
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Comfort-Oriented
Motion Planning Using
Deep Reinforcement
Learning
Master Thesis

Nishant Rajesh



Comfort-Oriented
Motion Planning Using

Deep Reinforcement
Learning

Master Thesis

by

Nishant Rajesh

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Wednesday August 31, 2022 at 9:00 AM.

Student number: 5229766
Project duration: February 1, 2022 – August 31, 2022
Thesis committee: Dr. R. Happee, CoR-IV, TU Delft, Chair

Dr. B. Shyrokau, CoR-IV, TU Delft, Supervisor
Dr. M. Alirezaei, TU Eindhoven, Committee member
Ir. Y. Zheng, CoR-IV, TU Delft, Supervisor

This thesis is confidential and cannot be made public until August 31, 2024.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Acknowledgements

I may be the author of this thesis, but it goes without saying that this work is the culmination of the
efforts of a number of people, to express my gratitude to whom I would like to take a few words.

First and foremost is my supervisor, Dr. Barys Shyrokau. He provided me with deep insights into the
subject matter, while at the same time enabling me to see the big picture with his farsightedness. I
could not have asked for a more knowledgeable, understanding and supportive supervisor, and I am
forever grateful to him for his guidance. In the same breath, I would also like to thank Yanggu Zheng,
for being my guiding light throughout this entire thesis, for his patience and wisdom, and for being a
mentor and a friend.

I want to thank Sarah, for being the first person to make me feel like I have family in Delft, for giving
boundless support and love to a person she had no obligation towards. I want to thank Nikhil and Pallav
for their undying faith in me when I had none, for being there for me in both happiness and sadness,
and for constantly inspiring me to achieve greater heights. This acknowledgement would be incomplete
without thanking Atharv, Rohan, Sampada, Sreeparna and Suchdeep, without whom I cannot imagine
a future now. They provided me with a new lease of life, and I cannot express how fortunate I feel to
call these gems my friends.

And finally, I want to express my deepest, most sincere and heartfelt thanks to my family. To Maithili, for
the joy and hope she brings. To my brother Nisheeth, for being the rock-solid foundation upon which
I have built my life, and for being everything that a person could ever wish for in a brother, and much
more. And to my parents, for blessing me with the privilege of being their son. They have given me
love beyond what I could repay in multiple lifetimes, but as a small offering, I would like to dedicate this
thesis to them.

Nishant Rajesh
Schiedam, August 2022

i



Abstract

Motion sickness is a common phenomenon, with close to two-thirds of the population experiencing it in
their lifetime. With the advent of automated vehicles in the market, it is anticipated to become an even
greater problem as the passengers face a lack of predictability of motion and loss of control over the
vehicle. This could nullify the host of possible benefits that automated vehicles propose to offer, and
therefore affect their acceptance among potential users.

It is well known that the nauseogenicity of imposed motion is dependent on the frequency content
of endured accelerations, with low-frequency accelerations being the primary contributor. This thesis
presents a motion planning algorithm targeted towards minimization of motion sickness among pas-
sengers of automated vehicles, through targeted reduction of low-frequency accelerations. A Deep
Reinforcement Learning (DRL) framework was utilised along with the design of a custom environment
and a reward function which incorporates a measure of nauseogenicity of the planned trajectories.
The frequency shaping effect of the reward function was evaluated by comparing against a DRL agent
trained to optimize general motion comfort described by total acceleration energy. It was found that
the nauseogenicity was reduced by 9.6% with the proposed DRL agent.

Further, on-road trials were performed with human drivers to establish a benchmark of driving comfort.
The performance of the DRL agent was compared to human drivers as well as against an optimization-
based motion planner that computationally maximizes the reward function. The DRL planner displayed
comparable performance to the human drivers, and was within 10 to 15% of the discomfort levels
of the optimization-based planner for a range of travel times. Meanwhile, the DRL planner offered
notable improvements in computational efficiency, taking 1-2 ms to generate a sub-optimal trajectory,
as opposed to approximately 5 s as taken by the optimization-based planner.
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1
Introduction

Motion sickness is a nausea syndrome observed in humans when they are subjected to passive mo-
tion stimuli. It manifests in the form of symptoms such as drowsiness, dizziness, sweating, headaches,
stomach awareness, nausea and so on, and can be induced by actual or illusory motion [1]. Motion
sickness has been affecting humans ever since the existence of means of transportation, with the earli-
est recorded studies dating back to 800 BC, as experienced by Greek sailors [2]. Mobility has become
much more commonplace and accessible in the present, and consequently, so has the occurrence of
motion sickness in the general population. In their lifetime, nearly two out of three people experience
motion sickness [1]. An international survey had comparable findings for carsickness in particular, with
46% of the participants having suffered from some degree of carsickness in the past five years, with
the number increasing to 59% on including childhood experiences [3]. Children between the ages of
10-12 years are the most susceptible to car sickness [4].

With the advent of automated vehicles, it has been hypothesised that there may be a shift from car
sickness, to autonomous car sickness [5]. There has been significant progress in the development
of automated vehicles over the past few years, and they remain a field of promising research. They
promise to revolutionise the mobility industry, by eliminating accidents and mishaps caused by human
errors. Along with the improved safety, they also are envisioned to improve traffic efficiency and vehicle
fuel efficiency. However, from a user perspective, one of the most attractive benefits is the prospect of
being freed from the driving task, allowing them to engage in a multitude of non-driving tasks. The time
freed up from driving would let users to take up a plethora of tasks such as texting messages, eating
and drinking, surfing the Internet, performing office tasks and so on [6]. Automated vehicles would also
make road travel much more accessible to children and the elderly, the parts of the population which
are unable to drive.

The merits of automated driving, while significant, could be curtailed by the increased prevalence of
car sickness in passengers. As the driver transitions from an active role to a passive one, they become
much more susceptible to suffering from car sickness due to a lack of perceived controllability, attention
diversion and predictability [7]. This would be further aggravated by engaging in non-driving tasks, as
the passengers would have insufficient visual information and also lack an Earth fixed horizon, both
of which are known to increase motion sickness symptoms [8]. The increased accessibility of auto-
mated vehicles to children also requires taking into consideration carsickness effects, since they are
particularly susceptible. It is evident from these facts that carsickness is indeed a matter of concern
in automated vehicles, as it could easily nullify many of the proposed user benefits, and consequently
affect the acceptance of automated vehicles among the general population. It is therefore critical to
incorporate mechanisms within automated vehicles which prevent or mitigate the effects of motion
sickness in passengers.

The underlying cause of motion sickness is still not completely understood, however, multiple theories
have been proposed which attempt to explain the mechanisms causing motion sickness in humans.
The most prevalent theory in literature is the sensory conflict theory [1, 9]. It proposes two premises

1



2

for the development of motion sickness. The first is that there should be a conflict between the motion
signals as observed by the visual system, the vestibular system and the non-vestibular proprioceptors,
and the sensory conflict should be at variance from previously experienced motion stimuli. It is not
sufficient for there to be a sensory conflict, as the nervous system undergoes a sensory rearrangement
and continued exposure to the conflict signal leads to habituation. The second premise is that the
vestibular system needs to be involved in the sensory conflict, directly or indirectly, for the causation
of motion sickness. This implies that the motion stimuli need to include angular or linear accelerations,
as constant velocities cannot be sensed by the vestibular system.

O’Hanlon and McCauley investigated the occurrence of nausea in subjects as a function of imposed
accelerations and their frequencies [10]. They found that for oscillations in the vertical direction, the
primary cause of motion sickness were low frequency accelerations in the range 0 to 0.5 Hz. Accelera-
tions around a frequency of 0.16 Hz were found to be the most nauseogenic. It was also seen that the
incidence of sickness increased monotonically with the magnitude of imposed accelerations. Similar
response was found for lateral and longitudinal accelerations with slight variations in the frequency re-
sponse [11, 12]. A study on passengers of public buses verified that the causation of motion sickness
was primarily due to low frequency accelerations [4]. In particular, low frequency lateral accelerations
had the highest correlation with the incidence of nausea in passengers, followed by longitudinal accel-
erations. There was no significant correlation with vertical accelerations, as well as roll, pitch, and yaw
motions. The study also concluded that to minimise car sickness among passengers, the driving style
itself needed to be altered, and merely changes in vehicle design to alter dynamic characteristics of
the vehicle would not suffice in reducing motion sickness.

With regards to automated vehicles, the driving style of the vehicle is defined by the motion planning
layer. While there has been significant research into motion planning for improvement of general pas-
senger comfort in automated vehicles [13–16], the research into motion sickness mitigation is relatively
nascent. Most existing literature tries to deal with motion sickness in the vehicle control layer [17–
19]. Vehicle control is generally reactive in nature, and even predictive methods typically work by at-
tempting to track a reference motion plan defined by a planning algorithm over a short horizon. This
approach is not ideal for the objective of minimising low frequency accelerations in particular, since
they are characteristic of the predefined trajectory. Therefore, they need to be dealt with in the motion
planning layer itself. The attempts in literature which do try to specifically target motion sickness in the
motion planning layer typically make use of optimization-based techniques [20–22]. While attractive
for their relative ease of implementation and guaranteed optimality, these methods are computationally
demanding, and real-time implementation on on-board vehicle computers may be problematic.

Deep Reinforcement Learning (DRL) offers an attractive alternate possibility to optimization-based
methods, as it requires minimal online computational effort. In DRL, a Neural Network (NN) is trained
to perform a task in an environment (real or virtual), by providing positive or negative reinforcement
through rewards or penalties respectively. while learning to perform the task itself, the agent requires
long training times and consequently, significant computational resources. However once trained, the
NN requires minimal computational power to implement online. DRL does not suffer from the draw-
backs of typical data-driven approaches, where large amounts of high quality data are required to be
able train neural networks to perform the desired task. Data collection is especially difficult for our
problem, as finding ’good drivers’ which minimize motion sickness for all passengers is not trivial. DRL
circumvents this issue by collecting training data through interactions with a simulation environment,
and therefore only the design of a representative environment is required.

DRL for automated vehicles has been well researched [23–27], with application to motion planning as
well [27]. DRL has also been shown to effectively deal with long term dependencies when combined
with Monte Carlo Tree Search algorithms, or by using Long Short Term Memory Neural Networks for
the state representation [28–30], and is therefore particularly attractive for motion sickness mitigation
where low frequency accelerations are the most significant.

In this thesis, a Deep Reinforcement Learning motion planner has been designed, with the objective of
minimising motion sickness in passengers of automated vehicles. A custom environment is designed,
representative of the real road profiles the agent is expected to encounter. The objective of carsickness
mitigation through the reduction of low frequency accelerations is incorporated into the reward function
of the DRL agent. To investigate the ability of the DRL agent to learn to mitigate the undesirable
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frequencies, the frequency response of the agent is compared to another DRL agent which is trained
to improve general passenger comfort without regard to the frequency of accelerations.

To further ascertain how the DRL motion scheme compares to a human driver, a human baseline
performance is established through on-road experiments with human drivers. The performance of
the DRL agent is evaluated in a high fidelity IPG CarMaker environment, and benchmarked against
the human drivers. The nauseogenicity of the respective motion plans have been investigated over a
range of travel times, to emulate different driving styles encountered with human driver.

The thesis is structured as follows. Chapter 2 consists of the journal paper summarising the work of
the thesis. Chapter 3 elaborates further on the results mentioned in the journal paper, and discusses
some limitations of the work. Chapter 4 concludes the findings of the thesis and discusses the scope
for future work. The appendices lay out the methods used in further detail.
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Comfort-Oriented Motion Planning Using Deep
Reinforcement Learning

Abstract—Automated vehicles promise numerous advantages
to users in the form of improved safety, efficiency, and produc-
tivity. The proposed benefits of automated vehicles can however
be overshadowed by the increased susceptibility of passengers
to motion sickness because of them taking on increasingly
passive roles and simultaneously engaging in non-driving tasks.
Increasing attention is being paid towards the design of motion
regimes for automated vehicles which mitigate carsickness, while
maintaining reasonable travel times. In this work, a Deep
Reinforcement Learning (DRL) approach has been used to plan
vehicle trajectories, with a focus on minimizing low-frequency
accelerations which are known to be the primary cause of motion
sickness. This is achieved through incorporating a frequency
weighted discomfort term into the reward function of the training
environment.

The ability of the DRL agent to target undesirable frequencies
in the planned accelerations is investigated by comparing with
a DRL agent trained to improve general comfort, and with an
optimization-based motion planner. A reduction of discomfort
by 9.6% is achieved as compared to the benchmark DRL agent.
The motion planning method is further validated by comparing
the accelerations generated by the motion plans, with trajectories
generated by human drivers, on two actual roundabout scenarios.
The results demonstrate that the DRL motion planner achieves
comparable performance to human drivers, while offering mas-
sive improvements in online computation time compared to
optimization-based planners.

