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2 1. Introduction

1.1. Motivation
Light is a tool for human beings to explore the world. Though the space surrounds us
is three-dimensional, mankind can only record the two-dimensional projection of this
world for a long time, by either drawing pictures or taking photos. That is because
the human eyes or cameras are merely able to sense the intensity of light radiation.
To achieve a real three-dimensional imaging, the whole information of the light wave
(optical field) including both the amplitude and the phase need to be registered. Thus,
sensing the optical field is a very popular topic for scientific research along with a broad
range of applications in engineering. For one example, in the content of diffraction
theory [1], if the coherent optical field at one plane is recorded, the field at any other
planes along the light path can be reconstructed by numerical propagation. Currently,
there is no available physical sensor that can directly detect the phase due to the
extremely high speed of light oscillation. Thus, we must retrieve it indirectly through
specific optics and algorithms. The goal of this dissertation is to explore the techniques
that allow us to capture the optical field and explore their implementations in imaging,
optical testing and alignment etc. In the following chapter, there is a basic introduction
of optical field, and a review of its state-of-the-art sensing techniques. Then, the
chapter closes with a summary of the contributions and an outline of the dissertation.

Optical field
The wave behaviour of the light has been revealed for centuries. In 1678, the Dutch
physicist Christiaan Huygens firstly proposed his wave theory of light in his work Trea-
tise on Light [2]. It was not until 19th century, however, that people began to under-
stand the physical nature of light, that it is an electromagnetic phenomenon. From
then, the behaviour of light can be analysed in the context of electromagnetic theory
based on the famous Maxwell’s equations.

The optical field, referring to the electric field in optics, can be described by the
solutions of Maxwell’s equations, being modelled as a spatial-temporal complex field:

E (r, t) = A (r, t) exp [i (−2πvt + φ (r))] , (1.1)

where E is the electrical field vector at the position r = (x, y , z) in space at a time
t. A is the amplitude. v = c/λ is the temporal frequency of light which is defined by
the light speed c divided by the wavelength λ. The spatially relevant phase term φ (r)

contains two parts: spatially varying phase kr and a constant phase φ0,

φ (r) = −kr − φ0, (1.2)

where k is the wave vector that describes the propagation direction of the wave. The
modulus of k is the wave number k = 2π/λ. Some of the most important properties
of light are included in this model, such as amplitude, phase and wavelength. Basically,
these are the key parameters to understand light.

For most wavelengths in the light spectrum, the temporal frequencies v have an
order of 1014 Hz which is too high for current light sensors to detect. In many cases,
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only the spatial distribution of the wave is interesting for the optical calculations, such
as holography. Therefore, the time component t is ignored. And the optical field can
be simplified as a complex amplitude function:

U (r) = A exp [iφ (r)] . (1.3)

In this dissertation, the optical field we are going to investigate is modelled by 1.3. By
far, the only directly measurable quantity of the light is time averaged intensity, which
is generally calculated by taking the square of the modulus of the optical field:

I = |U (r)|2 = U (r)U∗ (r) , (1.4)

where {·}∗ denotes complex conjugation. Basically, all the methods that recover the
optical field has to start from intensity measurements.

Ray
Wavefront

U(r) = A exp[iφ(r)]

φ2

φ1

∆s

plane z = const

d

Figure 1.1: Geometrical illustration of optical wave, wavefront and ray direction.

Here we describe the wave propagation in geometry. Assuming a point source emits
light rays in a homogeneous medium with a refractive index of n in Figure 1.1, the
light waves propagate with the same initial phase. The surface of equal phase in the
space is named wavefront [3]. The normal vector of wavefront represents the moving
direction of rays which can be used to reconstruct the wavefront surface geometrically.
The distribution of the phase in a plane φ(x, y) is linked to the wavefront function
W (x, y) facing to the plane. In this particular case, the wavefront is a spherical surface.
Considering the marginal wave and chief wave that arrive the plane z = const, there
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is a phase difference between them: ∆φ = φ2 − φ1. This phase difference ∆φ is given
by the distance ∆s between the wavefront surface and the plane z :

∆φ =
2π

λ
∆s. (1.5)

Thus, with the shape of the wavefront being obtained geometrically, we are able to
convert it to the phase of the optical field. If we approximate the local wavefront
between them with a planar surface, then the tilt angle of it can be determined by
α = arctan(∆s/d), where d is the distance between these two waves on the plane.
With surface reconstruction algorithms, the global wavefront can be obtained from all
the wavefront tiles. The distance ∆s is caused by different optical paths and varied
refractive indexes on the path. It carries an abundance of information, such as the
geometric feature of an object, the aberrations of the optics and even the changes of
pressure, temperature and humidity on the light path, which makes it appealing for
researchers.

Another important property between light waves is coherence. It basically describes
how well two waves are correlated with each other which is implied in the phase term
of the complex amplitude. Coherent light waves can interfere with each other when
they are superposed. The phase difference between them will lead to the wave being
strengthened or weaken. This phenomenon is described in the Section 1.2 in detail, and
it is an important principle to reveal the optical field. The coherence of a light is usually
discussed in aspects of temporal coherence and spatial coherence. Temporal coherence
describes how well the frequency synchronization is between the waves emitted from
the same source. It is usually determined by the finite spectral width of the source.
Light with a longer coherence length corresponds to a narrower linewidth. Spatial
coherence is the cross correlation of two separated points of the same wave field. It
describes whether the wave has a fixed and well-defined relative phase or wavefront in
the space. The spatial coherence length is usually related to the size of the extended
light source and the propagation distance. Since most of the experiments are done
with monochromatic sources, temporal coherence properties have minor effect, we
mainly consider the spatial coherence properties in the scope of this dissertation.

1.2. State-of-the-art
There are a great number of techniques that have emerged to challenge the problem
of recovering the complex optical field. Every method tends to have its own specific
optical apparatus, electronics, data sets and software. Technically, they are distinct
to each other. In principle, some of them share the same root. Here we categorize
them into three main groups: interferometric methods, wavefront sampling methods
and computational methods.

Interferometric methods
Interferometric methods utilize the interference phenomenon of two superposed coher-
ent waves to decode the optical field as mentioned previously. Given two monochro-
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matic waves U1 = A1 exp (iφ1) and U2 = A2 exp (iφ2), the intensity of their superpo-
sition can be written as:

I = (U1 + U2) (U1 + U2)∗

= A2
1 + A2

2 + A1A2 [exp (iφ1 − iφ2) + exp (iφ2 − iφ1)]

= I1 + I2 + 2
√
I1I2 cos (φ1 − φ2) ,

(1.6)

where I1 and I2 are the intensity of these two waves respectively.
The phase difference ∆φ = φ1 − φ2 is encoded in the intensity variation. Con-

sidering one planar wave is the reference, the other wave is from the object, the
interference is performed over a number of points on a recording film, then the object
field can be reconstructed in the space by illuminating the interferogram (also called
hologram) with a beam identical to the reference. This technique named "holography"
is firstly invented by Denis Gabor in 1948 [4]. Later, with the help of computer and
digital recording devices, the complex optical field can be quantitatively measured and
numerically reconstructed [5].

According to the arrangement of the angle between the reference beam and sample
beam, the holography methods can be sorted into on-axis (in-line) configuration and
off-axis configuration. In on-axis holography, the optical axis of a reference beam is
identical to the sample beam which can simplify the optical instrumentation. However,
the optical field information is spatially overlapped with unwanted phase conjugated
information, it usually requires iterative algorithms to remove the disturbing zero-order
and twin-image. Off-axis holography employs a tilted reference beam to interfere with
the object beam, which gives a well-defined carrier spatial frequency to separate the
desired image term from the zero-order and twin-image. The disadvantage is it can
not make full use of the bandwidth of the camera, thus captures less fine spatial details
of the sample compared with the on-axis configuration [6–8]. There is another group
of interferometric methods called shearing interferometry that uses a shifted copy of
the object wave as the reference wave. Thus, it usually decodes the gradients of the
phase instead of the phase directly [9, 10].

These interferometric methods are able to measure the phase in an extremely high
precision and resolution. Correspondingly, they demand a high temporal and spatial
coherence of the light and are very sensitive to the perturbations from the environment
such as mechanical vibrations and thermal changes. Also, the need of a reference
increases the complexity of an interferometric system which obstacle the applications
in many portable and space limited situations.

Wavefront sampling methods
There are a number of sensors have been developed to reconstruct the wavefront of
a beam. These wavefront sensors (WFS) usually first measure the feature of the
wavefront (e.g. gradients, curvatures) regionally or globally with specified sampling
elements, and then reconstruct the complete wavefront [11].

One of the most popular wavefront is Hartmann/Shack-Hartmann wavefront sen-
sor. The Hartmann wavefront sensor (HWFS) is consisted of an array of apertures
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mounted a distance from a pixelated sensor. The incident light propagates to the
sensor and forms spots like pattern on it. The displacement of each diffracted spot
is proportional to the average wavefront tilt over the local aperture. Thus, it can
measure the relative gradient change of a wavefront compared to a reference. Then
the gradients are numerically integrated to reconstruct the incident wavefront. That
is to say, each aperture samples the phase information of an optical field in a discrete
manner. The Shack-Hartmann wavefront sensor (SHWFS) is a variation of HWFS,
which is specifically described later in Section 2.3. The aperture array is replaced by a
lenslet array which much increases the photon efficiency [12].

Another variant of HWFS is the multiple-wave lateral shearing interferometry, which
combines the interferometry and the discretizing idea of a wavefront sensor [10]. The
conventional shearing interferometry can only measure the phase gradients in one
direction. The multiple-wave interferometry extends the measurability to more than
one gradient direction by making use of a modified Hartmann mask. In the case of
quadri-wave lateral shearing interferometry [13], the mask is made by a superposition
of a binary amplitude grating (period p) and a π shift phase grating (period 2p). Four
tilted replicas of the local wavefront are created to interfere with each other. The
two-dimensional wavefront gradient can be extracted from the interferogram with a
Fourier deconvolution algorithm, which is similar to the one in Section 2.4.2 of Chapter
2 [14]. This method technically can achieve higher spatial resolution and dynamic range
than SHWFS. However, the requirement for the light coherence is higher due to its
interferometric nature.

In the previous methods, the wavefront is segmented on its surface. However,
there is a group of sensors that their sampling subdivision operation is performed at
the focal plane (Fourier plane). A typical one is pyramid wavefront sensor [15]. It
utilizes a pyramidal-shape prism to split the light on the focal plane, and generate
four sub-images with a relay lens. By processing this four images, it can achieve a
performance the same as a SHWFS with a four pixels per spot centroiding mode. In
other variants, a quatrefoil lens [16] and a liquid crystal display [17] are used as the
Fourier plane splitter. They usually do not need expensive components and can achieve
high spatial resolution. However, the dynamic range of the wavefront slope detection
is limited. Special techniques such as oscillating the pyramid and the input field are
proposed to conquer the problem [15, 18, 19].

Compared to the interferometric methods, wavefront sensors generally do not re-
quire strict coherence of the light and an extra reference beam. Thus, the system
can be very compact and easy to align. Conventionally, the number and diameter of
the aperture/ lenslets, along with the focal length, limit the performance of wavefront
sensor in terms of spatial resolution, dynamic range and the sensitivity [20]. Though
they have gained a great popularity in the applications of optics testing, laser beam
characterization and adaptive optics, not many people consider it as a holographic
imaging device yet. However, with the developing of the manufacturing technology,
there are higher spatial resolution wavefront sensors available. Thus, in this disserta-
tion, we investigate the principle and requirement of such wavefront sensors for the
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imaging and optical testing applications.

Computational methods
A group of methods that relies heavily upon mathematical algorithms to recover the
optical field has arisen. Accordingly, they are with minimum optics involved. In the
system theory, a general imaging system can be mathematically simplified as a linear
space-invariant system [1]:

y = h ∗ x. (1.7)

Here y is the output. It is the convolution ’*’ of an input x with the transfer function
h of the optical system.

The input and output can be real-valued functions (intensity) or complex-valued
functions (optical field). In general, if the illumination of an optical system is spatial
coherent, the light can be described as a spatial distribution of complex-valued field
amplitude. If the illumination is spatial incoherent, then the light can be described as
a spatial distribution of real-valued intensity.

Many optical process such as free-space propagation, lens transform, pupil filtering,
and spatial light modulation can be precisely modelled in transfer functions. We can
slightly change parameters in the optical setup, such as propagation distance, aberra-
tion and aperture shape, to form a series of transfer functions. With the corresponding
multiple outputs being measured, it is possible to compose linear equations to solve
the input field. Or, on the contrary, we can change the parameters of the input field,
such as illumination angle, optical phase, intensity distribution, to identify the optical
systems. Therefore, many computational techniques have been developed to recover
the optical field from this point of view.

Phase retrieval is a class of such techniques that derives from many practical fields
such as astronomical imaging, X-ray crystallography, electron microscopy and radar.
It usually recovers the phase information from the intensity measurements with some
prior information given by assumptions about the object beam and special constraints.
For an instance of these assumptions, the sampled object is often considered to be
finite, of positive intensity and the background is empty in literature [21–24]. There
is a more detailed review of its algorithms in the Section 2.6. Here we take a glimpse
of this approach.

A general scheme of the majority phase retrieval methods is as follows: first ap-
plying an initial guess of the phase function, with the system transfer function being
modelled, then an estimated intensity distribution being produced, and comparing it to
the measured data. The initial guess is adjusted iteratively or with other optimization
algorithms to minimize the error between the estimation and measurement.

One popular iterative phase updating scheme is the Gerchberg-Saxton algorithm,
in which the estimation of the optical field is transformed back and forth between the
object plane and Fourier plane. At each plane, a projecting operation based on the
intensity constraint is performed. The detailed algorithm is described in the Section
2.6.3. Non-iterative scheme has also been developed. A well-received one is based on
the transport-of-intensity equation which is shown in the Section 2.6.1.



1

8 1. Introduction

However, there are some problematic issues that provide an obstacle to the success
of phase retrieval. Besides the problem of finding a local minimum that lies in most
optimization schemes, the phase retrieval problem is also an ill-posed inverse problem
due to the fact that different phase solutions may lead to the same output image. The
ambiguities of a phase estimation φ̂(x, y) come from three sources: the background
constant phase φ̂(x, y) + c , the wrapped phase φ̂(x, y) + 2πN(x, y), and the symmet-
ric term φ̂(−x,−y). To resolve the ambiguity problem in phase retrieval, additional
information is usually required [25]. This extra information is usually measured with
slightly applying some diversities to the system, such as modulating an optical element
and the illumination source [26].

Phase diversity is a popular implementation of this phase retrieval technique, in
which known phase aberrations are added to the light path for extra measurements
[27]. These phase aberrations can be introduced by utilizing phase mask, spatial
light modulator or simply measuring at different planes with a defocus aberration [28].
Techniques that utilizes amplitude diversity has also been developed. For example,
the structured illumination has been used to enhance the resolution of complex field
imaging [29]. In the work of Ref [30], combining a random amplitude mask with a
phase diversity scheme leads to a unique, accurate and fast-convergent reconstruction.

A technique known as pytchography is also considered as an amplitude diversity
approach which is firstly devised in the field of electronic imaging [31]. A spatial
constraint is applied to the illumination so that the sample is scanned with some overlap
area in each step and multiple diffraction patterns are obtained for phase retrieval.
The result from each pattern is fed to the reconstruction of adjacent areas as a better
initial guess. Thus, instead of the point like object, the full-field of an extended object
can be imaged by scanning through the whole sample. The overlapping procedure
can also be done in the Fourier domain which is named Fourier pytchography [32].
This technique enables the microscope to image beyond the cut-off frequency of the
employed objective lens.

Compared to holographic methods and wavefront sensors, computational methods
need no reference beam and tailored optical components. They are able to extend
the capability of imaging systems with robust and relatively inexpensive apparatus.
However, the necessary pre-processing and calibration of the setup are usually very
crucial for the accurate and reliable reconstruction. Furthermore, the post-processing
algorithms for the optical field restoration are computationally intensive in general.
To eliminate the ambiguities, multiple acquisitions are preferred to restore one im-
age. These time-consuming processes hinder the real-time application of this group
of methods.

1.3. The scope and outline of the dissertation
The scope of this dissertation mainly covers the following research contents: (1)
exploring new optical field sensing techniques with the help of newly emerging optical
components; (2) defining the conditions for holographic imaging with conventional
wavefront sensors; (3) extending the imaging and optical testing applications of optical
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field sensing in practical scenarios. Following the same order used to introduce these
works, the dissertation has been structured as follows.

Chapter 1
In this chapter, we introduce the motivation and scope for optical field sensing and
have a brief review of the existing techniques. An outline of the work is included.

Chapter 2
This chapter provides the fundamental theories and frequently referred tools through-
out the dissertation. The sampling criteria for optical field sensing, physical phe-
nomenon of interferometry, and the mathematical modeling of optical elements are
explained in the framework of Fourier optics. The algorithmic techniques for correctly
converting the intensity recordings to optical field measurements, which includes wave-
front gradient extraction, wavefront reconstruction, phase retrieval and phase unwrap-
ping algorithms, are reviewed in details.

Chapter 3
This chapter explores a novel approach to register the complex optical field with a
programmable spatial amplitude modulator. This multiplex based approach contains
two schemes: (1) demodulating the phases from multiple interferograms generated by
sequentially scanning of two-points interferometers, (2) phase retrieval from multiple
speckle patterns generated by binary masks. No external reference beam is required
for this approach. The experimental validation for coherent lensless imaging is carried
out by utilizing a digital micromirror device as the essential amplitude modulator.

This chapter is based on the work in the following publications:
G. Vdovin, H. Gong, O. Soloviev, P. Pozzi, and M. Verhaegen. Lensless coherent
imaging by sampling of the optical field with digital micromirror device. Journal of
Optics, 17(12), 122001 (2015).
H. Gong, P. Pozzi, O. Soloviev, M. Verhaegen, and G. Vdovin. Phase retrieval from
multiple binary masks generated speckle patterns. Proc. SPIE Optical Sensing and
Detection IV (9899), 98992N (2016).

Chapter 4
This chapter investigates the feasibility of a conventional wavefront sensor, specifically
the Shack-Hartman wavefront sensor, for holographic coherent imaging. We clarified
the relationships in respect to the imaging resolution and wavefront detection resolu-
tion in the coherent lensless imaging setting. This concept is experimentally examined
by combining the numerical propagation with the complex amplitude in the far field
directly registered by a high density Shack-Hartmann wavefront sensor.

This chapter is based on the work in the following publications:
H. Gong, O. Soloviev, D. Wilding, P. Pozzi, M. Verhaegen, and G. Vdovin. Holo-
graphic imaging with a Shack-Hartmann wavefront sensor. Optics Express, 24(13),
13729 (2016).
T. E. Agbana, H. Gong, A. S. Amoah, V. Bezzubik, M. Verhaegen, and G. Vdovin.
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Aliasing, coherence, and resolution in a lensless holographic microscope. Optics Let-
ters, 42(12), 2271 (2017).

Chapter 5
In this chapter, we present a quantitative phase imaging technique by measuring the
optical path difference with a Shack-Hartmann wavefront sensor at the image plane.
The illumination condition for the correct quantitative phase imaging is defined for
the microscopic case. Both the transmissive and reflective configurations have been
implemented to validate the predicted performance for optical testing and biological
sample observation.

This chapter is based on the work in the following publications:
H. Gong, T. E. Agbana, P. Pozzi, O. Soloviev, M. Verhaegen, and G. Vdovin. Optical
path difference microscopy with a Shack–Hartmann wavefront sensor. Optics Letters.,
42(11), 2122, (2017).
H. Gong, O. Soloviev, G. Vdovin, and M. Verhaegen. Shack-Hartmann reflective micro
profilometer. 2017 International Conference on Optical Instruments and Technology:
Optical Systems and Modern Optoelectronic Instruments, 68 (2018).

Chapter 6
In this chapter, we develop approaches to miniaturize the illumination path of a light
sheet microscope which allows adaptive control. Two approaches based on slab and
GRIN lens waveguides have been designed and demonstrated respectively. These two
configuration allows the transmission of multiple modes which enable the wavefront
engineering after the waveguides.

This chapter is based on:
The report of the project "Adaptive Imaging Microscopy (AIM)" to Horizon 2020,
ERC-PoC-2016, 737564, (2018).
Patent application: H. Gong, M. Verhaegen, G. Vdovin, P. Pozzi, O. Soloviev, D. Wild-
ing, Light sheet microscopy with a waveguide (voorlopig aanvraagnummer: N2021567).

Chapter 7
This chapter summarizes the results of the dissertation and makes suggestion for the
future research.

References
[1] J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (Roberts and Company

Publishers, 2005) p. 491.

[2] C. Huygens, Treatise on light (tredition, 2012).

[3] M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. Macdonald,
V. Mahajan, and E. Van Stryland, Handbook of Optics, Third Edition Volume
I: Geometrical and Physical Optics, Polarized Light, Components and Instru-
ments(Set), 3rd ed. (McGraw-Hill, Inc., New York, NY, USA, 2010).

http://dx.doi.org/10.1088/1355-5111/8/5/014


References

1

11

[4] D. Gabor, A New Microscopic Principle, Nature 161, 777 (1948).

[5] U. Schnars, C. Falldorf, J. Watson, and W. Jüptner, Digital Holography and
Wavefront Sensing: Principles, Techniques and Applications (Springer, 2015)
pp. 1–226.

[6] K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and
Y. Park, Quantitative Phase Imaging Techniques for the Study of Cell Patho-
physiology: From Principles to Applications, Sensors 13, 4170 (2013).

[7] L. Xu, X. Peng, J. Miao, and a. K. Asundi, Studies of digital microscopic hologra-
phy with applications to microstructure testing. Applied optics 40, 5046 (2001).

[8] M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, Progress in Optics,
Vol. 57 (Elsevier Inc., 2012) pp. 133–217.

[9] D. Malacara, M. Servín, and Z. Malacara, Interferogram Analysis For Optical
Testing, Second Edition (2005) p. 440.

[10] J.-C. Chanteloup, Multiple-wave lateral shearing interferometry for wave-front
sensing. Applied optics 44, 1559 (2005).

[11] J. M.Geary, Introduction to Wavefront Sensors (SPIE Optical Engineering Press,
1995).

[12] B. C. Platt and R. Shack, History and Principles of Shack-Hartmann Wavefront
Sensing, Journal of Refractive Surgery 17, 573 (2001).

[13] P. Bon, G. Maucort, B. Wattellier, and S. Monneret, Quadriwave lateral shearing
interferometry for quantitative phase microscopy of living cells. Optics express 17,
13080 (2009).

[14] S. Velghe, J. Primot, N. Guérineau, R. Haïdar, S. Demoustier, M. Cohen, and
B. Wattellier, Advanced wave-front sensing by quadri-wave lateral shearing inter-
ferometry, , 62920E (2006).

[15] R. Ragazzoni, Pupil plane wavefront sensing with an oscillating prism, Journal of
Modern Optics 43, 289 (1996).

[16] A. B. Parthasarathy, K. K. Chu, T. N. Ford, and J. Mertz, Quantitative phase
imaging using a partitioned detection aperture, Optics Letters 37, 4062 (2012).

[17] I. Iglesias and F. Vargas-Martin, Quantitative phase microscopy of transparent
samples using a liquid crystal display, Journal of Biomedical Optics 18, 026015
(2013).

[18] I. Iglesias, R. Ragazzoni, Y. Julien, and P. Artal, Extended source pyramid wave-
front sensor for the human eye, Optics Express 10, 419 (2002).

http://dx.doi.org/10.1038/161777a0
http://dx.doi.org/ 10.1007/978-3-662-44693-5
http://dx.doi.org/ 10.1007/978-3-662-44693-5
http://dx.doi.org/ 10.3390/s130404170
http://dx.doi.org/ 10.1364/AO.40.005046
http://dx.doi.org/ 10.1016/B978-0-44-459422-8.00003-5
http://dx.doi.org/doi:10.1201/9781420027273.fmatt
http://dx.doi.org/doi:10.1201/9781420027273.fmatt
http://dx.doi.org/10.1364/AO.44.001559
http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/ 10.3928/1081-597X-20010901-13
http://dx.doi.org/10.1364/OE.17.013080
http://dx.doi.org/10.1364/OE.17.013080
http://dx.doi.org/10.1117/12.681533
http://dx.doi.org/ 10.1080/09500349608232742
http://dx.doi.org/ 10.1080/09500349608232742
http://dx.doi.org/10.1364/OL.37.004062
http://dx.doi.org/10.1117/1.JBO.18.2.026015
http://dx.doi.org/10.1117/1.JBO.18.2.026015
http://dx.doi.org/10.1364/OE.10.000419


1

12 References

[19] T. Y. Chew, R. M. Clare, and R. G. Lane, A comparison of the Shack-Hartmann
and pyramid wavefront sensors, Optics Communications 267, 189 (2006).

[20] D. R. Neal, J. Copland, and D. A. Neal, Shack-Hartmann wavefront sensor
precision and accuracy, Advanced Characterization Techniques for Optical, Semi-
conductor, and Data Storage Components 4779, 148 (2002).

[21] J. R. Fienup, Reconstruction of an object from the modulus of its Fourier trans-
form, Optics Letters 3, 27 (1978), arXiv:78 [0146-9592] .

[22] J. R. Fienup, Phase retrieval algorithms: a comparison, Applied Optics 21, 2758
(1982).

