match-
maker. The matchmaker finds the matches between producers and consumers by
matching requests and offers which are stored in descending and ascending order
respectively. When a matchmaker receives a request message, it searches all available
resource offers and returns the best match considering request’s constraints such as
requested resource quantity, resource availability, task execution time and the price. In
addition to these constraints, each request/offer message contains a Time To Live(TTL)
which represents the validity period of the message and also the amount of available
budget which increases or decreases according to buying/selling a node’s resource. If
no match is found, the request/offer remains in the matchmaker’s request/offer buffer
until its TTL expires or a match is found. Whenever the above mentioned requirements
are compatible for each (request,offer) pair, a trade is executed immediately and the
confirmations are sent to the trading agents [21, 19].

The system behaves dynamically in such a way that the matchmakers join or
leave the system arbitrarily. The following are two main issues which are investigated
regarding the self-organized dynamic ad hoc grid environment:

• Matchmaker Attributes. A node has to fulfill some criteria (conditions) in
order to be recognized as a matchmaker node in the system.

• Matchmaking Workload. The workload can be considered as a good condition
by which a client can be promoted as a matchmaker when the existing match-
maker(s) are overloaded.

As Algorithm 1 presents, the principle idea for having a self organized system with
dynamic matchmakers is as follows:
Assuming there are at most mmCount matchmakers in the overlay network,
the identifier space is divided into mmCount zones(segments) that are almost
equal in size. Each matchmaker has an identifier(mmID) by which a client
node(producer or consumer) can communicate. The zone size,denoted as zoneSize,
is obtained by dividing the total number of nodes in the system(nodeCount)
by the total number of the matchmakers(mmCount). The zones are defined as
zzoneID = [zoneStartNodeID, zoneEndNodeID] where zoneStartNodeID and
zoneEndNodeID represent the identifiers of the first node and the last node in a
zone with identifier zoneID (0 ≤ zoneID ≤ mmCount − 1) respectively. Each zone
is under responsibility of a matchmaker. A matchmaker node, belonging to zone with

3.1. ALGORITHM DEFINITION 33

identifier zoneID, is defined to be the immediate successor of the last node with identifier
zoneEndNodeID in a zone with identifier zzoneID−1. In other words, a responsible
matchmaker for a zone is always the first node member of the next zone in the overlay
network. zoneInfoArray represents the zone information including zoneStartNodeID,
zoneEndNodeID and mmID of a zone. Each node keeps this information with respect
to every zone in the ad hoc grid environment. It is assumed that a matchmaker is not
under responsibility of any other matchmaker in the system.

In order to segment the overlay system into several zones, the following assump-
tions are considered:

• At any given time instance, the system can have a predefined maximum of
mmCount matchmakers.

• When the nodes want to join the overlay network, they can be either a client node
(producer or consumer) or a matchmaker node. In fact, we determine the role of
each system node before its creation.

• Each joining node(producer, consumer or matchmaker) with identifier nodeID is
aware of a zone it belongs to by knowing zoneStartNodeID and zoneEndNodeID
corresponding to the first node and the last node of the respective appropriate zone.

• In the partitioned system, a consumer node may have its job executed on a given
resource. In this case, that node sends a request message to the nearest active
matchmaker(MM) which is responsible for the zone(s) containing the requesting
node’s identifier but in order to do so the client node needs to know zonezoneID and
mmID of the corresponding zone. Assuming the contacted matchmaker(MM) has
the requested resource, it sends back a confirmation as a reply to the requesting
consumer node.

Figure 3.1 illustrates a segmented overlay network with 64 nodes and 4 match-
makers (nodeCount = 64,mmCount = 4) where there are 16 nodes in each zone
(zoneSize = 16). The matchmaker responsible for a zone is the successor of the last
node in the respective zone. As can be seen in this figure, each zone and its associated
matchmaker has been shown with a different color. In addition, the zones are numbered
in the clock wise direction which are defined as follows according to Algorithm 1 for
zone partitioning:

z0 = [0, 15], z1 = [16, 30], z2 = [32, 47], z3 = [48, 63]

For example, MM2 with matchmakerID = 32, belonging to z2, is responsible for
the client nodes with nodeIDs varying from 16 through 31 that are populated in z1. It
should be noted that MM2 is the first node appearing in z2.

34 CHAPTER 3. ADAPTIVE OVERLAY NETWORKS

Algorithm 1 Ad Hoc Grid Segmentation
1: int zoneSize = nodeCount/mmCount;
2: for i = 1 to N do
3: zoneStartNodeID = i ∗ zoneSize;
4: zoneEndNodeID = ((i + 1) ∗ zoneSize)− 1;
5: int mmID = successor(zoneEndNodeID);
6: if (zoneStartNodeID ≤ nodeID ≤ zoneEndNodeID) then
7: NodenodeID ∈ zonezoneID, zonezoneID = [zoneStartNodeID, zoneEndNodeID]∧

matchmakermmID ∈ zonezoneID+1 /* matchmakermmID is responsible for the
consumer/producer nodes in zonezoneID */

8: end if
/* Each consumer/producer node keeps information about all the zones in the ad
hoc grid */

9: zoneInfoArray [zoneID] = {zoneStartNodeID, zoneEndNodeID,mmID};
10: zoneStartNodeID = zoneEndNodeID + 1;
11: end for

Figure 3.1: An overlay network with N=64 and M=4.