Index Terms—Motion Planning, Motion Sickness, Deep Rein-
forcement Learning, Automated Driving, Proximal Policy Opti-
mization

I. INTRODUCTION

AUTOMATED vehicles are a field of intensive research
currently in the automotive domain, with significant

strides in their development in the recent years. The increased
attention towards the development of automated driving is
owing to the potential benefits they offer in terms of im-
proved safety, higher traffic efficiency and increase in user
productivity. Being freed from the responsibility of driving the
vehicle, users of automated vehicles are expected to engage in
numerous non-driving tasks ranging from conversing with co-
passengers and listening to music, to texting, eating, drinking,
websurfing and so on [1]. In order for the passengers to be able
to perform such tasks, it is imperative that automated vehicles
provide a high level of driving comfort.

It is anticipated that with the advent of complete automation
in cars, there would be an increased susceptibility of passen-
gers to carsickness [2]. This could be due to a multitude of
reasons. The driver would take on a much more passive role,
especially with higher levels of automation, which is well
known to increase motion sickness [3], [4]. Many automotive
companies are also re-imagining vehicle cockpit design, un-
veiling concepts with office like environments, rearward facing
seats and passengers facing each other. Combined with the

passengers engaging in non-driving tasks, this would lead to a
lack of a stable visual horizon, and lower predictability of the
direction of motion. The combined effect of all these factors
may very well lead to significant increase in the occurrence
of carsickness, posing a substantial threat to the envisioned
benefits of automation, and consequently to the acceptance of
automated vehicles among customers.

Motion sickness is a nausea or vomiting syndrome in
healthy subjects arising from illusory or actual passive self
motion. There can be numerous and varied symptoms of
motion sickness ranging from drowsiness and fatigue to stom-
ach awareness and nausea [5]. The most widely accepted
theory explaining motion sickness is the sensory mismatch
theory, which postulates that motion sickness arises from the
conflict between anticipated and sensed motion stimuli [3].
The Central Nervous System (CNS) maintains an internal
model of the dynamics of the human body, which estimates
the spatial orientation of the body by fusing information
from motor outflow and noisy sensory signals. The conflict
between these efference signals with the polysensory afference
signals obtained from the sensory organs is used to update
and improve the internal observer model, but also gives rise
to motion sickness.

The incidence of motion sickness is predominantly caused
by low frequency accelerations (<0.5 Hz), with the effect
peaking around a frequency of 0.2 Hz for vertical accelerations
[6], [7], with a similar peak for longitudinal oscillations [8].
For lateral accelerations, it was found that the incidence of
motion sickness was independent of frequency from 0.0315
to 0.2 5Hz, followed by decreasing intensity with higher
frequency levels [9]. The frequency weighting filters to predict
incidence of nausea for lateral and vertical oscillations have
been shown in Figure 1. As is evident from the frequency
weighting, in order to efficiently inhibit the incidence of
motion sickness, it is necessary to deal with the low frequency
accelerations. This would in turn require motion planning over
longer time horizons to accurately predict the low frequency
acceleration components.

While there has been some research in the design of auto-
mated vehicles to mitigate motion sickness among passengers
such as through the layout of the seating arrangement [10]
and through provision of audio and visual cues [11], [12],
they do not address the underlying cause of carsickness,
which is the motion regime itself. Koppa and Hayes found
the magnitudes of accelerations generated by different drivers
to be independent of the vehicle characteristics, and were
heavily influenced by the driving style of the individual driver
[13]. Further strengthening the link between driving style and
motion sickness, Turner and Griffin found that the driver
was heavily implicated in the generation of motion sickness
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Fig. 1. Asymptotic and realizable frequency weightings for lateral acceleration
[9]. The triangles are the measured instances on which the weighting filters
have been fit

among passengers, with low frequency lateral accelerations
being primarily responsible for nauseogenic symptoms [14].
No significant correlation between vertical, roll or pitch motion
and motion sickness was established. Based on these findings,
it can be said that to effectively combat the occurrence of
motion sickness in automated vehicles, the vehicle motion
itself needs to be planned with particular attention to lateral
and fore-aft accelerations.

Passenger comfort as an objective in motion planning has
been studied extensively through methods such as planning of
smooth paths using clothoids, bezier curves and polynomial
splines, or through the optimization of acceleration and jerk
values [15]–[20]. However, there is very limited research
with regards to directly addressing motion sickness through
motion planning. Htike et al. formulated the motion planning
problem as an optimal control problem, with the objective of
minimising the Motion Sickness Dose Value (MSDV), and
investigated the relation between sickness levels and travel
time [21]. Li and Hu also attempted to address the motion
sickness minimization problem in motion planning through the
formulation of an optimization problem, but used a frequency
shaping approach. However, they only utilized a high pass
filter, relying on the vehicle actuator limits to filter out higher
frequencies [22]. Ukita et al optimized the vehicle trajectory
as well as the gains of the path following controller for a lane
change maneuver, using vertical conflict values predicted by
the 6 Degree of Freedom Subjective Vertical Conflict (SVC)
model [23]. All these works on motion sickness minimization
through means of motion planning focus on solving opti-
mization problems. Classical optimization techniques however,
are demanding on computational resources, and given the
limited on-board computational power available on automated
vehicles, it could be challenging to solve the motion planning
problem in real-time. In particular, including the frequency
weighting filters into the planning further introduces non-
linearities into the problem, making it more difficult to solve.

Machine learning techniques could be an attractive alter-
native approach to the problem, as they can effectively shift
the bulk of the computational demand offline, and require
negligible on-board resources. They have successfully been
applied to a plethora of engineering problems ranging from
object detection and image classification to speech recognition

and recommendation systems. However, the more widely used
supervised learning techniques cannot be easily applied to our
purpose of motion sickness minimisation, as they would re-
quire massive amounts of labelled training data. Training data
is difficult to collect for motion sickness since it would require
large scale data collection from human subjects imposed to
sickening driving regimes. In addition, the inherent variability
among humans of susceptibility to motion sickness could pose
problems in deciding the nauseogenicity of imposed motion.

Deep Reinforcement Learning (DRL) is a machine learning
paradigm which combines the fields of Deep Learning and
Reinforcement learning. It can prove to be a viable alternative
to optimization-based methods in motion planning, as it does
not require any labelled training data, and only needs a rep-
resentative training environment. The motion sickness models
from literature can be incorporated into the environment to
define the reward function. DRL has already been applied
effectively to various levels of motion planning problems,
with the notable advantage of requiring relatively low com-
putational requirements for the trained network [24]. Some
automotive applications of DRL include behavioural decision
making, path planning to end-to-end vehicle control [25]–
[29]. DRL has also been shown to be able to successfully
capture long-term dependencies in systems when applied in
conjunction with methods such as Monte Carlo Tree Search
and Long Short Term Memory Neural Networks [30]–[32].
This could be interesting to explore with regards to capturing
the effects of low frequency accelerations in carsickness.

The contribution of this paper is a DRL approach to motion
planning that minimizes motion sickness among passengers
of automated vehicles by optimizing the vehicle trajectory
to reduce nauseogenic accelerations. In particular, the ability
of DRL to target and minimize low frequency longitudinal
and lateral vehicle accelerations is studied. This was done by
comparing the frequency domain performance of a DRL agent
trained to minimise frequency weighted accelerations to an
agent trained on unweighted accelerations. The performance of
these agents is also compared to a planner solving the respec-
tive environments using an optimization-based technique, to
measure how close the agents come to ’solving’ the designed
training environment.

To further establish the applicability of DRL to motion
planning with regards to motion sickness, experimental tri-
als with human drivers were carried out on an actual road
section to establish a baseline of human performance. The
nauseogenicity of the trajectories followed by the human
drivers is compared to those generated by DRL agents, over
a range of travel times to account for varying driving styles
among humans.

The paper is structured as follows. Section II gives a
basic overview of DRL and details the setup for training and
evaluating the agent. In section III, the experimental setup for
establishing the human baseline has been explained. Section
IV details the results of the simulation and the comparisons
between the human drivers and the trained agent, with the final
conclusions of the study in section V.
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II. DRL TRAINING ENVIRONMENT

In this paper, the Proximal Policy Optimization (PPO)
algorithm was used to train a DRL agent to plan the motion
profile for randomly generated road sections. The complete
road information was made available to the agent as the
state of the environment. The agent was rewarded based on
a weighted sum of a discomfort measure and travel time.
This study focuses on the applicability of DRL to motion
sickness mitigation, and therefore it was assumed that there
is no interaction with other road users. This section provides
a brief overview of DRL, followed by a description of the
environment, the state and action space, the reward function,
and the training algorithm used.

A. Deep Reinforcement Learning

Deep Reinforcement Learning is a sub-field of machine
learning algorithms, in which an agent learns to navigate a task
through a process of trial and error. Reinforcement Learning
involves an agent operating within an environment which takes
actions leading to eventual rewards, with the objective of the
agent being the maximisation of long term rewards. In Deep
Reinforcement Learning, this agent is approximated by a Deep
Neural Network, and hence the name.

At time-step k, the environment is modeled as a system
with a state transition function

sk+1 ∼ P (.|sk, ak) (1)

where sk ∈ S is the state, and ak ∈ A is the action taken by the
agent. The agent acts according to a policy πθ parameterised
by θ ∈ RK , which is given as

ak = πθ(ak|sk) (2)

A series of actions taken by the agent following the policy
π till a terminal state is reached, is called a rollout or a
trajectory τ = [s0:H , a0:H ]. H is the horizon, and the steps
from initiation s0 to the terminal state sH form an episode.

For every action the agent takes, the environment returns a
scalar reward r, which is modeled by a reward function

rk = R(sk, ak) (3)

The expected value of the accumulated reward over a period
of time is called the return J(θ)

J(θ) = E{
∞∑
k=0

γkrk} (4)

where γ ∈ [0, 1) is the discount factor. The agent interacts with
the environment and samples trajectories, with the objective of
learning an optimal policy π∗

θ which maximises the expected
return.

Most of the common DRL algorithms are based on some
form of policy gradient, and parameter update using gradient
ascent

θh+1 = θh + αh∆θJ(θ = θh) (5)

where h is the update step of the policy. αh is the learning rate
for updating the weights of the network. The algorithms which
use a gradient estimate to perform the parameter update are

known as REINFORCE algorithms [33]. The REINFORCE
algorithms while being simple to implement, suffer from
instability during training, low sample efficiency and a lack
of robustness [34].

The performance of the REINFORCE algorithm with re-
gards to sample efficiency and reliability has been shown to be
significantly improved through the use of a clipped objective
function [34]. The clipped objective estimates a pessimistic
lower bound on the value of the policy performance, which
ensures that the gradient update steps do not become large
enough to lead to worse performing policies. This algorithm
is known as Proximal Policy Optimization (PPO). The PPO
algorithm can deal with continuous state and action spaces,
offers ease of implementation, and reliable performance, and
therefore was used for our trajectory planning problem.

B. Environment and Observation Space

The agent was trained in a custom OpenAI Gym envi-
ronment. In order to ensure that the agent learns to plan
comfortable paths for a wide range of scenarios, random road
profiles were generated for training. In each episode, the total
length of the road profile L was kept fixed, with intermediate
sectors of constant curvature. The road profile was constructed
with straight and circular sections, maintaining a continuous
first derivative.

The initial and final sectors were straight paths, with each of
the remaining sectors having curvatures κi sampled randomly
from the uniform distribution U[κmin,κmax]. The length of each
sector was obtained by partitioning the total length of the road
into sectors, again in a manner to ensure that the lengths form
a uniform distribution U[lmin,lmax]. The vehicle velocity was
initiated with a random velocity also sampled from a uniform
distribution U[vmin,vmax].

The road was assumed to be a constant width throughout the
entire section. The environment was assumed to be completely
observable, and the state vector was defined as follows

s = [κ0:n−1, l0:n−1, y0, v0] (6)

where κ0:n−1 is the array of curvatures of the road sectors,
l0:n−1 are the lengths of the respective sectors, and y0 and v0
are the initial lateral position and longitudinal velocity of the
vehicle respectively. Since the curvatures and lengths of the
road profile, and the vehicle velocity can take any value within
the defined limits, the state space is continuous in nature. The
state contains the complete information of the vehicle and the
road required for the agent to plan the vehicle trajectory. The
states and observations space were normalised to lie between
[−1, 1], which ensured that the different quantities were scaled
appropriately, and the weights in the neural network were
not skewed due to different orders of magnitude of the state
variables.