[23] R. P. Millane, Phase retrieval in crystallography and optics, Journal of the Optical
Society of America A 7, 394 (1990).

[24] B. Guo, F. Gao, H. Zhao, L. Zhang, J. Li, and Z. Zhou, Phase retrieval for
non-ideal in-line phase contrast x-ray imaging, 10074, 1 (2017).

[25] T. Bendory, R. Beinert, and Y. C. Eldar, Fourier phase retrieval: Uniqueness
and algorithms, in Compressed Sensing and its Applications (Springer, 2017) pp.
55–91.

[26] A. Fannjiang and W. Liao, Phase retrieval with random phase illumination, Journal
of the Optical Society of America A 29, 1847 (2012), arXiv:1206.1001 .

[27] R. A. Gonsalves, Phase retrieval and diversity in adaptive optics, Optical Engi-
neering 21, 829 (1982).

[28] G. Pedrini, A. Faridian, P. Gao, D. Naik, A. Singh, W. Osten, and M. Takeda,
Phase retrieval methods for optical imaging and metrology, in 2014 13th Work-
shop on Information Optics (WIO) (IEEE, 2014) pp. 1–3.

[29] S. Chowdhury and J. Izatt, Structured illumination quantitative phase microscopy
for enhanced resolution amplitude and phase imaging, Biomedical Optics Express
4, 1795 (2013).

[30] A. Anand, G. Pedrini, W. Osten, and P. Almoro, Wavefront sensing with random
amplitude mask and phase retrieval. Optics letters 32, 1584 (2007).

[31] W. Hoppe, Trace structure analysis, ptychography, phase tomography, Ultrami-
croscopy 10, 187 (1982).

[32] G. Zheng, Fourier ptychographic imaging: a MATLAB tutorial (Morgan & Clay-
pool Publishers, 2016).

http://dx.doi.org/ 10.1016/j.optcom.2006.07.011
http://dx.doi.org/10.1117/12.450850
http://dx.doi.org/10.1117/12.450850
http://dx.doi.org/ 10.1364/OL.3.000027
http://arxiv.org/abs/78
http://dx.doi.org/10.1364/AO.21.002758
http://dx.doi.org/10.1364/AO.21.002758
http://dx.doi.org/10.1364/JOSAA.7.000394
http://dx.doi.org/10.1364/JOSAA.7.000394
http://dx.doi.org/10.1117/12.2250525
http://dx.doi.org/10.1364/JOSAA.29.001847
http://dx.doi.org/10.1364/JOSAA.29.001847
http://arxiv.org/abs/1206.1001
http://dx.doi.org/ 10.1117/12.7972989
http://dx.doi.org/ 10.1117/12.7972989
http://dx.doi.org/10.1109/WIO.2014.6933285
http://dx.doi.org/10.1109/WIO.2014.6933285
http://dx.doi.org/10.1364/BOE.4.001795
http://dx.doi.org/10.1364/BOE.4.001795
http://dx.doi.org/10.1364/OL.32.001584


2
Fundamentals of optical field

sensing

In this chapter, we introduce the fundamental principles and algorithms that form the basis of
this dissertation. The sampling theorem of the optical field, the theory of interferometry and
the detail principle of a Shack-Hartmann wavefront sensor are described. We also reviewed
the algorithms for gradient demodulation, wavefront reconstruction, phase retrieval and phase
unwrapping which are frequently referred to in the following chapters.
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The techniques of sensing the optical field are complex combinations of optics and
algorithms. To have a good understanding of the existing and proposed approaches,
the readers not only need to know how optics work so that we can model the optics
system and obtain the raw measurements correctly, but also to master the numerical
techniques such as wave propagation, signal processing, optimization etc. for retrieving
the useful information. In the following chapters, our proposed methods are built on
the interferometric principle, phase retrieval (Chapter 3), and the Shack-Hartmann
wavefront sensor (Chapter 4, 5 and 6). Therefore, we have a preliminary introduction
of all the fundamentals in this chapter.

2.1. Sampling of the coherent optical field
Basically, most of the signals in the real world , also named analogue signals, are
continuous. When they are processed by any digital sensors, they will be discretely
recorded. This process, no matter in space, time or any other dimension, is called
sampling. A proper sampling process should allow the analogue signal be reconstructed
exactly without any key information being lost. Thus, the digitization usually follows
some sampling criteria in practice.

In the digital signal processing applications, the most well-known sampling theorem
is the Shannon-Whittaker sampling theorem. It states that a band limited signal with a
maximum spectral component fmax can be reconstructed without aliasing by a sampling
rate fs > 2fmax . This condition is also called Nyquist sampling criterion.

However, for many optical systems, such as holography applications, the informa-
tion need to be measured are usually not at the plane that being detected. Thus,
the Nyquist sampling criterion can not directly apply to these situations as shown by
many researchers [1, 2]. Here some generalized principles for optical field sampling is
introduced to guide the system implementation.

Figure 2.1 illustrates the general scheme of the sampling and reconstruction in
an optical system. Given an initial optical field U0(x, y), it will be transformed by the
optical system composed of various optics. The optical operations of the field, such as
propagation, diffraction and filtering can be summarized by a transfer function h(x, y),
giving the field after the optical system Uz(x, y) = U0(x, y) ∗ h(x, y).

Optical system

Sampling

U0(x, y) Numerical 
reconstruction

Uz(x, y)

(x−nΔ, y−nΔ)
n
δ∑

h(x, y) h-1(x, y)

Uz(x, y)
s

U0(x, y)
s

Figure 2.1: A general scheme of the sampling and reconstruction in an optical system.

Generally, we can only detect the intensity instead of the complex amplitude of the
optical field due to the temporal resolution limitation of the opto-electronic sensors.
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However, the complex information can be encoded in the intensity pattern through
many methods, such as holography and various wavefront sensors. Here we assume
the complex amplitude has been decoded and sampled in a discrete form Usz (x, y).
Then the original optical field can be reconstructed numerically by inverse transforming
the sampled field: Us0(x, y) = Usz (x, y) ∗ h−1(x, y). In the following, we analysis the
problem in one-dimensional for the simplicity of notation. The conclusion for the
two-dimensional situation is straightforward.

Considering a coherent case the in free space, the original optical field U(x, 0) (the
second argument denotes the distance to the original point, here is z = 0) propagates
to a distance z . The final optical field can be approximated by the Fresnel diffraction
according to the scalar wave diffraction theory: U(x, z) = U(x, 0) ∗ h(x, z). Here
h(x, z) is the convolution kernel of the Fresnel diffraction: e i

k
2z
x2

.
Thus, we have the optical field at the sensor plane:

U(x, z) =
exp(ikz)

iλz

∞∫
−∞

U(fx , 0) exp

[
ik

2z
(x − fx)2

]
dfx . (2.1)

Assuming the optical field is recorded by a sensor with a pixel size of ∆, the sampled
version of the diffraction filed can be expressed as:

Us(x, z) = U(x, z)

∞∑
n=−∞

δ (x − n∆). (2.2)

Reconstructing the original field can be done by numerically convolving the diffrac-
tion field with an inverse Fresnel kernel h−1(x, z), which is equivalent to reversing the
propagation direction by using h(x,−z). Back propagating the sampled diffraction
field in the Fourier domain, we have:

Ũs (fx , 0) = F{Us(x, z)}h̃ (fx ,−z)

= F

{
U(x, z)

∑
n

δ(x − n∆)

}
h̃ (fx ,−z)

= F

{
F−1

{
F{U(x, 0)}h̃ (fx , z)

}∑
n

δ(x − n∆)

}
h̃ (fx ,−z)

= F

{
U(x, 0) ∗ h(x, z)

∑
n

δ(x − n∆)

}
h̃ (fx ,−z)

=
∑
m

Ũ(fx −
m

∆
, 0)h̃

(
fx −

m

∆
, z
)
h̃ (fx ,−z).

(2.3)

A tilde sign ’̃ ’ is used to notate the Fourier transform of a function in here. The
Fourier transform of the transfer function h(x, z) is:

h̃ (fx , z) = exp(ikz) exp
(
−iπλzfx 2

)
. (2.4)
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Thus, the multiplication of the two transfer functions in equation 2.3 can be ex-
pressed as:

h̃
(
fx −

m

∆
, z
)
h̃ (fx ,−z) = exp(ikz) exp

[
−iπλz

(
fx −

m

∆

)2
]

exp(−ikz) exp
(
iπλzfx

2
)

= exp

[
iπλz

(
2
m

∆
fx −

m2

∆2

)]
= exp

(
−iπλz

m2

∆2

)
exp

(
i2πλz

m

∆
fx

)
.

(2.5)

The sampled original optical field is reconstructed by substituting equation 2.5 into
equation 2.3 and then taking an inverse Fourier transform:

Us (x, 0) = F−1

{∑
m

Ũ
(
fx −

m

∆
, 0
)
h̃
(
fx −

m

∆
, z
)
h̃ (fx ,−z)

}

= F−1

{∑
m

Ũ
(
fx −

m

∆
, 0
)

exp

(
−iπλz

m2

∆2

)
exp

(
i2πλz

m

∆
fx

)}

= exp

(
−iπλz

m2

∆2

)
F−1

{∑
m

Ũ
(
fx −

m

∆
, 0
)

exp
(
i2πλz

m

∆
fx

)}
.

(2.6)

Here we refer to the shift property of the Fourier transform:

F{u(x) exp(i2πax)} = ũ(fx − a). (2.7)

We finally have the back propagation result:

Us (x, 0) = exp

(
−iπλz

m2

∆2

)∑
m

U

(
x −m

λz

∆
, 0

)
exp

(
i2π

m

∆
x
)
. (2.8)

In the result above, the constant phase term exp
(
i2πm∆ x

)
indicates the signal

is sampled at a rate fs = 1/∆. It means, in the Fourier domain, the spectrum is a
sequence of the replica of the signal Fourier transform with a period of fs . In accordance
with the Shannon sampling theorem, the adjacent replica should not overlap to avoid
aliasing. However, the difference is that the numerical reconstruction also leads to an
infinite replica of U(x, 0) in the space domain. The replica is separated by an interval
of λz/∆. Thus, we need to avoid the overlap in the space domain as well.

To recover the original field U(x, 0) from its diffraction field samples without loss
and aliasing, we need to consider the cases in both the Fourier domain and space
domain.
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2.1.1. Band limited case
If the original field U0(x) has a limited bandwidth B, which means

Ũ(fx , 0) = 0, if fx /∈ B. (2.9)

The maximum frequency of the signal is fm = B/2.
Since the Fresnel transfer function is not band limited, the diffraction field shares

the same Fourier spectrum bandwidth with the original field. Similar to the Shannon
sampling theorem, the field can be fully recovered if the sampling frequency is higher
than twice the signal maximum frequency: fs > 2fm.

The reconstruction can be carried out by applying a low-pass filter g̃(fx) with a
cut-off frequency fc : fm < fc < fs− fm to filter out the replica in the Fourier spectrum
of sampled back propagation:

Us (x, 0) = F−1
{
F{Us(x, z)}g̃(fx)h̃ (fx ,−z)

}
, (2.10)

where

g̃(fx) =

{
1 if |fx | 6 fc ,
0 else.

(2.11)

Here we shall explain it with a simulated example as follows. Giving a band limited
signal U(x, 0) = sin(2πfax − π/2) + 1, where the fa = 1000 m−1, which is shown
in Figure 2.2 (a). U(x, 0) is propagated in free space to a distance z = 8 m by the
Fresnel approximation in equation 2.1. The diffraction field is presented in Figure 2.2
(b). The red circles indicate the sampling point of the signal. The space is defined by
an array of N = 2048, each pixel has a size of δx = 20 µm. Thus, the size of the area
is A = Nδx , and x ∈ [−A/2, A/2]. The wavelength is 500 nm.

The following figures show the reconstructions from the discrete diffraction field
with different sampling rates. Figure 2.2 (c) is sampled by a frequency fs = 1.5fa,
which does not meet the Nyquist criterion. Aliasing appears from the reconstruction.
The signal is fully recovered by using a sampling rate fs = 2.5fa in Figure 2.2 (d).

2.1.2. Space limited case
If U0(x) is space limited, which is expressed as

U(x, 0) = 0 if fx /∈ R. (2.12)

From equation 2.8 we know if the size of original field satisfy L ≤ λz/∆, then the
original field can be reconstructed without overlap. We just have to filter the result
of the back propagation with the bound of space to get the original field. Thus, the
reconstruction procedure can be carried out by applying a filter G(x) in the space
domain:

Us (x, 0) = G(x) exp

(
−iπλz

m2

∆2

)∑
m

U

(
x −m

∆

λz
, 0

)
exp

(
i2π

m

∆
x
)
, (2.13)
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Sampling of the diffraction intensity

Original signal

(a)

(b)

(c)

(d)

Aliasing reconstruction: fs=1.5fa

Recovered reconstruction: fs=2.5fa

Figure 2.2: (a) shows a signal with a spatial frequency of fa. It is propagated to a distance z = 8 m

and sampled by different sampling rates as shown in (b). (c) and (d) show the reconstruction from
the samples in the rates 1.5fa and 2fa respectively.
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where

G(x) =

{
1 if x ∈ R,
0 else.

(2.14)

It is very interesting that this condition will sometimes break the Nyquist criterion
which allows to sample the diffraction intensity with a lower frequency. They are two
independent conditions.

To demonstrate it, here we use the same setting in the previous Section2.1.2.
The signal is defined to have a limited size L = 2 mm, as shown in Figure 2.3 (a).
The L < λzfs = 5 mm. In Figure 2.3 (b), the diffraction intensity is sampled at a
frequency fs = 1.5fa with which the original signal can not be properly reconstructed
in the previous case. However, the U0 is fully recovered as shown in Figure 2.3 (c).
We just have to filter out the original signal with the boundary x ∈ [−L/2, L/2].

(a)

(b)

(c)

Original signal

Sampling of the diffraction intensity

Recovered reconstruction: fs=1.5fa

Figure 2.3: (a) shows a space limited signal with a spatial frequency fa. (b) shows the diffraction
intensity of the signal and its sampling points in the rate 1.5fa. (c) shows the signal reconstructed
from the samples.
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When the optical signals are processed digitally, the choice of the sampling density
needs to be investigated according to the geometry of the optical system. The two
cases above show the aspects of consideration in the sampling constraints of the co-
herent optical field. In the first case, continuous band-limited signals can be recovered
from the samples if they meet the Nyquist criterion. In the second case, the convo-
lution kernel of the optical system, specifically the Fresnel transform for free space
propagation, allows the fully reconstruction of a space-limited object from its diffrac-
tion intensity even when the field is severely under-sampled according to the Nyquist
criteria. In practice, the space limited case corresponds to the source or object with
limited size which are typical applications of optical field reconstruction such as the
content of diffraction imaging and in-line holography. By knowing the minimum re-
quirement of sampling rate without introducing any aliasing or other related artefact,
we can greatly improve the efficiency of signal acquisition and reduce the burden of
computation for signal processing or simulation. In the book of [3], Jason D. Schmidt
provides details of a general guideline for choosing parameters for optics simulation in
response to the sampling requirements.

2.2. Young’s interferometry
In 1801, Thomas Young’s famous double-slit interference experiment demonstrated
the wave characteristic of light. As one of the most fundamental configurations of
interferometry, it is widely used in spatial coherence test, wavelength measurement
and many other applications. Usually, the interference phenomenon is described by
geometrical optics. It can also be formulated by the theory of diffraction.

For simplicity, we first consider the propagation in (x, z) plane as depicted in Fig-
ure 2.4. A monochromatic and spatial coherent light beam illuminates an opaque
screen with two pinholes x1 and x2. The separation between them is d = x1− x2. The
diffracted light propagates a distance L to an observation screen. The complex field
in between can be modelled as the overlap of two sphere waves emitted from these
two point sources. We assume that these point sources have the same amplitude
but with different phases: U(x1, 0) = ae iφ1 and U(x2, 0) = ae iφ2 . Since L is much
larger than x ′, we can use the paraxial approximation. The complex field at a distance
z expressed as U(x, z) is the convolution of the initial field U(x, 0) and the Fresnel
diffraction spatial impulse response h(x, z) which is:

h(x, z) =
1

iλz
exp(ikz) exp

(
ik

2z
x2

)
, (2.15)

where λ is the wavelength of the monochromatic light, k is the wave number.
The field at a position (x ′, z) is then calculated by the superposition of these two
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Figure 2.4: Young’s double-slit interference experiment.

waves:

U (x ′, z) = [U (x1, 0) + U (x2, 0)] ∗ h (x ′, z)

=
a

iλz
exp (ikz)

{
exp (iφ1) exp

[
ik

2z
(x ′ − x1)

2

]
+ exp (iφ2) exp

[
ik

2z
(x ′ − x2)

2

]}
=

a

iλz
exp (ikz) exp (iφ1)

{
exp

[
ik

2z

(
x ′ +

d

2

)2
]

+ exp (i∆φ) exp

[
ik

2z

(
x ′ −

d

2

)2
]}

=
a

iλz
exp [i (kz + φ1)] exp

[
ik

2z

(
x ′2 +

d2

4

)
+
i∆φ

2

]
×
{

exp

[
i

(
k

2z
dx ′ −

∆φ

2

)]
+ exp

[
−i
(
k

2z
dx ′ −

∆φ

2

)]}
=

2a

iλz
exp [i (kz + φ1)] exp

[
ik

2z

(
x ′2 +

d2

4

)
+
i∆φ

2

]
cos

(
kd

2z
x ′ −

∆φ

2

)
,

(2.16)

where ∆φ = φ1 − φ2 is the phase difference between these two point sources.
The intensity distribution on the observation screen is the square of modulus of

the complex field:

I (x ′, L) = |U (x ′, L)|2 =

(
2a

λL

)2

cos2

(
kd

2z
x ′ −

∆φ

2

)
= 2
( a

λL

)2
[

1 + cos

(
kd

L
x ′ − ∆φ

)]
.

(2.17)

Thus, the observed pattern is a sinusoidal fringe with a period of P = λL/d . The
phase difference is also encoded by shifting the fringe pattern. We can demodulate
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the interferogram to retrieve ∆φ. We Fourier transform I (x, L):

F [I (x, L)] = 2
( a

λL

)2

F
{

1 + cos

(
kd

L
x ′ − ∆φ

)}
=
( a

λL

)2

×{
2δ (fx) + F

[
exp

(
iπ

2d

λL
x

)
exp (−i∆φ) + exp

(
−iπ

2d

λL
x

)
exp (i∆φ)

]}
=
( a

λL

)2
[

2δ (fx) + δ

(
fx −

d

λL

)
exp (−i∆φ) + δ

(
fx +

d

λL

)
exp (i∆φ)

]
.

(2.18)

From equation 2.18, we can see that the phase difference is encodes in the phase
of the side-lobes.

An example of two dimensional double-slit interference with phase differences be-
tween two sources is simulated in MATLAB by numerically propagation. Figure 2.5 is
the pattern of the double slit. The bright spots represent these two pinholes. They are
two horizontally arranged 5 µm square pixels and the distance in between is 50 µm.

Figure 2.5: A sketch of two pinholes. The pinholes are simulated by two 5 µm by 5 µm square pixels.
The distance between them is 50um. These two pixels share the same constant amplitude. The rest
pixels are set to zeros.

The observation plane is 30 mm away from the pinholes. The wavelength we used
in the simulation is 500 nm. Figure 2.6 shows two resulted interferograms in an area of
1.9 mm×1.9 mm on this plane. Figure 2.6 (a) is the interference of two point sources
that have no phase difference. We can see that the sinusoidal intensity distribution is
coincident with the analytical results in equation 2.17.

To investigate the effect of the phase difference between two point sources on
the interference pattern. We assigned the initial phases 0 and π/3 to this two pixels
respectively. Figure 2.6 (b) is resulting interferogram. Comparing the cross section of
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these two interferograms in Figure 2.7, we can observe a shift of the fringes. Fourier
transform the interferogram, we obtained the Fourier spectrum and its phase map in
Figure 2.8. The phases of the two side lobes are ±0.98 rad , which is close to π/3

with discretization error in numerical calculations.

(a) (b)

Figure 2.6: Interference patterns of the two pinholes. The physical size is 1.9 mm × 1.9 mm. (a)
Two point sources with no phase difference. (b) Two point sources with a phase difference of π/3.

Figure 2.7: The intensity distributions in the centre of the two interferograms.

This simple demonstration shows a solution, both in optical geometry and signal
processing, to measure the phase difference between two coherent points in space.
The works in Chapter 3 are mainly based on this principle.
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0.98 rad

-0.98 rad

Figure 2.8: Fourier analysis of the interferograms. Left is the Fourier spectrum of the interferogram
in Figure 2.6. Right is the phase map of the Fourier transform.

2.3. Shack-Hartmann wavefront sensor
The Shack-Hartmann wavefront sensor (SHWFS) is widely used in the field of adaptive
optics and optical testing. It is composed of a lenslet array and an image sensor (CCD/
CMOS, PSD array etc.). Generally, all the lenslets are manufactured to have the same
focal length. The image sensor is arranged in the focal plane of the lenslet array. This
sensor originates from the work of Roland Shack in the beginning of the 20th century,
and Ben Platt in 1971 [4].

An early form of this kind of sensors, named the Hartmann sensor, uses an array
of pinhole before the image sensor. Modified from this Hartmann testing mask by
adding lenslets, the SHWFS is more photon efficient, which makes it more suitable
for low-light applications. Although, in the early stage, this wavefront sensor suffered
from the limited lenslet numbers, the resolution has increased significantly with the
development of microlens array fabrication technology.

In Figure 2.9, a basic form of SHWFS is shown. It contains a lenslet array, and a
camera sensor is placed at its focal plane. Here we provide the numerical model of a
SHWFS which is helpful for the later discussions of how to process the data from the
sensor.

The lenslet array can be described as a phase grating t(x, y):

t(x, y) =

{
exp

[
−
ik

2F

(
x2 + y2

)]
P (x, y)

}
∗ combp,p(x, y), (2.19)

where F is the focal length of each lenslet. p is the pitch of the lenslet. combp,p(x, y)

is a two dimensional comb function with p as its period. The thickness of the lenslet
array is ignored due to the uniform refractive index of the substrate layer and the
relatively thin sagitta layer. P (x, y) is the pupil function of a single lenslet.

To simplify the analysis, we assume there is no cross talk between neighbour lenslets
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Figure 2.9: Schematic of a general Shack-Hartmann wavefront sensor.

as strictly defined in Ref. [5]. The local optical field before the lenslet has a linear
wavefront and a uniform intensity:

Um,n0 (x, y) = A exp
[
ik
(
sm,n
x
x + sm,ny y

)]
, (2.20)

where A is the constant amplitude. Integers m and n indicate the point location of
the lenslet. sm,n

x
, sm,n

y
are the local gradients of the wavefront before the lenslet in two

orthogonal directions:

sm,nx =
∂Wm,n(x, y)

∂x
, (2.21)

sm,ny =
∂Wm,n(x, y)

∂y
. (2.22)

The local optical field at the focal plane of the lenslet is approximated after a
Fresnel propagation:

Um,nF (x ′, y ′) =
1

iλF
exp

[
ik

2F

(
x ′2 + y ′2

)] ∫∫
A exp

[
ik
(
sm,n
x
x + sm,ny y

)]
×

exp

[
−
ik

2F

(
x2 + y2

)]
P (x, y) exp

[
ik

2F

(
x2 + y2

)]
×

exp

[
−i

2π

λF
(x ′x + y ′y)

]
dxdy

=
A

iλF
exp

[
ik

2F

(
x ′2 + y ′2

)]
P̃

(
x ′ − sm,n

x
F

λF
,
y ′ − sm,n

y
F

λF

)
,

(2.23)

where x ′ and y ′ represent the coordinates in the focal plane.
From the result of equation 2.23, we can tell that the local gradients of the wave-
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front will shift the focal spot by sm,n
x
F and sm,n

y
F on the image sensor. Thus, the

relationship between the local gradient of the (m, n) lenslet and its measured spot
position shift (∆xm,n,∆ym,n) can be simply described as:

∂Wm,n

∂x
=

∆xm,n

F
,
∂Wm,n

∂y
=

∆ym,n

F
. (2.24)

With an incident plane wave, the light within the aperture of a lenslet is focused in
the centre of the sub-region (as the red spot shown in the Figure 2.9). Then a spots
array pattern (SH pattern) will be recorded by the camera. When the wavefront of
incident light is distorted, these focal spots will be shifted from their centres.

If there is no cross talk, the SH pattern can be expressed as:

UF (x ′, y ′) =
∑
m

∑
n

Um,nF (x ′ − np, y ′ −mp). (2.25)

Usually, the gradients of the wavefront are retrieved by comparing the SH pattern
with a previously calibrated reference.

2.4. Wavefront slopes
Wavefront slope or the gradient of wavefront is essential for wavefront sensing. Many
kinds of wavefront sensors, like the Hartmann sensor, Shack-Hartmann sensor, shearing
interferometry sensors [6, 7], measure the wavefront slope information. Then the
wavefront is reconstructed from the measurements indirectly.

Classically, the gradients are extracted from Shack-Hartmann (SH) pattern by using
centroid method [8]. When the number of lenslets is small, direct calculation of the
centroids within each sub-aperture is efficient enough. However, in the high resolution
case, this process is cumbersome. Since the SH pattern is periodic, we can retrieve the
spot shifts by Fourier processing which is more efficient. This method is introduced
and extensively studied by E.N. Ribak [9, 10]. As frequently referenced tools, the
centroid method and Fourier demodulation method are briefly introduced as follows.