3.2 Overlay network status for connection between client
and matchmaker

Having the partitioned overlay network populated with the clients and the responsible
matchmaker in each zone, the producers and consumers should contact an appropriate
matchmaker in order to send their resource requests and resource offers. However, a client
has to be informed of the matchmaker activity status before sending its request/offer
message to the matchmaker. In the following, we discuss about two network situations

3.2. OVERLAY NETWORK STATUS FOR CONNECTION BETWEEN CLIENT
AND MATCHMAKER 35

Algorithm 2 Finding responsible matchmaker in fully/non-fully populated system
1: ∃(NodenodeID ∈ zonezoneID ∧matchmakermmID ∈ zonezoneID+1),

0 ≤ zoneID ≤ mmCount− 1
boolean mmResponse = NodenodeID.mmActivityStatus(matchmakermmID) /* NodenodeID

sends are you active? message to its own matchmakermmID that is responsible for
zonezoneID. */

2: if (mmResponse == yes) then
3: NodenodeID.sendMessage(matchmakermmID) /* NodenodeID sends its re-

quest/offer messages to matchmakermmID */
4: else
5: zoneID++
6: while (zoneID < mmCount) do
7: int mmID

′
=NodenodeID.find zoneResponsibleMatchmaker(zoneID)/* NodenodeID

finds the nearest matchmakermmID′ */
8: boolean mmResponse = NodenodeID.mmActivityStatus(matchmakermmID′)
9: if (mmResponse == yes) then

10: NodenodeID.sendMessage(matchmakermmID′)
11: else
12: zoneID++
13: end if
14: end while
15: end if

find zoneResponsibleMatchmaker(zoneID)
String zoneInfo=zoneInfoArray(zoneID)
int mmID = zoneInfo[matchmakerID]
return mmID

where a client meets its responsible matchmaker in a segmented overlay network.

3.2.1 Fully populated overlay network

The overlay network is defined to be fully populated when all the matchmakers are
active(alive) and perform resource allocation process for their clients in the respective
zones. In this case a producer/consumer node sends “are you active” message to its own
responsible matchmaker. As the system is fully populated, the matchmaker sends “yes”
reply message to the producer/consumer node indicating that the matchmaker can per-
form matchmaking process. lines 1-3 of Algorithm 2 present the procedure by which a
consumer/producer node searches its responsible matchmaker in a fully populated sys-
tem according to what was mentioned above. NodenodeID and matchmakermmID denote
a consumer/producer node and a matchmaker node with identifiers nodeID and mmID
respectively. mmResponse indicates the reply of the matchmaker about its matchmak-
ing activity status. mmActivityStatus works by finding an active matchmaker. The
consumer/producer node invokes sendMessage to send its request/offer messages after
finding its own responsible matchmaker node.

36 CHAPTER 3. ADAPTIVE OVERLAY NETWORKS

Figure 3.2: Connection between client and matchmaker in a fully populated system.

Figure 3.2 depicts a fully populated system where MM1 notifies a requesting client in z0

of its activity mode. Regarding the network communication overhead, the ideal case for
a producer/consumer node is to send its request/offer message to the matchmaker that
is responsible for the zone containing the identifier of the requesting node.

3.2.2 Non fully populated overlay network

The overlay network is defined to be non fully populated (sparsely populated) when
at least one matchmaker either exists but is not performing matchmaking process or it
does not exist on the overlay network. As the system must be self organized in case
of matchmaker(s) failure, the client nodes which were used to be served by their own
matchmaker, are now managed by the successor of the failed matchmaker.
In the non fully populated system, the use of successor of the end of a zone guaran-
tees that a client eventually meets the responsible matchmaker. lines 4-14 of Algo-
rithm 2 describe the procedure that a consumer/producer node uses to find the near-
est matchmaker when the system is sparsely populated. when NodenodeID executes
find zoneResponsibleMatchmaker, it searches the overlay network for a nearest active
matchmaker to contact with by using zoneID of a zone. This responsible matchmaker
has to be the successor of NodenodeID’s inactive matchmaker in the clockwise direction
on the overlay network.
Figure 3.3 shows the steps in a non fully populated system in which a client node tries
to meet its nearest matchmaker. According to this figure, MM1 is not active and the
clients in z0 and z1 are under responsibility of MM2 (1). As a producer/consumer node
in z0 does not know whether MM1 is active or not, it sends “are you active” message
to the matchmaker(2). After receiving “No” reply message from MM1, the client then

3.3. OVERLAY NETWORK DECENTRALIZATION WITH MULTIPLE MATCH-
MAKERS 37

Figure 3.3: Connection between client and matchmaker in a non-fully populated system.

contacts the next matchmaker and when it finds that MM2 is alive, it initiates sending
the request/offer messages to MM2 (3).