C. Motion Definition and Action Space

The vehicle motion was defined in terms of its position and
velocity, and it was assumed that a path following controller
would be used to follow the defined trajectory. The position of
the vehicle was defined as the lateral deviation with respect to
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the centreline of the road, measured radially along the centre
of curvature of the respective road sector. The longitudinal
velocity at each point was assumed to be tangential to the
road profile.

It is imperative to ensure continuous and smooth tra-
jectories, in order to have smooth acceleration profiles. To
ensure that the planned trajectories are smooth, a cubic spline
implementation was utilised to approximate the velocity and
position profiles. The reference position was described as a
cubic function of the distance travelled along the centerline
of the path. The reference position is calculated as the lat-
eral deviation y from the centerline, given by the following
equation

yi(u) = ay,iu
3 + by,iu

2 + cy,iu+ dy,i i = 0, . . . , k− 1 (7)

where u ∈ [0, 1] is a normalised distance parameter, 0 and
1 at the beginning and end of each sub-interval Pi of the
spline respectively. ay,i, by,i, cy,i and dy,i are the cubic spline
coefficients for the ith polynomial Pi. k is the total number of
cubic polynomials which compose the spline. The coefficients
were calculated to satisfy the following boundary conditions

• The first derivative at beginning and end of each polyno-
mial is continuous

P
(1)
i−1(1) = P

(1)
i (0) i = 1, . . . , k − 1 (8)

• The second derivative at beginning and end of each
polynomial is continuous

P
(2)
i−1(1) = P

(2)
i (0) i = 1, . . . , k − 1 (9)

• At the start and end of the road, the first derivative
is zero. This ensures an initial and final heading along
the road direction, and zero initial and final longitudinal
acceleration

P
(1)
0 (0) = P

(1)
k−1(1) = 0 (10)

The road profile is distributed into k control points or knots,
the positions along the length of the path where the agent
predicts the lateral position of the vehicle. The velocity profile
is also calculated in a similar fashion, by knots placed at
the same positions as the spline used to calculate lateral
positioning.

vi(u) = av,iu
3+bv,iu

2+cv,iu+dv,i i = 1, . . . , k−1 (11)

Together, the predicted values at the control points for both
position and velocity comprise the action space of the DRL
agent. The action space of the agent is therefore given as
follows

a = [y1(0), y2(0) . . . , yk−1(0), yk−1(1),

v1(0), v2(0) . . . , vk−1(0), vk−1(1)] (12)

Similar to the state and observation space, the action space
was also normalised to lie within the bounds [−1, 1]. The
bounds for normalization were decided based on the minimum
and maximum speed limits, and the limits on the lateral
deviation from centerline were enforced to prevent the vehicle

exiting the lane. Considering a road width of 3.3 m, and
a typical vehicle width of 2.1 m, the control knots of the
spline were limited to a maximum deviation of 0.5 m from
the centerline to ensure that the vehicle does not exceed the
road boundaries. Inside built up areas in the Netherlands, the
speed limit is 50 km/h, which is the constraint we used. The
lower speed limit was kept at 18 km/h.

The knot vectors along the length of the road were placed so
as to obtain equal partitions of the total length of the road. A
point to be noted is that a minimum length of the road sectors
(each sector with constant curvature) was enforced in order
to ensure that each sector contained at least one spline knot
vector. This constraint ensured that for every corner the spline
could accommodate a change in direction corresponding to
change in curvature of path.

D. Reward Function

In order to enable the agent to learn to plan paths which
minimize motion sickness, while also optimizing travel time, it
was imperative to design a reward function which incorporates
these objectives appropriately. To take into consideration the
vehicle accelerations, a discomfort term D was defined as the
integral of the squared accelerations undergone by the vehicle,
over the entire duration of the motion.

D =

∫ T

0

(a2x + a2y)dt (13)

Where ax and ay are the longitudinal and lateral accelerations
of the vehicle respectively. T is the total travel time required
for the vehicle to traverse the planned trajectory.

Since our goal is to selectively minimize accelerations with
the most significant contribution to the generation of motion
sickness in passengers, the accelerations were weighted using
a frequency weighting filter prior to calculating the discomfort
term. As can be seen from the Figure 1, for lateral oscillations,
accelerations in the frequency range 0.02 Hz to 0.25 Hz
have the most significant contribution towards inducing motion
sickness in passengers, with the weighting independent of
frequency of excitation [9]. Incidence of nausea has been
shown to peak around 0.2 Hz for longitudinal oscillations,
with the frequency dependence dropping off with higher and
lower frequencies [8].

To incorporate these findings into the discomfort term, two
band pass filters were constructed for lateral and longitudinal
accelerations respectively. The cut-off frequencies for the
lateral frequency filter were defined at 0.02 Hz and 0.25 Hz,
and at 0.15 Hz and 0.25 Hz for the longitudinal frequency
filter. The band pass filter is constructed as follows

BP (s) =
1

τ1s+ 1

s

τ2s+ 1
(14)

where τ1 and τ2 are the time constants of the low and high
pass filters respectively. To ensure that neither of the lateral
or longitudinal accelerations are weighted preferentially, the
peak gain of the filters was adjusted to attain equal area under
the curve for the frequency range 0 to 1 Hz. The band pass
filters have been shown in Figure 2.
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Fig. 2. The band pass filters used for weighting lateral and longitudinal
accelerations to calculate the discomfort term

The filters were converted to state space models and then
discretised in order to be applied to the calculated accelerations
ax and ay . A 30 s cooldown period with zero accelerations
was implemented to take into account the long tail effect of the
low pass filter. The output accelerations from the filter were
continued to be penalized during the cooldown period.

The overall reward was taken as a weighted sum of the
discomfort D and the travel time T , to prevent the agent from
learning to slow the vehicle excessively to reduce acceleration
values.

R =W.T +D (15)

where W is a weighing factor. The higher the value of W,
the more the importance given to travel time, which would
encourage the agent to plan faster trajectories at the cost of
higher discomfort D. To calculate the accelerations and travel
time, the path was discretised into stations spaced 1m apart
along the length of the road. At each station k, the velocity
vk, and the waypoints on the path to be followed, yk were
determined using their respective spline functions as derived in
the previous subsection. Using the coordinates of the stations,
the respective coordinates of the waypoints were found, which
was then used to calculate distance dk between subsequent
waypoints. The curvature of the path κk was obtained by
differentiation. The point mass model was then utilized to
determine the remaining values to obtain the value of the
reward

∆Tk = 2dk/(vk+1 + vk) (16)

ax,k = (v2k+1 − v2k)/2dk (17)

ay,k = κk(vk + ax,k∆Tk)
2 (18)

∆Dk = (a2x,k + a2y,k)∆Tk (19)

R =
N−1∑
k=1

(W∆Tk +∆Dk) (20)

The use of the point mass model ensures that the com-
putational requirements during training are at a minimum as
compared to more complex vehicle models. It also leads to a
more general trajectory planner which can be implemented

on a range of vehicles, as it does not depend on vehicle
parameters.

In addition to the reward based on accelerations, to constrain
planned accelerations within the traction capabilities of the
vehicle, a penalty of -1000 was imposed on the agent if
the total vehicle accelerations exceeded a value of 1g at any
timestep.

E. DRL Agent Training
The training consisted of single step episodes, with the

agent receiving initial the initial state information s0, as
defined in equation 6, from the environment, predicting knot
vectors for the entire path in a single step, and receiving
the corresponding reward. As described in section II-A, the
PPO algorithm was used to train the agent. The standard
PPO implementation from the stable baselines3 library [35]
was used. The hyperparameters have been listed in Table I.
The hyperparameters listed were optimized by a search using
Optuna [36].

TABLE I
HYPERPARAMETERS FOR THE PPO ALGORITHM AND THEIR

CORRESPONDING VALUES

Hyperparameter Value
Learning rate 0.001

Discount factor 0.99
Steps before update 2048

Clip range 0.2
Batch size 64

All training as well as remaining simulations were per-
formed on a laptop PC with an Intel Core i5-10210U CPU,
and an NVIDIA GeForce MX250 GPU.

F. Optimization-based Planner
To evaluate the upper limit of agent performance from the

designed custom environment, an optimization-based planner
was implemented in addition to the DRL agent. The optimiza-
tion problem was defined as follows

max
a

R(s = s0, a)

where: a = [y1:k−1, v1:k−1]

s.t. ymin ≤ yi ≤ ymax

vmin ≤ vi ≤ vmax

(21)

where a consists of the control points as defined in equation
12, R is the reward function given in equation 15, and s = s0
is the initial state of the environment, given by equation 6,
is known. The constraints on the vehicle velocities and lateral
positions were the same as those defined for the DRL agent. In
order to solve the above constrained non-linear optimization
problem, the implementation of the Sequential Least SQuares
Programming (SLSQP) algorithm from the SciPy library was
used.

It is important to note that the trajectory generated by the
optimization-based planner is not the best possible motion plan
for the road profile, but given the proposed environment design
along with the spline based motion profiles, it is a measure
of the best performance the DRL agent can be expected to
achieve.
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Fig. 3. A satellite view of the road section including the two roundabouts has been depicted. The vehicle positions as measured by the GPS sensor for one of
the test runs have been shown in white, along with the estimated trajectory as obtained from the Kalman filter. As can be seen, the trajectory is reconstructed
and the discontinuities in the data have been eliminated

III. HUMAN BASELINE PERFORMANCE

In addition to comparing the performance of DRL agents
with regards to targeting motion sickness, it is also interesting
to compare the frequency content of the accelerations gener-
ated by DRL planner to the accelerations typically generated
by human drivers. In this study, a human baseline performance
was established by recording position, velocity and accelera-
tion values as measured on a vehicle driven by volunteers on
a chosen road section.

A road section in the Netherlands was chosen for the
purpose of this driving performance evaluation. The test road
begins at the exit ramp of motorway A12 (52.064◦N, 4.818◦E)
and ends at the distributor road N420 (52.068◦N, 4.828◦E).
The chosen path can be seen in Figure 3. In driving through
the road section, the vehicle has to navigate through two
roundabouts connected by a path with consecutive turns.
The section was chosen as it consists of turns of different
curvatures and lengths.

To evaluate the performance of the DRL agent, we focused
only on the trajectory followed on each of the roundabouts,
as the remaining portions of the path consisted mostly of long
straight sections which would substantially increase the num-
ber of control points required, and subsequently the training
time. The chosen sections of the roundabouts spanned 134 m
in length, including the straight parts at entry and exit. The
roundabouts will be referred to as RB1 and RB2 in sequential
order respectively.

The motion profile as output by the agent was then evaluated
in a high-fidelity IPG CarMaker environment with a multi-
body vehicle model, as the custom training environment only
used a point mass-model which would not be directly com-
parable to actual vehicle accelerations. The subsection III-A
explains the experimental setup used, while subsection III-C
details the controllers and vehicle model used for evaluating
the motion planned by DRL agent.

A. Experimental Setup

For the purpose of the experiment, 6 volunteers were
recruited, with ages ranging from 24 to 30 years, with an
average age of 27.5. The driving experience among volun-
teers ranged from 4 to 10 years, with a mean of 7.2 years,
so all volunteers can be considered fairly experienced. The
volunteers were instructed to drive through the test route in a
smooth manner while maintaining the highest pace to the best
of their abilities. Each volunteer attempted two runs through
the section, and the best run was chosen based on lowest
interaction with traffic and minimum discomfort value. The
trials were conducted during hours with minimal traffic to
have the best representation of unobstructed human driving
performance.

The chosen test vehicle was a Hyundai Tucson, equipped
with an automatic transmission to avoid undesired accelera-
tions from manual shifting. To record the vehicle trajectory, a
high accuracy 100Hz Global Positioning System (GPS) was
used in combination with an Inertial Measurement Unit (IMU).
The experimental vehicle setup has been shown in Figure
4. The test runs resulted in a collection of vehicle position,
velocity and acceleration profiles. The relevant portions of
the motion profile in each of the roundabout sections were
extracted using the position information from the GPS, and
the acceleration values as recorded with the IMU were used
to establish the human performance baseline as described in
section IV.