2.4.1. Centroid method
The amount of shift can be indicate by the first moment of the region intensity, well
known as centroid [11]:

xm,nc =

∫∫
x ′Im,nF (x ′, y ′)dx ′dy ′∫∫
Im,nF (x ′, y ′)dx ′dy ′

. (2.26)

According to equation 2.20, the local optical field can be expressed as:

Um,nF (x ′, y ′) =
1

iλF
exp

[
ik

2F

(
x ′2 + y ′2

)]
F {Um,n0 (x, y)P (x, y)}

(
x ′

λF
,
y ′

λF

)
. (2.27)
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Thus, the centroid position can also be expressed as:

xm,nc =

∫∫
x ′
∣∣Um,nF (x ′, y ′)

∣∣2dx ′dy ′∫∫ ∣∣Um,nF (x ′, y ′)
∣∣2dx ′dy ′

= λF

∫∫
u|F {Um,n0 (x, y)} (u, v)|2dudv∫∫
|F {Um,n0 (x, y)} (u, v)|2dudv

,

(2.28)

where u = x ′

λF , v = y ′

λF .
Using the derivative theorem of Fourier transform:

F {Um,n0 (x, y)} (u, v) =
1

i2πu
F
{
∂Um,n0 (x, y)

∂x

}
(u, v) . (2.29)

And applying this theorem to the equation 2.28:

xm,nc =
λF

i2π

∫∫
F
{
∂Um,n0 (x,y)

∂x

}
(u, v)F

{
Um,n0

∗(x, y)
}

(u, v) dudv∫∫
|F {Um,n0 (x, y)} (u, v)|2dudv

=
λF

i2π

∫∫ ∂Um,n0 (x,y)

∂x Um,n0
∗(x, y)dxdy∫∫

|Um,n0 (x, y)|2dxdy
.

(2.30)

The gradient of the optical field can be expressed as:

∂Um,n0 (x, y)

∂x
= iA exp [iφm,n(x, y)]

∂φm,n(x, y)

∂x
. (2.31)

By using Parseval theorem, we can rewrite xm,nc as:

xm,nc =
λF

i2π

∫∫
sa

iA exp [iφm,n(x, y)] ∂φ
m,n(x,y)
∂x A exp [−iφm,n(x, y)] dxdy∫∫

sa

|A exp [iφm,n(x, y)]|2dxdy

=
λF

2πSsa

∫∫
sa

∂φm,n(x, y)

∂x
dxdy,

(2.32)

where Ssa is the area of a lenslet sub-aperture. It can be seen that the position of the
centroid at the focal plane and the phase of local wavefront are related.

Let sm,n
x

=
∫∫
sa ∂φ

m,n(x, y)/∂xdxdy
/

(kSsa), we have

xm,nc = sm,n
x
F. (2.33)

Comparing with expression 2.24, we can relate the centroid position with the wave-
front slope. With this knowledge, here we introduce the method of obtaining the
wavefront slope by a standard centroid approach:

1. Pre-process of the SH image to reduce the effect of noise. It includes:
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removing the background brought by the environment photon and camera read-
out noise; applying an adjustable threshold (usually be relative to the maximum
intensity) to isolate the spots from the speckles [12, 13].

2. Define and label the sub-aperture of each spot. The image is divided into
grids with fixed size according to the structure of the lenslet array or the distribu-
tion of the reference spots pattern. Their size could be larger than the physical
size of a lenslet region to extend the dynamic range. This dynamic range can
also be extended with adaptive algorithms [14, 15] .

3. Centroid calculation. The image of each sub-aperture is treated independently.
Several known centroiding methods can be applied to estimate the spot posi-
tion, such as center of mass, cross-correlation [16, 17] and matched filter [18]
methods. The most used approach is calculating the center of mass. Then the
discrete estimation of the spot position within the mth sub-aperture (xmc , y

m
c )

can be calculated as:

xmc =

∑
M,N xM,NIM,N∑
M,N IM,N

, ymc =

∑
M,N yM,NIM,N∑
M,N IM,N

. (2.34)

Here M, N denote the numbers of pixels of each sub-aperture in two dimensions.

4. Slope calculation. When both the position of the current spot (xmc , y
m
c ) and the

position of its corresponding reference spot (xmr , y
m
r ) are registered, the slopes

of the sub-aperture can be obtained by knowing the relative spot displacement
and the focal length of the lenslet:

smx =
xmc − xmr

F
, smy =

ymc − ymr
F

. (2.35)

Finally, the slopes can be registered with all sub-aptertures are processed with
this centroid approach.

2.4.2. Fourier demodulation
The slopes can also be obtained globally by spatial demodulation of the whole image [9,
19, 20]. According to equation 2.25, the SH pattern of the incident light is a two-
dimensional periodic function modulated by certain phase shift caused by the wavefront
distortion. Assuming the pattern is an even function, it can be expressed by a sum of
a series of cosine functions:

Ish (x, y) = a0 +
∑
m,n

am,n

[
cos

(
2πmx

p
+ ϕm,n(x)

)
+ cos

(
2πny

p
+ θm,n(y)

)]
.

(2.36)
where a0 is a constant term, am,n are the magnitude of sinusoidal harmonics. ϕm,n(x)

and θm,n(y) are phase shift.
All the spots are assumed circularly symmetric and equal. The fundamental fre-

quency harmonics (m = n = 1) weights most in the geometric arrangement of focal
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spots. The high order harmonics defines the internal structure of the spots. Thus, we
neglect the high frequencies and omit the constant term in the gradient demodulation
process. The SH pattern is simplified to:

Ish(x, y) ≈ cos

(
2πx

p
+ F

∂W (x, y)

∂x

)
+ cos

(
2πy

p
+ F

∂W (x, y)

∂y

)
. (2.37)

Here the gradients are assumed to be continuous between the measured spots
which, by comparison, is sampled discretely in centroid method.

Fourier transform the SH pattern, we obtain:

F {Ish(x, y)} ≈
1

2
F
{

exp

(
i2πx

p
+ i sxF

)
+ exp

(
−
i2πx

p
− i sxF

)
+

exp

(
i2πy

p
+ i syF

)
+ exp

(
−
i2πy

p
− i syF

)}
=

1

2

[
F {exp (i sxF )} δ

(
fx −

1

p
, fy

)
+ F {exp (−i sxF )} δ

(
fx +

1

p
, fy

)
+

F {exp (i syF )} δ
(
fx , fy −

1

p

)
+ F {exp (−i syF )} δ

(
fx , fy +

1

p

)]
.

(2.38)

In the Fourier domain, the harmonics are separated to the side lobes in the positions
(m/p, n/p) where (m, n = 0,±1,±2, ...). If the lenslet pitch is small (or the number
of lenslet is large in the same sensing area), then these components are well separated.
Generally, the phase modulation frequency should be much smaller than the carrier
wave frequency. Thus, the wavefront gradient is assumed to be much slower than the
lenslet spatial frequency so that the typical frequency of the wavefront gradient stay
within the sub-region of the side lobes. This is named adiabatic condition by Ribak in
Ref. [9]:

∇2W (X)� ∇
(

2πX

p

)/
F . (2.39)

It denotes that the detectable curvature of wavefront is limited by the pitch and
focal length of a lenslet array. In general, this condition is more relaxed than the well-
defined centroid method where no focal spot goes across to the other sub-aperture.

From equation 2.38, we find that the wavefront slope information is encoded in
the first harmonics. Therefore, the slope information can be obtained by the following
steps. Firstly, translate one of the side lobes (for example F {exp (icxF )} δ (fx − 1/p, fy ))
to the centre of Fourier domain along the x axis. It removes the lenslet frequency term
in the δ function. Secondly, a low pass filter with a cut-off frequency fc is applied to
the Fourier domain to extract the term F {exp (i sxF )} δ (fx , fy ). fc defines the maxi-
mum frequency of the wavefront gradient. It should be smaller than the bandwidth of
lenslet frequency. Finally, the phase of the inverse Fourier transform of the rest term
is sxF .
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The straight forward steps of this Fourier demodulation method is:

1. Fourier transform the SH pattern.

2. Translate the first side lobe on the x axis to the centre.

3. Apply a low pass filter to the Fourier domain. The cut-off frequency satisfies
the condition :fc 6 1/2p.

4. Inverse Fourier transform the filtered domain.

5. Extract the phase of the result, and unwrap it if phase discontinuity appears.

6. Divide the lenslet focal length to reveal the wavefront slope on axis x : ∂W (x, y)/∂x .

7. Repeat the steps (2-6) for the first side lobe on the y axis to obtain the wavefront
slopes on axis y : ∂W (x, y)/∂y .

In this method, there is no rigid sub-aperture division process as did in the centroid
method. The slopes are automatically interpolated. Three Fourier transforms are
needed to obtain both x, y slopes. To speed up the method, Ribak further developed
a direct demodulation technique to reduce Fourier transforms which is suited for large
arrays. In experimental work it is used quite often as a fast method (Some condition
should be satisfied: see [19]). The method is named the smoothing method with the
following steps:

1. The SH pattern is multiplied with a phase term which relates to the size of the
lenslet pitch:

E (x, y) = Ish (x, y) exp (−i2πx/Npx) .

2. First smoothing by applying a sliding average in x and y axis:

E1x (x, y) =

Npx−1∑
n=0

E (x + n − Npx/2, y) /Npx ,

E1y (x, y) =

Npy−1∑
n=0

E1x (x, y + n − Npy/2) /Npy .

3. Further smoothing with a second pass:

E2x (x, y) =

Npx−1∑
n=0

E1y (x + n − Npx/2, y) /Npx ,

E2y (x, y) =

Npy−1∑
n=0

E2x (x, y + n − Npy/2) /Npy .
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4. The wavefront slope is calculated:

∂W (x, y)/∂x = arg
{
E2y (x, y)

}
Np/2πF.

5. Same process with respect to the other axis to obtain the y slope.

In the expressions, Npx and Npy are the size of the rectangular region to be
smoothed. They are usually chosen to be the grid of the SH pattern spots.

Choosing the demodulation algorithm depends on the applications. In high speed
situations, the smoothing method is more suitable. But its accuracy is not as high as
the full Fourier demodulation method which is more suitable for high precision case
[10].

2.5. Wavefront reconstruction methods
Once the local wavefront gradients are registered, the wavefront can be reconstructed
with various approaches. These approaches differ by processing the wavefront locally
or globally, the reconstruction algorithms have been conventionally categorized into
zonal methods and modal methods [21–23]. An introduction of these two wavefront
reconstruction methods is as follows.

2.5.1. Zonal reconstruction
Zonal reconstruction is a kind of numerical integration. It was quite popular in the early
days of adaptive optics due to its simplicity. The relationship between the wavefront
and slopes can be formulated differently depends on the sampling geometry of slope
measurements. In the Fried geometry [24], each lenslet of a SHWFS measures both
the x and y slopes at the same point. The finite difference model can be expressed
as:

sm,nx =
[W (m + 1, n) +W (m + 1, n + 1)]− [W (m, n) +W (m, n + 1)]

2p
,

sm,ny =
[W (m, n + 1) +W (m + 1, n + 1)]− [W (m, n) +W (m + 1, n)]

2p
,

(2.40)

where W (m, n) means the wavefront of subaperture (m, n), and p is the size of the
uniformly arranged subaperture. By stacking the slopes of two dimensions into one
vector s , the measuring model in equation 2.40 can be vectorized as:

s = GW, (2.41)

where W are the stacked wavefront, G defines the finite difference structure, which is
not limited to Fried geometry. Other alternatives such as Hudgin geometry and South-
well geometry, are chosen depending on the sampling principle in different applications
[25]. If G has full rank, the solution of equation 2.41 is a pesudo-inverse:

Ŵ =
(
GTG

)−1
GT s. (2.42)
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However, in general there are more unknowns than equations in equation set 2.41
which lead to a rank deficiency of G. Thus, the GTG is not invertible, a singular value
decomposition routine is used in practice:

G = UDVT , (2.43)

where U and V are orthogonal matrices, the singular values of G are stored on the
diagonal of matrix D. Then the solution of equation 2.41 is:

Ŵ = G+s, (2.44)

where G+ is the generalized pseudo-inverse calculated as:

G+ = VD−1UT . (2.45)

A least squares solution with the effect of noise is also provided in Ref. [26].

2.5.2. Modal reconstruction
In the modal reconstruction method, the wavefront is expressed by a linear combi-
nation of a set of basis functions Pn(x, y). These functions need to be continuous
and the property of first analytic derivatives are required to be able to fit the slope
measurement. Usually, these basis functions are orthogonal (Orthogonality) within the
aperture which means the presence (or absence) of one order of P (x, y) does effect the
others. But, non-orthogonal basis functions are also used such as Taylor monomials
[27]. The wavefront can be generally expressed as a compact notation:

W (x, y) =
∑
n

anPn (x, y), (2.46)

where an are the coefficients of each basic function. The gradients can be written as:

∂W (x, y)

∂x
=
∑
n

an
∂Pn (x, y)

∂x
,

∂W (x, y)

∂y
=
∑
n

an
∂Pn (x, y)

∂y
.

(2.47)

The functions of gradients provide a model of the slope measurements. Then, the
comparison between them can be used to define an objective function, such as an error
function:

ε2 =
∑(

sx −
∑
n

an
∂Pn (x, y)

∂x

)2

+
∑(

sy −
∑
n

an
∂Pn (x, y)

∂y

)2

. (2.48)

Then the coefficients an can be solved by least squares fitting or other optimization
methods. Choosing the type of basis functions largely depends on the applications. In
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many cases, it is related to the shape of aperture and computational complexity.

The wavefront surface of a rectangular aperture can be described by the product
of two Legendre polynomials [21, 28, 29]:

W (x, y) =

N∑
n=0

M∑
m=0

an,mPn (x)Pm (y), (2.49)

where

Pn (x) =

K∑
k=0

(−1)k
(2n − 2k)!

2nk! (n − k)! (n − 2)!
zn−2k ,

Pm (y) =

K∑
k=0

(−1)k
(2m − 2k)!

2mk! (m − k)! (m − 2)!
zm−2k .

(2.50)

The Legendre polynomials are orthogonal over the square area defined by : |x | <
1, |y | < 1.

The most frequently used basis functions are Zernike polynomials [22, 30]. They
are orthogonal over a unit circle. The reason of their popularity is that they are closely
related to the aberrations arise in the optical systems. For instance, their low order
terms directly describe the parameters such as tip/tilt, defocus, astigmatism, coma
and spherical aberrations. A normalized wavefront described in the polar coordinate
system (r, θ) by the Zernike polynomials is provided in equation 2.51:

W (r, θ) = W̄ +

∞∑
n=2

An0R
0
n (r) +

∞∑
n=1

n∑
m=1

Rmn [Anm cos (mθ) + Bnm sin (mθ)], (2.51)

where W̄ are the mean wavefront. Anm and Bnm are the Zernike coefficients. The
radial polynomial Rmn can be written as

Rmn (r) =

(n−m)/2∑
j=0

(−1)j
(n − j)!

j!
(
n+m

2 − j
)

!
(
n−m

2 − j
)

!
rn−2j . (2.52)

The integers n and m in equations 2.51 and 2.52 are respectively known as the radial
and azimuthal wave number. n > m and n −m must be an even number.

There are many Zernike polynomial variations such as annular Zerinke polynomials
for optical systems with central obscurations [31] and complex-valued Zernike polyno-
mials in forming the phase retrieval problmes as introduced in [32, 33].

The wavefront can also be decomposed by complex exponential functions since
they are orthogonal over rectangular apertures [34]. With this representations, the
problem can be handled with the highly efficient Fast Fourier transform (FFT) algo-
rithm. According to Ref. [35], the computational complexity of Fourier reconstruction
is O (n log n) while the Zernike reconstruction is O

(
n2
)
. The performance comparison
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between the Fourier reconstruction and Zernike reconstruction has been done in the
works [36, 37]. Generally, the Fourier reconstruction can achieve a better performance
in terms of speed and reconstruction error.

In this dissertation, the retrieved Shack-Hartmann data are mainly in a rectangular
shape and real-time processing is preferred. Thus, we process them mostly with Fourier
reconstruction. The details of this method is introduced as follows.

Fourier reconstruction
Considering the wavefront is a combination of a series of orthogonal sinusoidal function
basis:

W (x, y) =

N∑
m=0

M∑
n=0

am,n (x, y) exp [i2π (xn/M + ym/N)]. (2.53)

Express it in the form of Fourier transform in a continuous manner:

W (x, y) =

∫∫
W̃ (fx , fy ) exp [i2π (xfx + yfy )] dfxdfy (2.54)

Taking partial derivatives of the wavefront with respect to x and y , we obtain:

∂W (x, y)

∂x
= i2π

∫∫
fxW̃ (fx , fy ) exp [i2π (xfx + yfy )] dfxdfy ,

∂W (x, y)

∂y
= i2π

∫∫
fyW̃ (fx , fy ) exp [i2π (xfx + yfy )] dfxdfy .

(2.55)

Again we express the wavefront gradients in the form of a Fourier transform, we
have

∂W (x, y)

∂x
=

∫∫
s̃x (fx , fy ) exp [i2π (xfx + yfy )] dfxdfy ,

∂W (x, y)

∂y
=

∫∫
s̃y (fx , fy ) exp [i2π (xfx + yfy )] dfxdfy .

(2.56)

Comparing the two groups of equations 2.55 and 2.56, we can find the relations
that:

s̃x (fx , fy ) = i2πfxW̃ (fx , fy ) ,

s̃y (fx , fy ) = i2πfyW̃ (fx , fy ) .
(2.57)

To solve this equation, multiply fx , fy to both sides respectively and add them
together yielding:

fx s̃x (fx , fy ) + fy s̃y (fx , fy ) = i2π
(
f 2
x + f 2

y

)
W̃ (fx , fy ) . (2.58)

Therefore, the Fourier transform of the wavefront can be written as:

W̃ (fx , fy ) =
fx s̃x (fx , fy ) + fy s̃y (fx , fy )

i2π
(
f 2
x + f 2

y

) . (2.59)

So once the slopes are obtained, we can calculate the wavefront with the equation
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2.59. This method is especially suitable for a rectangular pupil. For the circular pupil,
the boundary needs to be defined and the help of iterative processing [35, 38].

Modal methods are generally superior to zonal methods in suppression of the error
propagation, especially when the data set is noisy. Also, modal methods, for instance,
the Zernike methods, are able to present the dominant aberrations which are conve-
nient for optical system assessment.

2.6. Phase retrieval
Besides the interferometric and wavefront sensing techniques, phase retrieval is also
an important group of techniques used to recover the phase of an object from intensity
only measurements [39]. These intensities can be obtained in various of ways such as
being captured at different planes on the optical path or registered with introduced
additive phases in the concept of phase diversity. It generally requires no sophisticated
setups as in holography and relies more on numerical computations. These methods
can be mainly categorized into the transport-of-intensity equation (TIE) methods,
optimization based methods, and alternating projection methods. A brief review of
these methods are described as follows. Then we will emphasize on the details in
Gerchberg-Saxton algorithm which has been implemented with the digital micro-mirror
device in Chapter 3.

2.6.1. Transport-of-intensity equation (TIE)
This category of methods retrieves the phase of a plane from several closely spaced in-
tensity measurements of the adjacent planes by deterministically solving the transport-
of-intensity equation:

k
∂I(r, z)

∂z
= −∇⊥ · [I(r, z)∇⊥φ(r)] , (2.60)

where k is the wavenumber, r = (x, y) is a two-dimensional vector in the transverse
direction. I(r, z) is the intensity distribution in the space. ∇⊥ denotes the lateral
gradient operator which is normal to z , the beam propagation direction. The TIE can
be derived from many methods, such as a small propagation distance approximation
of the Fresnel propagation or directly from the Helmholtz equation under paraxial
approximation [40, 41].

The TIE denotes the relationship between the spatial phase φ(r) and the axial
derivative of the intensity ∂I(r, z)/∂z . With a minimum of two intensity measurements
I(z) and I(z + dz) of two planes with an interval distance dz , ∂I(r, z)/∂z can be
approximated as:

∂I(r, z)

∂z
=
I(z + dz)− I(z)

dz
. (2.61)

Then a variety of methods can be applied to solve φ(r) from this partial differential
equation with appropriate boundary conditions and assumptions [40, 42, 43]. One
frequently mentioned method from Teague’s work is assuming the transverse flux
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I(r, z)∇⊥φ(r) is conservative. An auxiliary function ψ is introduced that satisfies:

∇ψ(r) = I(r, z)∇φ(r). (2.62)

Then the TIE is transformed into a Poisson equation:

k
∂I(r, z)

∂z
= −∇2

⊥ψ(r). (2.63)

The phase φ(r) can be determined by solving the equation 2.63 and then integrating
ψ. The solution is given by the following expression

φ(r) = −k∇−2
⊥ ∇⊥ ·

[
I−1(r, z)∇⊥∇−2

⊥
∂I(r, z)

∂z

]
, (2.64)

where ∇2
⊥ is the inverse Laplacian operator.

The basic TIE method only requires several intensity measurements at different
planes along the propagation direction and their interval distances. The optical setup
is straightforward and easy to implement. Also, this method is able to measure the
phase with lowly coherent light, which makes it a good alternative method when the
interferometric methods are not applicable. Consequently, it is able to avoid the
speckle noise brought by the highly coherent light and suitable for applications that
prefer partially coherent light such as conventional microscopes.

However, the corresponding boundary condition are usually based on a priori knowl-
edge which are difficult to obtain in practice. Severe artefacts will appear when the
actual experimental conditions violate the working assumptions. The boundary error is
considered one of the major obstacle for the TIE in the high precision phase measure-
ment applications. Other parameters of TIE methods, such as the interval distances,
the signal-to-noise ratio, also affect the recovery accuracy as discussed in the work
[44].

2.6.2. Optimization based methods
Phase retrieval problems are increasingly considered from the view of optimization,
especially in the field of phase diversity. Considering a complex object O = A exp(iφ)

is imaged by an optical system with a diverse group of point spread functions (PSFs)
h1, h2, ..., hj . The corresponding images are I1, I2, ..., I j . For the jth measurement
with detection noise n, we have

I j =
∣∣hj ∗O∣∣2 + n. (2.65)

The goal is to estimate O from all the measurements with given PSFs. Then the
phase retrieval problem can be formulated as an minimization problem:

min
O

M∑
j=1

∥∥∥I j − ∣∣hj ∗O∣∣2∥∥∥2

2
. (2.66)
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Many non-linear optimization techniques based different searching strategies, such
as gradient methods, trust-region methods [39, 45], are explored to find an acceptable
solution. This intensity-based cost function is non-convex. In general, it doesn’t guar-
antee the convergence to the target. Thus, increasing the number of measurements
M with diverse PSFs can reduce the solutions that satisfy the equation.

Recently, processing this problem with convex programs based on semidefinite pro-
gramming (SDP) relaxations is gaining popularity. Different relaxation techniques,
such as PhaseLift [46], and PhaseCut [47], have been developed. In many cases, the
SDPs provide good theoretical guarantees of the convergence. Also, the numerical
calculation can benefit from many standard convex optimization solvers, e.g. CVX.
However, this method generally requires matrix lifting, which means replacing the tar-
get vector with a higher-dimension matrix. This treatment will highly increase the cost
of computation [48].

In many real-time applications, such as adaptive optics, the computing time is
expected to be reduced. Thus, the phase is usually modeled by a linear combination
of Zernike polynomials:

φ(x, y) =

N∑
n=1

αnZn(x, y), (2.67)

where Zn(x, y) is the nth polynomial in the Zernike basis expansion. Then the problem
is converted to minimize equation 2.66 with respect to the Zernike coefficients αn
which could much reduce the scale of the calculations.

2.6.3. Iterative methods
Iterative methods are also called alternating projection methods in the view of math-
ematician. If we have known intensity measurements of at least a pair planes or one
measurement and a support region, along with the transfer functions in between of the
planes, we can reconstruct the complex amplitude of the object by the back-and-forth
numerical propagation of the optical fields.

The pioneering work was done by Gerchberg and Saxton [49], and is known as
the Gerchberg-Saxton algorithm(GS). Later there were many modified versions to
improve this algorithm in terms of convergence efficiency, accuracy or complexity,
such as steepest-descent method, gradient search method, and Hybrid Input-Output
(HIO) algorithm which is introduced by Fienup in his one of the most frequently cited
papers in optics [50].

Gerchberg-Saxton algorithm
The Gerchberg-Saxton algorithm is one of the first practical iterative approaches to
solve the phase retrieval problem with the Fourier field involved. The classical GS
algorithm recovers the complex amplitude field from the intensity measurements of
the front focal (object) plane and back focal (Fourier) plane of a lens as depicted in
the Figure 2.10. The measured intensities are I1 and I2 respectively. In this case, the
propagation from the object to the focal plane is a Fourier transform. The optical
field is projected between these two planes alternatively until the computed optical
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field satisfies the object constrains or the Fourier constraints. This iterative procedure
is described in algorithm 1:

F F

Fourie
r p

lane

Object p
lane

Satisfy the 
Fourier constrains

Satisfy the 
Object constrains

Initial phase 
guess

Figure 2.10: Scheme of the Gerchberg-Saxton algorithm.