3.3 Overlay network decentralization with multiple match-
makers

In this section, we define a mechanism that dynamically segment and merge back the
overlay network segments by introducing/removing matchmaker(s) based on the work-
load of the existing matchmaker(s). This mechanism enables the overlay network to be
dynamically adaptive from a centralized to completely decentralized form and back to
the completely centralized form. The dynamic adaptation is achieved in such a way that
the total workload in the system is efficiently distributed among the existing matchmak-
ers.
Here, the TCost upper threshold value is used as an indicator for dynamic segmentation
and desegmentation of the overlay network. A matchmaker promotes a node as a match-
maker or demotes itself back to normal node when its average TCost is above/below the
matchmaker’s upper threshold value. In the following, we describe how the resource allo-
cation is decentralized so that the matchmakers can route messages to different segments
of the overlay network.

3.3.1 Matchmaker promotion: segmentation

For segmenting the overlay network, we assume that a few matchmakers are active (per-
forming matchmaking) in the overlay network. Each active matchmaker is supposed to
maintain the information about the matchmaking status of its immediate predecessor and
successor matchmaker nodes. When the workload of a matchmaker is beyond the TCost
upper threshold value, it promotes its predecessor matchmaker node as a new match-
maker. The request/offer messages corresponding to the client nodes, belonging to prede-
cessor matchmaker node, that were used to be processed by the overloaded matchmaker,
are then processed by the promoted matchmaker node. Thus, the new matchmaker
shares the workload of its overloaded counterpart. Algorithm 3 describes the match-

38 CHAPTER 3. ADAPTIVE OVERLAY NETWORKS

Algorithm 3 Matchmaker Promotion in Ad Hoc Grid
1: /* matchmakermmID is overloaded */
2: if (matchmakermmID.TCost ≥ TCostUpperThreshold) then
3: matchmakermmID.MM promotion(mmID-1) /* matchmakermmID promotes

matchmakermmID−1 as a new matchmaker; ad hoc grid is segmented */
4: end if
5: ∀ NodenodeID ∈ zonezoneID′ , ∃ matchmakermmID ∈ zonezoneID+1

int nodeID = matchmakermmID.getMessageSenderID() /*matchmakermmID

determines the sender of a received request/offer message */
6: while (0 ≤ zoneID

′ ≤ zoneID − 1) do
7: matchmakermmID.update matchmaker(mmID-1,nodeID) /*matchmakermmID

informs a client node with identifier nodeID of its new matchmaker with identifier
mmID − 1 */

8: end while

making promotion process in the ad hoc grid where the system is non-fully populated.
When the workload of matchmakermmID(TCost) is larger than the maximum tolera-
ble workload (TCostUpperThreshold), matchmakermmID executes MM promotion to
promote its predecessor matchmaker as a new matchmaker. MM promotion indicates
that the client nodes, belonging to matchmakermmID−1, that were under responsibility
of matchmakermmID are now managed by matchmakermmID−1. Having a segmented
ad hoc grid, matchmakermmID checks the sender node of a received message. If the
associated nodeID belongs to a zone other than the zone for which matchmakermmID

is responsible(zonezoneID), update matchmaker is executed by matchmakermmID to
inform NodenodeID of its new matchmaker. Thus, NodenodeID will send its next re-
quest/offer messages to the predecessor of matchmakermmID (matchmakermmID−1).

Figure 3.4 shows the zone partitioning process in an overlay network when there are
only two active matchmakers (MM3 and MM4). According to this figure, MM3 asks
about the matchmaking status of its predecessor matchmaker(1). Assuming MM2 is
not performing matchmaking, it is promoted by MM3. In this case, the client nodes
in z0 and z1 which were under responsibility of MM3 are then managed by MM2(2).
A consumer/producer node which is not aware of the matchmaking promotion process,
sends its request/offer to the overloaded matchmaker. The message is processed by MM3.
However, MM3 sends “MM2 is your matchmaker” notification message to the requesting
client node so that it sends its next request/offer messages directly to MM2(3).

3.3.2 Matchmaker demotion: desegmentation

Similar to the ad hoc grid segmentation, the TCost threshold value is used to trig-
ger merging back the segments dynamically. Desegmentation process is fulfilled by
removing the underloaded matchmaker(s) whose TCost are below the lower threshold
value. When a matchmaker becomes underloaded, it first demotes itself and then up-
dates the next successor matchmaker about its matchmaking status. In this case, the
request/offer messages corresponding to the client nodes that were used to be processed
by the demoted(underloaded) matchmaker, are then processed by the successor of the

3.4. CONCLUSION 39

Figure 3.4: Ad hoc grid segmentation process when MM3 promotes MM2.

demoted matchmaker. Thus, the underloaded matchmaker forwards the received re-
quest/offer messages to its successor matchmaker node without processing them. The
required steps for matchmaking demotion in a non-fully populated system are presented
in Algorithm 4. When the workload of matchmakermmID(TCost) drops below the mini-
mum workload(TCostLowerThreshold), matchmakermmID executes MM demotion and
demotion update to demote itself as normal node and updates the successor matchmaker
about its activity status respectively. inactiveMode indicates that matchmakermmID

is not performing matchmaking process any more. demotion update denotes that
matchmakermmID does not perform matchmaking and matchmakermmID+1 is now re-
sponsible for the consumer/producer nodes that were used to be under responsibility
of matchmakermmID. Whenever the underloaded matchmaker receives a request/offer
message from NodenodeID, forward message is invoked by matchmakermmID to for-
ward the message to its successor(matchmakermmID+1). Moreover, matchmakermmID

executes update matchmaker in order to inform NodenodeID of its new matchmaker so
that the next request/offer messages are sent directly to matchmakermmID+1.