B. Pre-processing Measurement Data

To establish the human baseline performance, the trajectory
information from the isolated roundabout sections of the test
scenario were collected. The measurements obtained from the
GPS/GNSS sensor could not be used directly to ascertain
the start and end of the trajectories due to errors resulting
from measurement noise. To produce reasonable driving data
representative of actual vehicle trajectories, a Kalman filter
was implemented. A point mass kinematic model with state
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Fig. 4. The test vehicle, a Hyundai Tucson (top), equipped with a double
antenna GPS (bottom left) and IMU system (bottom right) for measuring
driving performance of human drivers

given by vehicle position and velocity, and acceleration inputs
was used as the model for system dynamics.

pk = pk−1 + vk−1∆t+
1

2
ak−1∆t

2

vk = vk−1 + ak−1∆t
(22)

where pk, vk and ak are the position, velocity and acceleration
vectors in the global coordinate system at time step k and ∆t
is the sampling time. The state was taken as x = [pTvT ]T .
The acceleration vector was taken as the measured data from
the IMU converted to global coordinates using the vehicle
heading. The process noise was assumed to be a result of the
noise in IMU measurements. The acceleration data was also
low-pass filtered to remove high-frequency noise before being
used.

The system was assumed to be completely observable with
all state measurements zk available from the GPS sensor.

zk =

[
p
v

]
+ ηk ηk ∼ N (0,R) (23)

Using the system dynamics given by equation 22 and the mea-
surement model given by equation 23, and assuming normally
distributed Gaussian noise for all sensors, the Kalman filter
was implemented to obtain the estimated position and velocity
profiles over the test road section. The desired portions of
the trajectory about RB1 and RB2 were extracted using the
estimated vehicle pose. An example of the measured and
estimated trajectory and velocity profiles has been shown in
Figure 3.

C. DRL Agent Performance Evaluation

The motion profiles generated by the DRL agent were based
on a point-pass model, so in order to have a fair comparison
with the human drivers, the trajectories were evaluated in

a virtual IPG CarMaker environment. The vehicle model
used was comparable in dimensions and kerb weight to the
actual test vehicle in order to have as close a comparison as
possible. To track the reference trajectories generated by the
motion planner, a simple Stanley controller was implemented
as follows

δ = (ψr − ψ) + atan
ksteer(yr − y)

v
(24)

where δ and ψ are the steering input and heading of the vehicle
respectively, yr is the reference position, while ksteer is a
parameter which decides the aggressiveness of the controller.
The throttle percentage PT or brake percentage PB is decided
as a weighted sum of reference forward acceleration ax,r
with the error in velocity, scaled by a factor kdrive or kbrake
depending on whether the vehicle is desired to be accelerated
or decelerated.

PT = kdrive(ax,r + kspeed(vr − v))× 100% (25)
PB = kbrake(ax,r + kspeed(vr − v))× 100% (26)

IV. RESULTS

The results have been divided into two subsections. Sub-
section IV-A goes into the frequency analysis of two DRL
agents trained in a simple environment, one minimising motion
sickness and the other optimizing general motion comfort
described by total acceleration energy. The agents have also
been compared to optimal planners. The subsection IV-B
establishes the human baseline performance for the roundabout
scenarios, and compares the performance of the trained DRL
agent with the optimal planner as well as human drivers.

A. Frequency Domain Performance

For the purpose of investigating whether the DRL agent is
able to target the low frequency acceleration component, a
simple environment was used. The road length was assumed
to be 100 m, with a single turn. The trajectory was defined
with splines controlled by k = 5 control points. Two agents
were trained in the same environment, with the only difference
in their respective reward functions. Agent A was trained
on a discomfort term calculated without frequency weighted
accelerations, while agent B was trained using a reward
function incorporating the band pass filters as described in
section II-D. The accelerations outside the cut-off frequencies
are attenuated by the band pass filters, and so the frequency
weighted discomfort term is generally lower in value for
comparable travel times. To compensate for this and ensure
similar travel times for both agents, a weight of W = 0.6 and
W = 1 was used for agent A and B respectively. Both agents
were trained for 1M steps.

The planned trajectories of the agents A and B for a
randomly generated scenario from the training environment
have been shown in Figures 5 and 6 respectively. In the test
case, the vehicle is initialised with a randomly generated speed
of 7.25 m/s, and has to traverse through a sharp left turn.

As can be seen from the figures, both agents learn to
accelerate in the straight sections of the road, and decelerate
on approaching the corner. The spatial plans also are close
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Fig. 5. Trajectory as planned by agent A. The subfigures depict the vehicle
accelerations, velocity and positions from the motion plan. The entire path
takes 11.84 s to navigate.

Fig. 6. Trajectory as planned by agent B. The subfigures depict the vehicle
accelerations, velocity and positions from the motion plan. The entire path
takes 11.87 s to navigate.

to a path that would be intuitively expected to be the most
comfortable around the corner, with the vehicle entering from
the outside edge, moving close to the apex and then exiting
towards the outside edge of the corner. Both agents learn to
utilize the complete limits of the available lateral deviation.
In the particular test case shown here, the vehicle velocity
range is not completely used, however, that is in the interest
of producing lower vehicle accelerations. The peak lateral
accelerations in both cases are around 3.5 m/s2.

For the particular case being analysed, the frequency
weighted discomfort term is 6.5% lower for the trajectory
planed by agent B, with the same travel time as agent A.
The drop in the discomfort term arises from the lower lateral
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Fig. 7. Frequency content comparison of the longitudinal accelerations in the
motion plans A and B. The line plots represent the DRL agents, while the
scatter plots represent the optimal planners.

accelerations in motion plan generated by agent A. The travel
time is unaffected due to the higher longitudinal accelerations,
that is the vehicle brakes harder prior to the corner, and
accelerates harder after exiting to reach a higher final velocity.
Motion plan B has minimum and maximum velocities of 6.4
m/s and 11.5 m/s respectively, as opposed to 7.0 m/s and 9.7
m/s in motion plan A.

The preferential lowering of lateral accelerations by agent
B can be attributed to the frequency filter. The longitudinal
accelerations have a narrower band pass filter as opposed
to lateral accelerations, and hence are attenuated more. In
addition, the longitudinal frequency filter has a lower peak
gain, to have the same area under the curve over the frequency
range 0 to 1 Hz. The agent learns to increase accelerations
beyond the cut-off frequencies, and target the frequencies of
interest.

To analyze the frequency content of the accelerations,
the Non-Uniform Fast Fourier Transform (NUFFT) has been
shown in Figures 7 and 8. To further provide an insight into
how the motion plans compare to ideal, the comparison with
the optimization-based planner detailed in II-F has also been
included. As expected from the acceleration values, it can
be seen that the peak amplitudes of lateral accelerations are
lower in motion plan B than A. Throughout the frequency band
0.0315 Hz to 0.25 Hz, the amplitudes are significantly lower
in motion plan B. This does lead to higher peaks between 0.3
Hz to 0.9 Hz, but that is expected and desirable behaviour in
our case. With DRL agent B, it can be seen that the energy
is transferred from lateral to longitudinal accelerations, with
significantly higher peaks compared to agent A. However, two
important points need to be noted. Near the peak nauseogenic
frequency of 0.2 Hz, motion plan B has a lower minima as
compared to agent A. Also, lateral accelerations have signif-
icantly higher amplitudes throughout the relevant frequency
spectrum as compared to longitudinal accelerations, and so the
agent B learns to minimize low-frequency lateral accelerations
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at the cost of higher longitudinal accelerations. The study by
Turner and Griffin [14] found higher correlation of lateral
accelerations with motion sickness in passengers as compared
to fore-aft accelerations, so the behaviour learnt by agent B
works in this direction.

The above analysis was performed for a single randomly
generated test case. However, to have a holistic idea of the
performance of the agents, the average frequency weighted
discomfort value and the travel times over 10,000 episodes
were calculated. The frequency weighted discomfort value D
for agent A was 19.61, while the for agent B was 17.73, which
is a drop of 9.6%, quite significant for the relatively short and
simple road profiles under consideration. The average travel
times for the same were 9.78 s and 9.87 s respectively, which
is a difference of less than 1%, and therefore can be considered
comparable.

B. Comparison to Human Drivers

For comparison to human drivers, the DRL agent was
trained on a 134 m road section with 6 sectors of varying
lengths. Multiple agents were trained with varying weights
on time ranging from W = 4 to W = 16, in order to have
representative trajectories for different driving styles, and to
study how the discomfort values depend on travel time. All
agents were trained for 1.5M steps. The planned trajectories
for our two evaluation scenarios RB1 and RB2, with a weight
of W = 8 have been depicted in the Figures 9 and 10
respectively. As can be seen from the figures, roundabout 1 is
a slower case with smaller radii of curvature, with a minimum
radius 13 m. Roundabout 2 is a relatively faster corner with
a minimum curvature radius of 17 m and only four curvature
changes as opposed to five changes in roundabout 1.

The performance of the DRL agent has again been com-
pared with the optimization-based planner described in section
II-F. In addition, the nauseogenicity of planned motion has

5 6 7 8 9 10 11 12 13
Velocity (m/s)

Fig. 9. Trajectory as planned by DRL agent for RB1. The weight on time
for the agent is W = 8. The planned path takes 19.04 s to navigate.

5 6 7 8 9 10 11 12 13
Velocity (m/s)

Fig. 10. Trajectory as planned by DRL agent for RB2. The weight on time
for the agent is W = 8. The entire path takes 15.52 s to navigate.

been compared with driving comfort of human drivers mea-
sured through the experimental setup as described in section
III-A.

In order to have a representation of the performance of the
motion plan over different weights, the discomfort values have
been plotted in Figures 11 and 12. In both scenarios and with
both planners, the planned discomfort values increase with
a decrease in travel time, forming a Pareto front. It can be
observed from the figures that in both cases, the discomfort
values are higher with the DRL planner, which is as expected
since it plans a sub-optimal path but with lower computation
time. It is also evident from the plots that the discomfort values
are significantly lower in RB2 due to the shorter travel time
and lower curvatures of the turns. The data for both planners
have been fit with a curve of the form

y = axb + c (27)

With the trained agents, there is some inherent variability
due to the randomness involved in the training process. To
account for this variability, the fitted curves have been used
for comparison. The performance of the DRL agent is between
10.9% to 12.9% of optimal over the range of weights W = 4
to W = 16 for RB1, and within 6.2% and 14.2% for RB2.
The worse performance over RB2 is due to the increased
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Fig. 11. Comparison of frequency weighted discomfort values and the travel
times for the DRL agent and the optimal planner, for roundabout 1
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Fig. 12. Comparison of frequency weighted discomfort values and the travel
times for the DRL agent and the optimal planner, for roundabout 2

difficulty of navigating the turn at higher speeds leading to
higher accelerations, particularly at lower travel times.

The Figures 11 and 12 also depict the discomfort values
as calculated for the human drivers, along with the fitted
curves as per equation 27. For both roundabouts, it can be
seen that there is significant variation among the performance
of human drivers, with travel times ranging from 16.8 s to
26.6 s for RB1, and from 13.1 s to 16.6 s. The average travel
times for RB1 and RB2 were 19.6 s and 14.9 s respectively.
The frequency weighted discomfort ratings vary from 74.3 to
118.1 for RB1, with an average value of 92.3. For RB2, the
corresponding range was from 54.4 to 96.3 with a mean value
of 70.4. While there is a general trend as expected towards
higher discomfort values with lower travel times, it can be
seen that some drivers outperform others, clocking faster travel
times with lower discomfort levels.

For the RB1 scenario, the DRL agents perform either on

par or better than the human drivers with respect to frequency
weighted discomfort, except for one driver. The best driver
outperforms the DRL agent by 11.3%, with a discomfort rating
close to the optimal for the environment. However, the DRL
agent significantly outperforms the worst driver, by a margin
of over 200%. It can be seen that the discomfort rating of the
DRL agents show a sharper increasing trend than the human
drivers with lower travel times, and this can be attributed to the
larger modelling errors associated with the point mass model
on approaching higher vehicle speeds and acceleration values.

The RB2 scenario, on the other hand does highlight some
limitations in the design of the custom training environment
itself. 3 human drivers drive along trajectories with comparable
nauseogenicity to the DRL agents, exhibiting discomfort val-
ues within 5% of the DRL agent. The remaining 3 drivers drive
along trajectories with much lower discomfort values, even
improving upon the minimum discomfort levels obtainable
from the environment. The reason for this, as mentioned earlier
can be attributed to a combination of two factors. The first
reason is the constraints of the motion profile itself due to the
use of splines for planning the motion profiles. The splines
reduce the action space of the agent and therefore keep training
times to practically achievable values, but also introduce a
cap on the best performance achievable by the agent. The
second reason could be the higher modelling errors with using
a point-mass model for trajectories, but this effect will only
be pronounced with faster travel times and higher acceleration
values.