In the algorithm, ek2 represents the squared error in the Fourier domain of the the
kth iteration. Correspondingly, the squared error in object domain is defined as

ek1 =
∑∣∣∣Uk+1

1 − U ′k1
∣∣∣2. (2.69)

By using Parseval’s theorem, we know that

ek2 = N−2
∑∣∣∣U ′k2 − Uk2 ∣∣∣2

=
∑∣∣∣F {U ′k2}−F {Uk2}∣∣∣2

=
∑∣∣∣Uk1 − U ′k1∣∣∣2.

(2.70)

Both Uk1 and Uk+1
1 satisfy the object constraints. In the definition, the Uk+1

1 is the
nearest value to U ′k+1

1 . Therefore, from equation 2.69 and equation 2.70, we have

ek2 > e
k
1 . (2.71)
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Algorithm 1 The GS algorithm
Input:
A1 =

√
I1 : Magnitude of the object plane.

A2 =
√
I2 : Magnitude of the Fourier plane.

ε : An error threshold.
Output:
φend1 - The recovered phase of the object optical field after the iterations.
Initialization:
Give an initial phase value φ0

1 to form the object optical field U1 = A1e
iφ0

1 . Generally,
the phase is chosen randomly. Also, the initialization is not limit to start from the
object plane. The iteration loop starts from the estimated field U2 is equivalent.
Iterative steps:
For the kth cycle :

1. Fourier transform the current estimated Uk1 = A1e
iφk1 to obtain Uk2 = Ak2e

iφk2 .

2. Keep the phase φk2 and replace the magnitude with the measured data A2 to
form the new estimated field at the Fourier plane U ′k2 = A2e

iφk2 (satisfying the
Fourier constraints).

3. Inverse Fourier transform the recombined U ′k2 to obtain the estimated U ′k1 =

Ak1e
iφk+1

1 .

4. Keep the phase φk+1
1 and replace the magnitude with the measured value A1 to

form the new estimated field at the object plane Uk+1
1 = A1e

iφk+1
1 .

The loop will not stop until a phase φend1 is achieved that satisfies the condition:

ek2 = N−2
∑∣∣∣Uk2 − U ′k2∣∣∣2 6 ε, (2.68)

where N is the number of sampling points.

Similarly, applying Parseval’s theorem to equation 2.69

ek1 =
∑∣∣∣Uk+1

1 − U ′k1
∣∣∣2

= N−2
∑∣∣∣F {Uk+1

1

}
−F

{
U ′
k
1

}∣∣∣2
= N−2

∑∣∣∣Uk+1
2 − U ′k2

∣∣∣2.
(2.72)

Since U ′k+1
2 is the nearest value to Uk+1

2 , it can be found that

ek1 > N
−2
∑∣∣∣Uk+1

2 − U ′k+1
2

∣∣∣2 = ek+1
2 . (2.73)
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Combining equation 2.71 with equation 2.73 yields the relation that

ek+1
2 6 ek1 6 e

k
2 . (2.74)

From the above analysis, we know the GS algorithm is an error-reduction algorithm.
The error with the constrainsts is monotonically decreasing. It suggests that the
algorithm may converge to a solution if the constraints are convex. However, in
practice the constraints in either object domain or Fourier domain are usually non-
convex. Thus, the algorithm probably stagnates in a stationary point which leads to a
local minimum.

Many experiments show the GS algorithm usually reduces the error fast for the
first iterations. However, the convergence speed becomes much slower for the later
iterations [51–53]. Also, the GS algorithm is not suitable for the problem with a single
intensity measurement and support information as many researches suggest. Thus,
later there are many modifications of the GS algorithm to overcome the trapping and
stagnation problem. One of the most popular approach is proposed by J. R. Fienup
[54] with the help of prior information, such as the constraints of the input and output.

Among all these iterative methods, the alternating projection algorithm, as a more
generalized category of GS algorithms, is still popular in applications, though its the-
oretical understanding is still under investigation. In many optical applications, the
measurement process performs as a low-pass filter. A practical algorithm needs to
restore the missing phases of the optical field and resolve the fine details of the data.
Many of the current approaches are based on inefficient SDP schemes or lack com-
prehensive theoretical analysis [55, 56]. Recently, the algorithms base on sparsity is
gaining popularity as well [57]. Here we skip the introduction of them since they are
not the main works relate to the work of this dissertation.

2.7. Phase unwrapping
In many signal processing situations, such as synthetic aperture radar, interferometry,
holography and wavefront sensing techniques, we need to extract the phase of a com-
plex signal. The calculation is usually returned by the arctangent function which gives
the value in the range (−π, π]. However, the actual value typically exceeds this range,
thus the phase is wrapped. One or multiple 2π discontinuities may appear between
adjacent pixels even though the physical signal phase is continuous and smooth. This
discontinuity is sometimes an obstacle for recovering the actual information. Thus,
when such a discontinuity is detected, a phase unwrapping process U { } need to be
carried out:

φ̂ (x, y) = U {φ (x, y)} = φ (x, y) + 2πN, (2.75)

where φ̂ (x, y) is the unwrapped phase, N = 0,±1,±2, ....
Figure 2.11 shows an example of phase unwrapping for a one dimensional spherical



2.7. Phase unwrapping

2

41

phase:

φ (n) = 20
( n

256
− 1
)2

, (2.76)

where n is the sampling index up to 512. The radian of the phase is defined to be
larger than 2π. Thus, the phase is wrapped as shown in Figure 2.11 (b). Applying a
simple rule to unwrap the phase: if the difference between a sample and its succeeding
sample is larger than π, then a value of 2π is added to all the following samples. If this
difference is smaller than −2π, then the added value is −2π. Figure 2.11 (c) gives
the unwrapped phase with this explicit rule. The spherical curve is recovered perfectly
by removing all the abrupt jumps due to the phase wrapping.

(a)

(b)

(c)

Figure 2.11: (a) shows a continuous phase having a range exceeds 2π. (b) shows the wrapped phase
of (a). (c) shows the phase unwrap results with the compensating algorithm by simply detecting the
phase jumping value.

However, this process can be very challenging in practice. It is because the unwrap-
ping process can be ambiguous due to the noise ratio, sampling rate, and the physical
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discontinuities contained in the signal. All of these factors lead to the difficulty in dis-
tinguishing between genuine phase wraps and fake phase wraps. As a demonstration,
amount of white noise with an amplitude of 0.75 rad is added to the previous signal as
shown in Figure 2.12 (a). The same unwrapping algorithm fails at a certain position
which is labelled out in figure Figure 2.12 (c). And this error propagates to the follow-
ing phase data. The phase unwrapping problem becomes more complicated when it
comes to two-dimensional cases where the residues (the integration result depends on
the path around residues) may present. It is a vital problem for many wavefront sensing
and imaging applications. Thus, many sophisticated algorithms have been proposed
during decades of study.

(a)

(b)

(c)

Unwrapping failure

Figure 2.12: (a) shows the same phase as Figure 2.11 (a) with noise added. (b) shows the wrapped
phase of (a). (c) shows the phase unwrap results with the same algorithm as in Figure 2.11.

These different types of algorithms can be roughly classified into the following cat-
egories: global algorithms, regional algorithms and path-following algorithms.
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2.7.1. Global algorithms
The basic idea behind the global algorithms is formulating the phase unwrapping prob-
lem into a generalized minimum Lp-norm problem. The phase field is sought to mini-
mize the global error function as shown below:

εp = ‖solution − problem‖p. (2.77)

One of the most frequently mentioned method is unweighted least-squares method.
Its cost function is defined as follows:

ε2 =

∫ [
∆φ̂x −W (∆φx)

]2
dx +

∫ [
∆φ̂y −W (∆φy )

]2
dy, (2.78)

where ∆φ̂x and ∆φ̂y are the gradients of estimated unwrapped phase. ∆φx and ∆φy
are the gradients of the measured phase. W[ ] is the wrapping operator that wraps
the phase into the range (−π, π]. It can be efficiently solved by using fast Fourier
transform (FFT) methods [58], discrete cosine transform (DCT) methods [59] and
multigrid algorithms [59]. The techniques with FFTs or DCTs can offer a direct
solution by solving the Poisson’s equation as defined as:

P (m, n) =
(

∆xm,n − ∆xm−1,n

)
+
(

∆ym,n − ∆ym,n−1

)
= [φ (m + 1, n)− 2φ (m, n) + φ (m − 1, n)] +

[φ (m, n + 1)− 2φ (m, n) + φ (m, n − 1)] .

(2.79)

For example, in one of the FFT based methods, a M × N grid wrapped phase
φ(m, n), here m ∈ [0,M], n ∈ [0, N], is extended to a periodic function Φ(m′, n′) by
applying a mirror reflection with respect to both the x and y axes. As a result the grid
is extended to m′ ∈ [0, 2M], n′ ∈ [0, 2N]. Then the extended unwrapped phase field
Φ̂(m′, n′) can be efficiently calculated by:

Φ̂(m′, n′) = F−1

{
P̃m′,n′

2 cos (πm′/M) + 2 cos (πn′/N)− 4

}
, (2.80)

where P̃m′,n′ is the Fourier transform of the Poisson function Pm′,n′ in equation 2.79.
The unwrapped phase φm,n is then obtained by restricting the result to the grid of
original phase map.

The unweighted least-squares algorithms can provide a smooth solution in a high
speed. This feature makes it suitable for some applications like testing the mirror
deformation in adaptive optics. However, this algorithm exploits all the information in
the data with no difference. As a result, the solution can be strongly effected by the
presence of residues. Therefore, it is inappropriate for those applications which require
exact results or contain sharp features.

To reduce the effect of residues or other unreliable pixels, an reliable quality map
V is preferred to weight the error function. For instance, in a two-dimensional least-
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squares problem, the weighted version can be expressed as:

ε2 =

∫
Vx
[
∆φ̂x −W (∆φx)

]2
dx +

∫
Vy
[
∆φ̂y −W (∆φy )

]2
dy, (2.81)

where Vx and Vy are predetermined reliable quality maps. The weighted least-squares
problem is usually solved by implementing the unweighted method iteratively. Although
this process increases the robustness, a longer execution time is the price to pay as a
result.

2.7.2. Regional algorithms
To tackle concerns about the error propagation issue in the global algorithms, the
regional algorithms such as region-based [60, 61] and tile-based [62] phase unwrappers
were developed. The difference between these two is how the sub-regions are identified.

The region algorithms first separate the pixels into different regions, where within
each region the phase is continuous. It is generally done by comparing the phase
between the adjacent pixels. If the phase difference is below an adjustable threshold,
then these pixels are assigned to the same region. After this sorting process, different
regions are phase unwrapped by applying phase shift with respect to the neighbour
region to remove the discontinuities.

In the tile-based algorithms, the phase map is divided into number of tiles and each
tile is categorized into different classes by checking whether phase wrapping prob-
lem presents within it. After the preliminary test, each tile is unwrapped individually,
and later they are recombined into the complete unwrapped phase by means such as
minimizing an error function at the interfaces only [63].

In these regional algorithms, the phase is unwrapped within the local region inde-
pendently, thus the error propagation is limited to a small area. Generally, they provide
a good compromise between robustness and computational cost.

2.7.3. Path-following algorithms
Path-following algorithms generally integrate the phase in a sequence of steps by fol-
lowing a chosen path. The phase unwrapping process from one point to another is
path-independent if the integral along any closed path C is zero:∮

C

φ (r) dr = 0. (2.82)

If the condition 2.82 is satisfied, the problem of two-dimensional phase unwrapping
can be reduced to the problem of path invariance of the unwrapping. However, due
to the noise or the presence of edges, such a path integral can yield a non-zero value,
which is called residue, as mentioned previously. This phase inconsistency can be
detected if the residue charge q is non-zero, which can be calculated as the sum of
the phase difference around it:
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q =

4∑
m=1

∆m

= [φ (m, n + 1)− φ (m, n)] + [φ (m + 1, n + 1)− φ (m, n + 1)]−
[φ (m + 1, n + 1)− φ (m + 1, n)]− [φ (m + 1, n)− φ (m, n)] .

(2.83)

According to different strategies in choosing the integral path and handling the
residues, these algorithms can be subdivided into three groups [63]: (1) path-dependent
methods, (2) residue-compensation methods and (3) quality-driven methods.

The path-dependent methods generally apply to the noiseless situations. The in-
tegral path are preliminary defined, such as linear scan, spiral scan and multiple scan
direction. These methods have a very fast process speed. However, the presence of
residues on the fixed path can easily corrupt the correct integration.

To overcome the problem, the residue-compensation methods is developed. It
firstly generates a branch-cut by connecting the nearest opposite sign residues. Then
the wrapping process is carried out by following a path which will not cross the branch-
cut. They are also very efficient in calculation, but an inappropriately placed branch-cut
may isolate some phase zones which will lead to phase discontinuity in the reconstruc-
tion.

In the quality-driven methods, the unwrapping order is guided by the pixel reliability.
Thus, the lowest reliable data are limited in spreading errors. These methods usually
contains two steps: First define a phase quality function based on various rules, such
as correlation coefficients, phase derivative variance [64] or fringe modulation [65].
Then design the unwrapping path guided by the quality map: normally the highest
quality pixels are unwrapped first and the lowest quality pixels last. In practice, the
quality-driven algorithms have a good balance between robustness and computation
efficiency.

Here we briefly introduce a quality-driven algorithm based on sorting by reliability
following a non-continuous path (SRNCP), which is deployed frequently in our ex-
periments. In this algorithm, the possibility of phase inconsistencies is detected by
calculation the second differences D, which usually measures the degree of concav-
ity/convexity of a function. For a pixel in the image, it is calculated as:

D (m, n) =
[
H2 (m, n) + V 2 (m, n) +D1

2 (m, n) +D2
2 (m, n)

]1/2
, (2.84)

where H (m, n), V (m, n), D1 (m, n) and D2 (m, n) are the second differences of the
horizontal, vertical and two diagonal directions respectively, as defined below:
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H (m, n) = U [φ (m − 1, n)− φ (m, n)]− U [φ (m, n)− φ (m + 1, n)] ,

V (m, n) = U [φ (m, n − 1)− φ (m, n)]− U [φ (m, n)− φ (m, n + 1)] ,

D1 (m, n) = U [φ (m − 1, n − 1)− φ (m, n)]− U [φ (m, n)− φ (m + 1, n + 1)] ,

D2 (m, n) = U [φ (m − 1, n + 1)− φ (m, n)]− U [φ (m, n)− φ (m + 1, n − 1)] .

(2.85)

Generally, the pixels are more reliable if their second differences are lower. There-
fore, the reliability of a pixel can be defined as:

R =
1

D
. (2.86)

Then, the reliability of an edge is defined as the sum of the reliablities of two
connected pixels. Both the vertical and horizontal edges are calculated. The edges
are then sorted by reliability which also determines the unwrapping priority. There is
a grouping process along with the phase unwrapping. Initially, all the pixels are not in
any group. The rules in table 2.1 are applied when an edge formed by two pixels φ1

and φ2 are unwrapped.

Condition Process
φ1 and φ2 do not belong to
any group.

Unwrap the pixel that belongs to the smallest group
with respect to any pixel in the largest group, and join
the two groups together.

φ1 and φ2 belong to differ-
ent groups.

Unwrap both pixels with respect to each other and join
them into a single group.

φ1 belongs to a group and
φ2 does not belong to any
group .

Unwrap φ2 with respect to φ1 and join φ2 to this group.
The operation will be inverted if φ1 and φ2 are swapped
in the condition.

Table 2.1: The strategy of different cases in unwrapping an edge.

The process in the table 2.1 keeps running until all the pixels are stored into a
single group. This algorithm works very robust and fast in most of our experimental
data that includes holographic results and wavefront slopes.

Despite the many progresses of phase unwrapping algorithms that have been made,
we have to note that no algorithm is perfect. Each of them may only be effective
in solving one specific problem. Compromises are unavoidable in handling practical
problem.
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3
Sampling the optical field with
a spatial amplitude modulator

We have experimentally demonstrated a lensless coherent microscope based on direct regis-
tration of the complex optical field by sampling the pupil with a sequence of two-point inter-
ferometers formed by the digital micro-mirror device. Complete registration of the complex
amplitude in the pupil of imaging system, without any reference beam, provides a convenient
link between the experimental and computational optics. Unlike other approaches to digital
holography, our method does not require any external reference beam, resulting in a simple
and robust registration setup. Computer analysis of the experimentally registered field allows
for focusing the image in the whole range from zero to infinity, and for virtual correction of the
aberrations present in the real optical system, by applying the adaptive wavefront corrections
to its virtual model. An accelerated scheme by scanning binary masks with the principle of
phase retrieval has been proposed and numerically verified.

Parts of this chapter have been published in Journal of Optics 17(12), 122001, 2015 [1] and SPIE
conference proceedings [2].
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3.1. Introduction
Reconstruction of an object by methods of digital holography [3] requires the com-
plex amplitude of the field to be known with high spatial resolution. A number of
indirect techniques for registering the optical complex amplitude have been developed.
Methods of digital holography, including phase-shift interferometry [4–6] require the
reference beam to be present in the system. Such a reference beam can be internally
generated by spatial filtering of a portion of the object beam [7, 8], or through the use
of light from an empty area of the field of view [9].

Reconstruction of the phase from the intensity of the diffracted field [10–12]
generally represents an ill-posed problem, and requires some additional information
about the object to be made available. Reconstruction of the wavefront without a
reference beam is possible with a Shack-Hartmann sensor [13].

A recent publication [14] describes a quadriwave lateral shearing interferometer
for high-resolution field reconstruction. However, methods based on the phase recon-
struction from wavefront tilts usually reconstruct only the potential component of the
phase, neglecting phase vortices. Also, a relatively uniform intensity distributions needs
to be present in the plane of reconstruction. These two factors significantly limit the
applicability of these methods to digital holography.

Time multiplexing [15, 16] represents another useful approach to high-resolution
reconstruction of the complex fields. In this approach, the complex amplitude is reg-
istered sequentially in different locations of the pupil. This is usually achieved through
complex setups requiring a reference beam and a galvanometric or piezoelectric scan-
ner.

In this chapter we propose an alternative and more straightforward time multiplex-
ing technique for the sampling of the wavefront for registration of both the amplitude
and the phase of the optical field. The technique operates without any reference
beam and without any imaging lens or microscope objective, providing micrometer-
scale resolution that is comparable to previously reported techniques [7–9, 14, 16].
The method can be divided into two branches. Main difference between them is the
scanned pattern of spatial amplitude modulation. The first one scans two-pixel masks
to form a series of Young’s interferometers. The second projects randomized masks
to retrieve speckle patterns. The reconstruction processes differ from each other as
well. Here we first briefly introduce the spatial amplitude modulator we used, and then
both of these two time multiplexing optical field sampling methods in the following
sections.

3.2. Digital micro-mirror device as a spatial amplitude modulator
The digital micro-mirror device (DMD) initially developed by Texas Instrument for
image projection, have been used as an image plane sampling device in spectrometry
and laser beam characterization [17, 18]. The digital micro-mirror device (DMD) in
Figure 3.1 can function as a programmable binary amplitude modulator. It contains
an array of up to millions of independent tilt-able aluminium micro-mirrors. Each mir-
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ror having a size of micrometers is mounted on a hinge over a CMOS electronics as
shown in Figure 3.1 (a). These mirrors, driven by the electro-static force created by
the underlying electrodes, can rotate either a certain angle (10− 12◦) or the opposite
to the normal of the DMD surface corresponding to an ’on’ or ’off’ state. The re-
freshing rate of all the micro-mirror states can be fast in the order of kHz. Thus, the
DMD enables a fast and high precision control of the amplitude of light. The DMDs
were initially commercialized by Texas Instruments for Digital Light Processing (DLP)
projectors due to their high reflective efficiency, high contrast ratio and high resolution
properties. Besides the success in the display market, the applications in non-display
technologies are also emerging. In recent years, many wavefront sensing and imaging
techniques have been carried out with the help of DMDs [17, 19–21].

(a) (b)

Figure 3.1: (a) The sketch of two DMD pixels [22]. (b) DMD is shown under an electron micro-
scope [23].

3.3. Scanning two-point interferometers
In this section, we mainly describe the use of the DMD for sampling the optical field
in the pupil plane by a series of Young’s interferometers, dynamically formed by the
micro-mirrors of a DMD.

Figure 3.2 explains the principle of registration of the complex amplitude for the
case of transmissive object, however the same principle can be realized for reflective
and scattering objects. The light beam emitted by the laser and scattered by the
object, forms a speckle pattern on the surface of the DMD. The DMD device samples
the field by turning on only two (reference and sample) micro-mirrors, to form a two-
point interferometer. The fringe pattern is registered in the focal Fourier plane of the
collective lens. The phase of the fringe pattern, with respect to the origin, is equal
to the phase difference between the sample and reference micro-mirrors. The phase
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Figure 3.2: Coherent imaging setup based on field sampling with the use of DMD.

of the fringe pattern can be easily calculated by making the Fourier transform of the
image, and then by calculating the phase in one of sidelobe maxima (refer to Section
2.2 ). The complete sequence, resulting in the registration of the complex amplitude of
the field in all points corresponding to micro-mirrors with indices (i , j) and coordinates
x = iδ, y = jδ, where δ is the pitch of the DMD, is given below:

• Choose the reference micro-mirror by scanning the intensity profile. To ensure
high visibility of the interference pattern, the reference micro-mirror should be
placed in an area with high intensity, for instance in a bright speckle. The
reference micro-mirror stays in the ’on’ position during the whole registration
process for all pixels in the aperture.

• Turn on the sample micro-mirror with coordinates (x, y) and register the inter-
ference pattern in the focal plane of the collective lens. Example interferograms
obtained with different micro-mirror pairs are shown in Figure 3.3.

• Process the fringe pattern, to find the phase ϕr (x, y) corresponding to the
fundamental harmonic in the registered fringe pattern. This can be done by
Fourier transforming the image and calculating the phase in one of two sidelobes.
Register the intensity in the sample point Ir (x, y) by calculating the total intensity
in the registered fringe pattern.

• Go to the next sample micro-mirror, and proceed until field intensity and phase
are registered for all points of interest.

Since all micro-mirrors, except the two that are used for interferometry, are in the
’off’ state, the reflected beam can be used for conventional imaging during the whole
registration procedure.

The systematic phase errors are caused by the aberrations and misalignments in
the path of the registration system, by the geometry of DMD, by the image noise and
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Figure 3.3: Interferograms obtained experimentally for different positions of the sampling micro-mirror.

the limited size of the imaged area in the Fourier plane. The major systematic error is
caused by the grating-like geometry of the DMD. The ’on’ pixels reflect incoming light
at the angle of φ = 24◦ in the sagittal (horizontal) plane, introducing path difference
of ∆ϕ = x sin(φ) ≈ 0.407x where x is the pixel coordinate in the sagittal plane. To
enable a correct registration of the complex amplitude, the coherence length of the
source Lc should satisfy the condition Lc � 0.407Ax , where Ax is the full size of the
registered field in the sagittal plane.

To account for all systematic aberrations, we calibrated the system by measuring
its response ϕc(x, y) to a reference plane wave. The aligned stable system has to be
calibrated only once. The intensity Io and phase ϕo of the object field can be expressed
through the measured values of integral intensity of the interferogram Ir (x, y) and
phase ϕr (x, y), and the phase of the calibration beam ϕc(x, y):

Io(x, y) = Ir (x, y)−min
x,y

[Ir (x, y)],

ϕo(x, y) = ϕr (x, y)− ϕc(x, y). (3.1)

The lateral resolution r = 0.61λ/NA of the system is defined by its numerical
aperture, which can be defined as NA = A/2Z, where A is the size of the virtual
aperture, and Z is the distance between the DMD and the object.

The numerical aperture of the virtual optical system cannot be larger than the
angle of diffraction on a single micro-mirror λ/δ, where we assume the micro-mirror
size is equal to the pitch δ. With the smallest reported pitch of the DMD of 5.4 µm,
and the wavelength varying in the range of 0.4 v 1.5 µm, we obtain the NA range
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of 0.075 v 0.27, with larger NA corresponding to a longer wavelength. Similarly, the
pixel pitch δ of the DMD determines the smallest spatial frequency detectable: λ/δ.
Evidently, the field of view is limited by λ/δ, as any two points separated by a larger
angle would cause no interference.

Figure 3.4: Virtual optical system for image reconstruction.

Figure 3.5: The object for imaging experiments: a stage micrometer (R1L3S2P) from Thorlabs.The
central line (magnified in the inset) was used for the experiments.

After the complex amplitude U(x, y) =
√
Io(x, y)eϕo(x,y) is measured for all points

in the pupil, the field distribution in the object plane can be reconstructed by direct back
propagation from the plane of the DMD to the object plane, by using, for example, a
spectral method:

U(x, y , Z) = Φ−1
[

Φ[U(x, y , 0)] · e−Z
√
k2−u2

x−u2
y

]
, (3.2)

U(x, y , 0) = Φ−1
[

Φ[U(x, y , Z)] · eZ
√
k2−u2

x−u2
y

]
, (3.3)

where Φ and Φ−1 are forward and inverse Fourier transforms, Z is the distance from the
object to the DMD, ux and uy are the coordinated in the Fourier space, and k = 2π/λ,
where λ is the wavelength. Direct application of expressions 3.2 reconstructs the field
with a magnification of M = 1. The magnification can be altered by propagation of
the coherent field through a virtual optical system formed by a lens with focal length
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Figure 3.6: Field intensity (top) and phase (bottom) registered in different planes with magnification
M = 1, and a total field of view of 3x3 mm. From left to right the image shows fields registered at
the DMD plane, and back propagated to -2.5 cm, -5.0 cm and -20.0 cm from the DMD.