Figure 3.5 illustrates the ad hoc grid desegmentation process when all the existing
matchmakers are active(performing matchmaking). Assuming MM3 is underloaded, it
informs its successor (MM4) of its matchmaking status. So, the clients nodes in z2

which were under responsibility of MM3 are then managed by MM4. In this case, MM3
reroutes each received resource request/offer to MM4. At the same time, MM3 sends
“MM4 is your matchmaker” message to the respective consumer/producer nodes so that
the next request/offer messages are directly sent to MM4.

3.4 Conclusion

This chapter talked about the adaptive matchmaking approach with multiple match-
makers. We proposed a resource allocation mechanism that can self- organize itself in
the ad hoc grid environment. The decentralization is performed by dynamically seg-
menting/desegmenting the ad hoc grid environment according to the workload of the
matchmaker. The matchmaker overload/underload threshold value is used as a criterion
for promoting/demoting the matchmaker(s) in order to balance the workload of the ex-

40 CHAPTER 3. ADAPTIVE OVERLAY NETWORKS

Algorithm 4 Matchmaker Demotion in Ad Hoc Grid
1: /* matchmakermmID is underloaded */
2: if (matchmakermmID.TCost ≤ TCostLowerThreshold) then
3: boolean inactiveMode=matchmakermmID.MM demotion(mmID) /* matchmakermmID

does not perform matchmaking by demoting itself as normal node, that is
inactiveMode=false */

4: matchmakermmID.demotion update(mmID+1,inactiveMode) /* matchmakermmID

updates the successor matchmaker with identifier mmID + 1 about its changing
activity status; ad hoc grid is desegmented */

5: end if
6: ∀ NodenodeID ∈ zonezoneID′ , ∃ matchmakermmID ∈ zonezoneID+1

int nodeID = matchmakermmID.getMessageSenderID() /* matchmakermmID

determines the sender of a received request/offer message */
7: while (0 ≤ zoneID

′ ≤ zoneID) do
8: matchmakermmID.forward message(mmID+1, nodeID) /* matchmakermmID

forwards a received request/offer message from NodenodeID to
matchmakermmID+1 */

9: matchmakermmID.update matchmaker(mmID+1,nodeID) /* matchmakermmID

informs a client node with identifier nodeID of its new matchmaker with identifier
mmID + 1 */

10: end while

Figure 3.5: Ad hoc grid desegmentation process when MM3 is demoted.

isting matchmakers in the system. The next chapter will discuss about the results of the
experiments conducted in a global testbed environment.

Experiments and Results 4
This chapter discusses the results of the experiments in which we investigated the
performance of decentralized adaptive matchmaking mechanism for balanced network
structure. The experiments were first executed to determine a matchmaker overload
threshold. This threshold was then applied to segment the ad hoc grid into multiple
segments by introducing new matchmakers for the segments. We set up evaluation
criteria to investigate the adaptive matchmaking mechanism for balanced network
condition.
In section 4.1, we discuss the setup of experiment with respect to the utilized testbed
and the database for our implementation. Section 4.2 presents different criteria to
evaluate the proposed solution for resource allocation process in 1 matchmaker system
and 5 matchmakers system. Finally, section 4.3 summarizes the main finding of the
experiments and presents the analysis and conclusion of this chapter.

4.1 Experimental Setup

The experimental platform was made using PlanetLab testbed to conduct our experi-
ments in a distributed environment. PlanetLab is a global research network covering
large geographical area. The PlanetLab has been used by academic institutions and
industrial research labs since 5 years ago. We selected PlanetLab as a testing platform
due to its capability to support running an application on a large number of nodes
[4]. Request/offer messages were generated randomly and within a certain periodic
intervals by the client nodes. The matchmakers, which were set up on machines
within the university local area network, performs matchmaking process as soon
as a request is received. In this case, the request message is stored at a position
in the corresponding buffer with respect to its price value. Then the matchmaker
compares the first request in the consumer buffer against all the offers in the producer
buffer. Similarly, the matchmaker processes the remaining request messages in the
descending order. A request remains in the matchmaker’s consumer buffer until its
TTL(Time To Live) expires or a match is found. When a (request,offer) pair is matched,
the individual messages are stored in consumer/producer matched buffers, otherwise
they are stored in unmatched ones. It should be noted that the expired messages are
removed from consumer/producer buffer before the matchmaker starts matching process.

We run our project in the PlanetLab environment with varying number of nodes
from 133 to 4000 in order to increase or decrease the workload of the match-
maker(s)(multiple Pastry nodes were running on each PlanetLab node). The number of
matchmakers was varied from 1 to 5. As the whole project was implemented in Java,

41

42 CHAPTER 4. EXPERIMENTS AND RESULTS

we had to install Java Virtual Machine(JVM) on any connected remote workstation.
So, we copied a tar archive, containing Java installation files, to the desired nodes
in PlanetLab. After unpacking the archive, we were able to run our project on the
corresponding nodes concurrently. For running our project, FreePastry-2.0 04 and JVM
1.6 were utilized as the underlying platform and the runtime environment respectively.