Another comparison of interest is the trend of lateral and
longitudinal accelerations with varying the weights, which
gives further insight into the time-comfort compromise of the
planner. The plots have been depicted in Figure 13. The values
of overall RMS acceleration and lateral accelerations are as
expected, showing an increasing trend with higher values of
W . The overall accelerations are lower than the optimal at
W = 16, as at that weight the agent learnt to predict slower
trajectories leading to lower RMS accelerations. An interesting
insight from the graphs is the low increase (and even reduction
from W = 12 to W = 16) of the longitudinal accelerations
with increased weight, both with DRL and the optimal planner.
With increasing weights W on time the planner tolerates a
much higher lateral acceleration value in interest of travel time,
leading to only a small increase in longitudinal accelerations.

The metric in which the DRL agent comprehensively out-
performs the optimization-based planner is the computational
time. Although the DRL agent predicts sub-optimal trajectories
with discomfort values 10 to 15% higher than optimal, the
trained agent once loaded only takes between 1-2 ms to predict
the motion plan for the given road profile. In comparison,
the optimal planner takes an average of 5 s to compute
the optimal motion plan. This is a significant improvement
in computation time, for a sub-optimal but relatively ’good’
motion profile. This result is further strengthened by the
fact that the discomfort ratings of the DRL trajectories are
comparable to those achieved by human drivers, particularly
at lower vehicle velocities.
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V. CONCLUSIONS

A. Contributions

In this research, a novel method of minimizing motion
sickness in motion planning through the use of Deep Rein-
forcement Learning has been presented. The naseogenicity
of planned trajectories was evaluated by using a discomfort
term, which used acceleration values passed through frequency
weighting filters, derived from motion sickness models present
in literature. It was shown that the use of the discomfort
term in the reward function of the DRL agent allowed it
to successfully learn to target frequencies of interest which
are primarily responsible for motion sickness. The frequency
weighted discomfort values were found to be 9.6% lower on
average as compared to an agent trained with a discomfort
term calculated using unweighted accelerations. The difference
arises due to shifting of energy from lateral to longitudinal
accelerations, and to frequencies beyond the band of interest.

The DRL agent was evaluated on two roundabout sections
modelled on a real road in the Netherlands. In order to have
a representation of DRL agents with different driving styles,
multiple agents were trained with varying weights W ∈ [4, 16].
The performance was compared to an optimal planner, as well
as a human performance baseline established by performing
trials with volunteers. The average discomfort rating values
over two roundabout sections were found to be 92.3 and 70.4
respectively, with average travel times of 19.6 s and 14.9
s. It was found that the DRL agents provided comparable
discomfort values to the human drivers, particularly around
the slower roundabout. The measured discomfort was however,
higher than the optimization-based planner for all different
driving styles, usually in a range of 10-15%. The DRL
agent did offer massive improvements in computation time,
by reducing the online computation time by three orders of
magnitude.

B. Limitations and Future Work

It was shown that for scenarios with a reasonable complexity
level, DRL can be used for motion planning in a manner which
reduces acceleration frequencies in nauseogenic bands. The
performance of the agent is however limited by the design
of the environment, and to use more complex environments,
agents with a larger state and action space need to be trained.
It also needs to be noted that for real roads with more
complex profiles, such as multi-lane highways, highway ramps
or intersections, the performance of the agent still needs to
be proven. The state representation of the agent itself is not
general enough to be applied to all different kinds of road
lengths and curvatures which may be encountered. The use
of Recurrent Neural Networks (RNNs) could be investigated
for incorporating a variable state space so as to have a more
general representation of the road profile.

The challenges generally encountered with DRL are also
present in this study. The agents require a long time to
train, and training time increases exponentially along with the
dimensionality of state and action space. The motion plans
generated, although substantially reduce on-line computation
time, they produce sub-optimal results.

In addition, it is also not clear whether the objective
improvements in motion sickness dose values would translate
to real world comfort improvements for passengers. It may
very well be the case that focusing on motion sickness
mitigation might lead to reduction in general comfort of the
passenger, and the benefits of the motion plan may only
be appreciable with longer journeys and curvy roads which
promote low frequency accelerations. The perceived benefits
of the proposed motion plan can be evaluated through driving
simulator or on-road experiments with human subjects.
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3
Results and Discussions

This chapter consists of two sections. The first section details some additional results to supplement
those provided in the journal paper given in chapter 2. Further, a detailed discussion on the issues
faced with the method as well as possible solutions to overcome these issues have been provided in
section 3.2.

3.1. Additional Results
Figures 3.1 and 3.2 are the collected fourier transforms of respectively the longitudinal and lateral
accelerations generated by all the human drivers as well as the DRL agents of different weights W .
Figures 3.3 and 3.4 depict the corresponding information for RB2.

As defined in Appendix C, the peak nauseogenic frequency band for longitudinal accelerations is be-
tween 0.15Hz and 0.25Hz. It can be seen from Figures 3.1 and 3.3 that peak longitudinal accelerations
in the trajectories generated by human drivers are concentrated in the frequency range between 0.1Hz
and 0.2Hz, nearly coinciding with the peak nauseogenic frequencies. With the DRL motion plans, how-
ever, the peak is shifted to lower frequencies, with the highest amplitudes between 0 to 0.1Hz. Another
interesting observation is that the high frequency content is also significantly lower in the longitudinal
accelerations from the DRL motion plans, which points to higher longitudinal jerks from human drivers.

With lateral accelerations, the band of interest is a broader one, between 0.0315Hz to 0.25Hz. Here
again it can be seen that the peaks are consistently lower with the DRLmotion plans in the low frequency
spectrum. To account for the difference in travel times, even with the fastest human driver acceleration
profile removed, the peaks in the low frequency band remain higher than the DRL agents. However, with
lateral accelerations, the amplitudes are much higher in the high frequency 0.5 Hz to 1 Hz range for the
DRL motion plans with peak amplitudes higher than 1m/s2 compared to peak amplitudes of 0.2m/s2
for human drivers. It can be deduced that this shift of lateral accelerations from the low frequency
to high frequency region leads to lower nauseogenicity of the DRL motion plans as compared the
human drivers. However, it should be noted that these high frequency accelerations can cause higher
immediate discomfort to passengers due to more jerk, as has been discussed in more detail in the
subsequent section.

3.2. Discussion
Over the course of designing the training environment as well as during the evaluation of the DRL
agorithm, several issues were encountered. This section will go into the details of the issues encoun-
tered, as well as some possible measures to tackle them.

3.2.1. Environment Design
The current environment design makes use of spline based velocity and position planning. This limits
the action space of the DRL agent to the number of control points used to define the splines. This was

17
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Figure 3.1: Frequency content comparison of the longitudinal accelerations of all human drivers with DRL agents for RB1.
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Figure 3.2: Frequency content comparison of the lateral accelerations of all human drivers with DRL agents for RB1
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Figure 3.3: Frequency content comparison of the longitudinal accelerations of all human drivers with DRL agents for RB2
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Figure 3.4: Frequency content comparison of the lateral accelerations of all human drivers with DRL agents for RB2
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Figure 3.5: Mean episode rewards as a function of training time for DRL agent with action space of size 8. It can be seen that
the rewards stabilize after 400-500k steps, and no further increase is observed.

done with the interest of maintaining continuity in the planned accelerations, and to limit the size of
the action space. However, this limits the degree of freedom available to the agent to plan the most
optimal path possible, and therefore enforces an upper ceiling on the real world performance. This
could be observed from the performance comparison with human drivers for RB2, as detailed in the
journal paper.

In order to remedy this problem, the easiest way is to increase the number of control points for the
agent to plan. In the thesis, splines with 5 and 8 control points were used for two different types of DRL
agents trained, with corresponding action spaces of 8 and 14 respectively (for the combined position
and velocity splines). For a Fully Connected NN with 64x64 neurons in the hidden layer, an increase in
the action space by n actions will lead to 64n more weights in the NN to be trained. As was observed
from training the DRL agent in the two environments with action space of 8 and 14 respectively, the
number of episodes required for the reward to stabilize increased from 500,000 to 1.5M steps. This
can be seen in figures 3.5 and 3.6. Training for 1.5M steps already required a wall clock time of 16
hours with the available computational resources, and therefore larger action spaces were not explored.
However, it can be extrapolated from the performance on simpler environments that increasing the
action space size and providing more control points for the agent to plan the trajectory can result in
improved performance, provided long enough training times are maintained. Another possible solution
could be to use more control points only for planning the position while maintaining a minimum number
of control points for velocity planning, as the lateral acceleration values are of greater importance for
our purpose of motion sickness mitigation.

Another aspect of the environment design which can be improved upon is the design of the state space
itself, which consists primarily of the road profile information. Currently the state space as implemented
in this thesis is as defined in section B.1.1, and has the road information in terms of the sector lengths
and curvatures. The maximum length of road profile that the agent can plan for is fixed, and so is
the maximum number of sectors with changing curvature values. While the road length and curvature
limits are defined such that they cover a wide range of possible cases that the agent may encounter
in the real world, there might still be curvature-length combinations which the agent is not equipped to
handle.

The state space could be modified to handle a wider range of possible road profiles by two possible
methods. The size of the state space itself can be increased, thus increasing the maximum number
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Figure 3.6: Mean episode rewards as a function of training time for DRL agent with action space of size 14. The rewards are
steadily increasing throughout the training period of 1.5M steps

of curvature and length combinations it can handle. Shorter roads can then be accounted for by using
zero-padding for the states which remain unused. This is not a very elegant solution, and may lead to
increased training times, similar to that encountered with an increase in action space size.

A possible method to incorporate varying number of road sectors could be to take inspiration from
natural language processing problems which make use of Recurrent Neural Networks to handle varying
number of input states [31]. They would provide the added advantage of being able to learn temporal
dependencies on the previous states, which could be particularly attractive for identifying low frequency
acceleration effects.

3.2.2. Evaluation of Real-World Benefits
It has been shown that the DRLmotion planner shows good objective performance levels, with frequency-
weighted discomfort values comparable to those of human drivers. However, the nature of the accel-
erations generated from the motion plan are quite different to those of human drivers, as elaborated in
section 3.1. The focus on reducing low-frequency accelerations will inevitably lead to higher accelera-
tion energy being concentrated elsewhere in the frequency spectrum, particularly at higher frequencies
as is evidenced in figure 3.2. This would translate to higher jerk levels for passengers, which could
be a source of discomfort. Motion sickness generally manifests over longer journeys, and for shorter
journeys, high jerks could overshadow the anticipated benefits from the motion plan. These effects
therefore need to be evaluated and quantified through subjective evaluations of the motion plans by
human volunteers, to give a realistic picture of how the proposed motion plans translate to the real
world.

3.2.3. DRL Issues
DRL is still a relatively new field of research with numerous open challenges such as reproducibility,
hyperparameter tuning, instability in training and so on [32]. Multiple challenges relating to DRL were
faced over the course of this research as well. Hyperparameter tuning requires search over a very large
possible space due to the number of parameters to be optimized, and due to long training times, the
search itself is quite time consuming. Any modifications to the environment need to be again followed
by hyperparameter tuning. Occasional instabilities in training were encountered, as can be seen from
Figure 3.6 around 1m steps, but PPO in general exhibited reliable performance. Constraint handling is
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another aspect which needs to be further evaluated, in particular with respect to incorporating obstacle
avoidance and speed limits into the motion planner. DRL cannot deal with explicit constraints, but this
can be achieved indirectly through enforcing penalties on exceeding said constraints. Another common
way to circumnavigate this issue is by using DRL in combination with a high-level rule based planner
which enforces constraints on top of the planned path as a safety net [33].

The most significant problem was the reproducibility of results. The learning process in the DRL algo-
rithms involve stochasticity, and in our particular case, the generation of the training environment itself
is random. This leads to high variability between runs, which inevitably causes reproducibility to suffer.
This problem is somewhat mitigated through the maximum possible reduction of dimensionality of state
and action space, which in our case was achieved through the use of spline based planning.



4
Conclusions and Future Work

4.1. Conclusions
In this thesis, a Deep Reinforcement Learning approach to motion sickness mitigation in the motion
planning layer of automated vehicles has been developed. The method is centred around a reward
function which uses frequency weighted accelerations as a measure of discomfort, and aims to shape
the frequency response of planned accelerations of the agent.

The frequency shaping effect of the reward function was evaluated by comparison with a DRL agent
trained on unweighted accelerations. Over 10,000 episodes, it was found that the developed DRL agent
learnt to reduce frequency weighted discomfort by nearly 10%, while maintaining comparable travel
times as the benchmark agent. Both agents were shown to learn near optimal frequency response for
their respective reward and environment definitions.