Figure 3.7: Image reconstructed in the best focus plane of a virtual optical system shown in Figure 3.4,
with magnificationM = −1, with magnificationM = −2, withM = −2 and one wave of astigmatism,
and with M = −2 and one wave of coma (left to right).

F , as shown in Figure 3.4, where

M = Z1/(Z + ∆Z), (3.4)

F =
Z1(Z + ∆Z)

Z1 + Z + ∆Z
. (3.5)

The lens can be modeled as a phase mask ϕl(x, y) = k x
2+y2

F . In the simplest case of
M = 1 and ∆Z = 0, we obtain Z1 = Z, and F = Z/2.

Our experimental system, as seen in Figure 3.8, is formed by a 15 mW He-Ne laser
with a beam expander. The laser illuminates a low-cost DM365 LightCrafter DMD
with a pixel pitch of δ = 10.8 µm. The reflected light is collected to the Fourier plane
by a 2-inch F/3 lens with a focal length of 15 cm. The interferograms are registered by
a low-cost CMOS camera with pixel pitch of 5.5 µm in a region of interest of 512x512
pixels. The DMD is placed at the front focal plane of the lens. The camera is placed
at the back focal plane of the lens.
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DMD He-Ne LaserBeam expander

Lens
f = 150 mm

Camera

Figure 3.8: The experimental setup of the coherent imaging system.

After registration of the reference phase corresponding to undisturbed laser beam,
an object represented by transparent glass slide ( see Figure 3.5) with a high-resolution
chrome mask was placed in the light path at a distance of ∼ 5 cm from the DMD.
The field was registered in a grid of 150x150 pixels, with pixel pitch of 2δ = 21.6 µm,
forming a virtual square aperture of about 3x3 mm. The numerical aperture of the
virtual optical system is equal to NA = A/2Z = 3/100 ∼ 0.03. The lateral resolution
of the optical system is estimated as r = 0.61λ/NA ∼ 13 µm.

Figure 3.6 shows the field distribution registered in the plane of DMD, and recon-
structed in three different planes, including the plane of best focus, by using back-
propagation described by the pair of expressions (3.2). Figure 3.7 illustrates the result
of propagation in a virtual optical system shown in Figure 3.4 with Z = ∆Z = 0.05 m,
and magnification of M = −1 and M = −2. The last two images in Figure 3.7 illus-
trate the possibility of virtual aberration correction by applying correcting phase terms
to the experimentally registered complex field. Since the optical system is practically
free from aberration, the addition of aberration terms reduces the image sharpness,
but proves the point that virtual adaptive correction is possible in such a system. Such
a correction could be necessary, for example, if the object image is registered through
the cover glass, causing spherical aberration.

Reconstruction of a complex field with dimensions of NxN requires N2 interfero-
grams to be registered and processed. Our experimental setup based on inexpensive
components achieved registration rates of up to 7 pixels per second, mostly limited
by the video interface of the DMD and the camera frame rate. Application of a more
advanced DMD and camera would allow to increase the registration rate up to at least
4000 pixels per second, resulting in a time requirement of 15s per frame for a pupil
sampling of 256x256 pixels.
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3.4. Scanning multiple binary masks
Further acceleration of the previous method can be achieved by increasing the number
of active pixels in a frame from two to a larger number. In this section, we present
a reference-less and time-multiplexing phase retrieval method by making use of the
digital micro-mirror device (DMD). In this method, the DMD functions not only as
a flexible binary mask which modulates the optical field, but also as a sampling mask
for measuring corresponding phases, which makes the whole setup simple and robust.
The DMD reflection forms a sparse intensity mask in the pupil which produces speckle
pattern after propagation. With the recorded intensity on the camera and the binary
pattern on the DMD, the phase in all the ‘on’ pixels can be reconstructed at once by
solving inverse problems with iterative methods, for instance using Gerchberg-Saxton
algorithm. Then the phase of the whole pupil can be reconstructed from a series of
binary patterns and speckle patterns. Numerical experiments show the feasibility of
this phase retrieval method and the importance of sparse binary masks in the improving
of convergence speed.

The basic principle of phase retrieval is explained in Figure 3.9. The surface of DMD
is illuminated by coherent laser light. The incident light is aberrated by a transmissive
phase object. A DMD and a camera are positioned at the back focal plane and front
focal plane of a converging lens respectively. The micro-mirrors of the DMD are
randomly switched on to form n frames of binary masks Mi (i = 1, 2, ..., n) . With all
these masks, the whole DMD plane will be sampled.

Figure 3.9: Optical set up for phase retrieval based on the DMD generated speckle patterns.

Assuming the optical field at the DMD plane is Uback , then we have can describe
this relation as:

Uback =

n∑
i=1

MiUback . (3.6)

In the wave optics, a converging lens performs two-dimensional Fourier transfor-
mations. The optical field in the DMD plane and the field in the camera plane Uf ront
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are related by Fresnel propagation:

Uf ront(x, y) =
1

jλF
Ûback(

x

λF
,
x

λF
), (3.7)

where F is the focal length of the converging lens, λ is the wavelength, Ûback denotes
the Fourier transform of Uback . When a binary mask Mi is used to modulate intensity
at the plane Uback , a speckle pattern I if ront propagated from I iback = |MiUback |2 can be
registered by the camera. This speckle pattern contains the information of the complex
field of the DMD plane which can be reconstructed by solving inverse problems.

Iteration methods, for instance the Gerchberg-Saxton (GS) algorithm as introduced
in Section 2.6.3 , can be used to reconstruct the optical field. The GS algorithm is
based on the iterative calculation of the forward propagation and back propagation.
In this case, we modified the classical GS algorithm with the known binary mask and
measure speckle patterns as the input information and assuming the initial intensity
on the DMD surface is uniformed. The detail modified algorithms is described in
Figure 3.10.

Figure 3.10: Phase retrieval with a modified Gerchberg-Saxton algorithm on a single frame.

We consider that the intensity of the DMD plane is known as the binary pattern
Mi . In order to retrieve the phase at the DMD plane, the algorithm starts with
the speckle distribution with a random phase at the camera plane. Then the inverse
Fourier transform of the field at the front focal plane U1

f ront is computed, obtaining the
optical field at the back focal plane U iback , with an intensity distribution different from
the binary pattern. The phase distribution is conserved, while the intensity distribution
is substituted with the known binary pattern. This new field is Fourier transformed,
obtaining a pattern

∣∣Ũ if ront ∣∣2 at the front focal plane which is similar to the registered
speckle pattern. The phase distribution of this pattern is kept, while the intensity is
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replace with the registered one. Then the inverse Fourier transform is computed again,
starting a new iteration cycle. With multiple iterations, the algorithm converges to the
exact distribution of the speckle pattern, which contains the right phase of the ‘on’
pixels of DMD.

All the pixels will be randomly switched ‘on’ only once during all the frames. The
corresponding phases will be registered and combined together with the help of a
shared reference, as shown in Figure 3.11. For instance, a single DMD pixel shared
by all frames can be used as a reference to integrate all the phase layers. There is no
need of extra setups to create a reference.

Multiple binary patterns are used, as randomness and sparsity in the intensity pat-
tern leads to a quick convergence in the iterative method. Such effects will be inves-
tigated in the following numerical experiments.

Based on the setup in Figure 3.9, we built a numerical propagation model to validate
the feasibility of this method. In order to investigate the effect of sparsity of given
binary patterns, the convergence speed is compared in experiments in different frame
numbers (1 frames, 5 frames, 20 frames and 40 frames), see Figure 3.12. The whole
dimension of the field is 512x512. The size of DMD is set to be 64x64. A defocus
aberration has been applied in the DMD plane.

Binary patterns

Reconstructed phase

Figure 3.11: The schematic of stacking multiple frames to retrieve the complete phase map.

For a given total number of frames n, there are 4096/n micro-mirrors in the ‘on’
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state in each frame. We reconstructed the phase for each of the frames using the mod-
ified GS algorithm. The variances between the given aberration and the reconstructed
phase in each cycle have been calculated for the first 200 iterations.

Figure 3.12: Comparison of the converging speed in different number of frames.

The effectiveness of the proposed method depends strongly on the total number
of frames. When there is just one frame to reconstruct the whole pupil, which means
all the DMD pixels are switched on at once, the GS algorithm cannot converge to
a stable result. With a total of 5 frames, the first 200 iterations shown a trend of
convergence. Yet the phase was still not close to the true value. The convergence
speed increase dramatically with increase of the total number of frame. Less than 40
iteration cycles are needed to converge for n = 20, when 5 % of the pixels are turned
on. The needed amount of iterations is reduced with the increase of n, and thus the
increase of sparsity of the DMD patterns. Though the exact number of iterations is
changing with different initial guess, this trend reveals that the condition of sparse
sampled input intensity is very important to the success of phase retrieval.

Adapting the parameters in the numerical model to our own experimental setups, we
demonstrated the full reconstruction of the phase in DMD pupil formed by 304× 342

pixels from only 50 frames. Each of the frame was created with 2 % of the pixels
randomly turned on. In the Fourier plane, every frame generated a single intensity
pattern, limited to 255 scales of gray, to represent an 8 bit camera image. The center
pixel was designated as a reference which was common between all the frames. The
simulation yielded the phase reconstruction of an introduced low-order aberration with
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Figure 3.13: Original phase (left, generated by a sum of Zernike polynomial up to the third order)
and phase reconstruction from 50 frames.

ten iterations used in the GS algorithm for each frame.

3.5. Conclusions
In the Section 3.3, we have experimentally demonstrated the registration of complex
coherent optical field by aperture sampling using a digital micro-mirror device. Unlike
other approaches to digital holography, our method does not require any external
reference beam, resulting in a very simple and robust registration setup. Based on
this approach, a lensless coherent microscope has been realized, in which the complex
amplitude has been experimentally registered inside a 3 mm aperture in a grid with
150x150 sampling points. The experimentally registered field have been propagated in
a virtual optical system to demonstrate virtual imaging, digital focusing, and adaptive
correction.

In the Section 3.4, we demonstrated the feasibility of phase reconstruction by solv-
ing phase retrieval problem from multiple speckle patterns produced by binary masks
generated with DMD. The quick convergence in iterative method is conditioned by
the randomness and sparsity of the intensity carrier in the DMD pupil. Primitive ex-
perimental implementations of this method have also been carried out. Due to the
noise in the practical conditions, more iterations were required for convergence. The
propagation model in the iterative algorithm should consider the misalignment and
aberrations of the system as well as the computation time in further work. In addition,
the optimal choice of common reference pixels is also expected to make contribution
to reduction of the noise.
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4
Holographic imaging with a
Shack-Hartmann wavefront

sensor

A high-resolution Shack-Hartmann wavefront sensor has been used for coherent holographic
imaging, by computer reconstruction and propagation of the complex field in a lensless imag-
ing setup. The resolution of the images obtained with the experimental data is in a good
agreement with the diffraction theory. Although a proper calibration with a reference beam
improves the image quality, the method has a potential for reference-less holographic imaging
with spatially coherent monochromatic and narrowband polychromatic sources in microscopy
and imaging through turbulence.

Parts of this chapter have been published in Optics Express 24(13), 13729, 2016 [1].
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4.1. Introduction
Recording of the complex electromagnetic field with the method of holography allows
to reconstruct both the phase and the amplitude at any propagation point [2, 3]. In
general, optical holograms are created by recording the interference patterns created
by the object and the reference waves. The object wave field is restored then by
scattering the reference beam on the hologram [4].

Methods of digital holography register the wave field in the computer [5], to facili-
tate the object field reconstruction by computational wave propagation using physical
optics models of diffraction and interference [6]. Digital holography has potential ad-
vantages of higher speed of the hologram acquisition, simple experimental setups, and
most notably, the availability of the complete amplitude and phase information about
the optical field. Once the complex amplitude is known, it is possible to manipulate
the wavefront to correct aberrations retrospectively [7, 8], extending the methods of
adaptive wavefront correction to virtual domain.

Since the phase information is not directly available, different methods of phase
reconstruction from intensity measurements have been developed. Phase retrieval and
diversity methods have been used to derive the computer description of the optical
field [9–11]. These methods reconstruct the complex amplitude by solving an inverse
source problem, using numerical methods, such as Gerchberg-Saxton algorithm [8, 12,
13]. In these cases, reconstruction of the complex field from recorded intensities alone
represents an ill-posed problem [14].

The Shack-Hartmann (SH) sensor is a simple tool commonly used in adaptive
optics to register the arrays of local wavefront tilts [15]. Each subaperture builds a
spot-like point-spread function (PSF) image, where the deviation of the centroid of
the light spot is proportional to the local wavefront derivative. The wavefront can be
efficiently reconstructed from the array of the centroid deviations, in a single shot.

In this chapter we describe experimental realization of holographic image recon-
struction from the phase and intensity obtained directly with a high-resolution SH
sensor.

4.2. Method
The scheme of a holographic imaging setup based on a SH sensor is shown in Fig-
ure 4.1. A transparent object is illuminated by a spatially coherent light beam and the
scattered field is registered by a high resolution SH sensor. Registered intensity con-
tains sampled information about the phase gradients and the intensity field, which can
be used to reconstruct the complex field in the sensor plane, and to obtain a coherent
holographic image of the object by back-propagating the complex field to the object
plane. Though the method is applied to a transparent object, a similar setup could be
used for imaging of reflective and scattering objects.

For a SH sensor having full aperture of A and pitch p, the resolution of the sensor
can be estimated from the analysis of interference produced by two coherent point
sources S1, S2 belonging to the object plane. If the distance between these two sources



4.2. Method

4

71

Figure 4.1: Imaging holographic setup based on the SH sensor.

is equal to B, then the interference fringe period δ in the sensor plane, at a distance
L from the object, is given by:

δ =
λL

B
. (4.1)

To avoid any information loss, the fringe period should be smaller than the sensor
aperture: δ < A. From this condition, we can derive the expression for minimum
distance between two point sources that is still resolved by the sensor:

Bmin =
λL

A
, (4.2)

where object features smaller than Bmin will not be resolved by the sensor.
On the other hand, from the Nyquist criterion, the minimum fringe period in the

sensor plane should cover at least 2 micro-lenses: δ = 2p, from which we can derive
the expression for the maximum field of view in the object plane:

Bmax =
λL

2p
. (4.3)

Condition (4.3) has a simple physical meaning: the whole object should be small
enough to remain unresolved by a single lenslet. This condition defines the difference
between our method and the approaches described in [16, 17], where each subaperture
resolves the object. If the object is larger than Bmax , the reconstructed field will have
parasitic low-frequency modulation, caused by aliasing. In some cases, when the low
frequency modulation is not important, the field of view can be chosen larger than
that defined by the condition (4.3).

The total number of resolved elements, in the ideal aliasing-free case, is given by:

Bmax
Bmin

= A/2p. (4.4)
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The number of resolved elements is one half of the number of micro-lenses along
the chosen coordinate, and the total number of pixels resolved in the object plane is
one quarter of the number of micro-lenses in the sensor matrix.

Reconstruction of the complex optical field from a high-resolution SH pattern re-
quires several steps. The phase is obtained by integrating the wavefront gradients [18].
Since the number of resolved elements in the hologram is proportional to the number
of lenslets, large lenslet arrays should be used for high-resolution imaging. Special
methods of phase reconstruction, suitable for processing of large arrays of spot images
produced by a SH sensor have been developed in Refs. [19–21]. In these methods, the
SH intensity pattern is represented as a composition of a series of interference fringes.
The pattern is Fourier transformed, then the first side lobes along the frequency axes
fx and fy in the Fourier domain are moved to the origin. Then, the phase derivatives
φx and φy are obtained as the argument of the inverse Fourier transform of the shifted
distribution of intensity. Then, the gradients Wx and Wy can be derived as:

Wx = pφx/(2πF ), Wy = pφy/(2πF ), (4.5)

where F is the focal length of the micro-lens array.
Once the gradient information has been obtained, the wavefront can be recon-

structed by a Fourier-based modal reconstruction [22–24].

Ŵ (fx , fy ) = −i
(fxŴx + fyŴy )

2π(f 2
x + f 2

y )
. (4.6)

Here the Fourier series is seen as a set of basis function of the wavefront. Ŵ is
used to denote the angular spectrum of W . In the work of [25] it was shown that
replacement of f by 2 sin(f /2) in equation (4.6) gives a better noise performance. We
have tried both reconstructors, but found no noticeable difference.

Before the Fourier based wavefront reconstruction can take place, it is essential to
pre-process the gradient fields. The φx , φy derived from the arguments of exponential
functions range in [0, 2π], possessing numerous discontinuities. Depending on the
method, phase unwrapping [26] might be required to obtain a smooth phase function
that can be used for building the physical optics model of propagation.

The intensity field can be obtained by smoothing the spot pattern with a suitable
low-frequency filter. The final complex field in the sensor plane is obtained by combin-
ing the phase and intensity fields. Finally, the object amplitude and phase distributions
are reconstructed by back propagation of the complex field to the object plane.

4.3. Simulation
For the numerical simulation we have adopted the parameters of the experimental
setup, described in Section 4.4, shown in Figure 4.1: a collimated beam with the
wavelength of λ = 633 nm is scattered by positive transparent resolution test chart,
shown in Figure 4.2. To represent the complex field, we used a square array with
sampling dimensions of n×n = 2048×2048 pixels with pixel pitch µ = 5.5 µm. After
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passing through the sample, the wave is propagated to the SH sensor at a distance of
L = 0.5 m. The SH array is formed by N ×N = 140× 140 micro-lenses in orthogonal
geometry with a pitch of p = 63 µm. The focal length of each micro-lens is 2 mm, and
the total size of the array is A = 8.82 mm. According to equation (4.2) the resolution
of our setup in the object plane is equal to:

Bmin =
λL

A
= 35 µm (4.7)

and the total field-of-view Bmax = BminN/2 = 2.45 mm.

Figure 4.2: Numerical model: resolution test chart (left). Intensity pattern retrieved from the SH
sensor at a distance of 0.5 m from the chart (middle). The central part of the Fourier transform of
the intensity pattern with sidelobes (inset) used to reconstruct the x and y components of local WF
tilts (right).

The simulation was initiated with filtering the coherent light wavefield through the
intensity mask. Then the filtered wave was propagated to the SH sensor, filtered
through the phase mask corresponding to the SH array, and propagated to the image
plane, where the intensity distribution was registered by a simulated camera with linear
intensity response with pixel pitch of µ = 5.5 µm. The simulated intensity pattern
I0(x, y), registered by the SH sensor, is shown in the middle of Figure 4.2.

The right part of Figure 4.2 shows the result of discrete Fourier transform (DFT)
of the registered SH sensor intensity pattern I0(x, y). The four symmetrical sidelobes
at distance d = µN/p ≈ 179 pixels from the center contain the phase information.
The scale of the DFT image is defined by the zero padding of the input array. The
sidelobes have been extracted in the window of 140×140 pixels, corresponding to the
number of lenslets N, and translated to the origin. The wavefront gradients were
obtained by applying inverse DFT to the centered sidelobe.

Figure 4.3 shows the wrapped distributions φx and φy . Two-dimensional Goldstein
branch cut unwrapping algorithm [26, 27] was used to unwrap the gradient fields.
The wavefront W (x, y), reconstructed using equations (4.5, 4.6) is shown in the right
part of Figure 4.3. As expected, the wavefront has low-amplitude high-frequency
modulation, with some large phase jumps localized in the areas of low intensity, where
the phase reconstruction is ill-defined.

The SH pattern I0(x, y , L) was smoothed by a Gaussian filter to obtain the intensity
field Ĩ0(x, y , L), shown in Figure 4.4. The complex field registered in the SH sensor
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Figure 4.3: Gradients φx , φy , corresponding to the diffraction on USAF test chart, reconstructed
from the inverse Fourier transform (left, middle), and the wavefront reconstruction (right).

Figure 4.4: Sensor intensity obtained in simulation, by filtering the SH pattern (left), and the recon-
struction of the resolution test chart by back propagation of the reconstructed complex field to the
object plane (right).

plane was composed as U(x, y , L) =

√
Ĩ0(x, y , L) exp(iθ(x, y , L)), where θ(x, y , L) =

kW (x, y , L) and k = 2π/λ. The complex field in the resolution test chart plane
U(x, y , 0) can be reconstructed by back propagation:

U(x, y , 0) = F−1{e−iL
√
k2−f 2

x −f 2
y F(U(x, y , L))}. (4.8)

Figure 4.4 shows the filtered intensity in the sensor plane and the numerical re-
constructed image of the resolution test chart in the object plane, at a distance of
L = −0.5 m. The resolution of the image corresponds to the theoretical limit. The
results of numerical experiment clearly demonstrate the validity of the method.

As with any other SH sensor, the reconstruction is expected to be not very sen-
sitive to the degree of temporal coherence in the illumination. We have simulated
the hologram reconstruction obtained with broadband sources composed of three
monochromatic lines with the bandwidth ∆λ = 20 nm, formed by three lines at
λ1 = 623, λ2 = 633, λ3 = 643 nm; ∆λ = 50 nm, formed by three lines at
λ1 = 598, λ2 = 633, λ3 = 658 nm; and ∆λ = 200 nm, formed by three lines at
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Figure 4.5: Simulated image reconstruction obtained with spatially coherent 633 nm monochromatic
source (left) and polychromatic sources with bandwidth of 20, 50 and 200 nm, centred at 633 nm
(images 2 to 4, counted from left to right).

λ1 = 533, λ2 = 633, λ3 = 733 nm. For each polychromatic source, we simulated
the SH spot pattern by incoherent summation of three intensity patterns obtained
for three wavelengths I∑ = Iλ1 + Iλ2 + Iλ3 . The resulting polychromatic spot pat-
tern I∑ has been used to coherently reconstruct the wavefront and the object, using
the central wavelength of λ2 = 633 nm. The reconstruction results, shown in Fig-
ure 4.5, demonstrate robust reconstruction for source bandwidth of up to 50 nm (up
to 200 nm with significant resolution loss), proving the method conditional usability
with polychromatic spatially coherent sources.

4.4. Experiment
For experimental validation we have built a setup according to the scheme shown
in Figure 4.1, with all parameters matching the simulation described in the previous
section. Positive USAF 1951 test target (R1DS1P, Thorlabs, U.S), shown in Figure 4.6
was used as the test object. The object was placed at a L = −0.5 m distance in
front of the SH mask. The SH array (OKO Tech, the Netherlands) is formed by
N × N = 140× 140 micro-lenses in orthogonal geometry with a pitch of p = 63 µm,
focal length of F = 2 mm and the total size of the square array of A = 8.82 mm.
High resolution camera UI-3370 (IDS corporation, Germany) has been used for image
registration.

In order to eliminate the systematic aberrations, the reference wavefront has been
registered without the object. In principle, this step can be excluded, but then some
virtual adaptive optics needs to be used for the compensation of systematic system
aberrations. Calibration with the reference beam is a simple step, which needs to be
done only once, then the calibration data can be used as long as the illumination beam
is stable.

After filtering and correction for the reference phase, we retrieved the intensity
and phase distributions in the plane of SH sensor. Figure 4.6 illustrates the intensity
corresponding to the object field, registered by the SH sensor. The image of the
resolution test target, obtained by back propagation to the distance of L = −0.5 m,
is shown in Figure 4.7.

Robust reconstruction of the wavefront is possible only when spots from all sub-
apertures are present in the image registered by the SH sensor. Theoretically, the high
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Figure 4.6: Positive 1951 USAF test target (R1DS1P, Thorlabs, U.S) (left), and the image registered
by the SH sensor (right).

;

Figure 4.7: Filtered experimentally registered intensity (left), and object reconstruction, obtained by
back propagation of the reconstructed wave to -0.5 m (right).

harmonics of the scattered light should enter all subapertures, even those in the ge-
ometrical shadow. However, registration of these harmonics requires a large dynamic
range and high signal to noise ratio of the image sensor. In our experiment, with stan-
dard USAF 1951 resolution chart, we have resolved the second element in the third
group. The resolution is defined by a standard formula R = 2G+(E/6) ≈ 8.95 lp/mm,
where G = 3 and E = 2 are the group and element numbers. This corresponds to
the resolved line pitch of 56 µm, which is close to the theoretical limit of 35 µm. We
attribute the resolution loss to the measurement noise, limited dynamic range of the
camera, and aliasing caused by the too large object size. Also, the resolution of the
method can not be reported exactly, due to some ambiguity in the definition of coher-
ent resolution, caused by the intrinsic nonlinearity of coherent imaging. See Ref. [28]
for further discussion on the definition of coherent resolution.
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4.5. Discussion and Conclusion
We have demonstrated holographic imaging with a SH sensor, experimentally realizing
a transmissive lensless imaging setup with close to the diffraction limited resolution on
a high-contrast object.

This technique holds promise for microscopy and general coherent imaging with ex-
tended depth of field in applications that require fast registration and fast processing
of a large number of relatively low-resolution holograms, such as dynamic holographic
interferometry, flow cytometry, dynamic microscopic imaging. In addition, direct re-
construction of the complex field allows to create a virtual adaptive optical system,
computationally correcting for the aberrations in the imaging path. This approach can
be used for coherent multi-aperture imaging of remote objects through atmospheric
turbulence, in systems similar to suggested in [17, 29].