We setup database for storing and analyzing of all experimental results. The
database was installed and configured on a certain number of matchmakers using
MySQL. MySQL database is an open source relational database management system
(RDBMS) that uses Structured Query Language (SQL) for performing operations such
as inserting, accessing, removing, processing and updating data in a database. Our
database stores the information including IP addresses of the clients, TTL, matchmaker
workload(TCost), number of received request/offer messages and response time in
different tables. These information can be easily retrieved and analyzed by using SQL
query statements.

4.2 Evaluation Criteria

To evaluate decentralized matchmaking performance under balanced network condition,
the following evaluation criteria are defined:

• Matchmaking Efficiency: The matchmaking efficiency is measured in terms
of producer and consumer utilization. Consumer utilization is the percentage
of tasks that are allocated to available resources and in the same way producer
utilization is the percentage of the available resources that are used by allo-
cated tasks. In general, the matchmaking efficiency is determined as (

∑
matched

message/
∑

message) ∗ 100.

• Matchmaker Workload: The matchmaker workload is represented as the Trans-
action Cost (TCost). The Tcost value indicates the number of messages to be
processed by the matchmaker before processing the current received request/offer
message(s). As each request/offer message has its own TCost, the TCost value
for a matched (request,offer) pair is the average of the corresponding TCost val-
ues for the request and offer messages. The TCost value is calculated for each
request/offer message as soon as it is received and inserted in a buffer at its proper
position. In our project, we define lower and upper thresholds for the workload of
the matchmaker (TCost). As the average TCost is calculated by a matchmaker
periodically, the ad hoc grid can be segmented/desegmented whenever the average
TCost value is above/below the matchmaker’s upper/lower thresholds.

• Matchmaker Response Time: The matchmaking response time is calculated
from the time a request/offer message is received by the matchmaker to the time
the matchmaker makes a decision for the massage. The decision is made upon
whether a match is found for the message or its TTL expires. The matchmaking
response time is defined in terms of consumer response time and producer response
time. The consumer/producer response time is the time for a consumer/producer

4.3. EXPERIMENTAL RESULTS ANALYSIS 43

to find an appropriate resource/task. As mentioned above, we have also considered
the response time for the unmatched messages in our experiments.

4.3 Experimental Results Analysis

Experiments were performed to investigate the matchmaker throughput in terms of
matchmaking efficiency, workload(TCost) and response time. During our experiments,
we considered CPU time as the resource in the system. A request/offer is sent to
the matchmaker whenever a consumer/producer needs/has some CPU time. The
experiments were executed in a balanced task-resource condition which means that the
number of consumers and producers were almost the same. That is, at any given time
instance, the resources and tasks have more or less equal increasing/decreasing rate.
The time unit for all the executed experiments is in minutes.
TTL(Time To Live), message frequency and the job execution time are the parameters
that significantly affect the ad hoc grid performance. These parameters are randomly
generated from a predefined range. The TTL of a request/offer message was set to
10000 milliseconds. The message frequency is calculated with respect to a predefined
sleep time. The sleep time determines the time interval after which a message is sent.
The sleep time was set to 10000 milliseconds. so, each client node sends 6 messages
per minute. All the jobs have a execution time period through which they have to
acquire resources. The minimum job execution time was fixed to 500 milliseconds and
the maximum job execution time was fixed to 4000 milliseconds. As the TTL specifies
a message life time, it has to be larger than maximum job execution time.

The first set of experiments was executed to determine the matchmaker overload
threshold for one matchmaker. The overload threshold of a matchmaker represents
its TCost upper threshold value. This threshold was applied to the ad hoc grid
environment with more than one matchmaker in the second set of experiments. The
TCost upper and lower thresholds were set to 20 and 1 respectively. These thresholds
are used to dynamically segment/desegment the ad hoc grid by introducing/removing
the matchmaker(s).

4.3.1 One Matchmaker

Figure 4.1 shows the matchmaker TCost when we increase the workload of the match-
maker gradually. From this figure, we can figure out that the TCost increases at a
higher rate with increasing workload of the matchmaker. The decrease of the match-
maker workload (TCost) at the end of the experiment can be explained by the departure
of the client nodes from the ad hoc grid environment as each node has a certain life time
during the experiment.
Figures 4.2 depicts the matchmaking efficiency with increasing workload of the match-
maker. cUtil and pUtil represent the consumer utlization and producer utilization re-
spectively. Mming represents the overall matchmaking utilization in terms of all matched
(request,offer) pairs. It is observed that at the start of the experiment, the utlization of
both requests and offers is low because the consumer and the producer buffers are not

44 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.1: Matchmaking transaction cost for ad hoc grid with one matchmaker.

Figure 4.2: Matchmaking efficiency for ad hoc grid with one matchmaker.

sufficiently populated and that can not be matched. As the workload increases, more
requests/offers are submitted to the matchmaker which results in a higher utilization
rate.