An important contribution of the thesis was the evaluation of the discomfort levels of the trained DRL
agent in a realistic simulation environment, and then subsequent comparison to driving comfort perfor-
mance of human drivers. The vehicle trajectories and accelerations for 6 drivers navigating through
two roundabout sections were collected, and used as a benchmark to evaluate DRL performance. The
DRL agent outperformed the human drivers in a slower roundabout section, but was observed to have
higher discomfort levels in the other roundabout section. The frequency spectrum comparison revealed
that the DRL agent led to targeted reductions in accelerations in the undesirable frequency band, while
having higher amplitudes in the remaining portions of the frequency spectrum.

The DRL agent was shown to have drastically lower computational times than the optimization-based
planner in the same environment, while generating discomfort values 10 to 15% worse. In conclusion,
the thesis shows that the developed DRL algorithm is a viable alternative to classical optimization-
based techniques for motion planning, and has the potential to be applied for the purpose of motion
sickness minimization.

4.2. Future Work
The DRL framework developed in this thesis is a first step in its application towards motion sickness
mitigation. However, as discussed in chapter 3, it does suffer from limitations, and there is significant
scope for improvement in order to create a planner which can be implemented for a wide range of prob-
lems. The improvements can be classified into three directions: design of the environment, evaluation
of real-world benefits, and improvements in the DRL algorithm itself.

The applicability to more complex environments with larger action spaces and more general state
spaces can be investigated, albeit keeping in mind the higher computational resources required for
training. The subjective improvements in motion comfort corresponding to the objective results need
to be verified through either on-road or driving simulator experiments with human volunteers. Finally,
incorporation of constraints in the motion plan such as speed limits, and obstacle avoidance can be
investigated by adding penalties in the reward function.

23



A
Deep Reinforcement Learning

Reinforcement Learning (RL) is a sub-field of Machine Learning, which lies between the supervised and
unsupervised learning paradigms. RL takes inspiration from learning in humans and animals, by trying
to teach behaviours to an agent through the process of trial and error. The desirable outcomes are
rewarded, and undesirable ones are penalized. The objective of an RL agent is to maximise long term
cumulative rewards through learning an optimal policy. It does not require any training data to learn, but
does require a training environment with which it interacts and which provides a reward corresponding
to the actions of the agent.

Apart from the mentioned advantage of not requiring training data, RL also does not require a model of
the system to learn a satisfactory control policy. This allows it to be applied to tasks where the system
is too complex to be modelled mathematically. Similar to other ML algorithms, RL also requires minimal
online computation resources, with the drawback of long training times, especially with more complex
tasks.

In this appendix, the central concepts of DRL have been explained, followed by a overview of the
popular DRL methods and the method used in this study.

A.1. Basic Concepts
The RL problem is typically represented as a Markov Decision Process (MDP), which consists of a
tuple < S,A, P,R >. Here S is the set of all possible states s, and A is the set of feasible actions a,
also known as the state and action spaces respectively. P is the probability transition function given by

sk+1 ∼ P (.|sk, ak) (A.1)

where sk ∈ S and ak ∈ A are the states and actions at time step k. R is the reward function which is
given by

rk = R(sk, ak) (A.2)

where rk is a scalar value, and is termed the reward. The most important property of a Markov process
is that the complete information of the environment is contained within the state at the current time, and
the environment does not depend on either past or future states.

The RL agent is given by a policy π, a mapping from the state space to the action space, which defines
the actions the agent takes in any given state. The policy in case of DRL, is represented in the form of
a Neural Network (NN) parameterised by θ. This can be represented as the following equation

ak ∼ πθ(sk) (A.3)

The actions ak might be discrete or continuous. Th agent is initialised with a state s0, and it samples
actions ak from its policy, leading to successive states as generated by the state transition function P
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till it reaches a terminal state. This sequence of states and actions is called a trajectory τ , also known
as an episode.

τ = (s0, a0, s1, a1, . . . sH) (A.4)
H in the above equation is the horizon, and sH is the terminal state.

The objective of the agent is to maximise cumulative reward over a period of time, known as the return
R. The return at time k is given as

R(τ) =

∞∑
k=0

γkrk (A.5)

where γ ∈ [0, 1] is a discount factor, which ensures that the value of the return R remains bounded in
the infinite sum. It also weighs the immediate rewards more than those obtained in the distant future.
Higher discount factors lead to higher impact of rewards in the distant future on the return. This causes
the agent to learn behaviours which are more far-sighted, and improve long term returns. However, too
high discount factors may lead the agent to correlate actions with rewards too far into the future, which
were not a result of their contribution.

The objective J of the DRL agent can be formally defined as

max
π

J(π) = E
τ∼π

[R(τ)] (A.6)

The agent tries to maximise the objective J , which is the expectation of the return R by learning an
optimal policy π∗ which can be expressed as

π∗ = argmax
π

J(π) (A.7)

To maximise the objective function, there are numerous algorithms in literature, with the most common
being value based and policy based methods. The following sections give a brief overview of value
based and policy based methods.

A.2. Value Approximation Based Algorithms
A concept very central to RL is the value function. The value function V π expresses the value of being
in a particular state s, and is expressed as the expected value of the returnR from the state on following
a policy π.

V π(s) = E
τ∼π

[R(s0 = s)] (A.8)

The higher the value V π of a state, the more the possibility of obtaining a high return from the state
on following the policy π. Another related function is the action-value function or the Q-function, which
focuses also on the value of the initial action a taken in any state. The Q-function is defined as

Qπ(s, a) = E
τ∼π

[R(s0 = s, a0 = a)] (A.9)

To calculate the Q-value for a state-action pair (s, a), the first action taken in the state s is a, with
the remaining trajectory sampled from the policy π. As opposed to the value function, the Q-function
separates the advantage of taking a specific action in the given state.

The optimal Q-function Q∗, if known, can be used to easily find the optimal action, the action which
maximises the objective J for a given state

a∗(s) = argmax
a

Q∗(s, a) (A.10)

Another function used to quantify the value of taking an action in a state as compared to other actions
is the advantage function Aπ. The advantage function is calculated as follows

Aπ(s, a) = Qπ(s, a)− V π(s) (A.11)

The advantage function is used to find the relative goodness of an action as compared to other actions,
as it separates the additional value of taking an action, from only the value of the state.

Many DRL algorithms such as Deep Q-learning (DQN) [34], Double DQN [35] and Duelling DQN [36]
try to approximate the optimal policy π∗ by estimating the optimal Q-function Q∗(s, a). These methods
are referred to as value approximation based methods.
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A.3. Policy Based Algorithms
A contrasting approach to value based methods are policy gradient-based methods, which try to opti-
mise the policy directly rather than approximating the optimal value function. Policy-based algorithms
work by trying to optimize the policy directly through means of gradient ascent on the parameters θ

θk+1 = θk + α∇θJ(πθ)|θk (A.12)

where α is a learning rate, and θ are the parameters of the policy network. The objective function J
as defined in equation A.6, is the expected value of the return over all trajectories τ ∈ T, and can be
rewritten in terms of the probability distribution of trajectories pθ(τ) and the rewards r(τ) as follows

max
π

J(π) = E
τ∼π

[R(τ)] (A.13)

=

∫
T
pθ(τ)r(τ)dτ (A.14)

(A.15)

Then differentiating the above equation, the gradient of the objective J can be calculated as follows

∇θJ(θ) =

∫
T
∇θpθ(τ)r(τ)dτ (A.16)

=

∫
T
pθ(τ)∇θ log pθ(τ)r(τ)dτ (A.17)

= E{∇θ log pθ(τ)r(τ)} (A.18)

The probability distribution pθ(τ) can be expressed in terms of the probability distribution of the initial
state, probabilities of the state transition function and the policy itself

pθ(τ) = p(s0)Π
H
k=0p(sk+1|sk, ak)πθ(ak|sk) (A.19)

The usage of the log probability leads to the initial probability distribution and the transition model terms
falling off from the gradient, as only the policy πθ is dependent on θ. Therefore the gradient of the log
probability function can be found as follows

∇θ log pθ(τ) =
H∑

k=0

∇θ logπθ(ak|sk) (A.20)

This expression can then be used to calculate the gradient by substituting into A.16, to get the gradient
estimate ĝ. To give an estimate of the expected reward r(τ) over the trajectory, the estimate of the
advantage function Âk, as defined in equation A.11 is used.

ĝ = E{∇θ logπθ(ak|sk)Âk} (A.21)

The gradient estimate ĝ is used in equation A.12 as an approximation for the gradient of the objective
function ∇θJ . The algorithms which use a gradient estimate to perform the parameter update are
known as REINFORCE algorithms [37], or as vanilla policy gradient algorithms, since they are the
simplest algorithms which make use of the policy gradient. Most implementations of the algorithm work
by differentiating a loss function given by

L(θ) = E{logπθ(ak|sk)Âk} (A.22)

The REINFORCE algorithm however suffers from instability during training, low sample efficiency and a
lack of robustness [38]. An algorithm based on vanilla gradient algorithms, but with a modified objective
function leading to significantly improved performance, is the Proximal Policy Optimization algorithm,
which has been discussed in the subsequent section.
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A.4. Proximal Policy Optimization
As mentioned above, policy gradient algorithms suffer from very low sample efficiency, and require
millions of steps in training to learn an adequate policy. The training is heavily dependent on the step
size. A small step size leads to very slow training, while large step sizes could lead to high noise and
straying away from the optimal policy. Proximal Policy Optimization (PPO) is a state-of-the-art policy
gradient algorithm that improves on the reliability and sample efficiency by using a clipped objective
function, which ensures that the updated policy after each step does not stray away regrettably far from
the existing policy. The clipped objective function used by the PPO algorithm is as follows

LCLIP (θ) = E{min(rk(θ)Âk, clip(rk(θ), 1− ϵ, 1 + ϵ)Âk)} (A.23)

where ϵ is a hyperparameter, and rk(θ) is the probability ratio rk(θ) =
πθh+1

πθh

.

It has been shown that PPO outperforms other algorithms which can deal with continuous state and
action spaces, such as Trust Region Policy Optimization (TRPO), Cross-Entropy Methos (CEM), RE-
INFORCE, Advantage Actor Critic (A2C) and Actor-Critic with Experience Replay (ACER) on several
MuJoCo environments [38]. A significant advantage of PPO is that the clipped objective function is easy
to implement, as opposed to the Kullback–Leibler divergence constrained objective in TRPO, and off-
policy corrections and replay buffers required for ACER. PPO has also been applied successfully to
automated driving tasks such as vehicle control [39], behavioural decision making [40] and autonomous
emergency steering [41]. Due to these reasons, the PPO algorithm was chosen for the motion planning
task in this thesis.



B
Custom Environment Definition

The Deep Reinforcement Learning Agent collects data for training by solely interacting with the envi-
ronment and generating state, action, and reward information. For the purpose of obtaining an agent
which performs well in the actual scenario in which it is planned to be implemented, it is of the utmost
importance to construct an environment which is representative of the real world problem. Once the
agent has been trained, it needs to be evaluated, either in the real world or in a virtual environment.
The environment used for evaluation can be the same as or different from the training environment.

In this thesis, a simple environment with a point mass model was used for training to generate cubic
spline based motion plans which can be generalised to different types of vehicles, and which keeps
training times relatively low. For evaluation, a high-fidelity IPG CarMaker environment was used. This
appendix is divided into two sections, with each section detailing the training and evaluation environ-
ments respectively.

B.1. Training Environment
The training environment consists of the state space S, the action space A, the state transition function
P and the reward function R, which have been previously defined in section A.1. The environment
used in this thesis consisted of one-step training episodes, and so the state transition function always
resulted in a terminal state, regardless of the state and action taken. The explanation of the reward
calculation requires an in-depth review of the literature on motion sickness, and therefore has been
explained in appendix C devoted to it. This section goes into the road profile generation, which defines
the state space, and the calculation of the motion profile itself, which defines the action space of the
agent.

B.1.1. Road Profile Generation
The road profile generated was of a fixed length L for the duration of training. To enable the agent to
learn how to navigate corners, the road profile was divided into a number of sectors ns. Each sector
was a circular section with a constant curvature value κi, i ∈ 0, 1, . . . , s− 1, with a length li.

The curvature of each section was sampled from a uniform distribution

κi ∼ U[κmin,κmax] (B.1)

where κmin = −0.1 and κmax = 0.1. These values were chosen based on the minimum curvature
values encountered in the designated route on which the human driving baseline performance was
established, which has been explained more in section B.2.