The experimental setup can be further optimized for speed and simplicity. In par-
ticular, the number of camera pixels used for hologram registration, can be optimized.
In our setup we used more than 100 pixels to register the light spot under each single
lenslet. Essentially, a quad cell with 4 pixels is sufficient for the registration of both
the intensity and the centre of gravity of the light spot. This brings us to the minimum
requirement to the number of pixels in the registration camera: 4 imaging sensor pixels
are needed per micro-lens, and 4 micro-lenses are needed per reconstructed hologram
pixel, resulting in the minimum requirement of 16 camera pixels per reconstructed pixel
in the final image. This conclusion sets theoretical limit to the number of pixels, in
the assumption of linear response of the quad cell to the spot coordinate. In practice,
a system with large number of quad cells is expected to be non-linear and difficult to
align, but nonetheless a quad-cell based Hartmann sensor proved possible in the previ-
ous work from the authors [30]. Coherent back propagation extends the information
contents beyond the single intensity distribution, by using the phase to reconstruct the
intensity in a number of different planes along the propagation path.

There is no principal requirement for a reference beam, though the quality of
reconstruction is better when the reference beam is used to account for systematic
aberrations. To achieve the theoretical resolution, the imaging setup requires the
incoming light to have a high degree of spatial coherence over the whole lenslet array.
However, simulation proves that the instrument is not very sensitive to the degree
of temporal coherence in the illumination and can be used with spatially coherent
polychromatic sources.

In this chapter, we have investigated the bare-bone proof of concept. It can be
further developed for a higher resolution and higher numerical aperture by using denser
and larger micro-lens arrays, and by introducing additional optics for proper optical
coupling of the illumination beam to the object and the sensor, towards usable coherent
imaging instrument.
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5
Optical path difference

microscopy with a
Shack-Hartmann wavefront

sensor

In this chapter we show that a Shack-Hartmann wavefront sensor can be used for quantitative
measurement of the specimen optical path difference in an ordinary incoherent optical micro-
scope, if the spatial coherence of the illumination light in the plane of the specimen is larger
than the microscope resolution. To satisfy this condition, the illumination numerical aperture
should be smaller than the numerical aperture of the imaging lens. This principle has been
successfully applied to build a high-resolution reference-free instrument for the characteriza-
tion of the optical path difference of micro-optical components and microscopic biological
samples in both transmissive and reflective configurations.

Parts of this chapter have been published in Optics Letters 42(11), 2122, 2017 [1] and Proc. SPIE
10616, 2017 International Conference on Optical Instruments and Technology: Optical Systems and
Modern Optoelectronic Instruments [2].
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5.1. Introduction
Optical path difference (OPD) is an important modality in modern microscopy, as it
provides additional information about the structure of microscopic samples, especially
when the intensity modulation is weak due to low absorption in the specimen. In
many cases, such as characterization of micro-optical components, it is important to
measure the quantitative distribution of the sample OPD, with a precision comparable
to ordinary optical shop testing.

Phase contrast microscopy visualizes the OPD of microscopy samples and dif-
ferent techniques can be used to achieve this phase contrast. Zernike phase contrast
microscopy increases the image contrast by manipulating the phase difference between
the scattered and unscattered light [3, 4]. However, this intensity information cannot
be converted to OPD directly, moreover, images are affected by an inherent halo and
shade-off artifacts. Differential interference contrast microscopy is a kind of shearing
interferometry which generates the phase gradient contrast by slightly shifting two
polarized light beams and then interfering them with each other [5]. This method is
more popular than Zernike phase contrast for its good pseudo three-dimensional view
and improvement on the transverse resolution, although it can not be employed to
quantitative OPD measurements due to its non-linear response.

Interferometric methods, such as interference microscopy and digital holographic
microscopy, provide quantitative phase measurements with high transverse resolu-
tion [6], but they require a highly coherent light source. On the other hand, White-light
interferometry usually requires an accurate positioning stage to achieve quantitative
measurements [7]. In addition, the practical applicability of these interferometric meth-
ods is limited by the requirements of a highly coherent reference beam [8, 9].

Phase diversity methods [10, 11] retrieve the phase by iteratively solving inverse
problems using well-established diffraction theory. Mostly they suffer from slow con-
vergence and non-uniqueness in the result due to the ill-posed nature of the problem.
Redundant constraints, such as intensity measurements at different distances [12], with
diverse phases [13] and with varying apertures [14, 15], can be used to improve phase
retrieval performance. The additional apparatus required by these methods further
complicates the imaging system.

Wavefront sensing technology is widely and maturely developed in the field of
adaptive optics [16]. Quadriwave lateral shearing interferometry wavefront sensor has
been employed for quantitative phase imaging and has achieved a sensitivity of a few
nanometers [17]. Recently, a technique named partioned aperture wavefront sensing
also realized quantitative phase measurement with incoherent illumination by using a
quatrefoil lens [18].

Shack-Hartmann (SH) wavefront sensors are widely used to detect the smooth
wavefronts of the light beam. Such a restriction to low-order reconstruction is sufficient
for many applications, thus the transverse resolution of SH sensors was inferior to
the interferometric and phase retrieval sensors [19]. However, the development of
high-resolution SH sensors facilitates their direct application to imaging problems, for
example a holographic imaging with a SH sensor has been recently demonstrated: [20].



5.2. Transmissive configuration

5

83

In this chapter, we report a quantitative OPD microscope based on a high resolution
SH wavefront sensors. By directly using wavefront reconstruction technique, the OPD
due to the sample thickness and refractive index can be simply obtained by integration
of the gradient field registered by the sensor. This non-interferometric technique is
able to work under spatial incoherent illumination with high light efficiency. As a widely
available optical component, the SH wavefront sensor can easily transform an ordinary
microscope into an OPD imaging modality with the following described principles. Two
configurations both in transmissive and reflective modes were implemented and tested.

5.2. Transmissive configuration

Figure 5.1: Diagram of the Shack-Hartmann quantitative OPD microscope.

The scheme of a transmissive SH-based OPD microscope is shown in Figure 5.1.
To correctly understand its function, we need to consider two optical paths: (1)
The imaging is performed by projecting the sample image on the microlens array
(MLA), by the optical system formed by the objective lens and the tube lens with
magnificationM = ft/fo where ft and fo are the focal lengths of the tube and objective
lens respectively. In this optical path, each lenslet corresponds to a single pixel in the
image of the sample intensity. (2) The wavefront sensing path is formed by the light
source, a transparent sample with unknown OPD distribution, the objective lens, the
tube lens, and the MLA. The first image of the light source is formed in the pupil of the
objective lens if L� fo , which is easy considering the short focal length of microscope
objectives. The position of this image depends on the wavefront tilts introduced by
the sample. The pupil plane, containing an image of the source, is conjugated to the
image sensor by the system formed by the tube lens and one of the lenslets. Since
each lenslet corresponds to a single resolution point in the sample plane, the lateral
shift of the source image behind the lenslet will be dependent on the local wavefront
tilt introduced in the corresponding point of the sample.
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5.2.1. Principles
To obtain a correct SH pattern with localized light spots, the position of which is
linearly dependent on the OPD gradients, two physical conditions should be satisfied:

(1) To guarantee that the scattered light has enough space to move in the pupil
of objective, the half angular size of the light cone α scattered by the sample, should
be smaller than the aperture angle of the objective:

tan(α)� Ao . (5.1)

(2) To guarantee the correct centroiding, the image of light source behind the
lenslet should be smaller than the MLA pitch:

tan(α/M)� AM , (5.2)

where AM is the numerical aperture of the micro-lens array.
With the assumption that the sample has a minor effect on the scattered light

cone, the angle α is mainly defined by the numerical aperture of the illumination
As . According to Van Cittert-Zernike theorem, the coherence size provided by an
extended source with numerical aperture of As in the plane of sample is proportional
to ∼ λ/As , while the resolution of the microscope is defined by the numerical aperture
of imaging lens ∼ λ/Ao . This brings us to the conclusion that, to secure correct
operation of a SH sensor, the length of spatial coherence of the illumination light in
the sample plane should be larger than the optical resolution of the microscope. In
the plane of the MLA, full spatial resolution is obtained with lenslets that are smaller
than the microscope point spread funtcion (PSF). This condition is equivalent to the
requirement of complete spatial coherence over the extent of a single lenslet. If the
lenslet size is larger than the PSF size, correct wavefront reconstruction is still possible,
with some loss of spatial resolution, as long as condition 5.2 is satisfied.

Compared to the usual wavefront sensing requirement of complete coherence over
the whole aperture of the sensor, these requirements are much softer. This difference
is explained by the fact, that the OPD function is a deterministic function which is
coherent by definition, therefore only local coherence of the probe light is needed to
characterize it. In contrast, the wavefront characterization in the field of adaptive
optics, the deterministic function describing the wavefront can be defined only if the
light is coherent over the whole sensor aperture, including all lenslets.

In the MLA plane, the wavefront gradient decreases by a factor ofM due to the mi-
croscope magnification, while the wavefront height remains the same. The registered
SH pattern can be approximated as a regular foci grid modulated by the wavefront
gradients ∂W

∂x ,
∂W
∂y under the assumption that the spots are circularly symmetric and

equal. The wavefront gradients may be retrieved from the first harmonics as follows
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[21, 22]:

ISH(x, y) = E2(x, y)E∗2(x, y)

{
2 + cos

[
2π

P

(
x + F

∂W

∂x

)]
+ cos

[
2π

P

(
y + F

∂W

∂y

)]}
,

(5.3)

where F is the focal length of a lenslet. P is the pitch of MLA. Therefore, the
illumination source should also meet the same requirement as the assumption for SH
spots. When considering the absorption of the sample, the movement of spots is not
affected by small intensity variations. While if the absorption is severe, the SH pattern
should be carefully exposed or enhanced with high dynamic range techniques.

In this chapter we retrieve the wavefront gradients by using the Fourier demod-
ulation method [23]. A reference wavefront is registered in advance in the absence
of sample, for sensor calibration. Then the OPD gradients brought by the sample
∂O(x,y)
∂x , ∂O(x,y)

∂y can be obtained by calculating the deviation from the reference. Fi-
nally, we can reconstruct the OPD by two-dimensional gradient integration [24]:

O(x, y) = F−1

−i fxF
{
∂O(x,y)
∂x

}
+ fyF

{
∂O(x,y)
∂y

}
fx

2 + fy
2

 . (5.4)

Here F{·} and F−1{·} denote the Fourier transform and inverse Fourier transform.
fx , fy are the coordinates in the frequency domain. Note that phase unwrapping is
needed when the obtained wavefront gradients contain phase jumps [25].

5.2.2. Experiments
To study the feasibility and accuracy of this method, the OPD profile of a micro-lens
array (APO-Q-P300-R8.6, AMUS GmbH, Germany) was measured in the experiment
with a customized microscope in the configuration of Figure 5.1. The light source is a
collimated LED (M470L3-C1, Thorlabs, US) with the central wavelength of 460 nm,
and a bandwidth of 25 nm. The numerical aperture of this collimated LED source
is As ≈ 0.02. A commercial SH sensor (FS3370-O-P63-F2, OKO Tech, the Nether-
lands) consisting of 140 × 140 lenslets with a pitch of P = 63 µm, focal length of
F = 2 mm, with a 2048×2048 digital CMOS sensor employed for image registration.
Our setup is built to satisfy the condition:

P 6 M
λ

Ao
, (5.5)

which is equivalent to condition 5.2. According to condition 5.5, the microscope
was then implemented with a 10× microscope objective (Ao = 0.25) and a tube
lens with ft = 400 mm, providing ∼ 2.5× extra magnification, resulting in a total
magnification of 25×. With a 63 µm lenslet, here we have experienced some loss in
the spatial resolution, but the OPD was correctly reconstructed since condition 5.2
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was still satisfied.

Figure 5.2: Bright field microscope of a lenslet obtained with 10× microscope objective with Ao =

0.25 (a). 3D OPD map of the MLA reconstructed from a SH sensor with a LED illumination (b).
Thickness map of the lenslet (c). Center cross-section of the micro-lens reconstructed with LED and
laser illumination (d).

The experimental results are shown in Figure 5.2. According to the manufacturer
specification sheet, the sample lenslets have plano-convex spherical shape with a pitch
of 300 µm and a nominal focal length of 18.6 mm. The sagitta of micro-lens is
s = 1.31 µm. The contrast of the bright field image in Figure 5.2 (a) is very poor even
though some ring structures are visible. Figure 5.2 (b) shows the three-dimensional
reconstruction of the OPD in the specimen. The layer structure due to lithographic
fabrication process is clearly visible. The refractive index of the central wavelength in
the fused silica is n = 1.4647. Then the OPD map of a single micro-lens is converted to
the optical thickness in Figure 5.2 (c). The blue line in Figure 5.2 (d) is the center line
cross-section of the micro-lens thickness map. The measured sagitta s = 1.388 µm

is close to the given geometric parameter. The red dash line is the measurement of
the same micro-lens in the same setup, but with the LED replaced by a collimated
fiber laser (HLS635, Thorlabs, US). The wavelength of the laser is 635 nm and the
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refractive index is then n = 1.4570. We can see a very good agreement between these
two measurements. The variance may be due to the speckle noise, as it tends to
produce a more noisy measurements compared to partially coherent light. The spatial
resolution in this particular case is limited to rs = P/M ≈ 2.5 µm. In the assumption
of noiseless registration, the OPD error per lenslet can be derived from the average
wavefront curvature over the lenslet ∆M ≈ rs

2| d2ψ
dr2 |, where ψ is the OPD function

and r is the coordinate. For a spherical surface with radius R we have | d2ψ
dr2 | = 1/R.

In this particular case with R = 18.6 mm, ∆M ≈ 0.34 nm. Further analysis of the
OPD error due to reconstruction noise, speckle, sensor sensitivity and other factors,
is out of scope of this work. The data of our reconstruction, including thickness and
number of layers, and the amplitude of the surface waviness, is in perfect agreement
with the manufacturer’s data, obtained independently for this particular sample (V.
Leleko, private communication).

Figure 5.3: Measured thickness of micro-lens sagitta versus numerical aperture of illumination As .

In Figure 5.3, we investigated the influence of the illumination coherence on the
accuracy of the OPD measurement. The incoherent LED illumination was scattered by
a ground glass with a diameter of D = 25.4 mm at a distance L from the sample. We
controlled the source angular size As = D/2L by changing the distance L between the
ground glass and the sample. The experiment produces correct reconstruction as long
as the illumination size As 6 0.17. Further increase of As causes the measurement
error to rise quickly, when As is approaching Ao , in agreement with our analysis. The
increase of the illumination NA results in larger bright source image inside the dark
objective lens pupil. Wavefront tilts are sensed as movements of this bright image
in the dark field. When the source image becomes too large, wavefront tilts result
in vignetting of the shifted image by the edges of the pupil, producing erroneous
measurements. Finally, when the image is larger than the pupil, the sensitivity to
movements is reduced to zero. In this configuration, condition 5.2 is always satisfied,
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therefore, some strongly scattered ray movements were still sensed. Thus, we have
shown experimentally, that a SH sensor can be used for precision measurements of OPD
profiles with relatively low coherent illumination. Conventional microscopes could be
easily converted for OPD imaging by properly adjusting the numerical aperture of the
illumination system.

We have further applied this microscope to biological samples. An unstained dry red
blood cell (RBC) smear was observed under a 40× objective (NA = 0.65). Figure 5.4
is the bright field image of red blood cells. In this image, only the outline of the red
blood cells is visible. Details of the content of the red blood cells are however invisible
due to the transparency of the red blood cells.

The OPD map, shown in Figure 5.4 (c) offers more topographic information of the
red blood cells, e.g. the ring shape of blood cells. Thus, this method offers interesting
potentials for blood related disease diagnostics. Particular interesting application could
be clear imaging of the malaria parasite in an unstained infected blood sample.

Figure 5.5 shows both the bright field image and OPD map of a living human cheek
cell. The sample was surrounded by physiological saline and was sandwiched between
microscope slide and cover slip. The biological structure of the cheek cell including
the nucleus, cytoplasm and membrane ruffles are visible in the OPD map while it is
difficult to resolve from the bright field image without labeling. Benefiting from the
high photon efficiency by using MLA to gather light, the SH image of the cell was
acquired at an exposure time less than 5 ms with 1/6 of the LED maximum current
(about 50 mW ). The acquisition speed can easily achieve the full frame rate (75 f ps)
of the sensor, which enables real-time cell and sub-cell activity monitoring.

5.2.3. Conclusion
In summary, we have shown that for instrumental application of a SH sensor to charac-
terize the OPD of transparent samples in an imaging microscope, the lateral coherent
length of the illumination should be larger than the resolution of the imaging lens of
the microscope. Additionally, the numerical aperture of the illumination source should
be smaller than the numerical aperture of the imaging lens. This condition allows
one to optimize the microscope both for high-resolution imaging and for correct OPD
sensing. Based on these principles, we have developed a simple and robust quantita-
tive OPD imaging microscope with which we have accurately characterized the OPD
profile of microscopic samples, including micro-optical components, unstained blood
cells and unstained cheek cells. This method can be easily applied to a conventional
microscope, through proper alignment of the illumination setup, providing a low cost
methodology for quantitative OPD analysis. Although only transmissive imaging cases
has been verified in these experiments, this technique holds potential for reflective
surface profile imaging, which is described in the following section.

5.3. Reflective configuration
In this section, we present a quantitative phase imaging microscope based on a SH sen-
sor, that directly reconstructs the optical path difference (OPD) in a reflective mode.
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Figure 5.4: (a) Bright field image of red blood cells; (b) SH pattern; (c) the reconstructed OPD map.
A cross-sessions of the OPD of individual blood cell is shown in the inset.
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Figure 5.5: OPD measurement of a living cheek cell: (left) the bright field intensity image; (right)
the OPD map.

Compared with the holographic or interferometric methods, the SH technique needs no
reference beam in the setup, which simplifies the system greatly. With a pre-registered
reference, the OPD image can also be reconstructed from a single shot. Also, the
method has a rather relaxed requirement on the illumination coherence, thus a cheap
light source such as a LED is feasible in the setup. In the previous section, we have
successfully verified that a conventional transmissive microscope can be transformed
into an optical path difference microscope by using a SH wavefront sensor under inco-
herent illumination. The key condition is that the numerical aperture of illumination
should be smaller than the numerical aperture of imaging lens. This approach is also
applicable to characterization of reflective and slightly scattering surfaces.

Characterization of the profile of a surface is required in various applications in both
industrial and biomedical fields, including MEMS characterization, precision micro-
optics, living cell monitoring [26–28]. The existing profiling methods can be put into
two categories: contact and non-contact. Generally, the contact methods use a stylus
to scan the surface to achieve resolution in nanometer or sub-nanometer scale. The
mechanical system is bulky and the scanning process is relatively slow, especially for a
2D areas. Because of the invasive tip, certain materials, such as biological samples,
are difficult to measure.

Therefore, the non-contact optical methods are gaining popularity in profilome-
try. Currently, the interferometric methods, such as the scanning interferometry and
digital holography, are dominant. In general, they exploit the interference between
the reference and sample beams. The phase difference between the two beams is
extracted from the recorded interferogram or hologram. These methods can measure
the surface topography with lateral resolution down to the diffraction limit. The axial
resolution can achieve a sub-nanometer range. However, aberrations are difficult to
avoid through all the optical components in the setup. Building a highly sensitive inter-
ferometric system needs a very good alignment which takes a lot of effort to achieve
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in practice. Most interferometric methods rely on highly coherent light source, which
will suffer from speckle noise not only the measured sample but also the scattering
of optical components [9, 29]. Both the requirements on system alignment and light
source add the cost to a commercial instrument. Applying the wavefront sensing
technique to the profilometry is also a trend. Methods like the partitioned aperture
wavefront sensing [30], and the quadriwave lateral shearing interferometry [17] obtain
good results.

In this work, we investigate further the reflective profilometry with the Shack-
Hartmann wavefront sensor. We consider the requirements to illumination coherence
and image sampling. Then the Fourier demodulation wavefront reconstruction tech-
nique is described. An experimental setup has been built to validate the feasibility of
the method. A hexagonal microlens array mold is characterized using the method.
The experimental results indicate that it is promising to instrumentalize this technique
due to its simple and robust feature.

5.3.1. Illumination conditions
If the sample image is obtained on the surface of the microlens array, the spot size in
the subaperture of a SH sensor is defined by the spatial coherence of the illumination
beam and the scattering in the sample. Similar to the requirement in the transmissive
configuration 5.2.1, the spot should fit into the field of view, also have some freedom
to move, to facilitate precise measurements of local tilts. Here we can summarize the
rule for reflective configuration into the expression:

λ

C
+ S + 2T � A, (5.6)

where C is the characteristic size of the spatial coherence of illumination in the plane
of the sample, S is the scattering angle on the sample, T is the maximum expected
tip/tilt of the sample surface, and A is the numerical aperture of the imaging lens.
Condition (5.6) allows for engineering compromise between the spatial coherence C
of the illumination, sample scattering S, and the measurement range T , especially if
A is not large enough.

5.3.2. Experiments
Figure 4.1 depicts an implementation of the SHWFS based microscope in a reflection
configuration which is suitable for micro surface profiling. This implementation can
be easily modified from a standard reflective microscope. A converging lens is used
before the objective lens to collimate the light incident on the sample. The SHWFS
locates at the imaging plane after the tube lens which is conjugated with the focal
plane of objective lens with a system magnification. The objective lens, tube lens and
the types of SHWFS can be tuned to satisfy the illumination condition in Section 5.3.1
with respect to the desired applications.

The difference from the transmission configuration is that the retrieved gradients
are twice the OPD gradients. It is because of the reflected angle is doubled the local
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Figure 5.6: Setup of a SHWFS based reflective micro-profilometer.

tilt with respect to the normal of surface. This factor should be eliminated before the
OPD reconstruction.

An off-spec silicon mold, provided by Flexible Optical BV, see Figure 5.7, is char-
acterized to verify the feasibility of the approach. The mold has been fabricated by
anisotropic etching of silicon [31, 32]. This hexagonal array has 127 micro-mirrors
with a pitch of p = 300 µm, radius of curvature r ≈ 9.52 mm and sag s ≈ 1.18 µm.

The schematic of our experiment is shown in Figure 5.6. A collimated green LED
(central wavelength 530nm, M530L3, Thorlabs, US) is used as the light source. A
positive lens with focal length of 200 mm, in combination with a 10× objective (NA
= 0.25) is used to form collimated sample illumination. The imaging/sensing arm is
formed by the objective and a f = 400 mm tube lens, providing total magnification of
25×). The mold images are projected onto the microlens array of the SH sensor, to
form a sharp image. The SHWFS (FS3370-O-P63-F2, Flexible Optical BV, Nether-
lands) has 140×140 lenslets in orthogonal arrangement. The pitch of the lenslet array
is 63 µm. The focal length of each lenslet is about 2 mm. The sampling interval in
the measurement plane is equal to 63/25 ≈ 2.5µm.

A reference is obtained with a flat mirror in the sample plane. This calibration step
only has to be carried out just once. Then, the mold was put at the focal plane with a
SH pattern being recorded. The reconstructed OPD is shown in Figure 5.8 (a). We can
clearly identify the hexagon structure and the surface shape from the reconstruction.
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A profile of the center is shown in Figure 5.8 (b) after a tilt correction. We flip
this measurement upside down to compare with the ideal surfaces of the expected
microlens in Figure 5.8 (c). The mirror figure defect, due to non-uniform etching rate,
is clearly visible in the measurement result.

Figure 5.7: Silicon mold of a hexagonal microlens array, with pitch of 300µm.

5.3.3. Discussion and Conclusion
We have experimentally shown that the SH sensor can be used for micro-profilometry
in a very simple setup, with relaxed requirements to the coherence of illumination and
the sample scattering. The throughout investigation of the accuracy, range, and the
sensitivity of the method, will be carried out in the future. In this particular experiment,
we used this micro-profilometer to characterize the quality of a microfabricated silicon
mold and have demonstrated a quite promising performance.

Moreover, there are some considerations when applying this approach as a micro-
profilometer:

• The system can tolerate a certain amount of scattering on the sample, however
significant roughness and scattering of the surface make contributions to the
left part of condition (5.6), resulting in bad signal-to-noise performance and the
failure of measurements.

• Instead of measuring the height directly, it is the OPD gradients being measured.
The optical system works as a low pass filter for the gradients, so any reflected
ray at an angle which is larger than the system NA (i.e. the high frequency
components in angular spectrum) will be ignored, causing black spot in the image.
Steep surfaces are difficult to detect with this method. A high numerical aperture
system or multiple angle detection is needed to improve the performance.

• For samples with non-uniform reflection/absorption the high dynamic range
(HDR) technique can be considered to extend the intensity dynamic range. Be-
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Figure 5.8: Reconstruction of the profile of a single 300 µm micro-mirror: the reconstructed OPD
map (a), the cross-section profile of the micro-mirror (b), and the comparison between the measured
and prescription profile data (c).

side that, the non-uniform intensity also affects the wavefront reconstruction [33]
and needs to be investigated further.

We have successfully demonstrated a micro-profilometer based on reflective Shack-
Hartmann wavefront sensing technique. The technique can be implemented by simply
modifying a standard reflection microscope. It can work with a low cost light source
under relaxed requirements to the spatial and temporal coherence, making it an inex-
pensive alternative to the existing techniques.
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6
Light-sheet fluorescence

microscope with waveguide
illumination

Ideas do not always come in a flash
but by diligent trial-and-error experiments

that take time and thought.