Figure 4.3 depicts the matchmaker response time for request/offer messages with in-
creasing workload of the matchmaker. Matched indicates the response time for matched
messages whereas All indicates the response time for both matched and unmatched mes-
sages. The response time is high at the start of the experiment. The reason is due to
initial low number of requests and offers in the corresponding matchmaker buffers which
results in longer waiting time for a request/offer to find a match. As the matchmaker
receives more messages, the likelihood of finding a match increases, resulting in a lower
response time. From Figure 4.3, it is obvious that the response time for All messages is
larger than the response time for Matched messages due to larger response time value
with respect to unmatched messages. Regarding Figures 4.2 and 4.3, we can see that
the matchmaking efficiency decreases and the response time increases at a higher rate

4.3. EXPERIMENTAL RESULTS ANALYSIS 45

Figure 4.3: Matchmaking response time for ad hoc grid with one matchmaker.

respectively. In this case, it can be concluded that the matchmaker has reached its TCost
upper threshold with the given message frequency. At this point, the consumer/producer
nodes have to pay a higher price (TCost) in order to get the benefit from the trade.
consumer/producer nodes have to pay With respect to Figure 4.1, it is observed that
the upper threshold is 20 for 145 minutes. The TCost upper threshold indicates that a
single matchmaker can not process all the received request/offer messages. Furthermore,
this upper threshold is used to introduce a new matchmaker to share the workload of
the first matchmaker. The experimental results for more than one matchmaker, using
TCost upper threshold are presented in the next section.

4.3.2 Multiple Adaptive Matchmakers

In this section, the performance of the ad hoc grid environment with multiple match-
makers is investigated. As the second set of experiments are performed with more than
one matchmaker, the average value of the matchmaking TCost, efficiency and response
time are represented . The associated experiments were executed with varying number
of nodes in the ad hoc grid. All these experiments started with one matchmaker. The
workload of the matchmaker(s) was managed in such a way that the matchmakers are
promoted when the workload increases and demoted when the workload decreases. The
workload of the first matchmaker was increased so that the matchmaker workload went
beyond the TCost upper threshold value and a predecessor inactive matchmaker was
promoted as a new matchmaker. The promoted matchmaker serves the request/of-
fer messages of the consumer/producer nodes which were previously served by the
overloaded matchmaker. Whenever the TCost value was below a matchmaker’s lower
threshold, then the underloaded matchmaker demoted itself as a normal node and
updated its succussor matchmaker about its matchmaking status. The request/offer
messages of the consumer/producer nodes which were previously processed by the
underloded matchmaker are then processed by the successor of the demoted matchmaker.

46 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.4: Average transaction cost for ad hoc grid with multiple matchmakers.

Figure 4.4 depicts the TCost variation of multiple adaptive matchmakers. As the
maximum workload of the system with multiple matchmakers is around 3 times the
maximum workload of a single matchmaker (24000 messages per minute for multiple
matchmakers vs 7200 messages per minute for one matchmaker), the TCost upper
threshold value in the former case is reached in less time than the corresponding time in
the latter one. The TCost value increases with increasing matchmaker workload. When
the first matchmaker reaches the TCost upper threshold value, then its predecessor
matchmaker is promoted to take the responsibility of the consumer/producer nodes
which were previously under responsibility of the overloaded matchmaker. Thus, the
ad hoc grid is segmented and the average TCost value decreases below the upper
threshold of one matchmaker by promoting the second matchmaker. Similarly, when
second matchmaker is overloaded then its predecessor matchmaker(third matchmaker)
is promoted in the ad hoc grid and so on. This phenomenon is reversed when a
matchmaker is demoted. Whenever a matchmaker workload decreases below the TCost
lower threshold value, then the underloaded matchmaker is demoted and the ad hoc grid
segments are merged back. Again, the average TCost remains under the TCost upper
threshold for all the existing matchmakers in the ad hoc grid at any given time instance.
As we mentioned above, the TCost upper threshold was set to 20 and the TCost lower
threshold was set to 1. Temporary fluctuations in the TCost refelcts sudden change in
the workload of the matchmaker(s) or in the number of matchmakers.

Figure 4.5 depicts the average response time variation with multiple matchmakers.
Similar to the matchmaking average TCost behavior(Figure 4.4), the response time
remains stable when the number of matchmakers increases in the ad hoc grid. According
to Figure 4.5, the average response time for consumers/producers is around 3 seconds
which is less than the predefined TTL. The temporary variation of the matchmaking
average response time (Figure 4.5) is due to change in workload of matchmakers or in
the number of matchmakers.
Figure 4.6 depicts the request/offer utilization with multiple adaptive matchmakers. As
the nework is balanced, the requests and offers have similar utilization. we can observe

4.3. EXPERIMENTAL RESULTS ANALYSIS 47

Figure 4.5: Average response time for ad hoc grid with multiple matchmakers.

Figure 4.6: Average efficiency for ad hoc grid with multiple matchmakers.

that the matchmaking efficiency in terms of consumers and producers is stable(around
80%) as compared to approximately the same matchmaking efficiency for a single
matchmaker(Figure 4.2).