The lengths of each section needed to be generated such that the cumulative length came out to L,
while still providing a uniform distribution over the possible road profile sample space. This was done
by first generating a temporary array t of (ns−1) elements, sampled from a uniform distribution between
0 and 1.

t ∼ Uns

[0,1] (B.2)

28
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The array t was appended with the elements 0 and 1, and then sorted in an increasing order. The
element wise difference of the array was calculated to obtain the sector lengths as fractions fi of the
total length .

fi = ti+1 − ti i ∈ 0, 1, . . . , s− 1 (B.3)
The array f of fractions was then multiplied by the total length L of the road profile to obtain uniformly
distributed road length partitions li. In case of requirement of imposition of a minimum sector length
lmin, the sector lengths li were calculated as

li = fi(l − lmin) + lmin (B.4)

This procedure of generating road profile leads to a random profile with uniformly sampled sector
lengths li and curvatures κi. The detailed proof of uniformity of the sampled road lengths can be
found in the paper by Smith and Tromble [42]. Together, the curvature and length partitions along with
the lateral position and velocity at current time k comprise the state of the environment, given by the
array [κi, li, yk, vk]. It should be noted that all values are normalized to lie between the interval [-1,1].

B.1.2. Motion Profile Calculation
The motion trajectory as calculated by the DRL agent was in the form of a sequence of waypoints
defined with respect to the road centerline, along with target velocities at the respective waypoints.
The planned motion trajectory can then be used as a reference for a low level motion controller to
track.

The size of the action space A of the DRL agent needs to be kept in check to maintain training times
and memory requirements in reasonable limits. For instance, predicting the waypoints and velocities
for a horizon of 100 m, would require an action space of 200 considering a resolution of 1 m. In
addition, DRL output would struggle with ensuring continuity and smoothness of the motion profile. As
a workaround to these problems, the motion profile was planned as cubic splines, with separate splines
for the waypoints and the vehicle velocities. Cubic splines consist of piece-wise third order polynomials
Pi, passing through a set of control points or knot vectors. Cubic splines guarantee C2 continuity, which
ensures continuous acceleration profiles.

It is vital to note here that the use of splines for the motion profile will limit the choice of trajectories of
the agent to only the control points, and therefore it can exhibit only limited control over how the vehicle
behaves between the control points. The vehicle motion profile here would be dictated by the shapes
taken by the splines. This would theoretically lead to a sub-optimal solution as compared to planning
for each individual waypoint with a finer resolution, assuming the agent learns the optimal policy in both
cases. However, this is a trade-off which was necessary, considering the limited computational power
and time available for training the agent.

The motion profile is defined in terms of two splines with k knot vectors each, for lateral deviation y with
respect to road center line and velocity v. The distance travelled along the road center line is taken
as the independent variable of the polynomials Pi. A normalised variable u ∈ [0, 1] was taken as the
distance parameter, varying from 0 at the beginning of the polynomial section to 1 at the end. For the
lateral position, the polynomial is given as

Pi(u) = yi(u) = ay,iu
3 + by,iu

2 + cy,iu+ dy,i i = 0, 1, 2, . . . k − 1 (B.5)

The coefficients of the polynomials ay,i, by,i, cy,i, dy,i were calculated based on the following conditions

• The spline should pass through the knot vectors, therefore the ends of each piece-wise polynomial
are constrained to intersect at the control points

Pi(0) = yi, Pi(1) = yi+1 i = 0, 1, 2, . . . k − 1 (B.6)
ay,i = yi, ay,i + by,i + cy,i + dy,i = yi+1 i = 0, 1, 2, . . . k − 1 (B.7)

• The spline should be first order continuous, so the first derivative at the end of each polynomial
section is equal to the first derivative at the beginning of the subsequent spline.

P ′
i+1(0) = P ′

i (1) i = 0, 1, 2, . . . k − 2 (B.8)
by,i+1 = by,i + 2cy,i + 3dy,i i = 0, 1, 2, . . . k − 2 (B.9)
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• The second derivative of the spline is also continuous

P ′′
i+1(0) = P ′′

i (1) i = 0, 1, 2, . . . k − 2 (B.10)
cy,i+1 = cy,i + 3dy,i i = 0, 1, 2, . . . k − 2 (B.11)

• For the purpose of this work, the boundary conditions imposed on the spline were zero first deriva-
tive at the start and end of the motion. This was done to ensure that the vehicle is in a cruising
state before and after navigating the road profile, with a constant velocity and heading along the
direction of the road.

P ′
0(0) = 0, P ′

k−1(1) = 0 (B.12)
by,0 = 0, by,k−1 + 2cy,k−1 + 3dy,k−1 = 0 (B.13)

All the above equations were collected in the form of a linear system, and solved to find the desired
coefficients of the spline.

1 0 . . . 0
0 1 0 . . . 0
1 1 1 1 0 . . . 0
0 0 0 0 1 0 . . . 0
0 −1 −2 −3 0 1 0 . . . 0
0 0 −1 −3 0 0 1 0 . . . 0
0 0 0 0 1 1 1 1 . . . 0
...

...
0 . . . 1 0 0 0
0 . . . −1 −2 −3 0 1 0 0
0 . . . −1 −3 0 0 1 0
0 . . . 0 1 2 3
0 . . . 1 1 1 1





ay,0
by,0
cy,0
dy,0
ay,1
by,1
cy,1
dy,1
...

ay,k−1

by,k−1

cy,k−1

dy,k−1



=



y0
0
0
y1
y1
0
0
y2
...

yk−1

0
0
yk



(B.14)

B.2. Evaluation Environment
To evaluate the real-world performance of the trained DRL agents, two actual roundabouts in the Nether-
lands were chosen, and the trajectory was planned for 134 m long sections navigating through each
roundabout. The roundabouts represent typical daily use-case scenarios encountered by most drivers,
which produce accelerations in changing directions, and can provide a good representation of nau-
seogenicity of different driving styles.

The roundabouts will be referred to as RB1 and RB2, with respective latitude-longitude coordinates
(52.06497◦ E, 4.821414◦ N) and (52.0674◦ E, 4.823395◦ N). Satellite images of both roundabouts
along with the respective road profiles as used for evaluation have been shown in figure B.1 and B.2.
The road profile information in terms of the lengths and curvatures for RB1 and RB2 have been provided
in tables B.1 and B.2 respectively.

Roundabout 1
Lengths (m) 15.00 22.30 12.82 50.92 14.32 18.64

Curvature (m−1) 0.00 -1/54.00 -1/13.04 1/14.52 -1/17.52 0.00

Table B.1: Lengths li and curvatures κi of the road profile representing roundabout 1

Roundabout 2
Lengths (m) 17.22 18.46 34.14 20.36 43.82

Curvature (m−1) 0.00 -1/17.20 1/19.71 -1/22.09 0.00

Table B.2: Lengths and curvatures of the road profile representing roundabout 2
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Figure B.1: Satellite view of RB1, along with the road profile used for DRL agent evaluation shown in blue. The road profile
length is 134 m, with 6 curvature changes. The scale has been shown at the bottom. Map image courtesy google maps

Figure B.2: Satellite view of RB2, along with the road profile used for DRL agent evaluation shown in blue. The road profile
length is 134 m, with 5 curvature changes. The scale has been shown at the bottom. Map image courtesy google maps
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The road profiles were reconstructed in IPG CarMaker, and the demo Lexus NX300 vehicle model
available in IPG was used for simulation. The model was chosen since it was of same weight class,
with comparable dimensions and kerb weight as the vehicle used for on-road human driver evaluation,
the Hyundai Tucson. An electric powertrain without gearbox was chosen to eliminate the impact of
gearshifts on the trajectory following, which is representative of the actual vehicle which was equipped
with an automatic gearbox. The initial velocity for each roundabout section was taken equal to the mean
value as obtained from the human trials, which came out to 10.40 m/s and 10.46 m/s respectively for
RB1 and RB2. To track the reference trajectories generated by the motion planners, a simple Stanley
controller was used, which has already been described in the journal paper in Chapter 2. All simulations
were carried out with a step size of 5e-3 s, with output step size of 0.01 s, to match the sampling
frequency of the sensors used for experimental measurements.



C
Discomfort Evaluation

This appendix lays out the process of evaluating the passenger discomfort to define an appropriate
reward function for the DRL agent with the aim of minimizingmotion sickness. The relationship between
accelerations experienced from the planned motion trajectory and the incidence of motion sickness in
passengers needs to be understood in order to design a reward function which can effectively capture
the sickening characteristics of the motion plan.

C.1. Motion Sickness Dose Value
Lawther and Griffin in their work explored the relationship between the incidence of motion sickness
and the magnitude, frequency and duration of experienced accelerations on board a seafaring vessel
[43]. To incorporate the effect of both duration t and magnitude a of imposed accelerations on sickness
levels in volunteers, they proposed the calculation of a dose value of the form amtn to quantify the
nauseogenicity of the motion regime. As the magnitude of accelerations was found to have a linear
relationship with the MSI values, a value of m = 1 was assumed. Both n = 1/2 and n = 1/4 were
found to have similar levels of correlation between dose and MSI values. They proposed to use the
root of squared integral acceleration values as a dose value, in order to maintain the linear relationship
between acceleration and sickness values.

In literature, the most widely used form of the dose value is the Motion Sickness Dose Value, defined
as follows

MSDV =

√∫ T

0

a2wfdt (C.1)

where awf are the frequency weighted accelerations, using weighting filters which have been discussed
in detail in the subsequent section. To define the discomfort term D in this work, only the squared
integral term was used, which would accentuate the difference between desirable and undesirable
acceleration frequencies due to the shape of the square function. This would further incentivise the
minimization of the undesired frequencies. It also allowed to easily sum over the discomfort term over
consecutive steps while calculating the trajectory reward. Since the DRL agent was trained in an
environment with discrete time, the discomfort was calculated as a sum of the squared accelerations

D =

N−1∑
k=1

(a2xf,k + a2yf,k)∆Tk (C.2)

∆Tk is the travel time between stations k and k+1. The accelerations axf,k and ayf,k are the frequency
weighted accelerations.

C.2. Frequency Weighting Filters
O’Hanlon and McCauley investigated the frequency dependence of incidence of vomiting in volunteers,
and proposed a frequency weighting filter Wf for the design of ride characteristics in land, air and sea

33
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Figure C.1: Asymptotic and realizable frequency weightings for lateral acceleration [11]. The triangles are the measured
instances on which the weighting filters have been fit.

vehicles. It was observed that MSI peaked at acceleration frequencies near 0.2 Hz, with tolerance
improving appreciably above 0.5 Hz. However, the filter was only based on experiments carried out
with vertical oscillations, and cannot be extended directly to horizontal and rotational motions, or any
combination of the same. For our purpose of motion planning for road vehicles, it has been shown
that lateral accelerations play the most important role, followed by longitudinal oscillations, with no
significant contributions from vertical and rotational oscillations [4].

Golding et al found a maximum nauseogenic response of subjects to fore-aft accelerations at a fre-
quency of 0.2 Hz, with the nauseogenicity decreasing with higher and lower frequencies at a slope of
3-4 dB/octave, significantly lower than for vertical oscillations as found by O’Hanlon [44]. The slope
decreased further to -4.5 to -5.5 dB/octave for frequencies between 0.35 Hz and 1 Hz [45].

Donohew and Griffin further found that for lateral accelerations, the incidence of mild nausea was
independent of the frequency of imposed accelerations between 0.0315 Hz and 0.25 Hz [11]. An
asymptotic frequency weighting filter for lateral accelerations was proposed with a slope of 0 dB/octave
between 0.0315 Hz to 0.2 Hz, and a slope of -12 dB/octave for frequencies from 0.2 Hz to 0.8 Hz. The
asymptotic weighting has been shown in bold in Figure C.1.

Based on the above findings from literature, two separate frequency weighting filters were designed
each for lateral and longitudinal accelerations respectively. In the interest of reducing computation time
for reward calculation, only first-order high and low pass filters were used to construct the band pass
filters. This limited the slope past the cutoff frequencies to 6 dB/octave. This is representative of the
slope for longitudinal oscillations as mentioned in [45], but is not steep enough to capture the frequency
weighting as described in [11] for lateral accelerations.

The transfer functions of a first order low pass and high pass filter are given as

LP (s) =
1

τ1s+ 1
(C.3)

HP (s) =
s

τ2s+ 1
(C.4)

where τi = 1/(2πfi), fi being the respective cutoff frequency of the filter. For the longitudinal filter the
cutoff frequencies were taken as f1 = 0.25Hz and f2 = 0.15Hz, while for the lateral filter, the respective
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Figure C.2: The normalized band pass filters used for weighting lateral and longitudinal accelerations to calculate the
discomfort term

values were f1 = 0.25 Hz and f2 = 0.0315 Hz. The band pass filter was then simply calculated as

BP (s) = LP (s).HP (s) =
1

τ1s+ 1

s

τ2s+ 1
(C.5)

The gains of the band pass filters were normalised so that the area under the bode plots were equal
for the frequency range 0-1 Hz. This was done to ensure that the magnitudes of frequency weighted
accelerations in both directions remain comparable, and accelerations from a particular dimension do
not dominate the reward function. The resulting weighting filters have been shown in figure C.2.