Charles Kuen Kao

Although a large body of research has been done on light-sheet formation through a multi-
mode fibre, we found out that simple adaptive control does not secure a stable light-sheet
with a standard multimode waveguide. Any small deformation of the waveguide distorts the
mode combination, destroying the target intensity distribution. In our opinion, the approach
is implementable, but not practical. Therefore, in this chapter we have concentrated on
the methods to obtain the full functionality of a light-sheet formation via the multimode
waveguide, that allows for high stability and simple implementation. In this respect, we have
investigated two approaches: 1. Slab multimode waveguide with light-sheet translation and
control using the Talbot effect; 2. Multimode waveguide formed by a plurality of GRIN lenses.
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6.1. Introduction of light-sheet fluorescence microscope
During the last decades, fluorescence microscopy has become a powerful biological
and medical imaging tool for the biologists. The fluorophores, which are able to
conjugate with many biological molecules in the specimen, can be excited by a spe-
cific wavelength, and emit light with a longer wavelength. This emission captured
by the fluorescence microscope allows high resolution and high contrast imaging of
the fluorophore distribution, hereby indicating the structure of the specimen. Many
fluorescence microscopy techniques have been developed according to different appli-
cations [1, 2]. The epi-fluorescence microscope, as shown in Figure 6.1 (a), is one
of the most popular implementations. Its illumination part and detection part are ar-
ranged on the same side of the sample stage. Both the illumination and emission light
travel through the same objective lens in this configuration. It is able to capture a
wide field of view of the sample at a time. Thus, it is suitable for fast acquisition of
dynamic processes while suffering a relatively low axial resolution and the signal will be
affected by the background fluorescence from the out-of-focus layers [3].

Confocal fluorescence microscope, as shown in Figure 6.1 (b), filters out the out-
of-focus light by placing a spatial pinhole or a pinhole array at the confocal plane with
the sample before the detector. It increases the signal-to-noise ratio and contrast.
As a consequence, the lateral resolution is improved compared to wide-field fluores-
cent microscopy [4]. Combining with the techniques of illumination engineering, such
as stimulated emission depletion microscopy (STED) [5], structured illumination mi-
croscopy(SIM) [6], and localization algorithms, such as photoactivated localization mi-
croscopy(PAM) , and stochastic optical reconstruction microscopy (STORM) [7]), it
enables the super-resolution microscopy which was awarded the Nobel prize in 2014 [8].
However, due to the sequential point scanning scheme, the sampling process of the
confocal arrangement is much slower. Additionally, the whole sample will be irradi-
ated by the excitation light at a high intensity which may cause photobleaching and
phototoxicity effects to the biological sample.

Recently, the light-sheet fluorescence microscopy (LSFM), also named selective
plane illumination microscopy, is gaining popularity as a new form of fluorescence
microscopy. As shown in Figure 6.1 (c), the key feature of a light-sheet microscope
is its illumination path being perpendicular to the imaging path. A thin light-sheet
is projected into the sample from the side to illuminate the entire focal plane of the
imaging objective at the same time. There is no emission light from the out-of-focus
part, thus only the illuminated plane can be recorded. Comparing with the conventional
epi-fluorescent microscopy, the light-sheet microscopy has the same lateral resolution
but can achieve a better signal-to-noise ratio by this optical sectioning procedure.
The field of view with a good axial resolution is limited by the Rayleigh length of the
illumination light-sheet. A three-dimensional fluorescent image of the sample can be
generated by stacking the recordings from a number of sections which is much faster
than the confocal scanning microscopy. Meanwhile, with planar optical sectioning,
the light-sheeted scan through the whole sample can be avoided so that the sample
absorbs much less radiation from the illumination. Therefore, with all these properties
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of 3D imaging, speed and low phototoxicity, the light-sheet microscope is considered
a promising tool for in vivo biological imaging applications.

Illumination

Detection

Illumination

Detection Detection

Illumination

Objective Objective Objective

Filter Filter Filter

(a) (b) (c)

Figure 6.1: Configurations of fluorescence microscopes: (a) is classical epi-fluorescence microscopy.
(b) is confocal microscopy. (c) is light-sheet microscopy.

6.2. Variants of LSFM for high-resolution imaging and compatibility
The typical configuration of LSFM is formed by the orthogonal arrangement of two
objective lenses or one cylindrical lens with one objective lens. However, such a config-
uration is usually too bulky to be compatible with many existing microscopy systems.
Furthermore, when it comes to the high resolution imaging case, high numerical aper-
ture lenses which have a short working distance are needed. For example, a common
objective with a NA of 0.65 has a working distance of 0.65 mm. It will easily lead to
a spatial constraint issue in the implementations. These incompatibilities obstruct the
widespread use of LSFM in the many applications.

Thus there are many variations of LSFM to meet the challenges of high resolution
imaging and compatibility problems. In the work of J. Gerhardt et al. (2013), they
developed a reflected light-sheet microscopy (RLSM) to achieve single-molecule imag-
ing [9]. In the RLSM geometry as shown in Figure 6.2 (a), the illumination objective
and detection objective are parallelly arranged. A small disposable mirror modified from
AFM cantilever holder is placed close to the sample reflects the sectioning laser beam
by 90◦. Both illumination and detection objectives can be chosen with high numerical
aperture in this geometry.

Instead of using two objectives, Elisa Zagato et al. implemented a single objective
single plane illumination microscopy (SoSPIM) in 2017 [10]. It is an on-chip light-
sheet microscope with an integrated micro-mirror in the sample holder as illustrated in
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Figure 6.2 (b). The excitation laser beam is shaped and passes through the objective
lens. The fluorescent emission is collected by the same lens. This method needs a
dedicated sample holder and a relatively complex optics for controlling the light-sheet.
Also, only one layer of the sample can be sectioned in the original design.

Illumination
objective

Detection
objective

Mirror
Micromirror

Detection
objective

Sample channel

(a) (b)

Figure 6.2: (a) A typical reflected light-sheet microscope (RLSM). (b) A variant of RLSM by using
a single-objective lens (SoSPIM).

Apart from the reflected schemes, other methods based on the waveguide are
developed. In the work of H. Deschout et al., a microfluidic chip was developed as a
sample holder with light-sheet illumination integrated [11]. It is used for fluorescence
single particle tracking and membrane vesicles characterization. Figure 6.3 (a) shows
the scheme of this method. The excitation laser light is coupled into a slab waveguide
through a single mode fibre. This waveguide is also designed to support mono-modal
propagation. A core layer of ∼ 5 µm thickness is sandwiched by two ∼ 25 µm cladding
layers. Their refractive indexes are ncore = 1.595 and ncladding = 1.594 respectively.
The light spreads out horizontally to illuminate the whole microchannel, while in the
vertical direction, the spread is confined within the core. The light will diverge slowly
right after the waveguide so that the thickness of the light-sheet in the field of view
is usable for the specific measurement. An average light-sheet thickness of ∼ 9 µm is
achieved in experiments.

M. Plöschner et al. introduced an approach to deliver the light-sheet via an ex-
tremely narrow multimode fibre [12]. The small footprint of fibre tip (in the scale of
10s of µm ) have the potential to allow the light-sheet to penetrate deeper into living
samples. As illustrated in Figure 6.3 (b), coherent laser is firstly shaped by a spatial
light modulator and then coupled into the multimode fibre. Due to multiple modes
can be supported by the fibre, the light can be engineered to scan and focus after the
end facet. Both Bessel beam and structured Bessel beam, which are considered to be
superior to Gaussian beam in terms of resolution and field of view, can be delivered
with the holographic manipulation of input optical fields. The correct generation of
light-sheet requires the full transformation matrix of the illumination optics . However,
the fibre is not a robust optic element, its transformation matrix will be affected easily
due to the bending from any mechanical movement or even thermal effect. Then
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the realtime measurement of the transformation matrix is needed to guarantee the
light-sheet quality which demands an extra complex setup.

Detection objective

Single mode
fiber

Substrate

Detection objective

Multimode
fiber

Light-sheet Sample

SLM

Sample

Planar
waveguide Microchannel

(a) (b)

Light-sheet
Lens

Figure 6.3: LSFM configuration with a planar waveguide (a), and with multimode fibre (b).

In the goal of miniaturizing LSFM, C.J Engelbrecht et al. provided a solution
named mini SPIM by combining the fibre optics with gradient-index lens (GRIN) as-
semblies [13]. As described in Figure 6.4, the excitation light was delivered through
a single-mode fibre and then shaped to a light-sheet by passing through an optics
assembly consists of a collimation lens, a cylindrical GRIN lens, a glass spacer and a
micro-prism deflector. Another assembly consisting of two GRIN lenses with different
NAs collected the fluorescence emission and coupled it into a coherent fibre bundle
for imaging. A light-sheet of a 4.6 µm FWHM in the centre has been achieved in the
mini SPIM implementation.

Although there are several solutions that have been listed above, they are mostly
targeted on very specific applications. A tool that can easily convert any imaging
microscope into a LSFM with a low cost in money, time and effort is yet not broadly
available to the biology and medical community. Inspired by all these previous work, in
these chapter, we investigate two miniaturized light-sheet illumination schemes based
on self-imaging slab waveguide and customized GRIN lens assembly respectively. These
solutions are able to provide both simplicity and good stability in practice.

6.3. Light-sheet illumination with a self-imaging slab waveguide
Considering the work of M. Plöschner et al., the multimode fibre has the ability to focus
the light after the distal end and control the output light-sheet with high degree of
freedom. But the disadvantage of the multimode fibre is its flexibility brings uncertainty
to the transformation matrix of the optical path. Thus, the system needs active
control with spatial light modulator. Here we propose a solution by transporting the
light-sheet, generated from the classical cylindrical optics, to the sample with a solid
slab waveguide. This waveguide is based on the Talbot self-imaging effect which has
a stable performance in terms of the light transforming.



6

104 6. Light-sheet fluorescence microscope with waveguide illumination

Single mode fiber

Coherent fiber bundle

Collimator lens

Cylindrical GRIN lens

Glass spacer

Microprism deflector

GRIN lens (NA = 0.2)

GRIN lens (NA = 0.5)

Illumination

Detection

Light-sheet

Figure 6.4: Miniaturizing light-sheet configuration with GRIN lenses.

6.3.1. Talbot effect in slab waveguide
Talbot effect, also referred to self-imaging, is a phenomenon that when a periodic
object is illuminated by coherent light, the structure will appear repetitively at certain
distances due to the free-space propagation. In other words, a complex amplitude field
has a period of p in the lateral direction, U(x + p, z) = U(x, z), is also periodic along
the propagation direction: U(x, z + zT ) = U(x, z). The period in the axial direction
zT is called Talbot distance which is decided by the light’s wavelength and the lateral
period: zT = 2p2/λ. This effect was first observed by Henry Fox Talbot in 1836 [14]
and then received a wide studies on its fundamental features and applications, like
imaging processing and optical metrology, in the fields from classical optics to non-
linear optics and quantum optics [15].

R. Ulrich et al. and E. E. Grigor’eva et al. have studied the self-imaging phe-
nomenon in waveguide [16, 17]. For a simple explanation, the light transmission in
multimode waveguides virtually forms a periodic structure due to the self-reflection.
Essentially, the self-imaging phenomenon is a superposition of a proper set of modes
with phase coincidence [18]. Thus, it will occur regardless of whether it is in free
space or an in-homogeneous medium [19]. For the purpose of generality, we analy-
sis the fundamental points in terms of wave propagation and modes superposition as
follows.

Given a planar waveguide in Figure 6.5. A layer of dielectric material with a thick-
ness of W and refractive index of n0 is sandwiched by claddings with a refractive index
of n1. n0 > n1 and the refractive index contrast is high so that internal reflection will
happen.
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Figure 6.5: Scheme of a planar waveguide.

Assuming the optical field at the input facet (z = 0) of the planar waveguide
is E(x, z0). This distribution can be represented as the superposition of an infinite
number of waveguide wave functions Fm(x, z0) with the amplitude coefficients am:

E(x, z0) =

∞∑
m=1

amFm(x, z0), (6.1)

The light will propagate in the waveguide with different propagation constants βm
for each mode. The guided modes number M to a distance z � λ in the waveguide
is finite. Thus after a distance z , the optical field is:

E(x, z) = exp(iβ1z)

M∑
m=1

amFm(x, z0) exp[iz(βm − β1)]. (6.2)

The field E(x, z) will be the image of input E(x, z0) when the phase changes of
various propagating modes differ by integer multiples of π or 2π, in other terms, it is:

exp[iz(βm − β1)] = 1 or (−1)m, (m = 1, ...,M). (6.3)

The possibility of image formation by a guide is decided by the existence of a
solution to the above equation. For a planar multimode waveguide, the propagation
constant βm is:

βm =
2π

λ
n0

√
1−

(
λ

n0λm

)2

, (6.4)

where the cutoff wavelength is λm = 2W/m for the rectangular waveguide.
The phase difference between the wave of two modes with indices m and 0 after

propagating over a length of z is:

ϕm,0 =
2πn0z

λ

√1−
(

λ

n0λm

)2

−

√
1−

(
λ

n0λ1

)2
 . (6.5)



6

106 6. Light-sheet fluorescence microscope with waveguide illumination

The binomial series expansion of the function f (x) = (1 + x)α is

(1 + x)α =

∞∑
k=0

α(α− 1)(α− 2) · · · (α− k + 1)

k!
xk

= 1 + αx +
α(α− 1)

2!
x2 + · · · ,

(6.6)

where α ∈ C is an arbitrary complex number.

Given x = −
(

λ
n0λm

)2

and α = 1
2 . We also check the condition for convergence,

|x | < 1, which means λ
n0λm

< 1. The first two terms of the expansion 6.6 is:

1−
1

2

(
λ

n0λm

)2

. (6.7)

Then equation 6.5 can be approximated by:

ϕm,0 ≈
2πn0z

λ

[
1

2

(
λ

n0λ1

)2

−
1

2

(
λ

n0λm

)2
]

=
πzλ

n0

(
1

λ1
2 −

1

λm
2

)
= −

2πzλ

8n0W 2

(
m2 − 1

)
.

(6.8)

The term m2− 1 is always integer. When it is odd, to have an image of the input,
all the inter-mode phase differences should be a multiple of 2π. The condition can be
satisfied with the following equality that:

zT =
8n0W

2

λ
N, (6.9)

where N = (0, 1, 2, ...).
At this point, the paraxial mode superposition will create an image of the input

field.
When m2−1 is even, an image of the input source inverted with respect to the axial

plane of the waveguide is formed in the cross sections which is also called intermediate
images:

zT
′ =

4n0W
2

λ
(2N + 1) . (6.10)

Due to the field penetration into the confining walls between the core and claddings
of dielectric waveguide, the real waveguide width W must be replaced by an effective
width. It can be calculated as below:

Wef f = W + (λ/π) (n1/n0)2ρ
(
n2

0 − n2
1

)−1/2
, (6.11)

where ρ = 0 for TE modes and ρ = 1 for TM modes.
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Thus conditions in equations 6.9 and 6.11 can be used to design the waveguide
that can reproduce the input. Then the LSFM system can be designed as Figure 6.6.
The light-sheet is generated at the front end of the waveguide. In theory, it will be
transported to the back end. The light can be focused at a distance from the end
facet. Also, for the dielectric waveguide, the maximum numerical aperture is decided
by:

NA =

√
(n2

1 − n2
2). (6.12)

Therefore, the material of the core and claddings can be chosen to support a
relatively high numerical aperture out put to satisfy the high resolution requirements.

Detection objective

Cylindrical lens

Light-sheet

Self-imaging waveguide

Collimated
beam

Stage

Figure 6.6: Scheme of a light-sheet microscope with a self-imaging waveguide illumination.

6.3.2. Beam propagation simulation in self imaging waveguide
Before we implementing the self-imaging waveguide system in experiment, we first
investigated its performance of light-sheet transportation in simulations. The design
and optimization of a waveguide structure is usually first simulated by numerical wave
propagation techniques first.

There are many beam propagation algorithms that have been developed. The beam
propagation method (BPM) is one of the most popular techniques to investigate the
optical fields in waveguides, integrated photonic devices and free space. To solve
the Maxwell’s equations, it is assumed that the light has a predominate propagation
direction and the power so that it meets the paraxial approximation. The dielectric
constant ( or refractive index) distribution n (x, y , z) is assumed to vary slowly along
the propagation direction z : ∂n/∂z ≈ 0. Under this assumption, the light propagation
can be applied with the slowly varying envelope approximation that ∂2A (x, y)

/
∂y2 ≈

0, where A(x, y) is the envelope of the optical field amplitude. The speed of the
calculation can be accelerated by using fewer steps without of much accuracy. Thus,
the BPM is very efficient for simulating the non-uniform structure with the scale much
larger than wavelength.
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Here we choose the Beamlab (https://www.codeseeder.com, Czech Republic) to
evaluate the performance of the waveguide we designed. It implements the finite
differences BPM (FD-BPM) technique in Matlab environment accelerated by parallel
computing. FD-BPM is able to treat full vectorial propagation in large refractive index
contrast optical waveguides and has a relatively high computational efficiency. Thus,
it is very powerful tool and has been widely used for optical waveguide guide design.

Simulation of Talbot effect in slab waveguide
To begin with, we simulate the Talbot effect in a three layered slab waveguide as
the same structure of Figure 6.5. To minimize the cost of the design, we choose the
waveguide materials from the most commonly used glass categories. In the simulation,
the waveguide core is glass BK7 with refractive index n0 = 1.522 and the width
W = 50 µm. The surrounding claddings are fussed silica with refractive index n1 =

1.463. The total thickness of the waveguide is T = 150 µm and the wavelength
is λ = 488 nm. According to equations 6.10 and 6.11, the effective core width is
Wef f ≈ 50.37 µm and the Talbot distance is zT ≈ 63.3 mm.

A Gaussian beam with a waist w0 = 0.2W = 10 µm is incident from the edge
centre of the waveguide. Figure 6.7 shows the intensity of the beam propagation
within the waveguide. The simulation result shows that the approximated Talbot
distance is zT ≈ 63.6 mm which matches the analytical calculation. While the result
also shows that the input is reproduced at positions of multiples of zT /8.
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Figure 6.7: Simulation of Talbot effect in a slab waveguide. (a) Propagation of a Gaussian beam
input (λ = 488 nm) in the waveguide. (b) The intensity section along the propagation direction at
x = 0.
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Figure 6.8 shows the simulation with the input beam shifted by 5 µm. With an
offset to the centre, only at the positions of multiples of zT /2 the input is reproduced.
At the position z = zT /2, the intermediate image of the input appears. It is exactly
shifted opposite with the offset of the input. Figure 6.9 simulated the situation that
the input beam has a tilted angle of θ = 1◦. It is very interesting to find that the
highest intensity does not appear at the input plane but at the position z = zT /4.
The image is shifted about 1.5 µm. At this length, the waveguide converts tilts to
offsets and vice versa. This length has the potential to realize a self-image and may
be used as a light-sheet scanner. However, due to the unavoidable input misalignment
that occur in practice, this case with its very strict operating conditions is a relatively
poor choice for stable self-imaging. The positions like z = NzT /2 and NzT are less
sensitive to the alignment which can be chosen as the designed waveguide length.
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Figure 6.8: (a) Simulation of light propagation in the waveguide with a shifted Gaussian beam input.
The offset is 5 µm. (b) The intensity profiles at plane z = 0, zT /2, zT .

Effect of waveguide length
The transporting performance of different waveguide lengths has been investigated in
Figure 6.10. The laser beam quality is characterized by means of beam width and
the beam propagation factor M2. In this context, the beam width is defined by the
full width at half of the maximum intensity (FWHM). And M2 is a parameter which
describes how much the real beam is different from the input Gaussian beam. It is
defined as a ratio:

M2 =
wRθR
w0θ

, (6.13)
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Figure 6.9: (a) Simulation of light propagation in the waveguide with a tilted Gaussian beam input.
The tilted angle of incident light is θ = 1◦. (b) The intensity profiles at plane z = 0, zT /4, zT /2, zT .

where w0, wR and θ, θR are the beam waist radii (the width at 1/e2 intensity points)
and divergence angles of the input beam and real beam respectively.

From the results in Table 6.1, we can see that the beam width of the focal spot
is ambiguous to character the beam quality. But the M2 shows the reproduced beam
slightly decay from the input Gaussian beam with the self-imaging distance increases.
Thus, in the design, if there is no practical need based on the optical configuration,
we prefer to choose the shortest but stable waveguide length for self-imaging. In the
following design, the waveguide is chosen with a length of zT /2.

Position FWHM (µm) M2

z = 0 5.69 1
z = zT /2 6.36 1.09
z = zT 6.36 1.09
z = 2zT 7.03 1.11
z = 3zT 6.36 1.22

Table 6.1: Beam qualities at different positions along the propagation direction in Figure 6.10.

Effect of waveguide roughness
It is also important to check how stable the self-imaging waveguide with reference to
the input beam quality with various optical fabrication imperfections. We always prefer
to achieve an acceptable output performance with a relatively low cost. Thus, it is
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Figure 6.10: (a) Simulation of light propagation in the waveguide with a length of L = 3zT . (b) (b)
The intensity profiles at plane z = 0, zT /2, zT , 2zT , 3zT .

useful to guide the selection of the raw glass wafers. If we propagate the light-sheet
through a rather rough waveguide as the extreme case simulated in Figure 6.11. The
light is found to be dispersed randomly at the self-imaging distance.

Figure 6.11: Light-sheet propagates through a waveguide with coarse dielectric walls. The offset of
the thickness is 10λ.

We simulated a Gaussian beam (FWHM = 3.18 µm) propagating through a 50 µm

layer of fused silica (n = 1.46) with water (n = 1.33) as the cladding medium. In this
case, the waveguide is set to a self-imaging distance as half of the Talbot distance:
zT /2 ≈ 30.3 mm. The waveguide is discretized into 100 sections. Each section is
shifted a certain range from the center leading to a rough surface of the core layer
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with different peak-to-valley (PV) heights. The FWHM and intensity of the reproduced
focus are recorded with varying PVs. The results are shown in Figure 6.12. From a PV
value from 0 to λ/5, the FWHM and intensity remain in the same level. The measured
M2 ratios are usually below 3. During λ/2 to 2λ, the re-focused beam slightly expanded
from the base level 3.18 µm, and the transported intensity drops gradually. But the
M2 becomes hard to measure due to the focused beam no longer maintaining the
Gaussian shape. With the PV increasing to more than 2λ , the light disperses quickly
and is not able to reproduce the input beam properly. The results suggest that a core
layer should have a roughness characterized by PV be at a sub-wavelength level.
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Figure 6.12: The delivered light-sheet performance (FWHM and normalized intensity) versus the
roughness of the dielectric wall (indicated by peak-to-valley height).

Two configurations
Arranging the cylindrical lens and the self-imaging waveguide so that the light-sheet
be reproduced after the distal end could have two configurations: (a) The light-sheet
is formed after the front end of the self-imaging waveguide. (b) The light-sheet is
formed on the front end and then is transported by a waveguide slightly shorter than
the self-imaging length.

These two configurations have been simulated in Figure 6.13. The incident source
is a uniform beam has the width of the waveguide core width 50 µm. It is focused
by a thin lens, represented by the yellow bar in the figures, with a focal length of
F = 0.5 mm. Thus, the NA of the input beam is 0.05. The waveguide is simply
formed by immersing a fused silica wafer in water.

The configuration (a) used a full self-imaging length waveguide, L = zT /2. The
input optical field is straightforwardly reproduced after the lens, thus the light keeps
converging as the input beam. The configuration (b) used a shorter version of waveg-
uide, its length is L = zT /2−F . In these cases, the supported propagation modes are
not as many as the previous one. But in the sense of reconstructing the beam with
certain NA, these two are equivalent. It can be seen from the section of the light-sheet
waist position in Figure 6.14 (a). These two intensity profiles are almost coincident in
the simulation. But when the length becomes shorter than L = zT /2−F , as recorded
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in Figure 6.14 (b), the FWHM of the light-sheet waist increases, and the intensity
drops. As a result, the waveguide is not able to reproduce the beam with the same
input NA any more.

The shorter self-imaging waveguide enables a flexibility in arranging the illumination
system. For example, the light-sheet is able to scan vertically with a fixed waveguide
and a scanning input. But to keep the same performance, we have to choose the
length according to the NA of the input beam. If a high NA should be supported, then
usually this difference of waveguide length is negligible.
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Figure 6.13: Two configurations of arranging the cylindrical lens and the self-imaging waveguide:
(a) With a waveguide (L = ZT /2), the light-sheet is formed after the front end of the self-imaging
waveguide. (b) With a waveguide (L < ZT /2), the light-sheet is formed on the front end.

6.3.3. Experimental realization
We designed the simplest form of the self-imaging waveguide to have a quick valida-
tion of the feasibility for light-sheet propagation in experiment. The scheme of this
experiment is shown in Figure 6.15.

Fused silica (n = 1.463 in λ = 488 nm) has been used as core medium. Due to
its high refractive index, it can form a waveguide with air (n = 1.00 in λ = 488 nm)
as the "cladding" layer. In theory, it can support a very large numerical aperture up
to 1.06 due to this high refractive index contrast. Later, it can also be protected with
optical adhesives or other substrates with a suitable lower refractive index in any large
scale fabrication.