From the above experiments, we can observe that the matchmaking performance
of the ad hoc grid is stabalized irrespective of the number of processed request/offer
messages by the existing matchmaker(s)in the system. This way, the matchmaking
TCost, utilization and response time remain in the acceptable domain in spite of some
temporary variations. It is also interesting to observe that the average value for TCost,
efficiency and response time for a system with multiple adaptive matchmakers is close
to the corresponding values for a system with one matchmaker.

48 CHAPTER 4. EXPERIMENTS AND RESULTS

4.4 Conclusions

In this chapter, we analyzed the proposed decentralized adaptive matchmaking algo-
rithm using PlanetLab paltform as a distributed computing test-bed for our experi-
ments. Matchmaking TCost, utilization and response time have been investigated for
the balanced network condition. With respect to the dynamic nature of the ad hoc
grid environment, the system achieves self-organization by promoting/demoting match-
maker(s) according to the workload(TCost) of the present matchmaker(s). The TCost
upper and lower threshold values of matchmaker workload were determined in such a way
that the ad hoc grid is dynamically segmented by promoting the inactive matchmaker(s)
as new matchmakers and desegmented by demoting the underloaded matchmaker(s) as
normal nodes. As a result, the matchmaking performance remains stable independent
of varying workload of the ad hoc grid environment.

Conclusion 5
5.1 Summary

In this thesis project, we proposed a dynamic self-managing P2P overly network to dy-
namically segment and desegment the ad hoc grid. The workload of the matchmaker was
used as a basic criterion so that the system can self-manage with respect to changing
environment in terms of matchmakers. The upper and lower threshold values of the
matchmaker workload (TCost) were specified for balanced network condition. These
values were applied to dynamically segment the ad hoc grid by promoting the new
matchmaker(s) and combining the segments together by demoting the matchmaker(s)
as normal nodes in the ad hoc grid. In this adaptive overlay network, each segment has
a matchmaker such that the clients(consumers and producers) can communicate with
each other in a local neighborhood and matchmaking process in different segments is per-
formed concurrently. By means of the proposed decentralized matchmaking approach,
we are still able to get the benefits of centralized matchmaking such as easy adminis-
tration and implementation. The reason is that the segments of the network can be
centrally controlled within themselves via a central matchmaker and the matchmakers
can route messages to different segments of the ad hoc grid in a P2P manner. The
proposed decentralized matchmaking algorithm was implemented on top of Pastry as a
structured P2P overlay network and was tested on PlanetLab as a geographically dis-
tributed testbed. Experimental results indicate that the proposed framework is scalable
because the matchmaking efficiency is preserved irrespective of the number of messages
that are sent and the system adapts according to the changing circumstances of the
network.

5.2 Future Work

In future research we plan to improve our decentralized matchmaking approach as fol-
lows:

• In current implementation, a consumer/producer node is satisfied by any match
result provided by the local matchmaker node regardless of the freshness of the
resource information. We are going to expand the system in such a way that at
any given time instance, the current matchmakers are up to date. To achieve this
goal, the matchmakers should exchange information in an appropriate manner.
For instance, whenever a matchmaker receives an offer message from a resource
producer, it immediately sends that new information to all the other matchmakers.

• In the proposed matchmaking algorithm, a node is nominated to behave as a
matchmaker from a set of predefined nodes as candidate matchmakers. We plan

49

50 CHAPTER 5. CONCLUSION

to relax this assumption such that every node in the ad hoc grid can play the
role of either a resource producer/consumer or a matchmaker. For example, if a
matchmaker is underloaded, it promotes its next immediate normal node as a new
matchmaker to be responsible for the segment that the demoted matchmaker was
responsible for. Moreover, the hardware parameters (such as CPU, memory and
disk) of the nodes will be taken into account in order to determine which node can
fulfill the function of the matchmaker at any given point in time.

• In current implementation, we have tried to decentralize the matchmaking process
in the sense that the current matchmaker(s) in the system share the total work-
load of the system. In other words, the workload of the ad hoc grid is balanced
among the existing matchmaker(s). In future work, we also plan to investigate the
upper and lower values of matchmaker workload threshold (TCost) so that all the
matchmakers share the same workload. This idea results in a pure self-organized
ad hoc grid that can completely adapt itself with respect to changes in the ad hoc
grid environment.

Bibliography

[1] Gnutella2, http://www.gnutella2.com.

[2] Kazza, http://www.kazza.com.

[3] napster, http://www.napster.com.

[4] Planetlab, http://www.planet-lab.org/.

[5] Luc Onana Alima, Ali Ghodsi, and Seif Haridi, A framework for structured peer-to-
peer overlay networks, Global Computing: IST/FET International Workshop, GC
2004 Rovereto, Italy, March 9-12, 2004 Revised Selected Papers, 2005, p. 27.

[6] Luc Onana Alima, Seif Haridi, Ali Ghodsi, Sameh El-Ansary, and Per Brand, Po-
sition paper: Self-properties in distributed k-ary structured overlay networks, Pro-
ceedings of SELF-STAR: International Workshop on Self-* Properties in Complex
Information Systems, May 2004.