C.3. Filter Implementation
In order to apply the frequency weighting filter to the accelerations in discrete time, the transfer function
in equation C.5 was first converted to a continuous time state space model

ẋ = Ax+Bu

y = Cx
(C.6)

x being an internal state, u being the acceleration a at that time instant, and y being the output of the
continuous time band pass filter BP (s). The state space model can then be converted to discrete time
by a zero order hold as follows

Ad = eA∆T

Bd =

(∫ T

τ=0

eAτdτ

)
B = A−1(Ad − I)B

Cd = C

(C.7)

∆T is the travel time between each station, and is the sampling time used to calculate the discrete time
matrices at each step in the trajectory. The matrix exponential is calculated by means of diagonalizing
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Figure C.3: Step response of longitudinal frequency
weighting filter
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Figure C.4: Step response of lateral frequency
weighting filter

the A matrix.

A = UDU−1

eA∆T = UeD∆TU−1
(C.8)

The matrices U , D, B and C are all calculated offline to minimize computation time.

The step response of the filters have been shown in figures C.3 and C.4. To take into consideration
the settling time of the filtered signal, a cooldown period of 10s and 30s was respectively taken for the
longitudinal and lateral accelerations, after the end of the planned trajectory. During this period, the
accelerations were assumed to be zero, and the output of the filters were penalized.



References

[1] James. Reason and J. J. Brand. Motion sickness / J. T. Reason, J. J. Brand. English. Academic
Press London ; New York, 1975, xi, 310 p. :

[2] Doreen Huppert, Judy Benson, and Thomas Brandt. “A Historical View of Motion Sickness—A
Plague at Sea and on Land, Also with Military Impact”. In: Frontiers in Neurology 8 (Apr. 2017).

[3] Eike Schmidt, Ouren Kuiper, Stefan Wolter, Cyriel Diels, and Jelte Bos. “An international survey
on the incidence and modulating factors of carsickness”. In: Transportation Research Part F:
Traffic Psychology and Behaviour 71 (May 2020), pp. 76–87.

[4] Mark Turner and Michael J. Griffin. “Motion sickness in public road transport: The relative impor-
tance of motion, vision and individual differences”. In: British Journal of Psychology 90.4 (Nov.
1999), pp. 519–530.

[5] Julie Iskander, Attia Mohammed, Khaled Saleh, Darius Nahavandi, Ahmed Abobakr, Shady Mo-
hamed, Houshyar Asadi, Abbas Khosravi, Chee Lim, and Mo Hossny. “From car sickness to
autonomous car sickness: A review”. In: Transportation Research Part F: Traffic Psychology and
Behaviour 62 (Apr. 2019), pp. 716–726.

[6] Bastian Pfleging, Maurice Rang, and Nora Broy. “Investigating user needs for non-driving-related
activities during automated driving”. In: Dec. 2016, pp. 91–99.

[7] Arnon Rolnick and Robert Lubow. “Why is the driver rarely motion sick—the Role of controllability
in motion sickness”. In: Ergonomics 34 (Aug. 1991), pp. 867–79.

[8] Cyriel Diels and Jelte Bos. “Self-driving carsickness”. In: Applied ergonomics 53 (Oct. 2015).
[9] J Reason. “Motion Sickness Adaptation: A Neural Mismatch Model”. In: Journal of the Royal

Society of Medicine 71 (Dec. 1978), pp. 819–29.
[10] James O’Hanlon and Michael McCauley. “Motion Sickness Incidence as a Function of Vertical

Sinusoidal Motion”. In: Aerospace medicine 45 (May 1974), pp. 366–9.
[11] Barnaby Donohew and Michael Griffin. “Motion sickness: Effect of the frequency of lateral oscil-

lation”. In: Aviation, space, and environmental medicine 75 (Sept. 2004), pp. 649–56.
[12] Michael Griffin and Kim Mills. “Effect of frequency and direction of horizontal oscillation on motion

sickness”. In: Aviation, space, and environmental medicine 73 (July 2002), pp. 537–43.
[13] Larissa Labakhua, Urbano Nunes, Rui Rodrigues, and Fátima Leite. “Smooth Trajectory Planning

for Fully Automated Passengers Vehicles: Spline and Clothoid Based Methods and Its Simula-
tion”. In: vol. 15. Jan. 2006, pp. 89–96.

[14] Matthew Mcnaughton, Chris Urmson, John Dolan, and Jin-Woo Lee. “Motion Planning for Au-
tonomous Driving with a Conformal Spatiotemporal Lattice”. In: June 2011, pp. 4889–4895.

[15] Ray Lattarulo, Enrique Martí, Mauricio Marcano, Jose Matute, and Joshué Pérez. “A Speed Plan-
ner Approach Based On Bézier Curves Using Vehicle Dynamic Constrains and Passengers Com-
fort”. In: May 2018, pp. 1–5.

[16] Yanggu Zheng, Barys Shyrokau, and Tamas Keviczky. “3DOP: Comfort-oriented Motion Planning
for Automated Vehicles with Active Suspensions”. In: June 2022, pp. 390–395.

[17] Sarah ‘Atifah Saruchi, Mohd Hatta Mohammed Ariff, Hairi Zamzuri, Noor Hafizah Amer, Nurbaiti
Wahid, Nurhaffizah Hassan, and Khairil Anwar Abu Kassim. “Novel Motion Sickness Minimization
Control via Fuzzy-PID Controller for Autonomous Vehicle”. In: Applied Sciences 10.14 (2020).

[18] Mert Sever, Namik Zengin, Ahmet Kirli, and M Selçuk Arslan. “Carsickness-based design and
development of a controller for autonomous vehicles to improve the comfort of occupants”. In:
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineer-
ing 235.1 (2021), pp. 162–176.

37



References 38

[19] Ryosuke Ukita, Yuki Okafuji, and Takahiro Wada. “A Simulation Study on Lane-Change Control
of Automated Vehicles to Reduce Motion Sickness Based on a Computational Mode”. In: 2020
IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2020, pp. 1745–1750.

[20] Daofei Li and Jiankan Hu. “Mitigating Motion Sickness in Automated Vehicles With Frequency-
Shaping Approach to Motion Planning”. In: IEEE Robotics and Automation Letters 6.4 (2021),
pp. 7714–7720.

[21] Zaw Htike, Georgios Papaioannou, Efstathios Velenis, and Stefano Longo. “Motion Planning of
Self-driving Vehicles for Motion Sickness Minimisation”. In: 2020 European Control Conference
(ECC). 2020, pp. 1719–1724.

[22] Muhammad Rehan Siddiqi, Sina Milani, Reza N. Jazar, and Hormoz Marzbani. “Ergonomic Path
Planning for Autonomous Vehicles-An Investigation on the Effect of Transition Curves on Motion
Sickness”. In: IEEE Transactions on Intelligent Transportation Systems (2021), pp. 1–12.

[23] Ahmad El Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. End-to-End Deep
Reinforcement Learning for Lane Keeping Assist. 2016.

[24] Peter Wolf, Karl Kurzer, Tobias Wingert, Florian Kuhnt, and J. Marius Zollner. “Adaptive Behavior
Generation for Autonomous Driving using Deep Reinforcement Learning with Compact Semantic
States”. In: 2018 IEEE Intelligent Vehicles Symposium (IV) (June 2018).

[25] Carl-Johan Hoel, Krister Wolff, and Leo Laine. “Automated Speed and Lane Change Decision
Making using Deep Reinforcement Learning”. In: 2018 21st International Conference on Intelli-
gent Transportation Systems (ITSC) (Nov. 2018).

[26] Pin Wang and Ching-Yao Chan. “Formulation of deep reinforcement learning architecture toward
autonomous driving for on-ramp merge”. In: 2017 IEEE 20th International Conference on Intelli-
gent Transportation Systems (ITSC) (Oct. 2017).

[27] Árpád Fehér, Szilárd Aradi, Ferenc Hegedüs, Tamás Bécsi, and Péter Gáspár. “Hybrid DDPG
Approach for Vehicle Motion Planning”. In: Jan. 2019, pp. 422–429.

[28] Carl-Johan Hoel, Katherine Driggs-Campbell, Krister Wolff, Leo Laine, and Mykel J. Kochen-
derfer. “Combining Planning and Deep Reinforcement Learning in Tactical Decision Making for
Autonomous Driving”. In: IEEE Transactions on Intelligent Vehicles 5.2 (June 2020), pp. 294–
305.

[29] Pin Wang and Ching-Yao Chan. Autonomous Ramp Merge Maneuver Based on Reinforcement
Learning with Continuous Action Space. 2018.

[30] Chris Paxton, Vasumathi Raman, Gregory D. Hager, and Marin Kobilarov. Combining Neural
Networks and Tree Search for Task and Motion Planning in Challenging Environments. 2017.

[31] Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schütze. “Comparative Study of CNN and
RNN for Natural Language Processing”. In: (Feb. 2017).

[32] Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Joseph Gonzalez, Krste Asanovic, and Ion Stoica.
A View on Deep Reinforcement Learning in System Optimization. 2019.

[33] Szilárd Aradi. “Survey of Deep Reinforcement Learning for Motion Planning of Autonomous Ve-
hicles”. In: IEEE Transactions on Intelligent Transportation Systems 23.2 (2022), pp. 740–759.

[34] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. “Human-level
control through deep reinforcement learning”. In: nature 518.7540 (2015), pp. 529–533.

[35] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement Learning with Double
Q-Learning”. In: Proceedings of the AAAI Conference on Artificial Intelligence 30 (Sept. 2015).

[36] ZiyuWang, Nando Freitas, andMarc Lanctot. “Dueling Network Architectures for Deep Reinforce-
ment Learning”. In: (Nov. 2015).

[37] R.J. Williams. “Simple statistical gradient-following algorithms for connectionist reinforcement
learning”. In: Machine Learning 8 (May 1992), pp. 229–256.

[38] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. “Proximal Policy
Optimization Algorithms”. In: (July 2017).



References 39

[39] Andreas Folkers, Matthias Rick, and Christof Büskens. Controlling an Autonomous Vehicle with
Deep Reinforcement Learning. Sept. 2019.

[40] Fei Ye, Xuxin Cheng, Pin Wang, Ching-Yao Chan, and Jiucai Zhang. Automated Lane Change
Strategy using Proximal Policy Optimization-based Deep Reinforcement Learning. 2020.

[41] Misako Yoshimura, Gakuyo Fujimoto, Abinav Kaushik, Bharat Padi, Matthew Dennison, Ishaan
Sood, Kinsuk Sarkar, Abdul Muneer, Amit More, Masamitsu Tsuchiya, Satoru Araki, Anil Hebber,
Tijmen Tieleman, and Yuji Yasui. “Autonomous Emergency Steering Using Deep Reinforcement
Learning For Advanced Driver Assistance System”. In: Sept. 2020, pp. 1115–1119.

[42] Noah A. Smith and Roy W. Tromble. “Sampling Uniformly from the Unit Simplex”. In: Tech. rep.,
Johns Hopkins University (Aug. 2004).

[43] A Lawther and Michael Griffin. “The motion of a ship at sea and the consequent motion sickness
amongst passengers”. In: Ergonomics 29 (May 1986), pp. 535–52.

[44] John Golding, AG Mueller, and MA Gresty. “A motion sickness maximum around the 0.2 Hz
frequency range of horizontal translational oscillation”. In: Aviation, space, and environmental
medicine 72 (Apr. 2001), pp. 188–92.

[45] John Golding, M Finch, and J.R.R. Stott. “Frequency effect of 0.35-1.0 Hz horizontal translational
oscillation on motion sickness and the somatogravic illusion”. In: Aviation, space, and environ-
mental medicine 68 (June 1997), pp. 396–402.


	Acknowledgements
	Abstract
	Introduction
	Journal Paper
	Results and Discussions
	Additional Results
	Discussion
	Environment Design
	Evaluation of Real-World Benefits
	DRL Issues


	Conclusions and Future Work
	Conclusions
	Future Work

	Deep Reinforcement Learning
	Basic Concepts
	Value Approximation Based Algorithms
	Policy Based Algorithms 
	Proximal Policy Optimization

	Custom Environment Definition
	Training Environment
	Road Profile Generation
	Motion Profile Calculation

	Evaluation Environment

	Discomfort Evaluation
	Motion Sickness Dose Value
	Frequency Weighting Filters
	Filter Implementation

	References