According to equations 6.9 and 6.11 , we know the half Talbot distance is 30.2 mm.
To make a room for the working distance, we diced a rectangular slice of dimensions
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Figure 6.14: (a) The profiles of the input light-sheet and the output light-sheet with different waveg-
uide lengths. (b) The FWHM and normalized intensity of the output light-sheet versus the length
deviation from the self-imaging distance L = zT /2.
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Figure 6.15: The scheme of the self-imaging waveguide experimental setup.
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10 mm× 29.2 mm from a 76.2 mm diameter double side polished wafer. The surface
roughness is less than 100 ångström. After dicing the two sides that light passes
through are polished with fibre polishing sheets. The waveguide is glued on a three-
dimensional adjustable stage and is arranged as seen in the photo Figure 6.16:

Figure 6.16: A waveguide is glued on a pole which is mounted on a XYZ stage. The light-sheet is
generated on the left side and is detected by the microscope on the right side after the propagation
in the waveguide.

A fibre coupled laser source (λ = 488 nm, MCLS1, Thorlabs, US) is expanded to a
collimated beam by a telescope to match the size of the full aperture of the microscope
objective (10×, NA = 0.25, Olympus, Japan). A cylindrical lens (F = 25 mm) is used
before the objective to cancel the focusing power in the horizontal direction. Thus, a
light-sheet is formed in the objective’s focal plane. A microscope is built to characterize
the light-sheet. It consists of an objective lens (20×, NA = 0.50, Olympus, Japan), a
tube lens ( f = 200.0mm,AC254-200-A, Thorlabs, US) and a CMOS camera (pixel size
5.9 µm,UI-3060 CP-M-GL,IDS, Germany). After calibration, the total magnification
of the microscope is 25×.

To start, the input light-sheet is characterized by the microscope. A 500× 500px

region-of-interest (ROI) of the original 1936 × 1216px image from the microscope
camera is shown in Figure 6.17. The input light-sheet has a FWHM of 1.65 µm which
is slightly degraded from the theoretical diffraction limit 1.19 µm.

After a fine tuning of the XYZ stage, we coupled the light-sheet into the waveguide
from the left side. The output from the waveguide is monitored by the detection
camera. Again a fixed 500 × 500 px ROI window is selected. In Figure 6.18 (a),
we focus the microscope on the right edge. The intensity distribution indicates the
thickness of the core layer. Also, multiple interference fringes are visible at this plane.
When focusing a distance (about 500 µm) after the end facet, the scatter image of
the edge has been blurred. However, a light-sheet is clearly visible in Figure 6.18 (b).
We plot the averaged intensity profile of this plane in Figure 6.18 (c). The FWHM of
this light-sheet is measured to be 4.72 µm which is 2.86 times of the input light-sheet
thickness.
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Figure 6.17: (a) Focus of the input light-sheet generated from the cylindrical lens and microscope
objective. (b) Averaged intensity profile of the light-sheet in (a).
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Figure 6.18: (a) The intensity distribution on the plane of the waveguide edge. (b) The intensity
distribution on the plane of the light-sheet waist. (c) Averaged intensity profile of the light-sheet in
(b).
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6.3.4. Discussion
From the experiment results, we can see that a light-sheet has been successfully repro-
duced by a specifically designed self-imaging waveguide. However, we also note that
passing through the waveguide brought a certain extent of degradation to the initial
light-sheet input. From the above simulation results, we can also analyse the causes
behind this.

Firstly, there is an expansion of the light-sheet thickness in the experiment. Be-
sides misalignment, it could also be caused by low aberrations introduced by the non-
uniformity of the waveguide thickness and the material refractive index. In the experi-
ment, we can try to compensate this aberration with the help of phase plate or spatial
light modulator (SLM), though it will increase the cost of the system. Another factor
involved could be the manufactured waveguide length being shorter than the actual
half Talbot distance. It can be investigated in the following experiment by rotating the
waveguide or varying the refractive index of cladding medium to achieve a different
equivalent waveguide length.

Secondly, due to the background noise, the intensity contrast of the light-sheet
drops from the initial 0.990 to 0.757 in the core area. The background speckle noise
is mainly caused by the poorly polished input and output facets. The technique of
polishing such a thin waveguide needs to be improved. The mounting simply with a
glue leads to a rough dielectric walls which may also bring high frequency noises.

Although there are much room for the improvement in the experiment, the pre-
liminary results validate the feasibility of transporting the light-sheet to the sample
with a low cost self-imaging waveguide. The end footprint of the waveguide can be
down to the scale of tens of micrometers which will not interfere with most of the
high-numerical aperture imaging objectives. With a relay of the waveguide, the bulky
and complex components of the illumination system can be arranged away from the
working area which gives much freedom for the design of imaging part and sample
holder. Thus, it provides a promising solution for minimizing the LSFM illumination
system.

6.4. Miniaturize the light-sheet microscope with GRIN lens assem-
bly

The self-imaging multimode waveguide is able to cover the footprint in a range from
tens of micrometers to hundreds of micrometers. However, the form of this self-
imaging waveguide is not limited to the three-layer slab waveguide. The graded-
index (GRIN) medium in which the refractive index varies gradually is also popular
in waveguide construction. As shown in Figure 6.19, in contrast with the step-index
multimode waveguide that utilizes the total internal reflection effect, the change of
refractive index between the core and claddings is smooth and continuous. Thus,
the light ray is refracted rather than being reflected. It could, therefore, realize the
self-imaging effect the same as the previous approach.
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Figure 6.19: The scheme of step-index multimode waveguides (left) and graded-index multimode
waveguides (right).

6.4.1. Introduction of GRIN lens
The GRIN lens is a specific form of GRIN waveguides and while it is usually much
thicker (200 µm − 2 mm) compared to a multimode fibre. It is a standard off-the-
shelf inexpensive component, which is widely used in optical communication and fibre
imaging systems. In general, it is a short cylindrical glass tube with a gradient profile
distribution of refractive index in its radial direction perpendicular to the optical axis,
in the following mathematical form:

n(r) = n0

[
1− (k/2) r2

]
, (6.14)

where n0 is the refractive index at the lens centre, k is the gradient constant, and r is
the radius.

The numerical aperture of a GRIN lens is also related to the index change of the
gradient profile,

NAGRIN = n0

√
1− sech2 (kR), (6.15)

where R is the semi-diameter of lens.
When a light ray is incident on the front facet of a GRIN lens, it follows a sinusoidal

path along the optical axis. The length of the full sinusoidal period is called the pitch
P of the GRIN lens. It is defined as:

P = 2π/
√
k. (6.16)

Instead of varying the shape of surfaces for the conventional optics, the GRIN
lenses can be cut to various lengths to perform different functionalities, such as imag-
ing, focusing and collimation, which is shown in Figure 6.20. Similar to the Talbot
distance waveguide, the full-pitch GRIN lens can reproduce an image at the front facet
identically to the end facet. Meanwhile, a half-pitch lens invert the image at the exit
facet. However, they are not mass-produced due to their limited applications. The
most commercially available GRIN lens types are quarter-pitch and fractional-pitch
(such as 0.23 and 0.29). The 0.25 pitch GRIN lens can image a point on the front
facet to infinity which is usually employed as a collimator. And the 0.23 pitch lens
and 0.29 pitch lens function as converging lens and diverging lens respectively. Along
with their small size, they are widely used for fibre coupling, diode collimation and
endoscopic imaging systems.
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Half-pitch lens for imaging 0.25 pitch lens for collimating

0.23 pitch lens (converging lens) 0.29 pitch lens (diverging lens)

Figure 6.20: Different functionalities of GRIN lenses with various lengths.

More complicated functionalities can be achieved with customized combinations
of these GRIN lenses. In our case, we prefer to use a GRIN lens assembly. Most
GRIN lenses are available in a length of a few millimeters ( i.e. 2 − 7 mm) that will
still hinder our arrangement of the light-sheet formation part of the optical system.
Cascading the fractional-pitch GRIN lenses as a waveguide can gain us more relay
space. One of the simplest configuration that consists of two converging GRIN lenses
and a cylindrical lens is presented in Figure 6.21. Besides is, there are many variants
according to specific situations.

GRIN-lens GRIN-lensCylindrical lens

Figure 6.21: The configuration of light-sheet forming by cylindrical lens and two GRIN lenses.

6.4.2. Experimental realization
Here we shall introduce a practical implementation of the GRIN lens based waveguide
to generate light-sheet. All the components are intentionally chosen to be available
from the shelf.

Optical design
The arrangement of the components needs to be specifically designed. The convex
GRIN lens (mostly in the 0.23 pitch) on the market are usually bulk produced for fibre
communication applications, which has an angled facet to minimize back reflection or
compensate the angled fibre ferrules with surface contacting. It causes difficulties in
our case with the optical alignment. Thus, we choose the 0.29 pitch GRIN lens to
construct the system since it has a planar facet. Also, the GRIN lenses are designed
for the typical communication wavelengths. The optical parameters are different with
the fluorescence excitation wavelengths. However, with the aid of the optical system
design software, Zemax, and the optical models provided by the manufacturers, we
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can achieve a working arrangement.
Inheriting the basic scheme from the previous slab waveguide system, the GRIN

lens illumination system includes a cylindrical lens (Edmund 48-357, F = 25 mm, US),
an objective lens (10×, NA = 0.25), and two 0.29 pitch GRIN lenses (GRIN2906,
Thorlabs, US). This type of GRIN lens has a diameter of 1.8 mm and the effective
focal length at 630 nm is 1.90 mm, the working distance is 1.411 mm. The distances
between the components are adjusted and optimized in the Zemax. All the Zemax
models are supplied by the producers. The configuration is shown in Figure 6.22 (a).
The objective lens is put 29.50 mm after the cylindrical lens. The distance between
the objective lens and GRIN lens is 5.59 mm. The distance between the two GRIN
lenses is 2.35 mm. The light-sheet waist is located at 0.25 mm after the GRIN lens
pair. The theoretical Airy disk radius is 0.52 µm according to the spot diagram in
Figure 6.22 (b). Note that, this configuration is yet not the optimal that can be
achieved and there is more room for improving the design.

Experimental results
The scheme to test the generated light-sheet in the experiment is arranged as shown
in Figure 6.4. The illumination part is arranged as in the previous configuration.
According to the simulation results, we 3D printed a GRIN lens holder to ensure the
distances, and glued the GRIN lenses in a glass sleeve. The light-sheet is then imaged
by a microscope with a 20× microscope objective ( NA = 0.5 ).

Figure 6.24 shows the light-sheet performance from the GRIN lens assembly. The
light-sheet is recorded by a CMOS camera. The ROI is 700× 700 px which is about
165.2×165.2 µm in the field of view. From the measurement of the averaged intensity
profile in Figure 6.24 (b), the FHMW of the light-sheet waist is 1.42 µm, which is
close to the diffraction limit of the used objective lens. The achieved width of the
light-sheet with the smallest beam waist, as indicated in Figure 6.24 (c), is around
100 µm. This is rather a small range compared to the diameter of the GRIN lens. It
may be due to the inhomogeneity of the lens medium, which it is the key to form the
lens’ power. However, this width is already able to cover most of the field of view of
the objectives with high numerical aperture used for light-sheet microscopy.

6.4.3. Discussion
A GRIN lens based waveguide light-sheet illumination system has been validated. It
successfully reduces the tip end of a light-sheet illumination system to the size of
1.8 mm. A smaller tip end is possible with different types of GRIN lenses without too
much effort in re-optimizing the arrangement. According to the preliminary results in
the experiment, this scheme can achieve a rather good performance in generating a
light-sheet. The realized light-sheet thickness is comparable to the light-sheet gener-
ated by the conventional optics components, as shown in Figure 6.17. The illumination
with higher NA can also be implemented in theory. It is suitable for the situations where
the space requirement is less strict than the previous slab waveguide proposal. How-
ever, it has a much more robust mechanical structure. Also, all the components are
relatively cheap and available on the market, which is conducive to the community
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(a)

Y-Z view

X-Z view

Cylindrical lens Objective lens GRIN lens assembly

(b)

Figure 6.22: (a)The Zemax model of the GRIN lens waveguide light-sheet illumination system.(b)The
spot diagram of the previous Zemax configuration.
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Figure 6.23: The scheme of the GRIN lens assembly waveguide experimental setup.
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Figure 6.24: (a) Output light-sheet transported by the GRIN lens assembly. The field of view is
165.2 × 165.2 µm. (b) Averaged intensity profile of the light-sheet in (a). The FWHM of the
averaged light-sheet is 1.42 µm. (c) FWHM characterization of the full light-sheet waist.
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in implementing it without too much customization. The light-sheet quality, such as
thickness and width, is naturally limited by the aberrations and imperfections in minia-
ture optics. To a certain extent, it has already met the requirement of many biological
imaging applications even at the cellular scale. For a higher performance, not only
do the configuration of components need to be optimized, but an additional phase
plate or adaptive wavefront corrector could also be added to compensate for those
imperfections.

6.5. Conclusion
In this chapter, we have developed approaches to miniaturize the light-sheet gener-
ation system based on the idea of multimode waveguide. Two techniques has been
demonstrated with the use of a slab waveguide and a GRIN-lens respectively. The slab
waveguide is designed based on the self-imaging Talbot effect. A prototype has been
fabricated and tested in the experiments. A light-sheet with thickness of a 4.72 µm

FMHW was formed after the slab waveguide. This technique allows minimizing the
tip end of the illumination arm to the scale of tens of microns. The GRIN lens system
is a form of cascaded GRIN lenses. It is able to achieve a tip end cover the range be-
tween hundreds of microns and several millimeters. An experimental configuration has
been implemented with the off-the-shelf components. It has successfully conducted a
light-sheet with a waist of 1.42 µm thickness and ∼ 100 µm width, with respect to a
1.8 mm diameter tip end.

These experiment results verify the feasibility of miniaturizing the light-sheet il-
lumination with different forms of waveguide. Although the preliminary results show
some degradation in the light-sheet generation, this can be improved by optimizing the
optical design and careful fabrication. The application of these illumination techniques
need to be combined with specifically designed sample holder and imaging system con-
figuration. The approach for adaptive control of the light-sheet through this waveguide
is going to be investigated in the future.
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7
Conclusions and Future work

This dissertation has mainly aimed at developing novel techniques, methodologies for
measuring the optical field, specifically both the amplitude and phase distribution.
Furthermore, we have attempted to extend their applications in the scope of optical
imaging, including lensless/holographic imaging, quantitative phase imaging and the
calibration for light-sheet microscopes.

Due to the fast oscillatory nature of light waves, the direct registration of its wave
properties, such as its phase, are currently impossible with the present intensity-only
detectors. Thus, abundant information contained in the optical field is lost. For ex-
ample, the spatial information contained in phase is valuable for many scientific and
engineering applications. Many methods have been proposed to retrieve the complete
optical field. Each one of them lays particular emphasis on either accuracy, speed or
spatial resolution, etc. When it comes to many specific scenarios, novel techniques
need to be developed whilst confronting many of these trade-offs. These technologies
are not fixed and separated. They can be improved, varied or integrated in many differ-
ent ways. One sensor will not stick to only one specific use. Under certain conditions,
they are able to perform well even in unconventional applications. Therefore, exploring
new types of optical field sensors and breaking through the boundaries of the existing
sensors uses are very interesting and current research topics.

The contributions of this dissertation addressing the above research topics can be
mainly summarized into three parts. First, we have developed the techniques that reg-
ister the optical field by utilizing a spatial amplitude modulator (Chapter 3). Secondly,
the feasibility of applying a Shack-Hartman wavefront sensor to holographic imaging
and quantitative phase imaging has been thoroughly investigated (Chapter 4 & 5).
Finally, approaches based on multimode waveguides that miniaturize the illumination
of light-sheet microscopy has been explored (Chapter 6). Hereafter is the summary of
accomplishments in these topics and suggestions for their further research.

127



7

128 7. Conclusions and Future work

Optical field sampling with spatial amplitude modulating
This part of the work aimed at achieving a reference-free optical field sensing scheme
that with features both high resolution performance and less computational effort.

As introduced in Chapter 1, the general holographic methods require a well-defined
reference beam to record the optical field. This external reference largely hinders the
simplification and stability of the optical setup. To address to this problem, we have
developed a method for recording the coherent optical field that keeps the interfero-
metric scheme while introduces the reference internally from one selected part of the
light beam. It is realized by interfering the selected reference with the remaining field
point by point through forming a series of Young’s interferometers. Then, from each
interferogram recorded in the far field, we could calculate the intensity sum and the
phase difference of the reference and the corresponding points. Eventually, the whole
optical field could be registered by combining all the measurements. We have exper-
imentally verified this method via a binary amplitude spatial light modulator, digital
micro-mirror device. The programmable micro-mirrors were used to form the scanning
two-point interferometer. In the experiments, a lensless coherent microscope was built,
and an optical field measurement with 150 × 150 points and an interval of 21.6 µm

which is sufficient for computational imaging has been demonstrated.
We have proposed another technique, based on computational methods, that

makes use of algorithms for iterative phase retrieval whist speeding up the convergence
through introducing randomness and sparsity by an amplitude spatial light modulator.
Multiple binary masks with a shared ’on’ region as a reference, sample the optical field,
forming speckle patterns in the far field. For each frame, the phase and amplitude of
’on’ pixels are retrieved by alternating projection algorithms. Different from the pre-
vious methods, the whole optical field then can be reconstructed from much fewer
frames instead of the point-wise scheme. Numerical simulations have shown a quicker
convergence than the standard Gerchberg-Saxton algorithm. Also, a defocused optical
field has been successfully reconstructed in experiment.

Both of these two schemes can remove the need for an external reference beam.
The two-dimensional amplitude and phase of the aperture can be registered with a
resolution the same as the size of the deployed SLM pixels which generally ranges
from several microns to tens of microns. In principle, this approach does not need
any lenses which is suitable for the situations where the use of such imaging optics is
problematic.

Suggestions for future work The research in this type of optical field sensing ap-
proach is still very primitive. The future development of it should focus on improving
the efficiency and robustness, which may come from looking at the following aspects:

• Acquisition speed So far, the time-consuming nature of the method has been
the least considered. The acquisition process mainly includes the projection of
the DMD pattern and the camera recording. Currently, the DMD runs in the
HDMI video mode which is limited to 60 Hz . A low-cost CMOS camera with a
frame rate of 25 f ps records the interferogram. The phase extraction process is
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also integrated in the loop. Thus, it leads to a registration speed of 14 Hz . For
the phase retrieval scheme in which only tens of frames are needed, the speed
is acceptable. However, in the point-scanning scheme, registering the whole
aperture with the highest resolution requires millions of samples leading to hours
of measurement. The DMD had a maximum speed of 3 kHz in the pattern
sequence display mode, although it has limited patterns can be stored due to the
limited memory size of the device. Now, the bottleneck would be the camera,
which we may consider replacing with a fast speed camera or line camera.

• Smarter pattern planning In the present experiments, we just used one pixel
as reference and the reference was set to the centroid of intensity distribution
within the measured aperture. This will be sufficient if the light is rather uniformly
distributed. However, if the reference pixel happens to reflect no light, then this
method will fail due to no interference fringes and subsequent random solutions.
Thus, a more robust reference selection procedure is needed to guarantee there
is enough light on the pixel to achieve interference. In addition, the dark area of
the aperture needs no measurement. If we can determine this light distribution
from priori information, we are able to reduce the total number of measurements,
which speeds up the acquisition in the software.

• Calibration One critical problem in the phase retrieval scheme is the calibration.
In the proof-of-principle stage, we simply used the wave propagation model by
assuming there is no error in the arrangement of optical components. As a
result, we have observed severe instability of the phase reconstruction in the
experiments. The errors may come from the translation and rotation introduced
by the misalignment of the camera or DMD. It should be reduced by more
accurate physical adjustment or algorithmic self-calibration.

• Phase retrieval algorithms Currently, the phase retrieval procedure in the method
is performed by a simply-modified Gerchberg-Saxton algorithm. Although for a
single frame, the required number of iterations for convergence reduced dramat-
ically. However, multiplying it with the required number of frames still leads
to a great amount of computational effort. Many modern phase retrieval algo-
rithms may improve the performance in terms of the accuracy, convergence and
robustness.

Extending the application of conventional wavefront sensor
The purpose of this part of the work is to extend the potential applications of the
Shack-Hartmann wavefront sensor, especially for holographic imaging and quantitative
phase imaging.

We have validated the feasibility of the coherent holographic imaging with a high
density SHWFS. The coherent diffraction field can be directly registered by the SHWFS
and back propagated to different planes to extend the information. There is no need
of reference beam in the optical setup. A reference can be pre-registered or virtually
appointed. In the experiment, we have successfully reconstructed the image of a
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resolution target with a 140 × 140 SHWFS close to the diffraction limit. The image
contrast is also higher than the conventional in-line holography scheme. Thus, it is a
promising alternative for digital holography in many applications, especially when the
illumination has a low temporal coherence or a simple optical setup is required.

By placing the SHWFS in the imaging plane in a microscope, we have achieved an
approach to measure the optical path difference map or the quantitative phase map
with the refractive index of known samples. As a non-interferometric technique, it
requires a much less spatial coherence of the illumination to guarantee the correct
OPD measurement. In the experiments, we have implemented the OPD microscope
in both transmissive and reflective configurations. Both biological samples in the
cellular level and micro optics component were successfully examined. A conventional
optical microscope can be easily transformed into an OPD microscope, with the help
of a SHWFS and an adjustment of the illumination, to retrieve the quantitative 3D
information of the sample.

Suggestions for future work The future direction of this part of the work may focus
on improving the performance of the developed techniques in terms of the following
aspects:

• Resolution Due to the extra indispensable optics components, currently, a WFS
can not achieve the same sampling resolution as digital holography in general.
Some modified SHWFS sensors, such as using a quad-cell array to replace the
camera sensor, may increase the resolution at the hardware level. Also, there are
various pixel super-resolution techniques that can achieve a sub-pixel resolution
by utilizing sub-pixel displacements in the imaging system. The possibility to
enhance the SHWFS resolution with these techniques can be explored.

• Removing artifacts From the preliminary experimental results in Chapter 4,
we can observe some artifacts in the reconstruction. These may be caused
by incorrect phase unwrapping, or the primitive back propagation algorithms,
which needs to be compensated in any further work. The dark areas due to the
strong scattering or sample absorption will lead to a wrong reconstruction of the
wavefront gradients. Although, they are insignificant for the propagation with
the low amplitude, they can still effect the correct wavefront integration. Thus,
the algorithms to eliminate such effects should be investigated.

• Field of view and dynamic range In the SHWFS based OPD microscope, we
sacrifice the field of view to match the resolution of the imaging system, which
limits the throughput of this approach. To achieve a larger FOV, a scanning
manner of the sensor or sample can be considered. Also, for the sample with a
steep surface or extreme varied refractive index medium, the wavefront gradients
may go beyond the dynamic range of a SHWFS. For this case, the techniques
that integrate multiple angled illuminations or sensors may be helpful. However,
for this a usable implementation and algorithms need to be further researched.
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Light-sheet microscopy illumination with waveguide
The final part of the work focused on developing a technique that can miniaturize the
footprint of light-sheet illumination while support the introduction of adaptive control.
Two approaches based on different forms of waveguide have been investigated.

Firstly, a slab waveguide has been designed to transmit the light-sheet by utilizing
the Talbot effect. It is a multimode fibre in essence while being much more robust.
The performance was simulated by the beam propagation method. In the experiments,
a light-sheet with a FWHM of around 5 µm has been reproduced. Thus, with the help
of this waveguide, the optics tip at the sample end can be reduced to the order of tens
of microns.

As a successor, another form of waveguide based on the GRIN lenses has been
developed. Although the tip at the sample end goes up from hundreds microns to
millimetres, its on-shelf availability makes it much easier to implement than the slab
waveguide. We have optimized the arrangement of commercial GRIN lenses assembly
to accomplish this. In the experiments, a high quality light-sheet, with the beam waist
closes to the diffraction limit of the setup has been realized.

Suggestions for future work This part of the work was proof-of-concept research
and a start point of the Adaptive Imaging Microscopy (AIM) project. Thus, various
prospects should be explored in the future. A few of them are listed below:

• Structure optimization and fabrication The current design of the waveguide
has plenty of room for improvement. Such as the choices of the core and cladding
medium of the slab waveguide, especially when it is immersed in water; the
arrangement of the GRIN lens assembly to support a higher numerical aperture.
Moreover, the usability and robustness should be improved by designing proper
packaging for the components. As for the fabrication process, currently all the
waveguides are handmade with rough quality control. For example, we have
observed a low SNR in the slab waveguide experiments. This noise may be
brought by the scattering from the poorly polished waveguide facets. Thus,
we need to enhance the performance with better and more modern fabricating
techniques.

• Integrating with the imaging part In the experiments, the imaging arm is only
used to detect the light-sheet quality produced by the waveguides. When it
comes to the real biological samples and high numerical aperture situations, we
need to specifically design the sample holder and the arrangement of both the
illumination arm and imaging arm, so that there is no interference between them.
To achieve a fully functional LSFM, a convenient scanning scheme to selected
plane should also be determined.

• Adaptive control The waveguide is designed to support multimode propaga-
tion, which allows the beam shaping with adaptive optics components such as
deformable mirrors and SLMs. It can be used to compensate the imperfec-
tion of the optical component and the aberrations brought by the samples. To
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achieve full control of the light-sheet, the effect of the transportation of these
unconventional waveguides still needs to be studied.
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