[7] L.O. Alimal, S. El-Ansary, P. Brand, and S. Haridi, Dks(n, k, f): a family of
low communication, scalable and fault-tolerant infrastructures for p2p applications,
Cluster Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM
International Symposium on (12-15 May 2003), 344–350.

[8] Miguel Castro, Manuel Costa, and Antony Rowstron, Debunking some myths about
structured and unstructured overlays, NSDI’05: Proceedings of the 2nd conference
on Symposium on Networked Systems Design & Implementation (Berkeley, CA,
USA), 2005, pp. 85–98.

[9] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Rowstron, One
ring to rule them all: service discovery and binding in structured peer-to-peer overlay
networks, EW10: Proceedings of the 10th workshop on ACM SIGOPS European
workshop (New York, NY, USA), ACM, 2002, pp. 140–145.

[10] Ali Ghodsi, Distributed k-ary System: Algorithms for distributed hash tables, PhD
dissertation, KTH—Royal Institute of Technology, Stockholm, Sweden”, oct 2006.

[11] Zygmunt J. Haas, A new routing protocol for the reconfigurable wireless networks,
Universal Personal Communications Record, 1997. Conference Record., 1997 IEEE
6th International Conference on 2 (1997), 562–566.

[12] Zygmunt J. Haas and Marc R. Pearlman, The performance of query control schemes
for the zone routing protocol, IEEE/ACM Trans. Netw. 9 (2001), no. 4, 427–438.

[13] A. Iamnitchi, I. Foster, and D.C. Nurmi, A peer-to-peer approach to resource location
in grid environments, High Performance Distributed Computing, 2002. HPDC-11
2002. Proceedings. 11th IEEE International Symposium on (2002), 419–.

51

52 BIBLIOGRAPHY

[14] Adriana Iamnitchi and Ian Foster, On fully decentralized resource discovery in grid
environments, International Workshop on Grid Computing (enver, Colorado), IEEE,
November 2001.

[15] Adriana Iamnitchi, Ian Foster, and Daniel C. Nurmi, A peer-to-peer approach to re-
source discovery in grid environments, In High Performance Distributed Computing
(Edinbourgh), 2002.

[16] L. Keong, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, A survey and comparison
of peer-to-peer overlay network schemes, Communication Surveys & Tutorials, IEEE
(2005), 72–93.

[17] Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim Pruyne,
Bruno Richard, Sami Rollins, and Zhichen Xu, Peer-to-peer computing.

[18] Rafael Moreno-Vozmediano, Resource discovery in ad-hoc grids, International Con-
ference on Computational Science (4), 2006, pp. 1031–1038.

[19] B. Pourebrahimi, K.L.M. Bertels, G. Kandru, and S. Vassiliadis, Market-based re-
source allocation in grids, proceedings of second IEEE International Conference on
e-Science and Grid Computing, December 2006, p. 80.

[20] B. Pourebrahimi, K.L.M. Bertels, and S. Vassiliadis, Survey of peer-to-peer net-
works, Processings of the 16th Annual Workshop on Circuits, Systems and Signal
Processing, ProRisc 2005, November 2005.

[21] B Pourebrahimi, K.L.M. Bertels, S. Vassiliadis, and L.O. Alima, A dynamic pricing
and bidding strategy for autonomous agents in grids, Sixth International Workshop
on Agents and Peer-to-Peer Computing (AP2PC 2007), May 2007.

[22] S. Ratnasamy, P. Francis, M.Handley, R. Karp, and R. Karp, A scalable content-
addressable network, SIGCOMM 01: Proceedings of the 2001 conference on Ap-
plications, technologies, architectures, and protocols for computer communication,
October 2001, pp. 161–172.

[23] Antony Rowstron and Peter Druschel, Pastry: Scalable, decentralized object location
and routing for large-scale peer-to-peer systems, IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), nov 2001, pp. 329–350.

[24] R.Vozmediano, A hybrid mechanism for resource/service discovery in ad-hoc grids,
(2008).

[25] Mohammad Imran Shaik, S. Mary Saira Bhanu, and N. P. Gopalan, Distributed
grid resource discovery with matchmakers, SKG ’06: Proceedings of the Second
International Conference on Semantics, Knowledge, and Grid (Washington, DC,
USA), IEEE Computer Society, 2006, p. 28.

[26] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan,
Chord: A scalable Peer-To-Peer lookup service for internet applications, Proceedings
of the 2001 ACM SIGCOMM Conference, 2001, pp. 149–160.

BIBLIOGRAPHY 53

[27] P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mordacchini, M. Penna-
nen, K. Popov, V. Vlassov, and S. Haridi, Peer-to-peer resource discovery in grids:
Models and systems, Future Gener. Comput. Syst. 23 (2007), no. 7, 864–878.

[28] Konstantin Welke, An overview of distributed k-ary system, Seminar paper for Peer-
to-Peer Networks, Department of Computer Science, University of Freiburg, March
2007.

[29] B.Y. Zhao, Ling Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D. Kubiatowicz,
Tapestry: a resilient global-scale overlay for service deployment, Selected Areas in
Communications, IEEE Journal on 22 (2004), no. 1, 41–53.

